WO2023082539A1 - 电机的负载惯量的确定方法和装置、电机组件和存储介质 - Google Patents

电机的负载惯量的确定方法和装置、电机组件和存储介质 Download PDF

Info

Publication number
WO2023082539A1
WO2023082539A1 PCT/CN2022/085419 CN2022085419W WO2023082539A1 WO 2023082539 A1 WO2023082539 A1 WO 2023082539A1 CN 2022085419 W CN2022085419 W CN 2022085419W WO 2023082539 A1 WO2023082539 A1 WO 2023082539A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
motor
frequency
sequence
target
Prior art date
Application number
PCT/CN2022/085419
Other languages
English (en)
French (fr)
Inventor
唐爱慧
刘灼
焦占四
王坤
Original Assignee
广东美的智能科技有限公司
高创传动科技开发(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的智能科技有限公司, 高创传动科技开发(深圳)有限公司 filed Critical 广东美的智能科技有限公司
Publication of WO2023082539A1 publication Critical patent/WO2023082539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present application relates to the technical field of motor control, in particular, to a method and device for determining the load inertia of a motor, a motor component and a storage medium.
  • the closed-loop control of the motor needs to inject a sinusoidal command speed signal into the drive signal.
  • the command speed signal needs to be determined according to the initial parameter value of the speed changer, and the load inertia of the motor will affect the convergence of the speed loop. Control makes an impact.
  • This application aims to solve at least one of the technical problems existing in the prior art or related art.
  • the first aspect of the present application proposes a method for determining the load inertia of the motor.
  • a second aspect of the present application proposes a device for determining a load inertia of an electric motor.
  • a third aspect of the present application proposes a motor assembly.
  • a fourth aspect of the present application proposes a readable storage medium.
  • a fifth aspect of the present application proposes another motor assembly.
  • a sixth aspect of the present application proposes a robot.
  • the first aspect of the present application provides a method for determining the load inertia of a motor, including: injecting an excitation signal into the drive signal of the motor, superimposing it with a command signal to form a target signal; driving the motor to run through the target signal, and Determine the speed signal of the motor; convert the target signal and speed signal from the time domain signal to the frequency domain signal, and obtain the current sequence and speed sequence in the frequency domain; determine the amplitude-frequency sequence of the transfer function of the motor and the load according to the current sequence and speed sequence ; Fit the amplitude-frequency sequence to a target curve; and determine the load inertia of the motor according to the target curve.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the driving signal of the motor, so that the excitation signal and the command signal of the motor are superimposed to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotational speed signal below to obtain a one-to-one correspondence between the current sequence and the rotational speed sequence.
  • the amplitude-frequency sequence of the motor and the load is calculated.
  • the technical solution of the present application can measure the inertia under the current closed loop, that is, the speed open loop, so there is no measurement instability, and the inertia calculation has high reliability. Calculate the load inertia of the motor through the target curve, and adjust the drive signal of the motor according to the calculated load inertia, which can eliminate the influence of the load inertia on the convergence of the speed loop in the motor control, reduce the vibration and noise of the motor, and improve the operation effect of the motor .
  • the method for determining the load inertia in the above technical solution provided by this application may also have the following additional technical features:
  • determining the load inertia of the motor according to the target curve includes: determining the straight line where the straight line segment of the target curve is located; and determining the load inertia according to the straight line and the moment of inertia of the motor.
  • the mechanical transmission part including the motor and the load
  • it can be abstracted into: a two-mass system of motor ⁇ transmission part ⁇ load, wherein the two-mass system can be expressed by a transfer function, and the transfer function includes two parts , one is the mechanical transmission part of the rigid system, and the other is the resonance part caused by the flexible connection.
  • the target curve includes a straight line segment and a curved line segment.
  • the mechanically transmitted part of the rigid system corresponds to the straight segment of the target curve, while the resonant part caused by the flexible link corresponds to the curved segment of the target curve.
  • the resonance part caused by the flexible connection has little influence on the system transfer function, so the straight line segment corresponding to the transfer part of the rigid system can be used for calculation.
  • the target curve is a curve in a Bode diagram
  • the abscissa of the Bode diagram represents frequency logarithm
  • the ordinate represents frequency amplitude.
  • the method before converting the target signal and the rotational speed signal from a time-domain signal to a frequency-domain signal, the method further includes: sampling the target signal according to the target sampling frequency to obtain a sampling target signal; , the rotational speed information is sampled to obtain a sampled rotational speed signal; and the sampling target signal and the sampled rotational speed signal are converted into frequency domain signals to obtain a current sequence and a rotational speed sequence in the frequency domain.
  • the target signal obtained by superimposing the motor drive signal and the excitation signal is first sampled according to the target sampling frequency to obtain the sampled target signal .
  • the target sampling frequency can indicate the time interval between two samplings when the target signal is sampled. It can be understood that the higher the target sampling frequency is, the denser the sampling target is obtained, and the time interval between two adjacent sampling The shorter the time interval.
  • a sampled rotational speed signal may be collected simultaneously, so that the sampled target signal corresponds to the sampled rotational speed signal one-to-one.
  • the step of converting the target signal and the speed signal from the time domain signal to the frequency domain signal specifically includes: converting the sampling target signal and the sampling speed signal into a frequency domain signal to obtain the corresponding current sequence and speed sequence.
  • three sampling target signals at 1 second, 2 seconds, and 3 seconds are respectively collected, which are respectively marked as I1, I2, and I3.
  • three sampling speed signals at 1 second, 2 seconds and 3 seconds are collected, which are Q1, Q2 and Q3 respectively.
  • Q1 is the speed information of the motor when the motor is driven by the target signal I1.
  • Q2 is the speed information of the motor when the motor is driven by the current I2
  • Q3 is the speed information of the motor when the motor is driven by the current I3.
  • This application samples the target signal and the rotational speed of the motor according to the target sampling frequency to form corresponding current sequences and rotational speed sequences respectively, and obtains the amplitude-frequency sequence of the motor according to the current sequence, rotational speed sequence and transfer function. Based on the amplitude-frequency sequence
  • the target curve fitted in the Bode diagram can accurately calculate the load inertia of the motor, which is beneficial to eliminate the influence of the load inertia on the convergence of the speed loop in motor control, and realize more accurate motor control.
  • the determination method also includes: changing the target sampling frequency at least once; repeatedly obtaining different current sequences and speed sequences; calculating the average value of the load inertia obtained according to different current sequences and speed sequences as Final load inertia.
  • the target sampling frequency by changing the target sampling frequency, the target signal and the rotational speed information of the motor are repeatedly sampled through different sampling frequencies, thereby generating multiple sets of current sequences and corresponding multiple sets of rotational speed sequences.
  • multiple sets of load inertia are calculated according to multiple sets of different current sequences and multiple sets of different speed sequences, and the final load inertia is obtained by calculating the average value of multiple sets of load inertia.
  • This application can reduce the sampling error caused by signal fluctuations by sampling multiple times, calculating the load inertia multiple times, and calculating the average value, so as to improve the accuracy of load inertia calculation, thereby achieving more accurate motor control and improving the performance of the motor. running result.
  • converting the sampling target signal and the sampling speed signal into a frequency domain signal includes: performing anti-leakage processing on the sampling target signal; and/or performing anti-leakage processing on the sampling speed signal;
  • the signal and the speed signal are subjected to fast Fourier transform to obtain the current sequence and the speed sequence.
  • anti-leakage processing can be performed on the excitation current sequence in the time domain, such as windowing the excitation signal, or the excitation current sequence in the time domain
  • the current sequence performs end-filling 0 operations, etc.
  • FFT Fast Fourier Transform
  • the fast Fourier transform calculation can be performed on the speed sequence in the same way, so that the sequence of the speed signal in the time domain can be converted into Rotational speed series in the frequency domain.
  • the target curve corresponding to the amplitude-frequency sequence calculates the load inertia of the motor through the target curve, so that the inertia of the load during the operation of the motor can be accurately obtained, and the drive signal of the motor can be adjusted through the load inertia to achieve a more accurate speed Open-loop control or speed closed-loop control, thereby reducing motor vibration and noise, and improving the operating effect of the motor.
  • the method when the excitation signal is the longest linear feedback shift register sequence, the method includes: using the target sampling frequency as the injection frequency of the longest linear feedback shift register sequence.
  • the excitation signal of the longest linear feedback shift register sequence (also known as M sequence) can be generated.
  • the M sequence is the longest cycle generated by the shift register with linear feedback.
  • the sequence, M sequence is a typical pseudo-random sequence.
  • the injection frequency of the excitation signal is the target sampling frequency, that is, the injection frequency of the excitation signal is the same as the sampling frequency of the target signal, which is conducive to improving the calculation accuracy of the load inertia and realizing more accurate speed control.
  • Loop control or speed closed-loop control thereby reducing motor vibration and noise, and improving the operation effect of the motor.
  • the method further includes: determining the minimum frequency, maximum frequency and frequency interval of the sinusoidal frequency sweep signal according to the target sampling frequency; determining the frequency interval of the sinusoidal frequency sweep signal Start frequency, where the start frequency is greater than the minimum frequency; use the start frequency as the frequency of the sine sweep signal; increase the frequency interval in turn as the new frequency of the sine sweep signal, until the new frequency is greater than the maximum frequency, stop injecting the sine sweep signal.
  • the excitation signal is specifically a sinusoidal frequency sweep signal, wherein the minimum frequency, maximum frequency and frequency interval of the frequency sweep of the sinusoidal frequency sweep excitation signal can be set according to the preset target sampling frequency.
  • the target sampling frequency for sampling the target signal first set the minimum sinusoidal frequency and the maximum sinusoidal frequency at which the driving signal of the motor can be injected during the operation of the motor.
  • the minimum sinusoidal frequency is the minimum frequency of the sinusoidal frequency sweep signal
  • the maximum sinusoidal frequency is the maximum frequency of the sinusoidal sweep signal.
  • the starting frequency of the sine sweep signal is determined according to the minimum frequency, wherein the starting frequency is greater than the minimum frequency, and in some embodiments, the starting frequency is the sum of the minimum frequency and the frequency interval.
  • the target signal and the rotational speed signal are converted from the time domain signal to the frequency domain signal, and the current sequence and the rotational speed sequence in the frequency domain are obtained, including: performing discrete Fourier transform on the target signal and the rotational speed signal respectively, to obtain Current sequence and speed sequence.
  • the excitation signal is a sinusoidal frequency sweep signal sequence, that is to say, the excitation signal is a discrete signal with gradually increasing frequency, therefore, when the target signal is converted from the time domain to the frequency domain, the time domain
  • the excitation current sequence is calculated by Discrete Fourier Transform (DFT), so as to convert the sequence of the target signal in the time domain into the current sequence in the frequency domain.
  • DFT Discrete Fourier Transform
  • the discrete Fourier transform calculation can be performed on the rotation speed sequence in the same way, so as to convert the rotation speed signal sequence in the time domain into the rotation speed sequence in the frequency domain.
  • the driving signal of the motor is a driving signal of speed open-loop control.
  • the drive signal of the motor can be the drive signal of the speed open-loop control, that is, under the speed open-loop control
  • the speed controller of the motor will not output the speed adjustment signal, and the target signal only includes the original drive signal and excitation signal, so the calculation process is more concise and beneficial Improve the calculation speed of the load inertia of the motor, improve the timeliness of adjusting the motor control according to the load inertia, and then improve the working effect of the motor.
  • the driving signal of the motor is the driving signal of the speed closed-loop control;
  • the amplitude-frequency sequence of the transfer function of the motor and the load is determined according to the current sequence and the rotation speed sequence, including: according to the target sampling frequency, collecting the speed control of the motor According to the output signal of the device, the speed adjustment signal is obtained; according to the speed adjustment signal, the corresponding signal sequence is generated; according to the signal sequence, current sequence, speed sequence and transfer function, the amplitude-frequency sequence is determined.
  • the drive signal of the motor can be the drive signal of the speed closed-loop control, that is, the speed of the motor is controlled under the speed closed-loop control. Calculate the load inertia.
  • the speed controller of the motor will generate and output the speed adjustment signal according to the real-time speed information of the motor, therefore, the target signal is actually a combination of the original motor drive signal, excitation signal and the output signal of the speed controller. overlay.
  • the output signal of the speed controller of the motor is sampled according to the same target sampling frequency as when collecting the target signal, and the rotational speed adjustment signal obtained by sampling corresponds to the target signal and the rotational speed signal one by one.
  • the speed adjustment signal generate the corresponding signal sequence, and based on the signal sequence, the current sequence obtained by sampling the target signal, the speed sequence corresponding to the current sequence and the torque coefficient of the motor, based on the transfer function of the mechanical part of the motor , calculate the amplitude-frequency sequence.
  • the embodiment of the present application can calculate the load inertia of the motor when the motor is in the speed closed-loop control, so that no matter what operating mode the motor is in, the influence of the load inertia on the convergence of the speed loop in the motor control can always be eliminated, and more accurate Advanced motor control, reduce motor vibration and noise, and improve the operation effect of the motor.
  • the amplitude-frequency sequence is:
  • G mech (k) is the amplitude-frequency sequence
  • W M (k) is the speed sequence
  • I (k) is the current sequence
  • K T is the torque coefficient of the motor.
  • the amplitude-frequency sequence includes N amplitude-frequency data, where the amplitude-frequency data is the rotational speed signal divided by the torque coefficient of the motor and the target signal corresponding to the rotational speed signal at the same time product of .
  • the target signal and speed signal sampled in each sampling, and the torque coefficient of the motor the corresponding amplitude-frequency data is calculated, and finally formed into an amplitude-frequency sequence with N items.
  • the target curve is formed, and the load inertia of the motor can be accurately calculated according to the target curve, so that the influence of the load inertia on the convergence of the speed loop in motor control can be eliminated, more accurate motor control can be achieved, motor vibration and noise can be reduced, and the operation effect of the motor can be improved.
  • the amplitude-frequency sequence is:
  • G mech (k) is the amplitude-frequency sequence
  • W M (k) is the speed sequence
  • I (k) is the current sequence
  • K T is the torque coefficient of the motor
  • T e,ref (k) is the torque command signal sequence.
  • the amplitude-frequency sequence includes N amplitude-frequency data, where the amplitude-frequency data is the speed signal divided by the torque coefficient of the motor and the target signal corresponding to the speed signal at the same time and The product of the speed regulation signal. According to the target signal, speed signal and speed adjustment signal sampled in each sampling, and the torque coefficient of the motor, the corresponding amplitude-frequency data is calculated, and finally an amplitude-frequency sequence with N items is formed.
  • the load inertia of the motor can be accurately calculated according to the target curve, thereby eliminating the influence of the load inertia on the convergence of the speed loop in motor control, realizing more accurate motor control, reducing motor vibration and noise, and improving The performance of the motor.
  • the motor is connected to the load through a connecting piece
  • the transfer function is:
  • G mech (s) is the amplitude-frequency curve equation of the motor
  • ⁇ M is the speed information
  • T e is the electromagnetic torque of the motor
  • J M is the moment of inertia of the motor
  • J L is the load inertia
  • B S is the damping coefficient of the connector
  • K S is the elastic coefficient of the connector
  • s is the Laplace operator.
  • the motor, connector and load can be abstracted into a two-mass system of motor ⁇ connector ⁇ load, and the transfer function of the two-mass system is shown above.
  • the transfer function includes 2 parts, among them, is the equivalent rigid system equation, while The part of is the resonance equation caused by the flexible system.
  • the second aspect of the present application provides a device for determining the load inertia of a motor, including: an injection module, used to inject an excitation signal into the drive signal of the motor, and superimposed with the command signal to form a target signal; a drive module, used to pass the target signal Drive the motor to run; the determination module is used to determine the speed signal of the motor; the conversion module is used to convert the target signal and the speed signal from the time domain signal to the frequency domain signal, and obtain the current sequence and the speed sequence in the frequency domain; the determination module also It is used to determine the amplitude-frequency sequence of the transfer function of the motor and the load according to the current sequence and the rotational speed sequence; the fitting module is used to fit the amplitude-frequency sequence to a target curve; the determination module is also used to determine the load inertia of the motor according to the target curve.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the driving signal of the motor, so that the excitation signal and the command signal of the motor are superimposed to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotation speed signals below to obtain one-to-one corresponding current sequence and rotation speed sequence, wherein, the current sequence includes N target signals, and the rotation speed sequence includes rotation speed signals corresponding to N target signals one-to-one, where N is a positive integer.
  • the amplitude-frequency sequence of the motor and the load is calculated.
  • the third aspect of the present application provides a motor assembly, including: a memory for storing programs or instructions; a processor for implementing the method for determining the load inertia of the motor as provided in any of the above technical solutions when executing the programs or instructions Therefore, the motor assembly also includes all the beneficial effects of the method for determining the load inertia of the motor provided in any of the above-mentioned technical solutions, and in order to avoid repetition, details are not repeated here.
  • the fourth aspect of the present application provides a readable storage medium on which programs or instructions are stored.
  • the programs or instructions are executed by the processor, the steps of the method for determining the load inertia of the motor provided in any of the above technical solutions are implemented. Therefore, the readable storage medium also includes all the beneficial effects of the method for determining the load inertia of the motor provided in any of the above-mentioned technical solutions, which will not be repeated here to avoid repetition.
  • the fifth aspect of the present application provides a motor assembly, including the device for determining the load inertia provided in any of the above technical solutions; and/or the readable storage medium provided in any of the above technical solutions, therefore, the motor assembly It also includes all the beneficial effects of the load inertia determining device provided in any of the above technical solutions and/or the readable storage medium provided in any of the above technical solutions, and will not be repeated here to avoid repetition.
  • the sixth aspect of the present application provides a robot, including: a mechanical arm; the motor assembly provided in any of the above technical solutions, the motor assembly is connected to the mechanical arm, therefore, the robot also includes the mechanical arm provided in any of the above technical solutions All the beneficial effects of the motor assembly are not repeated here to avoid repetition.
  • Fig. 1 shows one of the flowcharts of the method for determining load inertia according to an embodiment of the present application
  • Fig. 2 shows the second flow chart of the method for determining the load inertia according to the embodiment of the present application
  • Fig. 3 shows the third flowchart of the method for determining the load inertia according to the embodiment of the present application
  • Fig. 4 shows the system schematic diagram of the speed open-loop control of the motor according to the embodiment of the present application
  • FIG. 5 shows a schematic diagram of a system for closed-loop speed control of a motor according to an embodiment of the present application
  • FIG. 6 shows a structural block diagram of a device for determining load inertia according to an embodiment of the present application
  • Fig. 7 shows a structural block diagram of a motor assembly according to an embodiment of the present application.
  • FIG. 1 shows one of the flow charts of the method for determining the load inertia according to an embodiment of the present application. As shown in FIG. 1 , the method include:
  • Step 102 injecting an excitation signal into the drive signal of the motor, superimposed with the instruction signal to form a target signal
  • Step 104 drive the motor to rotate through the target signal, and determine the speed signal of the motor
  • Step 106 converting the target signal and the rotational speed signal from a time domain signal to a frequency domain signal to obtain a current sequence and a rotational speed sequence in the frequency domain;
  • Step 108 determine the amplitude-frequency sequence of the transfer function of the motor and the load according to the current sequence and the rotational speed sequence;
  • Step 110 fitting the amplitude-frequency sequence to a target curve, and determining the load inertia of the motor according to the target curve.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the drive signal of the motor, so that the excitation signal is superimposed with the command signal of the motor to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotation speed signal below to obtain a one-to-one correspondence between the current sequence and the rotation speed sequence.
  • the amplitude-frequency sequence of the motor and the load is calculated.
  • the embodiments of the present application can measure the inertia under the current closed loop, that is, the speed open loop, so there is no measurement instability, and the inertia calculation has high reliability. Calculate the load inertia of the motor through the target curve, and adjust the drive signal of the motor according to the calculated load inertia, which can eliminate the influence of the load inertia on the convergence of the speed loop in the motor control, reduce the vibration and noise of the motor, and improve the operation effect of the motor .
  • determining the load inertia of the motor according to the target curve includes: determining a straight line where a straight line segment of the target curve is located; and determining the load inertia according to the straight line and the moment of inertia of the motor.
  • the mechanical transmission part including the motor and the load
  • it can be abstracted into a two-mass system of motor ⁇ transmission member ⁇ load, wherein the two-mass system can be expressed by a transfer function, and the transfer function includes two One is the mechanical transmission part of the rigid system, and the other is the resonance part caused by the flexible connection.
  • the mechanical transmission part of the rigid system corresponds to the straight line segment of the target curve
  • the resonance part caused by the flexible connection corresponds to the curved segment of the target curve.
  • the target curve is a curve in a Bode diagram
  • the abscissa of the Bode diagram represents frequency logarithm
  • the ordinate represents frequency amplitude.
  • the method before converting the target signal and the rotational speed signal from a time-domain signal to a frequency-domain signal, the method further includes: sampling the target signal according to the target sampling frequency to obtain a sampled target signal; sampling according to the target Frequency, sampling the rotation speed information to obtain a sampling rotation speed signal; converting the sampling target signal and the sampling rotation speed signal into a frequency domain signal to obtain a current sequence and a rotation speed sequence in the frequency domain.
  • the target sampling frequency can indicate the time interval between two samplings when the target signal is sampled. It can be understood that the higher the target sampling frequency is, the denser the sampling target is obtained, and the time interval between two adjacent sampling The shorter the time interval.
  • a sampled rotational speed signal may be collected simultaneously, so that the sampled target signal corresponds to the sampled rotational speed signal one-to-one.
  • the step of converting the target signal and the speed signal from the time domain signal to the frequency domain signal specifically includes: converting the sampling target signal and the sampling speed signal into a frequency domain signal to obtain the corresponding current sequence and speed sequence.
  • three target signals are collected at 1 second, 2 seconds, and 3 seconds respectively, which are respectively recorded as I1, I2, and I3.
  • three rotational speed signals at 1 second, 2 seconds and 3 seconds are collected, which are Q1, Q2 and Q3 respectively.
  • Q1 is the speed information of the motor when the motor is driven by the target signal I1.
  • Q2 is the speed information of the motor when the motor is driven by the current I2
  • Q3 is the speed information of the motor when the motor is driven by the current I3.
  • This application samples the target signal and the rotational speed of the motor according to the target sampling frequency to form corresponding current sequences and rotational speed sequences respectively, and obtains the amplitude-frequency sequence of the motor according to the current sequence, rotational speed sequence and transfer function. Based on the amplitude-frequency sequence
  • the target curve fitted in the Bode diagram can accurately calculate the load inertia of the motor, which is beneficial to eliminate the influence of the load inertia on the convergence of the speed loop in motor control, and realize more accurate motor control.
  • the determination method further includes: changing the target sampling frequency at least once; repeatedly obtaining different current sequences and speed sequences; calculating the average value of the load inertia obtained according to different current sequences and speed sequences, as the final load inertia.
  • the target sampling frequency by changing the target sampling frequency, the target signal and the rotational speed information of the motor are repeatedly sampled through different sampling frequencies, thereby generating multiple sets of current sequences and corresponding multiple sets of rotational speed sequences.
  • multiple sets of load inertia are calculated according to multiple sets of different current sequences and multiple sets of different speed sequences, and the final load inertia is obtained by calculating the average value of multiple sets of load inertia.
  • This application can reduce the sampling error caused by signal fluctuations by sampling multiple times, calculating the load inertia multiple times, and calculating the average value, so as to improve the accuracy of load inertia calculation, thereby achieving more accurate motor control and improving the performance of the motor. running result.
  • converting the sampling target signal and the sampling speed signal into a frequency domain signal includes: performing anti-leakage processing on the sampling target signal; and/or performing anti-leakage processing on the sampling speed signal;
  • the target signal and the rotational speed signal are subjected to fast Fourier transform to obtain the current sequence and the rotational speed sequence.
  • anti-leakage processing can be performed on the excitation current sequence in the time domain, such as windowing the excitation signal, or performing a windowing process on the excitation current sequence in the time domain.
  • the excitation current sequence performs terminal padding operations such as 0.
  • FFT Fast Fourier Transform
  • the fast Fourier transform calculation can be performed on the speed sequence in the same way, so that the sequence of the speed signal in the time domain can be converted into Rotational speed series in the frequency domain.
  • the target curve corresponding to the amplitude-frequency sequence calculates the load inertia of the motor through the target curve, so that the inertia of the load during the motor operation can be accurately obtained, and the drive signal of the motor can be adjusted through the load inertia to achieve a more accurate speed Open-loop control or speed closed-loop control, thereby reducing motor vibration and noise, and improving the operating effect of the motor.
  • the method includes: using the target sampling frequency as the injection frequency of the longest linear feedback shift register sequence.
  • the excitation signal of the longest linear feedback shift register sequence (also known as M sequence) can be generated.
  • M sequence is the longest cycle generated by a shift register with linear feedback.
  • M sequence is a typical pseudo-random sequence.
  • the injection frequency of the excitation signal is the target sampling frequency, that is, the injection frequency of the excitation signal is the same as the sampling frequency of the target signal, which is conducive to improving the calculation accuracy of the load inertia and realizing more accurate speed control.
  • Loop control or speed closed-loop control thereby reducing motor vibration and noise, and improving the operation effect of the motor.
  • FIG. 2 shows the second flow chart of the method for determining the load inertia according to the embodiment of the application. As shown in FIG. 2, the method include:
  • Step 202 injecting a current excitation signal into the driving signal of the motor
  • the current excitation signal is an M-sequence excitation signal
  • Step 204 collecting the actual speed signal of the motor
  • Step 206 processing the sequence of the current excitation signal and the sequence of the rotational speed signal to generate an amplitude-frequency response curve
  • Step 208 performing curve analysis and fitting according to the amplitude-frequency response curve, and calculating the load inertia.
  • the method when the excitation signal is a sinusoidal frequency sweep signal, the method further includes: determining the minimum frequency, maximum frequency and frequency interval of the sinusoidal frequency sweep signal according to the target sampling frequency; determining the frequency interval of the sinusoidal frequency sweep signal The starting frequency is greater than the minimum frequency; the starting frequency is used as the frequency of the sine frequency sweep signal; the frequency is increased by the frequency interval as the new frequency of the sine frequency sweep signal until the new frequency is greater than the maximum frequency, and the injection of the sine frequency sweep signal is stopped .
  • the excitation signal is specifically a sinusoidal frequency sweep signal, wherein the minimum frequency, maximum frequency, and frequency interval of the frequency sweep of the sinusoidal frequency sweep excitation signal can be set according to a preset target sampling frequency.
  • the target sampling frequency for sampling the target signal first set the minimum sinusoidal frequency and the maximum sinusoidal frequency at which the driving signal of the motor can be injected during the operation of the motor.
  • the minimum sinusoidal frequency is the minimum frequency of the sinusoidal frequency sweep signal
  • the maximum sinusoidal frequency is the maximum frequency of the sinusoidal sweep signal.
  • the starting frequency of the sine sweep signal is determined according to the minimum frequency, wherein the starting frequency is greater than the minimum frequency, and in some embodiments, the starting frequency is the sum of the minimum frequency and the frequency interval.
  • Fig. 3 shows the third flow chart of the method for determining the load inertia according to the embodiment of the present application. As shown in Fig. 3, the method includes:
  • Step 302 injecting a sinusoidal frequency sweep signal with a frequency of Fk into the driving signal of the motor
  • Step 304 collecting the actual speed signal of the motor
  • Step 306 calculating amplitude-frequency data according to the frequency sweep signal and the rotational speed signal
  • Step 308 judge whether the frequency Fk of the frequency sweep signal is greater than the maximum injection frequency; if yes, enter step 310, otherwise execute step 302 again;
  • Step 310 generating an amplitude-frequency response curve, performing curve analysis and fitting according to the amplitude-frequency response curve, and calculating the load inertia.
  • Fk F1, F2...FL
  • L is the number of sine waves
  • the frequency of F1 is greater than or equal to the minimum frequency of the frequency sweep signal
  • the frequency of FL is less than or equal to the maximum frequency of the frequency sweep signal.
  • the target signal and the rotational speed signal are converted from the time domain signal to the frequency domain signal, and the current sequence and the rotational speed sequence in the frequency domain are obtained, including: performing discrete Fourier transform on the target signal and the rotational speed signal respectively, Get the current sequence and speed sequence.
  • the excitation signal is a sinusoidal frequency sweep signal sequence, that is to say, the excitation signal is a discrete signal with gradually increasing frequency, therefore, when converting the target signal from the time domain to the frequency domain, the time domain can be Discrete Fourier Transform (DFT) calculation is performed on the excitation current sequence below, so as to convert the sequence of the target signal in the time domain into a current sequence in the frequency domain.
  • DFT Discrete Fourier Transform
  • the discrete Fourier transform calculation can be performed on the rotation speed sequence in the same way, so as to convert the rotation speed signal sequence in the time domain into the rotation speed sequence in the frequency domain.
  • the driving signal of the motor is a driving signal of speed open-loop control.
  • FIG. 4 shows a schematic diagram of a system for open-loop control of the speed of the motor according to the embodiment of the present application.
  • the drive signal of the motor 404 can be a drive signal of speed open-loop control, that is, under speed open-loop control
  • the speed controller of the motor 404 will not output the speed adjustment signal, and the target signal only includes the original drive signal and excitation signal, so the calculation process is more concise , it is beneficial to improve the calculation speed of the load inertia of the motor, improve the timeliness of adjusting the motor control according to the load inertia, and then improve the working effect of the motor.
  • FIG. 5 shows a schematic diagram of a system for closed-loop control of the speed of the motor according to the embodiment of the present application.
  • the control system 500 of the motor includes a motor drive device 502, a motor 504, and a data acquisition device 506 , load inertia calculation device 508 and speed controller 510 .
  • the load inertia of the motor 504 is calculated by injecting the excitation signal into the drive signal of the motor 504
  • the drive signal of the motor 504 can be the drive signal of the speed closed-loop control, that is, the load on the motor 504 under the speed closed-loop control Inertia is calculated.
  • the speed controller of the motor will generate and output the speed adjustment signal according to the real-time speed information of the motor, therefore, the target signal is actually a combination of the original motor drive signal, excitation signal and the output signal of the speed controller. overlay.
  • the output signal of the speed controller of the motor is sampled according to the same target sampling frequency as when collecting the target signal, and the rotational speed adjustment signal obtained by sampling corresponds to the target signal and the rotational speed signal one by one.
  • the speed adjustment signal generate the corresponding signal sequence, and based on the signal sequence, the current sequence obtained by sampling the target signal, the speed sequence corresponding to the current sequence and the torque coefficient of the motor, based on the transfer function of the mechanical part of the motor , calculate the amplitude-frequency sequence.
  • the embodiment of the present application can calculate the load inertia of the motor when the motor is in the speed closed-loop control, so that no matter what operating mode the motor is in, the influence of the load inertia on the convergence of the speed loop in the motor control can always be eliminated, and more accurate Advanced motor control, reduce motor vibration and noise, and improve the operation effect of the motor.
  • the amplitude-frequency sequence is:
  • G mech (k) is the amplitude-frequency sequence
  • W M (k) is the speed sequence
  • I (k) is the current sequence
  • K T is the torque coefficient of the motor.
  • the amplitude-frequency sequence includes N amplitude-frequency data, where the amplitude-frequency data is the speed signal divided by the torque coefficient of the motor and the target corresponding to the speed signal at the same time The product of the signal. According to the target signal and speed signal sampled in each sampling, and the torque coefficient of the motor, the corresponding amplitude-frequency data is calculated, and finally formed into an amplitude-frequency sequence, and the target curve is formed in the Bode diagram according to the amplitude-frequency sequence.
  • the load inertia of the motor can be accurately calculated, thereby eliminating the influence of the load inertia on the convergence of the speed loop in motor control, realizing more accurate motor control, reducing motor vibration and noise, and improving the operating effect of the motor.
  • the amplitude-frequency sequence is:
  • G mech (k) is the amplitude-frequency sequence
  • W M (k) is the speed sequence
  • I (k) is the current sequence
  • K T is the torque coefficient of the motor
  • T e,ref (k) is the torque command signal sequence.
  • the amplitude-frequency sequence includes N amplitude-frequency data, where the amplitude-frequency data is the target signal corresponding to the rotational speed signal divided by the torque coefficient of the motor and the rotational speed signal at the same time and the product of the speed regulation signal. According to the target signal, speed signal and speed adjustment signal sampled in each sampling, and the torque coefficient of the motor, the corresponding amplitude-frequency data is calculated, and finally formed into an amplitude-frequency sequence.
  • the target curve is formed, and the load inertia of the motor can be accurately calculated according to the target curve, so that the influence of the load inertia on the convergence of the speed loop in motor control can be eliminated, more accurate motor control can be achieved, motor vibration and noise can be reduced, and the operation effect of the motor can be improved.
  • the load inertia is determined according to the linear moment of inertia and the motor, including:
  • the first frequency is:
  • the first formula is:
  • the second formula is:
  • J L is the moment of inertia of the load
  • J M is the moment of inertia of the motor
  • b is the first amplitude
  • (f, y) is the coordinate of any point on the straight line segment.
  • the straight line segment of the target curve in the Bode diagram is set as the first formula:
  • the load inertia J L can be obtained, thereby eliminating the influence of the load inertia on the convergence of the speed loop in motor control, realizing more precise motor control, reducing motor vibration and Noise, improve the running effect of the motor.
  • the above-mentioned first formula is a functional expression of the straight line where the straight line segment of the amplitude-frequency curve is located in the Bode diagram. to express. Wherein, according to the straight line segment of the amplitude-frequency curve, it can be seen that the slope of the straight line where the straight line segment is located is -20.
  • the first formula can also be expressed by the intersection of the above-mentioned known slope and the 0dB straight line (that is, the horizontal axis). At this time, another expression of the first formula is:
  • x0 is the abscissa of the intersection of the straight line and the straight line with an amplitude of 0 dB in the Bode diagram
  • (f, y) is the coordinate of any point on the straight line segment, that is, the above-mentioned first frequency.
  • points on the straight line segment of the amplitude-frequency curve are also points on the straight line where the straight line segment is located
  • two points can be randomly selected on the straight line segment of the amplitude-frequency curve, such as points A and Point B, express the function expression of the straight line where the straight line segment is located through the two-point expression.
  • the first formula can also be expressed as:
  • (log 10 x 1, y1) is the coordinate of the above-mentioned point A
  • (log 10 x2, y2) is the coordinate of the above-mentioned point B
  • (log 10 x, y) (log 10 f, 0).
  • point A and point B are points on a straight line segment, point A and point B can be determined by the low-frequency item in the amplitude-frequency sequence.
  • the motor is connected to the load through a connecting piece
  • the transfer function is:
  • G mech (s) is the amplitude-frequency curve equation of the motor
  • ⁇ M is the speed information
  • T e is the electromagnetic torque of the motor
  • J M is the moment of inertia of the motor
  • J L is the load inertia
  • B S is the damping coefficient of the connector
  • K S is the elastic coefficient of the connector
  • s is the Laplace operator.
  • the motor, connector and load can be abstracted into a two-mass system of motor ⁇ connector ⁇ load, and the transfer function of the two-mass system is shown above.
  • the transfer function includes 2 parts, among them, is the equivalent rigid system equation, while The part of is the resonance equation caused by the flexible system.
  • FIG. 6 shows a structural block diagram of a device for determining the load inertia according to an embodiment of the present application. As shown in FIG. 6 , the load inertia The determining device 600 includes:
  • the injection module 602 is used to inject the excitation signal into the drive signal of the motor, and superimposed with the instruction signal to form a target signal;
  • the drive module 604 is used to drive the motor to run through the target signal;
  • the determination module 606 is used to determine the speed signal of the motor;
  • the module 608 is used to convert the target signal and the speed signal from the time domain signal to the frequency domain signal to obtain the current sequence and the speed sequence in the frequency domain;
  • the determination module 606 is also used to determine the transmission of the motor and the load according to the current sequence and the speed sequence
  • the fitting module 610 is used to fit the amplitude-frequency sequence to a target curve;
  • the determination module 606 is also used to determine the load inertia of the motor according to the target curve.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the driving signal of the motor, so that the excitation signal and the command signal of the motor are superimposed to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotational speed signal below to obtain a one-to-one correspondence between the current sequence and the rotational speed sequence.
  • the embodiments of the present application can measure the inertia under the current closed loop, that is, the speed open loop, so there is no measurement instability, and the inertia calculation has high reliability. Calculate the load inertia of the motor through the target curve, and adjust the drive signal of the motor according to the calculated load inertia, which can eliminate the influence of the load inertia on the convergence of the speed loop in the motor control, reduce the vibration and noise of the motor, and improve the operation effect of the motor .
  • the determination module is further used to: determine the straight line where the straight line segment of the target curve is located; and determine the load inertia according to the straight line and the rotational inertia of the motor.
  • the mechanical transmission part including the motor and the load
  • it can be abstracted into a two-mass system of motor ⁇ transmission member ⁇ load, wherein the two-mass system can be expressed by a transfer function, and the transfer function includes two Part, one is the mechanical transmission part of the rigid system, and the other is the resonance part caused by the flexible connection.
  • the target curve includes a straight line segment and a curved line segment.
  • the mechanically transmitted part of the rigid system corresponds to the straight segment of the target curve, while the resonant part caused by the flexible connection corresponds to the curved segment of the target curve.
  • the resonance part caused by the flexible connection has little influence on the system transfer function, so the straight line segment corresponding to the transfer part of the rigid system can be used for calculation.
  • the target curve is a curve in a Bode diagram
  • the abscissa of the Bode diagram represents frequency logarithm
  • the ordinate represents frequency amplitude.
  • the device for determining the load inertia further includes: a sampling module for sampling the target signal according to the target sampling frequency to obtain the sampling target signal; according to the target sampling frequency, sampling the rotational speed information to obtain The sampling speed signal; the conversion module is also used to convert the sampling target signal and the sampling speed signal into a frequency domain signal to obtain a current sequence and a rotation speed sequence in the frequency domain.
  • the target signal obtained by superimposing the motor drive signal and the excitation signal is first sampled according to the target sampling frequency to obtain the sampling target Signal.
  • the target sampling frequency can indicate the time interval between two samplings when the target signal is sampled. It can be understood that the higher the target sampling frequency is, the denser the sampling target is obtained, and the time interval between two adjacent sampling The shorter the time interval.
  • the step of converting the target signal and the speed signal from the time domain signal to the frequency domain signal specifically includes: converting the sampling target signal and the sampling speed signal into a frequency domain signal to obtain the corresponding current sequence and speed sequence.
  • three sampling target signals at 1 second, 2 seconds, and 3 seconds are respectively collected, which are respectively marked as I1, I2, and I3.
  • three sampling speed signals at 1 second, 2 seconds and 3 seconds are collected, which are Q1, Q2 and Q3 respectively.
  • Q1 is the speed information of the motor when the motor is driven by the target signal I1.
  • Q2 is the speed information of the motor when the motor is driven by the current I2
  • Q3 is the speed information of the motor when the motor is driven by the current I3.
  • This application samples the target signal and the rotational speed of the motor according to the target sampling frequency to form corresponding current sequences and rotational speed sequences respectively, and obtains the amplitude-frequency sequence of the motor according to the current sequence, rotational speed sequence and transfer function. Based on the amplitude-frequency sequence
  • the target curve fitted in the Bode diagram can accurately calculate the load inertia of the motor, which is beneficial to eliminate the influence of the load inertia on the convergence of the speed loop in motor control, and realize more accurate motor control.
  • the device for determining the load inertia further includes: an adjustment module, used to change the target sampling frequency at least once; repeating to obtain different current sequences and rotation speed sequences; a calculation module, used to convert and the load inertia obtained from the rotation speed sequence, and calculate the average value as the final load inertia.
  • the target sampling frequency by changing the target sampling frequency, the target signal and the rotational speed information of the motor are repeatedly sampled through different sampling frequencies, thereby generating multiple sets of current sequences and corresponding multiple sets of rotational speed sequences.
  • multiple sets of load inertia are calculated according to multiple sets of different current sequences and multiple sets of different speed sequences, and the final load inertia is obtained by calculating the average value of multiple sets of load inertia.
  • This application can reduce the sampling error caused by signal fluctuations by sampling multiple times, calculating the load inertia multiple times, and calculating the average value, so as to improve the accuracy of load inertia calculation, thereby achieving more accurate motor control and improving the performance of the motor. running result.
  • the conversion module is also used to: perform anti-leakage processing on the sampled target signal; and/or perform anti-leakage processing on the sampled rotational speed signal; perform fast Fourier transform on the processed target signal and rotational speed signal, Get the current sequence and speed sequence.
  • anti-leakage processing can be performed on the excitation current sequence in the time domain, such as windowing the excitation signal, or performing a windowing process on the excitation current sequence in the time domain.
  • the excitation current sequence performs terminal padding operations such as 0.
  • FFT Fast Fourier Transform
  • the fast Fourier transform calculation can be performed on the speed sequence in the same way, so that the sequence of the speed signal in the time domain can be converted into Rotational speed series in the frequency domain.
  • the target curve corresponding to the amplitude-frequency sequence calculates the load inertia of the motor through the target curve, so that the inertia of the load during the operation of the motor can be accurately obtained, and the drive signal of the motor can be adjusted through the load inertia to achieve a more accurate speed Open-loop control or speed closed-loop control, thereby reducing motor vibration and noise, and improving the operating effect of the motor.
  • the determining module when the excitation signal is the longest linear feedback shift register sequence, is further configured to: use the target sampling frequency as the injection frequency of the longest linear feedback shift register sequence.
  • the excitation signal of the longest linear feedback shift register sequence (also known as M sequence) can be generated.
  • M sequence is the longest cycle generated by a shift register with linear feedback.
  • M sequence is a typical pseudo-random sequence.
  • the injection frequency of the excitation signal is the target sampling frequency, that is, the injection frequency of the excitation signal is the same as the sampling frequency of the target signal, which is conducive to improving the calculation accuracy of the load inertia and realizing more accurate speed control.
  • Loop control or speed closed-loop control thereby reducing motor vibration and noise, and improving the operation effect of the motor.
  • the determination module when the excitation signal is a sinusoidal frequency sweep signal, is also used to: determine the minimum frequency, maximum frequency and frequency interval of the sinusoidal frequency sweep signal according to the target sampling frequency; The starting frequency of the frequency signal, wherein the starting frequency is greater than the minimum frequency; the starting frequency is used as the frequency of the sine frequency sweep signal; the frequency is increased in turn by the frequency interval as the new frequency of the sine frequency sweep signal, until the new frequency is greater than the maximum frequency, stop injecting the sine sweep frequency signal.
  • the excitation signal is specifically a sinusoidal frequency sweep signal, wherein the minimum frequency, maximum frequency, and frequency interval of the frequency sweep of the sinusoidal frequency sweep excitation signal can be set according to a preset target sampling frequency.
  • the target sampling frequency for sampling the target signal first set the minimum sinusoidal frequency and the maximum sinusoidal frequency at which the driving signal of the motor can be injected during the operation of the motor.
  • the minimum sinusoidal frequency is the minimum frequency of the sinusoidal frequency sweep signal
  • the maximum sinusoidal frequency is the maximum frequency of the sinusoidal sweep signal.
  • the starting frequency of the sine sweep signal is determined according to the minimum frequency, wherein the starting frequency is greater than the minimum frequency, and in some embodiments, the starting frequency is the sum of the minimum frequency and the frequency interval.
  • the conversion module is further configured to: respectively perform discrete Fourier transform on the target signal and the rotation speed signal to obtain the current sequence and the rotation speed sequence.
  • the excitation signal is a sinusoidal frequency sweep signal sequence, that is to say, the excitation signal is a discrete signal with gradually increasing frequency, therefore, when converting the target signal from the time domain to the frequency domain, the time domain can be Discrete Fourier Transform (DFT) calculation is performed on the excitation current sequence below, so as to convert the sequence of the target signal in the time domain into a current sequence in the frequency domain.
  • DFT Discrete Fourier Transform
  • the discrete Fourier transform calculation can be performed on the rotation speed sequence in the same way, so as to convert the rotation speed signal sequence in the time domain into the rotation speed sequence in the frequency domain.
  • the driving signal of the motor is a driving signal of speed open-loop control.
  • the drive signal of the motor can be the drive signal of the speed open-loop control, that is, in the speed open-loop control
  • calculate the load inertia of the motor because the motor is under speed open-loop control, the speed controller of the motor will not output the speed adjustment signal.
  • the target signal only includes the original drive signal and excitation signal, so the calculation process is more concise and effective. It is beneficial to improve the calculation speed of the load inertia of the motor, improve the timeliness of adjusting the control of the motor according to the load inertia, and further improve the working effect of the motor.
  • the drive signal of the motor is a drive signal of speed closed-loop control
  • the sampling module is also used to collect the output signal of the speed controller of the motor according to the target sampling frequency to obtain the speed adjustment signal
  • the determination module is also used According to the rotational speed adjustment signal, the corresponding signal sequence is generated; according to the signal sequence, torque coefficient, current sequence, rotational speed sequence and transfer function, the amplitude-frequency sequence is determined.
  • the drive signal of the motor can be the drive signal of the speed closed-loop control, that is, under the speed closed-loop control, the Calculate the load inertia of the motor.
  • the speed controller of the motor will generate and output the speed adjustment signal according to the real-time speed information of the motor, therefore, the target signal is actually a combination of the original motor drive signal, excitation signal and the output signal of the speed controller. overlay.
  • the output signal of the speed controller of the motor is sampled according to the same target sampling frequency as when collecting the target signal, and the rotational speed adjustment signal obtained by sampling corresponds to the target signal and the rotational speed signal one by one.
  • the speed adjustment signal generate the corresponding signal sequence, and based on the signal sequence, the current sequence obtained by sampling the target signal, the speed sequence corresponding to the current sequence and the torque coefficient of the motor, based on the transfer function of the mechanical part of the motor , calculate the amplitude-frequency sequence.
  • the embodiment of the present application can calculate the load inertia of the motor when the motor is in the speed closed-loop control, so that no matter what operating mode the motor is in, the influence of the load inertia on the convergence of the speed loop in the motor control can always be eliminated, and more accurate Advanced motor control, reduce motor vibration and noise, and improve the operation effect of the motor.
  • FIG. 7 shows a structural block diagram of the motor assembly according to an embodiment of the present application.
  • the motor assembly 700 includes: a memory 702 for storing Programs or instructions; the processor 704 is configured to implement the steps of the method for determining the load inertia of the motor provided in any of the above-mentioned embodiments when executing the programs or instructions.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the driving signal of the motor, so that the excitation signal and the command signal of the motor are superimposed to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotational speed signal below to obtain a one-to-one correspondence between the current sequence and the rotational speed sequence.
  • the amplitude-frequency sequence of the motor and the load is calculated.
  • the motor assembly mentioned above is a servo motor assembly.
  • a readable storage medium on which programs or instructions are stored.
  • the programs or instructions are executed by the processor, the determination of the load inertia of the motor as provided in any of the above-mentioned embodiments is realized.
  • the readable storage medium also includes all the beneficial effects of the method for determining the load inertia of the motor provided in any of the above embodiments, and to avoid repetition, details are not repeated here.
  • a motor assembly including the load inertia determining device as provided in any of the above embodiments; and/or the readable storage medium as provided in any of the above embodiments, therefore , the motor assembly also includes all the beneficial effects of the load inertia determining device provided in any of the above embodiments and/or the readable storage medium provided in any of the above embodiments.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the driving signal of the motor, so that the excitation signal and the command signal of the motor are superimposed to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotational speed signal below to obtain a one-to-one correspondence between the current sequence and the rotational speed sequence.
  • the amplitude-frequency sequence of the motor and the load is calculated.
  • a robot including: a mechanical arm; a motor assembly as provided in any of the above-mentioned embodiments, the motor assembly is connected to the mechanical arm, therefore, the robot also includes any of the above-mentioned All the beneficial effects of the motor assembly provided in the embodiments.
  • the load inertia of the motor is determined, thereby eliminating the influence of the load inertia on the convergence of the speed loop and improving the control effect of the motor.
  • a preset excitation signal is injected into the driving signal of the motor, so that the excitation signal and the command signal of the motor are superimposed to form a target signal.
  • the target signal after superimposing the excitation signal is used to drive the motor to run, and the speed signal of the motor is obtained synchronously.
  • the frequency domain conversion is performed on the target signal and the corresponding rotational speed signal, the target signal and the speed signal are converted from the time domain signal to the frequency domain signal, and the target signal in the frequency domain and the frequency domain Sampling the rotational speed signal below to obtain a one-to-one correspondence between the current sequence and the rotational speed sequence.
  • the amplitude-frequency sequence of the motor and the load is calculated.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or through an intermediary indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

提供了一种电机的负载惯量的确定方法和装置、电机组件和存储介质。其中,电机(404,504)的负载惯量的确定方法包括:在电机(404,504)的驱动信号中注入激励信号,与指令信号叠加形成目标信号;通过目标信号驱动电机(404,504)运转,并确定电机(404,504)的转速信号;将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;根据电流序列和转速序列确定电机(404,504)和负载的传递函数的幅频序列;将幅频序列拟合成目标曲线;以及根据目标曲线确定电机(404,504)的负载惯量。由此能够对电机(404,504)的负载惯量进行准确地计算,消除电机(404,504)控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机(404,504)控制,减少电机(404,504)振动和噪音,提高电机(404,504)的运行效果。

Description

电机的负载惯量的确定方法和装置、电机组件和存储介质
本申请要求于2021年11月09日提交到中国国家知识产权局、申请号为“202111318115.1”,申请名称为“电机的负载惯量的确定方法和装置、电机组件和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机控制技术领域,具体而言,涉及一种电机的负载惯量的确定方法和装置、电机组件和存储介质。
背景技术
在相关技术中,电机的闭环控制需要向驱动信号中注入正弦的指令速度信号,该指令速度信号需要根据速度换的初始参数值确定,而电机的负载惯量会影响速度环的收敛性,对电机控制产生影响。
申请内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出一种电机的负载惯量的确定方法。
本申请的第二方面提出一种电机的负载惯量的确定装置。
本申请的第三方面提出一种电机组件。
本申请的第四方面提出一种可读存储介质。
本申请的第五方面提出另一种电机组件。
本申请的第六方面提出一种机器人。
有鉴于此,本申请的第一方面提供了一种电机的负载惯量的确定方法,包括:在电机的驱动信号中注入激励信号,与指令信号叠加形成目标信号;通过目标信号驱动电机运转,并确定电机的转速信号;将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;根据电流序列和转速序列确定电机和负载的传递函数的幅频序列;将幅频序列拟合成目标曲线;以及根据目标曲线确定电机的负载惯量。
在该技术方案中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和转速序列。
根据电机与负载件的传递函数,通过代入电机的转矩系数、电流序和转速序列,计算出与电机与负载的幅频序列。根据该幅频序列中的每一项在伯德图中绘制对应的点,然后根据这些点拟合成连贯的幅频曲线,即上述目标曲线。
本申请的技术方案可以在电流闭环,即速度开环下进行惯量测定,因此不存在测量失稳的情况,惯量计算可靠性高。通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
另外,本申请提供的上述技术方案中的负载惯量的确定方法还可以具有如下附加技术特征:
在上述技术方案中,根据目标曲线确定电机的负载惯量,包括:确定目标曲线的直线段所在的直线;根据直线和电机的转动惯量,确定负载惯量。
在该技术方案中,对于包括电机和负载的机械传动部分,可以将其抽象成:电机→传动件→负载的二质量系统,其中,该二质量系统能够通过传递函数表示,传递函数包括两部分,其一是刚性系统的机械传递部分,其二是柔性连接导致的谐振部分。
其中,目标曲线包括直线段和曲线段。刚性系统的机械传递部分对应 于目标曲线的直线段,而柔性连接导致的谐振部分对应于目标曲线的曲线段。当电机低频运转时,柔性连接导致的谐振部分对系统传递函数影响很小,因此可以取刚性系统的传递部分对应的直线段来进行计算。
具体地,目标曲线为伯德图中的曲线,该伯德图的横坐标代表频率对数,纵坐标代表频率幅值。首先,根据刚性系统的机械传递部分对应的直线段部分,确定该直线段所在的直线,然后,确定这条直线与伯德图的纵轴的交点,即该直线在频率对数为100Hz处对应的第一幅值。
接着,确定该直线与伯德图中幅值为0dB的直线的交点对应的第一频率,并获取电机自身的转动惯量,基于伯德图中目标曲线在直线段对应的函数,通过第一幅值、第一频率和电机的转动惯量,即可计算出电机的负载惯量,并根据负载惯量调节电机的驱动信号,从而消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制。
在上述任一技术方案中,在将目标信号和转速信号由时域信号转化为频域信号之前,方法还包括:根据目标采样频率,对目标信号进行采样,得到采样目标信号;根据目标采样频率,对转速信息进行采样,得到采样转速信号;以及将采样目标信号和采样转速信号转换为频域信号,得到频域下的电流序列和转速序列。
在该技术方案中,在对目标信号和转速信号进行时域到频域上的转换之前,首先按照目标采样频率,对电机的驱动信号和激励信号叠加后的目标信号进行采样,得到采样目标信号。其中,目标采样频率能够指示对目标信号进行采样时,两次采样之间的时间间隔,能够理解的是,目标采样频率越高,得到的采样目标越密集,相邻的两次采样之间的时间间隔越短。
在每次对目标信号进行采样的同时,按照相同的目标采样频率,对电机的转速信息进行采集,得到采样转速信号。其中,每当采集一个采样目标信号时,可以同时采集一个采样转速信号,从而使得采样目标信号与采样转速信号一一对应。
在得到采样目标信号和采样转速信号后,将目标信号和转速信号由时域信号转换为频域信号的步骤具体包括:将采样目标信号和采样转速信号转换为频域信号,得到对应的电流序列和转速序列。
举例来说,在采集开始后,分别采集1秒、2秒、3秒时的3个采样目标信号,分别记为I1、I2和I3。同时,采集1秒、2秒、3秒时的3个采样转速信号,分别即为Q1、Q2和Q3。其中,Q1即通过目标信号I1驱动电机运转时,电机的转速信息,同理,Q2即通过电流I2驱动电机运转时电机的转速信息,Q3即通过电流I3驱动电机运转时电机的转速信息。在采样完成后,生成电流序列I(n)和Q(n)。
本申请通过按照目标采样频率对目标信号和电机的转速进行采样,分别形成为对应的电流序列和转速序列,并根据电流序列、转速序列和传递函数,得到电机的幅频序列,基于幅频序列在伯德图中拟合的目标曲线,对电机的负载惯量进行准确计算,有利于消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制。
在上述任一技术方案中,确定方法还包括:至少改变一次目标采样频率;重复得到不同的电流序列和转速序列;将根据不同的电流序列和转速序列得到的负载惯量,求取平均值,作为最终的负载惯量。
在该技术方案中,通过改变目标采样频率,通过不同的采样频率,对目标信号和电机的转速信息进行重复采样,从而生成多组电流序列,和对应的多组转速序列。之后,分别根据多组不同的电流序列和多组不同的转速序列,计算得到多组负载惯量,通过计算多组负载惯量的平均值的方式,得到最终的负载惯量。
本申请通过多次采样、多次计算负载惯量,并求取平均值的方式,能够减少信号波动造成的采样误差,从而提高负载惯量计算的准确度,从而实现更加精确的电机控制,提高电机的运行效果。
在上述任一技术方案中,将采样目标信号和采样转速信号转换为频域信号,包括:对采样目标信号进行防泄漏处理;和/或对采样转速信号进行防泄漏处理;对处理后的目标信号和转速信号进行快速傅立叶变换,得到电流序列和转速序列。
在该技术方案中,在将目标信号由时域转换为频域时,可以对时域下的激励电流序列先做防泄漏处理,如对激励信号进行加窗处理,或对时域下的激励电流序列进行末端补0操作等。
之后,对处理完的数据序列进行快速傅立叶变换(Fast Fourier Transform,FFT)计算,从而将时域下的目标信号的序列转换为频域下的电流序列。
同理,由于转速序列中转速信息,与电流序列中的目标信号一一对应,因此可以按照相同的方式,对转速序列进行快速傅立叶变换计算,从而将时域下的转速信号的序列,转换为频域下的转速序列。
通过将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列,并根据电流序列和转速序列生成对应的幅频序列,通过在伯德图中拟合幅频序列对应的目标曲线,基于图解法,通过目标曲线计算电机的负载惯量,从而能够准确地得到电机运转过程中,负载的惯量,通过负载惯量调整电机的驱动信号,能够实现更加精确的速度开环控制或速度闭环控制,进而减少电机振动和噪音,提高电机的运行效果。
在上述任一技术方案中,在激励信号为最长线性反馈位移寄存器序列的情况下,方法包括:将目标采样频率作为最长线性反馈移位寄存器序列的注入频率。
在该技术方案中,在生成激励信号时,可以生成最长线性反馈位移寄存器序列(又称M序列)的激励信号,具体地,M序列是由带线性反馈的移存器产生的周期最长的序列,M序列是一种典型的伪随机序列。
当激励信号是M序列时,激励信号的注入频率为目标采样频率,即激励信号的注入频率与对目标信号的采样频率相同,有利于提高负载惯量的计算精确度,能够实现更加精确的速度开环控制或速度闭环控制,进而减少电机振动和噪音,提高电机的运行效果。
在上述任一技术方案中,在激励信号为正弦扫频信号的情况下,方法还包括:根据目标采样频率,确定正弦扫频信号的最小频率、最大频率和频率间隔;确定正弦扫频信号的起点频率,其中起点频率大于最小频率;以起点频率作为正弦扫频信号的频率;依次将频率增加频率间隔作为正弦扫频信号的新频率,直到新频率大于最大频率,停止注入正弦扫频信号。
在该技术方案中,激励信号具体为正弦扫频信号,其中,可以根据预设的目标采样频率,对正弦扫频的激励信号的最小频率、最大频率以及扫 频的频率间隔进行设置。
具体地,按照对目标信号进行采样的目标采样频率,首先设定电机运行中,电机的驱动信号能够被注入的最小正弦频率和最大正弦频率,该最小正弦频率即正弦扫频信号的最小频率,该最大正弦频率即正弦扫频信号的最大频率。
然后,对频率间隔进行设置,其中,频率间隔与目标采样频率和采样的目标信号的采样点数N相关。具体地,设目标采样频率为Ts,设频率间隔为Δf,则频率间隔Δf=1÷(N×Ts),也就是说,采样频率越大,需要采集的目标信号的数量越大,则频率间隔越小,得到的N个目标信号之间的间隔越小,N个目标信号越密集,从而保证采样数据能够准确反应电机的实际运行情况,提高负载惯量的计算准确率。
在注入信号时,根据最小频率,确定正弦扫频信号的起点频率,其中,起点频率大于最小频率,在一些实施方式中,起点频率为最小频率与频率间隔的和。在注入激励信号时,按照目标采样频率,首先注入起点频率,然后按照频率间隔,逐渐增加正弦扫频信号的频率,得到正弦扫频信号的新频率,将新频率的正弦扫频信号继续注入,直到正弦扫频信号的新频率超过最大频率后,停止注入扫频信号。
在上述任一技术方案中,将目标信号和转速信号由时域信号转化为频域信号,得到频域下的电流序列和转速序列,包括:分别对目标信号和转速信号作离散傅立叶变换,得到电流序列和转速序列。
在该技术方案中,由于激励信号是正弦扫频信号序列,也就是说,激励信号是逐步增加频率的离散信号,因此,在将目标信号由时域转换为频域时,可以对时域下的激励电流序列进行离散傅立叶变换(Discrete Fourier Transform,DFT)计算,从而将时域下的目标信号的序列转换为频域下的电流序列。
同理,由于转速序列与电流序列一一对应,因此可以按照相同的方式,对转速序列进行离散傅立叶变换计算,从而将时域下的转速信号的序列,转换为频域下的转速序列。
在上述任一技术方案中,电机的驱动信号为速度开环控制的驱动信号。
在该技术方案中,在通过向电机的驱动信号中注入激励信号,从而对电机的负载惯量进行计算时,电机的驱动信号可以是速度开环控制的驱动信号,也即在速度开环控制下对电机的负载惯量进行计算,由于电机处于速度开环控制,因此电机的速度控制器不会输出转速调节信号,目标信号中仅包括原始的驱动信号和激励信号,因此计算过程更加简洁,有利于提高电机的负载惯量的计算速度,提高根据负载惯量调整电机控制的时效性,进而提高电机的工作效果。
在上述任一技术方案中,电机的驱动信号为速度闭环控制的驱动信号;根据电流序列和转速序列确定电机和负载的传递函数的幅频序列,包括:按照目标采样频率,采集电机的速度控制器的输出信号,得到转速调节信号;根据转速调节信号,生成对应的信号序列;根据信号序列、电流序列、转速序列和传递函数,确定幅频序列。
在该技术方案中,在通过向电机的驱动信号中注入激励信号,从而对电机的负载惯量进行计算时,电机的驱动信号可以是速度闭环控制的驱动信号,也即在速度闭环控制下对电机的负载惯量进行计算。
由于在电机处于闭环控制时,电机的速度控制器会根据电机的实时转速信息生成并输出转速调节信号,因此,目标信号实际上是原始的电机驱动信号、激励信号和速度控制器的输出信号的叠加。
因此,在确定幅频序列时,需要考虑到速度控制输出的转速调节信号的影响。具体地,在采集目标信号时,按照与采集目标信号时相同的目标采样频率,对电机的速度控制器的输出信号进行采样,采样得到转速调节信号与目标信号和转速信号一一对应。
然后,根据转速调节信号,生成对应的信号序列,并基于该信号序列、对目标信号进行采样得到的电流序列、与电流序列对应的转速序列和电机的转矩系数,基于电机机械部分的传递函数,计算得到幅频序列。
本申请实施例能够在电机处于速度闭环控制时对电机的负载惯量进行计算,使得无论电机处于何种运行模式,总是能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
在上述任一技术方案中,幅频序列为:
Figure PCTCN2022085419-appb-000001
其中,G mech(k)为幅频序列,W M(k)为转速序列,I(k)为电流序列,K T为电机的转矩系数。
在该技术方案中,对于速度开环控制下的电机,幅频序列包括N个幅频数据,其中,幅频数据为转速信号除以电机的转矩系数与相同时刻下转速信号对应的目标信号的乘积。通过根据每次采样中采样得到的目标信号和转速信号,和电机的转矩系数,计算对应的幅频数据,最终形成为具有N项的幅频序列,根据该幅频序列在伯德图中形成目标曲线,根据目标曲线能够准确计算电机的负载惯量,从而能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
在上述任一技术方案中,幅频序列为:
Figure PCTCN2022085419-appb-000002
其中,G mech(k)为幅频序列,W M(k)为转速序列,I(k)为电流序列,K T为电机的转矩系数,T e,ref(k)为转矩指令信号序列。
在该技术方案中,对于速度闭环控制下的电机,幅频序列包括N个幅频数据,其中,幅频数据为转速信号除以电机的转矩系数与相同时刻下转速信号对应的目标信号和转速调节信号的乘积。通过根据每次采样中采样得到的目标信号、转速信号和速度调节信号,和电机的转矩系数,计算对应的幅频数据,最终形成为具有N项的幅频序列,根据该幅频序列在伯德图中形成目标曲线,根据目标曲线能够准确计算电机的负载惯量,从而能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
在上述任一技术方案中,电机通过连接件与负载相连接;
传递函数为:
Figure PCTCN2022085419-appb-000003
其中,G mech(s)为电机的幅频曲线方程,ω M为转速信息,T e为电机的 电磁转矩,J M为电机的转动惯量,J L为负载惯量,
Figure PCTCN2022085419-appb-000004
B S为连接件的阻尼系数,K S为连接件的弹性系数,s为拉布拉斯算子。
在该技术方案中,电机、连接件与负载可以抽象成电机→连接件→负载的二质量系统,该二质量系统的传递函数如上所示。
其中,传递函数包括2部分,其中,
Figure PCTCN2022085419-appb-000005
的部分是等效的刚性系统的方程,而
Figure PCTCN2022085419-appb-000006
的部分是柔性系统导致的谐振方程。
而对于上述幅频曲线方程,在低频段,柔性系统导致的谐振部分不起作用,仅刚性系统部分其作用,因此可通过
Figure PCTCN2022085419-appb-000007
的刚性系统部分进行求解,该部分对应于目标曲线中的直线段部分。
其中,
Figure PCTCN2022085419-appb-000008
是一阶的惯性环节,它的幅频曲线是-20dB比十倍频程的斜线,其与0dB线的交点是
Figure PCTCN2022085419-appb-000009
故可以根据这个特点来通过图解法求取负载转动惯量,从而实现更加精确的电机控制。
本申请第二方面提供了一种电机的负载惯量的确定装置,包括:注入模块,用于在电机的驱动信号中注入激励信号,与指令信号叠加形成目标信号;驱动模块,用于通过目标信号驱动电机运转;确定模块,用于确定电机的转速信号;转换模块,用于将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;确定模块还用于根据电流序列和转速序列确定电机和负载的传递函数的幅频序列;拟合模块,用于将幅频序列拟合成目标曲线;确定模块还用于根据目标曲线确定电机的负载惯量。
在该技术方案中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和 转速序列,其中,电流序列包括N项目标信号,转速序列包括与N项目标信号一一对应的转速信号,其中,N为正整数。
根据电机与负载件的传递函数,通过代入电机的转矩系数、电流序和转速序列,计算出与电机与负载的幅频序列。根据该幅频序列中的每一项在伯德图中绘制对应的N个点,然后根据这N个点拟合成连贯的幅频曲线,即上述目标曲线。
通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
本申请第三方面提供了一种电机组件,包括:存储器,用于存储程序或指令;处理器,用于执行程序或指令时实现如上述任一技术方案中提供的电机的负载惯量的确定方法的步骤,因此,该电机组件也包括如上述任一技术方案中提供的电机的负载惯量的确定方法的全部有益效果,为避免重复,在此不再赘述。
本申请第四方面提供了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述任一技术方案中提供的电机的负载惯量的确定方法的步骤,因此,该可读存储介质也包括如上述任一技术方案中提供的电机的负载惯量的确定方法的全部有益效果,为避免重复,在此不再赘述。
本申请第五方面提供了一种电机组件,包括如上述任一技术方案中提供的负载惯量的确定装置;和/或如上述任一技术方案中提供的可读存储介质,因此,该电机组件也包括如上述任一技术方案中提供的负载惯量的确定装置和/或如上述任一技术方案中提供的可读存储介质的全部有益效果,为避免重复,在此不再赘述。
本申请第六方面提供了一种机器人,包括:机械臂;如上述任一技术方案中提供的电机组件,电机组件与机械臂相连接,因此,该机器人也包括如上述任一技术方案中提供的电机组件的全部有益效果,为避免重复,在此不再赘述。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请实施例的负载惯量的确定方法的流程图之一;
图2示出了根据本申请实施例的负载惯量的确定方法的流程图之二;
图3示出了根据本申请实施例的负载惯量的确定方法的流程图之三;
图4示出了根据本申请实施例的电机的速度开环控制的系统示意图;
图5示出了根据本申请实施例的电机的速度闭环控制的系统示意图;
图6示出了根据本申请实施例的负载惯量的确定装置的结构框图;
图7示出了根据本申请实施例的电机组件的结构框图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7描述根据本申请一些实施例所述电机的负载惯量的确定方法和装置、电机组件和存储介质。
实施例一
在本申请的一些实施例中,提供了一种电机的负载惯量的确定方法,图1示出了根据本申请实施例的负载惯量的确定方法的流程图之一,如图1所示,方法包括:
步骤102,向电机的驱动信号中注入激励信号,与指令信号叠加形成目标信号;
步骤104,通过目标信号驱动电机运转,并确定电机的转速信号;
步骤106,将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;
步骤108,根据电流序列和转速序列确定电机和负载的传递函数的幅频序列;
步骤110,将幅频序列拟合成目标曲线,根据目标曲线确定电机的负载惯量。
在本申请实施例中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和转速序列。
根据电机与负载件的传递函数,通过代入电机的转矩系数、电流序和转速序列,计算出与电机与负载的幅频序列。根据该幅频序列中的每一项在伯德图中绘制对应的点,然后根据这些点拟合成连贯的幅频曲线,即上述目标曲线。
本申请的实施例可以在电流闭环,即速度开环下进行惯量测定,因此不存在测量失稳的情况,惯量计算可靠性高。通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,根据目标曲线确定电机的负载惯量,包括:确定目标曲线的直线段所在的直线;根据直线和电机的转动惯量,确定负载惯量。
在本申请实施例中,对于包括电机和负载的机械传动部分,可以将其抽象成:电机→传动件→负载的二质量系统,其中,该二质量系统能够通过传递函数表示,传递函数包括两部分,其一是刚性系统的机械传递部分, 其二是柔性连接导致的谐振部分。
其中,刚性系统的机械传递部分对应于目标曲线的直线段,而柔性连接导致的谐振部分对应于目标曲线的曲线段。当电机低频运转时,柔性连接导致的谐振部分对系统传递函数影响很小,因此可以取刚性系统的传递部分对应的直线段来进行计算。
具体地,目标曲线为伯德图中的曲线,该伯德图的横坐标代表频率对数,纵坐标代表频率幅值。首先,根据刚性系统的机械传递部分对应的直线段部分,确定该直线段所在的直线,然后,确定这条直线与伯德图的纵轴的交点,即该直线在频率对数为100Hz处对应的第一幅值。
接着,确定该直线与伯德图中幅值为0dB的直线的交点对应的第一频率,并获取电机自身的转动惯量,基于伯德图中目标曲线在直线段对应的函数,通过第一幅值、第一频率和电机的转动惯量,即可计算出电机的负载惯量,并根据负载惯量调节电机的驱动信号,从而消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制。
在本申请的一些实施例中,在将目标信号和转速信号由时域信号转化为频域信号之前,方法还包括:根据目标采样频率,对目标信号进行采样,得到采样目标信号;根据目标采样频率,对转速信息进行采样,得到采样转速信号;以及将采样目标信号和采样转速信号转换为频域信号,得到频域下的电流序列和转速序列。
在本申请实施例中,在在对目标信号和转速信号进行时域到频域上的转换之前,首先按照目标采样频率,对电机的驱动信号和激励信号叠加后的目标信号进行采样,得到采样目标信号。其中,目标采样频率能够指示对目标信号进行采样时,两次采样之间的时间间隔,能够理解的是,目标采样频率越高,得到的采样目标越密集,相邻的两次采样之间的时间间隔越短。
在每次对目标信号进行采样的同时,按照相同的目标采样频率,对电机的转速信息进行采集,得到采样转速信号。其中,每当采集一个采样目标信号时,可以同时采集一个采样转速信号,从而使得采样目标信号与采样转速信号一一对应。
在得到采样目标信号和采样转速信号后,将目标信号和转速信号由时域信号转换为频域信号的步骤具体包括:将采样目标信号和采样转速信号转换为频域信号,得到对应的电流序列和转速序列。
举例来说,在采集开始后,分别采集1秒、2秒、3秒时的3个目标信号,分别记为I1、I2和I3。同时,采集1秒、2秒、3秒时的3个转速信号,分别即为Q1、Q2和Q3。其中,Q1即通过目标信号I1驱动电机运转时,电机的转速信息,同理,Q2即通过电流I2驱动电机运转时电机的转速信息,Q3即通过电流I3驱动电机运转时电机的转速信息。在采样完成后,生成电流序列I(n)和Q(n)。
本申请通过按照目标采样频率对目标信号和电机的转速进行采样,分别形成为对应的电流序列和转速序列,并根据电流序列、转速序列和传递函数,得到电机的幅频序列,基于幅频序列在伯德图中拟合的目标曲线,对电机的负载惯量进行准确计算,有利于消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制。
在本申请的一些实施例中,确定方法还包括:至少改变一次目标采样频率;重复得到不同的电流序列和转速序列;将根据不同的电流序列和转速序列得到的负载惯量,求取平均值,作为最终的负载惯量。
在本申请实施例中,通过改变目标采样频率,通过不同的采样频率,对目标信号和电机的转速信息进行重复采样,从而生成多组电流序列,和对应的多组转速序列。之后,分别根据多组不同的电流序列和多组不同的转速序列,计算得到多组负载惯量,通过计算多组负载惯量的平均值的方式,得到最终的负载惯量。
本申请通过多次采样、多次计算负载惯量,并求取平均值的方式,能够减少信号波动造成的采样误差,从而提高负载惯量计算的准确度,从而实现更加精确的电机控制,提高电机的运行效果。
在本申请的一些实施例中,将采样目标信号和采样转速信号转换为频域信号,包括:对采样目标信号进行防泄漏处理;和/或对采样转速信号进行防泄漏处理;对处理后的目标信号和转速信号进行快速傅立叶变换,得到电流序列和转速序列。
在本申请实施例中,在将目标信号由时域转换为频域时,可以对时域下的激励电流序列先做防泄漏处理,如对激励信号进行加窗处理,或对时域下的激励电流序列进行末端补0操作等。
之后,对处理完的数据序列进行快速傅立叶变换(Fast Fourier Transform,FFT)计算,从而将时域下的目标信号的序列转换为频域下的电流序列。
同理,由于转速序列中转速信息,与电流序列中的目标信号一一对应,因此可以按照相同的方式,对转速序列进行快速傅立叶变换计算,从而将时域下的转速信号的序列,转换为频域下的转速序列。
通过将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列,并根据电流序列和转速序列生成对应的幅频序列,通过在伯德图中拟合幅频序列对应的目标曲线,基于图解法,通过目标曲线计算电机的负载惯量,从而能够准确地得到电机运转过程中,负载的惯量,通过负载惯量调整电机的驱动信号,能够实现更加精确的速度开环控制或速度闭环控制,进而减少电机振动和噪音,提高电机的运行效果。
在激励信号为最长线性反馈位移寄存器序列的情况下,方法包括:将目标采样频率作为最长线性反馈移位寄存器序列的注入频率。
在本申请实施例中,在生成激励信号时,可以生成最长线性反馈位移寄存器序列(又称M序列)的激励信号,具体地,M序列是由带线性反馈的移存器产生的周期最长的序列,M序列是一种典型的伪随机序列。
当激励信号是M序列时,激励信号的注入频率为目标采样频率,即激励信号的注入频率与对目标信号的采样频率相同,有利于提高负载惯量的计算精确度,能够实现更加精确的速度开环控制或速度闭环控制,进而减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,对于激励信号为M序列的激励信号的情况,图2示出了根据本申请实施例的负载惯量的确定方法的流程图之二,如图2所示,方法包括:
步骤202,向电机的驱动信号中,注入电流激励信号;
在步骤202中,电流激励信号为M序列的激励信号;
步骤204,采集电机的实际转速信号;
步骤206,处理电流激励信号的序列和转速信号的序列,生成幅频响应曲线;
步骤208,根据幅频响应曲线进行曲线分析和拟合,计算负载惯量。
在本申请的一些实施例中,在激励信号为正弦扫频信号的情况下,方法还包括:根据目标采样频率,确定正弦扫频信号的最小频率、最大频率和频率间隔;确定正弦扫频信号的起点频率,其中起点频率大于最小频率;以起点频率作为正弦扫频信号的频率;依次将频率增加频率间隔作为正弦扫频信号的新频率,直到新频率大于最大频率,停止注入正弦扫频信号。
在本申请实施例中,激励信号具体为正弦扫频信号,其中,可以根据预设的目标采样频率,对正弦扫频的激励信号的最小频率、最大频率以及扫频的频率间隔进行设置。
具体地,按照对目标信号进行采样的目标采样频率,首先设定电机运行中,电机的驱动信号能够被注入的最小正弦频率和最大正弦频率,该最小正弦频率即正弦扫频信号的最小频率,该最大正弦频率即正弦扫频信号的最大频率。
然后,对频率间隔进行设置,其中,频率间隔与目标采样频率和采样的目标信号的采样点数N相关。具体地,设目标采样频率为Ts,设频率间隔为Δf,则频率间隔Δf=1÷(N×Ts),也就是说,采样频率越大,需要采集的目标信号的数量越大,则频率间隔越小,得到的N个目标信号之间的间隔越小,N个目标信号越密集,从而保证采样数据能够准确反应电机的实际运行情况,提高负载惯量的计算准确率。
在注入信号时,根据最小频率,确定正弦扫频信号的起点频率,其中,起点频率大于最小频率,在一些实施方式中,起点频率为最小频率与频率间隔的和。在注入激励信号时,按照目标采样频率,首先注入起点频率,然后按照频率间隔,逐渐增加正弦扫频信号的频率,得到正弦扫频信号的新频率,将新频率的正弦扫频信号继续注入,直到正弦扫频信号的新频率超过最大频率后,停止注入扫频信号。
在本申请的一些实施例中,对于激励信号为扫频信号的情况,图3示 出了根据本申请实施例的负载惯量的确定方法的流程图之三,如图3所示,方法包括:
步骤302,向电机的驱动信号中,注入频率为Fk的正弦扫频信号;
步骤304,采集电机的实际转速信号;
步骤306,根据扫频信号和转速信号,计算幅频数据;
步骤308,判断扫频信号的频率Fk是否大于最大注入频率;是则进入步骤310,否则再次执行步骤302;
步骤310,生成幅频响应曲线,根据幅频响应曲线进行曲线分析和拟合,计算负载惯量。
其中,Fk=F1、F2……FL,L为正弦波的个数,F1的频率大于等于扫频信号的最小频率,FL的频率小于等于扫频信号的最大频率。
在本申请的一些实施例中,将目标信号和转速信号由时域信号转化为频域信号,得到频域下的电流序列和转速序列,包括:分别对目标信号和转速信号作离散傅立叶变换,得到电流序列和转速序列。
在本申请实施例中,由于激励信号是正弦扫频信号序列,也就是说,激励信号是逐步增加频率的离散信号,因此,在将目标信号由时域转换为频域时,可以对时域下的激励电流序列进行离散傅立叶变换(Discrete Fourier Transform,DFT)计算,从而将时域下的目标信号的序列转换为频域下的电流序列。
同理,由于转速序列与电流序列一一对应,因此可以按照相同的方式,对转速序列进行离散傅立叶变换计算,从而将时域下的转速信号的序列,转换为频域下的转速序列。
在本申请的一些实施例中,电机的驱动信号为速度开环控制的驱动信号。
在本申请实施例中,图4示出了根据本申请实施例的电机的速度开环控制的系统示意图,如图4所示,电机的控制系统400包括电机驱动装置402、电机404、数据采集装置406和负载惯量计算装置408。具体地,在通过向电机404的驱动信号中注入激励信号,从而对电机404的负载惯量进行计算时,电机404的驱动信号可以是速度开环控制的驱动信号,也即 在速度开环控制下对电机404的负载惯量进行计算,由于电机404处于速度开环控制,因此电机404的速度控制器不会输出转速调节信号,目标信号中仅包括原始的驱动信号和激励信号,因此计算过程更加简洁,有利于提高电机的负载惯量的计算速度,提高根据负载惯量调整电机控制的时效性,进而提高电机的工作效果。
在本申请的一些实施例中,电机的驱动信号为速度闭环控制的驱动信号;根据电流序列和转速序列确定电机和负载的传递函数的幅频序列,包括:按照目标采样频率,采集电机的速度控制器的输出信号,得到转速调节信号;根据转速调节信号,生成对应的信号序列;根据信号序列、电流序列、转速序列和传递函数,确定幅频序列。
在本申请实施例中,图5示出了根据本申请实施例的电机的速度闭环控制的系统示意图,如图5所示,电机的控制系统500包括电机驱动装置502、电机504、数据采集装置506、负载惯量计算装置508和速度控制器510。在通过向电机504的驱动信号中注入激励信号,从而对电机504的负载惯量进行计算时,电机504的驱动信号可以是速度闭环控制的驱动信号,也即在速度闭环控制下对电机504的负载惯量进行计算。
由于在电机处于闭环控制时,电机的速度控制器会根据电机的实时转速信息生成并输出转速调节信号,因此,目标信号实际上是原始的电机驱动信号、激励信号和速度控制器的输出信号的叠加。
因此,在确定幅频序列时,需要考虑到速度控制输出的转速调节信号的影响。具体地,在采集目标信号时,按照与采集目标信号时相同的目标采样频率,对电机的速度控制器的输出信号进行采样,采样得到转速调节信号与目标信号和转速信号一一对应。
然后,根据转速调节信号,生成对应的信号序列,并基于该信号序列、对目标信号进行采样得到的电流序列、与电流序列对应的转速序列和电机的转矩系数,基于电机机械部分的传递函数,计算得到幅频序列。
本申请实施例能够在电机处于速度闭环控制时对电机的负载惯量进行计算,使得无论电机处于何种运行模式,总是能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和 噪音,提高电机的运行效果。
在本申请的一些实施例中,幅频序列为:
Figure PCTCN2022085419-appb-000010
其中,G mech(k)为幅频序列,W M(k)为转速序列,I(k)为电流序列,K T为电机的转矩系数。
在本申请实施例中,对于速度开环控制下的电机,幅频序列包括N个幅频数据,其中,幅频数据为转速信号除以电机的转矩系数与相同时刻下转速信号对应的目标信号的乘积。通过根据每次采样中采样得到的目标信号和转速信号,和电机的转矩系数,计算对应的幅频数据,最终形成为幅频序列,根据该幅频序列在伯德图中形成目标曲线,根据目标曲线能够准确计算电机的负载惯量,从而能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,幅频序列为:
Figure PCTCN2022085419-appb-000011
其中,G mech(k)为幅频序列,W M(k)为转速序列,I(k)为电流序列,K T为电机的转矩系数,T e,ref(k)为转矩指令信号序列。
在本申请实施例中,对于速度闭环控制下的电机,幅频序列包括N个幅频数据,其中,幅频数据为转速信号除以电机的转矩系数与相同时刻下转速信号对应的目标信号和转速调节信号的乘积。通过根据每次采样中采样得到的目标信号、转速信号和速度调节信号,和电机的转矩系数,计算对应的幅频数据,最终形成为幅频序列,根据该幅频序列在伯德图中形成目标曲线,根据目标曲线能够准确计算电机的负载惯量,从而能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,根据直线和电机的转动惯量,确定负载惯量,包括:
确定直线在频率对数为100Hz处对应的第一幅值,也即直线段所在直 线与伯德图中纵轴的交点对应的第一幅值,和直线与伯德图中幅值为0dB的直线的交点对应的第一频率;
将第一频率代入第一公式,得到第二公式;
通过第一幅值和第二公式,计算负载惯量;
其中,第一频率为:
Figure PCTCN2022085419-appb-000012
第一公式为:
y=-20log 10f+b
第二公式为:
Figure PCTCN2022085419-appb-000013
其中,J L为负载惯量,J M为电机的转动惯量,b为第一幅值,(f,y)为直线段上任一点的坐标。
在本申请实施例中,将伯德图中,目标曲线的直线段设为第一公式:
y=-20log 10f+b
进一步地,将第一频率代入第一公式后,得到公式:
Figure PCTCN2022085419-appb-000014
对上述公式进行变形,得到第二公式:
Figure PCTCN2022085419-appb-000015
之后,将第一幅值代入第二公式之后,即可求得负载惯量J L,从而能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
能够理解的是,上述第一公式,即伯德图中,幅频曲线的直线段所在的直线的一种函数表达式,该函数表达式通过已知直线的斜率和直线与纵坐标的交点坐标来表达。其中,根据幅频曲线的直线段可知,直线段所在直线的斜率为-20。
在一些实施方式中,第一公式还可以通过上述已知的斜率与0dB的直线(也即横轴)的交点来表达,此时,第一公式的另一种表达方式为:
y=-20(log 10f-log 10x0)
其中,x0即直线与伯德图中幅值为0dB的直线的交点的横坐标,(f,y)为直线段上任一点的坐标,也即上述第一频率。
在另一些实施方式中,由于幅频曲线的直线段上的点,同样也是该直线段所在直线上的点,因此,可以在幅频曲线的直线段上任取2个点,如取点A和点B,通过两点表达式来表达直线段所在直线的函数表达式。
此时,第一公式还可以表达为:
Figure PCTCN2022085419-appb-000016
其中,(log 10x 1,y1)是上述点A的坐标,(log 10x2,y2)是上述点B的坐标,其中,(log 10x,y)=(log 10f,0)。
在该实时方式中,由于点A和点B是直线段上的点,因此点A和点B可以通过幅频序列中低频项来确定。
在本申请的一些实施例中,电机通过连接件与负载相连接;
传递函数为:
Figure PCTCN2022085419-appb-000017
其中,G mech(s)为电机的幅频曲线方程,ω M为转速信息,T e为电机的电磁转矩,J M为电机的转动惯量,J L为负载惯量,
Figure PCTCN2022085419-appb-000018
B S为连接件的阻尼系数,K S为连接件的弹性系数,s为拉布拉斯算子。
在本申请实施例中,电机、连接件与负载可以抽象成电机→连接件→负载的二质量系统,该二质量系统的传递函数如上所示。
其中,传递函数包括2部分,其中,
Figure PCTCN2022085419-appb-000019
的部分是等效的刚性系统的方程,而
Figure PCTCN2022085419-appb-000020
的部分是柔性系统导致的谐振方程。
而对于上述幅频曲线方程,在低频段,柔性系统导致的谐振部分不起作用,仅刚性系统部分其作用,因此可通过
Figure PCTCN2022085419-appb-000021
的刚性系统部分进行求解,该部分对应于目标曲线中的直线段部分。
其中,
Figure PCTCN2022085419-appb-000022
是一阶的惯性环节,它的幅频曲线是-20dB比十倍频程的斜线,其与0dB线的交点是
Figure PCTCN2022085419-appb-000023
故可以根据这个特点来通过图解法求取负载转动惯量,从而实现更加精确的电机控制。
实施例二
在本申请的一些实施例中,提供了一种电机的负载惯量的确定装置,图6示出了根据本申请实施例的负载惯量的确定装置的结构框图,如图6所示,负载惯量的确定装置600包括:
注入模块602,用于在电机的驱动信号中注入激励信号,与指令信号叠加形成目标信号;驱动模块604,用于通过目标信号驱动电机运转;确定模块606,用于确定电机的转速信号;转换模块608,用于将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;确定模块606还用于根据电流序列和转速序列确定电机和负载的传递函数的幅频序列;拟合模块610,用于将幅频序列拟合成目标曲线;确定模块606还用于根据目标曲线确定电机的负载惯量。
在本申请实施例中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和转速序列。
本申请的实施例可以在电流闭环,即速度开环下进行惯量测定,因此不存在测量失稳的情况,惯量计算可靠性高。通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,确定模块还用于:确定目标曲线的直线段所在的直线;根据直线和电机的转动惯量,确定负载惯量。
在本申请实施例中,对于包括电机和负载的机械传动部分,可以将其 抽象成:电机→传动件→负载的二质量系统,其中,该二质量系统能够通过传递函数表示,传递函数包括两部分,其一是刚性系统的机械传递部分,其二是柔性连接导致的谐振部分。
其中,目标曲线包括直线段和曲线段。刚性系统的机械传递部分对应于目标曲线的直线段,而柔性连接导致的谐振部分对应于目标曲线的曲线段。当电机低频运转时,柔性连接导致的谐振部分对系统传递函数影响很小,因此可以取刚性系统的传递部分对应的直线段来进行计算。
具体地,目标曲线为伯德图中的曲线,该伯德图的横坐标代表频率对数,纵坐标代表频率幅值。首先,根据刚性系统的机械传递部分对应的直线段部分,确定该直线段所在的直线,然后,确定这条直线与伯德图的纵轴的交点,即该直线在频率对数为100Hz处对应的第一幅值。
接着,确定该直线与伯德图中幅值为0dB的直线的交点对应的第一频率,并获取电机自身的转动惯量,基于伯德图中目标曲线在直线段对应的函数,通过第一幅值、第一频率和电机的转动惯量,即可计算出电机的负载惯量,并根据负载惯量调节电机的驱动信号,从而消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制。
在本申请的一些实施例中,负载惯量的确定装置还包括:采样模块,用于根据目标采样频率,对目标信号进行采样,得到采样目标信号;根据目标采样频率,对转速信息进行采样,得到采样转速信号;转换模块还用于将采样目标信号和采样转速信号转换为频域信号,得到频域下的电流序列和转速序列。
在本申请实施例中,在对目标信号和转速信号进行时域到频域上的转换之前,首先按照目标采样频率,对电机的驱动信号和激励信号叠加后的目标信号进行采样,得到采样目标信号。其中,目标采样频率能够指示对目标信号进行采样时,两次采样之间的时间间隔,能够理解的是,目标采样频率越高,得到的采样目标越密集,相邻的两次采样之间的时间间隔越短。
在每次对目标信号进行采样的同时,按照相同的目标采样频率,对电机的转速信息进行采集,得到采样转速信号。其中,每当采集一个采样目 标信号时,可以同时采集一个采样转速信号,从而使得采样目标信号与采样转速信号一一对应。
在得到采样目标信号和采样转速信号后,将目标信号和转速信号由时域信号转换为频域信号的步骤具体包括:将采样目标信号和采样转速信号转换为频域信号,得到对应的电流序列和转速序列。
举例来说,在采集开始后,分别采集1秒、2秒、3秒时的3个采样目标信号,分别记为I1、I2和I3。同时,采集1秒、2秒、3秒时的3个采样转速信号,分别即为Q1、Q2和Q3。其中,Q1即通过目标信号I1驱动电机运转时,电机的转速信息,同理,Q2即通过电流I2驱动电机运转时电机的转速信息,Q3即通过电流I3驱动电机运转时电机的转速信息。在采样完成后,生成电流序列I(n)和Q(n)。
本申请通过按照目标采样频率对目标信号和电机的转速进行采样,分别形成为对应的电流序列和转速序列,并根据电流序列、转速序列和传递函数,得到电机的幅频序列,基于幅频序列在伯德图中拟合的目标曲线,对电机的负载惯量进行准确计算,有利于消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制。
在本申请的一些实施例中,负载惯量的确定装置还包括:调节模块,用于至少改变一次目标采样频率;重复得到不同的电流序列和转速序列;计算模块,用于将根据不同的电流序列和转速序列得到的负载惯量,求取平均值,作为最终的负载惯量。
在本申请实施例中,通过改变目标采样频率,通过不同的采样频率,对目标信号和电机的转速信息进行重复采样,从而生成多组电流序列,和对应的多组转速序列。之后,分别根据多组不同的电流序列和多组不同的转速序列,计算得到多组负载惯量,通过计算多组负载惯量的平均值的方式,得到最终的负载惯量。
本申请通过多次采样、多次计算负载惯量,并求取平均值的方式,能够减少信号波动造成的采样误差,从而提高负载惯量计算的准确度,从而实现更加精确的电机控制,提高电机的运行效果。
在本申请的一些实施例中,转换模块还用于:对采样目标信号进行防 泄漏处理;和/或对采样转速信号进行防泄漏处理;对处理后的目标信号和转速信号进行快速傅立叶变换,得到电流序列和转速序列。
在本申请实施例中,在将目标信号由时域转换为频域时,可以对时域下的激励电流序列先做防泄漏处理,如对激励信号进行加窗处理,或对时域下的激励电流序列进行末端补0操作等。
之后,对处理完的数据序列进行快速傅立叶变换(Fast Fourier Transform,FFT)计算,从而将时域下的目标信号的序列转换为频域下的电流序列。
同理,由于转速序列中转速信息,与电流序列中的目标信号一一对应,因此可以按照相同的方式,对转速序列进行快速傅立叶变换计算,从而将时域下的转速信号的序列,转换为频域下的转速序列。
通过将目标信号和转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列,并根据电流序列和转速序列生成对应的幅频序列,通过在伯德图中拟合幅频序列对应的目标曲线,基于图解法,通过目标曲线计算电机的负载惯量,从而能够准确地得到电机运转过程中,负载的惯量,通过负载惯量调整电机的驱动信号,能够实现更加精确的速度开环控制或速度闭环控制,进而减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,在激励信号为最长线性反馈位移寄存器序列的情况下,确定模块还用于:将目标采样频率作为最长线性反馈移位寄存器序列的注入频率。
在本申请实施例中,在生成激励信号时,可以生成最长线性反馈位移寄存器序列(又称M序列)的激励信号,具体地,M序列是由带线性反馈的移存器产生的周期最长的序列,M序列是一种典型的伪随机序列。
当激励信号是M序列时,激励信号的注入频率为目标采样频率,即激励信号的注入频率与对目标信号的采样频率相同,有利于提高负载惯量的计算精确度,能够实现更加精确的速度开环控制或速度闭环控制,进而减少电机振动和噪音,提高电机的运行效果。
在本申请的一些实施例中,在激励信号为正弦扫频信号的情况下,确定模块还用于:根据目标采样频率,确定正弦扫频信号的最小频率、最大 频率和频率间隔;确定正弦扫频信号的起点频率,其中起点频率大于最小频率;以起点频率作为正弦扫频信号的频率;依次将频率增加频率间隔作为正弦扫频信号的新频率,直到新频率大于最大频率,停止注入正弦扫频信号。
在本申请实施例中,激励信号具体为正弦扫频信号,其中,可以根据预设的目标采样频率,对正弦扫频的激励信号的最小频率、最大频率以及扫频的频率间隔进行设置。
具体地,按照对目标信号进行采样的目标采样频率,首先设定电机运行中,电机的驱动信号能够被注入的最小正弦频率和最大正弦频率,该最小正弦频率即正弦扫频信号的最小频率,该最大正弦频率即正弦扫频信号的最大频率。
然后,对频率间隔进行设置,其中,频率间隔与目标采样频率和采样的目标信号的采样点数N相关。具体地,设目标采样频率为Ts,设频率间隔为Δf,则频率间隔Δf=1÷(N×Ts),也就是说,采样频率越大,需要采集的目标信号的数量越大,则频率间隔越小,得到的N个目标信号之间的间隔越小,N个目标信号越密集,从而保证采样数据能够准确反应电机的实际运行情况,提高负载惯量的计算准确率。
在注入信号时,根据最小频率,确定正弦扫频信号的起点频率,其中,起点频率大于最小频率,在一些实施方式中,起点频率为最小频率与频率间隔的和。在注入激励信号时,按照目标采样频率,首先注入起点频率,然后按照频率间隔,逐渐增加正弦扫频信号的频率,得到正弦扫频信号的新频率,将新频率的正弦扫频信号继续注入,直到正弦扫频信号的新频率超过最大频率后,停止注入扫频信号。
在本申请的一些实施例中,转换模块还用于:分别对目标信号和转速信号作离散傅立叶变换,得到电流序列和转速序列。
在本申请实施例中,由于激励信号是正弦扫频信号序列,也就是说,激励信号是逐步增加频率的离散信号,因此,在将目标信号由时域转换为频域时,可以对时域下的激励电流序列进行离散傅立叶变换(Discrete Fourier Transform,DFT)计算,从而将时域下的目标信号的序列转换为频 域下的电流序列。
同理,由于转速序列与电流序列一一对应,因此可以按照相同的方式,对转速序列进行离散傅立叶变换计算,从而将时域下的转速信号的序列,转换为频域下的转速序列。
在本申请的一些实施例中,电机的驱动信号为速度开环控制的驱动信号。
在本申请实施例中,在通过向电机的驱动信号中注入激励信号,从而对电机的负载惯量进行计算时,电机的驱动信号可以是速度开环控制的驱动信号,也即在速度开环控制下对电机的负载惯量进行计算,由于电机处于速度开环控制,因此电机的速度控制器不会输出转速调节信号,目标信号中仅包括原始的驱动信号和激励信号,因此计算过程更加简洁,有利于提高电机的负载惯量的计算速度,提高根据负载惯量调整电机控制的时效性,进而提高电机的工作效果。
在本申请的一些实施例中,电机的驱动信号为速度闭环控制的驱动信号;采样模块还用于按照目标采样频率,采集电机的速度控制器的输出信号,得到转速调节信号;确定模块还用于根据转速调节信号,生成对应的信号序列;根据信号序列、转矩系数、电流序列、转速序列和传递函数,确定幅频序列。
在本申请实施例中,在通过向电机的驱动信号中注入激励信号,从而对电机的负载惯量进行计算时,电机的驱动信号可以是速度闭环控制的驱动信号,也即在速度闭环控制下对电机的负载惯量进行计算。
由于在电机处于闭环控制时,电机的速度控制器会根据电机的实时转速信息生成并输出转速调节信号,因此,目标信号实际上是原始的电机驱动信号、激励信号和速度控制器的输出信号的叠加。
因此,在确定幅频序列时,需要考虑到速度控制输出的转速调节信号的影响。具体地,在采集目标信号时,按照与采集目标信号时相同的目标采样频率,对电机的速度控制器的输出信号进行采样,采样得到转速调节信号与目标信号和转速信号一一对应。
然后,根据转速调节信号,生成对应的信号序列,并基于该信号序列、 对目标信号进行采样得到的电流序列、与电流序列对应的转速序列和电机的转矩系数,基于电机机械部分的传递函数,计算得到幅频序列。
本申请实施例能够在电机处于速度闭环控制时对电机的负载惯量进行计算,使得无论电机处于何种运行模式,总是能够消除电机控制中负载惯量对速度环的收敛性的影响,实现更加精确的电机控制,减少电机振动和噪音,提高电机的运行效果。
实施例三
在本申请的一些实施例中,提供了一种电机组件,图7示出了根据本申请实施例的电机组件的结构框图,如图7所示,电机组件700包括:存储器702,用于存储程序或指令;处理器704,用于执行程序或指令时实现如上述任一实施例中提供的电机的负载惯量的确定方法的步骤。
在本申请实施例中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和转速序列。
根据电机与负载件的传递函数,通过代入电机的转矩系数、电流序和转速序列,计算出与电机与负载的幅频序列。根据该幅频序列中的每一项在伯德图中绘制对应的点,然后根据这些点拟合成连贯的幅频曲线,即上述目标曲线。
通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
在一些实施方式中,上述电机组件为伺服电机组件。
实施例四
在本申请的一些实施例中,提供了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述任一实施例中提供的电机的负载惯量的确定方法的步骤,因此,该可读存储介质也包括如上述任一实施例中提供的电机的负载惯量的确定方法的全部有益效果,为避免重复,在此不再赘述。
实施例五
在本申请的一些实施例中,提供了一种电机组件,包括如上述任一实施例中提供的负载惯量的确定装置;和/或如上述任一实施例中提供的可读存储介质,因此,该电机组件也包括如上述任一实施例中提供的负载惯量的确定装置和/或如上述任一实施例中提供的可读存储介质的全部有益效果。
在本申请实施例中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和转速序列。
根据电机与负载件的传递函数,通过代入电机的转矩系数、电流序和转速序列,计算出与电机与负载的幅频序列。根据该幅频序列中的每一项在伯德图中绘制对应的点,然后根据这些点拟合成连贯的幅频曲线,即上述目标曲线。
通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
实施例六
在本申请的一些实施例中,提供了一种机器人,包括:机械臂;如上述任一实施例中提供的电机组件,电机组件与机械臂相连接,因此,该机器人也包括如上述任一实施例中提供的电机组件的全部有益效果。
在本申请实施例中,在电机的运行过程中,对电机的负载惯量进行确定,从而消除负载惯量对速度环的收敛性的影响,提高电机的控制效果。
具体地,在电机运行过程中,向电机的驱动信号中注入预设的激励信号,使激励信号与电机的指令信号相叠加,形成为目标信号。在电机运转过程中,通过叠加了激励信号之后的目标信号来驱动电机运转,并同步获取电机的转速信号。
在获取到转速信号之后,对目标信号和与之对应的转速信号进行频域转换,将目标信号和速度信号由时域信号转换为频域信号,并通过对频域下的目标信号和频域下的转速信号进行采样,得到一一对应的电流序列和转速序列。
根据电机与负载件的传递函数,通过代入电机的转矩系数、电流序和转速序列,计算出与电机与负载的幅频序列。根据该幅频序列中的每一项在伯德图中绘制对应的点,然后根据这些点拟合成连贯的幅频曲线,即上述目标曲线。
通过目标曲线来计算电机的负载惯量,并根据计算得到的负载惯量调节电机的驱动信号,能够消除电机控制中负载惯量对速度环的收敛性的影响,减少电机振动和噪音,提高电机的运行效果。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的 具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种电机的负载惯量的确定方法,其中,包括:
    在电机的驱动信号中注入激励信号,与指令信号叠加形成目标信号;
    通过所述目标信号驱动所述电机运转,并确定所述电机的转速信号;
    将所述目标信号和所述转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;
    根据所述电流序列和转速序列确定所述电机和负载的传递函数的幅频序列;
    将所述幅频序列拟合成目标曲线;以及
    根据所述目标曲线确定所述电机的负载惯量。
  2. 根据权利要求1所述的确定方法,其中,所述根据所述目标曲线确定所述电机的负载惯量,包括:
    确定所述目标曲线的直线段所在的直线;
    根据所述直线和所述电机的转动惯量,确定所述负载惯量。
  3. 根据权利要求1或2所述的确定方法,其中,在所述将所述目标信号和所述转速信号由时域信号转化为频域信号之前,所述方法还包括:
    根据目标采样频率,对所述目标信号进行采样,得到采样目标信号;
    根据所述目标采样频率,对所述转速信息进行采样,得到采样转速信号;以及
    将所述采样目标信号和所述采样转速信号转换为频域信号,得到频域下的电流序列和转速序列。
  4. 根据权利要求3所述的确定方法,其中,还包括:
    至少改变一次所述目标采样频率;
    重复得到不同的所述电流序列和所述转速序列;
    将根据不同的所述电流序列和所述转速序列得到的负载惯量,求取平 均值,作为最终的所述负载惯量。
  5. 根据权利要求3所述的确定方法,其中,所述将所述采样目标信号和所述采样转速信号转换为频域信号,包括:
    对所述采样目标信号进行防泄漏处理;和/或
    对所述采样转速信号进行防泄漏处理;
    对处理后的所述目标信号和所述转速信号进行快速傅立叶变换,得到所述电流序列和所述转速序列。
  6. 根据权利要求4所述的确定方法,其中,在所述激励信号为最长线性反馈位移寄存器序列的情况下,所述方法包括:
    将所述目标采样频率作为所述最长线性反馈移位寄存器序列的注入频率。
  7. 根据权利要求4所述的确定方法,其中,在所述激励信号为正弦扫频信号的情况下,所述方法还包括:
    根据所述目标采样频率,确定所述正弦扫频信号的最小频率、最大频率和频率间隔;
    确定所述正弦扫频信号的起点频率,其中所述起点频率大于所述最小频率;
    以所述起点频率作为所述正弦扫频信号的频率;
    依次将所述频率增加所述频率间隔作为所述正弦扫频信号的新频率,直到所述新频率大于所述最大频率,停止注入所述正弦扫频信号。
  8. 根据权利要求7所述的确定方法,其中,所述将所述目标信号和所述转速信号由时域信号转化为频域信号,得到频域下的电流序列和转速序列,包括:
    分别对所述目标信号和所述转速信号作离散傅立叶变换,得到所述电流序列和所述转速序列。
  9. 根据权利要求4至7中任一项所述的确定方法,其中,所述电机的 驱动信号为速度开环控制的驱动信号。
  10. 根据权利要求4至7中任一项所述的确定方法,其中,所述电机的驱动信号为速度闭环控制的驱动信号;
    所述根据所述电流序列和转速序列确定所述电机和负载的传递函数的幅频序列,包括:
    按照所述目标采样频率,采集所述电机的速度控制器的输出信号,得到转速调节信号;
    根据所述转速调节信号,生成对应的信号序列;
    根据所述信号序列、所述电流序列、所述转速序列和所述传递函数,确定所述幅频序列。
  11. 一种电机的负载惯量的确定装置,其中,包括:
    注入模块,用于在电机的驱动信号中注入激励信号,与指令信号叠加形成目标信号;
    驱动模块,用于通过所述目标信号驱动所述电机运转;
    确定模块,用于确定所述电机的转速信号;
    转换模块,用于将所述目标信号和所述转速信号由时域信号转换为频域信号,得到频域下的电流序列和转速序列;
    所述确定模块还用于根据所述电流序列和转速序列确定所述电机和负载的传递函数的幅频序列;
    拟合模块,用于将所述幅频序列拟合成目标曲线;
    所述确定模块还用于根据所述目标曲线确定所述电机的负载惯量。
  12. 一种电机组件,其中,包括:
    存储器,用于存储程序或指令;
    处理器,用于执行所述程序或指令时实现如权利要求1至10中任一项所述确定方法的步骤。
  13. 一种可读存储介质,其上存储有程序或指令,其中,所述程序或 指令被处理器执行时实现如权利要求1至10中任一项所述确定方法的步骤。
  14. 一种电机组件,其中,包括:
    如权利要求11所述的电机的负载惯量的确定装置;和/或
    如权利要求13所述的可读存储介质。
  15. 一种机器人,其中,包括:
    机械臂;
    如权利要求12或14所述的电机组件,所述电机组件与所述机械臂相连接。
PCT/CN2022/085419 2021-11-09 2022-04-06 电机的负载惯量的确定方法和装置、电机组件和存储介质 WO2023082539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111318115.1 2021-11-09
CN202111318115.1A CN113992113A (zh) 2021-11-09 2021-11-09 电机的负载惯量的确定方法和装置、电机组件和存储介质

Publications (1)

Publication Number Publication Date
WO2023082539A1 true WO2023082539A1 (zh) 2023-05-19

Family

ID=79747312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085419 WO2023082539A1 (zh) 2021-11-09 2022-04-06 电机的负载惯量的确定方法和装置、电机组件和存储介质

Country Status (2)

Country Link
CN (1) CN113992113A (zh)
WO (1) WO2023082539A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992113A (zh) * 2021-11-09 2022-01-28 广东美的智能科技有限公司 电机的负载惯量的确定方法和装置、电机组件和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333874A (ja) * 2002-05-15 2003-11-21 Yaskawa Electric Corp 負荷イナーシャ同定装置
JP2009038942A (ja) * 2007-08-03 2009-02-19 Yaskawa Electric Corp 負荷イナーシャ同定方法及びサーボモータ制御装置
CN103140818A (zh) * 2010-10-18 2013-06-05 三菱重工业株式会社 负载惯性推断方法和控制参数调整方法
CN109361333A (zh) * 2018-10-30 2019-02-19 深圳市汇川技术股份有限公司 在线惯量辨识方法、系统、电机控制器及可读存储器
CN109510543A (zh) * 2018-12-17 2019-03-22 南京埃斯顿自动化股份有限公司 一种伺服电机负载惯量的测定方法
CN109564409A (zh) * 2016-06-10 2019-04-02 Abb瑞士股份有限公司 利用集成可靠性指示来识别机械负载的物理参数的稳健自动方法
CN113346797A (zh) * 2021-06-02 2021-09-03 南京达风数控技术有限公司 一种基于频域分析的伺服自调谐方法
CN113992113A (zh) * 2021-11-09 2022-01-28 广东美的智能科技有限公司 电机的负载惯量的确定方法和装置、电机组件和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333874A (ja) * 2002-05-15 2003-11-21 Yaskawa Electric Corp 負荷イナーシャ同定装置
JP2009038942A (ja) * 2007-08-03 2009-02-19 Yaskawa Electric Corp 負荷イナーシャ同定方法及びサーボモータ制御装置
CN103140818A (zh) * 2010-10-18 2013-06-05 三菱重工业株式会社 负载惯性推断方法和控制参数调整方法
CN109564409A (zh) * 2016-06-10 2019-04-02 Abb瑞士股份有限公司 利用集成可靠性指示来识别机械负载的物理参数的稳健自动方法
CN109361333A (zh) * 2018-10-30 2019-02-19 深圳市汇川技术股份有限公司 在线惯量辨识方法、系统、电机控制器及可读存储器
CN109510543A (zh) * 2018-12-17 2019-03-22 南京埃斯顿自动化股份有限公司 一种伺服电机负载惯量的测定方法
CN113346797A (zh) * 2021-06-02 2021-09-03 南京达风数控技术有限公司 一种基于频域分析的伺服自调谐方法
CN113992113A (zh) * 2021-11-09 2022-01-28 广东美的智能科技有限公司 电机的负载惯量的确定方法和装置、电机组件和存储介质

Also Published As

Publication number Publication date
CN113992113A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN108638056A (zh) 基于柔体动力学模型的机器人关节振动分析与抑制方法
CN110333695B (zh) 一种电动直线加载控制系统
CN103338003B (zh) 一种电机负载转矩及惯量同时在线辨识的方法
WO2023082539A1 (zh) 电机的负载惯量的确定方法和装置、电机组件和存储介质
CN105247432B (zh) 频率响应测定装置
JP6212068B2 (ja) 機械の周波数特性をオンラインで取得する機能を有するサーボ制御装置
CN104993766B (zh) 一种二质量系统谐振抑制方法
CN101005263A (zh) 交流电机伺服系统速度控制方法
CN109143868A (zh) 一种针对电子节气门系统的非线性抗干扰控制方法及装置
CN103529858A (zh) 位置闭环系统最小幅相差跟踪法
CN109617485A (zh) 一种基于Tabu和DOB的永磁直线电机推力波动复合抑制方法
CN105492870A (zh) 角度位置检测装置
CN107742894B (zh) 一种次同步振荡抑制系统移相控制参数在线自整定系统
Osadchyy et al. The research of a two-mass system with a PID controller, considering the control object identification
CN113346797B (zh) 一种基于频域分析的伺服自调谐方法
CN106685295B (zh) 一种伺服系统摩擦的处理方法
CN108982036A (zh) 一种电动伺服缸地震模拟振动台控制系统
CN201017214Y (zh) 基于dsp的可变谐振频率液压振动控制系统
JP5465515B2 (ja) Pid制御装置及びpid制御方法
WO2020124934A1 (zh) 一种伺服电机负载惯量的测定方法
CN109184925A (zh) 基于自适应积分终端滑模技术的电子节气门控制方法
CN114690642A (zh) 一种压电驱动系统的耦合控制方法
CN112304336B (zh) 一种高频角振动转台控制方法
CN109062036A (zh) 基于传递函数的振动谐波迭代控制系统
CN108333935A (zh) 一种陷波滤波器的精确调试方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891351

Country of ref document: EP

Kind code of ref document: A1