WO2023080242A1 - 光学素子、光学装置および光学素子の製造方法 - Google Patents

光学素子、光学装置および光学素子の製造方法 Download PDF

Info

Publication number
WO2023080242A1
WO2023080242A1 PCT/JP2022/041414 JP2022041414W WO2023080242A1 WO 2023080242 A1 WO2023080242 A1 WO 2023080242A1 JP 2022041414 W JP2022041414 W JP 2022041414W WO 2023080242 A1 WO2023080242 A1 WO 2023080242A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
optical
optical element
optical member
light
Prior art date
Application number
PCT/JP2022/041414
Other languages
English (en)
French (fr)
Inventor
拓範 平等
Original Assignee
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人自然科学研究機構 filed Critical 大学共同利用機関法人自然科学研究機構
Publication of WO2023080242A1 publication Critical patent/WO2023080242A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers

Definitions

  • the present invention relates to an optical element, an optical device, and a method for manufacturing an optical element.
  • the fiber Bragg grating (FBG) element has greatly contributed to the spread of fiber lasers.
  • VBG volume Bragg grating
  • VHG volume holographic grating
  • a volume grating is a bulk grating. Therefore, since the reflection and transmission characteristics can be designed according to the spectrum and angle of light in the high energy region, the volume diffraction grating can be widely used in laser oscillation devices, nonlinear optical wavelength conversion devices, optical pulse expansion and compression devices, etc. Expected.
  • VBG elements use glass as the base material. Therefore, when a VBG element is used in a laser device, for example, there are various problems such as the cross-sectional area of stimulated emission and thermal conductivity. Furthermore, conventional VBG devices are passive devices and their light-transmissive or non-transmissive state depends on the original design. In other words, conventional VBG elements are not suitable for high-output laser materials, and switching control by external signals is not possible.
  • the present invention provides an optical element having a volume diffraction grating or a volume holographic diffraction grating and suitable for a high-power laser or the like, an optical device including the optical element, and a method for manufacturing the optical element. for the purpose.
  • An optical element includes a first optical member made of single crystal, ceramics, or glass, and a first diffraction grating that reflects light of a predetermined wavelength is formed in the first optical member. and the first diffraction grating is a volume holographic diffraction grating or a volume Bragg diffraction grating formed by a plurality of modified surfaces obtained by partially modifying the first optical member.
  • the first diffraction grating is built into the first optical member made of single crystal, ceramics, or glass. Therefore, the above optical element is suitable for high-power lasers and the like.
  • Each of the plurality of modified regions may be a planar or linear region.
  • the first optical member is formed with a second diffraction grating forming a resonator together with the first diffraction grating, and the second diffraction gratings are formed by partially modifying the first optical member. It may also be a volume holographic diffraction grating or a volume Bragg diffraction grating formed by a modified region of .
  • the second diffraction grating is also built into the first optical member made of single crystal, ceramics or glass. Therefore, the above optical element is suitable for high-power lasers and the like.
  • the above resonator may be a ring resonator.
  • the first optical member may be a solid-state laser base material.
  • the optical element can be applied to a laser device.
  • the first diffraction grating may have a chirp structure.
  • optical elements can be used to compress or decompress the pulse.
  • a luminescent center that is excited by the control light may be added to the first optical member.
  • the switching control of the first optical member can be performed by the control light.
  • An example of an optical device according to another aspect of the present invention includes the above optical element.
  • an optical device includes the above optical element and a second optical member made of single crystal, ceramics, or glass to which luminescence centers excited by control light are added. and, in the second optical member, in a non-irradiated state in which the control light is not irradiated to the first optical member or in an irradiated state in which the control light is irradiated to the first optical member, the first optical member reflects the light of the predetermined wavelength.
  • a second diffraction grating is formed forming a diffraction grating and a resonator, said second diffraction grating being a volume holographic diffraction grating or a volume Bragg diffraction grating.
  • the first diffraction grating is built into the first optical member made of single crystal, ceramics, or glass. Further, the first diffraction grating of the optical element and the second diffraction grating forming a resonator are made of single crystal, ceramics or glass, and the second optical element is doped with a luminescence center excited by the control light. built into the component. Therefore, the above device is suitable for high power lasers and the like. Furthermore, since the second optical member is doped with luminous centers that are excited by the control light, the second optical member in which the second diffraction grating is built can be switch-controlled by the control light.
  • the above resonator may be a ring resonator.
  • Still another example of an optical device comprises a plurality of optical members made of crystal, ceramics or glass, and the plurality of optical members are arranged along one direction.
  • a first diffraction grating that reflects light of a predetermined wavelength is formed on a first optical member among the plurality of optical members, and the first diffraction grating is formed by partially modifying the first optical member.
  • a volume holographic diffraction grating or a volume Bragg diffraction grating formed by a plurality of modified modified surfaces.
  • the first diffraction grating is built into the first optical member made of single crystal, ceramics, or glass. Therefore, the above device is suitable for high power lasers and the like.
  • the first optical member may be a solid-state laser base material, a heat sink, or a saturable absorber.
  • the first optical member is a solid-state laser base material, and the first optical member is formed with a second diffraction grating that forms a resonator together with the first diffraction grating.
  • the first optical member may be a volume holographic diffraction grating or a volume Bragg diffraction grating formed by a plurality of modified surfaces. In this case, the device functions as a laser device.
  • the first optical member is a solid-state laser base material
  • the second optical member among the plurality of optical members is doped with a luminescence center excited by the control light and resonates together with the first diffraction grating.
  • a second diffraction grating forming a vessel is formed, and the second diffraction grating may be a volume holographic diffraction grating or a volume Bragg diffraction grating.
  • the device functions as a laser device.
  • An optical device is a device that includes a solid-state laser base material and a resonator, and outputs a laser beam, and is arranged in the resonator, and is made of crystal, ceramics, or glass.
  • the optical member is doped with a luminescent center that is excited by the control light, and the optical member is in a non-irradiated state in which the control light is not irradiated to the optical member or is irradiated.
  • a diffraction grating is formed to reflect the laser light in a direction different from the optical axis of the resonator in an irradiated state, and the diffraction grating is formed by a plurality of modified surfaces obtained by partially modifying the optical member. Formed volume holographic gratings or volume Bragg gratings.
  • the device functions as a laser device.
  • the diffraction grating is formed on the optical member made of crystal, ceramics or glass, the above device is effective for high output lasers.
  • the optical member is doped with a luminescent center that is excited by the control light, the optical member in which the diffraction grating is built can be controlled by the control light.
  • a method for manufacturing an optical element according to another aspect of the present invention includes a volume holographic diffraction grating or a volume Bragg diffraction grating that reflects light of a predetermined wavelength on an optical member made of single crystal, ceramics, or glass. forming, wherein the volume holographic diffraction grating or the volume Bragg diffraction grating is formed by modifying the optical member using pulsed laser light.
  • the diffraction grating can be built into an optical member made of single crystal, ceramics, or glass. As a result, it is possible to manufacture optical elements that are effective for high-power lasers and the like.
  • the pulse width of the pulsed laser light may be 0.1 ps to 1 ns or 1 ps to 1 ns.
  • the pulsed laser beam may be incident on the first surface of the optical member from a direction perpendicular to the first surface on which the pulsed laser beam is incident.
  • the pulsed laser light may be incident on the first surface of the optical member from a direction oblique to a direction perpendicular to the incident surface with respect to the first surface on which the pulsed laser beam is incident.
  • the volume holographic diffraction grating or volume Bragg diffraction grating is formed of a plurality of modified regions by the pulsed laser beam, and each of the plurality of modified regions may be planar or linear.
  • the first surface of the optical member on which the pulsed laser beam is incident may be a surface different from the second surface on which the light of the predetermined wavelength is incident on the optical member.
  • the first surface of the optical member on which the pulsed laser beam is incident may be the same surface as the second surface on which the light of the predetermined wavelength is incident on the optical member.
  • an optical element having a volume diffraction grating or a volume holographic diffraction grating and suitable for a high-power laser or the like, an optical device including the optical element, and a method for manufacturing the optical element. .
  • FIG. 1 is a drawing showing a schematic configuration of an optical element according to one embodiment.
  • FIG. 2 is a drawing for explaining a method of manufacturing the optical element shown in FIG.
  • FIG. 3 is a drawing for explaining an externally controllable optical element.
  • FIG. 4 is a schematic diagram of an example of an optical device (laser device) according to one embodiment.
  • FIG. 5 is a schematic diagram showing a modification of the optical element used in FIG.
  • FIG. 6 is a schematic diagram of another example of the optical device (laser device) according to one embodiment.
  • FIG. 7 is a schematic diagram of still another example of the optical device (laser device) according to one embodiment.
  • FIG. 8 is a schematic diagram of still another example of the optical device (laser device) according to one embodiment.
  • FIG. 1 is a drawing showing a schematic configuration of an optical element according to one embodiment.
  • FIG. 2 is a drawing for explaining a method of manufacturing the optical element shown in FIG.
  • FIG. 3 is a
  • FIG. 9 is a schematic diagram showing a modified example of the optical device.
  • FIG. 10 is a schematic diagram of still another example of the optical device (laser device) according to one embodiment.
  • FIG. 11 is a schematic diagram of still another example of the optical device (laser device) according to one embodiment.
  • FIG. 12 is a schematic diagram of still another example of the optical device (laser device) according to one embodiment.
  • FIG. 13 is a drawing for explaining another example of the optical element.
  • FIG. 14 is a drawing for explaining an optical element as an optical coupling element.
  • FIG. 15 is a drawing for explaining an optical element as a spectrum filter.
  • FIG. 16 is a schematic diagram for explaining a modification of the optical element according to one embodiment.
  • FIG. 17 is a schematic diagram of the optical element in FIG. 16 viewed from the direction of light incident on the optical element.
  • 18A and 18B are drawings for explaining a method of manufacturing the optical element shown in FIG.
  • volume grating is a volume holographic grating (VHG) or a volume Bragg grating (VBG).
  • FIG. 1 is a drawing showing a schematic configuration of an optical element according to one embodiment.
  • the optical element 2 shown in FIG. 1 has an optical member (first optical member) 4 .
  • the optical member 4 is a bulk crystal body made of single crystal, a bulk ceramic body made of ceramics, or glass.
  • the optical member 4 has, for example, a columnar shape (including a columnar shape and a square columnar shape).
  • the single crystal material examples include garnet - based materials such as YAG, GGG, LuAG, YSAG and YGAG , Y2O3 , Sr2O3 , Lu2O3 , Al2O3 , YALO and Sr2O3 .
  • vanadate materials such as YVO4 , LuVO4 , GdVO4 ; fluorides such as YLF, CaF2 and FAP; apatite materials; and tungstate materials such as WO4 .
  • the ceramics include polycrystals (including amorphous) of materials similar to the single crystals, such as YAG ceramics. Such single crystals and ceramics function as solid-state laser base materials.
  • the optical member 4 may be made of sapphire, diamond, SiC, or an additive-free laser base material. Such an optical member 4 functions as a heat sink.
  • the optical member 4 may be made of a nonlinear optical crystal.
  • Examples of the material of the optical member 4 made of nonlinear optical crystal include crystal, ferroelectric material, semiconductor material, borate-based material, and the like.
  • ferroelectric material examples include LiNbO 3 (both with and without Mg added), LiTaO 3 (with and without Mg added). ), KTiPO 4 (including both with and without Rb added), RbTiPO 4 (including both with and without Rb added), KTiOAsO 4 , RbTiOAsO4 and the like.
  • Examples of the semiconductor material include GaAs, GaP, GaN, ZnS, ZnSe, ZnTe, ZnGeP 2 and CdSiP 2 .
  • a volume diffraction grating (first diffraction grating) 6 that selectively reflects light of a predetermined wavelength is formed in the optical member 4 .
  • Volume grating 6 is VHG or VBG.
  • the volume diffraction grating 6 has a plurality of modified surfaces (modified regions) 6a arranged with a period ⁇ .
  • the modified surface 6a is a surface obtained by modifying the optical member 4, and is a refractive index modulation surface having a refractive index different from that of regions other than the modified surface 6a.
  • each modified surface 6a may be a region in which a plurality of modified portions are formed in a plane.
  • the modified surface 6a is schematically indicated by a thick solid line. The manner of illustration of the modified surface 6a is the same in other drawings.
  • the optical element 2 can be manufactured by forming the volume diffraction grating 6 on the optical member 4 . That is, the method for manufacturing the optical element 2 has a step of forming the volume diffraction grating 6 on the optical member 4 .
  • the volume diffraction grating 6 can be formed by laser writing. Specifically, as shown in FIG. 2, the pulsed laser beam PL is focused by the focusing unit 8 to modify the optical member 4 in the irradiation area of the pulsed laser beam PL.
  • the pulsed laser beam PL is incident from the surface (first surface) 4 c of the optical member 4 .
  • the surface 4c is a surface different from the end surface (second surface) 4a on which the light Li is incident when the light Li is incident on the optical element 2 on which the volume diffraction grating 6 is formed as shown in FIG. be.
  • the surface 4c is a surface substantially perpendicular to the end surface 4a.
  • a plurality of modified surfaces 6a are formed by scanning the pulsed laser beam PL three-dimensionally according to the size and period ⁇ of the volume diffraction grating 6 to be formed. Thereby, the volume diffraction grating 6 is written on the optical member 4, and the optical element 2 is obtained.
  • the pulsed laser beam PL can function as a writing laser beam for writing the modified surface 6a.
  • each modified surface 6a is formed by arranging a plurality of modified portions in a plane.
  • the pulsed laser beam PL is incident perpendicularly to the surface 4c.
  • the pulsed laser beam PL may be incident on the surface 4c from an oblique direction (a direction tilted from the vertical direction).
  • the pulsed laser beam PL may be a pulsed laser beam with a subpicosecond to nanosecond pulse width.
  • the pulse width of the pulsed laser beam PL may be 0.1 ps to 10 ns.
  • the pulse width may be 0.1 ps to 1 ns or 1 ps to 1 ns.
  • An example of the laser device 10 that outputs the pulsed laser beam PL is a microchip laser (MCL) that is small and consumes low power and is capable of outputting a laser beam with a sub-nanosecond pulse width (see, for example, Japanese Unexamined Patent Application Publication No. 2019-129252). ).
  • An example of the wavelength is 1064 nm when the optical member 4 is Nd:YAG and the pulsed laser beam PL is the fundamental wave.
  • the pulsed laser beam PL includes not only the fundamental wave, but also harmonics such as the second, third, fourth, fifth, sixth, and seventh harmonics from the solid-state laser. may be used.
  • harmonics the photon energy can be increased without using a large and unstable ultrashort pulse laser with a pulse width of less than 0.1 ps. Therefore, the pulsed laser beam PL efficiently and strongly interacts with the substance, and finer processing is possible.
  • the power, irradiation time, etc. of the pulsed laser beam PL need only be set so that the refractive index at the irradiation position (focusing position) of the pulsed laser beam PL can be modulated to a refractive index that can function as the volume diffraction grating 6 .
  • the peak power of the pulsed laser beam PL is 0.1 MW to 50 MW.
  • the irradiation time of the pulsed laser beam PL to the irradiation position is 0.1 ps to 1 ns.
  • the scanning of the pulsed laser beam PL may be performed by scanning the laser device itself that outputs the pulsed laser beam PL, or by scanning the pulsed laser beam PL output from the laser device 10 using a mirror or the like.
  • the volume diffraction grating 6 is formed of a plurality of modified surfaces 6a arranged in parallel with a period ⁇ .
  • L be the width of the volume grating 6 in the z-direction. Assume that light L i having a predetermined wavelength ⁇ is incident on the optical member 4 .
  • Equation (3) corresponds to the phase matching condition.
  • n0 is the refractive index of the optical member 4 other than the modified surface 6a (refractive index before modification)
  • n1 is the refractive index of the modified surface 6a.
  • ⁇ 1 is the angle formed by the incident direction of the light L i to the volume diffraction grating 6 and the volume diffraction grating 6 (specifically, the modified surface 6a).
  • Reference 1 P. Yen, "Photorefractive Nonlinear Optics", Maruzen Co., Ltd., March 1, 1995, p. 53-p. 73.
  • a volume diffraction grating (first diffraction grating) 6 that selectively reflects light of a predetermined wavelength is formed. Therefore, of the incident light, light with a predetermined wavelength is reflected, and light with a wavelength shifted from the predetermined wavelength is transmitted.
  • the optical element 2 is formed by modifying a portion of the optical member 4 using, for example, laser light, as described in the manufacturing method above.
  • the optical member 4 is a bulk crystal body made of a single crystal or a bulk ceramic body made of ceramics. As described above, the above manufacturing method can form a diffraction grating in a single crystal, a ceramic body, or the like.
  • FIG. 3 is a drawing for explaining an externally controllable optical element.
  • the optical element 2 in which the luminescent center is added to the optical member is referred to as an optical element 2A.
  • an optical member is doped with a luminescence center (first luminescence center) excited by a control light L C (external signal) having a control wavelength ⁇ C .
  • luminescent centers include rare earth elements (Nd, Yb, Tm, Ho, Er, Ce, Pr, Dy, Tb, Sm, etc.), transition metal elements (Cr, Ti, V, etc.), and the like.
  • equation (4) can be approximated as equation (5).
  • the refractive index modulation ⁇ n is divided into a change due to electronic transition ( ⁇ n e ) and a change due to heat generation ( ⁇ n T ). That is, ⁇ n is represented by Equation (6).
  • ⁇ n e and ⁇ n T are represented by equations (7) and (8).
  • ⁇ N is the population inversion density.
  • FL is the Lorentz factor and is represented by (n 0 +2)/3.
  • ⁇ p is the polarization difference ratio between the ground level and the excited level.
  • ⁇ p and ( ⁇ n/ ⁇ T) the following values are taken (see, eg, Reference 2 below).
  • ⁇ p (1.95 ⁇ 0.25) ⁇ 10 ⁇ 26 [cm 3 ] ⁇ n/ ⁇ T ⁇ (0.7 ⁇ 0.2) ⁇ 10 ⁇ 5 Reference 2: O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” OPTICS LETTERS, 2006, Vol. 31, No. 6, 763-765.
  • the optical element 2A is formed of Yb:YAG (Yb doping amount: 100 at.%) and is excited at 100%, ⁇ n e is a refractive index up to about 2.93 ⁇ 10 ⁇ 3 change occurs. Even if the doping amount of Yb is 0.68 at. %, a refractive index change of about 10 ⁇ 5 is caused by 50% excitation. Therefore, by irradiating the optical element 2A with the control light LC to excite the luminescence center, it is possible to secure the change in the refractive index as ⁇ n when functioning as the volume diffraction grating 6 described above. In other words, by irradiating the optical element 2A with the control light LC to excite the luminous center, it is possible to secure a refractive index change that affects the reflection characteristics of the volume diffraction grating 6 as ⁇ n.
  • the volume diffraction grating 6 is designed to reflect the light L i when the optical element 2A is not irradiated with the control light L C (non-irradiation state), the control light L C is applied to the optical element 2A.
  • the condition (phase matching condition) expressed in Equation (3) is not satisfied.
  • the light L i of the predetermined wavelength ⁇ is not reflected by the volume diffraction grating 6 .
  • the volume diffraction grating 6 is designed to reflect the light L i when the optical element 2A is irradiated with the control light LC (irradiation state), the non-reflection state where the irradiation of the control light LC is stopped. In the irradiated state, the condition (phase matching condition) represented by Equation (3) is not satisfied. As a result, the light L i of the predetermined wavelength ⁇ is not reflected by the volume diffraction grating 6 .
  • the optical element 2A (specifically, the volume diffraction grating 6 ) can be switched between reflecting the light L i and not reflecting it (that is, transmitting it). Therefore, the optical element 2A functions as a switching element whose reflection characteristics can be externally controlled.
  • the switching speed of the optical element 2A can be improved, and the optical element 2A can be operated with high accuracy using picosecond pulses or femtosecond pulses. Controllable.
  • the optical elements 2 and 2A may be laser processing equipment, laser measuring equipment, laser medical equipment, and other optical equipment (physical and chemical equipment). equipment).
  • the optical elements 2 and 2A can be used as switching elements for high-power laser light, and for example, laser devices that output (or handle) high-power laser light (for example, pulsed laser light), laser processing devices, It can be applied to a nonlinear wavelength conversion device, an optical pulse expansion or compression device, and the like.
  • the optical member 4 is a solid-state laser base material, a heat sink, a nonlinear crystal, or the like.
  • FIG. 4 is a schematic diagram of a laser device 10, which is an example of an optical device including an optical element.
  • a laser device (optical device) 10 shown in FIG. 4 is a device that outputs a laser beam LL having a laser wavelength ⁇ L .
  • the laser device 10 includes a first light supply section (excitation light supply section) 12 and an optical element 2B.
  • the first light supply unit 12 supplies excitation light LP having an excitation wavelength ⁇ p to the optical element 2B.
  • the first light supply unit 12 has a light source unit 12A that outputs the excitation light LP , and a condensing optical system 12B that condenses the excitation light LP so as to enter the optical element 2B.
  • FIG. 4 schematically shows the condensing optical system 12B as a lens.
  • An example of the light source section 12A is a semiconductor laser element.
  • the optical element 2B functions as an optical oscillator (or an optical amplifier) that outputs laser light LL by being supplied with pumping light LP .
  • the optical element 2B has an optical member 4A.
  • a volume diffraction grating 6A1 and a volume diffraction grating (second diffraction grating) 6A2 are formed in the optical member 4A.
  • Volume diffraction grating 6A1 and volume diffraction grating 6A2 constitute resonator .
  • the optical member 4A has an end face 4a and an end face 4b.
  • the end surface 4b is an end surface opposite to the end surface 4a. Unless otherwise stated, end faces 4a and 4b are parallel.
  • the direction orthogonal to the end surface 4a (or the end surface 4b) may also be referred to as the Z direction. In the second embodiment, the Z direction corresponds to the optical axis direction of the resonator 14 .
  • the optical member 4A is formed from a solid-state laser base material to which a luminous center (second luminous center) excited by the excitation light LP having the excitation wavelength ⁇ P is added. That is, the optical member 4A is a laser medium.
  • the optical member 4A has, for example, a columnar shape (including a columnar shape and a square columnar shape).
  • Examples of the luminescent center added to the optical member 4A are rare earth elements or transition metals similar to the examples of the luminescent center described with regard to the optical element 2 in the first embodiment.
  • An example of the solid-state laser base material forming the optical member 4A is the same as in the case of the optical member 4.
  • FIG. The optical member 4A is made of, for example, Nd-added YAG (Nd:YAG).
  • the volume diffraction grating 6A1 is formed on the end face 4a side of the optical member 4A and functions as an input-side reflector (first reflector) of the resonator .
  • the volume diffraction grating 6A1 serves as an input-side reflector of the resonator 14 and has transmission characteristics for the excitation light LP and reflection characteristics for the laser light LL .
  • the volume grating 6A1 has a transmittance greater than 80% (preferably greater than 90%) for the excitation wavelength ⁇ p (wavelength 808 nm, wavelength 885 nm, etc.), while the laser wavelength (lasing wavelength ) has a reflectance of greater than 99% for ⁇ L (eg wavelength 1064 nm).
  • the volume diffraction grating 6A1 has a plurality of modified surfaces 6a built into the optical member 4A.
  • the volume diffraction grating 6A1 can be formed by laser drawing as in the case of the volume diffraction grating 6 in the first embodiment.
  • the arrangement (e.g., period) of the plurality of modified surfaces 6a of the volume diffraction grating 6A1 and the refractive index of the modified surfaces 6a are set so as to realize transmission characteristics and reflection characteristics corresponding to the input-side reflection portion of the resonator 14. It is good if it is. That is, the volume diffraction grating 6A1 corresponds to the volume diffraction grating 6 designed to function as the input-side reflector of the resonator .
  • the volume diffraction grating 6A2 is formed on the end surface 4b side of the optical member 4A and functions as an output-side reflector (second reflector) of the resonator .
  • the volume diffraction grating 6A2 functions as an output-side reflector of the resonator 14 and has a transmission characteristic for the excitation light LP and a reflection characteristic for the laser light LL .
  • the volume grating 6A2 has a reflectance (partial reflectance) of 90% to 99% for outcoupling to the laser wavelength ⁇ L (eg, wavelength 1064 nm), which is the lasing wavelength.
  • the volume grating 6A2 may not reflect the light of the excitation wavelength ⁇ P .
  • the medium length specifically, between the volume gratings 6A1 and 6A2 in the optical member 4A length
  • stable and efficient laser oscillation particularly CW laser oscillation
  • the volume diffraction grating 6A2 has a plurality of modified surfaces 6a built into the optical member 4A.
  • the volume diffraction grating 6A2 can be formed by laser drawing in the same manner as the volume diffraction grating 6 in the first embodiment.
  • the arrangement (e.g., period) of the plurality of modified surfaces 6a of the volume diffraction grating 6A2 and the refractive index of the modified surfaces 6a are set so as to achieve transmission characteristics and reflection characteristics corresponding to the output-side reflector of the resonator 14. It is good if it is. That is, the volume diffraction grating 6A2 corresponds to the volume diffraction grating 6 designed to function as the output-side reflector of the resonator .
  • the laser device 10 may have a heat sink 16 on the side of the end surface 4a.
  • the heat sink 16 is bonded to the optical member 4A.
  • Materials for the heat sink 16 include, for example, sapphire and diamond.
  • the heat sink 16 and the optical element 2B (specifically, the optical member 4A) may be bonded by a bonding method known in this technical field.
  • the heat sink 16 is integrated with the optical element 2B (specifically, the optical member 4A) with an adhesive, optical contact, or surface-activated low-temperature bonding (hereinafter also simply referred to as "surface-activated bonding").
  • a surface active bonding removes the oxide film or surface deposits on the bonding surfaces of the materials to be bonded in a vacuum by ion beam irradiation or FAB (neutral atom beam) irradiation, and bonds the flat bonding surfaces where the constituent atoms are exposed. It is a method of doing.
  • a surface active bond is a direct bond utilizing an intermolecular bond.
  • the volume diffraction grating 6A1 and the volume diffraction grating 6A2 are built into the optical member 4A formed from the solid laser base material to which the emission center is added. Therefore, the optical element 2B corresponds to the optical element 2 in the first embodiment, and the optical element 2B has the same effect as the optical element 2. For example, since the volume diffraction grating 6A1 and the volume diffraction grating 6A2 are built into the optical member 4A, the mechanical strength of the optical element 2B as an optical oscillator is improved compared to the case of using a dielectric multilayer film. .
  • the volume diffraction gratings 6A1 and 6A2 form a resonator . That is, the resonator 14 is built into the optical member 4A. Therefore, by making the excitation light LP incident on the optical element 2B, the laser light LL can be generated.
  • a dielectric multilayer film may be used instead of one of the volume diffraction gratings 6A1 and 6A2. Even in this case, the mechanical strength of the optical element 2B as an optical oscillator is improved as compared with the case where both of the two reflectors constituting the resonator 14 are formed of dielectric multilayer films.
  • FIG. 5 is a drawing for explaining a modification of the optical element shown in FIG.
  • the optical element 2C has an optical member 4A, a volume diffraction grating 6B1, and a volume diffraction grating 6B2.
  • Optical element 2C has volume diffraction grating 6B1 and volume diffraction grating 6B2 instead of volume diffraction grating 6A1 and volume diffraction grating 6A2, and volume diffraction grating 6B1 and volume diffraction grating 6B2 constitute ring resonator 14A. This is the main difference from the optical element 2B.
  • the optical member 4A in Modification 1 is the same as the optical member 4A shown in FIG. 4, so the description is omitted.
  • Volume grating 6B1 is similar to volume grating 6A1 except that it is designed to reflect incident laser light LL at blaze angle ⁇ B1 . That is, the volume diffraction grating 6B1 is arranged on the side of the end surface 4a and has a plurality of modified surfaces 6a that are produced in the same manner as the volume diffraction grating 6A1. The volume diffraction grating 6B1 functions as an input-side reflector in the ring resonator 14A.
  • Volume grating 6B2 is similar to volume grating 6A2, except that it is designed to reflect incident laser light LL at blaze angle ⁇ B2 . That is, the volume diffraction grating 6B2 is arranged on the side of the end surface 4b and has a plurality of modified surfaces 6a that are produced in the same manner as the volume diffraction grating 6A2. The volume diffraction grating 6B2 functions as an output-side reflector in the ring resonator 14A.
  • the ring resonator 14A composed of the volume diffraction gratings 6B1 and 6B2 is a resonator in which the laser light LL propagates in a ring shape at blaze angles ⁇ B1 and ⁇ B2 with respect to the laser light LL . is.
  • the optical element 2C is a volume diffraction grating 6B1 and an optical member 4A in which the volume diffraction grating 6B1 is built. Therefore, the optical element 2C corresponds to the optical element 2 in the first embodiment, and has the same effect as the optical element 2.
  • the optical element 2C can be applied to the laser device 10 instead of the optical element 2B.
  • the optical element 2C includes the ring resonator 14A, it is possible to secure the resonator length while miniaturizing the optical element 2C.
  • the laser device 10 may further include an external magnetic field supply unit that applies an external magnetic field along the Z direction to the optical element 2C. This makes it possible to take advantage of the Faraday effect.
  • the seed light LS may be incident from the outside of the optical element 2C.
  • the oscillation wavelength and phase of the laser light can be controlled because the laser light can be optically injection-locked in the laser device having the ring resonator (optical element 2C).
  • FIG. 6 is a schematic diagram of a laser device 10A, which is an example of an optical device including an optical element.
  • a laser device 10A shown in FIG. 6 is a device that outputs a pulsed laser beam as a laser beam LL having a laser wavelength ⁇ L .
  • the laser device 10A is a passive Q-switched laser device that includes a first light supply section 12, an optical element 2D, and a saturable absorber 17.
  • the resonator 14 is formed by the volume diffraction grating 6A1 of the optical element 2D and the volume diffraction grating 6A2 of the saturable absorber 17.
  • the first light supply unit 12 supplies excitation light LP to the optical element 2D. Since the configuration of the first light supply unit 12 is the same as in the case of the second embodiment, description thereof is omitted.
  • FIG. 6 schematically shows the first light supply section 12 as a block.
  • the optical element 2D mainly differs from the optical element 2B in that it has a volume diffraction grating 6C1 instead of the volume diffraction grating 6A2.
  • the optical element 2D has an optical member 4A, a volume diffraction grating 6A1, and a volume diffraction grating 6C1.
  • the description of the optical member 4A is omitted because it is the same as in the case of the second embodiment.
  • the configuration and manufacturing method of the volume diffraction grating 6A1 are the same as in the case of the second embodiment.
  • the volume diffraction grating 6A1 functions as the incident-side reflector in the resonator 14. FIG.
  • the volume diffraction grating 6C1 has a plurality of modified surfaces 6a.
  • the volume grating 6C1 has a reflectance greater than 50% (preferably a reflectance greater than 90%) for excitation light L P having an excitation wavelength ⁇ P .
  • the method of manufacturing the volume diffraction grating 6C1 is the same as the volume diffraction grating 6 in the first embodiment.
  • the saturable absorber 17 is joined to the end face 4b of the optical member 4A.
  • the saturable absorber 17 has a saturable absorber 18 and a volume diffraction grating 6A2.
  • the saturable absorber 18 is a Q switch element.
  • the saturable absorber 18 corresponds to the optical member 4 configured to have saturable absorption characteristics.
  • the saturable absorber 18 may be made of YAG doped with Cr (Cr:YAG). .
  • the saturable absorber 18 is joined to the end surface 4b of the optical member 4A.
  • the saturable absorber 18 is integrated with the optical element 2D (specifically the optical member 4A), for example, by adhesive, optical contact, or surface active bonding.
  • the assembly of the optical element 2 ⁇ /b>D and the saturable absorber 17 will be referred to as an optical element 3 .
  • a volume diffraction grating 6A2 that constitutes the resonator 14 together with the volume diffraction grating 6A1 is formed on the end surface (the surface opposite to the optical element 2D) of the saturable absorber 18 .
  • the volume diffraction grating 6A2 has a plurality of modified surfaces 6a, and the reflection characteristics and transmission characteristics of the volume diffraction grating 6A2 are the same as in the case of the second embodiment.
  • the method of manufacturing the volume diffraction grating 6A2 is the same as the volume diffraction grating 6 in the first embodiment.
  • the volume diffraction grating 6A1 and the volume diffraction grating 6A2 constitute the resonator 14. As shown in FIG. Laser device 10A has a saturable absorber 18 . Therefore, a pulsed laser beam can be output as the laser beam LL .
  • the optical element 2D corresponds to the optical element 2 in the third embodiment.
  • the saturable absorber 17 also corresponds to the optical element 2 . Therefore, the optical element 2 ⁇ /b>D and the saturable absorber 17 (optical element) have effects similar to those of the optical element 2 .
  • a volume diffraction grating 6C1 having a high reflectance with respect to the excitation light LP having the excitation wavelength ⁇ P is built into the optical member 4A.
  • a dielectric multilayer film having reflection characteristics similar to those of the volume diffraction grating 6C1 is formed between the optical member 4A and the saturable absorber 18. can be considered.
  • such a dielectric multilayer film has low mechanical strength, it may be damaged when the optical member 4A and the saturable absorber 18 are joined via the dielectric multilayer film.
  • the optical member 4A and the saturable absorber 18 are integrated via the dielectric multilayer film, there is still weakness in strength.
  • the volume diffraction grating 6C1 is built into the optical member 4A, the breakage during fabrication as described above does not occur, and fragility after fabrication does not exist.
  • the optical member 4A for example, Nd:YAG
  • the saturable absorber 18 for example, Cr:YAG
  • the optical element 3 can be resistant to external pressure.
  • the volume diffraction grating 6A1 is built into the optical member 4A, and the volume diffraction grating 6A2 is built into the saturable absorber 18. Therefore, the optical element 3 can have higher resistance to external pressure.
  • the volume diffraction grating 6C1 may be built into the saturable absorber 18.
  • a dielectric multilayer film formed on the end surface 4a of the optical member 4A may be used as the input side reflector.
  • a dielectric multilayer film formed on the end surface of the saturable absorber 18 (the end surface opposite to the optical element 2D) may be used as the output side reflector.
  • FIG. 7 is a schematic diagram of a laser device 10B, which is an example of an optical device including an optical element.
  • a laser device 10B shown in FIG. 7 is a device that outputs a pulsed laser beam as a laser beam LL having a laser wavelength ⁇ L .
  • the laser device 10B includes a first light supply section (excitation light supply section) 12, a laser medium 20, a heat dissipation section 22A, a heat dissipation section 22B, and a saturable absorption section 17.
  • the resonator 14 is formed by the volume diffraction grating 6A1 of the radiator 22A and the volume diffraction grating 6A2 of the saturable absorber 17.
  • the first light supply unit 12 supplies excitation light LP to the laser medium 20 . Since the configuration of the first light supply unit 12 is the same as in the case of the second embodiment, description thereof is omitted.
  • the laser medium 20 can be the same as the optical member 4A in the third embodiment. Laser medium 20 is made of, for example, Nd:YAG. Since the saturable absorber 17 is also the same as in the case of the third embodiment, the description is omitted.
  • the heat sink 22A has a heat sink 16 and a volume diffraction grating 6A1.
  • the heat dissipation portion 22A is the heat sink 16 in which the volume diffraction grating 6A1 is built.
  • the heat sink 16 is also an example of the optical member 4 .
  • the volume diffraction grating 6A1 can have the same configuration and optical properties (reflection properties and transmission properties) as in the first embodiment.
  • the method of manufacturing the volume diffraction grating 6A1 is also the same as in the case of the first embodiment.
  • the heat sink 22A (specifically, the heat sink 16) is integrated with the laser medium 20 by adhesive, optical contact, or surface active bonding.
  • the heat sink 22B has a heat sink 16 and a volume diffraction grating 6C1.
  • the heat dissipation part 22B is the heat sink 16 in which the volume diffraction grating 6C1 is built.
  • the heat dissipation part 22B can have the same configuration as the heat dissipation part 22A, except that the volume diffraction grating 6C1 is built in instead of the volume diffraction grating 6A1.
  • the volume diffraction grating 6C1 can have the same configuration and optical properties (reflection properties and transmission properties) as in the case of the third embodiment.
  • the method of manufacturing the volume diffraction grating 6C1 is also the same as in the case of the third embodiment.
  • the heat sink 22B (specifically the heat sink 16) is integrated with the laser medium 20 and the saturable absorber 17 (specifically the saturable absorber 18) by adhesive, optical contact, or surface active bonding. ing.
  • each of the heat radiation section 22A, the heat radiation section 22B and the saturable absorption section 17 corresponds to the optical element 2. Therefore, the heat radiation portion 22A, the heat radiation portion 22B, and the saturable absorption portion 17 as optical elements have the same effects as the optical element 2.
  • FIG. 1 the heat radiation portion 22A, the heat radiation portion 22B, and the saturable absorption portion 17 as optical elements have the same effects as the optical element 2.
  • the laminated body formed by the heat radiating section 22A, the laser medium 20, the heat radiating section 22B, and the saturable absorbing section 17 will be referred to as an optical element 3A.
  • the volume diffraction grating 6A1 and the volume diffraction grating 6A2 constitute the resonator 14. As shown in FIG. Laser device 10B has a saturable absorber 18 . Therefore, the laser device 10B can output a pulsed laser beam as the laser beam LL .
  • a heat radiating section 22B is arranged between the laser medium 20 and the saturable absorbing section 17.
  • the volume diffraction grating 6C1 is incorporated in the heat sink 16 of the heat dissipation section 22B. Therefore, as in the case of the laser device 10A, for example, the mechanical strength of the optical element 3A is improved compared to the case where the reflection characteristics similar to those of the volume diffraction grating 6C1 are realized with a dielectric multilayer film.
  • volume diffraction grating 6A1 is also built into the heat sink 16
  • the mechanical strength of the optical element 3A is improved.
  • the volume diffraction grating 6A2 is built into the saturable absorber 18, the mechanical strength of the optical element 3A is improved.
  • a dielectric multilayer film formed on the end face of the saturable absorber 18 (the end face opposite to the heat radiation part 22B) may be used as the output side reflector.
  • FIG. 8 is a schematic diagram of a laser device 10C, which is an example of an optical device including an optical element.
  • a laser device 10C shown in FIG. 8 is a device that outputs a laser beam LL having a laser wavelength ⁇ L .
  • the laser device 10C includes a first light supply section 12, an optical oscillator 24, and a second light supply section (control light supply section) .
  • the first light supply section 12 supplies the excitation light LP to the optical oscillator 24 . Since the configuration of the first light supply unit 12 is the same as in the case of the second embodiment, description thereof is omitted.
  • the optical oscillator 24 has an optical element 2E and an optical element 2F.
  • a resonator 14 is formed by the volume diffraction grating 6A1 of the optical element 2E and the volume diffraction grating 6D of the optical element 2F.
  • the optical oscillator 24 outputs laser light LL by being supplied with pumping light LP .
  • the optical oscillator 24 may have a heat sink 16 . In the fifth embodiment, the optical oscillator 24 with the heat sink 16 will be described.
  • the heat sink 16, the optical element 2E and the optical element 2F are arranged in this order along the Z direction.
  • the optical element 2E differs from the optical element 2B in the second embodiment in that the volume diffraction grating 6A2 is not formed. That is, the optical element 2E is the optical member 4A in which the volume diffraction grating 6A1 is built. Since the optical member 4A and the volume diffraction grating 6A1 are the same as in the case of the second embodiment, their description is omitted.
  • the optical element 2F has an optical member (second optical member) 4B and a volume diffraction grating (second diffraction grating) 6D.
  • the optical element 2F is an optical member 4B in which a volume diffraction grating 6D is built.
  • the optical member 4B is made of a solid-state laser base material to which emission centers are added.
  • the luminescent center doped in the optical member 4B is a rare earth or transition metal that is excited by the control light L C having the control wavelength ⁇ C but not excited by the excitation light L P having the excitation wavelength ⁇ P .
  • the optical member 4B is YAG doped with Yb (Yb:YAG).
  • Optical member 4B is integrated with optical member 4A by adhesive, optical contact, or surface active bonding.
  • the volume diffraction grating 6D has a plurality of modified surfaces 6a.
  • the method of manufacturing the volume diffraction grating 6D is the same as the volume diffraction grating 6 in the first embodiment.
  • the volume diffraction grating 6D is formed so as to constitute the resonator 14 in the same manner as the volume diffraction grating 6A1 when the optical element 2F is irradiated with the control light LC (irradiation state). That is, the volume diffraction grating 6D functions as an output-side reflector of the resonator 14 in the irradiation state of the control light Lc .
  • the volume diffraction grating 6D is built into the optical member 4B to which the emission center is added. Therefore, as described with respect to the optical element 2A, in the state where the control light Lc is not irradiated (non-irradiated state), the reflection characteristics and the like change from those in the irradiated state. Therefore, the volume diffraction grating 6D does not function as an output-side reflector of the resonator 14 in the non-irradiation state of the control light Lc .
  • the volume diffraction grating 6D preferably has an equivalent reflectance of 20% or more for the laser light L L (the fundamental wave of the pulsed laser light, preferably the laser oscillation wavelength of the harmonic) in the irradiated state, Preferably, the equivalent reflectance is less than 20% in the non-irradiated state.
  • the heat sink 16, optical member 4A and optical member 4B are integrated by adhesive, optical contact, or surface active bonding.
  • the second light supply unit 26 has a light source unit 26A that outputs the control light LC and a condensing optical system 26B that collects the control light LC so that it is incident on the optical member 4 .
  • FIG. 8 schematically shows the condensing optical system 26B as a lens.
  • An example of the light source section 26A is a semiconductor laser element.
  • the excitation light LP is supplied from the first light supply unit 12 to the optical oscillator while the second light supply unit 26 does not irradiate the optical element 2F with the control light LC (non-irradiation state) . 24.
  • the optical member 4A which is the solid-state laser base material, is excited and population inversion is formed.
  • the volume diffraction grating 6D has a high transmittance for the laser light LL , the loss as the resonator 14 is large. That is, the Q value as a laser resonator is small, and laser oscillation is suppressed.
  • the second light supply unit 26 irradiates the optical element 2F with the control light LC .
  • the reflectance of the volume diffraction grating 6D with respect to the laser light LL is increased, and the resonator 14 is established. That is, the volume diffraction grating 6D of the optical element 2F functions as an output-side reflector of the resonator 14.
  • FIG. As a result, laser oscillation occurs, and laser light LL is output from the laser device 10C.
  • the switching operation of the optical element 2F switching control of the optical element 2F by the control light LC ) depending on whether or not the optical element 2 is irradiated with the control light LC allows the laser light LL to be pulsed.
  • the optical element 2F is capable of switching operation following the speed of light. Therefore, the laser device 10C can output short-pulse laser light. That is, in the laser device 10C, the optical element 2F functions as a Q switch element.
  • the volume diffraction grating 6C1 described in the third embodiment may be formed on the end face 4b side of the optical member 4A of the optical element 2E.
  • the reflection characteristics and the like of the volume diffraction grating 6C1 are the same as in the case of the third real child form.
  • the relationship between the illuminated state and non-illuminated state of the optical element 2F and the reflection (or transmission) characteristics may be the opposite of the illustrated case.
  • the configuration may be such that the resonator 14 is formed when the optical element 2F is not irradiated, and the resonator 14 is not formed when the optical element 2F is irradiated.
  • FIG. 9 is a schematic diagram showing a modification of the optical oscillator shown in FIG.
  • the optical oscillator 24A shown in FIG. 9 differs from the optical oscillator 24 in that it has an optical element 2G instead of the optical element 2E and an optical element 2H instead of the optical element 2F.
  • a ring resonator 14A is formed by the volume diffraction grating 6B1 of the optical element 2G and the volume diffraction grating 6B2 of the optical element 2G in the irradiation state of the control light Lc .
  • the optical oscillator 24A may have a heat sink 16 like the optical oscillator 24 does.
  • the optical element 2G differs from the optical element 2E in that the volume diffraction grating 6B1 is built into the optical member 4A instead of the volume diffraction grating 6A1. Since the optical member 4A is the same as the optical element 2E, description thereof is omitted.
  • the optical element 2H differs from the optical element 2F in that a volume diffraction grating 6B2 is built into the optical member 4A instead of the volume diffraction grating 6D. Since the optical member 4B is the same as the optical element 2F, description thereof is omitted.
  • the volume diffraction grating 6B1 and the volume diffraction grating 6B2 form a ring resonator 14A in the same way as the optical element 2C (see FIG. 5) in the irradiation state of the control light Lc .
  • the volume diffraction grating 6B1 has a plurality of modified surfaces 6a and is designed to reflect the laser light L L incident at the blaze angle ⁇ B1 .
  • the volume diffraction grating 6B1 functions as an input-side reflector in the ring resonator 14A.
  • the volume diffraction grating 6B2 has a plurality of modified surfaces 6a and is designed to reflect the laser light LL incident at the blaze angle ⁇ B2 .
  • the volume diffraction grating 6B2 functions as an output-side reflector in the ring resonator 14A.
  • the volume diffraction grating 6B2 is built into the optical member 4B to which the emission center is added. Therefore, as described with respect to the optical element 2A (or the optical element 2F), in the state where the control light Lc is not irradiated (non-irradiated state), the reflection characteristics and the like change from those in the irradiated state. Therefore, the volume diffraction grating 6B2 does not function as an output-side reflector of the ring resonator 14A in the non-irradiation state of the control light Lc .
  • the volume diffraction grating 6B2 preferably has an equivalent reflectance of 20% or more for the laser light L L (the fundamental wave of the pulsed laser light, preferably the laser oscillation wavelength of the harmonic) in the irradiated state, Preferably, the equivalent reflectance is less than 20% in the non-irradiated state.
  • the volume diffraction gratings 6B1 and 6B2 function as the ring resonator 14A in the irradiation state of the control light Lc .
  • laser light LL can be output.
  • the volume diffraction grating 6B1 and the volume diffraction grating 6B2 do not function as the ring resonator 14A, so the laser light LL is not output. Therefore, the optical oscillator 24A has effects similar to those of the optical oscillator 24.
  • the optical oscillator 24A includes the ring resonator 14A, it is possible to secure the resonator length while miniaturizing the optical oscillator 24A, as in the case of the optical element 2C.
  • the seed light LS may be incident from the outside of the optical element 2H.
  • the oscillation wavelength and phase of the laser light can be controlled because the laser light can be optically injection-locked in the laser device having the ring resonator 14A.
  • the volume diffraction grating 6C1 described in the third embodiment may be formed on the optical member 4A or the optical member 4B.
  • the reflection characteristics and the like of the volume diffraction grating 6C1 are the same as in the case of the third embodiment.
  • the ring resonator 14A may be formed when the optical element 2H is not irradiated, and the ring resonator 14A may not be formed when the optical element 2H is irradiated.
  • FIG. 10 is a schematic diagram of a laser device 10D, which is an example of an optical device including an optical element.
  • the laser device 10D includes a first light supply section 12, an optical oscillator 24B, and a second light supply section 26. Since the first light supply section 12 and the second light supply section 26 are the same as in the case of the laser device 10C, description thereof is omitted.
  • the optical oscillator 24B differs from the optical oscillator 24 in that the optical element 2I is provided instead of the optical element 2F and the dielectric multilayer film 28 is provided. Therefore, the optical oscillator 24B has the optical element 2E, the optical element 2I and the dielectric multilayer film 28.
  • Optical oscillator 24B may have a heat sink 16, as with optical oscillator 24. FIG.
  • the dielectric multilayer film 28 is provided on the surface of the optical element 2I opposite to the optical element 2E.
  • the dielectric multilayer film 28 has a partial reflectance that partially transmits the laser light LL .
  • the dielectric multilayer film 28 constitutes the resonator 14 in the optical oscillator 24B together with the volume diffraction grating 6A1 of the optical element 2E.
  • the optical element 2I has an optical member 4B and a volume diffraction grating 6E. That is, the optical element 2I is the optical member 4B in which the volume diffraction grating 6E is built. Since the optical member 4B is the same as in the case of the laser device 10C, description thereof is omitted.
  • the volume diffraction grating 6E has a plurality of modified surfaces 6a.
  • the volume diffraction grating 6E is oriented at an angle .beta. is formed so as to reflect the laser light LL to the .
  • the method of manufacturing the volume diffraction grating 6E is the same as the volume diffraction grating 6. FIG.
  • the angle ⁇ may be an angle at which the laser light L L reflected at the angle ⁇ is completely off-axis from the original laser light L L (the laser light incident on the volume diffraction grating 6E).
  • the angle (reflection angle) ⁇ should satisfy the condition shown by the following equation.
  • the angle ⁇ may be about 1/10 of the above formula because the gain should be generated by going back and forth about 10 times.
  • the reflectance of the laser light LL in the non-irradiated state of the control light LC is referred to as ROFF
  • the transmittance of the laser light LL in the irradiated state of the control light LC is referred to as TON .
  • R OFF is 10% or more, preferably 90% or more
  • T ON is greater than 50%, preferably greater than 90%.
  • the laser device 10D when the excitation light LP is applied to the optical oscillator 24B while the control light LC is not applied, the laser light LL is reflected in the direction of the angle ⁇ by the volume diffraction grating 6E. Therefore, the Q value of the laser oscillator becomes low, and laser oscillation is suppressed.
  • the optical member 4B is irradiated with the control light LC , whereby the volume diffraction grating 6E becomes transparent to the laser light LL , the resonator 14 is established, and the laser light LL is output. That is, the optical element 2I functions as a Q switch element.
  • the laser device 10D is a Q-switch laser device based on external control of the optical element 2I (specifically, the volume diffraction grating 6E) using the control light LC .
  • the optical element 2I corresponds to the optical element 2A and has the same effects as the optical element 2A. Therefore, in the laser device 10D, it is possible to control jitter with an accuracy close to rising.
  • the relationship between the illuminated state and the non-illuminated state of the optical element 2I and the reflection characteristics may be opposite to the illustrated case. That is, the volume diffraction grating 6E may reflect the laser beam LL at an angle ⁇ when the optical element 2I is illuminated, and the volume diffraction grating 6E may transmit the laser beam LL when the optical element 2I is not illuminated.
  • FIG. 11 is a schematic diagram of a laser device 10E, which is an example of an optical device including an optical element.
  • the laser device 10E includes a first light supply section 12, an optical oscillator 24C, and a second light supply section 26. Since the first light supply section 12 and the second light supply section 26 are the same as in the case of the laser device 10C, description thereof is omitted.
  • the optical oscillator 24C is provided with a saturable absorber 18, and differs from the optical oscillator 24B in that the dielectric multilayer film 28 is provided on the surface of the saturable absorber 18 opposite to the optical element 2E. Therefore, the optical oscillator 24C has the optical element 2E, the optical element 2I, the saturable absorber 18 and the dielectric multilayer film 28.
  • the optical element 2E and the dielectric multilayer film 28 included in the optical oscillator 24C are the same as in the case of the optical oscillator 24B, so descriptions thereof are omitted.
  • the saturable absorber 18 is similar to the saturable absorber 18 in the laser device 10A.
  • Optical oscillator 24B may have a heat sink 16, as with optical oscillator 24.
  • the optical element 2I has an optical member 4B and a volume diffraction grating 6E, like the optical oscillator 24B. That is, the optical element 2I is the optical member 4B in which the volume diffraction grating 6E is built. Since the optical member 4B is the same as the optical oscillator 24B, the description thereof is omitted.
  • the volume diffraction grating 6E may be similar to the optical oscillator 24B.
  • the amount of transmittance modulation between the irradiation state and the non-irradiation state that is, the transmittance TOFF of the laser light L in the non-irradiation state and the laser light L in the irradiation state
  • the amount of modulation between the transmittances TON of L should be 5% or more.
  • the laser device 10E when the excitation light LP is applied to the optical oscillator 24B while the control light LC is not applied, the laser light LL is reflected in the direction of the angle ⁇ by the volume diffraction grating 6E. Therefore, the Q value of the laser oscillator becomes low, and laser oscillation is suppressed.
  • the optical member 4B is irradiated with the control light LC , whereby the volume diffraction grating 6E becomes transparent to the laser light LL , the resonator 14 is established, and the laser light LL is output. That is, the optical element 2I functions as a Q switch element.
  • the laser device 10E is a Q-switch laser device based on external control of the optical element 2I (specifically, the volume diffraction grating 6E) using the control light LC .
  • the optical element 2I corresponds to the optical element 2A and has the same effects as the optical element 2A. Therefore, in the laser device 10E, it is possible to control jitter with an accuracy close to rising.
  • the relationship between the illuminated state and the non-illuminated state of the optical element 2I and the reflection characteristics may be opposite to the illustrated case. That is, the volume diffraction grating 6E may reflect the laser beam LL at an angle ⁇ when the optical element 2I is illuminated, and the volume diffraction grating 6E may transmit the laser beam LL when the optical element 2I is not illuminated.
  • FIG. 12 is a schematic diagram showing an optical element according to the eighth embodiment.
  • the optical element 2J shown in FIG. 12 mainly differs from the optical element 2 in that it has a volume diffraction grating 6F having a chirped structure.
  • the optical element 2J will be described centering on this point.
  • the optical element 2J has an optical member 4 and a volume diffraction grating 6F. That is, the optical element 2J is the optical member 4 in which the volume diffraction grating 6F is built.
  • optical member 4 examples of materials for the optical member 4 are the same as those exemplified in the first embodiment.
  • the optical member 4 is crystal, for example.
  • the volume diffraction grating 6F has a plurality of modified surfaces 6a.
  • the volume diffraction grating 6F differs from the volume diffraction grating 6 in that it has a chirped structure. That is, the intervals (periods) of the plurality of modified surfaces 6a are not constant intervals.
  • the method of forming the volume diffraction grating 6F is the same as that of the volume diffraction grating 6.
  • the volume grating 6F can be designed as a grating with a high reflectivity for the signal light S ⁇ of spectral width ⁇ . In this case, the period of the volume diffraction grating 6F is chirped according to the spectral width ⁇ . This enables pulse compression or expansion of the pulsed signal light S ⁇ .
  • the optical element 2J can be applied to an optical device such as a laser device as an element for pulse compression or pulse expansion.
  • FIG. 13 is a schematic diagram showing an optical element according to the ninth embodiment.
  • the optical element 2K shown in FIG. 13 is different from the optical element 2J in that the optical member 4 is doped with a luminescent center as in the case of the optical element 2A.
  • the optical element 2K can change the amount of chirp caused by the reflection of the volume diffraction grating 6F by switching between the irradiation state and the non-irradiation state of the control light LC to the optical element 2K.
  • the luminous centers may be evenly distributed in the optical member 4 .
  • the luminescent centers may be added in a predetermined distribution state (for example, a distribution state in which the addition amount decreases from one end surface 4a to the other end surface 4b).
  • a predetermined distribution state for example, a distribution state in which the addition amount decreases from one end surface 4a to the other end surface 4b.
  • the optical element 2K can be applied to an optical device such as a laser device as an element for pulse compression or pulse expansion.
  • the optical element 2 can be used, for example, as an optical coupling element (or beam coupling element) as shown in FIG. Specifically, the light L ⁇ 1 having the wavelength ⁇ 1 which is the Bragg wavelength ⁇ B in the volume diffraction grating 6 formed in the optical member 4 is incident on the optical element 2 from the end surface 4a. At this time, the light L ⁇ 2 of the wavelength ⁇ 2 shifted from the band ⁇ (the band that can be reflected by the volume diffraction grating 6) of the wavelength ⁇ 1 ( Bragg wavelength ⁇ B ) is emitted from the end face 4b side coaxially with the reflection direction of the light L ⁇ 1 . Incident on the optical element 2 .
  • light L ⁇ 3 having a wavelength ⁇ 1 and a wavelength ⁇ 2 can be obtained by synthesizing the light L ⁇ 1 reflected by the volume diffraction grating 6 and the light L ⁇ 2 transmitted through the volume diffraction grating 6 .
  • the optical member 4 is doped with a luminescent center like the optical element 2A, it is possible to switch between performing and not performing optical coupling depending on whether or not the control light LC is irradiated.
  • Optical element 2 can be used, for example, as a spectral filter as shown in FIG. Specifically, the light L ⁇ 3 having the wavelength ⁇ 1 which is the Bragg wavelength ⁇ B in the volume diffraction grating 6 formed in the optical member 4 and the wavelength ⁇ 2 is incident on the optical element 2 from the end surface 4a. At this time, the light L ⁇ 1 of wavelength ⁇ 1 (Bragg wavelength ⁇ B ) is reflected by the volume diffraction grating 6 , while the light L ⁇ 2 of wavelength ⁇ 2 is transmitted through the volume diffraction grating 6 .
  • the light L ⁇ 3 having the wavelengths ⁇ 1 and ⁇ 2 can be separated into the light L ⁇ 1 having the wavelength ⁇ 1 and the light L ⁇ 2 having the wavelength ⁇ 2.
  • the optical member 4 is doped with a luminescent center like the optical element 2A, it is possible to switch whether or not the filtering function of the optical element 2 is present depending on whether or not the control light LC is irradiated.
  • the optical element 2 also functions as an element for filtering transverse modes of light (eg, laser beam) incident on the optical element 2 .
  • the filtering function of the optical element 2 can be controlled depending on whether or not the control light LC is irradiated.
  • each of the plurality of modified regions possessed by the optical element is not limited to a planar region like the exemplified modified surface.
  • each modified region may be a linear region.
  • FIG. 16 is a schematic diagram showing still another modification of the optical element.
  • FIG. 17 is a drawing when the optical element shown in FIG. 16 is viewed from the incident side of the excitation light LP shown in the figure.
  • the modified region is indicated by a thick solid line.
  • a region ⁇ surrounded by a two-dot chain line schematically shows a region in which light propagates within the optical element.
  • the optical element 2L shown in FIGS. 16 and 17 differs from the optical element 2A shown in FIG. 3 in that it has a volume diffraction grating 6G instead of the volume diffraction grating 6.
  • the optical element 2L has an optical member 4 and a volume diffraction grating 6G.
  • the optical member 4 is similar to the optical member 4 of the optical element 2A shown in FIG. 2, and is an optical member to which a luminescence center excited by the control light LC is added.
  • FIG. 16 illustrates a columnar optical member 4 .
  • the volume diffraction grating 6G has a plurality of modified regions 6b.
  • Each modified region 6b extends in a direction intersecting with the end face 4a on which the light L i (for example, laser light) is incident.
  • each modified region 6b is perpendicular to the end surface 4a.
  • the plurality of modified regions 6b are formed so that the light Li can propagate through the optical member 4 while being reflected by the volume diffraction grating 6G composed of them.
  • the light Li is incident along the central axis of the cylindrical optical member 4, and a plurality of modified regions 6b are arranged around the central axis.
  • the reflection characteristics of the volume diffraction grating 6G change depending on the presence or absence of the control light LC . Therefore, for example, when the optical element 2L (or the optical member 4) is arranged in the optical resonator (when the end surface 4a and the opposite end surface 4b of the optical member 4 are formed with dielectric multilayer films constituting the optical resonator, ), and the oscillation mode can be controlled by switching between an irradiation state and a non-irradiation state of the control light LC .
  • the optical element 2L is manufactured in the same manner as the manufacturing method described with reference to FIG. be. Specifically, as shown in FIG. 18, the optical element 2L can be formed by irradiating the optical member 4 with the pulsed laser beam PL from the end face 4a on which the excitation light LP is to be incident.
  • the optical member 4 of the optical element 2L does not need to be doped with the luminescence center excited by the control light LC , as in the case of the optical member 4 of the optical element 2 shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Abstract

一実施形態に係る光学素子は、単結晶、セラミックスまたはガラスから形成されており且つ制御光によって励起される発光中心が添加されている第1光学部材を備え、第1光学部材には、制御光が第1光学部材に照射されていない非照射状態または照射されている照射状態において、所定波長の光を反射する第1回折格子が形成されており、第1回折格子は、体積型ホログラフィック回折格子または体積ブラッグ回折格子である。

Description

光学素子、光学装置および光学素子の製造方法
 本発明は、光学素子、光学装置および光学素子の製造方法に関する。
 ファイバーブラッグ回折格子(FBG)素子は、ファイバーレーザの普及に大きく寄与した。しかしながら取り扱えるエネルギーが小さいため、近年ではバルクの体積ブラッグ回折格子(VBG)素子(または体積ホログラフィック回折格子(VHG)素子)が注目されている(たとえば、特許文献1参照)。体積回折格子は、バルク型の回折格子である。そのため、高いエネルギー領域において光のスペクトルおよび角度に応じて反射・透過特性を設計できることから、体積回折格子は、レーザ発振装置、非線形光学波長変換装置、光パルスの伸張・圧縮装置など幅広く利用できると期待されている。
特開2016-224376号公報
 従来のVBG素子はガラスを母材としている。そのため、たとえばレーザ装置にVBG素子を使用する場合には誘導放出断面積、熱伝導率など様々な問題があった。さらには従来のVBG素子は受動素子であり、光を透過する状態または透過しない状態は最初の設計に依存していた。すなわち、従来のVBG素子では、高出力レーザ材料には適さず、さらに外部信号によるスイッチング制御はできなかった。
 そこで、本発明は、体積回折格子または体積ホログラフィック回折格子を有しており、高出力レーザなどに適した光学素子、上記光学素子を含む光学装置、および、上記光学素子の製造方法を提供することを目的とする。
 本発明の一側面に係る光学素子は、単結晶、セラミックスまたはガラスから形成されている第1光学部材を備え、上記第1光学部材には、所定波長の光を反射する第1回折格子が形成されており、上記第1回折格子は、上記第1光学部材の一部が改質された複数の改質面によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である。
 上記光学素子では、単結晶、セラミックスまたはガラスから形成されている第1光学部材に、上記第1回折格子が作り込まれている。よって、上記光学素子は、高出力レーザなどに適している。
 上記複数の改質領域それぞれは、面状または線状の領域であってもよい。
 上記第1光学部材には、上記第1回折格子と共振器を構成する第2回折格子が形成されており、上記第2回折格子は、上記第1光学部材の一部が改質された複数の改質領域によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子であってもよい。
 第2回折格子も、単結晶、セラミックスまたはガラスから形成されている第1光学部材に作り込まれている。よって、上記光学素子は、高出力レーザなどに適している。
 上記共振器はリング共振器でもよい。
 上記第1光学部材は、固体レーザ母材でもよい。この場合、たとえば、光学素子をレーザ装置に適用可能である。
 上記第1回折格子は、チャープ構造を有してもよい。この場合、たとえば、光学素子を用いてパルス圧縮または伸張が可能である。
 上記第1光学部材には、制御光によって励起される発光中心が添加されていてもよい。この場合、制御光によって、第1光学部材をスイッチング制御可能である。
 本発明の他の側面に係る光学装置の一例は、上記光学素子を備える。
 本発明の他の側面に係る光学装置の他の例は、上記光学素子と、単結晶、セラミックスまたはガラスから形成されており且つ制御光によって励起される発光中心が添加されている第2光学部材と、を備え、上記第2光学部材には、上記制御光が上記第1光学部材に照射されていない非照射状態または照射されている照射状態において、上記所定波長の光を反射する上記第1回折格子と共振器を形成する第2回折格子が形成されており、上記第2回折格子は、体積型ホログラフィック回折格子または体積ブラッグ回折格子である。
 上記光学素子では、単結晶、セラミックスまたはガラスから形成されている第1光学部材に、上記第1回折格子が作り込まれている。更に、光学素子が有する第1回折格子と共振器を形成する第2回折格子が、単結晶、セラミックスまたはガラスから形成されており且つ制御光によって励起される発光中心が添加されている第2光学部材に作り込まれている。よって、上記装置は、高出力レーザなどに適している。更に、第2光学部材には、制御光によって励起される発光中心が添加されているため、第2回折格子が作り込まれた第2光学部材は、制御光によってスイッチング制御され得る。
 上記共振器はリング共振器でもよい。
 本発明の他の側面に係る光学装置の更に他の例は、結晶、セラミックスまたはガラスから形成されている複数の光学部材を備え、上記複数の光学部材は、一方向に沿って配置されており、上記複数の光学部材のうちの第1光学部材には、所定波長の光を反射する第1回折格子が形成されており、上記第1回折格子は、上記第1光学部材の一部が改質された複数の改質面によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である。
 上記光学装置では、単結晶、セラミックスまたはガラスから形成されている第1光学部材に、上記第1回折格子が作り込まれている。そのため、上記装置は、高出力レーザなどに適している。
 上記第1光学部材は固体レーザ母材、ヒートシンクまたは可飽和吸収体でもよい。
 上記第1光学部材は固体レーザ母材であり、上記第1光学部材には、上記第1回折格子とともに共振器を構成する第2回折格子が形成されており、上記第2回折格子は、上記第1光学部材が改質された複数の改質面によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子であってもよい。この場合、上記装置は、レーザ装置として機能する。
 上記第1光学部材は固体レーザ母材であり、上記複数の光学部材のうちの第2光学部材には、制御光によって励起される発光中心が添加されているとともに、上記第1回折格子とともに共振器を構成する第2回折格子が形成されており、上記第2回折格子は、体積型ホログラフィック回折格子または体積ブラッグ回折格子であってもよい。この場合、上記装置は、レーザ装置として機能する。
 本発明の他の側面に係る光学装置は、固体レーザ母材と、共振器とを備え、レーザ光を出力する装置であって、上記共振器内に配置されており、結晶、セラミックスまたはガラスから形成されている光学部材を備え、上記光学部材には、制御光によって励起される発光中心が添加されているとともに、上記制御光が上記光学部材に照射されていない非照射状態または照射されている照射状態において、上記共振器の光軸と異なる方向に上記レーザ光を反射する回折格子が形成されており、上記回折格子は、上記光学部材の一部が改質された複数の改質面によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である。この場合、上記装置は、レーザ装置として機能する。また、結晶、セラミックスまたはガラスから形成されている光学部材に上記回折格子が形成されているので、上記装置は、高出力レーザに有効である。更に、上記光学部材には、制御光によって励起される発光中心が添加されているため、回折格子が作り込まれた光学部材を、制御光によって制御可能である。
 本発明の他の側面に係る光学素子の製造方法は、単結晶、セラミックスまたはガラスで形成されている光学部材に、上記所定波長の光を反射する体積型ホログラフィック回折格子または体積ブラッグ回折格子を形成する工程を備え、上記体積型ホログラフィック回折格子または体積ブラッグ回折格子は、パルスレーザ光を用いて上記光学部材を改質することによって形成される。
 上記方法では、単結晶、セラミックスまたはガラスで形成されている光学部材に、上記回折格子を作り込むことができる。その結果、高出力レーザ等に対して有効な光学素子を製造可能である。
 上記パルスレーザ光のパルス幅は、0.1ps~1nsであってもよいし、1ps~1nsであってもよい。
 上記光学部材において上記パルスレーザ光が入射される第1面に対して、上記パルスレーザ光は、上記第1面の垂直方向から上記第1面に入射されてもよい。或いは、上記光学部材における上記パルスレーザ光が入射される第1面に対して、上記パルスレーザ光は、上記入射面の垂直方向に対して斜め方向から上記第1面に入射されてもよい。
 上記体積型ホログラフィック回折格子または体積ブラッグ回折格子は、上記パルスレーザ光による複数の改質領域によって形成されており、上記複数の改質領域それぞれを面状または線状に形成されてもよい。
 上記光学部材における上記パルスレーザ光が入射される第1面は、上記光学部材に上記所定波長の光が入射される第2面と異なる面でよい。或いは、上記光学部材における上記パルスレーザ光が入射される第1面は、上記光学部材に上記所定波長の光が入射される第2面と同じ面でよい。
 本発明によれば、体積回折格子または体積ホログラフィック回折格子を有しており、高出力レーザなどに適した光学素子、上記光学素子を含む光学装置、および、上記光学素子の製造方法を提供できる。
図1は、一実施形態に係る光学素子の概略構成を示す図面である。 図2は、図1に示した光学素子の製造方法を説明するための図面である。 図3は、外部制御可能な光学素子を説明するための図面である。 図4は、一実施形態に係る光学装置(レーザ装置)の一例の模式図である。 図5は、図4に使用した光学素子の変形例を示す模式図である。 図6は、一実施形態に係る光学装置(レーザ装置)の他の例の模式図である。 図7は、一実施形態に係る光学装置(レーザ装置)の更に他の例の模式図である。 図8は、一実施形態に係る光学装置(レーザ装置)の更に他の例の模式図である。 図9は、光学装置の一変形例を示す模式図である。 図10は、一実施形態に係る光学装置(レーザ装置)の更に他の例の模式図である。 図11は、一実施形態に係る光学装置(レーザ装置)の更に他の例の模式図である。 図12は、一実施形態に係る光学装置(レーザ装置)の更に他の例の模式図である。 図13は、光学素子の他の例を説明するための図面である。 図14は、光結合素子としての光学素子を説明するための図面である。 図15は、スペクトルフィルタとしての光学素子を説明するための図面である。 図16は、一実施形態に係る光学素子の変形例を説明するための模式図である。 図17は、図16における光学素子を光学素子に入射する光の方向からみた場合の模式図である。 図18は、図16に示した光学素子の製造方法を説明するための図面である。
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。図面の寸法比率は、説明のものと必ずしも一致していない。本開示において、「体積回折格子」は、体積型ホログラフィック回折格子(VHG)または体積ブラッグ回折格子(VBG)である。
(第1実施形態)
 図1は、一実施形態に係る光学素子の概略構成を示す図面である。図1に示した光学素子2は、光学部材(第1光学部材)4を有する。
 光学部材4は、単結晶から形成されたバルク状の結晶体、セラミックスから形成されたバルク状のセラミックス体またはガラスである。光学部材4は、たとえば、柱状(円柱状、四角柱状を含む)を呈する。
 上記単結晶の材料の例は、YAG,GGG、LuAG、YSAG、YGAG等のガーネット系材料、Y、Sr、Lu、Al、YALO、Sr等の酸化物、YVO、LuVO、GdVO等のバナデート系材料、YLF、CaFやFAPなどのフッ化物、アパタイト系材料、WOなどのタングステート系材料である。上記セラミックスの例は、YAGセラミックスのように上記単結晶と同様の材料の多結晶(アモルファスも含む)などである。このような単結晶およびセラミックスは、固体レーザ母材として機能する。
 光学部材4は、サファイア、ダイヤモンド、SiC、さらには無添加のレーザ母材などから形成されていてもよい。このような光学部材4は、ヒートシンクとして機能する。
 光学部材4は、非線形光学結晶から形成されていてもよい。非線形光学結晶から形成された光学部材4の材料としては、たとえば、水晶、強誘電体材料、半導体材料、ボレート系材料等が挙げられる。
 上記強誘電体材料としては、たとえば、LiNbO(Mgが添加されている場合、添加されていない場合の両方を含む)、LiTaO(Mgが添加されている場合、添加されていない場合の両方を含む)、KTiPO(Rbが添加されている場合、添加されていない場合の両方を含む)、RbTiPO(Rbが添加されている場合、添加されていない場合の両方を含む)、KTiOAsO、RbTiOAsOなどが挙げられる。
 上記半導体材料としては、たとえば、GaAs、GaP、GaN、ZnS、ZnSe、 ZnTe、ZnGeP、CdSiPなどが挙げられる。
 上記ボレート系材料としては、たとえば、LiB、BaB,Ca(BOF,CsLiB10,CaLnO(BO(Ln=Gd,Y)などが挙げられる。
 光学部材4には、所定波長の光を選択的に反射する体積回折格子(第1回折格子)6が形成されている。体積回折格子6は、VHGまたはVBGである。体積回折格子6は、周期Λで配置された複数の改質面(改質領域)6aを有する。改質面6aは、光学部材4が改質された面であるとともに、改質面6a以外の領域と異なる屈折率を有する屈折率変調面である。一実施形態において、各改質面6aは、複数の改質部が面状に形成された領域であり得る。図1では、説明の便宜のため、改質面6aを太実線で模式的に示している。改質面6aの図示の仕方は他の図でも同様である。
 光学素子2は、光学部材4に体積回折格子6を形成することによって製造され得る。すなわち、光学素子2の製造方法は、光学部材4に体積回折格子6を形成する工程を有する。
 上記体積回折格子6は、レーザ描画によって形成され得る。具体的には、図2に示したように、パルスレーザ光PLを集光部8で集光し、パルスレーザ光PLの照射領域の光学部材4を改質する。光学素子2を形成する場合、光学部材4の面(第1面)4cからパルスレーザ光PLを入射する。面4cは、図1に示したように体積回折格子6が形成された光学素子2に光Lを入射する場合において、光Lが入射される端面(第2面)4aと異なる面である。図2に示した例では、面4cは、端面4aに略直交している面である。形成すべき体積回折格子6の大きさおよび周期Λに応じて、パルスレーザ光PLを3次元的に走査することによって、複数の改質面6aを形成する。これにより、光学部材4に体積回折格子6が書き込まれ、光学素子2が得られる。パルスレーザ光PLは、改質面6aを書き込む書き込みレーザ光として機能し得る。上記照射領域で改質された部分を改質部と称した場合、各改質面6aは、複数の改質部が面状に配置されることによって形成されている。図2に示した例では、パルスレーザ光PLを面4cに対して垂直方向に入射している。しかしながら、パルスレーザ光PLは、面4cに対して斜め方向(垂直方向から傾いた方向)から入射されてもよい。
 パルスレーザ光PLは、サブピコからナノ秒パルス幅のパルスレーザ光でよい。パルスレーザ光PLのパルス幅は、0.1ps~10nsでよい。上記パルス幅は、0.1ps~1nsでもよいし、1ps~1nsでもよい。パルスレーザ光PLを出力するレーザ装置10の例は、小型で低消費電力であるとともにサブナノ秒パルス幅のレーザ光を出力可能なマイクロチップレーザ(MCL)(たとえば、特開2019-129252号公報参照)である。光学部材4がNd:YAGであり且つパルスレーザ光PLが基本波である場合の波長の例は、1064nmである。光学部材4がYb:YAGであり且つパルスレーザ光PLが基本波である場合の波長の例は、1024nm~1108nmである。パルスレーザ光PLとしては、基本波のみならず、固体レーザからの第2高調波,第3高調波,第4高調波、第5高調波、第6高調波、第7高調波などの高調波を用いてもよい。高調波を用いることで、パルス幅0.1ps未満の大形で不安定な超短パルスレーザを用いなくとも光子エネルギーを高める事ができる。そのため、パルスレーザ光PLが物質と効率的に強く相互作用し、より微細な加工が可能である。
 パルスレーザ光PLのパワーおよび照射時間等は、パルスレーザ光PLの照射位置(集光位置)における屈折率が、体積回折格子6として機能し得る屈折率に変調可能に設定されていればよい。たとえば、パルスレーザ光PLの尖頭出力の例は、0.1MW~50MWである。パルスレーザ光PLの照射位置への照射時間は、0.1ps~1nsである。
 パルスレーザ光PLの走査は、パルスレーザ光PLを出力するレーザ装置自体を走査してもよいし、レーザ装置10から出力されたパルスレーザ光PLを、ミラーなどを用いて走査してもよい。
 図1に示したように、体積回折格子6が、周期Λで平行に配置された複数の改質面6aで形成されている場合を想定する。複数の改質面6aが配列されている方向(改質面6aに直交する方向)をz方向と称し、体積回折格子6が形成されている領域においてz方向における一方の端をz=0とし、z方向における体積回折格子6の幅をLとする。光学部材4に所定波長λの光Lが入射する場合を想定する。
 この場合、体積回折格子6のz方向の屈折率分布n(z)、光Lで回折効率最大となる周期Λ(ブラッグ反射条件)および最大反射率Rは、式(1)、式(2)および式(3)で表される(たとえば、以下の参考文献1参照)。式(3)は位相整合条件に相当する。式(1)~式(3)において、nは、光学部材4における改質面6a以外の屈折率(改質前の屈折率)であり、nは、改質面6aの屈折率であり、θは、光Lの体積回折格子6への入射方向と体積回折格子6(具体的には改質面6a)とのなす角度である。
 参考文献1:P. Yen著,「フォトリフラクティブ非線形光学」,丸善株式会社,1995年3月1日,p.53-p.73。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式(2)において、θ=π/2である場合、Λは、λ/(2n)である。
 参考文献1の例えば第42頁によれば、式(1)~式(3)のnとして10-3~10-5を確保できれば、体積回折格子6が有効に機能する。
 光学素子2では、所定波長の光を選択的に反射する体積回折格子(第1回折格子)6が形成されている。そのため、入射した光のうち所定波長の光を反射し、所定波長からズレた波長の光を透過する。光学素子2は、上記製造方法で説明したように、光学部材4の一部を、たとえばレーザ光を用いて改質することによって形成されている。光学部材4は、単結晶から形成されたバルク状の結晶体またはセラミックスから形成されたバルク状のセラミックス体である。このように上記製造方法では、単結晶、セラミックス体などに回折格子を形成可能である。
 そのため、上記製造方法を用いることで、従来では実現できていなかった固体レーザ用の単結晶、セラミックス体などに回折格子を形成することできる。これによって、固体レーザ用の単結晶、セラミックス体などに、たとえば共振器を直接形成可能であるとともに、発振波長をロックすることも可能である。異種材料との接合界面では、状況により部分反射コーティングを行う必要があるが、多層膜の蒸着になるため機械的に脆いとの欠点がある。上記製造方法では、脆弱な多層膜を必要としないので、より強靱な複合素子を実現可能である。
 単結晶、セラミックス体等が固体レーザ材料から形成されている場合、各種発光中心を添加できることから、これらの励起に基づく外部制御も実現可能である。この点を説明する。図3は、外部制御可能な光学素子を説明するための図面である。
 図3に示したように、光学部材に発光中心が添加されている場合の光学素子2を光学素子2Aと称す。光学素子2Aは、制御波長λの制御光L(外部信号)で励起される発光中心(第1発光中心)が光学部材に添加されている。発光中心の例は、希土類元素(Nd,Yb,Tm,Ho,Er,Ce,Pr,Dy,Tb,Smなど)、遷移金属元素(Cr,Ti,V,など)などを含む。
 図3に示したように、制御波長λの制御光Lが光学素子2に入射した場合、発光中心(たとえば、RE3+等)が励起され屈折率変調Δnが生じる。この屈折率変調Δnを考慮した最大反射率Rは、式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 nは、通常、Δnより十分大きいため、式(4)は、式(5)のように近似できる。
Figure JPOXMLDOC01-appb-M000005
 屈折率変調Δnは、電子遷移による変化分(Δn)と発熱による変化分(Δn)に分けられる。すなわち、Δnは、式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、ΔnおよびΔnは、式(7)および式(8)で表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 式(7)において、ΔNは反転分布密度である。Fは、ローレンツ因子(Lorents因子)であり、(n+2)/3で表される。Δpは、基底準位と励起準位間の分極差率である。Δpおよび(∂n/∂T)として、次の数値を採用する(たとえば、以下の参考文献2参参照)。
 Δp=(1.95±0.25)×10―26[cm
 ∂n/∂T≒(0.7±0.2)×10-5
 参考文献2:O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” OPTICS LETTERS, 2006, Vol. 31, No. 6, 763-765.
 この場合、たとえば、光学素子2AがYb:YAG(Ybの添加量:100at.%)で形成されており且つ100%励起したとすると、Δnは2.93×10-3程度までの屈折率変化が生じる。仮に、Ybの添加量を0.68at.%としても50%励起することで、10―5程度の屈折率変化が生じる。そのため、制御光Lを光学素子2Aに照射し、発光中心を励起することで、Δnとして、前述した体積回折格子6として機能させる場合の屈折率変化を確保できる。換言すれば、制御光Lを光学素子2Aに照射し、発光中心を励起することで、Δnとして、体積回折格子6の反射特性に影響を及ぼす屈折率変化を確保できる。
 したがって、光学素子2Aに制御光Lが照射されていない状態(非照射状態)で体積回折格子6が光Lを反射するように設計されている場合、光学素子2Aに制御光Lを照射した場合、式(3)に表される条件(位相整合条件)は満たされない。その結果、所定波長λの光Lは体積回折格子6で反射されない。
 逆に、光学素子2Aに制御光Lが照射された状態(照射状態)で体積回折格子6が光Lを反射するように設計されている場合、制御光Lの照射を停止した非照射状態では、式(3)に表される条件(位相整合条件)は満たされない。その結果、所定波長λの光Lは体積回折格子6で反射されない。
 そのため、光学素子2Aは、制御光Lの光学素子2Aへの照射の有無(換言すれば、照射状態と非照射状態とを切り換えること)で、光学素子2A(具体的には体積回折格子6)が光Lを反射する場合と、反射しない場合(すなわち透過する場合)とに切り換え可能である。したがって、光学素子2Aは、反射特性を外部制御可能なスイッチ素子として機能する。
 制御光Lの照射の有無で光学素子2Aの機能をスイッチング制御できるので、光学素子2Aではスイッチング速度の向上が図れるとともに、光学素子2Aを、ピコ秒パルスまたはフェムト秒パルスを用いた高い精度で制御可能である。
 上記光学素子2,2Aは、光学部材4の材料および体積回折格子6の設計に伴う光学素子2,2Aの機能に応じてレーザ加工装置、レーザ計測装置、レーザ医療装置およびその他の光学装置(理化学機器も含む)に適用可能である。
 光学部材4が、単結晶またはセラミックスから形成されている場合、入射する光のパワーに対して高い耐性を有する。そのため、光学素子2,2Aは、高出力のレーザ光に対するスイッチ素子として使用可能であり、たとえば、高出力のレーザ光(たとえばパルスレーザ光)を出力する(或いは扱う)レーザ装置、レーザ加工装置、非線形波長変換装置、光パルスの伸張または圧縮装置等に適用可能である。
 次に、光学素子2または光学素子2Aを用いた種々のデバイスまたは装置の実施形態を説明する。以下に説明する実施形態では、固体レーザ母材、ヒートシンク、非線形結晶などが光学部材4である。
 (第2実施形態)
 第2実施形態として、本開示に係る光学素子を備えた光学装置を説明する。図4は、光学素子を備えた光学装置の一例であるレーザ装置10の模式図である。図4に示したレーザ装置(光学装置)10は、レーザ波長λを有するレーザ光Lを出力する装置である。
 レーザ装置10は、第1光供給部(励起光供給部)12と、光学素子2Bとを備える。
 第1光供給部12は、励起波長λを有する励起光Lを光学素子2Bに供給する。第1光供給部12は、励起光Lを出力する光源部12Aと、励起光Lを光学素子2Bに入射するように集光する集光光学系12Bとを有する。図4では、集光光学系12Bをレンズとして模式的に示している。光源部12Aの例は、半導体レーザ素子である。
 光学素子2Bは、励起光Lが供給されることで、レーザ光Lを出力する光発振器(または光増幅器)として機能する。光学素子2Bは、光学部材4Aを有する。光学部材4Aに、体積回折格子6A1と、体積回折格子(第2回折格子)6A2とが形成されている。体積回折格子6A1および体積回折格子6A2は、共振器14を構成している。
 光学部材4Aは、端面4aおよび端面4bを有する。端面4bは、端面4aと反対側の端面である。断らない限り、端面4aおよび端面4bは平行である。説明の便宜のため、端面4a(または端面4b)に直交する方向をZ方向と称す場合もある。第2実施形態において、Z方向は、共振器14の光軸方向に相当する。
 光学部材4Aは、励起波長λを有する励起光Lによって励起される発光中心(第2発光中心)が添加された固体レーザ母材から形成されている。すなわち、光学部材4Aはレーザ媒質である。光学部材4Aは、たとえば、柱状(円柱状、四角柱状を含む)を呈する。
 光学部材4Aに添加される発光中心の例は、第1実施形態で光学素子2に関して説明した発光中心の例と同様の希土類または遷移金属である。光学部材4Aを形成する固体レーザ母材の例は、光学部材4の場合と同様である。光学部材4Aは、たとえばNdが添加されたYAG(Nd:YAG)から形成されている。
 体積回折格子6A1は、光学部材4Aにおいて端面4a側に形成されており、共振器14における入力側反射部(第1反射部)として機能する。体積回折格子6A1は、共振器14の入力側反射部としての励起光Lに対する透過特性およびレーザ光Lに対する反射特性を有する。
 一実施形態において、体積回折格子6A1は、励起波長λ(波長808nm、波長885nm等)に対して80%より大きい(好ましくは90%より大きい)透過率を有する一方、レーザ波長(レーザ発振波長)λ(例えば波長1064nm)に対して99%より大きい反射率を有する。
 体積回折格子6A1は、光学部材4Aに作り込まれた複数の改質面6aを有する。体積回折格子6A1は、第1実施形態における体積回折格子6の場合と同様にレーザ描画で形成され得る。体積回折格子6A1が有する複数の改質面6aの配置(たとえば周期)および改質面6aの屈折率は、共振器14の入力側反射部に応じた透過特性および反射特性を実現するように設定されていればよい。すなわち、体積回折格子6A1は、共振器14の入力側反射部として機能するように設計された体積回折格子6に相当する。
 体積回折格子6A2は、光学部材4Aにおいて端面4b側に形成されており、共振器14における出力側反射部(第2反射部)として機能する。体積回折格子6A2は、共振器14の出力側反射部としての励起光Lに対する透過特性およびレーザ光Lに対する反射特性を有する。
 一実施形態において、体積回折格子6A2は、レーザ発振波長であるレーザ波長λ(例えば波長1064nm)に対して出力結合用に90%~99%の反射率(部分反射率)を有する。体積回折格子6A2は、励起波長λの光を反射しなくてもよい。しかしながら、体積回折格子6A2が励起波長λに対して50%より大きい反射率を有することで、媒質長さ(具体的には、光学部材4Aにおける体積回折格子6A1および体積回折格子6A2の間の長さ)を短くでき、安定的で効率的なレーザ発振、特に、CWレーザ発振が可能である。
 体積回折格子6A2は、光学部材4Aに作り込まれた複数の改質面6aを有する。体積回折格子6A2は、第1実施形態における体積回折格子6の場合と同様にレーザ描画で形成され得る。体積回折格子6A2が有する複数の改質面6aの配置(たとえば周期)および改質面6aの屈折率は、共振器14の出力側反射部に応じた透過特性および反射特性を実現するように設定されていればよい。すなわち、体積回折格子6A2は、共振器14の出力側反射部として機能するように設計された体積回折格子6に相当する。
 レーザ装置10は、端面4a側に、ヒートシンク16を有してもよい。ヒートシンク16は、光学部材4Aに接合されている。ヒートシンク16の材料としては、たとえば、サファイア、ダイヤモンド等が挙げられる。ヒートシンク16および光学素子2B(具体的には光学部材4A)は、本技術分野で公知の接合方法で接合されていればよい。たとえば、ヒートシンク16は、接着剤、オプティカルコンタクト、または表面活性化低温接合(以下、単に「表面活性結合」とも称す)で光学素子2B(具体的には光学部材4A)と一体化されている。
 表面活性結合は、真空中で接合する材料の接合面の酸化膜又は表面付着物をイオンビーム照射又はFAB(中性原子ビーム)照射によって除去し、平坦で構成原子の露出した接合面同士を接合するという手法である。表面活性結合は、分子間結合を利用した直接接合である。
 上記レーザ装置10では、発光中心が添加された固体レーザ母材から形成されている光学部材4Aに、体積回折格子6A1および体積回折格子6A2が作り込まれている。したがって、光学素子2Bが第1実施形態における光学素子2に相当し、光学素子2Bは、光学素子2と同様の作用効果を有する。たとえば、体積回折格子6A1および体積回折格子6A2が光学部材4Aに作り込まれていることによって、誘電体多層膜を利用する場合より、光発振器としての光学素子2Bの機械的強度が向上している。
 レーザ装置10において、体積回折格子6A1および体積回折格子6A2は、共振器14を構成している。すなわち、光学部材4Aに共振器14が作り込まれている。したがって、光学素子2Bに励起光Lを入射することで、レーザ光Lを生成可能である。
 体積回折格子6A1および体積回折格子6A2のうちの一方の代わりに誘電体多層膜を使用してもよい。この場合でも、共振器14を構成する2つの反射部をともに誘電体多層膜で形成する場合より、光発振器としての光学素子2Bの機械的強度が向上している。
 (変形例1)
 図5を利用して、光学素子2Bの変形例である光学素子2Cを説明する。図5は、図4に示した光学素子の変形例を説明するための図面である。光学素子2Cは、光学部材4Aと、体積回折格子6B1と、体積回折格子6B2とを有する。光学素子2Cは、体積回折格子6A1および体積回折格子6A2の代わりに、体積回折格子6B1および体積回折格子6B2を有し、体積回折格子6B1および体積回折格子6B2がリング共振器14Aを構成している点で、光学素子2Bと主に相違する。
 変形例1における光学部材4Aは、図4に示した光学部材4Aと同じであることから、説明を省略する。
 体積回折格子6B1は、ブレーズ角θB1で入射するレーザ光Lを反射するように設計されている点以外は、体積回折格子6A1と同様である。すなわち、体積回折格子6B1は、端面4a側に配置されているとともに、体積回折格子6A1の場合と同様に作製される複数の改質面6aを有する。体積回折格子6B1は、リング共振器14Aにおいて入力側反射部として機能する。
 体積回折格子6B2は、ブレーズ角θB2で入射するレーザ光Lを反射するように設計されている点以外は、体積回折格子6A2と同様である。すなわち、体積回折格子6B2は、端面4b側に配置されているとともに、体積回折格子6A2の場合と同様に作製される複数の改質面6aを有する。体積回折格子6B2は、リング共振器14Aにおいて出力側反射部として機能する。
 上記構成により、体積回折格子6B1および体積回折格子6B2で構成されるリング共振器14Aは、レーザ光Lに対するブレーズ角θB1およびブレーズ角θB2でリング状にレーザ光Lが伝播する共振器である。
 光学素子2Cは、体積回折格子6B1および体積回折格子6B1が作り込まれた光学部材4Aである。よって、光学素子2Cが第1実施形態における光学素子2に相当し、光学素子2Cは、光学素子2と同様の作用効果を有する。
 光学素子2Cは、光学素子2Bの代わりにレーザ装置10に適用可能である。
 光学素子2Cは、リング共振器14Aを備えていることで、光学素子2Cの小型化を図りながら、共振器長を確保可能である。
 変形例1の光学素子2Cを、レーザ装置10に適用した場合、レーザ装置10は、光学素子2CにZ方向に沿って外部磁場を印加する外部磁場供給部を更に備えてもよい。これによって、ファラデー効果を利用できる。図5に示したように、光学素子2Cの外部からシード光Lを入射してもよい。このようにシード光Lsを光学素子2Cに入射する場合、リング共振器(光学素子2C)を備えたレーザ装置において、レーザ光を光注入同期できることから、その発振波長や位相を制御できる。
 (第3実施形態)
 第3実施形態として、本開示に係る光学素子を備えた光学装置の他の例を説明する。図6は、光学素子を備えた光学装置の一例であるレーザ装置10Aの模式図である。図6に示したレーザ装置10Aは、レーザ波長λを有するレーザ光Lとして、パルスレーザ光を出力する装置である。
 レーザ装置10Aは、第1光供給部12と、光学素子2Dと、可飽和吸収部17とを備える受動Qスイッチ型のレーザ装置である。後述するように、レーザ装置10Aでは、光学素子2Dが有する体積回折格子6A1と、可飽和吸収部17が有する体積回折格子6A2とによって、共振器14が形成されている。
 第1光供給部12は、光学素子2Dに励起光Lを供給する。第1光供給部12の構成は、第2実施形態の場合と同様であることから、説明を省略する。図6では、第1光供給部12をブロックとして模式的に示している。
 光学素子2Dは、体積回折格子6A2の代わりに体積回折格子6C1を有する点で、主に光学素子2Bと相違する。光学素子2Dは、光学部材4Aと、体積回折格子6A1と、体積回折格子6C1とを有する。
 光学部材4Aは、第2実施形態の場合と同様であることから、説明を省略する。体積回折格子6A1の構成および作製方法は、第2実施形態の場合と同様である。第3実施形態においても、体積回折格子6A1は、共振器14における入射側反射部として機能する。
 体積回折格子6C1は、複数の改質面6aを有する。体積回折格子6C1は、励起波長λを有する励起光Lに対して50%より大きな反射率(好ましくは、90%より大きな反射率)を有する。体積回折格子6C1の作製方法は、第1実施形態における体積回折格子6の場合と同様である。
 可飽和吸収部17は、光学部材4Aの端面4bに接合されている。可飽和吸収部17は、可飽和吸収体18と、体積回折格子6A2を有する。
 可飽和吸収体18の例はQスイッチ素子である。可飽和吸収体18は、可飽和吸収特性を有するように構成された光学部材4に相当する、可飽和吸収体18は、Crが添加されたYAG(Cr:YAG)から形成されていてもよい。可飽和吸収体18は、光学部材4Aの端面4bに接合されている。可飽和吸収体18は、たとえば、接着剤、オプティカルコンタクト、または表面活性接合で光学素子2D(具体的に光学部材4A)と一体化されている。以下、説明の便宜のため、光学素子2Dと可飽和吸収部17との接合体を光学素子3と称す。
 可飽和吸収体18の端面(光学素子2Dと反対側の面)側には、体積回折格子6A1とともに共振器14を構成する体積回折格子6A2が作り込まれている。体積回折格子6A2は、複数の改質面6aを有し、体積回折格子6A2の反射特性および透過特性は、第2実施形態の場合と同様である。体積回折格子6A2の作製方法は、第1実施形態における体積回折格子6の場合と同様である。
 レーザ装置10Aにおいても体積回折格子6A1および体積回折格子6A2が共振器14を構成している。レーザ装置10Aは、可飽和吸収体18を有する。そのため、レーザ光Lとして、パルスレーザ光を出力可能である。
 第3実施形態において、光学素子2Dが光学素子2に相当する。可飽和吸収部17も光学素子2に相当する。よって、光学素子2Dおよび可飽和吸収部17(光学素子)は、光学素子2と同様の作用効果を有する。
 レーザ装置10Aでは、励起波長λを有する励起光Lに対して高い反射率を有する体積回折格子6C1が、光学部材4Aに作り込まれている。たとえば、同様の反射特性を体積回折格子6C1以外で実現する場合には、光学部材4Aと可飽和吸収体18との間に体積回折格子6C1と同様の反射特性を有する誘電体多層膜を形成することが考えられる。しかしながら、そのような誘電体多層膜は機械強度が低いため、光学部材4Aと可飽和吸収体18とを誘電体多層膜を介して接合する際等に破損する場合がある。光学部材4Aと可飽和吸収体18とが誘電体多層膜を介して一体化された後でも、強度的に脆弱さが存在する。これに対して、レーザ装置10Aでは、体積回折格子6C1を、光学部材4Aに作り込んでいるので、上記のような作製時の破損は生じず、更に作製後の脆弱さが存在しない。特に、光学部材4A(たとえば、Nd:YAG)と、可飽和吸収体18(たとえば、Cr:YAG)とを表面活性結合で接合する場合には、原子レベルの強固な接合が期待されるので、光学素子3は外圧に対する耐性を有し得る。
 レーザ装置10Aでは、体積回折格子6A1が光学部材4Aに作り込まれており、体積回折格子6A2が可飽和吸収体18に作り込まれている。そのため、光学素子3は外圧により高い耐性を有し得る。
 レーザ装置10Aでは、体積回折格子6C1は、可飽和吸収体18に作り込まれていてもよい。レーザ装置10Aでは、体積回折格子6A1の代わりに、光学部材4Aの端面4aに形成された誘電体多層膜を入力側反射部として用いてもよい。レーザ装置10Aでは、体積回折格子6A2の代わりに、可飽和吸収体18の端面(光学素子2Dと反対側の端面)に形成された誘電体多層膜を出力側反射部として用いてもよい。
 (第4実施形態)
 第4実施形態として、本開示に係る光学素子を備えた光学装置の他の例を説明する。図7は、光学素子を備えた光学装置の一例であるレーザ装置10Bの模式図である。図7に示したレーザ装置10Bは、レーザ波長λを有するレーザ光Lとして、パルスレーザ光を出力する装置である。
 レーザ装置10Bは、第1光供給部(励起光光供給部)12と、レーザ媒質20と、放熱部22Aと、放熱部22Bと、可飽和吸収部17とを備える。後述するように、レーザ装置10Bでは、放熱部22Aが有する体積回折格子6A1と、可飽和吸収部17が有する体積回折格子6A2とによって、共振器14が形成されている。
 第1光供給部12は、レーザ媒質20に励起光Lを供給する。第1光供給部12の構成は、第2実施形態の場合と同様であることから、説明を省略する。レーザ媒質20は、第3実施形態における光学部材4Aと同様とし得る。レーザ媒質20は、たとえば、Nd:YAGで形成されている。可飽和吸収部17も第3実施形態の場合と同様であることから、説明を省略する。
 放熱部22Aは、ヒートシンク16と、体積回折格子6A1とを有する。換言すれば、放熱部22Aは、体積回折格子6A1が作り込まれたヒートシンク16である。ヒートシンク16も光学部材4の一例である。体積回折格子6A1は、第1実施形態の場合と同様の構成および光学特性(反射特性及び透過特性)を有し得る。体積回折格子6A1の作製方法も、第1実施形態の場合と同様である。放熱部22A(具体的にはヒートシンク16)は、レーザ媒質20と、接着剤、オプティカルコンタクト、または表面活性接合で一体化されている。
 放熱部22Bは、ヒートシンク16と、体積回折格子6C1とを有する。換言すれば、放熱部22Bは、体積回折格子6C1が作り込まれたヒートシンク16である。放熱部22Bは、体積回折格子6A1の代わりに体積回折格子6C1が作り込まれている点以外は、放熱部22Aと同様の構成とし得る。体積回折格子6C1は、第3実施形態の場合と同様の構成および光学特性(反射特性及び透過特性)を有し得る。体積回折格子6C1の作製方法も、第3実施形態の場合と同様である。放熱部22B(具体的にはヒートシンク16)は、レーザ媒質20および可飽和吸収部17(具体的には、可飽和吸収体18)と、接着剤、オプティカルコンタクト、または表面活性接合で一体化されている。
 第4実施形態において、放熱部22A、放熱部22Bおよび可飽和吸収部17それぞれが、光学素子2に相当する。よって、光学素子としての放熱部22A、放熱部22Bおよび可飽和吸収部17は、光学素子2と同様の作用効果を有する。
 以下の説明の便宜のため、放熱部22A、レーザ媒質20、放熱部22Bおよび可飽和吸収部17によって形成される積層体を、光学素子3Aと称す。
 レーザ装置10Bにおいても体積回折格子6A1および体積回折格子6A2が共振器14を構成している。レーザ装置10Bは可飽和吸収体18を有する。そのため、レーザ装置10Bは、レーザ光Lとして、パルスレーザ光を出力可能である。
 レーザ装置10Bでは、レーザ媒質20と可飽和吸収部17との間に放熱部22Bが配置されている。レーザ装置10Bでは、体積回折格子6C1が、放熱部22Bが有するヒートシンク16に作り込まれている。そのため、レーザ装置10Aの場合と同様に、たとえば、体積回折格子6C1と同様の反射特性を誘電体多層膜で実現する場合に比べて、光学素子3Aの機械強度の向上が図られている。
 同様の観点で、体積回折格子6A1もヒートシンク16に作り込まれていることから、光学素子3Aの機械強度の向上が図られている。更に、体積回折格子6A2が可飽和吸収体18に作り込まれているため、光学素子3Aの機械強度の向上が図られている。
 レーザ装置10Bでは、体積回折格子6A2の代わりに、可飽和吸収体18の端面(放熱部22Bと反対側の端面)に形成された誘電体多層膜を出力側反射部として用いてもよい。
 (第5実施形態)
 第5実施形態として、本開示に係る光学素子を備えた光学装置を説明する。図8は、光学素子を備えた光学装置の一例であるレーザ装置10Cの模式図である。図8に示したレーザ装置10Cは、レーザ波長λを有するレーザ光Lを出力する装置である。
 レーザ装置10Cは、第1光供給部12と、光発振器24と、第2光供給部(制御光供給部)26を備える。
 第1光供給部12は、光発振器24に励起光Lを供給する。第1光供給部12の構成は、第2実施形態の場合と同様であることから、説明を省略する。
 光発振器24は、光学素子2Eと、光学素子2Fとを有する。光学素子2Eが有する体積回折格子6A1と、光学素子2Fが有する体積回折格子6Dとによって、共振器14が形成されている。光発振器24は、励起光Lが供給されることで、レーザ光Lを出力する。光発振器24は、ヒートシンク16を有してもよい。第5実施形態では、ヒートシンク16を備えた場合の光発振器24を説明する。
 図8に示したように、ヒートシンク16、光学素子2Eおよび光学素子2Fは、この順に、Z方向に沿って配置されている。
 光学素子2Eは、体積回折格子6A2が形成されていない点で、第2実施形態における光学素子2Bと相違する。すなわち、光学素子2Eは、体積回折格子6A1が作り込まれた光学部材4Aである。光学部材4Aおよび体積回折格子6A1は、第2実施形態の場合と同じであることから、説明を省略する。
 光学素子2Fは、光学部材(第2光学部材)4Bと、体積回折格子(第2回折格子)6Dとを有する。光学素子2Fは、体積回折格子6Dが作り込まれた光学部材4Bである。
 光学部材4Bは、発光中心が添加された固体レーザ母材で形成されている。光学部材4Bに添加された発光中心は、制御波長λを有する制御光Lによって励起される一方、励起波長λを有する励起光Lでは励起されない希土類または遷移金属である。たとえば光学部材4Bは、Ybが添加されたYAG(Yb:YAG)である。光学部材4Bは、光学部材4Aと、接着剤、オプティカルコンタクト、または表面活性接合で一体化されている。
 体積回折格子6Dは、複数の改質面6aを有する。体積回折格子6Dの作製方法は、第1実施形態における体積回折格子6の場合と同様である。体積回折格子6Dは、制御光Lが光学素子2Fに照射されている状態(照射状態)で、体積回折格子6A1と同様に共振器14を構成するように形成されている。すなわち、体積回折格子6Dは、制御光Lの照射状態で共振器14の出力側反射部として機能する。
 体積回折格子6Dは、発光中心が添加された光学部材4Bに作り込まれている。したがって、光学素子2Aで説明したように、制御光Lが照射されていない状態(非照射状態)では、反射特性などが照射状態から変化する。そのため、体積回折格子6Dは、制御光Lの非照射状態では、共振器14の出力側反射部としての機能を有しない。
 一実施形態において、体積回折格子6Dは、照射状態においてレーザ光L(パルスレーザ光の基本波、好ましくは高調波のレーザ発振波長)に対する等価的反射率が20%以上であることが好ましく、非照射状態において上記等価的反射率が20%未満であることが好ましい。
 ヒートシンク16、光学部材4Aおよび光学部材4Bは、接着剤、オプティカルコンタクト、または表面活性接合で一体化されている。
 第2光供給部26は、制御光Lを出力する光源部26Aと、制御光Lを光学部材4に入射するように集光する集光光学系26Bとを有する。図8では、集光光学系26Bをレンズとして模式的に示している。光源部26Aの例は、半導体レーザ素子である。
 上記レーザ装置10Cでは、第2光供給部26が、制御光Lを光学素子2Fに照射していない状態で(非照射状態)において、第1光供給部12から励起光Lを光発振器24に入射する。これにより、固体レーザ母材である光学部材4Aが励起され反転分布が形成される。この際、体積回折格子6Dのレーザ光Lの透過率が高いので、共振器14としての損失が大きい。すなわち、レーザ共振器としてのQ値が小さく、レーザ発振が抑制される。充分な反転分布が確保できた段階で、第2光供給部26が、制御光Lを光学素子2Fに照射する。これにより、体積回折格子6Dのレーザ光Lに対する反射率が増加し、共振器14が成立する。すなわち、光学素子2Fが有する体積回折格子6Dは、共振器14の出力側反射部として機能する。その結果、レーザ発振が生じ、レーザ装置10Cからレーザ光Lが出力される。
 したがって、制御光Lの光学素子2への照射の有無による光学素子2Fのスイッチング動作(制御光Lによる光学素子2Fのスイッチング制御)によって、レーザ光Lのパルス化が図れる。第1実施形態で説明したように、光学素子2Fでは、光の速度に追随するスイッチング動作が可能である。そのため、レーザ装置10Cは、短パルスレーザ光を出力可能である。すなわち、レーザ装置10Cでは、光学素子2FがQスイッチ素子として機能する。
 光学素子2Eが有する光学部材4Aには、端面4b側に、第3実施形態で説明した体積回折格子6C1が形成されていてもよい。体積回折格子6C1の反射特性などは、第3実子形態の場合と同様である。
 光学素子2Fにおける照射状態および非照射状態と反射(または透過)特性との関係は例示した場合と反対でもよい。すなわち、光学素子2Fが非照射状態で共振器14が成立し、照射状態で共振器14が成立しない形態であってもよい。
 (変形例2)
 図9は、図8に示した光発振器の変形例を示す模式図である。図9に示した光発振器24Aは、光学素子2Eの代わりに光学素子2Gを備えるとともに、光学素子2Fの代わりに光学素子2Hを備える点で、光発振器24と相違する。光発振器24Aでは、制御光Lの照射状態で、光学素子2Gが有する体積回折格子6B1と、光学素子2Gが有する体積回折格子6B2とによってリング共振器14Aが形成されている。図9では省略しているが、光発振器24Aは、光発振器24と同様にヒートシンク16を有してもよい。
 光学素子2Gは、体積回折格子6A1の代わりに体積回折格子6B1が光学部材4Aに作り込まれている点で、光学素子2Eと相違する。光学部材4Aは、光学素子2Eの場合と同様であることから、説明を省略する。
 光学素子2Hは、体積回折格子6Dの代わりに体積回折格子6B2が光学部材4Aに作り込まれている点で、光学素子2Fと相違する。光学部材4Bは、光学素子2Fの場合と同様であることから、説明を省略する。
 体積回折格子6B1および体積回折格子6B2は、制御光Lの照射状態において、光学素子2C(図5参照)の場合と同様に、リング共振器14Aを形成する。
 すなわち、体積回折格子6B1は、複数の改質面6aを有し、ブレーズ角θB1で入射するレーザ光Lを反射するように設計されている。体積回折格子6B1は、リング共振器14Aにおいて入力側反射部として機能する。体積回折格子6B2は、複数の改質面6aを有し、ブレーズ角θB2で入射するレーザ光Lを反射するように設計されている。体積回折格子6B2は、リング共振器14Aにおいて出力側反射部として機能する。
 体積回折格子6B2は、発光中心が添加された光学部材4Bに作り込まれている。したがって、光学素子2A(または光学素子2F)で説明したように、制御光Lが照射されていない状態(非照射状態)では、反射特性などが照射状態から変化する。そのため、体積回折格子6B2は、制御光Lの非照射状態では、リング共振器14Aの出力側反射部としての機能を有しない。
 一実施形態において、体積回折格子6B2は、照射状態においてレーザ光L(パルスレーザ光の基本波、好ましくは高調波のレーザ発振波長)に対する等価的反射率が20%以上であることが好ましく、非照射状態において上記等価的反射率が20%未満であることが好ましい。
 上記構成により、光発振器24Aを、光発振器24の代わりにレーザ装置10Cに適用した場合、制御光Lの照射状態では、体積回折格子6B1および体積回折格子6B2がリング共振器14Aとして機能する。その結果、レーザ光Lが出力できる。一方、制御光Lcの非照射状態では、体積回折格子6B1および体積回折格子6B2がリング共振器14Aとして機能しないため、レーザ光Lが出力されない。よって、光発振器24Aは、光発振器24と同様の作用効果を有する。更に、光発振器24Aは、リング共振器14Aを備えていることで、光学素子2Cの場合と同様に、光発振器24Aの小型化を図りながら、共振器長を確保可能である。光学素子2Cの場合と同様に、光学素子2Hの外部からシード光Lを入射してもよい。このようにシード光Lsを光学素子2Hに入射する場合、リング共振器14Aを備えたレーザ装置において、レーザ光を光注入同期できることから、その発振波長や位相を制御できる。
 光学部材4Aまたは光学部材4Bには、第3実施形態で説明した体積回折格子6C1が形成されていてもよい。体積回折格子6C1の反射特性などは、第3実施形態の場合と同様である。
 光学素子2Hにおける照射状態および非照射状態と反射(または透過)特性との関係は例示した場合と反対でもよい。すなわち、光学素子2Hが非照射状態でリング共振器14Aが成立し、照射状態でリング共振器14Aが成立しない形態であってもよい。
(第6実施形態)
 第6実施形態として、本開示に係る光学素子を備えた光学装置の他の例を説明する。図10は、光学素子を備えた光学装置の一例であるレーザ装置10Dの模式図である。
 レーザ装置10Dは、第1光供給部12と、光発振器24Bと、第2光供給部26とを備える。第1光供給部12および第2光供給部26は、レーザ装置10Cの場合と同様であることから、説明を省略する。
 光発振器24Bは、光学素子2Fの代わりに光学素子2Iを備える点および誘電体多層膜28を備える点で、光発振器24と相違する。よって、光発振器24Bは、光学素子2E、光学素子2Iおよび誘電体多層膜28を有する。光発振器24Bが備える光学素子2Eは、光発振器24の場合と同様であることから、説明を省略する。光発振器24Bは、光発振器24の場合と同様に、ヒートシンク16を有してもよい。
 誘電体多層膜28は、光学素子2Iにおいて光学素子2Eと反対側の面に設けられている。誘電体多層膜28は、レーザ光Lを一部透過する部分反射率を有する。誘電体多層膜28は、光学素子2Eが有する体積回折格子6A1とともに、光発振器24Bにおける共振器14を構成する。
 光学素子2Iは、光学部材4Bと、体積回折格子6Eを有する。すなわち、光学素子2Iは、体積回折格子6Eが作り込まれた光学部材4Bである。光学部材4Bは、レーザ装置10Cの場合と同様であることから、説明を省略する。
 体積回折格子6Eは、複数の改質面6aを有する。体積回折格子6Eは、制御光Lの非照射状態において、共振器14の光軸A(光軸Aの方向はZ方向に相当)に対して角度β(βは0より大きい角度)の方向にレーザ光Lを反射するように形成されている。体積回折格子6Eの作製方法は、体積回折格子6の場合と同様である。
 角度βは、角度βで反射するレーザ光Lが元のレーザ光L(体積回折格子6Eに入射するレーザ光)とは完全に軸が外れる角度であればよい。たとえば、レーザビーム直径をd、利得媒質長をLGMとする場合、角度(反射角)βが以下の式で示される条件を満たせば良い。
Figure JPOXMLDOC01-appb-M000009
 このような角度βでレーザ光Lを反射させることによって、反射されたレーザ光Lは、元のレーザ光Lとは完全に軸が外れるため、効率的な誘導放出は生じない。したがって、制御光Lcによって、レーザ発振を抑制することが可能となる。
 ただし、実際には10回程度往復することで利得が発生すればよいことから角度βは上記の式の1/10程度でもよい。
 体積回折格子6Eにおいて、制御光Lの非照射状態におけるレーザ光Lの反射率をROFFと称し、制御光Lの照射状態におけるレーザ光Lの透過率をTONと称した場合、ROFFは10%以上であり、90%以上が好ましく、TONは、50%より大きく、90%より大きいことが好ましい。
 上記レーザ装置10Dでは、制御光Lの非照射状態で励起光Lを光発振器24Bに照射する場合、レーザ光LLは、体積回折格子6Eで、角度βの方向に反射される。よって、レーザ発振器としてのQ値は低くなることから、レーザ発振が抑制される。充分な反転分布が確保された段階で、制御光Lを光学部材4Bに照射することで体積回折格子6Eは、レーザ光Lに対して透過状態となり、共振器14が成立し、レーザ光Lが出力される。すなわち、光学素子2IがQスイッチ素子として機能する。
 すなわち、レーザ装置10Dでは、制御光Lを利用した光学素子2I(具体的には体積回折格子6E)の外部制御に基づくQスイッチレーザ装置である。光学素子2Iは、光学素子2Aに相当し、光学素子2Aと同様の作用効果を有する。よって、レーザ装置10Dでは、立ち上がりに迫る確度でのジッター制御が可能である。
 光学素子2Iにおける照射状態および非照射状態と反射特性との関係は例示した場合と反対でもよい。すなわち、光学素子2Iが照射状態において体積回折格子6Eがレーザ光Lを角度βで反射し、非照射状態においては体積回折格子6Eがレーザ光Lを透過してもよい。
 (第7実施形態)
 第7実施形態として、本開示に係る光学素子を備えた光学装置の他の例を説明する。図11は、光学素子を備えた光学装置の一例であるレーザ装置10Eの模式図である。
 レーザ装置10Eは、第1光供給部12と、光発振器24Cと、第2光供給部26とを備える。第1光供給部12および第2光供給部26は、レーザ装置10Cの場合と同様であることから、説明を省略する。
 光発振器24Cは、可飽和吸収体18を備えており、誘電体多層膜28が可飽和吸収体18において光学素子2Eと反対側の面に設けられている点で、光発振器24Bと相違する。よって、光発振器24Cは、光学素子2E、光学素子2I、可飽和吸収体18および誘電体多層膜28を有する。光発振器24Cが備える光学素子2Eおよび誘電体多層膜28は、光発振器24Bの場合と同様であることから、説明を省略する。可飽和吸収体18は、レーザ装置10Aにおける可飽和吸収体18と同様である。光発振器24Bは、光発振器24の場合と同様に、ヒートシンク16を有してもよい。
 光学素子2Iは、光発振器24Bの場合と同様に、光学部材4Bと、体積回折格子6Eとを有する。すなわち、光学素子2Iは、体積回折格子6Eが作り込まれた光学部材4Bである。光学部材4Bは、光発振器24Bの場合と同様であるため、説明を省略する。体積回折格子6Eは光発振器24Bの場合と同様でもよい。可飽和吸収体18を有する光発振器24Cでは、照射状態と非照射状態との間の透過率の変調量、すなわち、非照射状態におけるレーザ光Lの透過率TOFFと照射状態におけるレーザ光Lの透過率TONの間の変調量は、5%以上あればよい。
 上記レーザ装置10Eでは、制御光Lの非照射状態で励起光Lを光発振器24Bに照射する場合、レーザ光Lは、体積回折格子6Eで、角度βの方向に反射される。よって、レーザ発振器としてのQ値は低くなることから、レーザ発振が抑制される。充分な反転分布が確保された段階で、制御光Lを光学部材4Bに照射することで体積回折格子6Eは、レーザ光Lに対して透過状態となり、共振器14が成立し、レーザ光Lが出力される。すなわち、光学素子2IがQスイッチ素子として機能する。
 レーザ装置10Eでは、制御光Lを利用した光学素子2I(具体的には体積回折格子6E)の外部制御に基づくQスイッチレーザ装置である。光学素子2Iは、光学素子2Aに相当し、光学素子2Aと同様の作用効果を有する。よって、レーザ装置10Eでは、立ち上がりに迫る確度でのジッター制御が可能である。
 光学素子2Iにおける照射状態および非照射状態と反射特性との関係は例示した場合と反対でもよい。すなわち、光学素子2Iが照射状態において体積回折格子6Eがレーザ光Lを角度βで反射し、非照射状態においては体積回折格子6Eがレーザ光Lを透過してもよい。
(第8実施形態)
 図12は、第8実施形態に係る光学素子を示す模式図である。図12に示した光学素子2Jは、チャープ構造を有する体積回折格子6Fを有する点で、主に光学素子2と相違する。この点を中心に光学素子2Jを説明する。
 光学素子2Jは、光学部材4と、体積回折格子6Fとを有する。すなわち、光学素子2Jは、体積回折格子6Fが作り込まれた光学部材4である。
 光学部材4の材料の例は、第1実施形態で例示した場合と同様である。第8実施形態において、光学部材4は、たとえば水晶である。
 体積回折格子6Fは、複数の改質面6aを有する。体積回折格子6Fはチャープ構造を有する点で、体積回折格子6と相違する。すなわち、複数の改質面6aの間隔(周期)は、一定間隔ではない。体積回折格子6Fの形成方法は、体積回折格子6の場合と同様である。体積回折格子6Fは、スペクトル幅Δλの信号光Sλに対する高反射率を有する回折格子として設計され得る。この場合、体積回折格子6Fの周期は上記スペクトル幅Δλに応じてチャープされている。これにより、パルス状の信号光Sλのパルス圧縮または伸張が可能である。
 上記光学素子2Jは、パルス圧縮またはパルス伸張のための素子として、レーザ装置等の光学装置に適用可能である。
 (第9実施形態)
 図13は、第9実施形態に係る光学素子を示す模式図である。図13に示した光学素子2Kは、光学部材4に、光学素子2Aの場合と同様に、発光中心が添加されている点で、光学素子2Jと相違する。
 この場合、制御光Lの光学素子2Kへの照射の有無で、光学素子2Aの場合と同様に、体積回折格子6Fの反射特性(または透過特性)が変化する。したがって、光学素子2Kは、制御光Lの光学素子2Kへの照射状態と非照射状態とを切り換えることで、体積回折格子6Fの反射によるチャープ量を可変とすることが可能である。
 発光中心は光学部材4に一様に分散されていてもよい。たとえば、図13にグラデーションで模式的に示したように、発光中心が所定の分布状態(たとえば、一方の端面4aから他方の端面4bにかけて添加量が低減する分布状態)で添加されていてもよい。これによって、制御光Lの光学素子2Kへの照射状態と非照射状態に基づくチャープ量の変化に加えて、上記発光中心の分布に基づくチャープ量の変化も生じることから、より大きなチャープ可変量を得ることが可能である。
 上記光学素子2Kは、パルス圧縮またはパルス伸張のための素子として、レーザ装置等の光学装置に適用可能である。
 本発明は例示した種々の実施形態に限定されるものではなく、特許請求の範囲によって示される範囲が含まれるとともに、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 光学素子2は、たとえば、図14に示したように光結合素子(またはビーム結合素子)として利用できる。具体的には、光学部材4に形成された体積回折格子6におけるブラッグ波長λである波長λの光Lλ1を端面4aから光学素子2に入射する。この際、波長λ1(ブラッグ波長λ)の帯域Δλ(体積回折格子6で反射可能な帯域)よりズレた波長λの光Lλ2を、光Lλ1の反射方向と同軸に端面4b側から光学素子2に入射する。これにより、体積回折格子6で反射した光Lλ1と体積回折格子6を透過した光Lλ2が合成された波長λ1と波長λ2を有する光Lλ3を得ることができる。光学素子2Aのように光学部材4に発光中心が添加されている場合、制御光Lの照射の有無で、光結合を実施する場合と実施しない場合のスイッチングが可能である。
 光学素子2は、たとえば、図15に示したようにスペクトルフィルタとして利用できる。具体的には、光学部材4に形成された体積回折格子6におけるブラッグ波長λである波長λ1および上記波長λ2を有する光Lλ3を端面4aから光学素子2に入射する。この際、波長λ1(ブラッグ波長λ)の光Lλ1は、体積回折格子6で反射される一方、波長λ2の光Lλ2は、体積回折格子6を透過する。これにより、波長λ1および上記波長λ2を有する光Lλ3を、波長λ1の光Lλ1と、波長λ2の光Lλ2とに分離できる。光学素子2Aのように光学部材4に発光中心が添加されている場合、制御光Lの照射の有無で、光学素子2のフィルタリング機能の有無のスイッチングが可能である。
 体積回折格子6がブレーズ角θで入射した光のみ反射するように設計されている場合、光学素子2に入射する光のうちブレーズ角θを中心として反射可能な角度内の成分のみ反射し、上記ブレーズ角θを中心として反射可能な角度を超えた角度で入射する成分を透過する。したがって、光学素子2は、光学素子2に入射する光(たとえば、レーザビーム)の横モードをフィルタリングする素子としても機能する。光学素子2Aのように光学部材4に発光中心が添加されている場合、制御光Lの照射の有無で、光学素子2のフィルタリング機能を制御可能である。
 光学素子が有する複数の改質領域それぞれは例示した改質面のように面状の領域に限定されない。図16および図17に示した光学素子のように、各改質領域は、線状の領域でもよい。図16は、光学素子の更に他の変形例を示す模式図である。図17は、図16に示した光学素子を図中に示した励起光Lの入射側からみた場合の図面である。図16および図17では、他の図と同様に、改質領域を太い実線で示している。図17において、二点鎖線で囲まれる領域αは、光学素子内において光が伝播する領域を模式的に示している。
 図16および図17に示した光学素子2Lは、体積回折格子6の代わりに体積回折格子6Gを有する点で、図3に示した光学素子2Aと相違する。光学素子2Lは、光学部材4と、体積回折格子6Gとを有する。光学部材4は、図2に示した光学素子2Aが有する光学部材4と同様の部材であり、制御光Lによって励起される発光中心が添加された光学部材である。図16では、円柱状の光学部材4を例示している。
 体積回折格子6Gは、複数の改質領域6bを有する。各改質領域6bは、光L(たとえばレーザ光)が入射される端面4aに対して交差する方向に延在している。図16に示した一形態では、各改質領域6bは、端面4aに対して直交している。複数の改質領域6bは、それらで構成される体積回折格子6Gによって、光Lを反射させながら光学部材4を伝播可能に形成されている。図16および図17に示した形態では、円柱状の光学部材4の中心軸に沿って光Lが入射されているとともに、中心軸の周りに複数の改質領域6bが配置されている。光学素子2Aの場合と同様に、制御光Lの有無で体積回折格子6Gの反射特性が変化する。よって、たとえば、光学素子2L(または光学部材4)を光共振器内に配置した場合(光学部材4の端面4aおよびそれと反対の端面4bに光共振器を構成する誘電体多層膜を形成した場合を含む)、制御光Lの照射状態および非照射状態の切り替えによって発振モードを制御可能である。
 光学素子2Lは、パルスレーザ光PLの光学部材4への入射位置が異なる点および改質領域6bを線状に形成する点以外は、図2を用いて説明した製造方法と同様にして製造される。具体的には、図18に示したように、光学素子2Lは、励起光Lが入射されるべき端面4aから光学部材4にパルスレーザ光PLを照射することによって形成され得る。
 光学素子2Lが有する光学部材4には、図1に示した光学素子2が有する光学部材4の場合と同様に、制御光Lで励起される発光中心が添加されていなくてもよい。
 以上説明した種々の実施形態、変形例などは、発明の趣旨を逸脱しない範囲で適宜組み合わされてもよい。
 2,2A,2B,2C,2D,2E,2F,2G,2H,2I,2J,2K,2L…光学素子、4,4A,4B…光学部材、6…体積回折格子、6a…改質面(改質領域)、6b…改質領域、10,10A,10B,10C,10D,10E…レーザ装置(光学装置)、6A1…体積回折格子、6A2…体積回折格子、6B1…体積回折格子、6B2…体積回折格子、6C1…体積回折格子、6D…体積回折格子、6E…体積回折格子、6F…体積回折格子、14…共振器、14A…リング共振器、24,24A,24B,24C…光発振器(光学装置)、A…光軸。

 

Claims (23)

  1.  単結晶、セラミックスまたはガラスから形成されている第1光学部材を備え、
     前記第1光学部材には、所定波長の光を反射する第1回折格子が形成されており、
     前記第1回折格子は、前記第1光学部材の一部が改質された複数の改質領域によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    光学素子。
  2.  前記複数の改質領域それぞれは、面状または線状の領域である、
    請求項1に記載の光学素子。
  3.  前記第1光学部材には、前記第1回折格子と共振器を構成する第2回折格子が形成されており、
     前記第2回折格子は、前記第1光学部材の一部が改質された複数の改質領域によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    請求項1または2に記載の光学素子。
  4.  前記共振器はリング共振器である、
    請求項3に記載の光学素子。
  5.  前記第1光学部材は、固体レーザ母材である、
    請求項1~4の何れか一項に記載の光学素子。
  6.  前記第1回折格子は、チャープ構造を有する、
    請求項1に記載の光学素子。
  7.  前記第1光学部材には、制御光によって励起される発光中心が添加されている、
    請求項1,2および6の何れか一項に記載の光学素子。
  8.  請求項1~7の何れか一項に記載の光学素子を備える、光学装置。
  9.  請求項1に記載の光学素子と、
     単結晶、セラミックスまたはガラスから形成されており且つ制御光によって励起される発光中心が添加されている第2光学部材と、
    を備え、
     前記第2光学部材には、前記制御光が前記第1光学部材に照射されていない非照射状態または照射されている照射状態において、前記所定波長の光を反射する前記第1回折格子と共振器を形成する第2回折格子が形成されており、
     前記第2回折格子は、体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    光学装置。
  10.  前記共振器はリング共振器である、
    請求項9に記載の光学装置。
  11.  結晶、セラミックスまたはガラスから形成されている複数の光学部材を備え、
     前記複数の光学部材は、一方向に沿って配置されており、
     前記複数の光学部材のうちの第1光学部材には、所定波長の光を反射する第1回折格子が形成されており、
     前記第1回折格子は、前記第1光学部材の一部が改質された複数の改質領域によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    光学装置。
  12.  前記第1光学部材は固体レーザ母材、ヒートシンクまたは可飽和吸収体である、
    請求項11に記載の光学装置。
  13.  前記第1光学部材は固体レーザ母材であり、
     前記第1光学部材には、前記第1回折格子とともに共振器を構成する第2回折格子が形成されており、
     前記第2回折格子は、前記第1光学部材が改質された複数の改質領域によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    請求項11に記載の光学装置。
  14.  前記第1光学部材は固体レーザ母材であり、
     前記複数の光学部材のうちの第2光学部材には、制御光によって励起される発光中心が添加されているとともに、前記第1回折格子とともに共振器を構成する第2回折格子が形成されており、
     前記第2回折格子は、体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    請求項11に記載の光学装置。
  15.  固体レーザ母材と、共振器とを備え、レーザ光を出力する装置であって、
     前記共振器内に配置されており、結晶、セラミックスまたはガラスから形成されている光学部材を備え、
     前記光学部材には、制御光によって励起される発光中心が添加されているとともに、前記制御光が前記光学部材に照射されていない非照射状態または照射されている照射状態において、前記共振器の光軸と異なる方向に前記レーザ光を反射する回折格子が形成されており、
     前記回折格子は、前記光学部材の一部が改質された複数の改質領域によって形成された体積型ホログラフィック回折格子または体積ブラッグ回折格子である、
    光学装置。
  16.  単結晶、セラミックスまたはガラスで形成されている光学部材に、所定波長の光を反射する体積型ホログラフィック回折格子または体積ブラッグ回折格子を形成する工程を備え、
     前記体積型ホログラフィック回折格子または体積ブラッグ回折格子は、パルスレーザ光を用いて前記光学部材を改質することによって形成される、
    光学素子の製造方法。
  17.  前記パルスレーザ光のパルス幅は、0.1ps~1nsである、
    請求項16に記載の光学素子の製造方法。
  18.  前記パルスレーザ光のパルス幅は、1ps~1nsである、
    請求項16に記載の光学素子の製造方法。
  19.  前記光学部材において前記パルスレーザ光が入射される第1面に対して、前記パルスレーザ光は、前記第1面の垂直方向から前記第1面に入射される、
    請求項16~18の何れか一項に記載の光学素子の製造方法。
  20.  前記光学部材における前記パルスレーザ光が入射される第1面に対して、前記パルスレーザ光は、前記第1面の垂直方向に対して斜め方向から前記第1面に入射される、
    請求項16~18の何れか一項に記載の光学素子の製造方法。
  21.  前記体積型ホログラフィック回折格子または体積ブラッグ回折格子は、前記パルスレーザ光による複数の改質領域によって形成されており、
     前記複数の改質領域それぞれを面状または線状に形成する、
    請求項16~18の何れか一項に記載の光学素子の製造方法。
  22.  前記光学部材における前記パルスレーザ光が入射される第1面は、前記光学部材に前記所定波長の光が入射される第2面と異なる面である、
    請求項16~21の何れか一項に記載の光学素子の製造方法。
  23.  前記光学部材における前記パルスレーザ光が入射される第1面は、前記光学部材に前記所定波長の光が入射される第2面と同じ面である、
    請求項16~21の何れか一項に記載の光学素子の製造方法。
PCT/JP2022/041414 2021-11-08 2022-11-07 光学素子、光学装置および光学素子の製造方法 WO2023080242A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021181857A JP2023069750A (ja) 2021-11-08 2021-11-08 光学素子、光学装置および光学素子の製造方法
JP2021-181857 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023080242A1 true WO2023080242A1 (ja) 2023-05-11

Family

ID=86241606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041414 WO2023080242A1 (ja) 2021-11-08 2022-11-07 光学素子、光学装置および光学素子の製造方法

Country Status (2)

Country Link
JP (1) JP2023069750A (ja)
WO (1) WO2023080242A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056112A (ja) * 1998-08-03 2000-02-25 Japan Science & Technology Corp 3次元的回折光学素子及びその製造方法
JP2002014307A (ja) * 2000-05-17 2002-01-18 Agere Systems Optoelectronics Guardian Corp Wdm光通信システム用のチューナブルエッチング回折格子
WO2009079730A2 (en) * 2007-12-20 2009-07-02 Universidade Estadual De Campinas - Unicamp Prism and compact unidirectional single-frequency planar ring cavity laser without intracavity elements
JP2019129252A (ja) * 2018-01-25 2019-08-01 大学共同利用機関法人自然科学研究機構 光学素子の製造方法及び光学素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056112A (ja) * 1998-08-03 2000-02-25 Japan Science & Technology Corp 3次元的回折光学素子及びその製造方法
JP2002014307A (ja) * 2000-05-17 2002-01-18 Agere Systems Optoelectronics Guardian Corp Wdm光通信システム用のチューナブルエッチング回折格子
WO2009079730A2 (en) * 2007-12-20 2009-07-02 Universidade Estadual De Campinas - Unicamp Prism and compact unidirectional single-frequency planar ring cavity laser without intracavity elements
JP2019129252A (ja) * 2018-01-25 2019-08-01 大学共同利用機関法人自然科学研究機構 光学素子の製造方法及び光学素子

Also Published As

Publication number Publication date
JP2023069750A (ja) 2023-05-18

Similar Documents

Publication Publication Date Title
US5265116A (en) Microchip laser
US6249371B1 (en) Wavelength converter
KR102176363B1 (ko) 다결정질 tm:ii-vi 재료로 이루어진 수직 입사 장착형 중간 적외선 케르 렌즈 모드 잠금형 레이저 및 다결정질 tm:ii-vi 케르 렌즈 모드 잠금형 레이저의 매개변수를 제어하기 위한 방법
EP0744089A1 (en) Passively q-switched picosecond microlaser
JP4041782B2 (ja) 半導体レーザ励起固体レーザ
US7016103B2 (en) Multiwavelength light source using an optical parametric oscillator
JP2007036195A (ja) 多重光路の固体スラブレーザロッドまたは非線形光学結晶を用いたレーザ装置
JP4231829B2 (ja) 内部共振器型和周波混合レーザ
JP2019129252A (ja) 光学素子の製造方法及び光学素子
US5856996A (en) Compact efficient solid state laser
TWI791017B (zh) 被動q開關脈衝雷射裝置、加工裝置及醫療裝置
JP2001251002A (ja) レーザ装置
JP2020127000A (ja) 圧縮パルス幅を有する受動qスイッチ型固体レーザ
US20090285248A1 (en) Uv light generation by frequency conversion of radiation of a ruby laser pumped with a second harmonic of a solid-state laser
US8369366B2 (en) Semiconductor laser excited solid-state laser device
JPH11261136A (ja) 光パルス発生素子
KR100863199B1 (ko) 고조파 빔 발생용 레이저 장치 및 방법
WO2023080242A1 (ja) 光学素子、光学装置および光学素子の製造方法
EP0957546A2 (en) solid-state laser device and solid-state laser amplifier provided therewith
WO2008153488A1 (en) Diode -pumped laser with a volume bragg grating as an input coupling mirror.
WO2022158529A1 (ja) 光学素子、光学装置、および、光学素子の製造方法
KR101156637B1 (ko) 주기적 분극 재료를 이용하여 비선형 주파수 변환을 하는소형 고체상태 레이저
KR100796100B1 (ko) 모드 제어 도파로형 레이저 장치
JP2663197B2 (ja) レーザーダイオードポンピング固体レーザー
JPH05299751A (ja) レーザーダイオードポンピング固体レーザー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890062

Country of ref document: EP

Kind code of ref document: A1