WO2023080238A1 - 中空糸膜型血液浄化器 - Google Patents

中空糸膜型血液浄化器 Download PDF

Info

Publication number
WO2023080238A1
WO2023080238A1 PCT/JP2022/041409 JP2022041409W WO2023080238A1 WO 2023080238 A1 WO2023080238 A1 WO 2023080238A1 JP 2022041409 W JP2022041409 W JP 2022041409W WO 2023080238 A1 WO2023080238 A1 WO 2023080238A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
blood purifier
fat
amount
Prior art date
Application number
PCT/JP2022/041409
Other languages
English (en)
French (fr)
Inventor
雅也 北野
美幸 南
一樹 西澤
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Publication of WO2023080238A1 publication Critical patent/WO2023080238A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules

Definitions

  • the present invention relates to a hollow fiber membrane blood purifier.
  • hollow fiber membrane type blood processing devices using selectively permeable membranes have been widely used in the field of extracorporeal blood circulation, such as hemodialysis, oxygenation of blood during open-heart surgery, and plasma separation.
  • a separation membrane to eliminate peroxides, which are the causative agents of oxidative stress, or to restore the antioxidant effect of the body.
  • a hollow fiber membrane type blood purification device has been proposed in which the surface of a dialysis membrane is coated with vitamin E, which has various physiological actions such as an in vivo antioxidant action, a biomembrane stabilizing action, and a platelet aggregation inhibiting action.
  • Conventionally known methods for sterilizing hollow fiber membrane blood purification devices include gas sterilization using ethylene oxide gas, etc., autoclave using high-pressure steam, and radiation sterilization using ⁇ -rays and electron beams.
  • the gas sterilization method using ethylene oxide gas is concerned about the toxicity to the human body due to residual ethylene oxide gas. Also, in the autoclave method using high-pressure steam, there is a possibility that the performance of the hollow fiber membrane type blood purification device may be remarkably lowered during sterilization depending on the materials constituting the device.
  • the radiation sterilization method is a preferable sterilization method because it does not cause the problem of residual ethylene oxide gas or the problem of hollow fiber membrane leakage.
  • the above-described hollow fiber membrane type blood purification device is roughly divided into a wet type in which the hollow interior of the hollow fiber membrane and the gap between the container and the hollow fiber membrane is filled with an aqueous medium, and a dry type in which the hollow fiber membrane is not filled with an aqueous medium. .
  • the dry type can be further divided into a type in which the moisture content of the film is as low as several percent or less (narrowly defined dry type), and a type in which the film is moderately moistened with water or moisturizing agents.
  • the latter is sometimes referred to as a semi-dry type to distinguish it from the narrowly defined dry type, but since they have substantially the same characteristics, both are collectively referred to as the dry type in this specification.
  • the above-mentioned dry type is lighter than the wet type and has the characteristic of being resistant to freezing at low temperatures, making it a particularly excellent product form in terms of distribution such as transportation and storage.
  • Patent Document 3 discloses a hollow fiber membrane type blood purification device comprising a hollow fiber membrane containing a polysulfone resin, a hydrophilic polymer and a fat-soluble vitamin, wherein the fat-soluble vitamin is contained in the hollow fiber membrane.
  • the amount present on the surface is 0.5 mg or more and 25 mg or less per 1 g of the hollow fiber membrane, and the hollow fiber membrane is 5% by mass or more and 50% by mass or less, including moisture, relative to the dry weight of the hollow fiber membrane.
  • a dry type hollow fiber membrane type blood purification device which has a hydrophilic compound attached thereto and is subjected to radiation sterilization. Further, in Patent Document 4, in a polysulfone-based hollow fiber membrane for blood treatment containing a polysulfone-based resin, a hydrophilic polymer, and a fat-soluble substance, the amount of the fat-soluble substance present on the surface of the membrane is 10 to 10 per 1 m 2 .
  • a polysulfone-based hollow fiber membrane for blood treatment has been proposed, which has a ⁇ 2MG clearance value of 65 mL/min or more in terms of 1.5 m 2 of a blood purifier.
  • JP 2006-296931 A Japanese Unexamined Patent Application Publication No. 2008-93228 JP 2013-009761 A WO2014/171172
  • the hollow fiber performance especially the albumin (hereinafter also referred to as "Alb" leakage amount, immobilizes the fat-soluble substance.
  • Alb albumin
  • Hemodiafiltration (hereinafter also referred to as "HDF") is an effective method for treating dialysis complications and accounts for about half of the methods used for dialysis treatment in recent years.
  • HDF Hemodiafiltration
  • dialysis complications especially pruritus, finger pinch force, arthralgia, numbness of the fingers, and restless legs syndrome (RLS)
  • RLS restless legs syndrome
  • Alb should be actively removed in clinical treatment.
  • the recommended removal amount of Alb in this clinical treatment is equivalent to removal of 1 to 3 g/h under predetermined prediluted HDF conditions when converted to the bovine blood test used when designing hollow fiber membranes (hereinafter referred to as bovine blood Alb leakage).
  • the present invention provides a hollow fiber membrane type blood purifier containing a fat-soluble substance, which has a pressure resistance strength of 55% or more in hollow fiber elongation, and the amount of bovine blood Alb leakage under prediluted HDF conditions is reduced to 1 hour. It is an object of the present invention to provide a hollow fiber membrane type blood purifier containing a lipid-soluble substance, which has both high pressure resistance and excellent substance permeability suitable for HDF clinical treatment.
  • the amount of acetic acid per hollow fiber membrane area contained in the blood purifier is set to a specific range.
  • the inventors have found that the amount of leakage can be controlled to 1 to 3 g per hour, and have completed the present invention.
  • a hollow fiber blood purifier comprising a hollow fiber membrane and a container filled with the hollow fiber membrane,
  • the hollow fiber membrane contains a fat-soluble substance
  • the amount of acetic acid per hollow fiber membrane area contained in the blood purifier is 1 to 40 mg/m 2
  • a hollow fiber membrane blood purifier having a water permeability of 163 mL/Hr/mmHg/m 2 or more and a hollow fiber elongation of 55% or more.
  • the hollow fiber membrane type blood purification according to any one of [1] to [8], wherein the substance constituting the hollow fiber membrane contains at least one selected from the group consisting of hydrophilic polymers and hydrophobic polymers. vessel.
  • a fixing step of fixing the fat-soluble substance to the hollow fiber membrane In the fixing step, a coating liquid in which a fat-soluble substance is dissolved in an organic solvent is fed to the inside of the hollow fiber, and the pressure difference between the inside and outside of the hollow fiber when removing the coating liquid with air pressure (inside-outside) is -0.1 MPa or more.
  • the hollow fiber membrane type blood purifier of the present invention is a fat-soluble substance-immobilized hollow fiber membrane that has both high pressure resistance and high water permeability, which is the basis for excellent substance permeability suitable for HDF clinical treatment. It is possible to provide a hollow fiber membrane type blood purifier that can control the amount of bovine blood Alb leakage to 1 to 3 g per hour under certain conditions and that immobilizes a fat-soluble substance, which has long been desired in clinical treatment of HDF. can.
  • FIG. 1 is a conceptual diagram of an example of an apparatus used for measuring the amount of acetic acid contained in a dry-type hollow fiber membrane blood purifier.
  • FIG. FIG. 2 is a conceptual diagram of an example of a circuit through which water is passed as priming when measuring the water permeability performance of a hollow fiber membrane blood purifier.
  • FIG. 2 is a conceptual diagram of an example of a circuit used when measuring water permeability performance of a hollow fiber membrane blood purifier.
  • this embodiment the form for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the hollow fiber membrane type blood purifier of this embodiment is A hollow fiber blood purifier comprising a hollow fiber membrane and a container filled with the hollow fiber membrane,
  • the hollow fiber membrane contains a fat-soluble substance
  • the amount of acetic acid per hollow fiber membrane area contained in the blood purifier is 1 to 40 mg/m 2
  • Water permeability performance is 163 mL / Hr / mmHg / m 2 or more
  • the hollow fiber elongation is 55% or more.
  • the hollow fiber membrane blood purifier of the present embodiment has a pressure resistance strength with a hollow fiber elongation of 55% or more even if the hollow fiber membrane blood purifier contains a fat-soluble substance. while having 1 to 3 g of bovine blood Alb per hour under pre-diluted HDF conditions.
  • the amount of acetic acid per hollow fiber membrane area is 1 to 40 mg/m 2 , preferably 1 to 30 mg/m 2 , more preferably 1 to 20 mg/m 2 . is more preferable.
  • the bovine blood Alb leakage amount under prediluted HDF conditions can be 1 to 3 g per hour. can.
  • the method for controlling the amount of acetic acid per hollow fiber membrane area within the above range is not particularly limited, an example thereof includes a method of carrying out the step of immobilizing a fat-soluble substance, which will be described later.
  • the amount of acetic acid per hollow fiber membrane area can be measured by the method described in Examples below.
  • the hollow fiber membrane blood purifier of the present embodiment has a water permeability of 163 mL/Hr/mmHg/m 2 or more, preferably 163 to 350 mL/Hr/mmHg/m 2 , more preferably 163 to 300 mL/Hr/ More preferably mmHg/m 2 .
  • the amount of bovine blood Alb leaked under prediluted HDF conditions can be 1 to 3 g per hour.
  • the method of controlling the water permeability within the above range is not particularly limited, but for example, a method of performing a fat-soluble substance immobilization step described later or a method of appropriately adjusting the type and content of the material constituting the hollow fiber membrane. mentioned.
  • the water permeability can be measured by the method described in Examples below.
  • the hollow fiber membrane type blood purifier of the present embodiment is not particularly limited. used for The hollow fiber membrane type blood purifier of the present embodiment is preferably used as a hemodialyzer, a hemofilter, a hemodiafiltration dialyzer, etc., and is a continuous hemodialyzer and a continuous hemofilter, which are the continuous uses of these. It is more suitable for use as a continuous hemofiltration dialyzer. Detailed specifications such as dimensions and fractionability of the hollow fiber membrane are determined according to each application.
  • the hollow fiber membrane type blood purifier of the present embodiment has a pressure resistance strength with a hollow fiber elongation of 55% or more, and the bovine blood Alb leakage amount under prediluted HDF conditions can be 1 to 3 g per hour. Therefore, it can be suitably used for ameliorating and treating dialysis complications, particularly pruritus, finger pinching force, arthralgia, finger numbness, and RLS.
  • ⁇ 1-microglobulin region molecular weight 30,000 to 40,000
  • an ⁇ 1-MG removal rate of 10% or more throughout treatment is required for prevention and improvement of pruritus, finger pinch force, arthralgia, finger numbness, RLS, and the like.
  • Alb is a substance whose leakage should be suppressed in dialysis treatment because it functions as an osmotic pressure regulator and a nutrient.
  • Alb itself is highly likely to become uremic by oxidizing Alb due to oxidative stress and binding uremic toxin. Therefore, there is also the idea that a certain amount of Alb should be positively removed to promote Alb metabolism.
  • substance removal by filtration is dominant, and the use of hemodialysis filters with performance of bovine blood Alb leakage of 1 g or more in HDF treatment (pre-diluted HDF conditions) that can efficiently remove uremic proteins has become mainstream in recent years. becoming.
  • hemodialyzers immobilized with fat-soluble substances e.g., vitamin E
  • the present invention provides a hollow fiber membrane type blood purifier containing a fat-soluble substance (eg, vitamin E) while achieving a bovine blood Alb leakage amount of 1 to 3 g, which is said to be effective in preventing and improving dialysis complications. becomes possible. Furthermore, by controlling the amount of acetic acid per hollow fiber membrane area contained in the blood purifier to a specific range, a hollow fiber membrane with one performance can achieve, for example, an arbitrary amount of bovine blood Alb leakage of 1 to 3 g.
  • a fat-soluble substance eg, vitamin E
  • vitamin E immobilized hemodiafilters can be provided. That is, according to the present invention, for example, it is possible to provide a hemodiafiltrator that contributes to the prevention and improvement of a wide range of dialysis complications while being a vitamin E-immobilized hollow fiber membrane blood purifier.
  • the hollow fiber membranes used in the hollow fiber membrane type blood purifier of the present embodiment are preferably crimped from the viewpoint of permeation performance.
  • a method for crimping is not particularly limited, and a known method can be used.
  • the hollow fiber membrane contains a fat-soluble substance.
  • the fat-soluble substance generally refers to a substance that is poorly soluble in water and soluble in alcohol and fats and oils, and low toxicity natural substances and synthetic substances can be used.
  • Specific examples of fat-soluble substances include, but are not limited to, cholesterol, vegetable oils such as castor oil, lemon oil and shea butter, animal oils such as fish oil, fatty acids such as sucrose fatty acid esters and polyglycerin fatty acid esters, isoprenoids, Examples include hydrocarbons with a large number of carbon atoms and silicone oils. Fat-soluble vitamins such as vitamin A, vitamin D, vitamin E, vitamin K, and ubiquinone are also preferably used.
  • the fat-soluble substance preferably contains at least one selected from the group consisting of vitamin A, vitamin D, vitamin E and vitamin K.
  • vitamin E is preferred from the viewpoint that it does not induce disorders even when taken in excess.
  • one type may be used, or a mixture of two or more types may be used.
  • vitamin E examples include ⁇ -tocopherol, ⁇ -tocopherol acetate, ⁇ -tocopherol nicotinate, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and mixtures thereof.
  • ⁇ -tocopherol is preferable because it is excellent in various physiological actions such as in vivo antioxidant action, biological membrane stabilizing action, and platelet aggregation inhibitory action, and is highly effective in suppressing oxidative stress.
  • the hollow fiber membrane used in the present embodiment is preferably a hollow fiber membrane in which fat-soluble substances are immobilized, and more preferably a hollow fiber membrane in which fat-soluble vitamins are immobilized.
  • the amount of fat-soluble substance immobilized on the hollow fiber membrane is preferably 1 to 500 mg/m 2 . Oxidizing performance is obtained, and blood compatibility is excellent by being 500 mg/m 2 or less. Furthermore, it is more preferably 10 to 300 mg/m 2 .
  • amount of fat-soluble substance immobilized on hollow fiber membrane refers to the amount of fat-soluble substance bound, attached, adsorbed or coated to the entire hollow fiber membrane, and the fat-soluble substance present in the entire hollow fiber membrane
  • the amount of substance can be quantified, for example, by the amount of fat-soluble substance extracted by a solvent without destroying or dissolving the hollow fiber membrane, as described later.
  • the hollow fiber membrane type blood purifier incorporating the hollow fiber membrane is disassembled, the hollow fiber membrane is collected, washed with water, and dried. Subsequently, a surfactant or an organic solvent that dissolves a fat-soluble substance, such as a 1% by mass polyethylene glycol-t-octylphenyl ether aqueous solution or ethanol, is added to the precisely weighed and dried hollow fiber membrane, and the mixture is stirred and extracted.
  • a surfactant or an organic solvent that dissolves a fat-soluble substance such as a 1% by mass polyethylene glycol-t-octylphenyl ether aqueous solution or ethanol
  • the membrane area of the extracted hollow fiber membrane is the hollow fiber membrane area declared by the manufacturer (the hollow fiber membrane area described on the label, etc.), or the average inner diameter (diameter), circumference, number of hollow fiber membranes, and effective It is the internal surface area calculated from the product of lengths.
  • the effective length is the permeable hollow fiber length excluding the urethane sealing portion and the like within the entire length of the hollow fiber membrane.
  • the quantitative operation is performed, for example, by liquid chromatography, and the concentration of the fat-soluble substance in the extract is calculated using the calibration curve obtained from the peak area of the fat-soluble substance standard solution.
  • the amount of fat-soluble substances (mg/m 2 ) in the hollow fiber membrane can be determined from the obtained concentration of fat-soluble substances and the membrane area of the extracted hollow fiber membrane, assuming that the extraction efficiency is 100%.
  • liquid chromatography method is described as an example, it can be carried out as follows.
  • a column (Shodex Asahipak company's ODP-506E packed column for HPLC) is attached, and at a column temperature of 40 ° C, methanol for high performance liquid chromatography, which is a mobile phase, is passed at a flow rate of, for example, 1 mL / min. Calculate the fat-soluble substance concentration from the area of .
  • the substance constituting the hollow fiber membrane preferably contains at least one selected from the group consisting of hydrophilic polymers and hydrophobic polymers. Hollow fiber membranes containing such substances tend to have high physical strength and excellent biocompatibility.
  • the hollow fiber membrane preferably contains a hydrophilic polymer at least on the separation function surface. Hollow fiber membranes tend to have better biocompatibility by containing hydrophilic polymers.
  • the hydrophilic polymer is not particularly limited as long as it is compatible with water, and examples thereof include a polymer having a solubility parameter ⁇ (cal/cm 3 ) 1/2 of 10 or more and a polymer having a hydroxyl group. .
  • the solubility parameter ⁇ is, for example, “Polymer Data Handbook Basic Edition” edited by The Society of Polymer Science, Baifukan Co., Ltd., published on January 30, 1986, first edition, pp. 591-593.
  • a high parameter indicates strong hydrophilicity, and a low parameter indicates strong hydrophobicity.
  • solubility parameter
  • Polymers having hydroxyl groups are not particularly limited, but for example, polyhydroxyalkyl methacrylates such as polyhydroxyethyl methacrylate, polyhydroxypropyl methacrylate, and polyhydroxybutyl methacrylate, and polysaccharides such as sodium alginate, sodium hyaluronate, and sodium heparin.
  • sodium salt of Polyhydroxyalkyl methacrylate is a synthetic polymer obtained by (co)polymerizing hydroxyalkyl methacrylate as a monomer unit, and is a compound having hydroxyl groups in side chains.
  • hydrophilic polymers examples include, but are not limited to, polyvinylpyrrolidone (hereinafter also referred to as "PVP”), polyethylene glycol (hereinafter also referred to as “PEG”), polyvinyl alcohol (hereinafter also referred to as “PVA”), polypropylene glycol, and the like. is mentioned. These hydrophilic polymers may be used singly or as a mixture of two or more.
  • the hydrophilic polymer preferably contains at least one selected from the group consisting of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG). Hollow fiber membranes containing such hydrophilic polymers tend to have better biocompatibility.
  • PVP polyvinylpyrrolidone
  • PEG polyethylene glycol
  • hydrophobic polymers include, but are not limited to, polysulfone-based resins such as polysulfone (PS), polyethersulfone (PES), and polyarylethersulfone (PAES); regenerated cellulose, cellulose acetate, and cellulose triacetate (CTA).
  • cellulose-based resins such as polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polymethyl methacrylate, ethylene vinyl alcohol copolymer, and the like. Among them, polysulfone-based resins are preferred.
  • a polysulfone-based resin is a sulfonyl (—SO 2 —) group-containing synthetic polymer, and is excellent in heat resistance and chemical resistance.
  • polysulfone-based resins include, but are not limited to, polyphenylenesulfone, polysulfone, polyarylethersulfone, polyethersulfone, and copolymers thereof.
  • the polysulfone-based resin one type may be used, or a mixture of two or more types may be used.
  • polysulfone-based polymers represented by the following formula (1) or (2) are preferable from the viewpoint of controlling the fractionability.
  • Ar represents a benzene ring
  • n represents repeating monomer units.
  • the polysulfone represented by formula (1) is commercially available, for example, from Solvay under the name "Udel (trademark)" and from BASF under the name "Ultrason (trademark)".
  • the polyethersulfone represented by the formula (2) is commercially available from Sumitomo Chemical Co., Ltd. under the name of "Sumika Excel (trademark)", and there are several types depending on the degree of polymerization, etc., so these can be used as appropriate. can be done.
  • the hollow fiber membrane is preferably sterilized in an aqueous antioxidant solution from the viewpoint of blood compatibility, and suppresses oxidation of especially fat-soluble substances in the hollow fiber membrane by the sterilization process. Therefore, it is preferable.
  • Antioxidants are not particularly limited as long as they are atoms, molecules, or ions that have the property of easily donating electrons to other molecules. antioxidants, amine-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like.
  • UV absorbers and light stabilizers include, but are not limited to, phenyl salicylate, monoglycol salicylate, p-tert-butylphenyl salicylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy -4-octoxybenzophenone, 2(2'-hydroxy-5'-methylphenyl)benzotriazole and the like.
  • the metal deactivator is not particularly limited, but includes, for example, N-salicyloyl-N'-aldehyde hydrazine, N-salicyloyl-N'-acetylhydrazine, N,N'-diphenyloxamide and the like.
  • antiozonants include, but are not limited to, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine, and the like. .
  • Amine-based antioxidants are not particularly limited, but include, for example, phenyl- ⁇ -naphthylamine, ⁇ -naphthylamine, phenothiazine, and the like.
  • phenolic antioxidants include, but are not limited to, 2,6-di-tert-butyl-p-cresol, 2,6-di-tert-butylphenol, 2,4-di-methyl-6-tert. -Butylphenol and the like.
  • sulfur-based antioxidants include, but are not limited to, dilauryl thiodipropionate, lauryl stearyl thiodipropionate, dilauryl sulfide, sodium hydrogen sulfite, sodium pyrosulfite, sodium sulfite, sodium pyrosulfite, sodium Examples include dium hydrosulfite, acetone sodium bisulfite, and the like.
  • the phosphorus antioxidant is not particularly limited, but includes, for example, triphenylphosphite, tridodecylphosphite and the like.
  • the antioxidant is not particularly limited, but in addition, for example, L-ascorbic acid, cysteine, thioglycerol, isopropyl citrate, etc. may be used.
  • antioxidant one type may be used, or a mixture of two or more types may be used.
  • sodium bisulfite, sodium pyrosulfite, sodium sulfite, and sodium pyrosulfite are preferable from the viewpoint of handling.
  • the concentration of the antioxidant in the aqueous antioxidant solution is preferably 50 ppm or more and 2000 ppm or less.
  • the antioxidant aqueous solution may contain a pH adjuster such as sodium carbonate, sodium chloride, glycerin, and the like.
  • the hollow fiber membrane type blood purifier of the present embodiment has a hollow fiber elongation of 55% or more, preferably 55 to 100%, more preferably 61 to 80%, and 61 to 70%. is more preferable.
  • the hollow fiber elongation is within the above range, the pressure resistance strength of the hollow fiber membrane tends to be improved and the occurrence of leakage can be suppressed.
  • the method for controlling the elongation of the hollow fiber within the above range is not particularly limited. method.
  • the hollow fiber elongation can be measured by the method described in Examples below.
  • the hollow fiber membrane used in the present embodiment can be produced by using a known dry-wet film-forming technique.
  • the method is not particularly limited, but for example, a spinning step of obtaining a membrane intermediate substance containing a hydrophilic polymer and a hydrophobic polymer by a dry-wet spinning method, and a fixing step of immobilizing a fat-soluble substance on the membrane intermediate substance.
  • a method having In the hollow fiber membrane used in this embodiment it is not necessary to use both a hydrophilic polymer and a hydrophobic polymer, and a single material membrane may be used.
  • a tube-in-orifice type spinneret is used, and the spinning dope is supplied from the orifice of the spinneret simultaneously with the hollow inner liquid for solidifying the spinning dope.
  • a method of discharging into the air from a tube is used, and the spinning dope is supplied from the orifice of the spinneret simultaneously with the hollow inner liquid for solidifying the spinning dope.
  • the hollow inner liquid water or a coagulating liquid mainly composed of water can be used, and the composition and the like may be determined according to the target permeation performance of the hollow fiber membrane.
  • a mixed solution of the solvent used in the spinning dope and water is preferably used.
  • the spinning stock solution discharged from the spinneret together with the hollow inner liquid is run through the idle running part, introduced into a coagulation bath mainly composed of water installed at the bottom of the spinneret, immersed to complete coagulation, and washed. After passing through, it is wound up by a hollow fiber membrane winder in a wet state to obtain a bundle of hollow fiber membranes, which is then dried. Alternatively, after passing through the washing step, drying may be performed in a dryer to obtain a bundle of hollow fiber membranes.
  • a specific example of the method for producing the hollow fiber membrane used in the present embodiment is not particularly limited, but for example, a method of performing a normal membrane-forming process using a membrane-forming spinning stock solution containing a polysulfone-based resin and polyvinylpyrrolidone. mentioned.
  • the film-forming spinning dope can be prepared, for example, by dissolving a polysulfone-based resin and polyvinylpyrrolidone in a solvent.
  • solvents examples include, but are not limited to, dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, sulfolane, dioxane, and the like.
  • the solvent one kind may be used, or a mixed solvent of two or more kinds may be used.
  • the concentration of the polysulfone-based resin in the membrane-forming spinning stock solution is not particularly limited as long as it is within a concentration range that enables membrane formation and the obtained membrane has performance as a permeable membrane, but preferably the resin composition is used. With respect to 100% by mass, it is 5% by mass or more and 35% by mass or less, more preferably 10% by mass or more and 30% by mass or less. In order to achieve high water permeability, the polysulfone-based resin concentration should be low, more preferably 10% by mass or more and 25% by mass or less.
  • the concentration of polyvinylpyrrolidone in the spinning dope for film formation is preferably 27% by mass or less, more preferably 18% by mass or more and 27% by mass or less, and still more preferably 20% by mass or more and 27% by mass. % or less.
  • the mixing ratio of polyvinylpyrrolidone By setting the mixing ratio of polyvinylpyrrolidone to 27% by mass or less with respect to the polysulfone-based resin, the elution amount of polyvinylpyrrolidone can be suppressed. Also, preferably, the polyvinylpyrrolidone concentration on the separation function surface can be controlled within a suitable range by setting it to 18% by mass or more, the effect of suppressing protein adsorption can be enhanced, and excellent blood compatibility can be obtained.
  • a hollow fiber membrane is formed by a commonly used method.
  • a tube-in-orifice type spinneret is used, and the dope for membrane-forming spinning is discharged from the orifice of the spinneret into the air at the same time as the hollow-inside liquid for solidifying the dope for membrane-forming spinning from the tube.
  • Water or a liquid mainly containing water can be used as the hollow internal liquid.
  • a mixed solution of the solvent used for the membrane-forming spinning dope and water is generally preferably used.
  • an aqueous dimethylacetamide solution containing 20% by mass or more and 70% by mass or less is used.
  • the inner diameter and thickness of the hollow fiber membrane can be adjusted to the desired values by adjusting the discharge rate of the membrane spinning stock solution and the discharge rate of the hollow inner liquid.
  • the inner diameter of the hollow fiber membrane is generally 170 ⁇ m or more and 250 ⁇ m or less, preferably 180 ⁇ m or more and 220 ⁇ m or less, in blood processing applications.
  • the thickness of the hollow fiber membrane is preferably 50 ⁇ m or less from the viewpoint of the efficiency of diffusion and removal of low-molecular-weight substances due to the mass transfer resistance of the permeable membrane. Moreover, from the viewpoint of strength, the thickness is preferably 10 ⁇ m or more.
  • the inner diameter and the thickness of the hollow fiber membrane can be measured by the methods described in Examples below.
  • the spinning stock solution discharged from the spinneret together with the hollow inner liquid runs through the air gap, is introduced into a coagulation bath mainly composed of water installed at the bottom of the spinneret, and is immersed for a certain period of time to be coagulated. complete. At this time, it is preferable that the draft represented by the ratio of the linear velocity of the undiluted solution for spinning to the take-up velocity is 1 or less.
  • the air gap means the space between the spinneret and the coagulation bath, and the membrane-forming spinning stock solution is coagulated from the inner surface side by a poor solvent component such as water in the hollow inner liquid discharged from the spinneret at the same time. starts.
  • the draft is preferably 1 or less, more preferably 0.95 or less, in order to form a smooth hollow fiber membrane surface and stabilize the hollow fiber membrane structure at the start of coagulation.
  • the hollow fiber membranes are placed in a drying chamber to remove water from the hollow fiber membranes.
  • a hollow fiber membrane type blood purifier is assembled based on the hollow fiber membrane obtained through the above steps. First, a hollow fiber membrane is filled in a tubular container having two nozzles near both ends of the side surface, and both ends are embedded with urethane resin. Next, the cured urethane portion is cut to form an open end of the hollow fiber membrane. Header caps having nozzles for introducing (leading out) liquids such as blood and dialysate are mounted on both ends to form a hollow fiber membrane type blood purifier.
  • the amount of acetic acid per hollow fiber membrane area and the water permeability can be controlled within the above ranges by performing the following coating method as the step of immobilizing the fat-soluble substance on the hollow fiber membrane.
  • the coating method is a method of causing a fat-soluble substance to adhere to the hollow fiber membrane surface by flowing a fat-soluble substance solution into the hollow portion on the inner surface side of the hollow fiber membrane.
  • the hollow fiber membrane type blood purifier may be assembled after the lipid-soluble substance is immobilized on the formed hollow fiber membrane, or the hollow fiber membrane type blood purifier may be assembled after or during assembly.
  • the fat-soluble substance may be immobilized by passing the coating liquid through.
  • the concentration of the fat-soluble substance in the coating liquid is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.1% by mass or more and 20% by mass, when the total amount of the coating liquid is 100% by mass. or less, more preferably 0.1% by mass or more and 10% by mass or less.
  • the process of immobilizing fat-soluble substances includes a liquid transfer process and a liquid removal process.
  • the feeding step is a step of feeding a coating liquid obtained by dissolving a fat-soluble substance (eg, vitamin E, etc.) in an organic solvent (eg, 2-propanol, etc.) to the inside of the hollow fibers.
  • a fat-soluble substance eg, vitamin E, etc.
  • an organic solvent eg, 2-propanol, etc.
  • the amount of coating liquid may be set as appropriate. After that, as a dewatering step, the coating liquid is deliquored with air pressure.
  • the pressure difference (inside-outside) between the inside and outside of the hollow fibers at that time is -0.1 MPa.
  • the pressure inside the hollow fiber is preferably higher than 0 MPa, that is, the pressure inside the hollow fiber is higher than the pressure outside.
  • the upper limit of the pressure difference (inside-outside) is not particularly limited, but is, for example, 0.1 MPa.
  • the liquid may be removed by sending air pressure of 0.1 MPa or more only to the inside of the hollow fibers.
  • deliquidation may be performed by sending a pulsed air pressure only to the inside of the hollow fibers.
  • the pressure applied to the inside and outside of the hollow fibers during liquid removal may be appropriately set, but it is preferable to increase the pressure inside the hollow fibers so that more of the coating liquid remains in the film thickness portion.
  • the coating solution remaining on the hollow fiber membrane is slowly removed by drying with air containing oxygen.
  • the temperature of the air used for drying is preferably 40-60°C.
  • the amount of acetic acid per hollow fiber membrane area can be easily controlled within a specific range, and the amount of Alb leakage can also be controlled.
  • the mechanism is not clear, the present inventors presume the mechanism of acetic acid generation as follows. In the dewatering step, the pressure outside the hollow fiber is generally made higher than the pressure inside the hollow fiber in order to efficiently dehydrate from the blood side.
  • the pressure difference between the inside and outside of the hollow fiber is -0.1 MPa or more, preferably more than 0 MPa, that is, by making the pressure inside the hollow fiber higher than the pressure outside, etc., intentionally The dewatering efficiency is lowered, and a large amount of the coating liquid remains in the hollow fiber film thickness portion after the dewatering step. In this state, it is considered that the organic solvent contained in the coating liquid is oxidatively decomposed to become acetic acid by slowly drying with air containing oxygen at 40 to 60°C.
  • the amount of acetic acid contained in the blood purifier has a correlation with the amount of bovine blood Alb leakage within a predetermined amount range, and the amount of bovine blood Alb leakage can be controlled by controlling the acetic acid amount. Found it. Difficulty in controlling the amount of bovine blood Alb leakage is a major problem in hollow fiber membranes in which fat-soluble substances are immobilized. There are several methods for immobilizing fat-soluble substances on hollow fiber membranes. There is a method of adhering to the surface of the fiber membrane.
  • a change in the pore size of the hollow fiber membrane and a change in the hydrophilicity/hydrophobicity of the membrane surface occur due to the adherence of fat-soluble substances, resulting in a decrease in the amount of Alb leakage.
  • the energy of radiation causes cross-linking between molecules constituting the hollow fiber membrane, which is thought to change the pore size of the hollow fiber.
  • the present inventors intentionally reduce the dewatering efficiency in the dewatering step, particularly in the dewatering step, among the processes for immobilizing the fat-soluble substance on the hollow fiber membrane, and slowly dry with oxygen-containing air in this state.
  • a predetermined amount of acetic acid was generated, and based on the correlation between the amount of acetic acid generated and the amount of bovine blood Alb leakage, we succeeded for the first time in realizing an optimal membrane design under HDF clinical conditions.
  • the inner diameter of the hollow fiber membrane is increased and the membrane thickness is reduced to reduce the pressure loss and membrane resistance.
  • the hollow fiber membrane has an inner diameter of 200 ⁇ m or more and a thickness of less than 45 ⁇ m. Furthermore, the higher the raw yarn water permeability, the better.
  • a hollow fiber membrane having an inner diameter of 200 ⁇ m or more and a film thickness of less than 45 ⁇ m and having high water permeability and coated with a fat-soluble substance by a known method has low pressure resistance and is not suitable for HDF. .
  • the present inventors easily control the amount of acetic acid per hollow fiber membrane area and the hollow fiber elongation within the above range by performing the step of immobilizing a fat-soluble substance on the hollow fiber membrane as described above. As a result, it was found that the amount of bovine blood Alb leakage when used with prediluted HDF could be controlled within the range of 1 to 3 g.
  • the relationship between the amount of acetic acid and the amount of bovine blood Alb leakage does not depend on the inner diameter, membrane thickness and water permeability of the hollow fiber membrane.
  • the amount of acetic acid per hollow fiber membrane area contained in the blood purifier is preferably 1 to 30 mg/m 2 , more preferably 1 to 20 mg/m 2 . is more preferable.
  • the hemodialyzer with the largest amount of Alb leakage among the hemodialyzers immobilized with fat-soluble substances by the conventional coating technique is used under pre-diluted HDF conditions, the amount of bovine blood Alb leakage is 1.5 g.
  • the elongation of the hollow fiber which is a parameter of pressure resistance, is 53%, and the hollow fiber membrane is not suitable for HDF use in the first place. Therefore, it is impossible to manufacture a blood purifier that can ensure a bovine blood Alb leakage amount of 1.5 g or more and a hollow fiber elongation of 55% or more by the conventional coating technique.
  • the pressure resistance that can be used in the hemodiafiltrator, that is, the hollow fiber elongation is 55% or more, while the fat-soluble substance can be arbitrarily controlled at 1 to 3 g while immobilizing Alb.
  • ⁇ Wetting process for hollow fiber membrane> In the assembled hollow fiber membrane type blood purifier, it is preferable to wet the hollow fiber membranes with an aqueous solution before sterilization from the viewpoint of protecting the hollow fiber membranes, and it is more preferable to sterilize them in an aqueous antioxidant solution.
  • Examples of the method for wetting the hollow fiber membrane with an aqueous solution include a method of filling a container filled with the hollow fiber membrane with the aqueous solution, and a method of filling the container with the aqueous solution and then draining the solution by air flushing or the like. Among them, a method of filling a module with an aqueous solution of sodium pyrosulfite and/or sodium carbonate is preferred.
  • sterilization methods include radiation sterilization, electron beam sterilization, autoclave sterilization, ethylene oxide gas (EOG) sterilization, and the like.
  • Radiation sterilization is preferred for hollow fiber membranes containing fat-soluble substances, since extreme heating may cause hollow fiber breakage.
  • Electron beams, gamma rays ( ⁇ -rays), X-rays, and the like can be used for the radiation sterilization method.
  • ⁇ -ray sterilization is preferable for precisely controlling the amount of acetic acid in the hollow fiber membrane blood purifier after sterilization.
  • the irradiation dose of radiation is preferably 15 kGy or more and 50 kGy or less, more preferably 20 kGy or more and 40 kGy or less, in the case of gamma rays or electron beams.
  • the inner diameter and film thickness of the hollow fiber membrane were measured as follows. First, the dried hollow fiber membrane was cut perpendicular to the axial direction with a razor. At the time of cutting, the hollow fiber membrane was prevented from being crushed or deformed. The inner diameter and the thickness of the cut hollow fiber membrane were measured at three arbitrary points on the cross section with a microscope, and the average value was taken as the inner diameter and the thickness of the hollow fiber membrane.
  • 1, 1 L of water was circulated through the hollow fiber membrane blood purifier at 250 mL/min for 3 hours.
  • the circulating water was flowed in the order of blood side inlet ⁇ blood side outlet ⁇ dialysate side inlet ⁇ dialysate side outlet in order of parallel flow.
  • the fluid in the blood purifier and the circulating fluid were pooled, and the acetic acid concentration ( ⁇ g/mL) was measured by ion chromatography.
  • the amount of acetic acid was calculated by multiplying the acetic acid concentration by the amount of water (1 L).
  • the hollow fiber membrane area when calculating the amount of acetic acid is the hollow fiber membrane area declared by the manufacturer (the hollow fiber membrane area described on the label, etc.), or the average inner diameter (diameter) of the hollow fiber membrane, the circumference It is the inner surface area calculated from the product of the ratio, the number, and the effective length.
  • the effective length is the permeable hollow fiber length excluding the urethane sealing portion and the like within the entire length of the hollow fiber membrane.
  • a hollow fiber membrane blood purifier was thoroughly primed and flooded. Priming was performed by passing water through the circuit shown in FIG. The blood side flow rate was 5 L/min, the dialysate side flow rate was 4 L/min, and priming was performed for 5 minutes or longer. Next, the hollow fiber membrane type blood purifier was replaced with the circuit for water permeability evaluation shown in FIG. Water heated to 37 to 38° C. was introduced from the blood side inlet at a flow rate of 300 mL/min on the blood side and 500 mL/min on the dialysate side, and each pressure was read for 56 to 115 seconds after the start of circulation.
  • the water permeability (UFR) of the hollow fiber membrane blood purifier was calculated from the following formula.
  • UFR [mL/Hr/mmHg/m 2 ] 300 [mL/min] ⁇ 60 [min] ⁇ TMP [mmHg] ⁇ membrane area [m 2 ]
  • TMP [mmHg] (PBin + PBout) / 2 - (PDin + PDout) / 2 (Wherein, PBin [mmHg] is the blood side inlet pressure, PBout [mmHg] is the blood side outlet pressure, PDin [mmHg] is the dialysate side inlet pressure, PDout [mmHg] is is the inlet pressure on the dialysate side.)
  • the water permeability was measured for the hollow fiber membrane type blood purifier before and after immobilization of the fat-soluble substance.
  • High-performance liquid chromatograph (pump: JASCO PU-1580, detector: Shimadzu RID-6A, autoinjector: Shimadzu SIL-6B, data processing: Tosoh GPC-8020, column oven: GL Sciences 556), column (Shodex Asahipak ODP-506E packed column for HPLC) is installed, and at a column temperature of 40 ° C., methanol for high performance liquid chromatography, which is a mobile phase, is passed at a flow rate of 1 mL / min, and the fat-soluble substance concentration is determined from the area of the absorption peak in the ultraviolet region. asked.
  • the amount of fat-soluble substance immobilized on the hollow fiber membrane (mg/m 2 ) was determined, assuming that the extraction efficiency was 100%.
  • the amount of fat-soluble substances partially oxidized by sterilization was also included in the amount of fat-soluble substances per 1 m 2 of hollow fiber membrane surface.
  • the fat-soluble substance used for preparing the calibration curve is exposed to radiation of 50 kGy in the air in advance, and the absorption peak of the partially oxidized fat-soluble substance is determined in advance, and the area is calculated. were included in the group of peaks used for .
  • the hollow fiber elongation in the hollow fiber membrane type blood purifier was measured as follows. First, a sterilized hollow fiber membrane blood purifier was washed with water and then disassembled to cut out the hollow fibers (whole hollow fiber membrane module). The cut hollow fiber (whole hollow fiber membrane module) was dried in a vacuum dryer. Drying was continued until there was no difference in the weight of the hollow fibers before and after drying (the difference in the weight of the hollow fibers before and after drying (confirmation interval: 12 hours) was in the range of ⁇ 0.05 g). The humidity in the test room for hollow fiber elongation was set to 60%, and the temperature was room temperature (20 to 25°C).
  • one hollow fiber was sandwiched in a Tensilon tester so that the distance between chucks was 200 mm.
  • One side of the Tensilon tester was fixed and the hollow fiber was pulled at a test speed of 300 mm/min.
  • Example 1 Polysulfone (hereinafter also referred to as “PSf”) (manufactured by Solvay, P-1700) 17 parts by mass, polyvinylpyrrolidone (hereinafter also referred to as “PVP”) (manufactured by BASF, K-90) 4 parts by mass , and dimethylacetamide (hereinafter also referred to as "DMAc”) (Kishida Chemical Co., Ltd., reagent special grade) of 79 parts by mass.
  • a DMAc 58% by mass aqueous solution was used as the hollow internal liquid, and was discharged from a spinneret with a slit width of 50 ⁇ m.
  • the temperature of the undiluted solution for film formation during ejection was 40°C.
  • the discharged undiluted solution was passed through a drop part covered with a hood and immersed in a 60° C. coagulating bath made of water to be coagulated.
  • the air gap length was 400 mm and the spinning speed was 34 m/min.
  • a blood treatment membrane was obtained through a water washing process and a drying process.
  • the discharge amounts of the undiluted membrane-forming solution and the hollow inner solution were adjusted so that the film thickness after drying was 43 ⁇ m and the inner diameter was 200 ⁇ m.
  • a bundle of 13,000 hollow fiber membranes wound after drying is filled into a cylindrical container having two nozzles for introducing and discharging liquid, and both ends are embedded with urethane resin, and then cured.
  • the urethane portion was cut and processed into an open end of the hollow fiber membrane.
  • Header caps having nozzles for blood introduction (extraction) were attached to both ends, and a hollow fiber membrane type blood purifier having a membrane area of 2.2 m 2 was assembled.
  • the water permeability of the hollow fiber membrane type blood purifier at this time was measured by the above method, it was 252 mL/Hr/mmHg/m 2 .
  • vitamin E was immobilized on the hollow fiber membrane as a fat-soluble substance by performing the following liquid feeding step, liquid removing step and drying step.
  • a coating liquid vitamin E coating liquid
  • vitamin E ⁇ -tocopherol (special grade, Wako Pure Chemical Industries)
  • B side blood side
  • the dialysate side (hereinafter also referred to as "D side”) port of the hollow fiber membrane type blood purifier was closed, and the liquid was sent to the inside of the hollow fibers.
  • D side dialysate side
  • the pressure difference (B side - D side) was set to +0.05 MPa, and pressurized air was sent from the B side and the D side to deliquid.
  • the hollow fiber membrane blood purifier was washed with water. After that, an aqueous solution containing 0.06% by mass of sodium pyrosulfite as an antioxidant and further containing 0.03% by mass of sodium carbonate for pH adjustment was added to the blood-side channel (inner surface of the hollow fiber membrane blood purifier). side) and the filtrate side channel (outer surface side). After the wetting step, the hollow fiber membrane type blood purifier was obtained by sterilizing with 25 kGy of ⁇ -ray irradiation with each nozzle sealed. When the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 14.3 mg/m 2 .
  • the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 223 mL/Hr/mmHg/m 2 . Furthermore, when the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 61%. In addition, the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 363 mg/m 2 .
  • Example 2 As shown in Table 1, in the fat-soluble substance immobilization step, the amount of coating liquid in the liquid feeding step was set to 800 mL, and the pressure difference between the inside (B side) and the outside (D side) of the hollow fiber in the dewatering step (inside - outside ) was changed to +0.10 MPa, a hollow fiber membrane blood purifier of Example 2 was obtained in the same manner as in Example 1.
  • the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 17.4 mg/m 2 .
  • the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 239 mL/Hr/mmHg/m 2 .
  • the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 62%.
  • the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 378 mg/m 2 .
  • Example 3 As shown in Table 1, in the fat-soluble substance immobilizing step, the amount of coating liquid in the liquid feeding step was changed to 700 mL, and the pressure difference in the dewatering step was changed to 0 MPa. A hollow fiber membrane type blood purifier was obtained. When the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 10.4 mg/m 2 . Further, when the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 199 mL/Hr/mmHg/m 2 . Furthermore, when the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 62%. In addition, the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 312 mg/m 2 .
  • Example 4 As shown in Table 1, in the fat-soluble substance immobilization step, the amount of coating liquid in the liquid feeding step was changed to 500 mL, and the pressure difference in the dewatering step was changed to -0.10 MPa. A hollow fiber membrane blood purifier of Example 4 was obtained. When the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 1.3 mg/m 2 . Further, when the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 163 mL/Hr/mmHg/m 2 . Furthermore, when the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 61%. In addition, the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 265 mg/m 2 .
  • Example 5 As shown in Table 1, in the fat-soluble substance immobilizing step, the hollow fiber membrane type blood purifier of Example 5 was prepared in the same manner as in Example 1, except that the pressure difference in the dewatering step was changed to -0.05 MPa. got When the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 1.5 mg/m 2 . Further, when the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 172 mL/Hr/mmHg/m 2 . Furthermore, when the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 61%. In addition, the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 287 mg/m 2 .
  • a hollow fiber membrane blood purifier of Comparative Example 1 was obtained.
  • the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 2.5 mg/m 2 .
  • the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 155 mL/Hr/mmHg/m 2 , indicating that the water permeability was not sufficient.
  • the water permeability of the hollow fiber membrane type blood purifier before the fat-soluble substance immobilization step was 246 mL/Hr/mmHg/m 2 .
  • the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 65%.
  • the immobilized amount of fat-soluble substance (vitamin E) in the hollow fiber membrane was 152 mg/m 2 .
  • Comparative Example 2 A hollow fiber membrane type blood purifier of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that the DMAc concentration of the hollow internal liquid when producing the hollow fiber membrane was changed to 58% by mass.
  • the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 2.1 mg/m 2 .
  • the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 184 mL/Hr/mmHg/m 2 .
  • the water permeability of the hollow fiber membrane type blood purifier before the fat-soluble substance immobilization step was 287 mL/Hr/mmHg/m 2 .
  • the obtained hollow fiber membrane type blood purifier had a hollow fiber elongation of 53% when measured by the above method, which was inferior to that of Example 1 in terms of pressure resistance.
  • the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 141 mg/m 2 .
  • Comparative Example 3 A hollow fiber membrane type blood purifier of Comparative Example 3 was obtained in the same manner as in Comparative Example 1, except that the DMAc concentration of the hollow internal liquid when manufacturing the hollow fiber membrane was changed to 64% by mass.
  • the amount of acetic acid per hollow fiber membrane area in the obtained hollow fiber membrane blood purifier was measured by the above method, it was 2.1 mg/m 2 .
  • the water permeability of the obtained hollow fiber membrane blood purifier was measured by the above method, it was 344 mL/Hr/mmHg/m 2 .
  • the water permeability of the hollow fiber membrane type blood purifier before the fat-soluble substance immobilization step was 411 mL/Hr/mmHg/m 2 .
  • the hollow fiber elongation of the resulting hollow fiber membrane type blood purifier was measured by the above method, it was 45%, which was inferior to that of Example 1 in terms of pressure resistance.
  • the immobilized amount of the fat-soluble substance (vitamin E) in the hollow fiber membrane was 144 mg/m 2 .
  • Comparative Example 4 PSf (manufactured by Solvay, P-1700) 16 parts by weight, PVP (manufactured by BASF, K-90) 3.5 parts by weight, DMAc (Kishida Chemical, special reagent grade) from 81.5 parts by weight A membrane-forming stock solution was prepared.
  • a hollow fiber membrane type blood purifier of Comparative Example 4 was obtained in the same manner as in Comparative Example 1 except that a DMAc 46% by mass aqueous solution was used as the hollow internal liquid and discharged from a spinneret with a slit width of 50 ⁇ m.
  • the discharge amounts of the undiluted membrane-forming solution and the hollow inner solution were adjusted so that the film thickness after drying was 43 ⁇ m and the inner diameter was 200 ⁇ m.
  • a bundle of 13,000 hollow fiber membranes wound after drying is filled into a cylindrical container having two nozzles for introducing and discharging liquid, and both ends are embedded with urethane resin, and then cured.
  • the urethane portion was cut and processed into an open end of the hollow fiber membrane. Header caps having nozzles for blood introduction (extraction) were attached to both ends, and a hollow fiber membrane type blood purifier having a membrane area of 2.2 m 2 was assembled.
  • the water permeability of the hollow fiber membrane type blood purifier at this point was measured by the above method and found to be 260 mL/Hr/mmHg/m 2 . Furthermore, when the hollow fiber elongation in the obtained hollow fiber membrane type blood purifier was measured by the above method, it was 64%. However, the hollow fiber membrane type blood purifier of Comparative Example 4 does not have anti-oxidation performance because the fat-soluble substance is not immobilized on the hollow fiber membrane.
  • the amount of bovine blood Alb leakage under prediluted HDF conditions can be controlled within the range of 1 to 3 g per hour.
  • the hollow fiber membrane type blood purifier of the present invention has industrial applicability in, for example, blood purification therapy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

中空糸膜及び該中空糸膜が充填される容器を含む中空糸型血液浄化器であって、該中空糸膜が脂溶性物質を含み、該血液浄化器が含有する中空糸膜面積当たりの酢酸量が1~40mg/m2であり、透水性能が163mL/Hr/mmHg/m2以上であり、中空糸伸度が55%以上である、中空糸膜型血液浄化器。

Description

中空糸膜型血液浄化器
 本発明は、中空糸膜型血液浄化器に関する。
 従来から、体外血液循環の分野、例えば血液透析、開心手術中の血液への酸素付与、あるいは血漿分離等に、選択的透過膜を用いた中空糸膜型血液処理装置が広く使用されている。
 近年、特に透析膜、ガス交換膜、及び血液成分分離膜等の血液処理膜分野においては、ポリスルホン系樹脂を構成材料とする血液処理膜が広く利用されている。
 前記血液処理膜の構成材料として、疎水性の高いポリスルホン系樹脂のみを用いると、十分な血液適合性が得られないため、ポリビニルピロリドン等の親水性高分子との複合体が一般的に用いられている。
 また、血液処理膜が、単に分離膜としての役割を担うだけでなく、長期透析患者で顕在化する酸化ストレスを緩和する役割も担うようなものとするための試みもなされている。
 例えば、分離膜を利用して酸化ストレスの原因物質である過酸化物を消去することや、生体の抗酸化効果を回復することが考えられる。具体的には、生体内抗酸化作用、生体膜安定化作用、血小板凝集抑制作用等の種々の生理作用を有するビタミンEを透析膜の表面に被覆する中空糸膜型血液浄化装置が提案されている。
 上記のような中空糸膜型血液浄化装置は、その用途を考慮すれば当然に、使用前には密封包装状態のまま完全に滅菌処理されている必要がある。
 中空糸膜型血液浄化装置の滅菌方法としては、従来からエチレンオキサイドガス等によるガス滅菌法、高圧蒸気によるオートクレーブ法及びγ線や電子線等の放射線滅菌法等が知られている。
 このうちエチレンオキサイドガスを用いたガス滅菌法は、エチレンオキサイドガスの残留による人体への有害性が懸念されている。また、高圧蒸気によるオートクレーブ法は、中空糸膜型血液浄化装置を構成する材質によっては、滅菌時にその性能が著しく低下するおそれがある。
 また、ビタミンE固定化ポリスルホン膜に、上記高圧蒸気によるオートクレーブ法を用いた滅菌処理を施すと、脂溶性ビタミンが局所的な凝集を起こし、中空糸膜にクラックが発生し、その結果血液リークが起こる可能性が高まることが指摘されている(例えば、特許文献1参照。)。
 一方、放射線滅菌法では、エチレンオキサイドガス残留の問題や、中空糸膜のリークの問題も生じず、好ましい滅菌方法である。
 ところで、上述したような中空糸膜型血液浄化装置は、中空糸膜の中空内部や容器との隙間が水性媒体で満たされているウェットタイプ、水性媒体で満たされていないドライタイプに大別される。
 ドライタイプはさらに、膜の含水率が数パーセント以下と低いタイプ(狭義のドライタイプ)、膜が水分や保湿剤等によって適度に湿潤化されているタイプに区別することができる。後者は、狭義のドライタイプと区別してセミドライタイプと言われることがあるが、特徴はほぼ同じであるため、本明細書においては、両者を合わせてドライタイプと呼称する。
 上述したドライタイプは、ウェットタイプに比べて製品重量が軽く、しかも低温で凍結しにくいという特徴を有しており、運搬や保管という流通面で特に優れた製品形態と言える。
 しかし、ドライタイプのポリスルホン系血液処理膜に放射線滅菌処理を施すと、中空糸膜を構成する親水性高分子が劣化及び溶出するため、血液適合性が低下してしまうことが知られている。
 かかる問題点に鑑み、中空糸膜を特定量の湿潤保護剤で保護しつつ放射線滅菌をしたり(例えば、特許文献1参照。)、特定量の湿潤保護剤で保護した上に膜周辺の酸素濃度を制御した後に電子線滅菌したりする(例えば、特許文献2参照)ことで、血液適合性の低下を抑制する方法が提案されている。
 しかしながら、上述したような方法では、過酷環境下に晒されると、種々の特性の劣化、特に抗酸化性能の劣化を生じるおそれがあり、また、より一層、高いレベルの血液適合性を有する血液処理膜を具備する医療用具が要求されつつある。
 このような状況に鑑み、近年、さらに優れた抗酸化性能や血液適合性を有する中空糸膜型血液浄化装置が提案されている。例えば、特許文献3には、ポリスルホン系樹脂、親水性高分子及び脂溶性ビタミンを含有する中空糸膜を具備する中空糸膜型血液浄化装置であって、前記脂溶性ビタミンの、前記中空糸膜表面における存在量が、前記中空糸膜1gあたり0.5mg以上25mg以下であり、前記中空糸膜は、当該中空糸膜の乾燥重量に対して、水分を含めて5質量%以上50質量%以下の親水性化合物が付着しており、放射線滅菌処理が施されているドライタイプの中空糸膜型血液浄化装置が提案されている。また、特許文献4には、ポリスルホン系樹脂、親水性高分子及び脂溶性物質を含む、ポリスルホン系血液処理用中空糸膜において、膜の表面に存在する脂溶性物質の量が1mあたり10~300mgであり、膜の全体に存在する脂溶性物質の含有量を100質量%とした場合、膜の表面に存在する脂溶性物質の含有量が40~95質量%であり、膜を用いて組み立てられた血液浄化器の1.5m換算したβ2MGのクリアランス値が65mL/min以上である、ポリスルホン系血液処理用中空糸膜が提案されている。
特開2006-296931号公報 特開2008-93228号公報 特開2013-009761号公報 国際公開第2014/171172号
 しかしながら、従来の中空糸膜型血液浄化器では、脂溶性物質を中空糸膜に固定化することにより、中空糸性能、特にアルブミン(以下「Alb」とも記す)漏出量が脂溶性物質を固定していない中空糸膜と比較して変化するため、その漏出量を制御することが難しいといった課題がある。この課題は、血液透析ろ過の臨床治療において特に問題となる。
 血液透析ろ過(以下「HDF」とも記す)は、透析合併症の治療に有効な方法として、近年透析治療に用いる方法において約半分を占める。透析合併症、特に掻痒感、指先つまみ力、関節痛、手指のしびれ、レストレスレッグス症候群(RLS)の改善及び治療のためには、臨床治療においてAlbを数g程度積極的に除去することが推奨されている。この臨床治療におけるAlbの推奨除去量は、中空糸膜の設計時に用いられる牛血試験に換算すると、所定の前希釈HDF条件下で1~3g/hの除去に相当する(以下、牛血Alb漏出量という)。
 日本国内で主に行われる前希釈HDF条件(血液側流量(QB)=250mL/min、透析液側流量(QD)=600mL/min、補液流量(Qs)=12L/h)において、従来のコート技術では、牛血Alb漏出量1.5g以上を達成しつつ、臨床使用上問題ない脂溶性物質量を固定化した血液透析ろ過器の製造は実現できていない。なぜなら、透水性が高くなるほど中空糸膜の耐圧強度が低下するため、牛血Alb漏出量1.5g以上を達成するような脂溶性物質固定化血液透析ろ過器は、HDF使用時にかかる高い膜間差圧力(TMP)により臨床使用中に中空糸がリークする可能性が極めて高いからである。より具体的には、前希釈HDF条件下で牛血Alb漏出量1.5g以上を達成する血液透析ろ過器において、耐圧強度が低下してしまう場合がある。
 そこで、本発明は、脂溶性物質を含む中空糸膜型血液浄化器において、中空糸伸度が55%以上の耐圧強度を有しつつ、前希釈HDF条件での牛血Alb漏出量が1時間で1~3gとなる、高い耐圧性とHDF臨床治療に適う優れた物質透過性とを両立した、脂溶性物質を含む中空糸膜型血液浄化器を提供することを目的とする。
 本発明者らが、上記課題を解決すべく鋭意検討した結果、脂溶性物質を含む中空糸膜型血液浄化器において、血液浄化器が含有する中空糸膜面積当たりの酢酸量を特定の範囲に制御することにより、高い耐圧性とHDF臨床治療に適う優れた物質透過性の基礎となる高い透水性能とを兼ね揃えた脂溶性物質固定化中空糸膜において、前希釈HDF条件での牛血Alb漏出量を1時間で1~3gに制御できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 中空糸膜及び該中空糸膜が充填される容器を含む中空糸型血液浄化器であって、
 該中空糸膜が脂溶性物質を含み、
 該血液浄化器が含有する中空糸膜面積当たりの酢酸量が1~40mg/mであり、
  透水性能が163mL/Hr/mmHg/m以上であり、中空糸伸度が55%以上である、中空糸膜型血液浄化器。
[2]
 脂溶性物質が、ビタミンA、ビタミンD、ビタミンE及びビタミンKからなる群より選択される少なくとも1種を含む、[1]に記載の中空糸膜型血液浄化器。
[3]
 中空糸膜が、脂溶性物質を固定化した中空糸膜である、[1]又[2]に記載の中空糸膜型血液浄化器。
[4]
 中空糸膜が、脂溶性ビタミンを固定化した中空糸膜である、[1]又は[2]に記載の中空糸膜型血液浄化器。
[5]
 血液浄化器が含有する中空糸膜面積あたりの酢酸量が1~30mg/mである、[1]から[4]のいずれかに記載の中空糸膜型血液浄化器。
[6]
 透水性能が163~350mL/Hr/mmHg/mである、[1]から[5]のいずれかに記載の中空糸膜型血液浄化器。
[7]
 中空糸伸度が61~80%である、[1]から[6]のいずれかに記載の中空糸膜型血液浄化器。
[8]
 中空糸膜における脂溶性物質固定化量が1~500mg/mである、[1]から[7]のいずれかに記載の中空糸膜型血液浄化器。
[9]
 中空糸膜を構成する物質が、親水性高分子及び疎水性高分子からなる群より選択される少なくとも1種を含む、[1]から[8]のいずれかに記載の中空糸膜型血液浄化器。
[10]
 中空糸膜の内径が170μm以上250μm以下である、[1]から[9]のいずれかに記載の中空糸膜型血液浄化器。
[11]
 中空糸膜の膜厚が10μm以上50μm以下である、[1]から[10]のいずれかに記載の中空糸膜型血液浄化器。
[12]
 中空糸膜へ脂溶性物質を固定化する固定工程を含み、
 該固定工程において、脂溶性物質を有機溶媒に溶解したコート液を中空糸内側に送液し、圧気でコート液を脱液する際の中空糸の内側と外側との圧力差(内側-外側)を-0.1MPa以上とする、[1]から[11]のいずれかに記載の中空糸膜型血液浄化器の製造方法。
[13]
 前記固定工程において、コート液を脱液後、酸素を含む40~60℃の空気で中空糸膜を乾燥する、[12]に記載の中空糸膜型血液浄化器の製造方法。
[14]
 中空糸膜を湿潤化する工程をさらに含む、[12]又は[13]に記載の中空糸膜型血液浄化器の製造方法。
[15]
 中空糸膜型血液浄化器に対して、滅菌処理を施す工程をさらに含む、[12]から[14]のいずれかに記載の中空糸膜型血液浄化器の製造方法。
 本発明の中空糸膜型血液浄化器は、高い耐圧性とHDF臨床治療に適う優れた物質透過性の基礎となる高い透水性能を兼ね揃えた脂溶性物質固定化中空糸膜において、前希釈HDF条件での牛血Alb漏出量を1時間で1~3gに制御することができ、HDF臨床治療において長らく希求されていた脂溶性物質を固定化した中空糸膜型血液浄化器を提供することができる。
ドライタイプの中空糸膜型血液浄化器が含有する酢酸量を測定する際に用いる装置の一例の概念図である。 中空糸膜型血液浄化器の透水性能の測定する際にプライミングとして水を通液させる回路の一例の概念図である。 中空糸膜型血液浄化器の透水性能の測定する際に用いる回路の一例の概念図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について以下詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
<中空糸膜型血液浄化器>
 本実施形態の中空糸膜型血液浄化器は、
 中空糸膜及び該中空糸膜が充填される容器を含む中空糸型血液浄化器であって、
 該中空糸膜が脂溶性物質を含み、
 該血液浄化器が含有する中空糸膜面積当たりの酢酸量が1~40mg/mであり、
 透水性能が163mL/Hr/mmHg/m以上であり、
 中空糸伸度が55%以上である。
 本実施形態の中空糸膜型血液浄化器は、このような構成とすることにより、脂溶性物質を含む中空糸膜型血液浄化器であっても、中空糸伸度が55%以上の耐圧強度を有しつつ、前希釈HDF条件での牛血Alb漏出量を1時間で1~3gとすることができる。
<酢酸量>
 本実施形態の中空糸膜型血液浄化器は、中空糸膜面積当たりの酢酸量が1~40mg/mであり、1~30mg/mであることが好ましく、さらに1~20mg/mであることがより好ましい。
 本実施形態の中空糸膜型血液浄化器は、中空糸膜面積当たりの酢酸量が前記範囲であると、前希釈HDF条件での牛血Alb漏出量を1時間で1~3gとすることができる。
 中空糸膜面積当たりの酢酸量を前記範囲に制御する方法としては、特に限定されないが、例えば、後述の脂溶性物質の固定化工程を行う方法が挙げられる。
 なお、本実施形態において、中空糸膜面積当たりの酢酸量は、後述の実施例に記載の方法により測定することができる。
<透水性能>
 本実施形態の中空糸膜型血液浄化器は、透水性能が163mL/Hr/mmHg/m以上であり、163~350mL/Hr/mmHg/mであることが好ましく、163~300mL/Hr/mmHg/mであることがより好ましい。
 本実施形態の中空糸膜型血液浄化器は、透水性能が前記範囲であると、前希釈HDF条件での牛血Alb漏出量を1時間で1~3gとすることができる。
 透水性能を前記範囲に制御する方法としては、特に限定されないが、例えば、後述の脂溶性物質の固定化工程を行う方法や中空糸膜を構成する材料の種類及び含有量を適宜調整する方法が挙げられる。
 なお、本実施形態において、透水性能は、後述の実施例に記載の方法により測定することができる。
 本実施形態の中空糸膜型血液浄化器は、特に限定されないが、例えば、血液透析、血液ろ過、血液ろ過透析、血液成分分画、酸素付与、及び血漿分離等の体外循環式の血液浄化療法に用いられる。
 本実施形態の中空糸膜型血液浄化器は、血液透析器、血液ろ過器、血液ろ過透析器等として好ましく用いられ、これらの持続的用途である、持続式血液透析器、持続式血液ろ過器、持続式血液ろ過透析器として用いることがより好適である。各用途に応じて、中空糸膜の寸法や分画性等の詳細仕様が決定される。
 本実施形態の中空糸膜型血液浄化器は、中空糸伸度が55%以上の耐圧強度を有し、前希釈HDF条件での牛血Alb漏出量を1時間で1~3gとすることができるので、透析合併症、特に掻痒感、手指つまみ力、関節痛、手指のしびれ、RLSの改善及び治療のために好適に用いることができる。
 透析治療による合併症予防及び改善のためには、α1-マイクログロブリン(以下「α1-MG」とも記す)領域(分子量3~4万)の物質の除去が有効といわれている。特に掻痒感、手指つまみ力、関節痛、手指のしびれ及びRLSなどの予防及び改善のためには、治療全体を通したα1-MG除去率が10%以上必要とされている。一方、Albは浸透圧調整や栄養素としての働きを持つ面から、透析治療において漏出を抑制したい物質である。しかし、分画分子量の観点から、α1-Mg領域のみを10%以上除去し、Albを全く漏出させない血液浄化器はこれまで開発されていない。そのため、昨今の透析治療では、ある程度(1g~3g)のAlb漏出量を許容しつつ、α1-MG領域を除去する場合が多い。
 また一方で、酸化ストレスによりAlbが酸化され、尿毒素を結合することで、Alb自体が尿毒素となる可能性が高いことも指摘されている。そのため、ある程度の量のAlbは積極的に除去してAlbの新陳代謝を促進すべきという考えもある。上記理由より、ろ過による物質除去が支配的で、効率的に尿毒素タンパク質を除去できるHDF治療(前希釈HDF条件)で牛血Alb漏出量1g以上の性能の血液透析ろ過器の使用が近年主流となりつつある。さらに、脂溶性物質(例えば、ビタミンE)を固定化した血液透析器は、生体適合性がよく、脂溶性物質の持つ抗酸化作用による臨床効果が期待されており、日本や欧州で広く使用されている。
 しかし、前述のとおり、従来の技術では脂溶性物質を固定化しつつ、前希釈HDF条件で牛血Alb漏出量1~3gを実現する血液透析ろ過器を作ることは非常に困難を極める。本発明により、透析合併症の予防及び改善に有効といわれる牛血Alb漏出量1~3gを達成しつつ、脂溶性物質(例えば、ビタミンE)を含む中空糸膜型血液浄化器を提供することが可能になる。さらに、血液浄化器が含有する中空糸膜面積当たりの酢酸量を特定の範囲に制御することで、1つの性能の中空糸膜から、例えば、任意の牛血Alb漏出量1~3gを達成するビタミンE固定化血液透析ろ過器までも提供することができる。すなわち、本発明により、例えば、ビタミンEを固定化した中空糸膜型血液浄化器でありつつ、さらに幅広い透析合併症の予防、改善に貢献する血液透析ろ過器を提供することを可能となる。
 本実施形態の中空糸膜型血液浄化器に用いる中空糸膜には、透過性能の観点からクリンプが付与されていることが好ましい。クリンプを付与する方法は、特に限定されず、公知の方法を用いることができる。
<脂溶性物質>
 本実施形態の中空糸膜型血液浄化器は、中空糸膜が脂溶性物質を含む。
 本実施形態において、脂溶性物質とは、一般に水に溶けにくく、アルコールや油脂に溶ける物質をいい、毒性が低い天然物や合成物を用いることができる。脂溶性物質の具体例としては、特に限定されないが、例えば、コレステロール、ヒマシ油・レモン油・シアバターなどの植物油、魚油などの動物油、ショ糖脂肪酸エステル・ポリグリセリン脂肪酸エステルなどの脂肪酸、イソプレノイド、炭素数の大きな炭化水素、シリコーン油などが挙げられる。また、脂溶性ビタミンである、ビタミンA、ビタミンD、ビタミンE、ビタミンK、及びユビキノンなども好ましく用いられる。
 中でも、脂溶性物質は、ビタミンA、ビタミンD、ビタミンE及びビタミンKからなる群より選択される少なくとも1種を含むことが好ましい。これらの中では、過剰摂取をしても障害を誘発しないという観点から、ビタミンEが好ましい。脂溶性物質としては、1種で用いてもよく、2種以上の混合物を用いてもよい。
 ビタミンEとしては、α-トコフェロール、α-酢酸トコフェロール、α-ニコチン酸トコフェロール、β-トコフェロール、γ-トコフェロール、δ-トコフェロール及びそれらの混合物等が挙げられる。中でも、α-トコフェロールは生体内抗酸化作用、生体膜安定化作用、血小板凝集抑制作用等の種々の生理作用に優れており、酸化ストレスを抑制する効果が高いため好ましい。
 本実施形態に用いる中空糸膜は、脂溶性物質を固定化した中空糸膜であることが好ましく、脂溶性ビタミンを固定化した中空糸膜であることがより好ましい。
 また、中空糸膜における脂溶性物質固定化量は、1~500mg/mであることが好ましく、中空糸膜における脂溶性物質固定化量が1mg/m以上であることにより、十分な抗酸化性能を得られ、500mg/m以下であることにより、血液適合性に優れる。さらに、10~300mg/mであることがより好ましい。
 本実施形態において、「中空糸膜における脂溶性物質固定化量」とは、中空糸膜全体に結合、付着、吸着又は被覆した脂溶性物質量をいい、この中空糸膜全体に存在する脂溶性物質量は、例えば、後述するように中空糸膜を破壊又は溶解せずに溶媒によって抽出される脂溶性物質の量によって定量することができる。
 中空糸膜における脂溶性物質量の測定方法の一例を説明する。
 まず中空糸膜を組み込んだ中空糸膜型血液浄化器を分解し、中空糸膜を採取し、水洗した後、乾燥処理を施す。続いて精秤した乾燥後の中空糸膜に脂溶性物質を溶解する界面活性剤若しくは有機溶媒、例えば1質量%のポリエチレングリコール-t-オクチルフェニルエーテル水溶液やエタノールを加え撹拌・抽出を行う。抽出した中空糸膜の膜面積はメーカーが公称する中空糸膜面積(ラベルなどに記載されている中空糸膜面積)、もしくは中空糸膜の平均内径(直径)、円周率、本数、及び有効長の積から算出される内表面積である。有効長とは、中空糸膜全長の内、ウレタン封止部などを除いた透過性を有する中空糸長である。
 定量操作は、例えば液体クロマトグラフ法により行い、脂溶性物質標準溶液のピーク面積から得た検量線を用いて、抽出液中の脂溶性物質の濃度を算出する。
 得られた脂溶性物質の濃度と抽出した中空糸膜の膜面積から抽出効率を100%として、中空糸膜における脂溶性物質量(mg/m)を求めることができる。
 液体クロマトグラフ法は、例示として記載するが、以下のようにして実施することができる。高速液体クロマトグラフ装置(ポンプ:日本分光PU-1580、検出器:島津RID-6A、オートインジェクター:島津SIL-6B、データ処理:東ソーGPC-8020、カラムオーブン:GL Sciences556)に、カラム(Shodex Asahipak社製ODP-506E packed column for HPLC)を取り付け、カラム温度40℃において、移動相である高速液体クロマトグラフィー用メタノールを、例えば流量1mL/minで通液し、UV検出器で波長295nmにおける吸収ピークの面積から脂溶性物質濃度を求める。
<親水性高分子及び疎水性高分子>
 中空糸膜を構成する物質は、親水性高分子及び疎水性高分子からなる群より選択される少なくとも1種を含むことが好ましい。中空糸膜がこのような物質を含むと、物理的強度が高く、かつ生体適合性に優れる膜となる傾向にある。
 特に、中空糸膜は、少なくとも分離機能表面に親水性高分子を含むことが好ましい。中空糸膜は、親水性高分子を含むことにより、生体適合性が良くなる傾向にある。
 親水性高分子とは、水に馴染みやすい高分子であれば特に限定されないが、溶解度パラメータδ(cal/cm1/2が10以上である重合体や水酸基を有する高分子等が挙げられる。
 溶解度パラメータδとは、例えば、「高分子データハンドブック基礎編」社団法人高分子学会編、株式会社培風館、昭和61年1月30日初版発行、591~593頁に記載される指標であり、溶解度パラメータが高い場合には親水性が強く、低い場合には疎水性が強いことを示す。
 溶解度パラメータδ(cal/cm1/2が10以上である重合体としては、特に限定されないが、例えば、ポリヒドロキシエチルメタクリレート(δ=10.00)、セルロースジアセテート(δ=11.35)、ポリアクリロニトリル(δ=12.35)等が挙げられる。δとして記載する値は、一例として記載するものである。
 水酸基を有する高分子としては、特に限定されないが、例えば、ポリヒドロキシエチルメタクリレート、ポリヒドロキシプロピルメタクリレート、ポリヒドロキシブチルメタクリレート等のポリヒドロキシアルキルメタクリレートや、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、ヘパリンナトリウム等の多糖類のナトリウム塩が挙げられる。ポリヒドロキシアルキルメタクリレートは、ヒドロキシアルキルメタクリレートを単量体単位として(共)重合させた合成高分子であり、側鎖に水酸基を有する化合物である。
 親水性高分子としては、特に限定されないが、例えば、ポリビニルピロリドン(以下「PVP」とも記す)、ポリエチレングリコール(以下「PEG」とも記す)、ポリビニルアルコール(以下「PVA」とも記す)、ポリプロピレングリコール等が挙げられる。
 これらの親水性高分子は、1種で用いてもよく、2種以上の混合物を用いてもよい。
 中でも、親水性高分子としては、ポリビニルピロリドン(PVP)及びポリエチレングリコール(PEG)からなる群より選択される少なくとも1種を含むことが好ましい。中空糸膜がこのような親水性高分子を含むと、生体適合性が良くなる傾向にある。
 疎水性高分子としては、特に限定されないが、例えば、ポリスルホン(PS)、ポリエーテルスルホン(PES)、ポリアリールエーテルスルホン(PAES)等のポリスルホン系樹脂;再生セルロース、セルロースアセテート、セルローストリアセテート(CTA)等のセルロース系樹脂が挙げられ、他にも、ポリアクリロニトリル(PAN)、ポリビニリデンフルオライド(PVDF)、ポリメチルメタクリレート、エチレンビニルアルコール共重合体等が挙げられる。中でも、ポリスルホン系樹脂が好ましい。
 ポリスルホン系樹脂とは、スルホニル(-SO-)基含有合成高分子であり、耐熱性や耐薬品性に優れる。ポリスルホン系樹脂としては、特に限定されないが、例えば、ポリフェニレンスルホン、ポリスルホン、ポリアリールエーテルスルホン、ポリエーテルスルホン、及びこれらの共重合体等が挙げられる。ポリスルホン系樹脂としては、1種で用いてもよく、2種以上の混合物を用いてもよい。
 中でも、分画性を制御する観点で、下記式(1)又は下記式(2)で示されるポリスルホン系高分子が好ましい。
(-Ar-SO-Ar-O-Ar-C(CH-Ar-O-)(1)
(-Ar-SO-Ar-O-)                (2)
 式(1)及び式(2)中、Arはベンゼン環を、nはモノマー単位の繰り返しを表す。式(1)で示されるポリスルホンは、例えばソルベイ社から「ユーデル(商標)」の名称で、ビー・エー・エス・エフ社から「ウルトラゾーン(商標)」の名称で市販されており、また、式(2)で示されるポリエーテルスルホンは住友化学株式会社から「スミカエクセル(商標)」の名称で市販されており、重合度等によっていくつかの種類が存在するので、これらを適宜利用することができる。
<抗酸化剤>
 本実施形態において、中空糸膜は、抗酸化剤水溶液中で滅菌されることが血液適合性の観点から好ましく、また中空糸膜中の特に脂溶性物質が滅菌工程によって酸化されるのを抑制するため好ましい。
 抗酸化剤とは、他の分子などに電子を与えやすい性質を持つ原子、分子又はイオンであれば特に限定されないが、例えば、紫外線吸収剤及び光安定剤、金属不活性化剤、オゾン劣化防止剤、アミン系抗酸化剤、フェノール系抗酸化剤、硫黄系抗酸化剤、リン系抗酸化剤等が挙げられる。
 紫外線吸収剤及び光安定剤としては、特に限定されないが、例えば、フェニルサリチレート、モノグリコールサリチレート、p-tert-ブチルフェニルサリチレート、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール等が挙げられる。
 金属不活性化剤としては、特に限定されないが、例えば、N-サリシロイル-N′-アルデヒドヒドラジン、N-サリシロイル-N′-アセチルヒドラジン、N,N′-ジフェニルオキサミド等が挙げられる。
 オゾン劣化防止剤としては、特に限定されないが、例えば、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、N-フェニル-N′-イソプロピル-p-フェニレンジアミン等が挙げられる。
 アミン系抗酸化剤としては、特に限定されないが、例えば、フェニル-β-ナフチルアミン、α-ナフチルアミン、フェノチアジン等が挙げられる。
 フェノール系抗酸化剤としては、特に限定されないが、例えば、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジ-tert-ブチルフェノール、2,4-ジ-メチル-6-tert-ブチルフェノール等が挙げられる。
 硫黄系抗酸化剤としては、特に限定されないが、例えば、ジラウリルチオジプロピオネート、ラウリルステアリルチオジプロピオネート、ジラウリルサルファイド、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸水素ナトリウム、ソジウムハイドロサルファイト、アセトンソジウムバイサルファイト等が挙げられる。
 リン系抗酸化剤としては、特に限定されないが、例えば、トリフェニルフォスファイト、トリドデシルフォスファイト等が挙げられる。
 抗酸化剤としては、特に限定されないが、他には、例えば、L-アスコルビン酸、システイン、チオグリセロール、クエン酸イソプロピル等を用いてもよい。
 抗酸化剤としては、1種で用いてもよく、2種以上の混合物を用いてもよい。
 中でも、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸水素ナトリウムが取扱い性の観点から好ましい。
 抗酸化剤水溶液中で滅菌する場合、抗酸化剤を水に溶解した後、中空糸膜を該水溶液で湿潤化した状態で放射線を照射することが好適である。
 抗酸化剤水溶液における抗酸化剤の濃度としては、50ppm以上2000ppm以下が好ましい。抗酸化剤水溶液中には、抗酸化剤以外にも炭酸ナトリウム等のpH調節剤、塩化ナトリウムやグリセリン等が共存していてもよい。
 本実施形態の中空糸膜型血液浄化器は、中空糸伸度が、55%以上であり、55~100%であることが好ましく、61~80%であることがより好ましく、61~70%であることがさらに好ましい。中空糸伸度が前記範囲内であると、中空糸膜の耐圧強度が向上し、リークの発生を抑制できる傾向にある。
 中空糸伸度を前記範囲内に制御する方法としては、特に限定されないが、例えば、後述の脂溶性物質の固定化工程を行う方法や中空糸膜を構成する材料の種類及び含有量を適宜調整する方法が挙げられる。
 なお、本実施形態において、中空糸伸度は、後述の実施例に記載の方法により測定することができる。
<中空糸膜の製造方法>
 本実施形態に用いる中空糸膜は、公知の乾湿式製膜技術を利用することにより製造できる。該方法は、特に限定されないが、例えば、親水性高分子及び疎水性高分子を含む膜中間物質を乾湿式紡糸法で得る紡糸工程と、膜中間物質に脂溶性物質を固定化する固定工程とを有する方法が挙げられる。
 なお、本実施形態に用いる中空糸膜において、親水性高分子及び疎水性高分子の両方を使用する必要はなく、単一素材膜であってもよい。
 中空糸膜を製造する工程においては、以下に限定されないが、例えば、チューブインオリフィス型の紡糸口金を用い、紡糸口金のオリフィスから紡糸原液を、該紡糸原液を凝固させるための中空内液と同時に、チューブから空中に吐出させる方法が挙げられる。
 中空内液としては、水、又は水を主体とした凝固液が使用でき、目的とする中空糸膜の透過性能に応じてその組成等を決定すればよい。一般的には、紡糸原液に使用した溶剤と水との混合溶液が好適に使用される。
 紡糸口金から中空内液とともに吐出された紡糸原液は、空走部を走行させ、紡糸口金下部に設置した水を主体とする凝固浴中へ導入、浸漬して凝固を完了させ、洗浄工程等を経て、湿潤状態の中空糸膜巻き取り機で巻き取り、中空糸膜の束を得、その後乾燥処理を行う。或いは、上記洗浄工程を経た後、乾燥機内にて乾燥を行い、中空糸膜の束を得てもよい。
 本実施形態に用いる中空糸膜の製造方法の具体例としては、特に限定されないが、例えば、ポリスルホン系樹脂とポリビニルピロリドンとを含む製膜紡糸原液を用いて、通常の製膜工程を行う方法が挙げられる。
 製膜紡糸原液としては、例えば、ポリスルホン系樹脂とポリビニルピロリドンとを溶媒に溶解することによって調整することができる。
 かかる溶媒としては、特に限定されないが、例えば、ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジメチルホルムアミド、スルホラン、及びジオキサン等が挙げられる。
 溶媒としては、1種で用いてもよく、2種以上の混合溶媒を用いてもよい。
 製膜紡糸原液中のポリスルホン系樹脂の濃度は、製膜可能で、かつ得られた膜が透過膜としての性能を有するような濃度の範囲であれば特に制限されないが、好ましくは樹脂組成物を100質量%としたときに、5質量%以上35質量%以下であり、より好ましくは10質量%以上30質量%以下である。高い透水性能を達成する場合にはポリスルホン系樹脂濃度は低い方がよく、さらに好ましくは10質量%以上25質量%以下である。
 製膜紡糸原液中のポリビニルピロリドン濃度は、ポリスルホン系樹脂に対するポリビニルピロリドンの混和比率が、好ましくは27質量%以下、より好ましくは18質量%以上27質量%以下、さらに好ましくは20質量%以上27質量%以下となるように調整する。
 ポリスルホン系樹脂に対するポリビニルピロリドンの混和比率が27質量%以下とすることにより、ポリビニルピロリドンの溶出量を抑制することができる。また、好適には、18質量%以上とすることにより、分離機能表面のポリビニルピロリドン濃度を好適な範囲に制御でき、タンパク質吸着を抑制する効果を高められ、血液適合性に優れる。
 製膜紡糸原液を用いて、通常用いられている方法により中空糸膜に製膜する。例えば、チューブインオリフィス型の紡糸口金を用い、該紡糸口金のオリフィスから製膜紡糸原液を、チューブから該製膜紡糸原液を凝固させる為の中空内液と同時に空中に吐出させる。中空内液は水、又は水を主体とした液体が使用できる。中空内液は、一般的には製膜紡糸原液に使った溶剤と水との混合溶液が好適に使用される。例えば、20質量%以上70質量%以下のジメチルアセトアミド水溶液等が用いられる。
 製膜紡糸原液吐出量と中空内液吐出量を調整することにより中空糸膜の内径と膜厚を所望の値に調整することができる。
 中空糸膜の内径は、血液処理用途においては一般に170μm以上250μm以下であればよく、180μm以上220μm以下であることが好ましい。透過膜としての物質移動抵抗による低分子量物の拡散除去の効率の観点から、中空糸膜の膜厚は50μm以下であることが好ましい。また、強度の観点からは10μm以上であることが好ましい。
 なお、本実施形態において、中空糸膜の内径及び膜厚は、後述の実施例に記載の方法により測定することができる。
 紡糸口金から中空内液とともに吐出された製膜紡糸原液は、エアーギャップ部を走行させ、紡糸口金下部に設置した水を主体とする凝固浴中へ導入され、そして、一定時間浸漬されて凝固が完了する。このとき、製膜紡糸原液吐出線速度の引取速度に対する比で表されるドラフトが1以下であることが好ましい。
 エアーギャップとは、紡糸口金と凝固浴との間の空間を意味し、製膜紡糸原液は、紡糸口金から同時に吐出された中空内液中の水等の貧溶媒成分によって、内表面側から凝固が開始する。凝固開始時に、平滑な中空糸膜表面を形成し中空糸膜構造が安定となるため、ドラフトは1以下が好ましく、より好ましくは0.95以下である。
 次いで、熱水等による洗浄によって中空糸膜に残留している溶媒を除去した後、中空糸膜を乾燥室に入れ、中空糸膜の水分を除去する。
<中空糸膜型血液浄化器の製造方法>
 以上の工程を経て得られた中空糸膜をもとに、中空糸膜型血液浄化器を組み立てる。まず、側面の両端部付近に2本のノズルを有する筒状容器に中空糸膜を充填し、その両端部をウレタン樹脂で包埋する。次に、硬化したウレタン部分を切断して中空糸膜が開口した端部が形成されるように加工を施す。この両端部に、血液や透析液などの液体導入(導出)用のノズルを有するヘッダーキャップを装填して中空糸膜型血液浄化器の形状に組み上げる。
<中空糸膜への脂溶性物質の固定化工程>
 本実施形態において、中空糸膜へ脂溶性物質を固定化する工程として、以下のコート法を行うことにより、中空糸膜面積当たりの酢酸量及び透水性能を上述の範囲に制御することができる。コート法とは、脂溶性物質溶液を、中空糸膜の内表面側の中空部に流入することにより、脂溶性物質を中空糸膜表面に付着させる方法である。
 コート法においては、製膜した中空糸膜に脂溶性物質を固定化した後に中空糸膜型血液浄化器として組み立ててもよいし、中空糸膜型血液浄化器として組み立てた後又は組み立てる途中の段階でコート液を通液することにより、脂溶性物質を固定化してもよい。
 コート液中の脂溶性物質の濃度は、コート液全量を100質量%としたときに、好ましくは0.1質量%以上30質量%以下であり、より好ましくは0.1質量%以上20質量%以下であり、さらに好ましくは0.1質量%以上10質量%以下である。
 脂溶性物質を固定化する工程は、送液工程及び脱液工程を含む。送液工程は、脂溶性物質(例えば、ビタミンEなど)を有機溶媒(例えば、2-プロパノールなど)に溶解したコート液を中空糸内側に送液する工程である。このとき、透析液側ポートを閉じた状態で中空糸内側に送液してもよい。コート液量は適宜設定してよい。その後、脱液工程として、圧気でコート液を脱液する。圧気でコート液を脱液する際、中空糸内側及び外側のいずれか、若しくは両方から圧気を送るが、その際の中空糸の内側と外側との圧力差(内側-外側)が-0.1MPa以上、好ましくは0MPa超、すなわち、中空糸の内側の圧力を外側の圧力より高くする。当該圧力差(内側-外側)の上限は、特に限定されないが、例えば、0.1MPaである。また、モジュール透析液側ポートを閉じた状態で、中空糸内側のみに0.1MPa以上の圧気を送って脱液してもよい。また、中空糸内側のみにパルス的に圧気を送って脱液を行ってもよい。脱液時の中空糸内側及び外側に印加する圧力は適宜設定してよいが、中空糸内側の圧力を高くし、膜厚部にコート液がより多く残ることが好ましい。その後、乾燥工程において、酸素を含む空気で緩慢に中空糸膜に残存したコート液を乾燥除去する。乾燥に用いる空気の温度は40~60℃が好ましい。
 本実施形態において、上述のような中空糸膜へ脂溶性物質を固定化する工程を行うことにより、簡便に中空糸膜面積当たりの酢酸量や中空糸伸度を上述の範囲に制御することができる。
 ここで、上述のような中空糸膜へ脂溶性物質を固定化する工程を行うことにより、簡便に中空糸膜面積当たりの酢酸量を特定の範囲に制御でき、Alb漏出量をも制御できる。メカニズムは、明らかではないが、本発明者らは酢酸の発生機序を以下のとおり推定している。
 脱液工程では、血液側から効率よく脱液するため、中空糸の内側の圧力より外側の圧力を高くすることが一般的である。しかし、中空糸の内側と外側との圧力差(内側-外側)が-0.1MPa以上、好ましくは0MPa超、すなわち、中空糸の内側の圧力を外側の圧力より高くする等により、意図的に脱液効率を下げ、脱液工程後の中空糸膜厚部にコート液を多く残留させる。この状態で、酸素を含む40~60℃の空気で緩慢に乾燥を行うことで、コート液中に含まれる有機溶媒が酸化分解し酢酸になると考えられる。そして、驚くべきことに、血液浄化器が含有する酢酸量が牛血Alb漏出量と所定量の範囲において相関関係を有し、同酢酸量を制御することにより牛血Alb漏出量を制御できることを見出した。
 牛血Alb漏出量の制御の困難性は、脂溶性物質が固定化された中空糸膜における大きな課題である。脂溶性物質の中空糸膜への固定化方法にはいくつかの方法があるが、例えば脂溶性物質を有機溶媒に溶解したコート液を中空糸内側に送液することにより、脂溶性物質を中空糸膜表面に付着させるといった方法がある。その結果、脂溶性物質付着による中空糸膜の細孔径の変化及び膜表面の親疎水性の変化、とりわけ細孔径の低下と親水性の低下が生じ、Alb漏出量が低下してしまう。
 さらに、放射線滅菌の際、放射線のエネルギーにより中空糸膜を構成する分子どうしの架橋が生じ、中空糸のポアサイズが変化すると考えられる。本発明者らは、脂溶性物質を中空糸膜へ固定化する工程のうち、特に脱液工程において、意図的に脱液効率を下げ、この状態で、酸素を含む空気で緩慢に乾燥を行うことにより、所定量の酢酸を発生させ、その酢酸の発生量と牛血Alb漏出量との相関関係に基づきHDF臨床条件下における最適な膜設計を実現することに初めて成功した。
 血液透析ろ過器では膜間圧力差(以下「TMP」とも記す)の上昇を抑制する観点から、中空糸膜の内径を大きくし、膜厚を薄くすることにより、圧損及び膜抵抗を低下させている。このような観点から、例えば、中空糸膜の内径を200μm以上、膜厚を45μm未満とすることが好ましい。さらに原糸透水性能も高いほど好ましい。しかし、内径が200μm以上で膜厚が45μm未満で高い透水性能を有する中空糸膜に対して既知の方法で脂溶性物質をコートした中空糸膜は、耐圧強度が低く、HDFには不適である。そのため、HDF用の高Flux膜(牛血Alb漏出量1g以上)の開発は非常に困難である。しかし、本発明者らは、上述のような中空糸膜へ脂溶性物質を固定化する工程を行うことにより、簡便に中空糸膜面積当たりの酢酸量や中空糸伸度を上述の範囲に制御することができ、その結果、前希釈HDFで使用したときの牛血Alb漏出量を1~3gの範囲に制御できることを見出した。また、酢酸量と牛血Alb漏出量との関係は中空糸膜の内径、膜厚及び透水性能に依存しない。そのため本技術を用い、滅菌後の血液浄化器が含有する中空糸膜面積当たりの酢酸量を1~40mg/mに制御すれば、中空糸膜の内径及び膜厚に関わらず、前希釈HDF使用時にAlb漏出量を1~3gに任意で制御することが可能である。さらに、Alb漏出量と改善できる透析合併症とのバランスを考慮すれば、血液浄化器が含有する中空糸膜面積当たりの酢酸量は1~30mg/mが好ましく、さらに1~20mg/mであることがより好ましい。
 また、従来のコート技術で脂溶性物質を固定化した血液透析器のうち最もAlb漏出量が多くなるものを前希釈HDF条件下で使用すると、牛血Alb漏出量は1.5gとなる。しかし、耐圧強度のパラメータである中空糸伸度が53%となり、そもそもHDF使用に向かない中空糸膜となる。そのため、従来のコート技術で牛血Alb漏出量を1.5g以上かつ、中空糸伸度55%以上を担保できる血液浄化器を製造することは不可能である。
 しかし、上述のような中空糸膜へ脂溶性物質を固定化する工程を行うことにより、血液透析ろ過器で使用できる耐圧強度、すなわち、中空糸伸度が55%以上でありながら、脂溶性物質を固定化しつつ、さらにAlb漏出量を1~3gで任意に制御できる。
<中空糸膜の湿潤化工程>
 組み立てられた中空糸膜型血液浄化器は、滅菌前に水系溶液で中空糸膜を湿潤化することが中空糸膜の保護という観点から好ましく、抗酸化剤水溶液中で滅菌することがより好ましい。水系溶液で中空糸膜を湿潤化する方法は、中空糸膜を充填した容器に水系溶液を充填する方法、容器に水系溶液を充填した後エアフラッシュ等によって排液する方法等が挙げられる。中でも、モジュールにピロ亜硫酸ナトリウム及び/又は炭酸ナトリウム水溶液を充填する方法が好ましい。
<血液処理装置の滅菌工程>
 中空糸膜型血液浄化器に対して、滅菌処理を施すことが好ましい。滅菌方法としては、放射線滅菌法、電子線滅菌、高圧蒸気滅菌、エチレンオキサイドガス(EOG)滅菌等が挙げられる。
 脂溶性物質を含む中空糸膜は、極度な加熱により中空糸破損を起こすリスクが生じるため、放射線滅菌法が好ましい。放射線滅菌法には、電子線、ガンマ線(γ線)、エックス線等を用いることができる。滅菌後の中空糸膜型血液浄化器における酢酸量を精密に制御するにはγ線滅菌が好ましい。放射線の照射線量は、γ線や電子線の場合は、好ましくは15kGy以上50kGy以下であり、より好ましくは20kGy以上40kGy以下である。
 以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、本実施例で用いた測定方法は以下のとおりである。
<中空糸膜の内径及び膜厚>
 中空糸膜の内径及び膜厚は、以下のとおり測定した。
 まず、乾燥した中空糸膜を軸方向と垂直にカミソリを用いて、切断した。切断の際、中空糸膜が潰れたり変形しないようにした。切断した中空糸膜の断面における任意の3箇所の内径及び膜厚を顕微鏡で計測し、その平均値を中空糸膜の内径及び膜厚とした。
<中空糸膜型血液浄化器が含有する酢酸量>
◇ウェットタイプの場合
 中空糸膜型血液浄化器の血液側及び透析液側の充填液を抜き出し、混合した。得られた充填液中の酢酸濃度(μg/mL)をイオンクロマトグラフ法により測定した。測定した酢酸濃度に充填液量を乗じ、血液浄化器が含有する酢酸量を算出した。次に、算出した酢酸量を中空糸膜面積で除し、得られた値を血液浄化器が含有する中空糸膜面積当たりの酢酸量(mg/m)とした。
◇ドライタイプの場合
 図1のように、1Lの水を中空糸膜型血液浄化器に250mL/minで3時間循環した。なお、循環する水は、血液側入口→血液側出口→透析液側入口→透析液側出口の順で並流となるよう流した。循環後、血液浄化器内液、及び循環液を貯留し、酢酸濃度(μg/mL)をイオンクロマトグラフ法により測定した。酢酸濃度に水の量(1L)を乗じ、酢酸量を算出した。次に、算出した酢酸量を中空糸膜面積で除し、得られた値を血液浄化器が含有する中空糸膜面積当たりの酢酸量(mg/m)とした。
 なお、酢酸量を算出する際の中空糸膜面積は、メーカーが公称する中空糸膜面積(ラベルなどに記載されている中空糸膜面積)、もしくは中空糸膜の平均内径(直径)、円周率、本数、及び有効長の積から算出される内表面積である。有効長とは、中空糸膜全長の内、ウレタン封止部などを除いた透過性を有する中空糸長である。
<透水性能の測定>
 中空糸膜型血液浄化器を十分にプライミングし、浸水させた。プライミングは、図2に示す回路で水を通液させて行った。血液側流量は5L/min、透析液側流量は4L/minとし、5分以上プライミングを行った。
 次に、中空糸膜型血液浄化器を図3に示す透水性能評価の回路に付け替えた。血液側入り口から37~38℃に加温した水を、血液側300mL/min、透析液側500mL/minの流量で流し込み、循環開始から56~115秒の間の各圧力を読み取った。
 読み取った圧力に基づき、次に以下の式より、中空糸膜型血液浄化器の透水性能(UFR)を算出した。
UFR[mL/Hr/mmHg/m]=300[mL/min]×60[min]÷TMP[mmHg]÷膜面積[m
TMP[mmHg]=(PBin+PBout)/2-(PDin+PDout)/2
(式中、PBin[mmHg]は、血液側入口圧力であり、PBout[mmHg]は、血液側出口圧力であり、PDin[mmHg]は、透析液側入口圧力であり、PDout[mmHg]は、透析液側入口圧力である。)
 なお、透水性能は、脂溶性物質固定化前後の中空糸膜型血液浄化器について測定した。
<中空糸膜における脂溶性物質固定化量>
 中空糸膜型血液浄化器を水洗、乾燥後、分解して中空糸膜を採取し、4cm程度に切断した。水洗は5L/minで2分間行う。乾燥は室温の空気で60L/min以上、6時間以上行う。中空糸膜型血液浄化器の膜面積(m)あたり381mLのエタノール量を、採取した中空糸に加え、室温で60分間、超音波振動を加えながら、脂溶性物質の抽出を行った。定量操作は、液体クロマトグラフ法により行い、脂溶性物質標準溶液のピーク面積から得た検量線を用いて、抽出液の脂溶性物質量を求めた。
 高速液体クロマトグラフ装置(ポンプ:日本分光PU-1580、検出器:島津RID-6A、オートインジェクター:島津SIL-6B、データ処理:東ソーGPC-8020、カラムオーブン:GL Sciences556)に、カラム(Shodex Asahipak ODP-506E packed column for HPLC)を取り付け、カラム温度40℃において、移動相である高速液体クロマトグラフィー用メタノールを流量1mL/minで通液し、紫外部の吸収ピークの面積から脂溶性物質濃度を求めた。この濃度から、抽出効率を100%として、中空糸膜における脂溶性物質固定化量(mg/m)を求めた。
 滅菌処理により部分酸化した脂溶性物質量も中空糸膜表面1mあたりの脂溶性物質量に含めた。滅菌処理により部分酸化した脂溶性物質量を定めるべく、予め検量線作成に用いる脂溶性物質を空気中で50kGyの放射線に当て、部分酸化した脂溶性物質の吸収ピークを予め定めておき、面積計算に用いるピーク群に含め、加算した。
<中空糸伸度の測定>
 中空糸膜型血液浄化器における中空糸伸度を以下のとおり測定した。
 まず、滅菌済みの中空糸膜型血液浄化器を水で洗浄後解体し、中空糸(中空糸膜モジュール1本丸ごと)を切り出した。切り出した中空糸(中空糸膜モジュール1本丸ごと)を真空乾燥機で乾燥させた。乾燥は乾燥前後の中空糸重量に差がなくなる(乾燥前後(確認間隔:12時間)の中空糸重量の差が±0.05gの範囲)まで行った。中空糸伸度の試験室の湿度を60%に設定し、温度は室温(20~25℃)とした。次に、テンシロン試験機にチャック間の距離が200mmとなるよう中空糸1本を挟んだ。テンシロン試験機の片側を固定し、試験速度300mm/minで中空糸を引っ張った。中空糸が破断するまで引っ張り、破断したときの中空糸長を、荷重0の中空糸長(200mm)で除し、中空糸伸度を算出した。中空糸伸度は測定バラつきが生じるため、n=20以上測定し、平均値を該サンプルの中空糸伸度とした。
<牛血Alb漏出量の測定>
 中空糸膜型血液浄化器について、前希釈HDF条件(血液側流量(QB)=250mL/min、透析液側流量(QD)=600mL/min、補液流量(Qs)=12L/h)で、試験開始から1時間後までの牛血Alb漏出量を測定した。循環する牛血液は、総蛋白濃度を6.0±0.5g/dL、ヘマトクリットを32±3%に調整した。
[実施例1]
 ポリスルホン(以下「PSf」とも記す)(ソルベイ社製、P-1700)17質量部、ポリビニルピロリドン(以下「PVP」とも記す)(ビー・エー・エス・エフ社製、K-90)4質量部、ジメチルアセトアミド(以下「DMAc」とも記す)(キシダ化学、試薬特級)79質量部からなる製膜原液を作成した。中空内液にはDMAc58質量%水溶液を用い、スリット幅50μmの紡糸口金から吐出させた。この際、吐出時の製膜原液の温度は40℃であった。吐出した原液をフードで覆った落下部を経て水よりなる60℃の凝固浴に浸漬して凝固させた。その際に、エアーギャップ長を400mm,紡糸速度34m/分とした。その後水洗工程、乾燥工程を経て血液処理膜を得た。乾燥後の膜厚を43μm、内径を200μmに合わせるように製膜原液、中空内液の吐出量を調整した。
 次に、乾燥後の巻き取った13000本の中空糸膜の束を、液体の導入及び導出用の2本のノズルを有する筒状容器に充填して両端部をウレタン樹脂で包埋後、硬化したウレタン部分を切断して中空糸膜が開口した端部に加工した。この両端部に血液導入(導出)用のノズルを有するヘッダーキャップを装填し、膜面積が2.2mの中空糸膜型血液浄化器の形状に組み上げた。この時点における中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、252mL/Hr/mmHg/mであった。
 次に、以下の送液工程、脱液工程及び乾燥工程を行うことにより、脂溶性物質として、ビタミンEを中空糸膜に固定化した。
(送液工程)
 コート液全量を100質量%とした時に、2-プロパノール57質量%の水溶液に、ビタミンE(α-トコフェロール(和光純薬工業 特級))0.05質量%溶解したコート液(ビタミンEコート液)を、24℃温度下で中空糸膜型血液浄化器の血液側(以下「B側」とも記す)の導入ノズルから中空糸膜の内表面側500mL送液してビタミンEを接触させた。このとき、中空糸膜型血液浄化器の透析液側(以下「D側」とも記す)ポートを閉じた状態で中空糸内側に送液した。
(脱液工程)
 次に、圧力差(B側-D側)が+0.05MPaとなるよう設定し、B側及びD側から圧気を送り、脱液を行った。
(乾燥工程)
 その後、40~45℃の酸素を含む空気をB側:D側=6:1の比率(体積比)で送り、溶媒を乾燥除去した。
 以上の送液工程、脱液工程及び乾燥工程により、ビタミンEを中空糸膜に固定化した。
 次に、湿潤化工程を以下のとおり行った。初めに水で中空糸膜型血液浄化器を洗浄した。その後、抗酸化剤であるピロ亜硫酸ナトリウムを0.06質量%含み、さらにpH調整のための炭酸ナトリウムを0.03質量%含む水溶液を中空糸膜型血液浄化器の血液側流路(内表面側)及び濾液側流路(外表面側)に充填した。
 湿潤化工程後、各ノズルを密栓した状態でγ線を25kGy照射滅菌することにより、中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、14.3mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、223mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、61%であった。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、363mg/mであった。
[実施例2]
 表1に示すとおり、脂溶性物質固定化工程において、送液工程のコート液量を800mLに、脱液工程における中空糸の内側(B側)と外側(D側)の圧力差(内側-外側)を+0.10MPaに変更した以外は、実施例1と同じ方法により、実施例2の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、17.4mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、239mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、62%であった。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、378mg/mであった。
[実施例3]
 表1に示すとおり、脂溶性物質固定化工程において、送液工程のコート液量を700mLに、脱液工程における圧力差を0MPaに変更した以外は、実施例1と同じ方法により、実施例3の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、10.4mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、199mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、62%であった。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、312mg/mであった。
[実施例4]
 表1に示すとおり、脂溶性物質固定化工程において、送液工程のコート液量を500mLに、脱液工程における圧力差を-0.10MPaに変更した以外は、実施例1と同じ方法により、実施例4の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、1.3mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、163mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、61%であった。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、265mg/mであった。
[実施例5]
 表1に示すとおり、脂溶性物質固定化工程において、脱液工程における圧力差を-0.05MPaに変更した以外は、実施例1と同じ方法により、実施例5の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、1.5mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、172mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、61%であった。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、287mg/mであった。
[比較例1]
 中空糸膜を製造する際の中空内液のDMAc濃度を56質量%に変更し、紡糸速度を32m/分に変更し、表2に示すとおり、中空糸膜の内径を185μm、膜厚を45μmになるよう変更し、中空糸膜本数を13500本に変更し、中空糸膜の膜面積を2.1mに変更し、脂溶性物質固定化工程において、送液工程のコート液量を750mLに変更し、脱液工程の、中空糸の内側(B側)と外側(D側)との圧力差(内側-外側)を、-0.25MPaに変更した以外は、実施例1と同じ方法により、比較例1の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、2.5mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、155mL/Hr/mmHg/mであり、透水性能が十分でなかった。なお、脂溶性物質固定化工程前の中空糸膜型血液浄化器における透水性能は、246mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、65%であった。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、152mg/mであった。
[比較例2]
 中空糸膜を製造する際の中空内液のDMAc濃度を58質量%に変更した以外は、比較例1と同じ方法により、比較例2の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、2.1mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、184mL/Hr/mmHg/mであった。なお、脂溶性物質固定化工程前の中空糸膜型血液浄化器における透水性能は、287mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ53%であり、実施例1と比較すると、耐圧強度の面で劣っていた。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、141mg/mであった。
[比較例3]
 中空糸膜を製造する際の中空内液のDMAc濃度を64質量%に変更した以外は、比較例1と同じ方法により、比較例3の中空糸膜型血液浄化器を得た。
 得られた中空糸膜型血液浄化器における中空糸膜面積当たりの酢酸量を上記方法により測定したところ、2.1mg/mであった。また、得られた中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、344mL/Hr/mmHg/mであった。なお、脂溶性物質固定化工程前の中空糸膜型血液浄化器における透水性能は、411mL/Hr/mmHg/mであった。さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、45%であり、実施例1と比較すると、耐圧強度の面で劣っていた。また、中空糸膜における脂溶性物質(ビタミンE)の固定化量は、144mg/mであった。
[比較例4]
 PSf(ソルベイ社製、P-1700)16質量部、PVP(ビー・エー・エス・エフ社製、K-90)3.5質量部、DMAc(キシダ化学、試薬特級)81.5質量部からなる製膜原液を作成した。中空内液にはDMAc46質量%水溶液を用い、スリット幅50μmの紡糸口金から吐出させた以外は、比較例1と同じ方法により、比較例4の中空糸膜型血液浄化器を得た。
 乾燥後の膜厚を43μm、内径を200μmに合わせるように製膜原液、中空内液の吐出量を調整した。
 次に、乾燥後の巻き取った13000本の中空糸膜の束を、液体の導入及び導出用の2本のノズルを有する筒状容器に充填して両端部をウレタン樹脂で包埋後、硬化したウレタン部分を切断して中空糸膜が開口した端部に加工した。この両端部に血液導入(導出)用のノズルを有するヘッダーキャップを装填し、膜面積が2.2mの中空糸膜型血液浄化器の形状に組み上げた。この時点における中空糸膜型血液浄化器における透水性能を上記方法により測定したところ、260mL/Hr/mmHg/mであった。
 さらに、得られた中空糸膜型血液浄化器における中空糸伸度を上記方法により測定したところ、64%であった。しかし、比較例4の中空糸膜型血液浄化器は、中空糸膜に脂溶性物質を固定化してないため、抗酸化性能を有しない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~5と比較例1~4との対比から、血液浄化器が含有する中空糸膜面積当たりの酢酸量を1~40mg/mとし、かつ、透水性能を163mL/Hr/mmHg/m以上とすることにより、脂溶性物質を固定しつつ、さらに伸度を55%以上確保することでHDF使用を可能としたうえで、前希釈HDF条件での牛血Alb漏出量が1時間で1~3gの範囲に制御できることがわかった。
 本出願は、2021年11月8日出願の日本特許出願(特願2021-181728号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、脂溶性物質を含む中空糸膜型血液浄化器において、前希釈HDF条件での牛血Alb漏出量が1時間で1~3gの範囲に制御することができる。本発明の中空糸膜型血液浄化器は、例えば、血液浄化療法において産業上の利用可能性を有する。

Claims (15)

  1.  中空糸膜及び該中空糸膜が充填される容器を含む中空糸型血液浄化器であって、
     該中空糸膜が脂溶性物質を含み、
     該血液浄化器が含有する中空糸膜面積当たりの酢酸量が1~40mg/mであり、
     透水性能が163mL/Hr/mmHg/m以上であり、
     中空糸伸度が55%以上である、中空糸膜型血液浄化器。
  2.  脂溶性物質が、ビタミンA、ビタミンD、ビタミンE及びビタミンKからなる群より選択される少なくとも1種を含む、請求項1に記載の中空糸膜型血液浄化器。
  3.  中空糸膜が、脂溶性物質を固定化した中空糸膜である、請求項1又は2に記載の中空糸膜型血液浄化器。
  4.  中空糸膜が、脂溶性ビタミンを固定化した中空糸膜である、請求項1又は2に記載の中空糸膜型血液浄化器。
  5.  血液浄化器が含有する中空糸膜面積あたりの酢酸量が1~30mg/mである、請求項1又は2に記載の中空糸膜型血液浄化器。
  6.  透水性能が163~350mL/Hr/mmHg/mである、請求項1又は2に記載の中空糸膜型血液浄化器。
  7.  中空糸伸度が61~80%である、請求項1又は2に記載の中空糸膜型血液浄化器。
  8.  中空糸膜における脂溶性物質固定化量が1~500mg/mである、請求項1又は2に記載の中空糸膜型血液浄化器。
  9.  中空糸膜を構成する物質が、親水性高分子及び疎水性高分子からなる群より選択される少なくとも1種を含む、請求項1又は2に記載の中空糸膜型血液浄化器。
  10.  中空糸膜の内径が170μm以上250μm以下である、請求項1又は2に記載の中空糸膜型血液浄化器。
  11.  中空糸膜の膜厚が10μm以上50μm以下である、請求項1又は2に記載の中空糸膜型血液浄化器。
  12.  中空糸膜へ脂溶性物質を固定化する固定工程を含み、
     該固定工程において、脂溶性物質を有機溶媒に溶解したコート液を中空糸内側に送液し、圧気でコート液を脱液する際の中空糸の内側と外側との圧力差(内側-外側)を-0.1MPa以上とする、請求項1に記載の中空糸膜型血液浄化器の製造方法。
  13.  前記固定工程において、コート液を脱液後、酸素を含む40~60℃の空気で中空糸膜を乾燥する、請求項12に記載の中空糸膜型血液浄化器の製造方法。
  14.  中空糸膜を湿潤化する工程をさらに含む、請求項12又は13に記載の中空糸膜型血液浄化器の製造方法。
  15.  中空糸膜型血液浄化器に対して、滅菌処理を施す工程をさらに含む、請求項12又は13に記載の中空糸膜型血液浄化器の製造方法。
PCT/JP2022/041409 2021-11-08 2022-11-07 中空糸膜型血液浄化器 WO2023080238A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021181728 2021-11-08
JP2021-181728 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023080238A1 true WO2023080238A1 (ja) 2023-05-11

Family

ID=86241604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041409 WO2023080238A1 (ja) 2021-11-08 2022-11-07 中空糸膜型血液浄化器

Country Status (1)

Country Link
WO (1) WO2023080238A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342093A (ja) * 2004-06-01 2005-12-15 Toyobo Co Ltd 高透水性中空糸膜型血液浄化器
JP2006296931A (ja) 2005-04-25 2006-11-02 Asahi Kasei Medical Co Ltd 中空糸型血液浄化装置およびその製造方法
JP2008093228A (ja) 2006-10-13 2008-04-24 Asahi Kasei Kuraray Medical Co Ltd 中空糸膜型血液浄化装置
WO2009072548A1 (ja) * 2007-12-06 2009-06-11 Asahi Kasei Kuraray Medical Co., Ltd. 血液処理用多孔質中空糸膜
JP2013009761A (ja) 2011-06-28 2013-01-17 Asahi Kasei Medical Co Ltd 中空糸膜型血液浄化装置及び中空糸膜型血液浄化装置の製造方法
JP2013094525A (ja) * 2011-11-04 2013-05-20 Toyobo Co Ltd 生体適合性に優れた血液浄化用中空糸膜の製造方法
WO2014171172A1 (ja) 2013-04-19 2014-10-23 旭化成メディカル株式会社 血液処理用中空糸膜及び当該血液処理用中空糸膜の製造方法
WO2015093493A1 (ja) * 2013-12-16 2015-06-25 旭化成メディカル株式会社 中空糸膜型血液浄化装置
JP2021181728A (ja) 2020-05-20 2021-11-25 株式会社Lixil 表紙張りタイルユニット

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342093A (ja) * 2004-06-01 2005-12-15 Toyobo Co Ltd 高透水性中空糸膜型血液浄化器
JP2006296931A (ja) 2005-04-25 2006-11-02 Asahi Kasei Medical Co Ltd 中空糸型血液浄化装置およびその製造方法
JP2008093228A (ja) 2006-10-13 2008-04-24 Asahi Kasei Kuraray Medical Co Ltd 中空糸膜型血液浄化装置
WO2009072548A1 (ja) * 2007-12-06 2009-06-11 Asahi Kasei Kuraray Medical Co., Ltd. 血液処理用多孔質中空糸膜
JP2013009761A (ja) 2011-06-28 2013-01-17 Asahi Kasei Medical Co Ltd 中空糸膜型血液浄化装置及び中空糸膜型血液浄化装置の製造方法
JP2013094525A (ja) * 2011-11-04 2013-05-20 Toyobo Co Ltd 生体適合性に優れた血液浄化用中空糸膜の製造方法
WO2014171172A1 (ja) 2013-04-19 2014-10-23 旭化成メディカル株式会社 血液処理用中空糸膜及び当該血液処理用中空糸膜の製造方法
WO2015093493A1 (ja) * 2013-12-16 2015-06-25 旭化成メディカル株式会社 中空糸膜型血液浄化装置
JP2021181728A (ja) 2020-05-20 2021-11-25 株式会社Lixil 表紙張りタイルユニット

Similar Documents

Publication Publication Date Title
RU2648027C1 (ru) Устройство для очистки крови на основе мембран в виде полых волокон
JP4848278B2 (ja) 高透水性中空糸膜型血液浄化器及びその製造方法
JP4211168B2 (ja) 透析器の製造方法および滅菌法
JP5758001B2 (ja) 血液処理用中空糸膜及び中空糸膜型血液処理装置
JP6375383B2 (ja) 中空糸膜型血液浄化装置
JP6059040B2 (ja) 血液処理用中空糸膜、当該血液処理用中空糸膜を具備する血液浄化器、及び当該血液浄化器の製造方法
WO2011090197A1 (ja) 中空糸膜型血液浄化装置
JP6078641B2 (ja) 血液処理用中空糸膜及び当該血液処理用中空糸膜の製造方法
JP2013094525A (ja) 生体適合性に優れた血液浄化用中空糸膜の製造方法
JP2015116212A (ja) 血液処理用中空糸膜及びその膜を組み込んだ血液処理器
WO2023080238A1 (ja) 中空糸膜型血液浄化器
JP6383631B2 (ja) 中空糸膜型血液浄化器
JP6190714B2 (ja) 中空糸膜型血液浄化装置
JP6456034B2 (ja) 血液処理用中空糸膜
JP2015116214A (ja) 血液処理器
WO2023080237A1 (ja) 中空糸膜型血液浄化器
JP3334705B2 (ja) ポリスルホン系選択透過性中空糸膜
JP6502111B2 (ja) 中空糸膜型血液浄化器およびその製造方法
JP2007054470A (ja) 血液浄化用中空糸膜およびその製造方法
JP2018171430A (ja) 中空糸膜、中空糸膜型血液浄化器
JP6817240B2 (ja) 中空糸膜型血液浄化器
JP2005329127A (ja) 血液適合性に優れた高透水性中空糸膜型血液浄化器
JP2005342415A (ja) 高透水性中空糸膜型血液浄化器
JP2005342413A (ja) ポリスルホン系選択透過性血液浄化器
JP2011161001A (ja) 血液浄化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023558094

Country of ref document: JP

Kind code of ref document: A