WO2023079687A1 - 電動車両の電池パック構造 - Google Patents

電動車両の電池パック構造 Download PDF

Info

Publication number
WO2023079687A1
WO2023079687A1 PCT/JP2021/040801 JP2021040801W WO2023079687A1 WO 2023079687 A1 WO2023079687 A1 WO 2023079687A1 JP 2021040801 W JP2021040801 W JP 2021040801W WO 2023079687 A1 WO2023079687 A1 WO 2023079687A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross member
battery pack
tray
notch
electric vehicle
Prior art date
Application number
PCT/JP2021/040801
Other languages
English (en)
French (fr)
Inventor
拓哉 寺内
信義 鈴木
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2022524638A priority Critical patent/JP7244811B1/ja
Priority to CN202180102348.XA priority patent/CN117957702A/zh
Priority to PCT/JP2021/040801 priority patent/WO2023079687A1/ja
Publication of WO2023079687A1 publication Critical patent/WO2023079687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack structure for electric vehicles.
  • Patent Literature 1 discloses a battery structure installed in the rear luggage compartment of a vehicle, in which a partition plate is arranged so as to divide the battery housing case into upper and lower sides, and a battery module is installed on the lower side of the partition plate.
  • high-voltage equipment is installed on the partition plate.
  • the partition plate is provided with a bent portion, and when rear-collided by another vehicle or the like, the partition plate is deformed upward with the bent portion as a boundary to separate from the battery module for protection.
  • Patent Document 2 in a battery pack mounted on a vehicle, a plurality of crossing members extending in the vehicle width direction are arranged side by side in the front-rear direction at predetermined intervals, and when the battery pack is side-collided by another vehicle It is designed to protect the battery module housed in the
  • Patent Document 1 merely deforms the partition plate in an expected deformation mode for the purpose of protecting the battery module.
  • Patent Document 2 improves the rigidity of the battery pack by arranging a plurality of crossing members inside, the effect is limited to protection of the internal battery modules.
  • the impact load is input to the battery pack from the side, so it not only protects the internal battery modules, but also distributes and absorbs the impact load to each part of the vehicle body to reduce vehicle deformation.
  • the techniques of each patent document are sufficient for this demand.
  • the present invention was made in order to solve such problems, and its object is to distribute and absorb the collision load input in the event of a side collision to each part of the vehicle body, thereby reducing the deformation of the vehicle body.
  • a battery pack structure for an electric vehicle includes a tray containing battery modules, and a battery module disposed across the tray and vertically spaced apart from each other in the entire longitudinal direction.
  • a hollow cross member formed with an upper structural wall and a lower structural wall extending continuously over the cross member;
  • a pair of reinforcements joined to the outside of the side surface of the tray on the extension line of at least one of the lower structural walls.
  • the upper structural wall and the lower structural wall of the cross member are continuous over the entire longitudinal direction of the cross member at vertically spaced positions.
  • the load path structure is formed on the path along the cross member that crosses the battery pack. It is formed. Therefore, the collision load in the event of a side collision is transmitted to one reinforcement, the cross member, and the other reinforcement, and dispersed and absorbed toward the vehicle body.
  • the battery modules are bisected by being spaced apart in the longitudinal direction of the cross member, and the cross member has upper and/or lower edges corresponding to the gaps between the battery modules.
  • a notch may be formed to narrow the vertical width.
  • the region of the cross member where the notch is formed functions as a crushable zone and deforms, so that the deformation of the regions corresponding to both sides of the notch is suppressed, and the battery modules installed in this region. damage is prevented.
  • the hollow cross member can easily adjust the deformation mode when a collision load is input, the cross member can be deformed in a desired deformation mode in the event of a side collision.
  • the battery modules are bisected in the longitudinal direction of the cross member, and the cross member has an upper edge and/or a lower edge corresponding to the gap between the battery modules.
  • a first notch may be formed on one of the two, and a second notch may be formed on the other to narrow the vertical width.
  • the region where the first notch of the cross member is formed functions as a crushable zone and deforms, so the deformation of the regions corresponding to both sides of the notch is suppressed, and the cross member is installed in this region. Damage to the battery module is prevented.
  • the hollow cross member facilitates adjustment of the deformation mode when a collision load is applied. Further, since the first and second notches are formed in the upper edge and lower edge of the cross member, it becomes easier to adjust the deformation mode, and the cross member can be deformed in the desired deformation mode in the event of a side collision. .
  • the second notch may have a stepped shape that descends from both sides of the cross member toward the center.
  • the second notch has a stepped shape that descends from both sides of the cross member to the center, both sides of the cross member have a sufficient vertical width, and the batteries positioned on both sides are particularly susceptible to damage in the event of a side collision. Module can be protected.
  • the stepped notch of the cross member tends to cause stress concentration when transmitting the collision load, so that it is easier to adjust the deformation mode.
  • the cross member may be arranged directly above an underfloor cloth fixed to the lower surface of the tray in order to support the battery pack on the vehicle body side.
  • the collision load input at the time of a side collision can be well dispersed and absorbed by each part of the vehicle body, and the deformation of the vehicle body can be reduced.
  • FIG. 1 is a plan view showing a battery pack structure for an electric vehicle according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1 showing a cross member arranged inside the battery pack
  • FIG. 3 is a detailed view of part A in FIG. 2 showing the relationship between the details of the cross member and the reinforcement.
  • FIG. 4 is a schematic diagram corresponding to FIG. 3 showing a deformation state of the cross member at the time of side collision; It is a figure corresponding to FIG. 3 which shows 2nd Embodiment which changed the cross-sectional shape of reinforcement.
  • FIG. 1 is a plan view showing the battery pack structure of an electric vehicle according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 showing cross members arranged in the battery pack
  • FIG. 3 is a detailed view of part A in FIG. 2 showing the relationship with reinforcement.
  • the electric vehicle of this embodiment is configured as a plug-in hybrid vehicle that is equipped with a motor and an engine as power sources for running, and that can be charged from an external charging facility with a battery pack that is a power source for running.
  • the battery pack is mounted under the floor of the vehicle body in the posture shown in FIG.
  • the tray 2 of the battery pack 1 has a substantially square shape in plan view, and a total of eight battery modules 3 are housed inside.
  • Two battery modules 3 are used as one set, and a total of four battery modules 3 are arranged side by side in the front, rear, left, and right directions. In other words, each set of battery modules 3 is divided into front and rear and left and right, respectively.
  • a device space 4 is formed in front of the battery modules 3 in the tray 2 .
  • the left and right battery modules 3 are spaced apart, and an equipment space 5 (corresponding to the "gap" of the present invention) is formed therebetween.
  • these equipment spaces 4 and 5 accommodate electrical equipment such as a BMU (battery module unit) that controls and controls the charging and discharging performance of the battery module and a junction box that connects and disconnects the battery circuit. It is a BMU (battery module unit) that controls and controls the charging and discharging performance of the battery module and a junction box that connects and disconnects the battery circuit. It is a
  • a pair of left and right side frames 6 , a front frame 7 and a rear frame 8 surround the tray 2 in plan view.
  • the upper portion 6a of the side frame 6 is welded to the side surface 2a of the tray 2
  • the lower portion 6b is welded to the lower surface 2b of the tray 2, thereby forming a closed cross section with the tray 2.
  • a plurality of underfloor cloths 9 are fixed to the lower surface 2b of the tray 2 at predetermined intervals in the front-rear direction. It suspends and supports the tray 2.
  • the front and rear battery modules 3 are arranged slightly apart and the cross member 11 is arranged between them, and the front and rear position of the cross member 11 is also directly above one of the plurality of underfloor cloths 9 .
  • the cross member 11 of the present embodiment is made of an extruded aluminum material, and has a plate-like shape extending linearly in the horizontal direction as a whole, and is disposed so as to traverse the inside of the tray 2 . Both left and right ends of the cross member 11 are opposed to the inside of the side surface 2a of the tray 2 with a small gap therebetween.
  • the cross member 11 when viewed from the side, has a vertically elongated rectangular cross section, and has a hollow shape in which a front wall 11e and a rear wall 11f are connected to each other by four horizontal structural walls 11a to 11d. None.
  • Each of the structural walls 11a-11d extends over the entire longitudinal direction of the cross member 11, and both left and right ends of the cross member 11 are open.
  • the structural walls are hereinafter referred to as first to fourth structural walls 11a to 11d in order from the top.
  • the first structural wall 11a forms the upper surface of the cross member 11, and below it, second to fourth structural walls 11b to 11d are arranged vertically at predetermined intervals, respectively. 11f extends further downward from the fourth structural wall 11d.
  • a total of eight bolt insertion pipes 12a to 12d are inserted and fixed to the cross member 11 from above at predetermined intervals in the left-right direction.
  • the outermost two are referred to as first bolt insertion pipes 12a
  • the inner two are referred to as second bolt insertion pipes 12b
  • the inner two are referred to as third bolt insertion pipes 12c
  • the innermost two are referred to as third bolt insertion pipes 12b.
  • This is called a 4-bolt insertion tube 12d.
  • the first and second bolt insertion pipes 12a and 12b penetrate all structural walls 11a to 11d
  • the third bolt insertion pipe 12c penetrates the second to fourth structural walls 11b to 11d
  • the fourth bolt insertion pipe 12d The lower ends of all the bolt insertion tubes 12a to 12d penetrating through the third and fourth structural walls 11c and 11dd are positioned near the lower surface 2b of the tray 2. As shown in FIG.
  • brackets 13a and 13b are arranged in the horizontal direction along the cross member 11 and welded to the lower surface 2b respectively.
  • plugs 14 are welded at positions corresponding to the lower ends of the first bolt insertion tubes 12a, respectively, and a female screw 14a formed in each plug 14 opens upward.
  • plugs 14 are welded at positions corresponding to the lower ends of the second to fourth bolt insertion pipes 12b to 12d, respectively. It is open.
  • a bolt 15 (only the tip is shown in FIG.
  • the upper and lower edges of the cross member 11 are notched stepwise, thereby forming an upper notch 16 (corresponding to the "notch, first notch” of the present invention) in the upper edge and is formed with a lower notch 17 (corresponding to the "second notch” of the present invention).
  • the upper notch 16 in the area between the left and right second bolt insertion pipes 12b of the cross member 11 (the area inside each other), the second structure wall 11b is left and the upper part (front wall 11e and The rear wall 11f and the first structural wall 11a) are notched.
  • the upper portions (the front wall 11e, the rear wall 11f, and the second structural wall 11b) are notched while leaving the third structural wall 11c.
  • the upper edge of the cross member 11 is formed with a stepped upper notch 16 descending in two steps from both left and right sides toward the center.
  • the lower notch 17 is formed in correspondence with the front equipment space 5 having a narrower lateral width.
  • the upper notch 16 and the lower notch 17 are reversed so that the upper edge of the cross member 11 is notched in a shape corresponding to the lower notch 17 and the lower edge is notched in a shape corresponding to the upper notch 16.
  • the third structural wall 11c (corresponding to the "upper structural wall” of the present invention) and the fourth structural wall 11d (the “lower structural wall” of the present invention) ) remains unnotched.
  • the third and fourth structural walls 11c and 11d are continuously continuous over the entire longitudinal direction of the cross member 11 at positions separated from each other in the vertical direction.
  • each reinforcement 18 has a short front-rear length including the cross member 11 and its vicinity in the front-rear direction. As shown in FIG. 3, each reinforcement 18 has a shape in which an upper flange portion 18b and a lower flange portion 18c extend from a body portion 18a.
  • each reinforcement 18 forms a closed cross section with the side surface 2a.
  • the upper flange portion 18b of each reinforcement 18 is welded to the outside of the side surface 2a of the tray 2 on the extension line of the third structural wall 11c of the cross member 11 in the vertical direction.
  • the lower flange portion 18c of each reinforcement 18 is welded to the outside of the side surface 2a of the tray 2 on the extension line of the fourth structural wall 11d of the cross member 11 in the vertical direction.
  • each of frames 6 to 8 forming a closed cross section around battery pack 1 functions as a load path structure.
  • the collision load is distributed from the right side frame 6 through the front frame 7 to the left side frame 6, and further to the vehicle body side.
  • it is dispersed to the left side frame 6 via the rear frame 8.
  • the cross member 11 and the left and right reinforcements 18 cooperate to form a load path structure on the path along the cross member 11 that traverses the battery pack 1 as indicated by arrow F4. As shown, the crash load is distributed over this path.
  • the collision load is distributed to the reinforcement 18 via the side frame 6, and deforms the reinforcement 18 to the left.
  • the upper and lower flange portions 18b and 18c of the reinforcement 18 are welded to the outside of the side surface 2a of the tray 2 respectively on the extension lines of the third and fourth structural walls 11c and 11d of the cross member 11 in the vertical direction.
  • the flanges 18b and 18c deform the side surface 2a of the tray 2. , collide with and press against the right ends of the corresponding structural walls 11c and 11d.
  • the crash load is transferred quickly and efficiently to each structural wall 11c, 11d of the cross member 11 via the reinforcement 18. As shown in FIG.
  • the cross member 11 and the left and right reinforcements 18 also function as a load path structure, so that the impact load input by the side collision is well distributed to each part of the vehicle body. It is possible to reduce the deformation of the vehicle body.
  • the formation of the upper and lower notches 16 and 17 in the cross member 11 also contributes to preventing the battery module 3 from being damaged.
  • the vertical width of the cross member 11 is narrowest in the lateral center area (indicated by L in FIG. 2) due to the upper and lower cutouts 16 and 17.
  • the vertical width is narrowest in the area of the corresponding lower notch 17 . Therefore, when a collision load due to a side collision is input from the right side, the cross member 11 transmits the collision load from the right side to the left side while largely deforming mainly the area of the lower notch 17 as shown in FIG. , the lower surface 2b of the tray 2 is also deformed following the deformed state of the cross member 11. As shown in FIG.
  • the region of the lower notch 17 of the cross member 11 functions as a crushable zone and deforms before other regions, thereby suppressing the deformation of the regions corresponding to both sides of the lower notch 17 . Therefore, deformation of the areas of the lower surface 2b of the tray 2 corresponding to both sides of the lower notch 17 is also suppressed, and damage to the battery modules 3 installed in these areas can be more reliably prevented.
  • the cross member 11 is provided with not only the lower notch 17 but also the upper notch 16, together with the internal structure of the cross member 11 having a hollow shape, enables the desired deformation mode to be achieved. contribute significantly. That is, the cross member 11 is made of aluminum and has a hollow shape, and such material and internal structure make it easy to adjust the deformation mode of the cross member 11 when a collision load is input. Further, compared with the case where the notch 17 is formed only on the lower edge of the cross member 11, the deformation mode can be easily adjusted when the notch 16 is also formed on the upper edge.
  • the upper notch 16 is cut in a stepped manner, stress concentration is more likely to occur when transmitting a collision load than in the case of, for example, an oblique notch, and this point is also deformed. It becomes a factor that makes it easier to adjust the mode. As a result, the cross member 11 can be deformed in the desired deformation mode in the event of a side collision, thereby further reliably preventing damage to the battery modules 3 .
  • the upper notch 16 is formed in consideration of the deformation mode of the cross member 11 in this way, its area is mainly limited to the center of the cross member 11 in the left and right direction.
  • the left and right sides of the cross member 11 have substantially the same vertical width as the side surface 2a of the tray 2, and the battery modules 3 located on the left and right sides, which are particularly susceptible to damage in the event of a side collision, are placed on the cross member. 11 can be protected.
  • the cross member 11 is arranged directly above the underfloor cloth 9 in the front-rear direction, which is also a desirable structure for preventing the battery pack 1 from being damaged. That is, since the cross member 11 having high rigidity and the underfloor cloth 9 are aligned in the front-rear direction, the rigidity of the battery pack 1 can be increased, thereby further protecting the battery modules 3.
  • the upper end of the upper flange portion 18b and the lower end of the lower flange portion 18c of the reinforcement 18 form a shape floating from the side surface 2a of the tray 2, in other words, a warped shape. It functions as a rib 18d.
  • the upper flange portion 18b is vertically welded to the side surface 2a of the tray 2 on the extension line of the third structural wall 11c of the cross member 11, and the lower flange portion 18c is vertically welded to the cross member 11. is welded to the side surface 2a of the tray 2 on the extension line of the fourth structural wall 11d. Therefore, although redundant explanation is omitted, the collision load can be quickly and efficiently transmitted to the structural walls 11c and 11d of the cross member 11 via the reinforcement 18 in the event of a side collision, thereby providing the same structure as in the first embodiment. effect can be achieved.
  • the battery pack is intended for a plug-in hybrid vehicle, but the present invention is not limited to this, and may be applied to an ordinary hybrid vehicle or an electric vehicle equipped with only a motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Body Structure For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

トレイ(2)内に電池モジュール(3)を前後及び左右に並設し、前後の電池モジュール(3)間に、トレイ(2)内を左右に横断するようにクロス部材(11)を配設する。このクロス部材(11)を、前壁(11e)及び後壁(11f)を4枚の構造壁(11a~11d)で連結した中空状をなすように構成する。第3,4構造壁(11c,11d)を残存させた状態で、クロス部材(11)の上縁に上部切欠き(16)を形成し、下縁に下部切欠き(17)を形成する。トレイ(2)の左右両側にリンフォース(18)を配設し、上下方向でクロス部材(11)の第3,4構造壁(11d)の延在線上で、それぞれトレイ(2)の側面の外側に左右のリンフォース(18)の上部及び下部フランジ部(18b,18c)を接合して、クロス部材(11)に沿った左右の経路上にロードパス構造を形成する。

Description

電動車両の電池パック構造
 本発明は、電動車両の電池パック構造に関する。
 例えば特許文献1には、車両の後部荷室に設置されたバッテリ構造が開示されており、バッテリの収容ケースを上下に区画するように仕切板を配設し、その下側に電池モジュールを設置すると共に、仕切板上に高電圧機器を設置している。仕切板には屈曲部を設け、他車両等に後突されたときに、屈曲部を境界として仕切板を上方に変形させて電池モジュールから離間させることにより保護を図っている。
 また、特許文献2には、車両に搭載された電池パック内に、車幅方向に延びる複数の交差部材を前後方向に所定間隔で並設し、他車両に側突されたときに電池パック内に収容された電池モジュールの保護を図っている。
特許第6363656号公報 特許第5372128号公報
 しかしながら、特許文献1に記載の技術は、電池モジュールの保護を目的として仕切板を所期の変形モードで変形させるものにすぎない。また、特許文献2の技術も、内部に複数の交差部材を配設することで電池パックの剛性は向上するものの、その効果は内部の電池モジュールの保護にとどまる。
 他車両等に側突されたときには、側方から衝突荷重が電池パックに入力されるため、内部の電池モジュールの保護のみならず、衝突荷重を車体各部に分散・吸収して車体変形を軽減することが重要になるが、この要求に対して各特許文献の技術では十分とは言い難かった。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、側突時に入力された衝突荷重を車体各部に良好に分散・吸収して車体変形を軽減することができる電動車両の電池パック構造を提供することにある。
 上記の目的を達成するため、本発明の電動車両の電池パック構造は、電池モジュールが収容されたトレイと、前記トレイ内を横断するように配設され、上下方向に離間した位置で長手方向全体に亘って連続する上側構造壁及び下側構造壁が形成された中空状をなすクロス部材と、前記クロス部材の両端に対応してそれぞれ配設され、上下方向で前記クロス部材の上側構造壁か下側構造壁の少なくとも一方の延在線上で、前記トレイの側面の外側に接合された一対のリンフォースとを備えたことを特徴とする。
 従って、クロス部材の上側構造壁及び下側構造壁は、上下方向に離間した位置でクロス部材の長手方向全体に亘って連続している。そして、上下方向において上側構造壁か下側構造壁の両端の延在線上に各リンフォースの固定点が一致しているため、電池パックを横断するクロス部材に沿った経路上にロードパス構造が形成される。このため側突時の衝突荷重は、一方のリンフォース、クロス部材、他方のリンフォースへと伝達されて車体側へと分散・吸収される。
 その他の態様として、前記電池モジュールが、前記クロス部材の長手方向に離間配置されて二分され、前記クロス部材が、上縁及び下縁の少なくとも何れか一方に、前記電池モジュールの間の間隙に対応して切欠きが形成されて上下幅が狭められていてもよい。
 従って、側突時にはクロス部材の切欠きが形成された領域がクラッシャブルゾーンとして機能して変形するため、切欠きの両側に相当する領域の変形が抑制され、この領域に設置されている電池モジュールの破損が防止される。加えて、中空状をなすクロス部材は、衝突荷重が入力されたときの変形モードを調整し易いことから、側突時に所期の変形モードでクロス部材を変形可能となる。
 その他の態様として、前記電池モジュールが、前記クロス部材の長手方向に離間配置されて二分され、前記クロス部材が、上縁及び下縁の少なくとも何れか一方に前記電池モジュールの間の間隙に対応して第1切欠きが形成され、何れか他方に第2切欠きが形成されて上下幅が狭められていてもよい。
 従って、側突時にはクロス部材の第1切欠きが形成された領域がクラッシャブルゾーンとして機能して変形するため、切欠きの両側に相当する領域の変形が抑制され、この領域に設置されている電池モジュールの破損が防止される。加えて、中空状をなすクロス部材は、衝突荷重が入力されたときの変形モードを調整し易い。また、クロス部材の上縁及び下縁に第1及び第2切欠きが形成されているため、より変形モードを調整し易くなり、側突時に所期の変形モードでクロス部材を変形可能となる。
 その他の態様として、前記第2切欠きが、前記クロス部材の両側から中央へと下る階段状をなしていてもよい。
 従って、第2切欠きがクロス部材の両側から中央へと下る階段状をなしているため、クロス部材の両側は十分な上下幅を有し、側突時において特に破損し易い両側に位置する電池モジュールを保護可能となる。また、クロス部材の階段状をなす切欠きは、衝突荷重を伝達する際に応力集中を発生させ易いため、より変形モードを調整し易くなる。
 その他の態様として、前記クロス部材が、電池パックを車体側に支持するために前記トレイの下面に固定された床下クロスの直上に配設されていてもよい。
 従って、高い剛性を有するクロス部材及び床下クロスが一致しているため、電池パックの剛性を高めることが可能となる。
 本発明の電動車両の電池パック構造によれば、側突時に入力された衝突荷重を車体各部に良好に分散・吸収して車体変形を軽減することができる。
第1実施形態の電動車両の電池パック構造を示す平面図である。 電池パック内に配設されたクロス部材を示す図1のII-II断面図である。 クロス部材の詳細とリンフォースとの関係を示す図2のA部詳細図である。 側突時のクロス部材の変形状態を示す図3に対応する模式図である。 リンフォースの断面形状を変更した第2実施形態を示す図3に対応する図である。
[第1実施形態]
 以下、本発明を具体化した電動車両の電池パック構造の第1実施形態を説明する。
 図1は本実施形態の電動車両の電池パック構造を示す平面図、図2は電池パック内に配設されたクロス部材を示す図1のII-II断面図、図3はクロス部材の詳細とリンフォースとの関係を示す図2のA部詳細図である。
 本実施形態の電動車両は、モータ及びエンジンを走行用動力源として搭載すると共に、走行用電源である電池パックを外部充電設備から充電可能なプラグインハイブリッド車両として構成されている。電池パックは、図1に示す姿勢で車体の床下に搭載されており、以下の説明では、車両に倣って前後及び左右方向を表現する。
 図1に示すように、電池パック1のトレイ2は平面視で略四角状をなし、内部には計8個の電池モジュール3が収容されている。各電池モジュール3はそれぞれ2個を1組とし、計4組の電池モジュール3が前後及び左右に並設されている。換言すると、各組の電池モジュール3は前後及び左右にそれぞれ二分されている。トレイ2内において、電池モジュール3の前側位置には機器スペース4が形成されている。また、左右の電池モジュール3は離間配置され、その間に機器スペース5(本発明の「間隙」に相当)が形成されている。図示はしないが、これらの機器スペース4,5には、例えば電池モジュールの充放電性能を制御・コントロールするBMU(バッテリーモジュールユニット)や電池回路の接続・遮断するジャンクションボックス等の電気機器類が収容されている。
 平面視においてトレイ2の周囲は、左右一対のサイドフレーム6、フロントフレーム7及びリヤフレーム8により取り囲まれている。例えば図3に示すように、サイドフレーム6の上部6aはトレイ2の側面2aに溶接され、下部6bはトレイ2の下面2bに溶接され、これによりトレイ2との間で閉断面を形成している。図示はしないがフロントフレーム7及びリヤフレーム8についても同様である。トレイ2の下面2bには、前後方向に所定間隔をおいて複数の床下クロス9が固定され、各床下クロス9の左右両端部は図示しない車体のサイドメンバに連結されて、車体側に対してトレイ2を吊下・支持している。
 前後の電池モジュール3は僅かに離間配置されて互いの間にクロス部材11が配設され、クロス部材11の前後位置は、複数の床下クロス9の内の1つの直上でもある。本実施形態のクロス部材11はアルミの押出材により製作され、全体として左右方向に直線状に延びる板状をなしてトレイ2内を横断するように配設されている。クロス部材11の左右両端は、それぞれ僅かな間隙を介してトレイ2の側面2aの内側と相対向している。
 図3に示すように、側面視においてクロス部材11は上下方向に長い断面四角状をなし、4枚の水平な構造壁11a~11dにより前壁11eと後壁11fとを互いに連結した中空状をなしている。各構造壁11a~11dはクロス部材11の長手方向全体に亘って延び、クロス部材11の左右両端は開放されている。以下、各構造壁を、上側から順に第1~4構造壁11a~11dと称する。
 第1構造壁11aはクロス部材11の上面を形成し、その下側には、第2~第4構造壁11b~11dがそれぞれ上下に所定間隔をおいて配設され、前壁11e及び後壁11fは第4構造壁11dからさらに下方に延設されている。
 クロス部材11には、左右方向に所定間隔をおいて計8本のボルト挿通管12a~12dが上方から挿入・固定されている。以下、最も外側の2本を第1ボルト挿通管12aと称し、その内側の2本を第2ボルト挿通管12b、さらに内側の2本を第3ボルト挿通管12c、最も内側の2本を第4ボルト挿通管12dと称する。第1及び第2ボルト挿通管12a,12bは全ての構造壁11a~11dを貫通し、第3ボルト挿通管12cは第2~4構造壁11b~11dを貫通し、第4ボルト挿通管12dは第3,4構造壁11c,11ddを貫通し、全てのボルト挿通管12a~12dの下端は、トレイ2の下面2b近傍に位置している。
 トレイ2の下面2b上には、クロス部材11に沿って左右方向に計4個のブラケット13a,13bが配設され、それぞれ下面2bに溶接されている。外側の2つのブラケット13a上には、それぞれ第1ボルト挿通管12aの下端に対応する位置にプラグ14が溶接され、各プラグ14に形成された雌ネジ14aが上方に向けて開口している。同じく内側の2つのブラケット13b上には、それぞれ第2~4ボルト挿通管12b~12dの下端に対応する位置にプラグ14が溶接され、各プラグ14に形成された雌ネジ14aが上方に向けて開口している。各ボルト挿通管12a~12d内には上方よりボルト15(先端のみを図3に示す)が挿入され、それぞれの先端はボルト挿通管12a~12d内を介してプラグ14の雌ネジ14aに螺合している。これによりクロス部材11が各ブラケット13a,13bに締結されて、トレイ2内の所定の位置に固定されている。
 クロス部材11の上縁及び下縁は階段状に切り欠かれ、これにより上縁には上部切欠き16(本発明の「切欠き、第1切欠き」に相当)が形成され、下縁には下部切欠き17(本発明の「第2切欠き」に相当)が形成されている。上部切欠き16について述べると、クロス部材11の左右の第2ボルト挿通管12bの間の領域(互いの内側の領域)では、第2構造壁11bを残してその上側の部位(前壁11e及び後壁11fと第1構造壁11a)が切り欠かれている。また、左右の第3ボルト挿通管12cよりも内側の領域では、第3構造壁11cを残してその上側の部位(前壁11e及び後壁11fと第2構造壁11b)が切り欠かれている。結果としてクロス部材11の上縁には、左右両側から中央へと2段階に下る階段状をなす上部切欠き16が形成されている。
 また、下部切欠き17について述べると、左右の第3ボルト挿通管12cよりも内側の領域では、第4構造壁11dを残してその下側の部位(前壁11e及び後壁11f)が切り欠かれている。結果としてクロス部材11の下縁の中央には、四角状の下部切欠き17が形成されている。そして、この下部切欠き17の左右方向の領域は、図1に示す左右の電池モジュール3の間に形成された機器スペース5と対応している。
 なお、本実施形態では図1に示すように、より左右幅が狭い前側の機器スペース5に対応して下部切欠き17を形成しているが、これに限ることはなく後側の機器スペース5に対応させてもよい。また、上部切欠き16と下部切欠き17とを逆転させて、クロス部材11の上縁を下部切欠き17に相当する形状に切り欠き、下縁を上部切欠き16に相当する形状に切り欠いてもよい。
 以上のようにクロス部材11は上下に切り欠かれているものの、第3構造壁11c(本発明の「上側構造壁」に相当)及び第4構造壁11d(本発明の「下側構造壁」に相当)は切り欠かれずに残存している。結果として第3,4構造壁11c,11dは、互いに上下方向に離間した位置で、クロス部材11の長手方向全体に亘って途切れることなく連続している。
 そして、トレイ2の左右両側において、各サイドフレーム6による閉断面の内部には、クロス部材11と対応する前後位置にそれぞれリンフォース18が設けられている。詳しくは、図1に破線で示すように、前後方向において各リンフォース18は、クロス部材11及びその近傍を含めた短い前後長を有している。また、図3に示すように各リンフォース18は、本体部18aから上部フランジ部18b及び下部フランジ部18cを延設させた形状をなしている。
 これらの上部及び下部フランジ部18b,18cがトレイ2の側面2aの外側に溶接されることにより、各リンフォース18は側面2aとの間で閉断面を形成している。詳しくは、各リンフォース18の上部フランジ部18bは、上下方向でクロス部材11の第3構造壁11cの延在線上で、トレイ2の側面2aの外側に溶接されている。また、各リンフォース18の下部フランジ部18cは、上下方向でクロス部材11の第4構造壁11dの延在線上で、トレイ2の側面2aの外側に溶接されている。
 次いで、以上のように構成された電動車両の電池パック構造による側突時の作用について説明する。
 例えば図1において他車両等が右方から側突すると、その衝突荷重は矢印F1で示すように右側のサイドフレーム6に入力される。このとき、電池パック1の周囲で閉断面を形成する各フレーム6~8はロードパス構造として機能する。例えば矢印F2で示すように、右側のサイドフレーム6からフロントフレーム7を経て左側のサイドフレーム6へと衝突荷重を分散させ、さらに車体側へと分散させる。また矢印F3で示すように、リヤフレーム8を経て左側のサイドフレーム6へと分散させる。
 これと共に本実施形態では、クロス部材11と左右のリンフォース18とが協調して、電池パック1を横断するクロス部材11に沿った経路上にもロードパス構造が形成されており、矢印F4で示すように、この経路上に衝突荷重が分散される。
 以下、衝突荷重の分散状況を述べると、衝突荷重はサイドフレーム6を介してリンフォース18に入力され、リンフォース18を左方へと変形させる。リンフォース18の上部及び下部フランジ部18b,18cは、上下方向でクロス部材11の第3,4構造壁11c,11dの延在線上で、それぞれトレイ2の側面2aの外側に溶接されている。これにより、上側構造壁11cか下側構造壁11dの両端の延在線上に各リンフォース18の固定点が一致しているため、各フランジ部18b,18cはトレイ2の側面2aを変形させながら、それぞれ対応する構造壁11c,11dの右端に衝突して押圧する。結果として衝突荷重は、リンフォース18を介して迅速且つ効率的にクロス部材11の各構造壁11c,11dへと伝達される。
 そして、第3,4構造壁11c,11dはクロス部材11の長手方向全体に亘って連続しているため、各構造壁11c,11dの左端を介して左側のリンフォース18の上部及び下部フランジ部18b,18cが押圧され、さらに左側のサイドフレーム6が押圧される。このようにして右側のサイドフレーム6、右側のリンフォース18、クロス部材11、左側のリンフォース18を経て左側のサイドフレーム6へと衝突荷重が分散され、さらに車体側へと分散される。
 以上のように矢印F2,F3で示す既存の経路に加えて、クロス部材11及び左右のリンフォース18もロードパス構造として機能するため、側突により入力された衝突荷重を車体各部に良好に分散させて吸収することができ、車体変形を軽減することができる。
 加えて、リンフォース18を介して迅速にクロス部材11側に伝達されると、その分だけ電池モジュール3への衝突荷重の入力が低減されるため、破損防止の効果が高められる。
 さらに、クロス部材11に上部及び下部切欠き16,17を形成した点も、電池モジュール3の破損防止に貢献する。
 クロス部材11の上下幅は、上部及び下部切欠き16,17により左右中央の領域で最も狭まっており(図2中にLで示す)、詳しくは、左右の電池モジュール3間の機器スペース5に対応する下部切欠き17の領域で最も上下幅が狭まっている。このため、側突による衝突荷重が右方から入力されると、図4に示すようにクロス部材11は、主として下部切欠き17の領域を大きく変形させながら右側から左側へと衝突荷重を伝達し、このクロス部材11の変形状態に倣ってトレイ2の下面2bも変形する。結果として、クロス部材11の下部切欠き17の領域がクラッシャブルゾーンとして機能して他の領域に先行して変形し、下部切欠き17の両側に相当する領域の変形を抑制する。このため、下部切欠き17の両側に相当するトレイ2の下面2bの領域も変形が抑制され、この領域に設置されている電池モジュール3の破損をより確実に防止することができる。
 加えて、クロス部材11に下部切欠き17のみならず上部切欠き16を設けた点は、中空状をなすクロス部材11の内部構造と相俟って、所期の変形モードの達成のために大きく貢献する。即ち、クロス部材11はアルミ製の中空状をなしており、このような材質及び内部構造は、衝突荷重が入力されたときのクロス部材11の変形モードを調整し易い。また、クロス部材11の下縁のみに切欠き17を形成した場合に比較して、上縁にも切欠き16を形成した場合の方が変形モードを調整し易い。特に本実施形態では、上部切欠き16を階段状に切り欠いているため、例えば斜状に切り欠いた場合に比較して衝突荷重を伝達する際に応力集中を発生させ易く、この点も変形モードを調整し易くする要因になる。結果として、側突時に所期の変形モードでクロス部材11を変形させることができ、これにより電池モジュール3の破損を一層確実に防止することができる。
 また、このようにクロス部材11の変形モードを考慮して上部切欠き16を形成しているものの、その領域は主としてクロス部材11の左右中央に限られる。このため、図3に示すように、クロス部材11の左右両側はトレイ2の側面2aとほぼ等しい上下幅を有し、側突時において特に破損し易い左右両側に位置する電池モジュール3をクロス部材11により保護することができる。
 さらに図3に示すように、前後方向においてクロス部材11を床下クロス9の直上に配設している点も、電池パック1の破損防止にとって望ましい構造である。即ち、高い剛性を有するクロス部材11及び床下クロス9が前後方向で一致しているため、電池パック1の剛性を高めることができ、これにより一層の電池モジュール3の保護を達成することができる。
[第2実施形態]
 次いで、本発明を具体化した電動車両の電池パック構造の第2実施形態を説明する。第1実施形態との相違点はリンフォース18の断面形状にあり、その他の構成は第1実施形態と同一である、従って、共通する箇所は同一部材番号を付して説明を省略し、相違点を重点的に述べる。
 図5に示すように、リンフォース18の上部フランジ部18bの上端、及び下部フランジ部18cの下端は、それぞれトレイ2の側面2aから浮いた形状、換言すると反っている形状をなし、補強用のリブ18dとして機能する。本実施形態においても、上部フランジ部18bが、上下方向でクロス部材11の第3構造壁11cの延在線上でトレイ2の側面2aに溶接され、下部フランジ部18cが、上下方向でクロス部材11の第4構造壁11dの延在線上でトレイ2の側面2aに溶接されている。従って、重複する説明はしないが、側突時には、リンフォース18を介して衝突荷重を迅速且つ効率的にクロス部材11の各構造壁11c,11dへと伝達でき、これにより第1実施形態と同様の効果を達成することができる。
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、プラグインハイブリッド車両を対象とした電池パックに具体化したが、これに限るものではなく、通常のハイブリッド車両やモータのみを搭載した電気自動車に適用してもよい。
 1   電池パック
 2   トレイ
 3   電池モジュール
 5   機器スペース(間隙)
 9   床下クロス
 11  クロス部材
 11c 第3構造壁(上側構造壁)
 11d 第4構造壁(下側構造壁)
 16  上部切欠き(切欠き、第1切欠き)
 17  下部切欠き(第2切欠き)
 18  リンフォース
 18b 上部フランジ部
 18c 下部フランジ部

Claims (5)

  1.  電池モジュールが収容されたトレイと、
     前記トレイ内を横断するように配設され、上下方向に離間した位置で長手方向全体に亘って連続する上側構造壁及び下側構造壁が形成された中空状をなすクロス部材と、
     前記クロス部材の両端に対応してそれぞれ配設され、上下方向で前記クロス部材の上側構造壁か下側構造壁の少なくとも一方の延在線上で、前記トレイの側面の外側に接合された一対のリンフォースと、
    を備えたことを特徴とする電動車両の電池パック構造。
  2.  前記電池モジュールは、前記クロス部材の長手方向に離間配置されて二分され、
     前記クロス部材は、上縁及び下縁の少なくとも何れか一方に、前記電池モジュールの間の間隙に対応して切欠きが形成されて上下幅が狭められている
    ことを特徴とする請求項1に記載の電動車両の電池パック構造。
  3.  前記電池モジュールは、前記クロス部材の長手方向に離間配置されて二分され、
     前記クロス部材は、上縁及び下縁の少なくとも何れか一方に前記電池モジュールの間の間隙に対応して第1切欠きが形成され、何れか他方に第2切欠きが形成されて上下幅が狭められている
    ことを特徴とする請求項1に記載の電動車両の電池パック構造。
  4.  前記第2切欠きは、前記クロス部材の両側から中央へと下る階段状をなしている
    ことを特徴とする請求項3に記載の電動車両の電池パック構造。
  5.  前記クロス部材は、電池パックを車体側に支持するために前記トレイの下面に固定された床下クロスの直上に配設されている
    ことを特徴とする請求項1乃至4の何れか1項に記載の電動車両の電池パック構造。
PCT/JP2021/040801 2021-11-05 2021-11-05 電動車両の電池パック構造 WO2023079687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022524638A JP7244811B1 (ja) 2021-11-05 2021-11-05 電動車両の電池パック構造
CN202180102348.XA CN117957702A (zh) 2021-11-05 2021-11-05 电动车辆的电池包结构
PCT/JP2021/040801 WO2023079687A1 (ja) 2021-11-05 2021-11-05 電動車両の電池パック構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040801 WO2023079687A1 (ja) 2021-11-05 2021-11-05 電動車両の電池パック構造

Publications (1)

Publication Number Publication Date
WO2023079687A1 true WO2023079687A1 (ja) 2023-05-11

Family

ID=85703400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040801 WO2023079687A1 (ja) 2021-11-05 2021-11-05 電動車両の電池パック構造

Country Status (3)

Country Link
JP (1) JP7244811B1 (ja)
CN (1) CN117957702A (ja)
WO (1) WO2023079687A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083600A (ja) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp 電気自動車
JP5372128B2 (ja) 2010-12-22 2013-12-18 テスラ・モーターズ・インコーポレーテッド バッテリパックを利用した側面衝撃エネルギの吸収および分散システム
JP2015170452A (ja) * 2014-03-06 2015-09-28 三菱自動車工業株式会社 電動車両用の電池パック
JP6363656B2 (ja) 2016-06-23 2018-07-25 株式会社Subaru 車載用バッテリー
US20190081298A1 (en) * 2017-09-13 2019-03-14 Shape Corp. Vehicle battery tray with tubular peripheral wall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083600A (ja) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp 電気自動車
JP5372128B2 (ja) 2010-12-22 2013-12-18 テスラ・モーターズ・インコーポレーテッド バッテリパックを利用した側面衝撃エネルギの吸収および分散システム
JP2015170452A (ja) * 2014-03-06 2015-09-28 三菱自動車工業株式会社 電動車両用の電池パック
JP6363656B2 (ja) 2016-06-23 2018-07-25 株式会社Subaru 車載用バッテリー
US20190081298A1 (en) * 2017-09-13 2019-03-14 Shape Corp. Vehicle battery tray with tubular peripheral wall

Also Published As

Publication number Publication date
JPWO2023079687A1 (ja) 2023-05-11
JP7244811B1 (ja) 2023-03-23
CN117957702A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
EP3412486B1 (en) Battery mounting structure
CN109263455B (zh) 车身前部结构
KR101702473B1 (ko) 차체 구조
US9956861B2 (en) Framework structure of body-on-frame vehicle
US10589790B2 (en) Vehicle body front section structure
JP5967477B2 (ja) 電池パック
US9975416B2 (en) Vehicle body structure and onboard battery for vehicle
EP2402192B1 (en) Battery installation structure
JP5333642B2 (ja) バッテリ搭載構造およびバッテリアセンブリ
CA2753112C (en) Vehicle battery mounting structure
US9054399B2 (en) Cooling device of vehicle battery
US20190312247A1 (en) Electrified vehicle with battery arrangement including guide permitting relative transversemovement of individual modules
CN110901362B (zh) 车辆下部结构
KR102512997B1 (ko) 차량의 차체구조물
WO2023079687A1 (ja) 電動車両の電池パック構造
CN217788663U (zh) 电池包和具有其的车辆
JP2021142829A (ja) バッテリパック
WO2022249687A1 (ja) 車両用バッテリケース
US20240227583A1 (en) Vehicle
WO2023228656A1 (ja) 駆動用バッテリの支持装置
WO2022113509A1 (ja) 電動トラック
JP2022085063A (ja) バッテリパック支持装置
KR20210121880A (ko) 차량용 전방구조
JP2024062857A (ja) 車両下部構造
JP2022124297A (ja) 車体下部構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022524638

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401001203

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202180102348.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021963282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021963282

Country of ref document: EP

Effective date: 20240605