WO2023079658A1 - 車両の走行制御支援システム、サーバ装置、および、車両 - Google Patents
車両の走行制御支援システム、サーバ装置、および、車両 Download PDFInfo
- Publication number
- WO2023079658A1 WO2023079658A1 PCT/JP2021/040676 JP2021040676W WO2023079658A1 WO 2023079658 A1 WO2023079658 A1 WO 2023079658A1 JP 2021040676 W JP2021040676 W JP 2021040676W WO 2023079658 A1 WO2023079658 A1 WO 2023079658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- information
- unit
- control
- support
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 224
- 238000001514 detection method Methods 0.000 claims abstract description 112
- 238000012545 processing Methods 0.000 claims description 52
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000013507 mapping Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 32
- 230000008569 process Effects 0.000 description 32
- 230000001133 acceleration Effects 0.000 description 25
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000001934 delay Effects 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 6
- 238000003909 pattern recognition Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096708—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
- G08G1/096725—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096783—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/44—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
Definitions
- the present invention relates to a vehicle driving control support system, a server device, and a vehicle.
- Level 1 automated driving is defined as performing one of driving assistance, for example, automatic braking, preceding vehicle following, and lane keeping, under driver supervision.
- Level 2 automated driving means, under driver supervision, a combination of automatic braking, preceding vehicle following, and lane keeping, for example, to provide driving assistance under specific conditions.
- Level 2 automated driving means that, under driver supervision, driving assistance is executed under specific conditions, such as automatic overtaking on an expressway and merging/dividing on an expressway.
- Level 3 automated driving is an attempt to continuously control the vehicle under the supervision of the control system of the vehicle, and the control system requests the driver to intervene based on the monitoring judgment. In this case, when the driver receives an intervention request from the control system of the vehicle, the driver is required to take responsibility for responding to the request immediately.
- Level 3 automated driving can be assumed to be automated driving on highways, for example.
- Level 4 automated driving is an attempt to continuously control the vehicle under the supervision of the vehicle's control system. It means something that can execute running control. In this case, the driver is not required to intervene from the vehicle's control system under certain conditions. Unless under specific conditions, the driver may receive an intervention request from the vehicle's control system, and is required to respond to the request immediately and responsibly.
- Level 4 automated driving for example, unmanned automated driving transportation services in limited areas, fully automated driving on highways, etc. can be assumed.
- Level 5 automated driving means that all driving control is always executed perfectly under the supervision of the vehicle's control system. In this case, the driver does not receive an intervention request from the control system of the vehicle while the vehicle is running.
- the control system of a vehicle such as an automobile is required to execute more complicated and advanced control as it tries to cope with a higher level of automatic driving.
- the vehicle control system is equipped with a lidar that detects the surroundings of the vehicle, an all-around camera, etc., and the surrounding space information detected by them. Based on this, it is necessary to generate recognition information about the driving road around the vehicle and recognition information of various peripheral objects.
- the vehicle control system must, based on this recognition information, execute running control so as to maintain running in the lane while avoiding obstacles, for example.
- level 1 and level 2 driving control for example, lane keeping control based on lane pattern recognition based on short-distance captured images, and vehicle distance maintenance based on preceding vehicle pattern recognition based on short-distance captured images. This means that the processing load on the vehicle increases significantly compared to what can be achieved by control (preceding vehicle follow-up control).
- a vehicle is for moving, and basically operates a large number of autonomous sensors while it is running in a non-powered state, generates detection information based on the detection values of the large number of autonomous sensors, and detects It is required to execute cruise control based on information. In this way, the performance required for vehicles such as automobiles will increase dramatically as the level of automated driving becomes more compatible.
- Patent Documents 1 and 2 it is conceivable to use a server device that can communicate with the vehicle through a base station to reduce the burden on the vehicle that executes high-level travel control (Patent Documents 1 and 2). . Further, as in Patent Document 3, it is conceivable to arrange traffic information by a server device capable of communicating with the vehicle through a base station and provide the information to the vehicle. However, when the server device assists the running control of the vehicle, more time is required for transmitting and receiving information between the vehicle and the server device than when information is processed in the vehicle itself. A delay time due to communication or the like may result in a control delay. In particular, vehicles, such as automobiles, are mobile.
- the communication path between the vehicle and the server device includes wireless communication through the base station. Also, as the vehicle moves, the base station used by the vehicle for wireless communication must be switched. In order to support the running of the vehicle by the server device in such an environment, it is necessary to realize a low delay that suppresses the delay of control due to communication, and even if the base station is switched, the amount of delay due to the low delay is required to be stabilized so that it does not fluctuate excessively.
- a vehicle cruise control support system is a system in which a plurality of vehicles and a plurality of server devices perform wireless communication through a plurality of base stations, and control of the travel of the plurality of vehicles is performed by the plurality of server devices.
- each of the plurality of vehicles includes a driving control unit capable of executing driving control based on information detected by the own vehicle sensor provided in each vehicle, and a radio through the base station a vehicle communication unit that acquires information used for travel control of the travel control unit from the server device by communication, and each of the plurality of server devices is generated corresponding to each of the plurality of vehicles.
- a plurality of information that can be used by the cruise control unit of the corresponding vehicle for cruise control is provided to the vehicle communication unit by wireless communication through the base station to support cruise control of the corresponding vehicle.
- an individual support unit a higher-level collection unit that collects, from each of the plurality of individual support units, information about the vehicle with which each of the individual support units corresponds; a host support unit that uses the information to generate host support information for driving control of each of the vehicles based on the running states of the plurality of vehicles; a higher level providing unit that provides the generated higher level support information to the plurality of individual support units generated corresponding to each of the plurality of vehicles; each of the plurality of individual support units generated corresponding to each of the plurality of vehicles, each of , based on the information obtained from the corresponding vehicle and the host support information provided from the host providing unit, the travel control unit of the corresponding vehicle generates information that can be used for travel control. , to the vehicle communication unit of the corresponding vehicle.
- a server device is a vehicle in which a plurality of vehicles and a plurality of server devices execute wireless communication through a plurality of base stations, and support travel control of the plurality of vehicles by the plurality of server devices.
- the server communication unit executes communication with the other server device by a wired connection that does not include wireless communication through the base station, and a plurality of a server control unit that executes control for supporting travel control of the vehicle by the plurality of server devices, wherein the server control unit is generated corresponding to each of the plurality of vehicles, and the corresponding A plurality of individual support units that provide information that can be used by the travel control unit of the vehicle for travel control to the vehicle communication unit by wireless communication through the base station, and support travel control of the corresponding vehicle.
- a higher level collection unit for collecting information on the vehicle with which each of the individual support units corresponds from each of the plurality of individual support units; and using the information on the plurality of vehicles collected by the higher level collection unit a host support unit for generating host support information for driving control of each of the vehicles based on the running states of the plurality of vehicles; at least one of the individual support units or at least the high-level support units among a higher-level providing unit that provides support information to a plurality of the individual support units generated corresponding to each of the plurality of vehicles; Execute control.
- a vehicle is configured such that a plurality of vehicles including the vehicle and a plurality of server devices of a cruise control support system perform wireless communication through a plurality of base stations, and the cruise control of the vehicle is controlled by the plurality of base stations.
- a vehicle capable of being supported by a server device comprising: a vehicle sensor; a driving control unit capable of executing driving control based on information detected by the vehicle sensor; a vehicle communication unit that acquires information used for driving control by the driving control unit, and the vehicle communication unit transmits the detection information of the vehicle sensor to the individual support unit corresponding to the vehicle.
- the travel control unit executes travel control using the secondary detection information received by the vehicle communication unit and the detection information of the own vehicle sensor.
- a plurality of server devices are used to support travel control of a plurality of vehicles.
- each of the plurality of vehicles includes a driving control unit that can execute driving control based on detection information of the own vehicle sensor provided in each vehicle, and a server device that performs driving control of the driving control unit by wireless communication through a base station. and a vehicle communication unit that acquires information to be used.
- each of a plurality of server devices for supporting travel control of a plurality of vehicles is generated corresponding to each of the plurality of vehicles, and a travel control unit of the corresponding vehicle controls travel control.
- a plurality of individual support units that provide information that can be used for the purpose to the vehicle communication unit by wireless communication through a base station to support travel control of the corresponding vehicle, and from each of the plurality of individual support units, each individual A high-level collection unit that collects information on vehicles supported by the support unit;
- a host support unit that generates host support information, and a plurality of individual support units that generate the host support information generated by the host support unit to be provided to each of the plurality of vehicles in correspondence with each of the plurality of vehicles.
- the plurality of server devices as a whole includes all of the above-described individual support units, higher-level collection units, higher-level support units, and higher-level provision units.
- a plurality of individual support units corresponding to a plurality of vehicles are realized in a plurality of server devices.
- Each individual support unit generates information that can be used by the travel control unit of the corresponding vehicle for travel control based on the information obtained from the corresponding vehicle and the host support information provided by the host provision unit. Then, it transmits to the vehicle communication unit of the corresponding vehicle by wireless communication through the base station.
- the upper collecting unit, the upper support unit, and the upper providing unit provide the upper support information generated to be provided to each of the plurality of vehicles to the plurality of individual support units within the range of the plurality of server devices. By doing so, it can be provided for a plurality of vehicles.
- the high-level collecting unit, high-level supporting unit, and high-level providing unit can perform stable low-delay processing without directly providing information to a plurality of vehicles through wireless communication through a base station. Even if the vehicle moves and the base station used for wireless communication is switched, the series of processing in the multiple server devices will not be affected by the switching as it is, and the processing will be stable and with low delay. can do. Excessive delays such as delays in vehicle control are less likely to occur.
- the plurality of vehicles according to the present invention receive information that the vehicle's travel control unit can use for travel control from the plurality of individual support units generated correspondingly in the plurality of server devices. , can be used for running control of the own vehicle.
- the travel control unit of each vehicle can acquire the processing result by receiving it and use it for the travel control of its own vehicle, without executing the above-described processing of the individual support unit or the host providing unit by itself.
- the processing load on each vehicle can be reduced.
- Each vehicle can acquire support information from a plurality of server devices even when executing cruise control corresponding to high-level automatic driving, and execute it by processing with reduced load. .
- Performance requirements for vehicles such as automobiles can be suppressed.
- FIG. 1 is a configuration diagram of an automobile control system according to the first embodiment of the present invention.
- FIG. 2 is an explanatory diagram of an example of a driving control support system that can be used for driving support of the automobile of FIG.
- FIG. 3 is a configuration diagram of a vehicle travel control support system according to the first embodiment of the present invention.
- FIG. 4 is an explanatory diagram of a hardware configuration of a server device that can be used as various server devices in FIG.
- FIG. 5 is an explanatory diagram of various functions implemented in the plurality of server devices of the cruise control support system of FIG. 3 to support the cruise control of a plurality of automobiles.
- FIG. 6 is a flow chart of driving control of an automobile that can receive driving support by the driving control support system of FIG. FIG.
- FIG. 7 is a flow chart of individual assistance control for the corresponding vehicle by the individual assistance section of FIG.
- FIG. 8 is a flow chart of driving support control (higher level support control) for a plurality of vehicles by the higher level support unit in FIG.
- FIG. 9 is a flow chart of an example of management control of the individual support units corresponding to a plurality of vehicles in the base station server device having the individual support units of FIG.
- FIG. 10 is a flowchart of individual support control for a corresponding vehicle by the individual support unit of the second embodiment of the present invention.
- FIG. 11 is a detailed flow chart of the route information generating process of FIG.
- FIG. 1 is a configuration diagram of a control system of an automobile 10 according to the first embodiment of the invention.
- An automobile 10 in FIG. 1 is an example of a vehicle.
- Other vehicles include, for example, motorcycles, carts, personal mobility vehicles, and vehicles that run on tracks.
- Level 1 (L1) automated driving means that one of driving assistance, for example, automatic braking, preceding vehicle following, and lane keeping, is executed under driver supervision.
- Level 2 (L2) automated driving refers to driving assistance under specific conditions by combining multiple functions such as automatic braking, following the preceding vehicle, and lane keeping under driver supervision.
- Level 2 automated driving means that, under driver supervision, driving assistance is executed under specific conditions, such as automatic overtaking on an expressway and merging/dividing on an expressway.
- Level 3 (L3) automated driving attempts to continuously control the vehicle 10 under the supervision of the control system of the vehicle 10, and the control system requests the driver to intervene based on the monitoring judgment. say something In this case, when the driver receives a request for intervention from the control system of the automobile 10, the driver is required to take responsibility for responding to the request immediately.
- Level 3 automated driving can be assumed to be automated driving on highways, for example.
- Level 4 (L4) automatic driving is an attempt to continuously control the vehicle 10 under the supervision of the control system of the vehicle 10, and the control system requests intervention of the driver under specific conditions. It means the one that can execute complete running control without In this case, the driver is not required to intervene from the control system of the motor vehicle 10 under certain conditions.
- Level 4 automated driving for example, unmanned automated driving transportation services in limited areas, fully automated driving on highways, etc. can be assumed.
- Level 5 (L5) automatic driving means that all driving control is always executed perfectly under the supervision of the control system of the automobile 10 . In this case, the driver does not receive an intervention request from the control system of the vehicle 10 while the vehicle 10 is running.
- the control system of the automobile 10 shown in FIG. It has a central gateway device 18 , connected using a cable 19 .
- the control system of the vehicle 10 may include other control units not shown.
- the central gateway device 18 and the cable 19 constitute a vehicle network of the automobile 10.
- Vehicle networks include those conforming to CAN (Controller Area Network) standards and LIN (Local Interconnect Network) standards, for example.
- the vehicle network may conform to, for example, LAN (Local Area Network) standards and wireless communication standards.
- An ID as identification information different from each other is assigned to each control unit connected to the vehicle network.
- Each controller connected to the vehicle network basically periodically outputs packetized data to the other controllers.
- ID (identification) information of the control unit of the output source and ID information of the control unit of the output destination are added to the packet.
- the other control unit monitors the connected cable 19, and if the ID information of the output destination of the packet on the cable 19 contains its own ID information or predetermined broadcast ID information, the packet data is processed. Acquire and perform actions based on the data.
- the central gateway device 18 monitors the plurality of cables 19 connected, and if the control unit of the output destination is connected to a cable 19 different from the control unit of the output source, the control unit of the output destination is connected. Execute routing control to the cable 19 that is connected. Through such relay processing of the central gateway device 18, a plurality of control units can execute data input/output by packets even with other control units connected to cables 19 different from each other.
- the vehicle communication unit 17 is a communication unit for communicating with the outside of the automobile 10. Roads and areas where the automobile 10 travels are often provided with carrier communication networks for mobile terminals.
- the base station 40 with which the automobile 10 can communicate also includes a base station 40 of an intelligent transportation system provided along a road such as a highway.
- the vehicle communication unit 17 may wirelessly communicate with these base stations 40 to establish a communication channel, and use the communication channel and the base station 40 to perform two-way communication with the server device 41 or the like.
- the vehicle communication unit 17 After acquiring data from the vehicle network, transmits a packet including the acquired data to the base station 40 or the server device 41 using the established communication path.
- the vehicle communication unit 17 acquires data from the vehicle network and receives a packet from the base station 40 or the server device 41 through the established communication path, the vehicle communication unit 17 outputs the data contained in the acquired packet to the vehicle network.
- Various vehicle sensors provided on the vehicle 10 are connected to the vehicle sensor unit 15 .
- an acceleration sensor 21, a corner radar 22, a stereo camera 23, a lidar 24, an all-around camera 25, and a GNSS receiver 26 are shown as self-vehicle sensors.
- the own vehicle sensor unit 15 outputs the detection information of the connected own vehicle sensor to the vehicle network. Further, the own vehicle sensor unit 15 may generate secondary detection information based on the detection information of the own vehicle sensor and output it to the vehicle network.
- the GNSS receiver 26 receives radio waves from a plurality of GNSS (Global Navigation Satellite System) satellites 110 and obtains the latitude, longitude, altitude, and current time of the vehicle's current position.
- GNSS Global Navigation Satellite System
- the acceleration sensor 21 detects the acceleration of the automobile 10.
- Acceleration sensor 21 is, for example, of a three-axis type that detects longitudinal acceleration, lateral acceleration, and vertical acceleration of vehicle 10 .
- the velocity of the vehicle 10 can be obtained by time-integrating the acceleration.
- the vehicle sensor unit 15 can detect movements of the vehicle 10 in the yaw direction, the pitch direction, and the roll direction based on the detection values of the acceleration sensor 21 .
- the corner radars 22 are provided on the front, rear, left, and right squares of the automobile 10 .
- the corner radar 22 detects the distance to surrounding objects approaching the corners of the vehicle 10 from the outside.
- Peripheral objects include, for example, other moving objects such as preceding vehicles, and fixed objects such as traffic lights installed at intersections of roads.
- the stereo camera 23 is composed of, for example, a pair of cameras separated by a predetermined distance.
- the stereo camera 23 uses a pair of cameras to capture an image of the outside of the vehicle in front of the vehicle 10 in the running direction.
- the own vehicle sensor unit 15 analyzes the captured image by pattern matching, for example, and recognizes predetermined three-dimensional peripheral objects such as lane boundaries on both left and right sides of the road on which the own vehicle is traveling and preceding vehicles. Then, detection information about the direction and distance of the object outside the vehicle from the own vehicle may be generated based on the difference in the imaging positions of the recognized peripheral object in the images captured by the pair of cameras.
- the omnidirectional camera 25 captures 360 degrees around the automobile 10 .
- the omnidirectional camera 25 may be composed of a plurality of cameras capable of capturing images for each predetermined angle of view.
- the lidar 24 is provided in the front part of the automobile 10, scans the front, which is the traveling direction of the automobile 10, with detection waves, and detects spatial information about the presence and distance of the reflected waves.
- a reflected wave cannot be obtained if there is no three-dimensional peripheral object in the direction in which the detected wave is output. If there is a three-dimensional surrounding object in the direction in which the detection wave is output, the relative distance to the surrounding object can be detected from the period until the reflected wave is received.
- stereo camera 23 , omnidirectional camera 25 , and lidar 24 detect spatial information about the periphery of the automobile 10 .
- Lidar 24 can usually acquire spatial information about a longer distance range than stereo camera 23 or omnidirectional camera 25 .
- the high-resolution stereo camera 23 and the omnidirectional camera 25 for example, by using an optical member such as a telephoto lens together, image analysis of the captured image of the peripheral object at a distance equivalent to that of the lidar 24 is performed based on the image. It is possible to obtain a recognizable resolution by
- the level of automatic driving executed by the driving control unit 16 is, for example, level 3 or higher, the own vehicle sensor unit 15 analyzes the spatial information of these surroundings and obtains recognition information of the traveling road around the automobile 10.
- a steering wheel, a brake pedal, an accelerator pedal, a shift lever, etc. are connected to the driving operation unit 14 as operation members for the user to control the running of the automobile 10 .
- the driving operation unit 14 When the operation member is operated, the driving operation unit 14 outputs data including presence/absence of operation, amount of operation, etc. to the vehicle network. Further, the driving operation unit 14 may execute processing regarding the operation of the operation member and include the processing result in the data. For example, when the accelerator pedal is operated in a situation where there is another vehicle or a fixed object in the traveling direction of the vehicle 10, the driving operation unit 14 may determine the abnormal operation and include the determination result in the data.
- the travel control unit 16 has a vehicle memory 31 and a vehicle ECU (Electronic Control Unit) 32 .
- the vehicle memory 31 may be composed of, for example, a semiconductor memory, HDD, or the like.
- the vehicle memory 31 stores a program for controlling travel of the automobile 10, data used for control, and the like.
- the high-precision map data 33 of the area where the automobile 10 travels is illustrated.
- the high-precision map data 33 may be, for example, cached from a map server device (not shown) using a wireless communication unit, or may be recorded in a portable semiconductor memory.
- the vehicle ECU 32 is a computer device of the automobile 10 .
- the vehicle ECU 32 reads and executes a program recorded in the vehicle memory 31 .
- the vehicle ECU 32 functions as a travel control unit 16 that controls travel of the automobile 10 as a whole.
- the vehicle ECU 32 as the travel control unit 16 generates control values for controlling travel of the automobile 10 and outputs the control values to the drive control unit 11 , the steering control unit 12 and the braking control unit 13 .
- the running control unit 16 not only controls the running of the automobile 10 by generating a control value corresponding to the information on the driving operation by the driver input from the driving operation unit 14, but also adjusts the driving operation by the driver.
- a control value for driving assistance to control driving of the automobile 10 generate a control value for highly autonomous automatic driving that does not depend on the driver's driving operation, and control driving of the automobile 10.
- You can Driving assistance basically corresponds to level 1 to level 2 automatic driving that controls the driving of the automobile 10 under the supervision of the driver, and highly autonomous automatic driving is basically under the supervision of the control system of the automobile 10. corresponds to automatic driving of level 3 or higher that controls the running of the automobile 10 in .
- the driving control unit 16 switches the level of automatic driving during driving according to the driving environment of the own vehicle, the state of the own vehicle, the state of the driver, etc. based on the detection information that can be acquired from the own vehicle sensor unit 15, for example. control may be exercised.
- the travel control unit 16 judges the driving environment of the own vehicle, the state of the own vehicle, the state of the driver, etc. based on the detection information acquired from the own vehicle sensor unit 15, for example, and determines the most feasible execution under the judgment result. A high level of automated driving may be performed.
- the drive control unit 11 controls the operation of the power source (not shown) of the automobile 10 .
- the power source of automobile 10 includes, for example, an engine and a motor.
- Drive control unit 11 controls the operation of the power source based on the control value generated by travel control unit 16 .
- the steering control unit 12 controls the operation of a steering device (not shown) of the automobile 10 .
- the steering system of the automobile 10 includes, for example, a by-wire system that controls the steering direction and steering amount based on the amount of rotation of a motor.
- the steering control unit 12 controls the operation of the steering device based on the control values generated by the travel control unit 16 .
- the braking control unit 13 controls the operation of a braking device (not shown) of the automobile 10 .
- a brake system for the automobile 10 is, for example, a by-wire system that controls the oil pressure based on the amount of rotation of the motor.
- the braking control unit 13 controls the operation of the braking device based on the control value generated by the traveling control unit 16 . By operating these control execution units, the automobile 10 can travel according to the travel control by the travel control unit 16 .
- the control system of the automobile 10 is required to execute more complicated and advanced control as it tries to cope with higher levels of automatic driving.
- the control system of the vehicle 10 is provided with a lidar 24 for detecting the surroundings of the vehicle 10, a omnidirectional camera 25, and the like, and the surroundings detected by these are provided. Based on the spatial information, it is necessary to generate recognition information about the driving road around the automobile 10 and recognition information of various peripheral objects with a high degree of certainty.
- control system of the automobile 10 has to execute travel control based on these recognition information, for example, to maintain travel in the lane while avoiding obstacles.
- level 1 and level 2 driving control for example, lane keeping control based on lane pattern recognition based on short-distance captured images, and vehicle distance maintenance based on preceding vehicle pattern recognition based on short-distance captured images. This means that the processing load on the vehicle 10 is significantly increased compared to what can be achieved by control (preceding vehicle follow-up control).
- high-level travel control such as level 3 and level 4, it is necessary to increase the certainty of recognition by performing similar recognition processing using machine-learned artificial intelligence.
- the vehicle 10 since the vehicle 10 is intended to move, it is necessary to operate a large number of vehicle sensors at high speed so as to constantly monitor the surroundings of the vehicle 10 while it is running in a non-powered state. be.
- the detection information based on the detection values of many self-vehicle sensors is repeated every short period of time, and the travel control is briefly controlled based on the detection information that is repeatedly detected every short period of time. It should be executed repeatedly every cycle time. The performance required for the automobile 10 will increase dramatically as the level of automatic driving becomes higher.
- the server device 41 that can communicate with the automobile 10 through the base station 40 is used to support the travel control of the automobile 10 that performs high-level travel control. It is conceivable to reduce the burden on the vehicle 10 inside.
- FIG. 2 is an explanatory diagram of an example of the driving control support system 1 that can be used for driving support of the automobile 10 of FIG.
- the solid line portion in FIG. 2 shows two base stations 40, one server device 41, and a carrier communication cable 42 as a backhaul to which these are connected as components of the running control support system 1.
- GNSS satellites 110 are positioned in satellite orbit of the earth and emit radio waves toward the earth's surface.
- the radio waves from the GNSS satellites 110 include latitude, longitude, and altitude information that indicates the position of each satellite, and absolute time information that is synchronized among a plurality of satellites.
- the control system of the vehicle 10, the server device 41, and the like receive the radio waves of the plurality of GNSS satellites 110 in the same manner, so that the latitude, longitude, and altitude information that accurately indicates the position of each received point and the accuracy of the received point. time can be highly synchronized.
- the traveling control support system 1 indicated by the solid line in FIG. 2 described above is an example of the minimum configuration of the local system 43 capable of realizing traveling support in a narrow area.
- the server device 41 communicates with the vehicle communication units 17 of the control system of the plurality of automobiles 10 traveling in the zones of the two base stations 40 .
- the server device 41 acquires detection information from the control system of each automobile 10 .
- the server device 41 generates support information that can be used by the travel control unit 16 of each automobile 10 for travel control based on the detection information acquired from the plurality of automobiles 10 .
- the server device 41 transmits the generated support information to the vehicle communication unit 17 of each automobile 10 by wireless communication through the base station 40 .
- each of the plurality of automobiles 10 traveling in the zones of the two base stations 40 can safely travel without interfering with the traveling of other automobiles based on the assistance information obtained from the server device 41. It becomes possible. In this case, each vehicle 10 in motion does not need to receive assistance from the server device 41 of the travel control support system 1 and execute advanced control based on the detected information in its own control system. The burden on the running automobile 10 can be reduced.
- the server device 41 supports the running control of the vehicle 10
- communication between the vehicle 10 and the server device 41 takes longer than when information is processed in the vehicle 10 itself.
- this delay time is short and stable, it is difficult for the control in the vehicle 10 to cause a control delay.
- Increased likelihood of control lag relative to control at 10. The possibility increases that the automobile 10 will not be able to continue to acquire appropriate information from the server device 41 in each control cycle.
- the automobile 10 moves by running. Therefore, the communication path between the vehicle 10 and the server device 41 includes wireless communication through the base station 40 . Also, as the vehicle 10 moves, the base station 40 must switch to one that the vehicle 10 can use for wireless communication.
- the area that can be covered by the solid line portion of the running control support system 1 in FIG. 2 is limited to the narrow first area in which the two base stations 40 can communicate. While the vehicle 10 is traveling in the first area, it is possible to receive travel assistance from the server device 41, but in the second area outside the first area, another base station 40 exists in the second area. However, the server device 41 cannot receive driving assistance. In order to realize the driving support in the second area, it is necessary to add a new server device 44 indicated by a broken line connected to the base station 40 in the second area. Also, when the automobile 10 travels from the first area to the second area, it is necessary to transmit information from the server device 41 in the first area to another server device 44 in the second area.
- the server device 41 in the first area must communicate with another server device 44 in the second area through a gateway device 46 indicated by a dashed line in the drawing.
- a gateway device 46 indicated by a dashed line in the drawing.
- the other server device 44 in the second area depending on the time required for the hands-over communication, will start the vehicle 10 newly traveling in the second area. This increases the possibility that the start of driving support for the vehicle will be delayed.
- a wide area communication network 45 such as the Internet as indicated by the dashed line in the drawing, communication takes time, and the communication time is short. easier to stabilize.
- the other server device 44 in the second area can obtain information from the server device 41 in the first area, It may take an excessive amount of time before the travel control assistance can be realized. It is generally considered desirable to repeat the cruise control of the automobile 10 at least every few hundred milliseconds in order to be able to respond to unforeseen circumstances. In such a short period of time, it is extremely difficult to take over or repeat the driving support control of the vehicle 10 through the wide area communication network 45 such as the Internet. Even if it could be realized, the time during which the control system of the automobile 10 remains in its control cycle would be extremely short.
- the driving control support system 1 for the vehicle 10 includes, for example, the driving support by the plurality of server devices 50 in the shortest possible and stable time so that the driving support by the plurality of server devices 50 is less likely to be delayed with respect to the driving control of each of the plurality of vehicles 10. , and at the same time, it is required to enable advanced support by a plurality of server devices 50 for driving control of the automobile 10 .
- FIG. 3 is a configuration diagram of the travel control support system 1 for the automobile 10 according to the first embodiment of the present invention.
- the traveling control support system 1 of FIG. 3 is suitable for solving the above-described problems while taking a comprehensive balance by mainly using a carrier communication network, but it is only an example.
- the cruise control support system 1 of this embodiment has a plurality of server devices 50 to support cruise control of a plurality of automobiles 10, as shown in FIG. FIG. 3 shows, as the plurality of server devices 50, a plurality of base station server devices 51, a plurality of acceleration server devices 54, a plurality of narrow area server devices 52, a wide area server device 53, and an upper server device 55.
- the wide area server device 53 and the host server device 55 may be provided in plurality in the driving control support system 1 .
- the base station server device 51 is a server device provided corresponding to the base station 40 .
- the base station server device 51 may basically be provided in one-to-one correspondence with the base station 40 , but one base station server device 51 may be provided for a plurality of base stations 40 .
- the base station server device 51 may be provided as one of the functions of the high performance base station 40 for 5G, for example.
- Base station server device 51 mainly executes communication with a plurality of automobiles 10 in the zone of base station 40 .
- the acceleration server device 54 may be connected to the base station server device 51 .
- the acceleration server device 54 may be provided to reinforce the processing function of the base station server device 51 when, for example, the zone of the base station 40 is wide and many automobiles 10 exist within the zone.
- the acceleration server device 54 may execute processing such as object extraction processing based on spatial information with a heavy processing load and processing for recognizing the extracted object in the control executed by the base station server device 51. .
- AI processing based on machine learning may be used for the object extraction processing, the extracted object recognition processing, and the like.
- One acceleration server device 54 may be provided for a plurality of base station server devices 51 .
- the acceleration server device 54 By providing the acceleration server device 54, the processing load on the base station server device 51 can be reduced, and the control response of the base station server device 51 can be expedited.
- the base station server device 51 and the acceleration server device 54 are local server devices that manage communication with a plurality of vehicles 10 with which the base station 40 can communicate.
- the local server devices 51 and 54 are hatched in the figure.
- the narrow area server device 52 may be connected to a carrier communication cable 42 that connects a plurality of base station server devices 51 . Thereby, the narrow area server device 52 can function as a server device on the upper side of the plurality of base station server devices 51 connected to the carrier communication cable 42 .
- the wide area server device 53 may be connected to a carrier communication cable 42 that connects a plurality of base station server devices 51 . Thereby, the wide area server device 53 can function as a server device on the upper side of the plurality of base station server devices 51 connected to the carrier communication cable 42 .
- the narrow-area server device 52 and the wide-area server device 53 are simply named according to the magnitude relationship of the size of the area managed by each. In FIG.
- a plurality of areas managed by a plurality of narrow-area server devices 52 and an area managed by a wide-area server device 53 overlap adjacent ones.
- the vehicle 10 can provide support for cruise control when traveling in an overall wide area managed by the cruise control support system 1 of FIG. It will be possible to receive it continuously over time.
- the host server device 55 is connected to a carrier wide area network 57 .
- Carrier wide area network 57 is, for example, an ATM network.
- the carrier wide area network 57 may be connected to the Internet or the like through a gateway device (not shown).
- all the narrow area server devices 52 and the wide area server devices 53 are connected to the carrier wide area communication network 57 .
- the host server device 55 can communicate with each of the plurality of base station server devices 51 shown in FIG.
- the running control support system 1 of FIG. 3 is provided with the narrow area server device 52 or the wide area server device 53 and the high-level server device 55 as high-level server devices of the plurality of base station server devices 51. .
- the support control to be executed by these upper server devices 52, 53, and 55 can be distributed to a plurality of multistage server devices. It is possible to reduce the processing load on each host server device and expedite the control response of each host server device.
- the upper server devices 52, 53 and 55 are not hatched in the drawing. These upper server devices 52 , 53 , 55 do not directly communicate with the plurality of automobiles 10 , but communicate with the plurality of automobiles 10 through local server devices 51 , 54 .
- the server devices 52, 53, and 55 on the upper side can execute communication that is not affected by the wireless communication environment of each vehicle 10, etc., and can execute stable communication with low delay.
- the upper server devices 52 , 53 , 55 may control or remotely control the overall running of the plurality of automobiles 10 .
- the upper server devices 52, 53, 55 provide each vehicle 10 with information about the safe driving range of the vehicle 10 under control control as upper support information. good.
- the upper server devices 52, 53, 55 may provide each automobile 10 with information on remote control values as upper support information.
- Such multiple types of server devices 51 to 55 exchange information with each other through, for example, carrier communication cable 42 and carrier wide area network 57 .
- each server device communicates with another fixed server device.
- IPsec Security Architecture for Internet Protocol
- VPN Virtual Private Network
- a first virtual private network may be used for communication between the plurality of server devices 50, as shown in the drawing.
- IPsec-VPN connection mutual authentication between the server device of the communication source and the server device of the communication destination can fix the communication source and the communication destination.
- the IPsec-VPN connection enables secure high-speed communication without encoding the payload information of the communication packet.
- SSL Secure Sockets Layer
- TLS Transport Layer Security
- the local server devices 51 and 54 such as the base station server device 51 function as relay server devices for support control of the automobile 10 for the narrow area server device 52, the wide area server device 53, and the host server device 55.
- the narrow-area server device 52 and the wide-area server device 53 function as relay server devices for support control of the automobile 10 for the host server device 55 .
- These relay server apparatuses are capable of adding information generated by themselves in the upper server apparatus and adjusting information acquired from the upper server apparatus.
- the server device on the host side can exchange information with the vehicle 10 without establishing a wireless communication path through the base station 40 with the vehicle 10 through the interposition of the relay server device. be. Long-distance communication including wireless communication through the base station 40 can be prevented from being used throughout the travel control support system 1 .
- the plurality of server devices 50 can perform various controls for supporting the plurality of automobiles 10. It becomes possible to distribute and execute according to the installation position in the region and the position in the hierarchy.
- the local server devices 51 and 54 such as the base station server device 51 can specialize in control for continuously executing communication with each of the plurality of automobiles 10 in the zone at each running control cycle.
- the narrow-area server device 52 and the wide-area server device 53 can specialize in traffic control or remote control that adjusts the running of a plurality of automobiles 10 in each entire area based on future prediction.
- the host server device 55 can specialize in air traffic control or remote control based on future prediction for a wider area than the narrow-area server device 52 or wide-area server device 53 . Moreover, the host server device 55 can also specialize in managing and controlling the running control support system 1 as a whole.
- FIG. 4 is an explanatory diagram of a hardware configuration of a server device 60 that can be used as various server devices in FIG.
- the server device 60 of FIG. 4 has a server communication unit 61, a server GNSS receiver 62, a server memory 63, a server CPU (Central Processing Unit) 64, and a server bus 65 to which these are connected.
- the base station server device 51, acceleration server device 54, narrow area server device 52, wide area server device 53, and host server device 55 shown in FIG. 3 may basically have the hardware configuration shown in FIG. However, it is desirable that the base station server device 51 and the local server devices 51 and 54 hatched in FIG. 3 further include a base station 40 communication unit, as indicated by the dashed lines in FIG.
- the communication section of the base station 40 communicates with the vehicle communication section 17 of the automobile 10 through the base station 40 to exchange information with the vehicle communication section 17 .
- the base station 40 communication unit establishes a communication path by SSL/TLS-VPN suitable for 1:N communication with each of the vehicle communication units 17 of the plurality of automobiles 10, and communicates with each vehicle communication unit 17 through each communication path. and information may be sent and received.
- the number N of vehicles 10 with which the communication unit of the base station 40 can communicate may be determined according to the processing capability of the server device 60 . Also, the processing capacity of the server device 60 is determined based on the number of base stations 40 connected to the server device 60, the size of the area where the zones of the base stations 40 are set, and the maximum number of units assumed in the area. good.
- the server communication unit 61 communicates with another server device 68 used in the travel control support system 1 .
- the server communication unit 61 establishes a communication path by IPsec-VPN connection at least with another server device 68 directly connected by the carrier communication cable 42 .
- the server communication unit 61 may establish a communication path such as an IPsec-VPN connection with another server device 68 that is not directly connected via another server device 68 .
- base station server device 51 establishes a communication path between directly connected narrow area server device 52 or wide area server device 53, and communicates with host server device 55 via carrier wide area communication network 57.
- a communication path may be established between
- the server GNSS receiver 62 receives radio waves from a plurality of GNSS satellites 110 and obtains the latitude, longitude, altitude, and current time of the installation position of the server device 60 .
- This current time is basically the same as the time obtained by the GNSS receiver 26 of the control system of each automobile 10 .
- Server device 60 and automobile 10 can execute their respective controls under a common absolute time. For example, the detection time of the vehicle sensor unit in the automobile 10 can be used as it is for calculation with the time of the server device 60 .
- the server memory 63 records programs and data executed by the server CPU 64 .
- the server memory 63 may be composed of, for example, a semiconductor memory, HDD, or the like.
- the server memory 63 records, for example, high-precision map data 67 of the jurisdiction area of the server device 60 .
- the base station server device 51 At least the high-precision map data 67 of the area corresponding to the zone of the base station 40 may be recorded.
- the narrow-area server device 52 or the wide-area server device 53 at least the high-precision map data 67 of the area covered by the plurality of base stations 40 connected to each may be recorded.
- the host server device 55 the high-definition map data 67 of all regions in FIG. 3 may be recorded.
- the high-precision map data 67 of the host server device 55 may be, for example, high-precision map data of the entire country of Japan.
- the high-precision map data 67 of the jurisdictional area may be high-precision three-dimensional map data of roads on which automobiles travel.
- Such high-precision map data 67 includes information indicating the central guide line of each lane of the road on which the automobile 10 travels and the boundary line of each lane.
- guide lines for turning the steering wheel may be included. Guide lines contain information about the shape and slope of each lane of the road due to their slopes and bends.
- the high-precision map data 67 may also include information on surrounding objects such as road signs, marks, and traffic lights that can be recognized by the vehicle 10 in motion.
- the current positions of a plurality of automobiles 10 and the like can be mapped on the road map based on the high-precision map data 67 .
- the driving environment for each vehicle 10 includes, for example, not only the inter-vehicle distance and driving lane of each vehicle 10 from the preceding vehicle, but also the driving environment ahead of the preceding vehicle. can grasp. It is possible to grasp the driving environment for a range beyond the range that can be grasped by the self-vehicle sensor of the automobile 10 .
- the server CPU 64 reads a program from the server memory 63 and executes it. As a result, the server device 60 implements a server control unit.
- the server CPU 64 as a server control unit controls the overall operation of the server device 60 .
- the server control units of the plurality of server devices 50 constituting the travel control support system 1 implement various controls for supporting the travel control of the plurality of automobiles 10 by cooperation of the plurality of server devices 50 .
- the server CPU 64 of the base station server device 51 controls establishment of communication paths with each of the plurality of automobiles 10 in the zone of the base station 40, and controls transmission and reception of information with each automobile 10 using the established communication paths.
- the narrow-area server device 52 or the wide-area server device 53 controls the establishment of a communication path with the connected base station server device 51, controls transmission and reception of information with the base station server device 51 using the established communication path, communication path establishment control with the host server device 55, etc., information transmission/reception control with the host side server device etc. using the established communication channel, processing control of acquired detection information, and the like.
- the upper server device 55 controls the establishment of a communication path with the lower-level narrow-area server device 52, the wide-area server device 53, or the base station server device 51, and transmits and receives information to and from the lower-level server device using the established communication path. control, processing control of acquired detection information, and the like.
- FIG. 5 is an explanatory diagram of various functions implemented in the plurality of server devices 50 of the cruise control support system 1 of FIG. 3 to support the cruise control of a plurality of automobiles.
- FIG. 5 shows, as various functions realized by the driving control support system 1, a plurality of individual support units 71 each having a remote detection unit 72, and an upper support unit 73. As shown in FIG. Each of these functions is implemented in one of the plurality of server devices 50 by the server CPU 64 executing a program.
- the own vehicle sensor unit 15 acquires detection information from a plurality of own vehicle sensors and information on the driving state and driving environment of the automobile 10 based on the detection information.
- the information detected by the vehicle sensor unit 15 includes the current position and orientation of the vehicle 10, the current time, and the direction and value of the current speed.
- the own vehicle sensor unit 15 Based on the detected captured image, the own vehicle sensor unit 15 generates recognition information of actual lane boundaries near the own vehicle, recognition information of actual surrounding objects such as the preceding vehicle near the own vehicle, etc., can be generated. These pieces of recognition information are required for travel control at level 3 of automatic driving or higher.
- the vehicle communication unit 17 transmits detection information of the own vehicle sensor unit 15 and the like to the individual support unit 71 corresponding to the own vehicle by wireless communication through the base station 40 .
- the vehicle communication unit 17 receives and acquires support information from the individual support unit 71 corresponding to the own vehicle through wireless communication through the base station 40 .
- the traveling control unit 16 basically autonomously controls traveling of the own vehicle based on secondary detection information such as detection information of the own vehicle sensor unit 15 and various types of recognition information based thereon.
- the individual support unit 71 is generated in association with each of the plurality of automobiles 10 present in the zone of the base station 40, for example, in the base station server device 51 connected to the base station 40 with which the automobile 10 can directly communicate. be done. In addition, when a plurality of automobiles 10 are traveling as one group, the individual support unit 71 may be generated in association with the group.
- the individual support unit 71 establishes a communication path including wireless communication through the base station 40 with the vehicle communication unit 17 of the corresponding automobile 10 .
- the individual support unit 71 transmits and receives information to and from the vehicle communication unit 17 of the corresponding automobile 10 . For example, the individual support unit 71 receives and acquires detection information and the like from the travel control unit 16 of the corresponding automobile 10 .
- the individual support unit 71 generates support information that can be used by the travel control unit 16 of the corresponding automobile 10 for travel control, based on detection information and the like acquired from the corresponding automobile 10 .
- the individual support unit 71 transmits and provides the generated support information to the travel control unit 16 of the corresponding vehicle 10 . Thereby, the individual support unit 71 can support the travel control of the corresponding vehicle 10 .
- the remote detection unit 72 recognizes information about the travel path in the traveling direction of the corresponding automobile 10 and information about surrounding objects around the corresponding automobile 10 based on peripheral space information such as a captured image of the outside of the corresponding automobile 10 . It generates recognition information. The process of generating peripheral recognition information based on such spatial information is part of the control performed by the individual support unit 71 to support the running of the corresponding vehicle 10, and artificial intelligence or the like is used. This is a process with a high load.
- the remote detection unit 72 may be generated in the same base station server device 51 as the individual support unit 71 or may be generated in the acceleration server device 54 connected to the base station server device 51 . By generating the remote detection unit 72 in the acceleration server device 54 , the processing load of the base station server device 51 is reduced, and the base station server device 51 can focus on communication with a plurality of automobiles 10 .
- the upper support unit 73 collects information on the automobiles 10 with which the individual support units 71 correspond from each of the plurality of individual support units 71, and uses the collected information on the plurality of automobiles 10 to , the host support information for driving control of each vehicle 10 is generated based on the driving state. Then, the host support unit 73 generates the host support information generated to be provided to each of the plurality of automobiles 10 in correspondence with each of the plurality of automobiles 10 rather than the vehicle communication unit 17 of each automobile 10 itself. is transmitted to and provided to a plurality of individual support units 71.
- the host support unit 73 includes, for example, a host collection unit that collects information on a plurality of vehicles 10; and the upper support unit 73 for providing the upper support information to a plurality of automobiles 10 .
- the host support unit 73 is basically realized in the server devices 52, 53, and 55 on the host side different from the base station server device 51. It may be realized together with the function of the vehicle communication unit 17 in a local server device such as the device 51 or the acceleration server device 54 .
- the plurality of server devices 50 as a whole implements the plurality of individual support units 71 and the higher-level support units 73 . All the functions of FIG. 5 are distributed and implemented in the plurality of server devices 50 .
- Each of the plurality of server devices 50 uses a communication path that is basically a wired connection that does not include wireless communication between the vehicle 10 and the base station 40, and performs mutual communication stably with low delay. can be done.
- each of the plurality of individual support units 71 generated corresponding to each of the plurality of automobiles 10 is based on the information acquired from the corresponding automobile 10 and the upper support information provided from the upper support unit 73.
- the travel control unit 16 of the corresponding automobile 10 generates information that can be used for travel control and transmits it to the vehicle communication unit 17 of the corresponding automobile 10;
- the driving control support system 1 can provide the support information generated by the individual support unit 71 and the support information generated by the upper support unit 73 to the plurality of vehicles 10 through low-delay and stable communication. can.
- the travel control unit 16 of each vehicle 10 can control the travel of the own vehicle using the support information provided from the travel control support system 1 together with the information detected by the own vehicle.
- IPsec-VPN is used for communication between a plurality of server devices 50, and the communication source and communication destination are fixed by mutual authentication between the communication source and communication destination.
- a first virtual private network that As a result, even if the payload information of the communication packet is not encoded, the communication between the plurality of server devices 50 can be performed at high speed with confidentiality. The delay time until each individual support unit 71 obtains upper support information can be shortened and stabilized.
- SSL/TLS-VPN is used for communication through the base station 40 between each vehicle 10 moving by running and the corresponding base station server device 51 having the individual support unit 71.
- a second virtual private network is used in which the destination of the server device is not fixed by authentication of only the server device, which is one side of the communication.
- the destination of the server device can be freely changed.
- the base station server device 51 having the individual support unit 71 encodes the payload information of the communication packet with a plurality of arbitrary automobiles 10, thereby providing confidentiality and increasing the flexibility of the connection partner.
- Some communication can be realized.
- different types of virtual private networks are used between the server devices 50 and between the server device and the automobile 10 . By realizing communication through a suitable combination of these, in this embodiment, it is possible to minimize communication delays that lead to control delays, etc., while ensuring good connections between communicating devices.
- the driving control support system 1 can be used practically to support driving of the automobile 10 .
- FIG. 6 is a flow chart of driving control of the automobile 10 capable of receiving driving assistance from the driving control support system 1 of FIG.
- the travel control unit 16 of the automobile 10 may repeatedly execute the travel control of FIG. 6, for example, each time the automobile 10 is started.
- step ST1 the travel control unit 16 acquires the detection information of the own vehicle sensor from the own vehicle sensor unit 15.
- step ST2 the travel control unit 16 determines whether or not to utilize the support provided by the plurality of server devices 50 of the travel control support system 1.
- the travel control unit 16 may determine, for example, based on the current position of the own vehicle whether or not assistance from a plurality of server devices 50 is available.
- the driving control unit 16 is required by the driver to perform high-load control such as L3 and L4 with automatic driving level 3 or higher, or the remaining power of the battery of the own vehicle. It may be determined whether or not assistance is required according to the state.
- the travel control unit 16 steps the processing in order to receive support for high-load automatic driving of level 3 or higher. Proceed to ST3. Otherwise, the travel control unit 16 advances the process to step ST6 so as to execute autonomously completed control.
- step ST3 the driving control unit 16 transmits the detection information of the own vehicle sensor acquired from the own vehicle sensor unit 15 to the individual support unit 71 realized corresponding to itself in the base station server device 51 or the like. do.
- the vehicle communication unit 17 of the automobile 10 establishes a communication path by SSL/TLS-VPN connection with the server communication unit 61 of the base station server device 51, and the vehicle sensor whose transmission is requested by the traveling control unit 16 A packet containing the detection information of is encrypted and transmitted to the server communication unit 61 .
- the server communication unit 61 receives the detection information of the own vehicle sensor, the server control unit of the base station server device 51 generates support information accordingly, as will be described later.
- the server control unit When executing support for high-load control of level 3 or higher, the server control unit generates secondary detection information obtained by L3 and L4 based on the acquired detection information of the own vehicle sensor. you can The server control unit also transmits the generated support information to the travel control unit 16 of the automobile 10 .
- the server communication unit 61 encrypts the packet containing the support information and transmits it to the vehicle communication unit 17 through the communication path established with the vehicle communication unit 17 . Thereby, the vehicle communication unit 17 of the automobile 10 can receive the assistance information.
- the travel control unit 16 determines whether or not the support information from the individual support unit 71 has been acquired. If the vehicle communication unit 17 has not received the support information, the travel control unit 16 determines that the support information from the individual support unit 71 has not been acquired, and repeats this process. When the vehicle communication unit 17 receives the assistance information, the travel control unit 16 determines that the assistance information has been acquired from the individual assistance unit 71, and advances the process to step ST5.
- step ST5 the travel control unit 16 performs travel control of the vehicle based on the assistance information acquired from the vehicle communication unit 17 and the detection information of the own vehicle sensor. If the assistance information includes a control value for remote control or the like, the travel control unit 16 may control travel based on the control value.
- the support information includes information on a travelable range or travel restricted range due to air traffic control or the like
- the travel control unit 16 generates control values for travel within these ranges, and controls travel based on the generated control values. you can In addition, during these runs, the travel control unit 16 runs so as to maintain the current travel route based on the information detected by the vehicle sensors, and also controls the surroundings recognized based on the information detected by the vehicle sensors.
- the control value may be adjusted so that the vehicle travels without interfering with objects.
- the vehicle 10 can, for example, travel according to the traffic control or remote control of the travel control support system 1 and basically maintain the travel path without interfering with surrounding objects.
- the travel control unit 16 advances the process to step ST8.
- the travel control unit 16 In step ST6, the travel control unit 16 generates secondary detection information required for high-load control of level 3 or higher in the own vehicle in order to execute autonomously complete control.
- the travel control unit 16 may generate secondary detection information, for example, based on spatial information around the vehicle.
- the secondary detection information may include recognition information of lane boundaries of the road on which the vehicle is traveling, and recognition information of peripheral objects such as other moving bodies around the vehicle.
- the travel control unit 16 may use AI processing based on machine learning in object extraction processing for spatial information and recognition processing for the extracted object.
- step ST7 the travel control unit 16 performs travel control of the vehicle based on the information detected by the own vehicle sensor.
- the detection information of the own vehicle sensor includes the secondary detection information generated in step ST6.
- the travel control unit 16 may generate a control value for maintaining the travel path during travel based on information detected by the own vehicle, or may generate a control value for travel so as not to interfere with surrounding objects. Further, the traveling control unit 16 controls traveling based on the generated control value. As a result, the vehicle 10 can travel without interfering with surrounding objects while basically maintaining the travel path by autonomous control of the vehicle.
- step ST8 the travel control unit 16 determines whether or not to end the travel control of the automobile 10.
- the travel control unit 16 may determine to end the travel control of the automobile 10 based on, for example, whether the automobile 10 has reached the destination and stopped.
- the cruise controller 16 returns the process to step ST1.
- the travel control unit 16 repeats the processing from step ST1 to step ST8 and repeats the travel control of the automobile 10 until it determines to end the travel control of the automobile 10 .
- the cruise controller 16 ends the control.
- FIG. 7 is a flowchart of individual support control for the corresponding vehicle 10 by the individual support unit 71 of FIG.
- Individual support unit 71 in FIG. 5 is generated corresponding to vehicle 10 in base station server device 51 or the like, for example.
- the individual support unit 71 in FIG. 5 repeatedly executes the individual support control in FIG. 7 to repeatedly acquire detection information from the corresponding vehicle 10 and continuously support the travel control of the corresponding vehicle 10 .
- step ST11 the individual support unit 71 determines whether or not new detection information has been received and acquired from the corresponding vehicle 10. If new detection information has not been received, the individual support unit 71 repeats this process until it is received. Upon receiving new detection information, the individual support unit 71 advances the process to step ST12.
- step ST12 the individual support unit 71 determines whether spatial information has been acquired from the corresponding vehicle 10 in the new detection information acquired. If spatial information has been acquired, the individual support unit 71 advances the process to step ST13 for recognition processing based on spatial information. If the spatial information has not been acquired, the individual support unit 71 advances the process to step ST15.
- step ST13 the individual support unit 71, as the remote detection unit 72, generates a three-dimensional space model of the surroundings of the corresponding vehicle 10 based on the acquired space information. and surrounding objects.
- step ST14 the individual support unit 71, as the remote detection unit 72, based on the object extracted in step ST13, recognizes information such as the shape of the travel path, and the type, size, relative direction and distance of surrounding objects, and so on. Generate recognition information. These pieces of information are secondary detection information used to determine the course of the own vehicle when the cruise control unit 16 executes control of automatic driving of level 3 or higher.
- the individual support unit 71 itself is configured by a plurality of hierarchized server devices 50 so that the individual support unit 71 is implemented in the base station server device 51 and the remote detection unit 72 is implemented in the acceleration server device 54 . may be In this case, the individual support unit 71 may request the acceleration server device 54 from the base station server device 51 to perform the processing from step ST13 to step ST14 and obtain the result from the acceleration server device 54 .
- step ST15 the individual support unit 71 acquires the latest higher-level support information that the individual support unit 71 has acquired from the higher-level support unit 73.
- the latest upper support information may be temporarily recorded in the server memory 63 .
- step ST16 the individual support unit 71 transmits the support information obtained through the above processing to the corresponding vehicle 10.
- the individual support section 71 transmits the detection information acquired from the corresponding vehicle 10 in the current control to the upper support section 73 .
- the individual support unit 71 transmits the detection information to the upper support unit 73, together with the latest position of the automobile 10 to which the individual support unit 71 corresponds, the time, the direction and magnitude of the speed, and the peripheral recognition information generated by the individual support unit 71. , etc., may be included.
- the individual support unit 71 does not need to include spatial information such as captured images acquired from the automobile 10 in the detection information to be transmitted to the upper support unit 73 .
- the individual support unit 71 can provide the upper support unit 73 with information for increasing the reliability of air traffic control or remote control while reducing the amount of communication with the upper support unit 73 . After that, the individual support unit 71 terminates this control.
- the individual support unit 71 generates and provides part of the detection information used for automatic driving in the corresponding vehicle 10 instead of the control system of the vehicle 10 .
- the individual support unit 71 can function as an ECU outside the automobile 10 .
- the base station server device 51 that implements the individual support unit 71 transmits the host support information generated by the server devices 52, 53, and 55 on the host side to the corresponding vehicle 10 together with the support information generated by itself. do.
- the base station server device 51 that implements the individual support unit 71 is the only server device that directly communicates with each vehicle 10 in the driving control support system 1 .
- the base station server device 51 is a server device connected to the base station 40 used for communication by the vehicle 10, even when communicating with the vehicle communication unit 17 of each vehicle 10 by wireless communication through the base station 40, It can respond to the vehicle 10 in a relatively stable short period of time.
- the vehicle 10 can travel by highly automated driving of level 3 or higher in a state in which the processing load for highly automated driving of level 3 or higher is reduced. can be done.
- the individual support unit 71 provided in the base station server device 51 corresponding to the vehicle 10 acquires the detection information of the own vehicle sensor from the corresponding vehicle 10 by wireless communication through the base station 40, The obtained detection information of the own vehicle sensor is processed to generate secondary detection information, and the generated secondary detection information is transmitted to the vehicle communication unit 17 of the corresponding automobile 10 .
- the individual support unit 71 acquires detection information of the own vehicle sensor including space information of the surroundings of the automobile 10 detected by the own vehicle sensor from the corresponding automobile 10, and processes the acquired surrounding space information.
- the recognition information of the road around the vehicle 10 or the recognition information of the objects around the vehicle 10 is generated as secondary detection information, and the generated recognition information of the road around the vehicle 10 or the recognition information of the vehicle 10 is generated.
- Secondary detection information about recognition information of surrounding objects is transmitted to the vehicle communication unit 17 of the corresponding automobile 10 .
- the travel control unit 16 of the vehicle 10 of the present embodiment can process the detection information of the vehicle sensor by itself in the vehicle 10 and generate the secondary detection information, and the vehicle communication from the base station server device 51 can be performed.
- the secondary detection information received by the unit 17 can be used together with the detection information of the own vehicle sensors of the own vehicle to perform high-level cruise control.
- FIG. 8 is a flowchart of driving support control (higher level support control) for a plurality of automobiles 10 by the higher level support unit 73 in FIG.
- Upper support unit 73 in FIG. 5 is generated separately from individual support unit 71, for example, in narrow area server device 52, wide area server device 53, or upper server device 55 or the like.
- Higher-level support unit 73 may be realized by being distributed to narrow-area server device 52 and high-level server device 55 or distributed to wide-area server device 53 and high-level server device 55, for example.
- upper support section 73 may be generated together with individual support section 71 in, for example, one base station server device 51 or the like.
- the host support unit 73 may be generated by distributing to a plurality of host server devices in association with, for example, regional divisions. By repeatedly executing the host support control of FIG. 8 , the upper support unit 73 of FIG. 5 repeatedly acquires the detection information of the plurality of automobiles 10 and continuously supports the travel control of the plurality of automobiles 10 .
- the host support unit 73 supports travel control of the plurality of automobiles 10 by, for example, generating control control information and remote control information for each of the plurality of automobiles 10 .
- the host support unit 73 receives detection information of the vehicle 10 corresponding to each individual support unit 71 from each of the plurality of individual support units 71 generated corresponding to the plurality of vehicles 10. receive and collect The detection information of each vehicle 10 includes at least the latest position information such as the current position of each vehicle 10 .
- the host support unit 73 may also collect detection information such as the latest position information from other vehicles that are traveling in the area under their jurisdiction without using the travel control support system 1 .
- Such a vehicle 10 may communicate directly with a server device in which the upper support unit 73 is implemented.
- the host support unit 73 expands and generates a driving route map of the jurisdictional area based on the high-precision map data 67 recorded in the server memory 63, and creates the driving route map of the jurisdictional area. , such as the latest location of the vehicle 10 in the .
- the host support unit 73 can obtain information about the driving environment of the plurality of automobiles 10 in the area under its jurisdiction.
- the driving route map may be configured by, for example, representing each road or each lane in the area of jurisdiction by line segments. In this case, the host support unit 73 maps each automobile 10 to a position corresponding to the latest position on a line segment corresponding to the road or lane on which each automobile 10 is traveling.
- the driving route map may be composed of a combination of line segments corresponding to the roads or lanes described above and a time axis.
- the host support unit 73 can map not only the position of each vehicle 10 but also the running speed of each vehicle 10 .
- the host support unit 73 may map traffic information, regulation information, construction information, etc. by ADAS etc. on the driving route map of the area under its jurisdiction based on the high-precision map data 67 .
- the host support unit 73 maps information about other moving objects and fixed objects recognized around each vehicle 10 on the driving route map of the area under its jurisdiction based on the high-precision map data 67. good too.
- the host support unit 73 obtains the driving conditions of each vehicle 10 driving in the area under its jurisdiction in the driving road map of the area under its jurisdiction in which a plurality of vehicles 10 are mapped. In addition, the host support unit 73 generates host support information for driving control for each vehicle 10 based on the driving conditions obtained for each vehicle 10 and the estimation of the subsequent driving conditions. For example, in the driving road map of the jurisdiction area, if the vehicle 10 related to the process does not interfere with the surrounding objects even if it runs as it is, the host support unit 73 continues driving on the current driving road. Information about the continuous travelable range and restricted travel range is generated as upper-level support information in air traffic control.
- the host support unit 73 generates, as the host support information for remote control, a control value that causes the vehicle to continue traveling on the current travel road.
- the host support unit 73 Information on the possible travel range and the restricted travel range, which changes the current travel so that the current travel does not occur, is generated as upper-level support information in air traffic control.
- the host support unit 73 generates, as host support information for remote control, a control value for changing the current running so as not to cause interference. Further, the host support section 73 may generate such host support information in consideration of the characteristics of the driver of each automobile 10 .
- the characteristic information of the driver of each automobile 10 may be recorded in the server memory 63 in advance.
- the host support unit 73 minimizes the inter-vehicle distance in which the safety of each vehicle 10 can be ensured, and adds or subtracts the distance according to the deviation of the inter-vehicle distance secured by the driver himself/herself, and adds or subtracts the distance to the host support information. It may be information about the inter-vehicle distance in
- the higher-level support unit 73 transmits and provides the higher-level support information generated for each vehicle 10 traveling in the area under its jurisdiction to the individual support unit 71 corresponding to each vehicle 10.
- each individual support unit 71 can receive and acquire higher-level support information about the corresponding automobile 10 from the higher-level support unit 73 .
- each of the plurality of individual support units 71 corresponds to each of the plurality of individual support units 71 as a higher-level collection unit.
- the host support unit 73 maps the positions of the plurality of vehicles 10 collected by the host collection unit onto a driving route map based on the high-precision map data 67, and maps the driving state of the plurality of vehicles 10 on the driving route map.
- the cruise control unit 16 of each vehicle 10 generates upper support information that can be used for high-level cruise control according to each driving environment.
- the host support information generated by the host support unit 73 according to the driving environment of each vehicle 10 may be, for example, information for traffic control that conveys the possible travel range or restricted travel range to each vehicle 10. , may be a control value of remote control that the travel control unit 16 of each automobile 10 uses for travel control.
- the travel control unit 16 of each vehicle 10 can control the vehicle to travel without interfering with, for example, other vehicles in the vicinity.
- the travel control unit 16 of each vehicle 10 executes travel control in accordance with the host support information, so that other vehicles, for example, start avoidance control in autonomous control based on the detection information of the own vehicle sensor. It is possible to execute travel control so as to avoid interference with the vehicle when the vehicle is further away than the distance.
- Each vehicle 10 can achieve more stable driving by obtaining the host support information, compared to autonomous driving control based on the information detected by the vehicle's sensors.
- the plurality of individual support units 71 described above are generated in the plurality of base station server devices 51 so as to correspond to each of the plurality of automobiles 10 .
- the corresponding individual support unit 71 is generated by dynamically switching between a plurality of base station server devices 51 so as to switch to a different base station server device 51 from before. is desirable.
- FIG. 9 is a flowchart of an example of management control of the individual support unit 71 corresponding to a plurality of automobiles 10 in the base station server device 51 having the individual support unit 71 of FIG.
- the server CPU 64 of the base station server device 51 repeatedly executes management control of the individual support unit 71 of FIG.
- step ST31 the server CPU 64 of the base station server device 51 determines whether or not there is a new generation request for the individual support section 71.
- FIG. The driving control unit 16 of the automobile 10 is controlled, for example, when a driver gets into the automobile 10, when the automobile 10 starts traveling, when the traveling automobile 10 enters the jurisdiction area of the traveling control support system 1, or When the driver performs a predetermined operation in the jurisdiction area of the driving control support system 1 , the generation request may be transmitted to the base station server device 51 by wireless communication through the base station 40 . Also, as will be described later, when the vehicle 10 under its jurisdiction moves out of the area, the plurality of base station server apparatuses 51 transmit a generation request to the base station server apparatus 51 for the area to which the vehicle 10 has moved.
- the server CPU 64 determines that there is a new generation request for the individual support section 71, and advances the process to step ST32. Otherwise, the server CPU 64 determines that there is no new generation request for the individual support unit 71, and advances the process to step ST33.
- the server CPU 64 In step ST32, the server CPU 64 generates, in its own base station server device 51, the individual support section 71 corresponding to the vehicle 10 related to the new generation request.
- the server CPU 64 may newly issue identification information for each individual support unit 71 generated in its own base station server device 51, for example, and dynamically generate a work area attached with the identification information in the server memory 63. .
- the server CPU 64 preferably records information about the automobile 10 corresponding to the individual support unit 71 in the generated work area.
- the server CPU 64 repeats the individual support control of FIG. 7 by sequentially using the information of the work area secured for each corresponding automobile 10 in the server memory 63 . Thereby, the server CPU 64 can execute individual support control corresponding to a plurality of automobiles 10 . After that, the server CPU 64 may end this control.
- step ST33 the server CPU 64 determines whether or not there is a vehicle 10 moving outside the area among the plurality of vehicles 10 under its jurisdiction.
- the server CPU 64 may predictively determine the movement of the vehicle 10 under its jurisdiction to outside the area based on the position and direction of movement of the vehicle 10 . If there is a vehicle 10 moving out of the area, the server CPU 64 advances the process to step ST34. Otherwise, the server CPU 64 advances the process to step ST35.
- step ST34 the server CPU 64 transmits a generation request to the base station server device 51 regarding the destination area of the automobile 10.
- FIG. This generation request may include information on the work area that the vehicle 10 has acquired about the vehicle 10 moving out of the area.
- the base station server device 51 for the region of the destination takes over the information about the automobile 10 entering from outside the region from the base station server device 51 of the movement source, thereby providing seamless support in which inconsistency is unlikely to occur. It can be realized.
- the server CPU 64 may delete, for example, the information of the individual support unit 71 corresponding to the vehicle 10 that has moved out of the area from its own base station server device 51, and terminate this control.
- step ST35 the server CPU 64 determines whether or not there is a vehicle 10 that continues to be undetected among the plurality of vehicles 10 under its jurisdiction.
- the operation including the traveling control unit 16 stops.
- the vehicle 10 does not transmit the detection information of the vehicle sensor to the corresponding individual support unit 71 .
- the server CPU 64 may record the last update time of the information in a work area secured for each automobile 10 in the server memory 63, for example. In this case, the server CPU 64 can determine that the non-detection state continues, for example, when the time difference between the current time and the last update time becomes greater than a threshold value equal to or greater than the drive control cycle of the vehicle 10 .
- the server CPU 64 judges the continuation of such a non-detection state for all of the plurality of work areas secured in the server memory 63, thereby determining whether or not the vehicle 10 continues to be in the non-detection state. You can judge. If there is a vehicle 10 that continues to be undetected, the server CPU 64 advances the process to step ST36. Otherwise, the server CPU 64 terminates this control.
- the server CPU 64 deletes from its own base station server device 51 the information of the individual support unit 71 corresponding to the vehicle 10 that continues to be in the undetected state.
- the server CPU 64 may, for example, delete and release the work area secured for the automobile 10 in the server memory 63 . After that, the server CPU 64 terminates this control.
- the individual support unit 71 corresponding to each vehicle 10 can perform hands-over control of the base station 40 according to the movement of each vehicle 10.
- the assignment is dynamically switched to the base station server device 51 connected to the base station 40 with which the moving automobile 10 newly communicates.
- the individual support unit 71 dynamically moves among the plurality of base station server devices 51 as if following the movement of the corresponding automobile 10 .
- the base station server device 51 is an example of an area server device.
- the individual support unit 71 corresponding to each running vehicle 10 is provided for each vehicle among the plurality of base station server devices 51 provided for each area in which one or more base stations 40 are provided.
- each base station server device 51 corresponding to the base station 40 with which the 10 vehicle communication units 17 communicate.
- Each base station server device 51 may be provided integrally with the base station 40, for example.
- the assignment of the individual support units 71 generated corresponding to each vehicle 10 is dynamically switched among the plurality of base station server devices 51 according to the running of the vehicle 10 .
- the individual support unit 71 moves among the plurality of base station server devices 51 so as to follow the running automobile 10 .
- Information provided by each vehicle 10 to the corresponding individual support unit 71 and information provided by each individual support unit 71 to the corresponding vehicle 10 are transmitted and received with a stable delay time so as to be minimized. can be Also, their response times can be minimized.
- the individual support unit 71 can continue to provide information that can be used for control based on the information acquired from the corresponding vehicle 10 so as not to delay the control of the travel control unit 16 of the corresponding vehicle 10. become.
- a plurality of server devices 50 are used to support driving control of a plurality of automobiles 10 .
- each of the plurality of automobiles 10 has a traveling control unit 16 capable of executing autonomous traveling control based on detection information of the own vehicle sensor provided in each, and a plurality of server devices 50 through wireless communication through the base station 40. and a vehicle communication unit 17 that acquires information used for the travel control of the travel control unit 16 from the vehicle communication unit 17 .
- each of the plurality of server devices 50 for supporting the travel control of the plurality of automobiles 10 has a travel control function generated corresponding to each of the plurality of automobiles 10 and the travel control of the corresponding automobile 10.
- a plurality of individual support units 71 that provide information that can be used by the unit 16 for travel control to the vehicle communication unit 17 by wireless communication through the base station 40 to support the travel control of the corresponding automobile 10; a host support unit 73 for generating host support information for driving control of each of the plurality of vehicles 10 based on the running states of the plurality of vehicles 10, using the information of the vehicles 10; .
- the upper support unit 73 in the present embodiment has a function as a higher-level collection unit that collects information on the automobile 10 with which each individual support unit 71 corresponds from each of the plurality of individual support units 71, and a plurality of As an upper-level providing unit that provides upper-level support information generated to be provided to each vehicle 10 not to each vehicle 10 itself but to a plurality of individual support units 71 generated corresponding to each of the plurality of vehicles 10 It also has the function of The plurality of server devices 50 as a whole includes all of the above-described plurality of individual support units 71 and higher-level support units 73 .
- a plurality of individual support units 71 corresponding to a plurality of automobiles 10 are realized in a plurality of server devices 50 .
- Each individual support unit 71 can be used by the travel control unit 16 of the corresponding automobile 10 for travel control based on the information acquired from the corresponding automobile 10 and the upper support information provided from the upper support unit 73.
- the host collection unit, host support unit 73, and host support unit 73 collect the host support information generated to be provided to each of the plurality of automobiles 10 from a plurality of individual servers within the range of the plurality of server devices 50.
- the host collection unit, host support unit 73, and host support unit 73 do not directly provide information to the plurality of automobiles 10 by wireless communication through the base station 40, but provide the information to the plurality of automobiles 10 for driving control. to finish each process.
- the series of processes in the plurality of server devices 50 can be processed with stable low delay. Even if the automobile 10 moves and the base station 40 used for wireless communication is switched, the series of processing in the plurality of server devices 50 is not affected by the switching, and is stable and has low delay. can be processed. Delays that lead to control delays are less likely to occur.
- the plurality of automobiles 10 according to the present embodiment can be used by the travel control unit 16 of the automobile 10 for travel control from the plurality of individual support units 71 generated corresponding to each of the plurality of server devices 50. This information can be received and used for driving control of the own vehicle.
- the travel control unit 16 of each vehicle 10 receives information based on the upper support information, for example, without generating the upper support information provided from the upper support unit 73 as described above by its own processing. It can be used for travel control.
- the processing load on each vehicle 10 can be reduced.
- Each automobile 10 acquires upper support information generated by a plurality of server devices 50 and information based thereon from a plurality of server devices 50 even when executing travel control corresponding to high-level automatic driving. , it can be done by a low-load process.
- the required performance of the automobile 10 can be suppressed.
- a plurality of problems in supporting the running control of the automobile 10 by the server device are solved while maintaining a comprehensive balance, and the running control of the car 10 is preferably performed by the plurality of server devices 50. can assist in
- FIG. 10 is a flowchart of individual support control for the corresponding automobile 10 by the individual support unit 71 of the second embodiment of the invention.
- the individual support unit 71 By repeatedly executing the individual support control of FIG. 10 , the individual support unit 71 repeatedly acquires the detection information from the corresponding vehicle 10 and continuously supports the travel control of the corresponding vehicle 10 .
- the processing from step ST11 to step ST17 in FIG. 10 is the same as that in FIG. However, after step ST15, the individual support unit 71 advances the process to step ST40.
- step ST40 the individual support unit 71 collects the detection information (including secondary detection information) of the vehicle sensor of the corresponding automobile 10 acquired up to step ST14, and the host vehicle sensor acquired in step ST15.
- the route information to be actually transmitted to the automobile 10 is generated based on the upper support information from the support unit 73 and the above.
- the route information here may be transmitted to the automobile 10 in place of the upper support information.
- the individual support unit 71 advances the process to step ST17.
- FIG. 11 is a detailed flow chart of the route information generating process of FIG.
- the individual support unit 71 executes the course information generation process of FIG.
- the individual support section 71 provisionally generates a travel route according to the upper support information acquired from the higher support section 73 .
- the higher-level support information is control information about a travelable range or a travel-prohibited range
- the individual support unit 71 provisionally generates a travel route restricted by the range.
- the host support information is a control value for remote control that can be used by the travel control unit 16 of the automobile 10 for travel control
- the individual support unit 71 provisionally generates a travel route based on the control value.
- step ST42 the individual support unit 71 compares the temporarily generated travel route with the information detected by the vehicle sensor of the automobile 10, and determines whether or not there is interference with the travel route or surrounding objects.
- the detection information of the own vehicle sensor to be compared here the recognition information of the traveling road and the recognition information of the surrounding objects generated by the individual support unit 71 based on the detection information of the own vehicle sensor may be used. If the provisionally generated travel route does not interfere with the travel route or surrounding objects, the individual support unit 71 advances the process to step ST43. If the temporarily generated travel route interferes with the travel route or surrounding objects, the individual support unit 71 advances the process to step ST44.
- step ST43 the individual support unit 71 determines the provisionally generated driving route as the route to be provided to the corresponding vehicle 10. After that, the individual support unit 71 returns the processing to FIG. 10, and in step ST16, transmits and provides the provisionally generated travel route to the corresponding automobile 10.
- FIG. 10 the individual support unit 71 determines the provisionally generated driving route as the route to be provided to the corresponding vehicle 10.
- step ST44 the individual support unit 71 generates a travel route by adjusting the travel route provisionally generated according to the higher-level support information so as to prevent interference.
- the individual support unit 71 determines the travel route changed by the adjustment as the route to be provided to the corresponding vehicle 10 . After that, the individual support unit 71 returns the process to FIG. 10, and in step ST16, transmits and provides the adjusted travel route to the corresponding automobile 10.
- the individual support unit 71 does not transmit and provide the upper support information acquired from the upper support unit 73 to the corresponding vehicle 10, but rather provides the traveling route generated based on the upper support information to the corresponding vehicle. 10 to provide.
- the individual support unit 71 can provide the corresponding vehicle 10 with information on the driving route according to the actual driving situation of the corresponding vehicle 10 .
- the individual support unit 71 may not only judge interference by simply comparing it with the detection information of the corresponding vehicle 10, but may also make other comparative judgments.
- a comparison judgment for example, a comparison between a driving route map based on the high-precision map data 67 recorded in the server memory 63 of the base station server device 51 in which the individual support unit 71 is implemented and the driving route is performed. be. Then, if the temporarily generated running route does not match the running route map based on the high-precision map data 67 of the base station server device 51, the individual support unit 71 may advance the process to step ST44.
- the individual support unit 71 should adjust the provisionally generated travel route so as to match the travel route map based on the high-precision map data 67 of the base station server device 51.
- the server memory 63 of the base station server device 51 in which the individual support unit 71 is implemented may record characteristic information such as the inter-vehicle distance of the driver.
- the individual support unit 71 may adjust the provisionally generated travel route so as to conform to the driver's characteristics such as the inter-vehicle distance.
- the individual support unit 71 may, for example, minimize the inter-vehicle distance at which the safety of each automobile 10 can be ensured, and generate a travel route with a distance obtained by adding or subtracting a distance according to the deviation of the inter-vehicle distance for the driver.
- the base station server device 51 in which the individual support unit 71 is implemented may independently execute locally closed control/remote control separately from the upper server device in which the upper support unit 73 is implemented. .
- the individual support unit 71 provided in the base station server device 51 corresponding to the vehicle 10 acquires the detection information of the own vehicle sensor from the corresponding vehicle 10, and the upper support unit 73, the upper support information according to the driving environment of the corresponding automobile 10 is acquired. Then, when the travel control unit 16 of the corresponding automobile 10 travels according to the host support information, a traveling road or surrounding objects that can be recognized based on the detection information (including secondary detection information) of the own vehicle sensor. When not interfering with the individual support unit 71, the individual support unit 71 generates information according to the upper support information as information that can be used by the travel control unit 16 of the corresponding automobile 10 for travel control.
- the individual support unit 71 when the travel control unit 16 of the corresponding automobile 10 travels according to the host support information and interferes with the travel path or surrounding objects that can be recognized based on the detection information of the own vehicle sensor, the individual support unit 71 generates information that is changed by adjusting traveling according to upper support information so that interference is less likely to occur, as information that can be used for traveling control by the traveling control unit 16 of the corresponding automobile 10. - ⁇ As a result, even if the individual support unit 71 corresponding to each vehicle 10 acquires higher-level support information that does not sufficiently correspond to reality from the higher-level support unit 73, the vehicle sensor of each vehicle 10 , can be generated and provided to each corresponding vehicle 10, track information sufficiently corresponding to the reality detected by .
- the upper support unit 73 basically obtains information about the actual driving environment of the plurality of automobiles 10 even if it does not obtain all of the information. It is possible to generate host support information that allows the automobile 10 to continue driving safely.
- the host support unit 73 that determines the driving environment of a plurality of vehicles 10 and generates host support information for each vehicle 10 is basically the narrow area server device 52 of FIG. 3 or the wide area server. It is implemented in the device 53 or the upper server device 55 .
- the upper support unit 73 may be implemented in a part of the plurality of base station server devices 51 .
- the arrangement of the plurality of individual support units 71 and the upper support units 73 in the plurality of server devices 50 is not limited to that shown in FIG.
- upper support section 73 may be arranged together with individual support section 71 in one base station server device 51 .
- the travel control support system 1 to which the present invention is applicable is not limited to the configuration of the plurality of server devices 50 shown in FIG. 3 .
- the configuration of the plurality of server devices 50 may be designed according to various installation environments such as the topography and urban layout of the area managed by the travel control support system 1, population density distribution, and the presence or absence of expressways.
- SYMBOLS 1 Driving control assistance system, 10... Automobile (vehicle), 11... Drive control part, 12... Steering control part, 13... Braking control part, 14... Driving operation part, 15... Vehicle sensor part, 16... Driving control part , 17... Vehicle communication unit, 18... Central gateway device, 19... Cable, 21... Acceleration sensor, 22... Corner radar, 23... Stereo camera, 24... Lidar, 25... All-around camera, 26... GNSS receiver, 31...
- Vehicle Memory 32
- Vehicle ECU 33
- Vehicle high-precision map data 40
- Base station 41, 60
- Server device 42
- Carrier communication cable 43
- Local system 44
- Other server device 45
- Wide area communication Network 46
- Gateway device 50
- Plural server devices 51
- Base station server device 52
- Small area server device 53
- Wide area server device 54
- Acceleration server device 55
- Host server device 57
- Carrier wide area communication network 61
- Server communication unit 62
- Server GNSS receiver 63
- Server memory 64
- Server CPU 65
- Server bus 67
- High-precision map data of jurisdiction area 68
- Other server devices 71... Individual support unit, 72... Remote detection unit, 73...
- Upper support unit (upper collection unit, upper provision unit), 110... GNSS satellite
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Traffic Control Systems (AREA)
Abstract
【課題】車両の走行制御についてのサーバ装置の支援を実現できるようにする。 【解決手段】複数の車両10の走行制御を複数のサーバ装置50により支援する走行制御支援システム1において、各車両10は、自車センサの検出情報に基づく走行制御を実行可能な走行制御部16と、サーバ装置から走行制御の情報を取得する車両通信部17と、を有する。複数のサーバ装置50は、その全体において、各車両10と対応する複数の個別支援部71と、複数の個別支援部71から車両10の情報を収集して走行制御のための上位支援情報を生成する上位支援部73と、を備える。上位支援部73は、生成した情報を各個別支援部71へ提供する。各個別支援部71は、対応する車両10から取得する情報と、上位提供部73の上位支援情報とに基づいて、対応する車両10の走行制御のための情報を生成して車両通信部17へ送信する。
Description
本発明は、車両の走行制御支援システム、サーバ装置、および、車両、に関する。
自動車といった車両では、自動運転を目指した開発が進められている。
そして、自動車の自動運転は、たとえばレベル1からレベル5に分類されている。
日本の国土交通省によれば、レベル1の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の1つの運転支援を実行するものをいう。
レベル2の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の複数を組み合わせてそれによる特定条件下での運転支援を実行するものをいう。または、レベル2の自動運転とは、ドライバ監視下において、たとえば高速道路での自動追い越し、高速道路での分合流といった特定条件下での運転支援を実行するものをいう。
レベル3の自動運転とは、自動車の制御系の監視下において自動車の継続的な走行制御を試みるものであって、制御系がその監視判断に基づいてドライバへ介入を要求するものをいう。この場合、ドライバは、自動車の制御系からの介入要求があった場合には、その要求に対して責任を持って即時的に対応することが求められる。レベル3の自動運転には、たとえば高速道路での自動運転などが想定できる。
レベル4の自動運転とは、自動車の制御系の監視下において自動車の継続的な走行制御を試みるものであって、特定条件下においては制御系がドライバへの介入を要求することなく完全的な走行制御を実行できるものをいう。この場合、ドライバは、特定条件下においては自動車の制御系から介入が要求されることはない。特定条件下ではない場合には、ドライバは、自動車の制御系からの介入要求を受ける可能性があり、しかも、その要求に対して責任を持って即時的に対応することが求められる。レベル4の自動運転には、たとえば限定地域での無人自動運転移動サービス、高速道路での完全自動運転などが想定できる。
レベル5の自動運転とは、自動車の制御系の監視下において常にすべての走行制御を完全に実行するものをいう。この場合、ドライバは、自動車の走行中に、自動車の制御系からの介入要求を受けることはない。
そして、自動車の自動運転は、たとえばレベル1からレベル5に分類されている。
日本の国土交通省によれば、レベル1の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の1つの運転支援を実行するものをいう。
レベル2の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の複数を組み合わせてそれによる特定条件下での運転支援を実行するものをいう。または、レベル2の自動運転とは、ドライバ監視下において、たとえば高速道路での自動追い越し、高速道路での分合流といった特定条件下での運転支援を実行するものをいう。
レベル3の自動運転とは、自動車の制御系の監視下において自動車の継続的な走行制御を試みるものであって、制御系がその監視判断に基づいてドライバへ介入を要求するものをいう。この場合、ドライバは、自動車の制御系からの介入要求があった場合には、その要求に対して責任を持って即時的に対応することが求められる。レベル3の自動運転には、たとえば高速道路での自動運転などが想定できる。
レベル4の自動運転とは、自動車の制御系の監視下において自動車の継続的な走行制御を試みるものであって、特定条件下においては制御系がドライバへの介入を要求することなく完全的な走行制御を実行できるものをいう。この場合、ドライバは、特定条件下においては自動車の制御系から介入が要求されることはない。特定条件下ではない場合には、ドライバは、自動車の制御系からの介入要求を受ける可能性があり、しかも、その要求に対して責任を持って即時的に対応することが求められる。レベル4の自動運転には、たとえば限定地域での無人自動運転移動サービス、高速道路での完全自動運転などが想定できる。
レベル5の自動運転とは、自動車の制御系の監視下において常にすべての走行制御を完全に実行するものをいう。この場合、ドライバは、自動車の走行中に、自動車の制御系からの介入要求を受けることはない。
このように自動車といった車両の制御系には、高いレベルの自動運転に対応しようとするほど、複雑で高度な制御を実行することが求められることになる。
また、車両において高度な自動運転を実用化するためには、高度な自動運転のために必要な情報が得られるように、車両に多数の自律センサを設ける必要がある。
たとえば、レベル3、レベル4といった高レベルの走行制御を実行する場合、車両の制御系には、車両の周囲を検出するLidarや全周囲カメラなどを設けて、それらにより検出される周囲の空間情報に基づいて、車両の周辺の走行路や各種の周辺物の認識情報についての認識情報を生成する必要がある。また、車両の制御系は、これらの認識情報に基づいて、たとえば障害を避けながら車線での走行を維持するように走行制御を実行しなければならない。これは、レベル1、レベル2といったレベルの走行制御では、たとえば近距離の撮像画像に基づく車線のパターン認識に基づくレーンキープ制御や、近距離の撮像画像に基づく先行車のパターン認識に基づく車間維持制御(先行車追従制御)により実現可能であることと比べて、車両の処理負荷が格段に増大することを意味する。
また、車両は、移動するためのものであり、基本的に無給電状態となるその走行中において、多数の自律センサを動作させ、多数の自律センサの検出値に基づく検出情報を生成し、検出情報に基づく走行制御を実行することが求められる。このように高レベルの自動運転に対応するほど、自動車といった車両への要求性能が飛躍的に高まることになる。
また、車両において高度な自動運転を実用化するためには、高度な自動運転のために必要な情報が得られるように、車両に多数の自律センサを設ける必要がある。
たとえば、レベル3、レベル4といった高レベルの走行制御を実行する場合、車両の制御系には、車両の周囲を検出するLidarや全周囲カメラなどを設けて、それらにより検出される周囲の空間情報に基づいて、車両の周辺の走行路や各種の周辺物の認識情報についての認識情報を生成する必要がある。また、車両の制御系は、これらの認識情報に基づいて、たとえば障害を避けながら車線での走行を維持するように走行制御を実行しなければならない。これは、レベル1、レベル2といったレベルの走行制御では、たとえば近距離の撮像画像に基づく車線のパターン認識に基づくレーンキープ制御や、近距離の撮像画像に基づく先行車のパターン認識に基づく車間維持制御(先行車追従制御)により実現可能であることと比べて、車両の処理負荷が格段に増大することを意味する。
また、車両は、移動するためのものであり、基本的に無給電状態となるその走行中において、多数の自律センサを動作させ、多数の自律センサの検出値に基づく検出情報を生成し、検出情報に基づく走行制御を実行することが求められる。このように高レベルの自動運転に対応するほど、自動車といった車両への要求性能が飛躍的に高まることになる。
そこで、たとえば自動車といった車両の自動運転では、車両と基地局を通じて通信可能なサーバ装置を用いて、高レベルな走行制御を実行する車両の負担を軽減することが考えられる(特許文献1、2)。また、特許文献3のように、車両と基地局を通じて通信可能なサーバ装置により交通情報を整理して車両へ提供することも考えられる。
しかしながら、サーバ装置により車両の走行制御を支援する場合、車両そのものにおいて情報を処理する場合と比べて、車両とサーバ装置との間での情報の送受に必要となる時間が必要になる。通信などによる遅延時間が、制御遅れとなる可能性がある。
特に、自動車といった車両は、移動するものである。このため、車両とサーバ装置との間の通信路には、基地局を通じた無線通信が含まれる。また、車両が移動することにより、車両が無線通信に使用する基地局を切り替えなければならない。このような環境下でサーバ装置により車両の走行を支援するためには、通信による制御の遅れを抑えた低遅延を実現し、しかも、基地局が切り替わる場合であってもその低遅延による遅延量が過度に変動しないように安定化できることが求められる。
しかしながら、サーバ装置により車両の走行制御を支援する場合、車両そのものにおいて情報を処理する場合と比べて、車両とサーバ装置との間での情報の送受に必要となる時間が必要になる。通信などによる遅延時間が、制御遅れとなる可能性がある。
特に、自動車といった車両は、移動するものである。このため、車両とサーバ装置との間の通信路には、基地局を通じた無線通信が含まれる。また、車両が移動することにより、車両が無線通信に使用する基地局を切り替えなければならない。このような環境下でサーバ装置により車両の走行を支援するためには、通信による制御の遅れを抑えた低遅延を実現し、しかも、基地局が切り替わる場合であってもその低遅延による遅延量が過度に変動しないように安定化できることが求められる。
このように車両の走行制御では、上述したような複数の課題を総合的なバランスをとりながら解決して、車両の走行制御についてのサーバ装置の支援を実現できるようにすることが求められる。
本発明の一形態に係る車両の走行制御支援システムは、複数の車両と複数のサーバ装置とが複数の基地局を通じた無線通信を実行して複数の前記車両の走行制御を複数の前記サーバ装置により支援する車両の走行制御支援システムであって、複数の前記車両の各々は、各々に設けられる自車センサの検出情報に基づく走行制御を実行可能な走行制御部と、前記基地局を通じた無線通信により前記サーバ装置から、前記走行制御部の走行制御に用いる情報を取得する車両通信部と、を有し、複数の前記サーバ装置の各々は、複数の前記車両の各々と対応して生成される。対応する前記車両の前記走行制御部が走行制御のために使用可能な情報を、前記基地局を通じた無線通信により前記車両通信部へ提供して、対応する前記車両の走行制御を支援する複数の個別支援部と、複数の前記個別支援部の各々から、各前記個別支援部が対応している前記車両の情報を収集する上位収集部と、前記上位収集部により収集された複数の前記車両の情報を用いて、複数の前記車両の走行状態に基づく各前記車両の走行制御のための上位支援情報を生成する上位支援部と、前記上位支援部が複数の前記車両の各々へ提供するために生成した上位支援情報を、複数の前記車両の各々と対応して生成されている複数の前記個別支援部へ提供する上位提供部と、の中の少なくとも1つを備えて、複数の前記サーバ装置の全体において複数の前記個別支援部、前記上位収集部、前記上位支援部、および前記上位提供部を備え、複数の前記車両の各々と対応して生成される複数の前記個別支援部の各々は、対応する前記車両から取得する情報と、前記上位提供部から提供される上位支援情報とに基づいて、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報を生成して、対応する前記車両の前記車両通信部へ送信する。
本発明の一形態に係るサーバ装置は、複数の車両と複数のサーバ装置とが複数の基地局を通じた無線通信を実行して複数の前記車両の走行制御を複数の前記サーバ装置により支援する車両の走行制御支援システムに用いられるサーバ装置であって、他の前記サーバ装置との間で、前記基地局を通じた無線通信を含むことがない有線接続により通信を実行するサーバ通信部と、複数の前記車両の走行制御を複数の前記サーバ装置により支援する制御を実行するサーバ制御部と、を有し、前記サーバ制御部は、複数の前記車両の各々と対応して生成されて、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報を、前記基地局を通じた無線通信により前記車両通信部へ提供して、対応する前記車両の走行制御を支援する複数の個別支援部と、複数の前記個別支援部の各々から、各前記個別支援部が対応している前記車両の情報を収集する上位収集部と、前記上位収集部により収集された複数の前記車両の情報を用いて、複数の前記車両の走行状態に基づく各前記車両の走行制御のための上位支援情報を生成する上位支援部と、前記上位支援部が複数の前記車両の各々へ提供するために生成した上位支援情報を、複数の前記車両の各々と対応して生成されている複数の前記個別支援部へ提供する上位提供部と、の中の少なくとも1つの前記個別支援部または少なくとも前記上位支援部についての制御を実行する。
本発明の一形態に係る車両は、自車を含む複数の車両と走行制御支援システムの複数のサーバ装置とが複数の基地局を通じた無線通信を実行して自車の走行制御が複数の前記サーバ装置により支援可能な車両であって、自車センサと、前記自車センサの検出情報に基づく走行制御を実行可能な走行制御部と、前記基地局を通じた無線通信により前記サーバ装置から、前記走行制御部の走行制御に用いる情報を取得する車両通信部と、を有し、前記車両通信部は、前記自車センサの検出情報を、自車に対応する個別支援部が実現されている前記サーバ装置へ送信し、前記個別支援部による前記自車センサの検出情報の処理により生成される二次的な検出情報を、自車に対応する個別支援部が実現されている前記サーバ装置から受信し、前記走行制御部は、前記車両通信部が受信した前記二次的な検出情報と、前記自車センサの検出情報と、を用いて走行制御を実行する。
本発明において、複数の車両の走行制御を支援するために、複数のサーバ装置を用いる。また、複数の車両の各々は、各々に設けられる自車センサの検出情報に基づく走行制御を実行可能な走行制御部と、基地局を通じた無線通信によりサーバ装置から、走行制御部の走行制御に用いる情報を取得する車両通信部と、を有する。
そして、本発明では、複数の車両の走行制御を支援するための複数のサーバ装置の各々には、複数の車両の各々と対応して生成されて、対応する車両の走行制御部が走行制御のために使用可能な情報を、基地局を通じた無線通信により車両通信部へ提供して、対応する車両の走行制御を支援する複数の個別支援部と、複数の個別支援部の各々から、各個別支援部が対応している車両の情報を収集する上位収集部と、上位収集部により収集された複数の車両の情報を用いて、複数の車両の走行状態に基づく各車両の走行制御のための上位支援情報を生成する上位支援部と、上位支援部が複数の車両の各々へ提供するために生成した上位支援情報を、複数の車両の各々と対応して生成されている複数の個別支援部へ提供する上位提供部と、の中の少なくとも1つを備えるようにする。また、複数のサーバ装置の全体において、上述した複数の個別支援部、上位収集部、上位支援部、および上位提供部のすべてを備えるようにする。
このように、本発明では、複数のサーバ装置において、複数の車両に対応させた複数の個別支援部を実現する。各個別支援部は、対応する車両から取得する情報と、上位提供部から提供される上位支援情報とに基づいて、対応する車両の走行制御部が走行制御のために使用可能な情報を生成して、基地局を通じた無線通信により、対応する車両の車両通信部へ送信する。これにより、上位収集部、上位支援部、および上位提供部は、複数の車両の各々へ提供するために生成する上位支援情報を、複数のサーバ装置の範囲内にある複数の個別支援部へ提供することにより、複数の車両に対して提供することができる。上位収集部、上位支援部、および上位提供部は、基地局を通じた無線通信により複数の車両に対して直接的に提供することなく、安定した低遅延での処理とすることができる。車両が移動して無線通信に使用する基地局が切り替わるとしても、複数のサーバ装置におけるこれら一連の処理は、その切り替わりの影響をそのままで受けてしまうことはなく、安定した低遅延での処理とすることができる。車両の制御に遅れてしまうような過大な遅延は生じ難くなる。
しかも、本発明に係る複数の車両は、複数のサーバ装置において各々と対応して生成される複数の個別支援部から、車両の走行制御部が走行制御のために使用可能な情報を受信して、自車の走行制御に用いることができる。各車両の走行制御部は、たとえば上述したような個別支援部や上位提供部の処理を自ら実行することなく、その処理結果を受信により取得して自車の走行制御に用いることができる。各車両の処理負荷は、軽減され得る。各車両は、高レベルの自動運転に対応する走行制御を実行する場合であっても、複数のサーバ装置からの支援情報を取得して、負荷が抑えられた処理によりそれを実行することができる。自動車といった車両への要求性能は、抑えることができる。
このように、本発明では、車両の走行制御をサーバ装置により支援する際の複数の課題を総合的なバランスをとりながら解決して、車両の走行制御をサーバ装置により支援できるようにすることできる。
そして、本発明では、複数の車両の走行制御を支援するための複数のサーバ装置の各々には、複数の車両の各々と対応して生成されて、対応する車両の走行制御部が走行制御のために使用可能な情報を、基地局を通じた無線通信により車両通信部へ提供して、対応する車両の走行制御を支援する複数の個別支援部と、複数の個別支援部の各々から、各個別支援部が対応している車両の情報を収集する上位収集部と、上位収集部により収集された複数の車両の情報を用いて、複数の車両の走行状態に基づく各車両の走行制御のための上位支援情報を生成する上位支援部と、上位支援部が複数の車両の各々へ提供するために生成した上位支援情報を、複数の車両の各々と対応して生成されている複数の個別支援部へ提供する上位提供部と、の中の少なくとも1つを備えるようにする。また、複数のサーバ装置の全体において、上述した複数の個別支援部、上位収集部、上位支援部、および上位提供部のすべてを備えるようにする。
このように、本発明では、複数のサーバ装置において、複数の車両に対応させた複数の個別支援部を実現する。各個別支援部は、対応する車両から取得する情報と、上位提供部から提供される上位支援情報とに基づいて、対応する車両の走行制御部が走行制御のために使用可能な情報を生成して、基地局を通じた無線通信により、対応する車両の車両通信部へ送信する。これにより、上位収集部、上位支援部、および上位提供部は、複数の車両の各々へ提供するために生成する上位支援情報を、複数のサーバ装置の範囲内にある複数の個別支援部へ提供することにより、複数の車両に対して提供することができる。上位収集部、上位支援部、および上位提供部は、基地局を通じた無線通信により複数の車両に対して直接的に提供することなく、安定した低遅延での処理とすることができる。車両が移動して無線通信に使用する基地局が切り替わるとしても、複数のサーバ装置におけるこれら一連の処理は、その切り替わりの影響をそのままで受けてしまうことはなく、安定した低遅延での処理とすることができる。車両の制御に遅れてしまうような過大な遅延は生じ難くなる。
しかも、本発明に係る複数の車両は、複数のサーバ装置において各々と対応して生成される複数の個別支援部から、車両の走行制御部が走行制御のために使用可能な情報を受信して、自車の走行制御に用いることができる。各車両の走行制御部は、たとえば上述したような個別支援部や上位提供部の処理を自ら実行することなく、その処理結果を受信により取得して自車の走行制御に用いることができる。各車両の処理負荷は、軽減され得る。各車両は、高レベルの自動運転に対応する走行制御を実行する場合であっても、複数のサーバ装置からの支援情報を取得して、負荷が抑えられた処理によりそれを実行することができる。自動車といった車両への要求性能は、抑えることができる。
このように、本発明では、車両の走行制御をサーバ装置により支援する際の複数の課題を総合的なバランスをとりながら解決して、車両の走行制御をサーバ装置により支援できるようにすることできる。
以下、本発明の実施形態を、図面に基づいて説明する。
[第一実施形態]
図1は、本発明の第一実施形態における自動車10の制御系の構成図である。
図1の自動車10は、車両の一例である。車両には、この他にもたとえば、モータサイクル、カート、パーソナルモビリティ、軌道上を走行する車両、がある。
図1は、本発明の第一実施形態における自動車10の制御系の構成図である。
図1の自動車10は、車両の一例である。車両には、この他にもたとえば、モータサイクル、カート、パーソナルモビリティ、軌道上を走行する車両、がある。
自動車10では、自動運転を目指した開発が進められている。日本の国土交通省では、自動車10の自動運転を、レベル1の基礎的な運転支援から、高度に自律的な完全自動走行のレベル5に分類している。
レベル1(L1)の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の1つの運転支援を実行するものをいう。
レベル2(L2)の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の複数を組み合わせてそれによる特定条件下での運転支援を実行するものをいう。または、レベル2の自動運転とは、ドライバ監視下において、たとえば高速道路での自動追い越し、高速道路での分合流といった特定条件下での運転支援を実行するものをいう。
レベル3(L3)の自動運転とは、自動車10の制御系の監視下において自動車10の継続的な走行制御を試みるものであって、制御系がその監視判断に基づいてドライバへ介入を要求するものをいう。この場合、ドライバは、自動車10の制御系からの介入要求があった場合には、その要求に対して責任を持って即時的に対応することが求められる。レベル3の自動運転には、たとえば高速道路での自動運転などが想定できる。
レベル4(L4)の自動運転とは、自動車10の制御系の監視下において自動車10の継続的な走行制御を試みるものであって、特定条件下においては制御系がドライバへの介入を要求することなく完全的な走行制御を実行できるものをいう。この場合、ドライバは、特定条件下においては自動車10の制御系から介入が要求されることはない。特定条件下ではない場合には、ドライバは、自動車10の制御系からの介入要求を受ける可能性があり、しかも、その要求に対して責任を持って即時的に対応することが求められる。レベル4の自動運転には、たとえば限定地域での無人自動運転移動サービス、高速道路での完全自動運転などが想定できる。
レベル5(L5)の自動運転とは、自動車10の制御系の監視下において常にすべての走行制御を完全に実行するものをいう。この場合、ドライバは、自動車10の走行中に、自動車10の制御系からの介入要求を受けることはない。
レベル1(L1)の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の1つの運転支援を実行するものをいう。
レベル2(L2)の自動運転とは、ドライバ監視下において、たとえば自動ブレーキ、先行車追従、およびレーンキープの中の複数を組み合わせてそれによる特定条件下での運転支援を実行するものをいう。または、レベル2の自動運転とは、ドライバ監視下において、たとえば高速道路での自動追い越し、高速道路での分合流といった特定条件下での運転支援を実行するものをいう。
レベル3(L3)の自動運転とは、自動車10の制御系の監視下において自動車10の継続的な走行制御を試みるものであって、制御系がその監視判断に基づいてドライバへ介入を要求するものをいう。この場合、ドライバは、自動車10の制御系からの介入要求があった場合には、その要求に対して責任を持って即時的に対応することが求められる。レベル3の自動運転には、たとえば高速道路での自動運転などが想定できる。
レベル4(L4)の自動運転とは、自動車10の制御系の監視下において自動車10の継続的な走行制御を試みるものであって、特定条件下においては制御系がドライバへの介入を要求することなく完全的な走行制御を実行できるものをいう。この場合、ドライバは、特定条件下においては自動車10の制御系から介入が要求されることはない。特定条件下ではない場合には、ドライバは、自動車10の制御系からの介入要求を受ける可能性があり、しかも、その要求に対して責任を持って即時的に対応することが求められる。レベル4の自動運転には、たとえば限定地域での無人自動運転移動サービス、高速道路での完全自動運転などが想定できる。
レベル5(L5)の自動運転とは、自動車10の制御系の監視下において常にすべての走行制御を完全に実行するものをいう。この場合、ドライバは、自動車10の走行中に、自動車10の制御系からの介入要求を受けることはない。
図1の自動車10の制御系は、駆動制御部11、操舵制御部12、制動制御部13、運転操作部14、自車センサ部15、走行制御部16、車両通信部17、および、これらがケーブル19を用いて接続されるセントラルゲートウェイ装置18、を有する。自動車10の制御系には、図示していない他の制御部を備えてもよい。
セントラルゲートウェイ装置18と、ケーブル19とは、自動車10の車ネットワークを構成する。車ネットワークには、たとえばCAN(Controller Area Network)規格、LIN(Local Interconnect Network)規格に準拠したものがある。車ネットワークは、この他にもたとえば、LAN(Local Area Network)規格、無線通信規格に準拠したものであってもよい。車ネットワークに接続される各制御部には、互いに異なる識別情報としてのIDが割り当てられる。車ネットワークに接続される各制御部は、基本的に周期的に、他の制御部へパケット化されたデータを出力する。パケットには、出力元の制御部のID(identification)情報と、出力先の制御部のID情報とが付加される。他の制御部は、接続されているケーブル19を監視し、ケーブル19上のパケットの出力先のID情報に自らのID情報または所定のブロードキャストID情報が含まれている場合、そのパケットのデータを取得し、データに基づく処理を実行する。また、セントラルゲートウェイ装置18は、接続されている複数のケーブル19を監視し、出力先の制御部が出力元の制御部とは異なるケーブル19に接続されている場合、出力先の制御部が接続されているケーブル19へのルーティング制御を実行する。このようなセントラルゲートウェイ装置18の中継処理により、複数の制御部は、それぞれとは異なるケーブル19に接続されている他の制御部との間でもパケットによるデータ入出力を実行できる。
車両通信部17は、自動車10の外と通信するための通信部である。自動車10が走行する道路や地域には、携帯端末のためのキャリア通信網が設けられていることが多い。自動車10が通信可能な基地局40には、この他にも高速道路などの道路沿いに設けられる高度交通システムの基地局40、などがある。車両通信部17は、これらの基地局40と無線通信して通信路を確立し、その通信路および基地局40を使用してサーバ装置41などと双方向の通信を実行してよい。車両通信部17は、車ネットワークからデータを取得すると、取得したデータを含むパケットを、確立している通信路を用いて、基地局40やサーバ装置41へ送信する。車両通信部17は、車ネットワークからデータを取得すると、確立している通信路を通じて基地局40やサーバ装置41からパケットを受信すると、取得したパケットに含まれるデータを、車ネットワークへ出力する。
自車センサ部15は、自動車10に設けられる各種の自車センサが接続される。ここでは、自車センサとして、加速度センサ21、コーナレーダ22、ステレオカメラ23、Lidar24、全周囲カメラ25、GNSS受信機26、が示されている。自車センサ部15は、接続されている自車センサの検出情報を、車ネットワークへ出力する。また、自車センサ部15は、自車センサの検出情報に基づいて二次的な検出情報を生成して、車ネットワークへ出力してもよい。
GNSS受信機26は、複数のGNSS(Global Navigation Satellite System)衛星110からの電波を受信し、自車の現在位置である緯度、経度、高度、および現在時刻を得る。
加速度センサ21は、自動車10の加速度を検出する。加速度センサ21には、たとえば自動車10の前後方向の加速度、左右方向の加速度、および上下方向の加速度を検出する3軸方式のものがある。加速度を時間積分することにより、自動車10の速度を得ることができる。この場合、自車センサ部15は、加速度センサ21の検出値に基づいて、自動車10のヨー方向、ピッチ方向、ロール方向の動きを検出できる。
コーナレーダ22は、自動車10の前後左右の四角に設けられる。コーナレーダ22は、自動車10の角に外から接近している周辺物までの距離を検出する。周辺物には、たとえば先行車などの他の移動体、道路の交差点などに設けられる信号機などの固定物、がある。
ステレオカメラ23は、たとえば所定距離で離間している一対のカメラで構成される。ステレオカメラ23は、自動車10の走行方向である前方の車外を一対のカメラで撮像する。自車センサ部15は、たとえば、撮像画像をたとえばパターンマッチングなどにより解析し、自車が走行している走行路の左右両側の車線境界線や先行車などの所定の立体的な周辺物を認識し、認識した周辺物についての一対のカメラの撮像画像での撮像位置の差に基づいて車外物についての自車からの方向および間隔の検出情報を生成してよい。
全周囲カメラ25は、自動車10の周囲360度を撮像する。全周囲カメラ25は、所定の画角ごとに撮像可能な複数のカメラで構成されてもよい。
Lidar24は、自動車10の前部に設けられて、自動車10の走行方向である前方を検出波でスキャンし、その反射波の有無および距離についての空間情報を検出する。検出波を出力した方向に立体的な周辺物がない場合、反射波は得られない。検出波を出力した方向に立体的な周辺物がある場合、その反射波を受信するまでの期間により、周辺物までの相対的な距離を検出できる。
これらステレオカメラ23、全周囲カメラ25、Lidar24は、自動車10の周辺についての空間情報を検出する。Lidar24は、通常、ステレオカメラ23や全周囲カメラ25より長い距離範囲についての空間情報を取得することが可能である。ただし、高解像度のステレオカメラ23や全周囲カメラ25では、たとえば望遠レンズなどの光学部材を併用することにより、その画像に基づいてLidar24と同等の遠方の距離にある周辺物の撮像画像を画像解析により認識機能な解像度で得ることが可能である。
自車センサ部15は、走行制御部16が実行する自動運転のレベルがたとえばレベル3以上である場合には、これらの周辺の空間情報を解析して、自動車10の周辺の走行路の認識情報または自動車10の周辺物の認識情報を生成する制御を、走行制御部16の指示などに基づいて実行する必要がある。
自車センサ部15は、走行制御部16が実行する自動運転のレベルがたとえばレベル3以上である場合には、これらの周辺の空間情報を解析して、自動車10の周辺の走行路の認識情報または自動車10の周辺物の認識情報を生成する制御を、走行制御部16の指示などに基づいて実行する必要がある。
運転操作部14には、ユーザが自動車10の走行を制御するために操作部材として、不図示のたとえばハンドル、ブレーキペダル、アクセルペダル、シフトレバー、などが接続される。操作部材が操作されると、運転操作部14は、操作の有無、操作量などを含むデータを、車ネットワークへ出力する。また、運転操作部14は、操作部材に対する操作についての処理を実行し、その処理結果をデータに含めてよい。運転操作部14は、たとえば自動車10の進行方向に他の自動車や固定物がある状況においてアクセルペダルが操作された場合、その異常操作を判断し、その判断結果をデータに含めてよい。
走行制御部16は、車両メモリ31、車両ECU(Electronic Control Unit)32、を有する。
車両メモリ31は、たとえば半導体メモリ、HDD、などにより構成されてよい。車両メモリ31には、自動車10の走行を制御するためのプログラム、および制御に使用するデータ、などが記録される。ここでは、自動車10が走行する地域の高精度地図データ33が例示されている。高精度地図データ33は、たとえば、無線通信部を用いて不図示の地図サーバ装置からキャッシュしたものでも、携帯型の半導体メモリに記録されているものでも、よい。
車両ECU32は、自動車10のコンピュータ装置である。車両ECU32は、車両メモリ31に記録されているプログラムを読み込んで実行する。これにより、車両ECU32は、自動車10の走行を全体的に制御する走行制御部16として機能する。
走行制御部16としての車両ECU32は、自動車10の走行を制御する制御値を生成し、駆動制御部11、操舵制御部12、および、制動制御部13へ出力する。
ここで、走行制御部16は、運転操作部14から入力されるドライバによる運転操作の情報に対応する制御値を生成して自動車10の走行を制御するだけでなく、ドライバによる運転操作を調整した運転支援のための制御値を生成して自動車10の走行を制御したり、ドライバによる運転操作によらない高度に自律的な自動運転による制御値を生成して自動車10の走行を制御したり、してよい。運転支援は、基本的にドライバ監視下において自動車10の走行を制御するレベル1からレベル2の自動運転に対応し、高度に自律的な自動運転は、基本的に自動車10の制御系の監視下において自動車10の走行を制御するレベル3以上の自動運転に対応する。
また、走行制御部16は、たとえば自車センサ部15から取得できる検出情報に基づいて自車の走行環境、自車の状態、ドライバの状態などに応じて、走行中に自動運転のレベルを切り替える制御を実行してもよい。走行制御部16は、たとえば自車センサ部15などから取得できた検出情報に基づいて自車の走行環境、自車の状態、ドライバの状態などを判断し、判断結果の下で実行可能な最も高いレベルの自動運転を実行するようにしてよい。
走行制御部16としての車両ECU32は、自動車10の走行を制御する制御値を生成し、駆動制御部11、操舵制御部12、および、制動制御部13へ出力する。
ここで、走行制御部16は、運転操作部14から入力されるドライバによる運転操作の情報に対応する制御値を生成して自動車10の走行を制御するだけでなく、ドライバによる運転操作を調整した運転支援のための制御値を生成して自動車10の走行を制御したり、ドライバによる運転操作によらない高度に自律的な自動運転による制御値を生成して自動車10の走行を制御したり、してよい。運転支援は、基本的にドライバ監視下において自動車10の走行を制御するレベル1からレベル2の自動運転に対応し、高度に自律的な自動運転は、基本的に自動車10の制御系の監視下において自動車10の走行を制御するレベル3以上の自動運転に対応する。
また、走行制御部16は、たとえば自車センサ部15から取得できる検出情報に基づいて自車の走行環境、自車の状態、ドライバの状態などに応じて、走行中に自動運転のレベルを切り替える制御を実行してもよい。走行制御部16は、たとえば自車センサ部15などから取得できた検出情報に基づいて自車の走行環境、自車の状態、ドライバの状態などを判断し、判断結果の下で実行可能な最も高いレベルの自動運転を実行するようにしてよい。
駆動制御部11は、自動車10の不図示の動力源の動作を制御する。自動車10の動力源には、たとえばエンジン、モータなどがある。駆動制御部11は、走行制御部16により生成された制御値により、動力源の動作を制御する。
操舵制御部12は、自動車10の不図示の操舵装置の動作を制御する。自動車10の操舵装置には、たとえばモータの回転量により操舵方向および操舵量を制御するバイワイヤー方式のものがある。操舵制御部12は、走行制御部16により生成された制御値により、操舵装置の動作を制御する。
制動制御部13は、自動車10の不図示の制動装置の動作を制御する。自動車10の制動装置には、たとえばモータの回転量により油圧を制御するバイワイヤー方式のものがある。制動制御部13は、走行制御部16により生成された制御値により、制動装置の動作を制御する。
これらの制御実行部が動作することにより、自動車10は、走行制御部16による走行制御にしたがって走行することができる。
操舵制御部12は、自動車10の不図示の操舵装置の動作を制御する。自動車10の操舵装置には、たとえばモータの回転量により操舵方向および操舵量を制御するバイワイヤー方式のものがある。操舵制御部12は、走行制御部16により生成された制御値により、操舵装置の動作を制御する。
制動制御部13は、自動車10の不図示の制動装置の動作を制御する。自動車10の制動装置には、たとえばモータの回転量により油圧を制御するバイワイヤー方式のものがある。制動制御部13は、走行制御部16により生成された制御値により、制動装置の動作を制御する。
これらの制御実行部が動作することにより、自動車10は、走行制御部16による走行制御にしたがって走行することができる。
このように自動車10の制御系には、高いレベルの自動運転に対応しようとするほど、複雑で高度な制御を実行することが求められることになる。
また、自動車10において高度な自動運転を実用化するためには、高度な自動運転のために必要な情報が得られるように、少なくとも上述したように自動車10に多数の自車センサを設ける必要がある。
たとえば、レベル3、レベル4といった高レベルの走行制御を実行する場合、自動車10の制御系には、自動車10の周辺を検出するLidar24や全周囲カメラ25などを設けて、それらにより検出される周辺の空間情報に基づいて、自動車10の周辺の走行路や各種の周辺物の認識情報についての認識情報を高い確実性をもって生成する必要がある。また、自動車10の制御系は、これらの認識情報に基づいて、たとえば障害を避けながら車線での走行を維持するように走行制御を実行しなければならない。これは、レベル1、レベル2といったレベルの走行制御では、たとえば近距離の撮像画像に基づく車線のパターン認識に基づくレーンキープ制御や、近距離の撮像画像に基づく先行車のパターン認識に基づく車間維持制御(先行車追従制御)により実現可能であることと比べて、自動車10の処理負荷が格段に増大することを意味する。レベル3、レベル4といった高レベルの走行制御では、同様の認識処理を、機械学習済みの人工知能を用いた処理により、認識の確実性を高める必要がある。
また、自動車10は、移動するためのものであり、基本的に無給電状態にある走行中において、自動車10の周辺の状況を常に監視するように多数の自車センサを高速で動作させる必要がある。高レベルの走行制御に対応する自動車10では、多数の自車センサの検出値に基づく検出情報を短時間ごとに繰り返し、短時間ごとに繰り返しに検出される検出情報に基づいて走行制御を短い制御周期の時間ごとに繰り返しに実行する必要がある。高いレベルの自動運転に対応しようとするほど、自動車10への要求性能が飛躍的に高まることになる。
また、自動車10において高度な自動運転を実用化するためには、高度な自動運転のために必要な情報が得られるように、少なくとも上述したように自動車10に多数の自車センサを設ける必要がある。
たとえば、レベル3、レベル4といった高レベルの走行制御を実行する場合、自動車10の制御系には、自動車10の周辺を検出するLidar24や全周囲カメラ25などを設けて、それらにより検出される周辺の空間情報に基づいて、自動車10の周辺の走行路や各種の周辺物の認識情報についての認識情報を高い確実性をもって生成する必要がある。また、自動車10の制御系は、これらの認識情報に基づいて、たとえば障害を避けながら車線での走行を維持するように走行制御を実行しなければならない。これは、レベル1、レベル2といったレベルの走行制御では、たとえば近距離の撮像画像に基づく車線のパターン認識に基づくレーンキープ制御や、近距離の撮像画像に基づく先行車のパターン認識に基づく車間維持制御(先行車追従制御)により実現可能であることと比べて、自動車10の処理負荷が格段に増大することを意味する。レベル3、レベル4といった高レベルの走行制御では、同様の認識処理を、機械学習済みの人工知能を用いた処理により、認識の確実性を高める必要がある。
また、自動車10は、移動するためのものであり、基本的に無給電状態にある走行中において、自動車10の周辺の状況を常に監視するように多数の自車センサを高速で動作させる必要がある。高レベルの走行制御に対応する自動車10では、多数の自車センサの検出値に基づく検出情報を短時間ごとに繰り返し、短時間ごとに繰り返しに検出される検出情報に基づいて走行制御を短い制御周期の時間ごとに繰り返しに実行する必要がある。高いレベルの自動運転に対応しようとするほど、自動車10への要求性能が飛躍的に高まることになる。
そこで、高いレベルの自動運転に対応する自動車10では、自動車10と基地局40を通じて通信可能なサーバ装置41を用いて、高レベルな走行制御を実行する自動車10の走行制御を支援して、走行中の自動車10の負担を軽減することが考えられる。
図2は、図1の自動車10の走行支援に用いることが可能な走行制御支援システム1の一例の説明図である。
図2の実線部分には、走行制御支援システム1の構成要素として、2つの基地局40、1つのサーバ装置41、および、これらが接続されるバックホールとしてのキャリア通信ケーブル42、が示されている。
また、図2には、GNSS衛星110が示されている。GNSS衛星110は、地球の衛星軌道に位置し、地表へ向けて電波を発する。GNSS衛星110の電波には、それぞれの衛星の位置を示す緯度経度高度の情報と、複数の衛星間で同期化を図っている絶対的な時刻の情報と、が含まれる。自動車10の制御系やサーバ装置41などは、複数のGNSS衛星110の電波を同様に受信することにより、各々の受信した地点の位置を正確に示す緯度経度高度の情報と、受信した地点の正確な時刻と、を高度に同期させることができる。
図2の実線部分には、走行制御支援システム1の構成要素として、2つの基地局40、1つのサーバ装置41、および、これらが接続されるバックホールとしてのキャリア通信ケーブル42、が示されている。
また、図2には、GNSS衛星110が示されている。GNSS衛星110は、地球の衛星軌道に位置し、地表へ向けて電波を発する。GNSS衛星110の電波には、それぞれの衛星の位置を示す緯度経度高度の情報と、複数の衛星間で同期化を図っている絶対的な時刻の情報と、が含まれる。自動車10の制御系やサーバ装置41などは、複数のGNSS衛星110の電波を同様に受信することにより、各々の受信した地点の位置を正確に示す緯度経度高度の情報と、受信した地点の正確な時刻と、を高度に同期させることができる。
そして、上述した図2の実線部分の走行制御支援システム1は、狭い領域での走行支援を実現することができる最小限のローカルシステム43の構成の例である。
ここで、サーバ装置41は、2つの基地局40のゾーンを走行する複数の自動車10の制御系の車両通信部17と通信する。
サーバ装置41は、各自動車10の制御系から検出情報を取得する。
サーバ装置41は、複数の自動車10から取得した検出情報に基づいて、各自動車10の走行制御部16が走行制御のために使用可能な支援情報を生成する。
サーバ装置41は、生成した支援情報を、基地局40を通じた無線通信により各自動車10の車両通信部17へ送信する。
これにより、2つの基地局40のゾーンを走行する複数の自動車10の各々は、サーバ装置41から取得する支援情報に基づいて、たとえば他の自動車の走行と干渉しないように安全に走行することが可能となる。
この場合、走行中の各自動車10は、走行制御支援システム1のサーバ装置41による支援を受けて、自らの制御系において検出情報に基づく高度な制御を実行する必要がない。走行中の自動車10の負担は軽減され得る。
ここで、サーバ装置41は、2つの基地局40のゾーンを走行する複数の自動車10の制御系の車両通信部17と通信する。
サーバ装置41は、各自動車10の制御系から検出情報を取得する。
サーバ装置41は、複数の自動車10から取得した検出情報に基づいて、各自動車10の走行制御部16が走行制御のために使用可能な支援情報を生成する。
サーバ装置41は、生成した支援情報を、基地局40を通じた無線通信により各自動車10の車両通信部17へ送信する。
これにより、2つの基地局40のゾーンを走行する複数の自動車10の各々は、サーバ装置41から取得する支援情報に基づいて、たとえば他の自動車の走行と干渉しないように安全に走行することが可能となる。
この場合、走行中の各自動車10は、走行制御支援システム1のサーバ装置41による支援を受けて、自らの制御系において検出情報に基づく高度な制御を実行する必要がない。走行中の自動車10の負担は軽減され得る。
しかしながら、サーバ装置41により自動車10の走行制御を支援する場合、自動車10そのものにおいて情報を処理する場合と比べて、自動車10とサーバ装置41との間での通信などに時間がかかる。この遅延時間が短く安定している場合には、自動車10での制御に対して制御遅れが生じ難くなるが、遅延時間が絶対的に長くなったり、不安定になったりする場合には、自動車10での制御に対する制御遅れが生じる可能性が高まる。自動車10は、その制御周期ごとに、サーバ装置41から適切な情報を取得し続けることができなくなる可能性が高まる。
特に、自動車10は、走行により移動するものである。このため、自動車10とサーバ装置41との間の通信路には、基地局40を通じた無線通信が含まれる。また、自動車10が移動することにより、基地局40は、自動車10が無線通信に使用できるものに切り替えなければならない。このような通信環境下でサーバ装置41により自動車10の走行を支援するためには、たとえば、通信による制御遅れを抑えた低遅延を実現し、しかも、基地局40が切り替わる場合であってもその低遅延による遅延量が過度に変動しないように安定化させる、ことが必要になる。
特に、自動車10は、走行により移動するものである。このため、自動車10とサーバ装置41との間の通信路には、基地局40を通じた無線通信が含まれる。また、自動車10が移動することにより、基地局40は、自動車10が無線通信に使用できるものに切り替えなければならない。このような通信環境下でサーバ装置41により自動車10の走行を支援するためには、たとえば、通信による制御遅れを抑えた低遅延を実現し、しかも、基地局40が切り替わる場合であってもその低遅延による遅延量が過度に変動しないように安定化させる、ことが必要になる。
また、図2の走行制御支援システム1の実線部分においてカバーできる領域は、2つの基地局40が通信可能な狭い第一エリアに限られる。自動車10は、第一エリアの走行中にはサーバ装置41による走行支援を受けることが可能であるが、その外側にある第二エリアにおいては、その第二エリアに他の基地局40が存在するとしても、サーバ装置41による走行支援を受けることができない。
第二エリアでの走行支援を実現するためには、第二エリアの基地局40に接続されている破線の新たな他のサーバ装置44を追加する必要がある。また、自動車10が第一エリアから第二エリアへ移動するように走行した場合には、第一エリアのサーバ装置41から、第二エリアの他のサーバ装置44へ情報を送信する必要がある。第一エリアのサーバ装置41は、図中に破線で示すゲートウェイ装置46を通じて、第二エリアの他のサーバ装置44と通信しなければならない。このような複数のサーバ装置41,44の間でハンズオーバ通信が発生すると、そのための時間などにより、第二エリアの他のサーバ装置44は、新たに第二エリアを走行することになった自動車10への走行支援の開始が遅れてしまう可能性が高まる。特に、第二エリアの他のサーバ装置44が、たとえば図中に破線で示すようにインターネットといった広域通信網45に接続されている場合、通信には時間がかかるようになり、また通信時間が不安定になり易くなる。この場合、第二エリアの他のサーバ装置44は、第一エリアのサーバ装置41から情報を得ることができたとしても、第二エリアの他の基地局40を通じて自動車10の制御系に対して走行制御の支援を実現できるまでには、過大な時間となってしまう可能性がある。
自動車10の走行制御は、不測の事態に対応できるようにするために、一般的に少なくとも数百ミリ秒ごとに繰り返すことが望ましいと考えられる。このような短い期間において、インターネットなどの広域通信網45を通じて、自動車10の走行支援制御を引き継いだり、繰り返したりすることを現実化することは、極めて容易ではない。仮にそれを実現できるとしても、自動車10の制御系がその制御周期の間で残されている時間は、極度に短くなってしまうと考えられる。車両ECU32には、自動車10において検出情報の処理から走行制御までのすべての制御を自律的に実行する場合と比べて、高い処理能力のものが必要になる可能性が高い。複数のサーバ装置50(41,44)により自動車10の走行制御を支援することのメリットが相殺されてしまう可能性がある。
これらの課題は、他のサーバ装置44が、第一エリアと第二エリアとを合わせた広い第三エリアについて設ける場合においても、同様である。
第二エリアでの走行支援を実現するためには、第二エリアの基地局40に接続されている破線の新たな他のサーバ装置44を追加する必要がある。また、自動車10が第一エリアから第二エリアへ移動するように走行した場合には、第一エリアのサーバ装置41から、第二エリアの他のサーバ装置44へ情報を送信する必要がある。第一エリアのサーバ装置41は、図中に破線で示すゲートウェイ装置46を通じて、第二エリアの他のサーバ装置44と通信しなければならない。このような複数のサーバ装置41,44の間でハンズオーバ通信が発生すると、そのための時間などにより、第二エリアの他のサーバ装置44は、新たに第二エリアを走行することになった自動車10への走行支援の開始が遅れてしまう可能性が高まる。特に、第二エリアの他のサーバ装置44が、たとえば図中に破線で示すようにインターネットといった広域通信網45に接続されている場合、通信には時間がかかるようになり、また通信時間が不安定になり易くなる。この場合、第二エリアの他のサーバ装置44は、第一エリアのサーバ装置41から情報を得ることができたとしても、第二エリアの他の基地局40を通じて自動車10の制御系に対して走行制御の支援を実現できるまでには、過大な時間となってしまう可能性がある。
自動車10の走行制御は、不測の事態に対応できるようにするために、一般的に少なくとも数百ミリ秒ごとに繰り返すことが望ましいと考えられる。このような短い期間において、インターネットなどの広域通信網45を通じて、自動車10の走行支援制御を引き継いだり、繰り返したりすることを現実化することは、極めて容易ではない。仮にそれを実現できるとしても、自動車10の制御系がその制御周期の間で残されている時間は、極度に短くなってしまうと考えられる。車両ECU32には、自動車10において検出情報の処理から走行制御までのすべての制御を自律的に実行する場合と比べて、高い処理能力のものが必要になる可能性が高い。複数のサーバ装置50(41,44)により自動車10の走行制御を支援することのメリットが相殺されてしまう可能性がある。
これらの課題は、他のサーバ装置44が、第一エリアと第二エリアとを合わせた広い第三エリアについて設ける場合においても、同様である。
このように自動車10の走行制御では、少なくともこれまでに説明した複数の課題を総合的なバランスをとりながら解決して、自動車10の走行制御についての複数のサーバ装置50による支援を実用性が得られるように実現することが求められる。すなわち、自動車10の走行制御支援システム1には、たとえば、複数のサーバ装置50による走行支援を複数の自動車10の各々の走行制御に対して遅れ難くなるように可能な限り短く且つ安定化した時間で実現しつつ、自動車10の走行制御についての複数のサーバ装置50による高度な支援を可能にすること、が求められる。
図3は、本発明の第一実施形態に係る自動車10の走行制御支援システム1の構成図である。
図3の走行制御支援システム1は、主にキャリア通信網を好適に利用して、上述した複数の課題を総合的なバランスをとりながら解決するために好適なものであるが、あくまでも一例である。
本実施形態の走行制御支援システム1は、図3に示すように、複数の自動車10の走行制御を支援するために、複数のサーバ装置50を有する。
図3には、複数のサーバ装置50として、複数の基地局サーバ装置51、複数のアクセラレーションサーバ装置54、複数の狭地域サーバ装置52、広地域サーバ装置53、上位サーバ装置55、が示されている。広地域サーバ装置53や、上位サーバ装置55は、走行制御支援システム1において複数で備えられてもよい。
図3の走行制御支援システム1は、主にキャリア通信網を好適に利用して、上述した複数の課題を総合的なバランスをとりながら解決するために好適なものであるが、あくまでも一例である。
本実施形態の走行制御支援システム1は、図3に示すように、複数の自動車10の走行制御を支援するために、複数のサーバ装置50を有する。
図3には、複数のサーバ装置50として、複数の基地局サーバ装置51、複数のアクセラレーションサーバ装置54、複数の狭地域サーバ装置52、広地域サーバ装置53、上位サーバ装置55、が示されている。広地域サーバ装置53や、上位サーバ装置55は、走行制御支援システム1において複数で備えられてもよい。
基地局サーバ装置51は、基地局40に対応して設けられるサーバ装置である。基地局サーバ装置51は、基本的に基地局40と1対1対応で設けられるとよいが、複数の基地局40について1つ設けられてもよい。基地局サーバ装置51は、たとえば5G用の高性能な基地局40の機能の1つとして設けられてもよい。そして、基地局サーバ装置51は、主に、基地局40のゾーンにいる複数の自動車10との通信を実行する。
アクセラレーションサーバ装置54は、基地局サーバ装置51に接続されてよい。アクセラレーションサーバ装置54は、たとえば基地局40のゾーンが広いために多くの自動車10がゾーン内に存在するような場合において、基地局サーバ装置51の処理機能を補強するために設けられてよい。この場合、アクセラレーションサーバ装置54は、基地局サーバ装置51において実行させる制御の中で、処理負荷が重い空間情報に基づくオブジェクトの抽出処理や、抽出したオブジェクトの認識処理などの処理を実行するとよい。オブジェクトの抽出処理、抽出したオブジェクトの認識処理などには、機械学習によるAI処理が用いられてよい。アクセラレーションサーバ装置54は、複数の基地局サーバ装置51に対して1つの対応で設けられてもよい。アクセラレーションサーバ装置54を設けることにより、基地局サーバ装置51の処理負荷を低減して、基地局サーバ装置51の制御応答を早めることができる。
基地局サーバ装置51と、アクセラレーションサーバ装置54とは、基地局40が通信可能な複数の自動車10との通信を管理するローカルのサーバ装置である。ローカルのサーバ装置51,54は、図中においてハッチングが付されている。
基地局サーバ装置51と、アクセラレーションサーバ装置54とは、基地局40が通信可能な複数の自動車10との通信を管理するローカルのサーバ装置である。ローカルのサーバ装置51,54は、図中においてハッチングが付されている。
狭地域サーバ装置52は、複数の基地局サーバ装置51を接続するキャリア通信ケーブル42に接続されてよい。これにより、狭地域サーバ装置52は、キャリア通信ケーブル42に接続されている複数の基地局サーバ装置51の上位側のサーバ装置として機能できる。
広地域サーバ装置53は、複数の基地局サーバ装置51を接続するキャリア通信ケーブル42に接続されてよい。これにより、広地域サーバ装置53は、キャリア通信ケーブル42に接続されている複数の基地局サーバ装置51の上位側のサーバ装置として機能できる。
ここで、狭地域サーバ装置52と、広地域サーバ装置53とは、単に各々が管理する地域のサイズの大小関係に応じた呼称としている。図3において、複数の狭地域サーバ装置52が管理する複数の地域と、広地域サーバ装置53が管理する地域とは、隣接するものと互いに重なる。複数の地域が少なくともそれらの境界部分において互いに重なり合うことにより、自動車10は、図3の走行制御支援システム1により管理される全体的な広域を走行する場合において、走行制御についての支援を、地域をまたいで継続的に受けることが可能になる。
広地域サーバ装置53は、複数の基地局サーバ装置51を接続するキャリア通信ケーブル42に接続されてよい。これにより、広地域サーバ装置53は、キャリア通信ケーブル42に接続されている複数の基地局サーバ装置51の上位側のサーバ装置として機能できる。
ここで、狭地域サーバ装置52と、広地域サーバ装置53とは、単に各々が管理する地域のサイズの大小関係に応じた呼称としている。図3において、複数の狭地域サーバ装置52が管理する複数の地域と、広地域サーバ装置53が管理する地域とは、隣接するものと互いに重なる。複数の地域が少なくともそれらの境界部分において互いに重なり合うことにより、自動車10は、図3の走行制御支援システム1により管理される全体的な広域を走行する場合において、走行制御についての支援を、地域をまたいで継続的に受けることが可能になる。
上位サーバ装置55は、キャリア広域通信網57に接続される。キャリア広域通信網57は、たとえばATM通信網である。キャリア広域通信網57は、不図示のゲートウェイ装置を通じてインターネットなどに接続されてよい。
また、キャリア広域通信網57には、すべての狭地域サーバ装置52および広地域サーバ装置53が接続される。これにより、上位サーバ装置55は、狭地域サーバ装置52または広地域サーバ装置53を通じて、図3に示す複数の基地局サーバ装置51の各々と通信することが可能になる。
また、キャリア広域通信網57には、すべての狭地域サーバ装置52および広地域サーバ装置53が接続される。これにより、上位サーバ装置55は、狭地域サーバ装置52または広地域サーバ装置53を通じて、図3に示す複数の基地局サーバ装置51の各々と通信することが可能になる。
このように図3の走行制御支援システム1には、複数の基地局サーバ装置51の上位側のサーバ装置として、狭地域サーバ装置52または広地域サーバ装置53と、上位サーバ装置55とが設けられる。この場合、これらの上位側のサーバ装置52,53,55に実行させる支援制御は、多段化されている複数のサーバ装置に分散させることができる。各上位側のサーバ装置の処理負荷を低減して、各上位側のサーバ装置の制御応答を早めることができる。上位側のサーバ装置52,53,55は、図中においてハッチングが付されていない。
これら上位側のサーバ装置52,53,55は、複数の自動車10と直接には通信をせずに、ローカルのサーバ装置51,54を通じて、複数の自動車10と通信する。上位側のサーバ装置52,53,55は、各自動車10の無線通信環境などに影響されない通信を実行して、低遅延で安定している通信を実行できる。
上位側のサーバ装置52,53,55は、複数の自動車10についての全体的な走行を、管制制御または遠隔制御してよい。たとえば、上位側のサーバ装置52,53,55は、複数の自動車10の管制制御では、管制制御による自動車10の安全な走行可能範囲についての情報を、上位支援情報として各自動車10へ提供してよい。また、上位側のサーバ装置52,53,55は、複数の自動車10の遠隔制御では、遠隔制御値の情報を、上位支援情報として各自動車10へ提供してよい。
これら上位側のサーバ装置52,53,55は、複数の自動車10と直接には通信をせずに、ローカルのサーバ装置51,54を通じて、複数の自動車10と通信する。上位側のサーバ装置52,53,55は、各自動車10の無線通信環境などに影響されない通信を実行して、低遅延で安定している通信を実行できる。
上位側のサーバ装置52,53,55は、複数の自動車10についての全体的な走行を、管制制御または遠隔制御してよい。たとえば、上位側のサーバ装置52,53,55は、複数の自動車10の管制制御では、管制制御による自動車10の安全な走行可能範囲についての情報を、上位支援情報として各自動車10へ提供してよい。また、上位側のサーバ装置52,53,55は、複数の自動車10の遠隔制御では、遠隔制御値の情報を、上位支援情報として各自動車10へ提供してよい。
そして、このような複数種類のサーバ装置51~55は、たとえばキャリア通信ケーブル42、キャリア広域通信網57を通じて、情報を相互に送受する。この通信での各サーバ装置の通信の相手先は、固定的な他のサーバ装置となる。
このため、複数のサーバ装置50の間の通信には、図中に示すように、第一の仮想プライベートネットワークとしてのIPsec(Security Architecture for Internet Protocol)―VPN(Virtual Private Network)を用いとよい。IPsec―VPNによる接続では、通信元のサーバ装置と通信先のサーバ装置との相互認証により、通信元と通信先とを固定化することができる。また、IPsec―VPNによる接続では、通信パケットのペイロードの情報を符号化することなく、秘匿性がある高速な通信を実行できる。
このため、複数のサーバ装置50の間の通信には、図中に示すように、第一の仮想プライベートネットワークとしてのIPsec(Security Architecture for Internet Protocol)―VPN(Virtual Private Network)を用いとよい。IPsec―VPNによる接続では、通信元のサーバ装置と通信先のサーバ装置との相互認証により、通信元と通信先とを固定化することができる。また、IPsec―VPNによる接続では、通信パケットのペイロードの情報を符号化することなく、秘匿性がある高速な通信を実行できる。
これに対し、基地局サーバ装置51と自動車10の車両通信部17との通信には、第二の仮想プライベートネットワークとしてのSSL(Secure Sockets Layer)/TLS(Transport Layer Security)―VPNを用いとよい。SSL/TLS―VPNによる接続では、片側のサーバ装置のみの認証により、サーバ装置の相手先を固定化しないようにすることができる。ただし、SSL/TLS―VPNによる接続では、秘匿性がある高速な通信を実行するためには、通信パケットのペイロードの情報を符号化する必要がある。
このように図3の走行制御支援システム1では、基地局サーバ装置51と自動車10との通信と、複数のサーバ装置50の間での通信とで、異なる方式のVPNを使用する。SSL/TLS―VPNによる自動車10との接続性を確保しながら、IPsec―VPNによる通信のための処理負荷を軽減して高速化を図ることができる。
このような走行制御支援システム1は、高レベルの自動運転のためのコネクッドサービスを、広い地域で不断的に提供することが可能である。
このような走行制御支援システム1は、高レベルの自動運転のためのコネクッドサービスを、広い地域で不断的に提供することが可能である。
そして、基地局サーバ装置51などのローカルのサーバ装置51,54は、狭地域サーバ装置52、広地域サーバ装置53、および上位サーバ装置55についての自動車10の支援制御についての中継サーバ装置として機能する。
狭地域サーバ装置52、および広地域サーバ装置53は、上位サーバ装置55についての自動車10の支援制御についての中継サーバ装置として機能する。
これらの中継サーバ装置は、上位側のサーバ装置において自身で生成した情報を付加したり、上位側のサーバ装置から取得する情報を調整したりすることが可能である。上位側のサーバ装置は、中継サーバ装置が介在することにより、自動車10との間で基地局40を通じた無線通信路を確立することなく、自動車10との間で情報を授受することが可能である。走行制御支援システム1の全体において、基地局40を通じた無線通信を含む長距離通信を使用しないようにできる。
また、複数の自動車10の走行を支援するためのサーバ装置が複数段に多層化されていることにより、複数のサーバ装置50は、複数の自動車10を支援するための各種の制御を、各々の地域での設置位置や階層での位置に応じて分散して実行することが可能になる。
たとえば、基地局サーバ装置51などのローカルのサーバ装置51,54は、ゾーンにいる複数の自動車10の各々との間で走行制御周期ごとの通信を不断的に実行する制御に特化することができる。
狭地域サーバ装置52や広地域サーバ装置53は、各々の地域全体での複数の自動車10の走行を将来予測により調整する管制制御または遠隔制御に特化することができる。
上位サーバ装置55は、狭地域サーバ装置52や広地域サーバ装置53より広い地域についての将来予測による管制制御または遠隔制御に特化することができる。また、上位サーバ装置55は、走行制御支援システム1の全体での管理制御に特化することもできる。
狭地域サーバ装置52、および広地域サーバ装置53は、上位サーバ装置55についての自動車10の支援制御についての中継サーバ装置として機能する。
これらの中継サーバ装置は、上位側のサーバ装置において自身で生成した情報を付加したり、上位側のサーバ装置から取得する情報を調整したりすることが可能である。上位側のサーバ装置は、中継サーバ装置が介在することにより、自動車10との間で基地局40を通じた無線通信路を確立することなく、自動車10との間で情報を授受することが可能である。走行制御支援システム1の全体において、基地局40を通じた無線通信を含む長距離通信を使用しないようにできる。
また、複数の自動車10の走行を支援するためのサーバ装置が複数段に多層化されていることにより、複数のサーバ装置50は、複数の自動車10を支援するための各種の制御を、各々の地域での設置位置や階層での位置に応じて分散して実行することが可能になる。
たとえば、基地局サーバ装置51などのローカルのサーバ装置51,54は、ゾーンにいる複数の自動車10の各々との間で走行制御周期ごとの通信を不断的に実行する制御に特化することができる。
狭地域サーバ装置52や広地域サーバ装置53は、各々の地域全体での複数の自動車10の走行を将来予測により調整する管制制御または遠隔制御に特化することができる。
上位サーバ装置55は、狭地域サーバ装置52や広地域サーバ装置53より広い地域についての将来予測による管制制御または遠隔制御に特化することができる。また、上位サーバ装置55は、走行制御支援システム1の全体での管理制御に特化することもできる。
図4は、図3の各種のサーバ装置として用いることができるサーバ装置60のハードウェア構成の説明図である。
図4のサーバ装置60は、サーバ通信部61、サーバGNSS受信機62、サーバメモリ63、サーバCPU(Central Processing Unit)64、および、これらが接続されるサーババス65、を有する。
図3の基地局サーバ装置51、アクセラレーションサーバ装置54、狭地域サーバ装置52、広地域サーバ装置53、上位サーバ装置55は、基本的に、図4のハードウェア構成のものとしてよい。
ただし、基地局サーバ装置51や、図3においてハッチングを付したローカルのサーバ装置51,54などは、図4中に破線で示すように、さらに、基地局40通信部、を備えることが望ましい。
図4のサーバ装置60は、サーバ通信部61、サーバGNSS受信機62、サーバメモリ63、サーバCPU(Central Processing Unit)64、および、これらが接続されるサーババス65、を有する。
図3の基地局サーバ装置51、アクセラレーションサーバ装置54、狭地域サーバ装置52、広地域サーバ装置53、上位サーバ装置55は、基本的に、図4のハードウェア構成のものとしてよい。
ただし、基地局サーバ装置51や、図3においてハッチングを付したローカルのサーバ装置51,54などは、図4中に破線で示すように、さらに、基地局40通信部、を備えることが望ましい。
基地局40通信部は、自動車10の車両通信部17と基地局40を通じて通信して、車両通信部17との間で情報を送受する。基地局40通信部は、1:Nの通信に適したSSL/TLS―VPNによる通信路を、複数の自動車10の車両通信部17の各々と確立して、各通信路を通じて各車両通信部17と情報を送受してよい。基地局40通信部が通信可能な複数の自動車10の台数Nは、サーバ装置60としての処理能力に応じて決定するとよい。また、サーバ装置60の処理能力は、サーバ装置60に接続されている基地局40の数、基地局40のゾーンが設定される地域のサイズ、領域において想定される最大の台数に基づいて決定するとよい。
サーバ通信部61は、走行制御支援システム1において使用される他のサーバ装置68と通信する。サーバ通信部61は、少なくともキャリア通信ケーブル42により直接的に接続されている他のサーバ装置68との間に、IPsec―VPN接続による通信路を確立する。サーバ通信部61は、他のサーバ装置68を経由して、直接的に接続されていない他のサーバ装置68との間にIPsec―VPN接続などによる通信路を確立してもよい。たとえば、基地局サーバ装置51は、直接的に接続されている狭地域サーバ装置52または広地域サーバ装置53との間に通信路を確立するとともに、キャリア広域通信網57を通じて、上位サーバ装置55との間に通信路を確立してもよい。
サーバGNSS受信機62は、複数のGNSS衛星110からの電波を受信し、サーバ装置60の設置位置についての緯度、経度、高度、および現在時刻を得る。この現在時刻は、各自動車10の制御系のGNSS受信機26が取得する時刻と基本的に同じになる。サーバ装置60と自動車10とは、互いに共通する絶対的な時刻の下で、各々の制御を実行することができる。たとえば自動車10での車両センサ部の検出時刻は、そのままでサーバ装置60の時刻との演算に用いることが可能になる。
サーバメモリ63は、サーバCPU64が実行するプログラムおよびデータを記録する。サーバメモリ63は、たとえば半導体メモリ、HDD、などにより構成されてよい。
サーバメモリ63には、たとえば、サーバ装置60の管轄地域の高精度地図データ67が記録されている。基地局サーバ装置51の場合、少なくとも基地局40のゾーンに対応する地域の高精度地図データ67が記録されてよい。狭地域サーバ装置52または広地域サーバ装置53の場合、少なくとも各々に接続されている複数の基地局40で網羅される地域の高精度地図データ67が記録されてよい。上位サーバ装置55の場合、図3のすべての地域の高精度地図データ67が記録されてよい。上位サーバ装置55の高精度地図データ67は、たとえば日本国の全体の高精度地図データとしてよい。
ここで、管轄地域の高精度地図データ67は、自動車が走行する道路についての高精度の三次元の地図データでよい。このような高精度地図データ67には、自動車10が走行する道路についての道路の各車線の中央ガイド線、各車線の境界線、を示す情報が含まれる。また、交差点や分岐合流点では、転舵などのためのガイド線、が含まれてよい。ガイド線は、その傾きや曲がりにより、道路の各車線の形状や勾配についての情報を含む。また、高精度地図データ67には、道路標識、マーク、信号機などの走行する自動車10から認識可能な周辺物の情報が含まれてよい。
そして、高精度地図データ67に基づく走行路図には、複数の自動車10の現在位置などをマッピングすることができる。複数の自動車10をマッピングした走行路図では、各自動車10についての走行環境として、たとえば各自動車10についての先行車との車間距離や走行車線だけでなく、先行車より前の走行環境などについても把握することができる。自動車10の自車センサにより把握可能な範囲を超えた範囲についての走行環境を把握することが可能である。
また、これら複数のサーバ装置50に記録される複数の高精度地図データ67は、たとえば同一の高精度地図データに基づいて生成されたものにして、地図データ間の整合性を確保することが望ましい。これにより、地域境界を越えて移動するように走行する自動車10について、連続的な整合性がある管理が可能になる。
サーバメモリ63には、たとえば、サーバ装置60の管轄地域の高精度地図データ67が記録されている。基地局サーバ装置51の場合、少なくとも基地局40のゾーンに対応する地域の高精度地図データ67が記録されてよい。狭地域サーバ装置52または広地域サーバ装置53の場合、少なくとも各々に接続されている複数の基地局40で網羅される地域の高精度地図データ67が記録されてよい。上位サーバ装置55の場合、図3のすべての地域の高精度地図データ67が記録されてよい。上位サーバ装置55の高精度地図データ67は、たとえば日本国の全体の高精度地図データとしてよい。
ここで、管轄地域の高精度地図データ67は、自動車が走行する道路についての高精度の三次元の地図データでよい。このような高精度地図データ67には、自動車10が走行する道路についての道路の各車線の中央ガイド線、各車線の境界線、を示す情報が含まれる。また、交差点や分岐合流点では、転舵などのためのガイド線、が含まれてよい。ガイド線は、その傾きや曲がりにより、道路の各車線の形状や勾配についての情報を含む。また、高精度地図データ67には、道路標識、マーク、信号機などの走行する自動車10から認識可能な周辺物の情報が含まれてよい。
そして、高精度地図データ67に基づく走行路図には、複数の自動車10の現在位置などをマッピングすることができる。複数の自動車10をマッピングした走行路図では、各自動車10についての走行環境として、たとえば各自動車10についての先行車との車間距離や走行車線だけでなく、先行車より前の走行環境などについても把握することができる。自動車10の自車センサにより把握可能な範囲を超えた範囲についての走行環境を把握することが可能である。
また、これら複数のサーバ装置50に記録される複数の高精度地図データ67は、たとえば同一の高精度地図データに基づいて生成されたものにして、地図データ間の整合性を確保することが望ましい。これにより、地域境界を越えて移動するように走行する自動車10について、連続的な整合性がある管理が可能になる。
サーバCPU64は、サーバメモリ63からプログラムを読み込んで実行する。これにより、サーバ装置60には、サーバ制御部が実現される。
サーバ制御部としてのサーバCPU64は、サーバ装置60の全体的な動作を制御する。走行制御支援システム1を構成する複数のサーバ装置50のサーバ制御部は、複数の自動車10の走行制御を支援するための各種の制御を、複数のサーバ装置50の協働により実現する。
たとえば、基地局サーバ装置51のサーバCPU64は、基地局40のゾーンにいる複数の自動車10の各々との通信路の確立制御、確立した通信路を用いた各々の自動車10との情報の送受制御、上位の狭地域サーバ装置52または広地域サーバ装置53、上位サーバ装置55などとの通信路の確立制御、確立した通信路を用いた上位側のサーバ装置との情報の送受制御、取得した検出情報についての処理制御、などを実行する。
狭地域サーバ装置52または広地域サーバ装置53は、接続されている基地局サーバ装置51との通信路の確立制御、確立した通信路を用いた基地局サーバ装置51との情報の送受制御、上位の上位サーバ装置55などとの通信路の確立制御、確立した通信路を用いた上位側のサーバ装置などとの情報の送受制御、取得した検出情報についての処理制御、などを実行する。
上位サーバ装置55は、下位の狭地域サーバ装置52、広地域サーバ装置53または基地局サーバ装置51との通信路の確立制御、確立した通信路を用いた下位側のサーバ装置との情報の送受制御、取得した検出情報についての処理制御、などを実行する。
サーバ制御部としてのサーバCPU64は、サーバ装置60の全体的な動作を制御する。走行制御支援システム1を構成する複数のサーバ装置50のサーバ制御部は、複数の自動車10の走行制御を支援するための各種の制御を、複数のサーバ装置50の協働により実現する。
たとえば、基地局サーバ装置51のサーバCPU64は、基地局40のゾーンにいる複数の自動車10の各々との通信路の確立制御、確立した通信路を用いた各々の自動車10との情報の送受制御、上位の狭地域サーバ装置52または広地域サーバ装置53、上位サーバ装置55などとの通信路の確立制御、確立した通信路を用いた上位側のサーバ装置との情報の送受制御、取得した検出情報についての処理制御、などを実行する。
狭地域サーバ装置52または広地域サーバ装置53は、接続されている基地局サーバ装置51との通信路の確立制御、確立した通信路を用いた基地局サーバ装置51との情報の送受制御、上位の上位サーバ装置55などとの通信路の確立制御、確立した通信路を用いた上位側のサーバ装置などとの情報の送受制御、取得した検出情報についての処理制御、などを実行する。
上位サーバ装置55は、下位の狭地域サーバ装置52、広地域サーバ装置53または基地局サーバ装置51との通信路の確立制御、確立した通信路を用いた下位側のサーバ装置との情報の送受制御、取得した検出情報についての処理制御、などを実行する。
図5は、図3の走行制御支援システム1の複数のサーバ装置50において、複数の自動車の走行制御を支援するために実現される各種機能の説明図である。
図5には、走行制御支援システム1に実現される各種機能として、遠隔検出部72を有する複数の個別支援部71と、上位支援部73と、が示されている。
これらの各機能は、サーバCPU64がプログラムを実行することにより、複数のサーバ装置50の中のいずれかに実現される。
図5には、走行制御支援システム1に実現される各種機能として、遠隔検出部72を有する複数の個別支援部71と、上位支援部73と、が示されている。
これらの各機能は、サーバCPU64がプログラムを実行することにより、複数のサーバ装置50の中のいずれかに実現される。
そして、図5には、自動車10の制御系についての、自車センサ部15、車両通信部17、および走行制御部16が併せて示されている。
自車センサ部15は、自動車10において、複数の自車センサの検出情報や、検出情報に基づく自動車10の走行状態および走行環境の情報を取得する。自車センサ部15による検出情報には、自動車10の現在位置および向き、現在時刻、現在速度の方向および値、がある。また、検出した撮像画像などに基づいて、自車センサ部15は、自車の近くにおける実際の車線境界線の認識情報、自車の近く周辺における実際の先行車などの周辺物の認識情報、などを生成してもよい。これらの認識情報は、自動運転のレベル3またはそれ以上のレベルでの走行制御において必要になる。
車両通信部17は、自車センサ部15の検出情報などを、基地局40を通じた無線通信により、自車に対応する個別支援部71へ送信する。車両通信部17は、自車に対応する個別支援部71から、基地局40を通じた無線通信により、支援情報を受信して取得する。
走行制御部16は、基本的に、自車センサ部15の検出情報、およびそれに基づく各種の認識情報といった二次的な検出情報に基づいて、自車の走行を自律的に制御する。
自車センサ部15は、自動車10において、複数の自車センサの検出情報や、検出情報に基づく自動車10の走行状態および走行環境の情報を取得する。自車センサ部15による検出情報には、自動車10の現在位置および向き、現在時刻、現在速度の方向および値、がある。また、検出した撮像画像などに基づいて、自車センサ部15は、自車の近くにおける実際の車線境界線の認識情報、自車の近く周辺における実際の先行車などの周辺物の認識情報、などを生成してもよい。これらの認識情報は、自動運転のレベル3またはそれ以上のレベルでの走行制御において必要になる。
車両通信部17は、自車センサ部15の検出情報などを、基地局40を通じた無線通信により、自車に対応する個別支援部71へ送信する。車両通信部17は、自車に対応する個別支援部71から、基地局40を通じた無線通信により、支援情報を受信して取得する。
走行制御部16は、基本的に、自車センサ部15の検出情報、およびそれに基づく各種の認識情報といった二次的な検出情報に基づいて、自車の走行を自律的に制御する。
個別支援部71は、自動車10が直接的に通信可能な基地局40に接続されているたとえば基地局サーバ装置51において、基地局40のゾーンに存在する複数の自動車10の各々と対応付けて生成される。なお、複数の自動車10が1つの群として走行している場合には、個別支援部71は、その群と対応づけて生成されてよい。
個別支援部71は、対応する自動車10の車両通信部17との間で、基地局40を通じた無線通信を含む通信路を確立する。個別支援部71は、対応する自動車10の車両通信部17との間で情報を送受する。個別支援部71は、たとえば、対応する自動車10の走行制御部16から検出情報などを受信して取得する。個別支援部71は、対応する自動車10から取得した検出情報などに基づいて、対応する自動車10の走行制御部16が走行制御のために使用可能な支援情報を生成する。個別支援部71は、生成した支援情報を、対応する自動車10の走行制御部16へ送信して提供する。これにより、個別支援部71は、対応する自動車10の走行制御を支援することができる。
個別支援部71は、対応する自動車10の車両通信部17との間で、基地局40を通じた無線通信を含む通信路を確立する。個別支援部71は、対応する自動車10の車両通信部17との間で情報を送受する。個別支援部71は、たとえば、対応する自動車10の走行制御部16から検出情報などを受信して取得する。個別支援部71は、対応する自動車10から取得した検出情報などに基づいて、対応する自動車10の走行制御部16が走行制御のために使用可能な支援情報を生成する。個別支援部71は、生成した支援情報を、対応する自動車10の走行制御部16へ送信して提供する。これにより、個別支援部71は、対応する自動車10の走行制御を支援することができる。
遠隔検出部72は、対応する自動車10の車外の撮像画像といった周辺の空間情報に基づいて、対応する自動車10の進行方向の走行路の認識情報、および対応する自動車10の周辺にいる周辺物の認識情報を生成するものである。このような空間情報に基づく周辺の認識情報の生成処理は、個別支援部71が対応する自動車10の走行を支援するために実行する制御の中の一部の処理であり、人工知能などを用いた負荷が高い処理である。遠隔検出部72は、個別支援部71と同じ基地局サーバ装置51において生成されても、基地局サーバ装置51と接続されるアクセラレーションサーバ装置54において生成されても、よい。遠隔検出部72がアクセラレーションサーバ装置54に生成されることにより、基地局サーバ装置51は、その処理負荷が軽減されて、複数の自動車10との通信などに注力することができる。
上位支援部73は、複数の個別支援部71の各々から、各個別支援部71が対応している自動車10の情報を収集し、収集した複数の自動車10の情報を用いて、複数の自動車10の走行状態に基づく各自動車10の走行制御のための上位支援情報を生成する。そして、上位支援部73は、複数の自動車10の各々へ提供するために生成した上位支援情報を、各自動車10の車両通信部17そのものではなく、複数の自動車10の各々と対応して生成されている複数の個別支援部71へ送信して提供する。
なお、走行制御支援システム1が管理する領域がたとえば日本国の全体といったようにかなり広い場合、上位支援部73は、たとえば、複数の自動車10の情報を収集する上位収集部と、複数の自動車10の上位支援情報を生成する上位支援部73と、上位支援情報を複数の自動車10の提供する上位支援部73と、のように複数のサーバ装置50に分けて実現されてよい。
また、上位支援部73は、基本的に基地局サーバ装置51とは別の上位側のサーバ装置52,53,55に実現されるものであるが、システム構成上の都合などにより、基地局サーバ装置51やアクセラレーションサーバ装置54といったローカルのサーバ装置において車両通信部17の機能とともに実現されてもよい。
なお、走行制御支援システム1が管理する領域がたとえば日本国の全体といったようにかなり広い場合、上位支援部73は、たとえば、複数の自動車10の情報を収集する上位収集部と、複数の自動車10の上位支援情報を生成する上位支援部73と、上位支援情報を複数の自動車10の提供する上位支援部73と、のように複数のサーバ装置50に分けて実現されてよい。
また、上位支援部73は、基本的に基地局サーバ装置51とは別の上位側のサーバ装置52,53,55に実現されるものであるが、システム構成上の都合などにより、基地局サーバ装置51やアクセラレーションサーバ装置54といったローカルのサーバ装置において車両通信部17の機能とともに実現されてもよい。
このように複数のサーバ装置50には、その全体において、複数の個別支援部71、および上位支援部73が実現される。複数のサーバ装置50には、図5のすべての機能が分散して実現される。
複数のサーバ装置50の各々は、自動車10と基地局40との間の無線通信を含んでいない基本的に有線接続による通信路を用いて、互いの通信を低遅延で安定して実行することができる。
そして、複数の自動車10の各々と対応して生成される複数の個別支援部71の各々は、対応する自動車10から取得する情報と、上位支援部73から提供される上位支援情報とに基づいて、対応する自動車10の走行制御部16が走行制御のために使用可能な情報を生成して、対応する自動車10の車両通信部17へ送信する、
これにより、走行制御支援システム1は、個別支援部71により生成する支援情報と、上位支援部73により生成する支援情報とを、低遅延で安定した通信により、複数の自動車10へ提供することができる。
そして、各自動車10の走行制御部16は、自車での検出情報とともに、走行制御支援システム1から提供されるこれらの支援情報を用いて、自車の走行を制御することができる。
複数のサーバ装置50の各々は、自動車10と基地局40との間の無線通信を含んでいない基本的に有線接続による通信路を用いて、互いの通信を低遅延で安定して実行することができる。
そして、複数の自動車10の各々と対応して生成される複数の個別支援部71の各々は、対応する自動車10から取得する情報と、上位支援部73から提供される上位支援情報とに基づいて、対応する自動車10の走行制御部16が走行制御のために使用可能な情報を生成して、対応する自動車10の車両通信部17へ送信する、
これにより、走行制御支援システム1は、個別支援部71により生成する支援情報と、上位支援部73により生成する支援情報とを、低遅延で安定した通信により、複数の自動車10へ提供することができる。
そして、各自動車10の走行制御部16は、自車での検出情報とともに、走行制御支援システム1から提供されるこれらの支援情報を用いて、自車の走行を制御することができる。
特に、本実施形態では、上述したように、複数のサーバ装置50の間での通信にはIPsec―VPNを用いて、通信元と通信先との相互認証により通信元と通信先とを固定化する第一の仮想プライベートネットワークを用いる。これにより、複数のサーバ装置50の間での通信は、通信パケットのペイロードの情報を符号化していなくとも、秘匿性が得られる高速な通信にすることができる。各個別支援部71が上位支援情報を得るまでの遅延時間は、短くでき、かつ、安定化させることができる。
これに対して、本実施形態では、走行により移動する各自動車10とそれに対応する個別支援部71を備える基地局サーバ装置51との基地局40を通じた通信には、SSL/TLS―VPNを用いて、通信の片側であるサーバ装置のみの認証によりサーバ装置の相手先を固定化しない第二の仮想プライベートネットワークを用いる。サーバ装置の相手先は自由に変更可能である。これにより、個別支援部71を備える基地局サーバ装置51は、任意の複数の自動車10との間で、通信パケットのペイロードの情報を符号化して、秘匿性が得られる接続相手先の柔軟性がある通信を実現することができる。
このように本実施形態では、複数の種類の仮想プライベートネットワークを、複数のサーバ装置50の間と、サーバ装置と自動車10との間とで使い分ける。これらの好適な組み合わせによる通信を実現することにより、本実施形態では、通信する装置の間で良好な接続を確保しながら、制御遅れにつながる通信遅延などを最小化することができる。走行制御支援システム1は、自動車10の走行を支援するために実用的に使用することができる。
これに対して、本実施形態では、走行により移動する各自動車10とそれに対応する個別支援部71を備える基地局サーバ装置51との基地局40を通じた通信には、SSL/TLS―VPNを用いて、通信の片側であるサーバ装置のみの認証によりサーバ装置の相手先を固定化しない第二の仮想プライベートネットワークを用いる。サーバ装置の相手先は自由に変更可能である。これにより、個別支援部71を備える基地局サーバ装置51は、任意の複数の自動車10との間で、通信パケットのペイロードの情報を符号化して、秘匿性が得られる接続相手先の柔軟性がある通信を実現することができる。
このように本実施形態では、複数の種類の仮想プライベートネットワークを、複数のサーバ装置50の間と、サーバ装置と自動車10との間とで使い分ける。これらの好適な組み合わせによる通信を実現することにより、本実施形態では、通信する装置の間で良好な接続を確保しながら、制御遅れにつながる通信遅延などを最小化することができる。走行制御支援システム1は、自動車10の走行を支援するために実用的に使用することができる。
図6は、図3の走行制御支援システム1により走行支援を受けることが可能な自動車10の走行制御のフローチャートである。
自動車10の走行制御部16は、たとえば自動車10が起動されるたびに、図6の走行制御を繰り返し実行してよい。
自動車10の走行制御部16は、たとえば自動車10が起動されるたびに、図6の走行制御を繰り返し実行してよい。
ステップST1において、走行制御部16は、自車センサ部15から、自車センサの検出情報を取得する。
ステップST2において、走行制御部16は、走行制御支援システム1の複数のサーバ装置50による支援を利用するか否かを判断する。走行制御部16は、たとえば、自車の現在位置に基づいて、複数のサーバ装置50による支援が利用可能か否かを判断してよい。また、走行制御部16は、たとえば、自動運転のレベルがレベル3以上のL3,L4といった高負荷な制御を実行することがドライバにより求められているか、または、自車のバッテリの残電力などの状態に応じて支援を必要としているか否かを判断してよい。そして、複数のサーバ装置50による支援が利用可能であってそれを利用しようとする場合、走行制御部16は、レベル3以上の高負荷な自動運転などについての支援を受けるために、処理をステップST3へ進める。それ以外の場合、走行制御部16は、自律的に完結した制御を実行するように、処理をステップST6へ進める。
ステップST3において、走行制御部16は、自車センサ部15から取得している自車センサの検出情報を、基地局サーバ装置51などにおいて自身に対応して実現されている個別支援部71へ送信する。自動車10の車両通信部17は、基地局サーバ装置51のサーバ通信部61との間で、SSL/TLS-VPN接続による通信路を確立し、走行制御部16により送信が要求された自車センサの検出情報を含むパケットを暗号化し、サーバ通信部61へ送信する。
基地局サーバ装置51のサーバ制御部は、サーバ通信部61が自車センサの検出情報を受信すると、後述するようにそれに応じて支援情報を生成する。そして、レベル3以上の高負荷な制御についての支援を実行する場合、サーバ制御部は、取得した自車センサの検出情報に基づいて、L3,L4で求められる二次的な検出情報を生成してよい。
また、サーバ制御部は、生成した支援情報を、自動車10の走行制御部16へ送信する。サーバ通信部61は、支援情報を含むパケットを暗号化し、車両通信部17との間に確立している通信路を通じて、車両通信部17へ送信する。これにより、自動車10の車両通信部17は、支援情報を受信できる。
基地局サーバ装置51のサーバ制御部は、サーバ通信部61が自車センサの検出情報を受信すると、後述するようにそれに応じて支援情報を生成する。そして、レベル3以上の高負荷な制御についての支援を実行する場合、サーバ制御部は、取得した自車センサの検出情報に基づいて、L3,L4で求められる二次的な検出情報を生成してよい。
また、サーバ制御部は、生成した支援情報を、自動車10の走行制御部16へ送信する。サーバ通信部61は、支援情報を含むパケットを暗号化し、車両通信部17との間に確立している通信路を通じて、車両通信部17へ送信する。これにより、自動車10の車両通信部17は、支援情報を受信できる。
ステップST4において、走行制御部16は、個別支援部71からの支援情報を取得したか否かを判断する。車両通信部17が支援情報を受信していない場合、走行制御部16は、個別支援部71からの支援情報を取得していないと判断し、本処理を繰り返す。車両通信部17が支援情報を受信すると、走行制御部16は、個別支援部71からの支援情報を取得したと判断して、処理をステップST5へ進める。
ステップST5において、走行制御部16は、車両通信部17から取得した支援情報と、自車センサの検出情報とに基づいて、車両の走行制御を実行する。
支援情報に、遠隔制御などによる制御値が含まれている場合、走行制御部16は、その制御値により走行を制御してよい。支援情報に、管制制御などによる走行可能範囲や走行制限範囲の情報が含まれる場合、走行制御部16は、それらの範囲内で走行する制御値を生成し、生成した制御値により走行を制御してよい。
また、走行制御部16は、これらの走行において、自車センサの検出情報に基づいて走行中の走行路を維持するように走行したり、自車センサの検出情報に基づいて認識されている周辺物と干渉しないように走行したりするように、制御値を調整してよい。
これにより、自動車10は、たとえば、走行制御支援システム1の管制制御または遠隔制御にしたがって、かつ、周辺物と干渉しないように、基本的に走行路を維持するように走行することができる。
その後、走行制御部16は、処理をステップST8へ進める。
支援情報に、遠隔制御などによる制御値が含まれている場合、走行制御部16は、その制御値により走行を制御してよい。支援情報に、管制制御などによる走行可能範囲や走行制限範囲の情報が含まれる場合、走行制御部16は、それらの範囲内で走行する制御値を生成し、生成した制御値により走行を制御してよい。
また、走行制御部16は、これらの走行において、自車センサの検出情報に基づいて走行中の走行路を維持するように走行したり、自車センサの検出情報に基づいて認識されている周辺物と干渉しないように走行したりするように、制御値を調整してよい。
これにより、自動車10は、たとえば、走行制御支援システム1の管制制御または遠隔制御にしたがって、かつ、周辺物と干渉しないように、基本的に走行路を維持するように走行することができる。
その後、走行制御部16は、処理をステップST8へ進める。
ステップST6において、走行制御部16は、自律的に完結した制御を実行するために、自車において、レベル3以上の高負荷な制御に必要とされる二次的な検出情報を生成する。走行制御部16は、たとえば、自車の周辺の空間情報に基づいて、二次的な検出情報を生成してよい。二次的な検出情報には、自車が走行している走行路の車線境界線の認識情報や、自車の周辺の他の移動体などの周辺物の認識情報、が含まれてよい。走行制御部16は、空間情報についてのオブジェクトの抽出処理や、抽出したオブジェクトの認識処理において、機械学習によるAI処理を用いてもよい。
ステップST7において、走行制御部16は、自車センサの検出情報と、に基づいて、車両の走行制御を実行する。ここでの、自車センサの検出情報には、ステップST6にて生成した二次的な検出情報が含まれる。
走行制御部16は、自車での検出情報に基づいて走行中の走行路を維持する制御値を生成したり、周辺物と干渉しないように走行する制御値を生成したりしてよい。また、走行制御部16は、生成した制御値により走行を制御する。
これにより、自動車10は、自車での自律的な制御により、基本的に走行路を維持しつつ、周辺物と干渉しないように走行することができる。
走行制御部16は、自車での検出情報に基づいて走行中の走行路を維持する制御値を生成したり、周辺物と干渉しないように走行する制御値を生成したりしてよい。また、走行制御部16は、生成した制御値により走行を制御する。
これにより、自動車10は、自車での自律的な制御により、基本的に走行路を維持しつつ、周辺物と干渉しないように走行することができる。
ステップST8において、走行制御部16は、自動車10の走行制御を終了するか否かを判断する。走行制御部16は、たとえば自動車10が目的地に到着して停止しているか否かなどに基づいて、自動車10の走行制御を終了すると判断してよい。自動車10の走行制御を終了すると判断しない場合、走行制御部16は、処理をステップST1へ戻す。走行制御部16は、自動車10の走行制御を終了すると判断するまで、ステップST1からステップST8の処理を繰り返し、自動車10の走行制御を繰り返す。自動車10の走行制御を終了すると判断すると、走行制御部16は、本制御を終了する。
図7は、図5の個別支援部71による、対応する自動車10のための個別支援制御のフローチャートである。
図5の個別支援部71は、たとえば基地局サーバ装置51などにおいて、自動車10と対応して生成されるものである。
図5の個別支援部71は、図7の個別支援制御を繰り返し実行することにより、対応する自動車10から検出情報を繰り返しに取得して、対応する自動車10の走行制御を継続的に支援する。
図5の個別支援部71は、たとえば基地局サーバ装置51などにおいて、自動車10と対応して生成されるものである。
図5の個別支援部71は、図7の個別支援制御を繰り返し実行することにより、対応する自動車10から検出情報を繰り返しに取得して、対応する自動車10の走行制御を継続的に支援する。
ステップST11において、個別支援部71は、対応する自動車10から、新たな検出情報を受信して取得しているか否かを判断する。新たな検出情報を受信していない場合、それを受信するまで、個別支援部71は、本処理を繰り返す。新たな検出情報を受信すると、個別支援部71は、処理をステップST12へ進める。
ステップST12において、個別支援部71は、対応する自動車10から、取得した新たな検出情報において、空間情報を取得しているか否かを判断する。空間情報を取得している場合、個別支援部71は、空間情報に基づく認識処理のために、処理をステップST13へ進める。空間情報を取得していない場合、個別支援部71は、処理をステップST15へ進める。
ステップST13において、個別支援部71は、遠隔検出部72として、取得した空間情報に基づいて、対応する自動車10の周辺の三次元空間モデルを生成し、三次元空間モデルにおいて走行路の車線境界線や周辺物といったオブジェクトの抽出処理を実行する。
ステップST14において、個別支援部71は、遠隔検出部72として、ステップST13で抽出したオブジェクトに基づいて、走行路の形状といった認識情報と、周辺物の種類、サイズ、相対的な方向および距離、といった認識情報を生成する。これらの情報は、走行制御部16がレベル3以上の自動運転の制御を実行する場合において、自車の進路を決定するために使用される二次的な検出情報である。
なお、個別支援部71が基地局サーバ装置51において実現され、遠隔検出部72がアクセラレーションサーバ装置54に実現されるように、個別支援部71そのものが階層化された複数のサーバ装置50で構成される可能性がある。この場合、個別支援部71は、ステップST13からステップST14までの処理を、基地局サーバ装置51からアクセラレーションサーバ装置54に要求し、その結果をアクセラレーションサーバ装置54から取得してよい。
なお、個別支援部71が基地局サーバ装置51において実現され、遠隔検出部72がアクセラレーションサーバ装置54に実現されるように、個別支援部71そのものが階層化された複数のサーバ装置50で構成される可能性がある。この場合、個別支援部71は、ステップST13からステップST14までの処理を、基地局サーバ装置51からアクセラレーションサーバ装置54に要求し、その結果をアクセラレーションサーバ装置54から取得してよい。
ステップST15において、個別支援部71は、個別支援部71が上位支援部73から取得している最新の上位支援情報を取得する。最新の上位支援情報は、サーバメモリ63に一時的に記録されてよい。
ステップST16において、個別支援部71は、以上の処理により取得した支援情報を、対応する自動車10へ送信する。
ステップST17において、個別支援部71は、今回の制御において対応する自動車10から取得している検出情報を、上位支援部73へ送信する。
個別支援部71は、上位支援部73へ送信する検出情報に、自身が対応する自動車10の最新の位置とともに、その時刻、速度の方向および大きさ、個別支援部71が生成した周辺の認識情報、などを含めてよい。
逆に、個別支援部71は、上位支援部73へ送信する検出情報に、自動車10から取得している撮像画像などの空間情報は含めなくてよい。これにより、個別支援部71は、上位支援部73との通信量を削減しつつ、上位支援部73に対して管制制御または遠隔制御の信頼性を高めるための情報を提供することができる。
その後、個別支援部71は、本制御を終了する。
個別支援部71は、上位支援部73へ送信する検出情報に、自身が対応する自動車10の最新の位置とともに、その時刻、速度の方向および大きさ、個別支援部71が生成した周辺の認識情報、などを含めてよい。
逆に、個別支援部71は、上位支援部73へ送信する検出情報に、自動車10から取得している撮像画像などの空間情報は含めなくてよい。これにより、個別支援部71は、上位支援部73との通信量を削減しつつ、上位支援部73に対して管制制御または遠隔制御の信頼性を高めるための情報を提供することができる。
その後、個別支援部71は、本制御を終了する。
このように個別支援部71は、対応する自動車10において自動運転のために使用する検出情報の一部を、その自動車10の制御系に替わって生成して提供する。個別支援部71は、自動車10の外にあるECUとして機能できる。
また、個別支援部71が実現される基地局サーバ装置51は、上位側のサーバ装置52,53,55において生成される上位支援情報を、自身で生成する支援情報とともに、対応する自動車10へ送信する。個別支援部71が実現される基地局サーバ装置51は、走行制御支援システム1において、各自動車10と直接的に通信する唯一のサーバ装置となる。基地局サーバ装置51は、自動車10が通信に使用する基地局40に接続されているサーバ装置であるため、基地局40を通じた無線通信により各自動車10の車両通信部17と通信する場合でも、比較的に安定している短い時間にて自動車10に応答することができる。
このような個別支援部71により支援されることにより、自動車10は、レベル3以上の高度な自動運転のための処理負荷が軽減された状態で、レベル3以上の高度な自動運転により走行することができる。
また、個別支援部71が実現される基地局サーバ装置51は、上位側のサーバ装置52,53,55において生成される上位支援情報を、自身で生成する支援情報とともに、対応する自動車10へ送信する。個別支援部71が実現される基地局サーバ装置51は、走行制御支援システム1において、各自動車10と直接的に通信する唯一のサーバ装置となる。基地局サーバ装置51は、自動車10が通信に使用する基地局40に接続されているサーバ装置であるため、基地局40を通じた無線通信により各自動車10の車両通信部17と通信する場合でも、比較的に安定している短い時間にて自動車10に応答することができる。
このような個別支援部71により支援されることにより、自動車10は、レベル3以上の高度な自動運転のための処理負荷が軽減された状態で、レベル3以上の高度な自動運転により走行することができる。
特に、本実施形態では、自動車10と対応して基地局サーバ装置51に備えられる個別支援部71は、対応する自動車10から基地局40を通じた無線通信により自車センサの検出情報を取得し、取得した自車センサの検出情報を処理して二次的な検出情報を生成し、生成した二次的な検出情報を、対応する自動車10の車両通信部17へ送信する。具体的にはたとえば、個別支援部71は、対応する自動車10から自車センサにより自動車10の周辺を検出した空間情報を含む自車センサの検出情報を取得し、取得した周辺の空間情報を処理して、自動車10の周辺の走行路の認識情報または自動車10の周辺物の認識情報を、二次的な検出情報として生成し、生成した自動車10の周辺の走行路の認識情報または自動車10の周辺物の認識情報についての二次的な検出情報を、対応する自動車10の車両通信部17へ送信する。
これにより、本実施形態の自動車10の走行制御部16は、自動車10において自ら自車センサの検出情報を処理して二次的な検出情報を生成することなく、基地局サーバ装置51から車両通信部17が受信した二次的な検出情報を、自車の自車センサの検出情報とともに用いて、高レベルの走行制御を実行することができる。
これにより、本実施形態の自動車10の走行制御部16は、自動車10において自ら自車センサの検出情報を処理して二次的な検出情報を生成することなく、基地局サーバ装置51から車両通信部17が受信した二次的な検出情報を、自車の自車センサの検出情報とともに用いて、高レベルの走行制御を実行することができる。
図8は、図5の上位支援部73による、複数の自動車10の走行支援制御(上位支援制御)のフローチャートである。
図5の上位支援部73は、たとえば狭地域サーバ装置52、広地域サーバ装置53または上位サーバ装置55などにおいて、個別支援部71とは別に生成されるものである。なお、上位支援部73は、たとえば狭地域サーバ装置52と上位サーバ装置55とに分散して、または広地域サーバ装置53と上位サーバ装置55とに分散して実現されてもよい。また、上位支援部73は、たとえば1つの基地局サーバ装置51などにおいて、個別支援部71とともに生成されてもよい。上位支援部73は、たとえば地域分けなどと対応させて複数の上位側のサーバ装置に分散して生成されてよい。
図5の上位支援部73は、図8の上位支援制御を繰り返し実行することにより、複数の自動車10の検出情報を繰り返しに取得して、複数の自動車10の走行制御を継続的に支援する。
上位支援部73は、たとえば複数の自動車10の各々についての管制制御の情報や、遠隔制御の情報を生成することにより、複数の自動車10の走行制御を支援する。
図5の上位支援部73は、たとえば狭地域サーバ装置52、広地域サーバ装置53または上位サーバ装置55などにおいて、個別支援部71とは別に生成されるものである。なお、上位支援部73は、たとえば狭地域サーバ装置52と上位サーバ装置55とに分散して、または広地域サーバ装置53と上位サーバ装置55とに分散して実現されてもよい。また、上位支援部73は、たとえば1つの基地局サーバ装置51などにおいて、個別支援部71とともに生成されてもよい。上位支援部73は、たとえば地域分けなどと対応させて複数の上位側のサーバ装置に分散して生成されてよい。
図5の上位支援部73は、図8の上位支援制御を繰り返し実行することにより、複数の自動車10の検出情報を繰り返しに取得して、複数の自動車10の走行制御を継続的に支援する。
上位支援部73は、たとえば複数の自動車10の各々についての管制制御の情報や、遠隔制御の情報を生成することにより、複数の自動車10の走行制御を支援する。
ステップST21において、上位支援部73は、上位収集部として、複数の自動車10に対応して生成される複数の個別支援部71の各々から、各々の個別支援部71が対応する自動車10の検出情報を受信して収集する。各自動車10の検出情報には、少なくとも各自動車10の現在などの最新の位置情報が含まれている。
また、上位支援部73は、走行制御支援システム1を使用しないで管轄地域を走行している他の自動車からも、各々の最新の位置情報などの検出情報を収集してよい。このような自動車10は、上位支援部73が実現されるサーバ装置と直接に通信してよい。
また、上位支援部73は、走行制御支援システム1を使用しないで管轄地域を走行している他の自動車からも、各々の最新の位置情報などの検出情報を収集してよい。このような自動車10は、上位支援部73が実現されるサーバ装置と直接に通信してよい。
ステップST22において、上位支援部73は、サーバメモリ63に記録されている高精度地図データ67に基づいて管轄地域の走行路図を展開して生成し、管轄地域の走行路図に、収集した複数の自動車10の最新の位置などをマッピングする。これにより、上位支援部73は、管轄地域における複数の自動車10の走行環境についての情報を得ることができる。
ここで、走行路図は、たとえば、管轄地域の各道路または各車線を線分により現したもので構成されてよい。この場合、上位支援部73は、各自動車10を、各自動車10が走行している道路または車線に対応する線分において、最新の位置に対応する位置にマッピングする。この他にもたとえば、走行路図は、上述した道路または車線に対応する線分と時間軸とを組み合わせたもので構成されてもよい。この場合、上位支援部73は、各自動車10の位置だけでなく、各自動車10の走行速度についても、マッピングすることができる。
また、上位支援部73は、高精度地図データ67に基づいて管轄地域の走行路図に、ADASなどによる交通情報、規制情報、工事情報、などをマッピングしてもよい。
また、上位支援部73は、高精度地図データ67に基づいて管轄地域の走行路図に、各自動車10の周辺で認識されている他の移動体や、固定物についての情報を、マッピングしてもよい。
ここで、走行路図は、たとえば、管轄地域の各道路または各車線を線分により現したもので構成されてよい。この場合、上位支援部73は、各自動車10を、各自動車10が走行している道路または車線に対応する線分において、最新の位置に対応する位置にマッピングする。この他にもたとえば、走行路図は、上述した道路または車線に対応する線分と時間軸とを組み合わせたもので構成されてもよい。この場合、上位支援部73は、各自動車10の位置だけでなく、各自動車10の走行速度についても、マッピングすることができる。
また、上位支援部73は、高精度地図データ67に基づいて管轄地域の走行路図に、ADASなどによる交通情報、規制情報、工事情報、などをマッピングしてもよい。
また、上位支援部73は、高精度地図データ67に基づいて管轄地域の走行路図に、各自動車10の周辺で認識されている他の移動体や、固定物についての情報を、マッピングしてもよい。
ステップST23において、上位支援部73は、複数の自動車10をマッピングした管轄地域の走行路図において、管轄地域を走行している各自動車10の走行状況を得る。また、上位支援部73は、各自動車10について得た走行状況およびその後の走行状況の推定に基づいて、各自動車10についての走行制御に対する上位支援情報を生成する。
たとえば、管轄地域の走行路図において、処理に係る自動車10が現状のまま走行しても周辺物と干渉することがない場合には、上位支援部73は、現状の走行路での走行をそのまま継続するような走行可能範囲や走行制限範囲の情報を、管制制御での上位支援情報として生成する。または、上位支援部73は、現状の走行路での走行をそのまま継続するような制御値を、遠隔制御での上位支援情報として生成する。
この他にもたとえば、管轄地域の走行路図において、処理に係る自動車10が現状のまま走行しても周辺物と干渉する可能性がある場合には、上位支援部73は、その干渉が生じないように現状の走行を変更するような走行可能範囲や走行制限範囲の情報を、管制制御での上位支援情報として生成する。または、上位支援部73は、現状の走行を干渉が生じないように変更するための制御値を、遠隔制御での上位支援情報として生成する。
また、上位支援部73は、各自動車10のドライバの特性を勘案して、これらの上位支援情報を生成してもよい。各自動車10のドライバの特性情報は、予めサーバメモリ63に記録されてよい。この場合、上位支援部73は、たとえば各自動車10の安全性が確保可能な車間距離を最小限としつつ、ドライバが自ら確保する車間距離の偏差に応じた距離を加減算した距離を、上位支援情報における車間距離についての情報としてよい。
たとえば、管轄地域の走行路図において、処理に係る自動車10が現状のまま走行しても周辺物と干渉することがない場合には、上位支援部73は、現状の走行路での走行をそのまま継続するような走行可能範囲や走行制限範囲の情報を、管制制御での上位支援情報として生成する。または、上位支援部73は、現状の走行路での走行をそのまま継続するような制御値を、遠隔制御での上位支援情報として生成する。
この他にもたとえば、管轄地域の走行路図において、処理に係る自動車10が現状のまま走行しても周辺物と干渉する可能性がある場合には、上位支援部73は、その干渉が生じないように現状の走行を変更するような走行可能範囲や走行制限範囲の情報を、管制制御での上位支援情報として生成する。または、上位支援部73は、現状の走行を干渉が生じないように変更するための制御値を、遠隔制御での上位支援情報として生成する。
また、上位支援部73は、各自動車10のドライバの特性を勘案して、これらの上位支援情報を生成してもよい。各自動車10のドライバの特性情報は、予めサーバメモリ63に記録されてよい。この場合、上位支援部73は、たとえば各自動車10の安全性が確保可能な車間距離を最小限としつつ、ドライバが自ら確保する車間距離の偏差に応じた距離を加減算した距離を、上位支援情報における車間距離についての情報としてよい。
ステップST24において、上位支援部73は、管轄地域を走行する各自動車10について生成した上位支援情報を、各自動車10に対応する個別支援部71へ送信して提供する。これにより、各個別支援部71は、上位支援部73から、対応する自動車10についての上位支援情報を受信して取得することができる。
以上のように、本実施形態では、複数のサーバ装置50に備えられる上位支援部73は、上位収集部として、複数の個別支援部71の各々から、複数の個別支援部71の各々が対応している複数の自動車10の少なくとも位置に関する情報を収集する。そして、上位支援部73は、上位収集部により収集された複数の自動車10の位置を、高精度地図データ67に基づく走行路図にマッピングし、複数の自動車10をマッピングした走行路図における走行状態に基づいて、各自動車10の走行制御部16が各々の走行環境に応じた高レベルの走行制御のために使用可能な上位支援情報を生成する。ここで、上位支援部73が各々の自動車10の走行環境に応じて生成する上位支援情報は、たとえば、各自動車10に走行可能範囲や走行制限範囲を伝える管制制御のための情報であっても、各自動車10の走行制御部16が走行制御に使用する遠隔制御の制御値であっても、よい。
このような上位支援情報を、個別支援部71を通じて取得することにより、各自動車10の走行制御部16は、たとえば周囲にいる他の自動車などと干渉しないように走行する制御を実行することができる。各自動車10の走行制御部16は、上位支援情報に沿って走行制御を実行することにより、たとえば他の自動車などが、たとえば自車センサの検出情報に基づく自律的な制御において回避制御を開始する距離よりも離れている状態において、それとの干渉を回避するように走行制御を実行することが可能となる。各自動車10は、上位支援情報を得ることにより、自車センサの検出情報に基づく自律的な走行制御と比べて、より安定した走行を実現することができる。
このような上位支援情報を、個別支援部71を通じて取得することにより、各自動車10の走行制御部16は、たとえば周囲にいる他の自動車などと干渉しないように走行する制御を実行することができる。各自動車10の走行制御部16は、上位支援情報に沿って走行制御を実行することにより、たとえば他の自動車などが、たとえば自車センサの検出情報に基づく自律的な制御において回避制御を開始する距離よりも離れている状態において、それとの干渉を回避するように走行制御を実行することが可能となる。各自動車10は、上位支援情報を得ることにより、自車センサの検出情報に基づく自律的な走行制御と比べて、より安定した走行を実現することができる。
ところで、上述した複数の個別支援部71は、複数の自動車10の各々に対応付けるように複数の基地局サーバ装置51に生成されるものである。
自動車10が走行により移動すると、それに対応する個別支援部71は、それまでとは異なる基地局サーバ装置51へ切り替わるように、複数の基地局サーバ装置51の間で動的に切り替えて生成されることが望ましい。
図9は、図5の個別支援部71を備える基地局サーバ装置51における、複数の自動車10に対応させた個別支援部71の管理制御の一例のフローチャートである。
基地局サーバ装置51のサーバCPU64は、図9の個別支援部71の管理制御を、繰り返し実行する。
自動車10が走行により移動すると、それに対応する個別支援部71は、それまでとは異なる基地局サーバ装置51へ切り替わるように、複数の基地局サーバ装置51の間で動的に切り替えて生成されることが望ましい。
図9は、図5の個別支援部71を備える基地局サーバ装置51における、複数の自動車10に対応させた個別支援部71の管理制御の一例のフローチャートである。
基地局サーバ装置51のサーバCPU64は、図9の個別支援部71の管理制御を、繰り返し実行する。
ステップST31において、基地局サーバ装置51のサーバCPU64は、個別支援部71についての新たな生成要求があるか否かを判断する。
自動車10の走行制御部16は、たとえば、自動車10にドライバが乗車した場合、自動車10が走行を開始した場合、走行中の自動車10が走行制御支援システム1の管轄地域に入った場合、または、走行制御支援システム1の管轄地域においてドライバが所定の操作をした場合、基地局40を通じた無線通信により基地局サーバ装置51へ生成要求を送信してよい。
また、複数の基地局サーバ装置51は、後述するように、管轄中の自動車10が域外へ移動した場合、自動車10が移動した地域についての基地局サーバ装置51へ、生成要求を送信する。
このいずれかの生成要求がある場合、サーバCPU64は、個別支援部71についての新たな生成要求があると判断して、処理をステップST32へ進める。それ以外の場合、サーバCPU64は、個別支援部71についての新たな生成要求がないとして、処理をステップST33へ進める。
自動車10の走行制御部16は、たとえば、自動車10にドライバが乗車した場合、自動車10が走行を開始した場合、走行中の自動車10が走行制御支援システム1の管轄地域に入った場合、または、走行制御支援システム1の管轄地域においてドライバが所定の操作をした場合、基地局40を通じた無線通信により基地局サーバ装置51へ生成要求を送信してよい。
また、複数の基地局サーバ装置51は、後述するように、管轄中の自動車10が域外へ移動した場合、自動車10が移動した地域についての基地局サーバ装置51へ、生成要求を送信する。
このいずれかの生成要求がある場合、サーバCPU64は、個別支援部71についての新たな生成要求があると判断して、処理をステップST32へ進める。それ以外の場合、サーバCPU64は、個別支援部71についての新たな生成要求がないとして、処理をステップST33へ進める。
ステップST32において、サーバCPU64は、新たな生成要求に係る自動車10に対応する個別支援部71を、自身の基地局サーバ装置51において生成する。サーバCPU64は、たとえば自身の基地局サーバ装置51において生成する個別支援部71ごとに識別情報を新たに発行し、その識別情報を付したワークエリアを、サーバメモリ63に動的に生成してよい。そして、サーバCPU64は、生成したワークエリアに、その個別支援部71に対応する自動車10についての情報を記録するとよい。サーバCPU64は、サーバメモリ63において対応する自動車10ごとに確保しているワークエリアの情報を順番に使用して、図7の個別支援制御を繰り返す。これにより、サーバCPU64は、複数の自動車10に対応する個別支援制御を実行することができる。その後、サーバCPU64は、本制御を終了してよい。
ステップST33において、サーバCPU64は、管轄中の複数の自動車10の中に、域外へ移動する自動車10が存在するか否か判断する。サーバCPU64は、管轄中の自動車10についての域外への移動を、その自動車10の位置や移動方向などに基づいて、予測的に判断してよい。
域外へ移動する自動車10がある場合、サーバCPU64は、処理をステップST34へ進める。それ以外の場合、サーバCPU64は、処理をステップST35へ進める。
域外へ移動する自動車10がある場合、サーバCPU64は、処理をステップST34へ進める。それ以外の場合、サーバCPU64は、処理をステップST35へ進める。
ステップST34において、サーバCPU64は、自動車10の移動先の地域についての基地局サーバ装置51へ、生成要求を送信する。この生成要求には、域外へ移動する自動車10について自身において取得しているワークエリアの情報が含まれてよい。これにより、移動先の地域についての基地局サーバ装置51は、域外から入ってくる自動車10についての情報を、移動元の基地局サーバ装置51から引き継いで、不整合が生じ難い切れ目のない支援を実現し得る。
その後、サーバCPU64は、たとえば域外へ移動した自動車10に対応する個別支援部71の情報を、自身の基地局サーバ装置51から削除して、本制御を終了してよい。
その後、サーバCPU64は、たとえば域外へ移動した自動車10に対応する個別支援部71の情報を、自身の基地局サーバ装置51から削除して、本制御を終了してよい。
ステップST35において、サーバCPU64は、管轄中の複数の自動車10の中に、無検出状態が継続している自動車10が存在するか否か判断する。
自動車10は、その走行が終了すると、走行制御部16を含めて動作が停止する。この場合、自動車10は、自車センサの検出情報を、対応する個別支援部71へ送信しなくなる。
サーバCPU64は、たとえばサーバメモリ63において各自動車10に対応して確保するワークエリアに、情報の最終更新時刻を記録してよい。この場合、サーバCPU64は、たとえば現在時刻と最終更新時刻との時間差が自動車10の走行制御周期以上である閾値より大きくなると、無検出状態が継続していると判断することができる。サーバCPU64は、サーバメモリ63に確保されている複数のすべてのワークエリアについて、このような無検出状態の継続を判断することにより、無検出状態が継続している自動車10が存在するか否か判断してよい。
無検出状態が継続している自動車10が存在する場合、サーバCPU64は、処理をステップST36へ進める。それ以外の場合、サーバCPU64は、本制御を終了する。
自動車10は、その走行が終了すると、走行制御部16を含めて動作が停止する。この場合、自動車10は、自車センサの検出情報を、対応する個別支援部71へ送信しなくなる。
サーバCPU64は、たとえばサーバメモリ63において各自動車10に対応して確保するワークエリアに、情報の最終更新時刻を記録してよい。この場合、サーバCPU64は、たとえば現在時刻と最終更新時刻との時間差が自動車10の走行制御周期以上である閾値より大きくなると、無検出状態が継続していると判断することができる。サーバCPU64は、サーバメモリ63に確保されている複数のすべてのワークエリアについて、このような無検出状態の継続を判断することにより、無検出状態が継続している自動車10が存在するか否か判断してよい。
無検出状態が継続している自動車10が存在する場合、サーバCPU64は、処理をステップST36へ進める。それ以外の場合、サーバCPU64は、本制御を終了する。
ステップST36において、サーバCPU64は、無検出状態が継続している自動車10に対応する個別支援部71の情報を、自身の基地局サーバ装置51から削除する。サーバCPU64は、たとえばサーバメモリ63においてその自動車10に対応して確保しているワークエリアを、削除して開放してよい。その後、サーバCPU64は、本制御を終了する。
このような個別支援部71の管理制御が複数の基地局サーバ装置51において実行されることにより、各自動車10に対応する個別支援部71は、各自動車10の移動に応じて基地局40のハンズオーバがあると、移動した自動車10が新たに通信する基地局40に接続されている基地局サーバ装置51へ動的に割り当てが切り替えられる。個別支援部71は、あたかも、対応する自動車10の移動に追従して、複数の基地局サーバ装置51の間で動的に移動することになる。基地局サーバ装置51は、エリアサーバ装置の一例である。
このように本実施形態では、走行する各自動車10に対応する個別支援部71は、1乃至複数の基地局40が設けられるエリアごとに設けられる複数の基地局サーバ装置51の中で、各自動車10の車両通信部17が通信する基地局40に対応する基地局サーバ装置51に備えられる。各基地局サーバ装置51は、たとえば、基地局40と一体的に設けられてもよい。
しかも、本実施形態において、各自動車10に対応して生成される個別支援部71は、その自動車10の走行に応じて複数の基地局サーバ装置51の間で動的に割り当てが切り替えられる。個別支援部71は、走行する自動車10に追従するように、複数の基地局サーバ装置51の間で移動する。これにより、各自動車10と個別支援部71との情報の送受における遅延などは、各自動車10が通信する基地局40が切り替えられたとしても、必要最小限に抑えることができる。
各自動車10が対応する個別支援部71へ提供する情報と、各個別支援部71が、対応する自動車10へ提供する情報とは、必要最小限に抑えられるように安定している遅延時間により送受され得る。また、それらの応答時間も、必要最小限に抑えることができる。個別支援部71は、対応する自動車10の走行制御部16の制御に遅れることがないように、対応する自動車10から取得した情報に基づいて、制御に利用可能な情報を提供し続けることが可能になる。
このように本実施形態では、走行する各自動車10に対応する個別支援部71は、1乃至複数の基地局40が設けられるエリアごとに設けられる複数の基地局サーバ装置51の中で、各自動車10の車両通信部17が通信する基地局40に対応する基地局サーバ装置51に備えられる。各基地局サーバ装置51は、たとえば、基地局40と一体的に設けられてもよい。
しかも、本実施形態において、各自動車10に対応して生成される個別支援部71は、その自動車10の走行に応じて複数の基地局サーバ装置51の間で動的に割り当てが切り替えられる。個別支援部71は、走行する自動車10に追従するように、複数の基地局サーバ装置51の間で移動する。これにより、各自動車10と個別支援部71との情報の送受における遅延などは、各自動車10が通信する基地局40が切り替えられたとしても、必要最小限に抑えることができる。
各自動車10が対応する個別支援部71へ提供する情報と、各個別支援部71が、対応する自動車10へ提供する情報とは、必要最小限に抑えられるように安定している遅延時間により送受され得る。また、それらの応答時間も、必要最小限に抑えることができる。個別支援部71は、対応する自動車10の走行制御部16の制御に遅れることがないように、対応する自動車10から取得した情報に基づいて、制御に利用可能な情報を提供し続けることが可能になる。
以上のように、本実施形態において、複数の自動車10の走行制御を支援するために、複数のサーバ装置50を用いる。また、複数の自動車10の各々は、各々に設けられる自車センサの検出情報に基づく自律的な走行制御を実行可能な走行制御部16と、基地局40を通じた無線通信により複数のサーバ装置50から、走行制御部16の走行制御に用いる情報を取得する車両通信部17と、を有する。
そして、本実施形態では、複数の自動車10の走行制御を支援するための複数のサーバ装置50の各々には、複数の自動車10の各々と対応して生成されて、対応する自動車10の走行制御部16が走行制御のために使用可能な情報を、基地局40を通じた無線通信により車両通信部17へ提供して、対応する自動車10の走行制御を支援する複数の個別支援部71と、複数の自動車10の情報を用いて、複数の自動車10の走行状態に基づく各自動車10の走行制御のための上位支援情報を生成する上位支援部73と、の中の少なくとも1つを備えるようにする。なお、本実施形態での上位支援部73は、複数の個別支援部71の各々から、各個別支援部71が対応している自動車10の情報を収集する上位収集部としての機能と、複数の自動車10の各々へ提供するために生成した上位支援情報を、各自動車10そのものではなく、複数の自動車10の各々と対応して生成されている複数の個別支援部71へ提供する上位提供部としての機能とを、併せ持つ。
そして、複数のサーバ装置50は、その全体において、上述した複数の個別支援部71、上位支援部73、のすべてを備える。この際、複数のサーバ装置50の相互の通信は、自動車10と基地局サーバ装置51との間のように基地局40を通じた無線通信を含むことがないため、有線接続を基本にした低遅延の通信とすることができる。これにより、複数のサーバ装置50の間の通信は、移動体の無線通信において生じ得るような過大な遅延が変動して生じることが起き難くなり、安定した低遅延での通信とすることができる。
本実施形態では、複数のサーバ装置50において、複数の自動車10に対応させた複数の個別支援部71を実現している。各個別支援部71は、対応する自動車10から取得する情報と、上位支援部73から提供される上位支援情報とに基づいて、対応する自動車10の走行制御部16が走行制御のために使用可能な情報を生成して、基地局40を通じた無線通信により、対応する自動車10の車両通信部17へ送信する。これにより、上位収集部、上位支援部73、および上位支援部73は、複数の自動車10の各々へ提供するために生成する上位支援情報を、複数のサーバ装置50の範囲内にある複数の個別支援部71へ提供することにより、複数の自動車10に対して、走行制御のために提供することができる。上位収集部、上位支援部73、および上位支援部73は、基地局40を通じた無線通信により複数の自動車10に対して直接的に提供することなく、複数の自動車10へ走行制御のために提供して、各々の処理を終えることができる。複数のサーバ装置50におけるこれら一連の処理は、それら複数のサーバ装置50の間での通信を含めて、安定した低遅延での処理とすることができる。自動車10が移動して無線通信に使用する基地局40を切り替えたとしても、複数のサーバ装置50におけるこれら一連の処理は、その切り替わりの影響をそのままで受けてしまうことなく、安定した低遅延での処理とすることができる。制御遅れにつながる遅延は生じ難くなる。
しかも、本実施形態に係る複数の自動車10は、複数のサーバ装置50において各々と対応して生成される複数の個別支援部71から、自動車10の走行制御部16が走行制御のために使用可能な情報を受信して、自車の走行制御に用いることができる。各自動車10の走行制御部16は、たとえば上述したような上位支援部73から提供される上位支援情報を自らの処理により生成することなく、上位支援情報に基づく情報を受信して、自車の走行制御に用いることができる。各自動車10の処理負荷は、軽減され得る。各自動車10は、高レベルの自動運転に対応する走行制御を実行する場合であっても、複数のサーバ装置50において生成される上位支援情報やそれに基づく情報を複数のサーバ装置50から取得して、負荷が抑えられている処理により、それを実行することができる。自動車10への要求性能は、抑えることができる。
このように、本実施形態では、自動車10の走行制御をサーバ装置により支援する際の複数の課題を総合的なバランスをとりながら解決して、自動車10の走行制御を複数のサーバ装置50により好適に支援することができる。
そして、本実施形態では、複数の自動車10の走行制御を支援するための複数のサーバ装置50の各々には、複数の自動車10の各々と対応して生成されて、対応する自動車10の走行制御部16が走行制御のために使用可能な情報を、基地局40を通じた無線通信により車両通信部17へ提供して、対応する自動車10の走行制御を支援する複数の個別支援部71と、複数の自動車10の情報を用いて、複数の自動車10の走行状態に基づく各自動車10の走行制御のための上位支援情報を生成する上位支援部73と、の中の少なくとも1つを備えるようにする。なお、本実施形態での上位支援部73は、複数の個別支援部71の各々から、各個別支援部71が対応している自動車10の情報を収集する上位収集部としての機能と、複数の自動車10の各々へ提供するために生成した上位支援情報を、各自動車10そのものではなく、複数の自動車10の各々と対応して生成されている複数の個別支援部71へ提供する上位提供部としての機能とを、併せ持つ。
そして、複数のサーバ装置50は、その全体において、上述した複数の個別支援部71、上位支援部73、のすべてを備える。この際、複数のサーバ装置50の相互の通信は、自動車10と基地局サーバ装置51との間のように基地局40を通じた無線通信を含むことがないため、有線接続を基本にした低遅延の通信とすることができる。これにより、複数のサーバ装置50の間の通信は、移動体の無線通信において生じ得るような過大な遅延が変動して生じることが起き難くなり、安定した低遅延での通信とすることができる。
本実施形態では、複数のサーバ装置50において、複数の自動車10に対応させた複数の個別支援部71を実現している。各個別支援部71は、対応する自動車10から取得する情報と、上位支援部73から提供される上位支援情報とに基づいて、対応する自動車10の走行制御部16が走行制御のために使用可能な情報を生成して、基地局40を通じた無線通信により、対応する自動車10の車両通信部17へ送信する。これにより、上位収集部、上位支援部73、および上位支援部73は、複数の自動車10の各々へ提供するために生成する上位支援情報を、複数のサーバ装置50の範囲内にある複数の個別支援部71へ提供することにより、複数の自動車10に対して、走行制御のために提供することができる。上位収集部、上位支援部73、および上位支援部73は、基地局40を通じた無線通信により複数の自動車10に対して直接的に提供することなく、複数の自動車10へ走行制御のために提供して、各々の処理を終えることができる。複数のサーバ装置50におけるこれら一連の処理は、それら複数のサーバ装置50の間での通信を含めて、安定した低遅延での処理とすることができる。自動車10が移動して無線通信に使用する基地局40を切り替えたとしても、複数のサーバ装置50におけるこれら一連の処理は、その切り替わりの影響をそのままで受けてしまうことなく、安定した低遅延での処理とすることができる。制御遅れにつながる遅延は生じ難くなる。
しかも、本実施形態に係る複数の自動車10は、複数のサーバ装置50において各々と対応して生成される複数の個別支援部71から、自動車10の走行制御部16が走行制御のために使用可能な情報を受信して、自車の走行制御に用いることができる。各自動車10の走行制御部16は、たとえば上述したような上位支援部73から提供される上位支援情報を自らの処理により生成することなく、上位支援情報に基づく情報を受信して、自車の走行制御に用いることができる。各自動車10の処理負荷は、軽減され得る。各自動車10は、高レベルの自動運転に対応する走行制御を実行する場合であっても、複数のサーバ装置50において生成される上位支援情報やそれに基づく情報を複数のサーバ装置50から取得して、負荷が抑えられている処理により、それを実行することができる。自動車10への要求性能は、抑えることができる。
このように、本実施形態では、自動車10の走行制御をサーバ装置により支援する際の複数の課題を総合的なバランスをとりながら解決して、自動車10の走行制御を複数のサーバ装置50により好適に支援することができる。
[第二実施形態]
次に、本発明の第二実施形態に係る自動車10の走行制御支援システム1について説明する。本実施形態での走行制御支援システム1の構成および制御は、上述した実施形態のものと同様であり、同一の符号を付してその説明を省略する。以下、主に、上述した実施形態との相違点について説明する。
次に、本発明の第二実施形態に係る自動車10の走行制御支援システム1について説明する。本実施形態での走行制御支援システム1の構成および制御は、上述した実施形態のものと同様であり、同一の符号を付してその説明を省略する。以下、主に、上述した実施形態との相違点について説明する。
図10は、本発明の第二実施形態の個別支援部71による、対応する自動車10のための個別支援制御のフローチャートである。
個別支援部71は、図10の個別支援制御を繰り返し実行することにより、対応する自動車10から検出情報を繰り返しに取得して、対応する自動車10の走行制御を継続的に支援する。
図10においてステップST11からステップST17までの処理は、図7のものと同様である。ただし、個別支援部71は、ステップST15の後、処理をステップST40へ進める。
個別支援部71は、図10の個別支援制御を繰り返し実行することにより、対応する自動車10から検出情報を繰り返しに取得して、対応する自動車10の走行制御を継続的に支援する。
図10においてステップST11からステップST17までの処理は、図7のものと同様である。ただし、個別支援部71は、ステップST15の後、処理をステップST40へ進める。
ステップST40において、個別支援部71は、ステップST14までに取得している対応する自動車10の自車センサの検出情報(二次的な検出情報を含む。)と、ステップST15において取得している上位支援部73からの上位支援情報と、に基づいて、実際に自動車10へ送信する進路情報を生成する。ここでの進路情報は、上位支援情報に替えて、自動車10へ送信されてよい。その後、個別支援部71は、処理をステップST17へ進める。
図11は、図7の進路情報の生成処理の詳細なフローチャートである。
個別支援部71は、図10のステップST40において、図11の進路情報の生成処理を実行する。
個別支援部71は、図10のステップST40において、図11の進路情報の生成処理を実行する。
ステップST41において、個別支援部71は、上位支援部73から取得している上位支援情報に従う走行進路を仮生成する。
たとえば上位支援情報が走行可能範囲や走行禁止範囲についての管制情報である場合、個別支援部71は、その範囲により制限された走行進路を仮生成する。
この他にもたとえば上位支援情報が自動車10の走行制御部16が走行制御に使用可能な遠隔制御の制御値である場合、個別支援部71は、その制御値による走行進路を仮生成する。
たとえば上位支援情報が走行可能範囲や走行禁止範囲についての管制情報である場合、個別支援部71は、その範囲により制限された走行進路を仮生成する。
この他にもたとえば上位支援情報が自動車10の走行制御部16が走行制御に使用可能な遠隔制御の制御値である場合、個別支援部71は、その制御値による走行進路を仮生成する。
ステップST42において、個別支援部71は、仮生成している走行進路と、自動車10の自車センサの検出情報とを比較して、走行路または周辺物と干渉するか否かを判断する。ここで比較する自車センサの検出情報には、個別支援部71が自車センサの検出情報に基づいて生成している走行路の認識情報や周辺物の認識情報を使用してよい。仮生成している走行進路が走行路または周辺物と干渉しない場合、個別支援部71は、処理をステップST43へ進める。仮生成している走行進路が走行路または周辺物と干渉する場合、個別支援部71は、処理をステップST44へ進める。
ステップST43において、個別支援部71は、仮生成している走行進路を、対応する自動車10へ提供する進路として決定する。その後、個別支援部71は、処理を図10へ戻し、ステップST16において、仮生成している走行進路を、対応する自動車10へ送信して提供する。
ステップST44において、個別支援部71は、上位支援情報にしたがって仮生成している走行進路を、干渉し難くなるように調整した走行進路を生成する。個別支援部71は、調整により変更した走行進路を、対応する自動車10へ提供する進路として決定する。その後、個別支援部71は、処理を図10へ戻し、ステップST16において、調整後の走行進路を、対応する自動車10へ送信して提供する。
このように個別支援部71は、上位支援部73から取得する上位支援情報を、対応する自動車10へ送信して提供するのではなく、上位支援情報に基づいて生成した走行進路を、対応する自動車10へ送信して提供する。個別支援部71は、対応する自動車10の実際の走行状況に応じた走行進路の情報を、対応する自動車10へ提供することができる。
なお、個別支援部71は、ステップST42において、単に対応する自動車10の検出情報との対比により干渉を判断するだけでなく、その他の対比判断を併せてしてもよい。
このような対比判断としては、たとえば、個別支援部71が実現されている基地局サーバ装置51のサーバメモリ63に記録されている高精度地図データ67に基づく走行路図と走行進路との対比がある。そして、仮生成している走行進路が、基地局サーバ装置51の高精度地図データ67に基づく走行路図と整合しない場合には、個別支援部71は、処理をステップST44へ進めてよい。この場合、個別支援部71は、ステップST44において、基地局サーバ装置51の高精度地図データ67に基づく走行路図と整合するように、仮生成している走行進路を調整するとよい。
この他にもたとえば、個別支援部71が実現されている基地局サーバ装置51のサーバメモリ63には、ドライバの車間距離などについての特性情報が記録されてよい。この場合、個別支援部71は、ステップST41において、ドライバの車間距離などの特性に沿うように、仮生成している走行進路を調整してもよい。個別支援部71は、たとえば各自動車10の安全性が確保可能な車間距離を最小限としつつ、ドライバについての車間距離の偏差に応じた距離を加減算した距離での走行進路を生成してよい。
個別支援部71が実現されている基地局サーバ装置51は、上位支援部73が実現されている上位側のサーバ装置とは別に、ローカルに閉じている管制/遠隔制御を独自に実行してよい。
このような対比判断としては、たとえば、個別支援部71が実現されている基地局サーバ装置51のサーバメモリ63に記録されている高精度地図データ67に基づく走行路図と走行進路との対比がある。そして、仮生成している走行進路が、基地局サーバ装置51の高精度地図データ67に基づく走行路図と整合しない場合には、個別支援部71は、処理をステップST44へ進めてよい。この場合、個別支援部71は、ステップST44において、基地局サーバ装置51の高精度地図データ67に基づく走行路図と整合するように、仮生成している走行進路を調整するとよい。
この他にもたとえば、個別支援部71が実現されている基地局サーバ装置51のサーバメモリ63には、ドライバの車間距離などについての特性情報が記録されてよい。この場合、個別支援部71は、ステップST41において、ドライバの車間距離などの特性に沿うように、仮生成している走行進路を調整してもよい。個別支援部71は、たとえば各自動車10の安全性が確保可能な車間距離を最小限としつつ、ドライバについての車間距離の偏差に応じた距離を加減算した距離での走行進路を生成してよい。
個別支援部71が実現されている基地局サーバ装置51は、上位支援部73が実現されている上位側のサーバ装置とは別に、ローカルに閉じている管制/遠隔制御を独自に実行してよい。
以上のように、本実施形態では、自動車10と対応して基地局サーバ装置51に備えられる個別支援部71は、対応する自動車10から、自車センサの検出情報を取得するとともに、上位支援部73から、対応する自動車10の走行環境に応じた上位支援情報を取得する。そして、対応する自動車10の走行制御部16が上位支援情報にしたがって走行した場合に、自車センサの検出情報(二次的な検出情報を含む。)に基づいて認識可能な走行路または周辺物と干渉しないときには、個別支援部71は、上位支援情報にしたがう情報を、対応する自動車10の走行制御部16が走行制御のために使用可能な情報として生成する。これに対して、対応する自動車10の走行制御部16が上位支援情報にしたがって走行した場合に、自車センサの検出情報に基づいて認識可能な走行路または周辺物と干渉するときには、個別支援部71は、上位支援情報にしたがった走行を干渉が生じ難くなるように調整して変更した情報を、対応する自動車10の走行制御部16が走行制御のために使用可能な情報として生成する。
これにより、各自動車10に対応する個別支援部71は、現実と十分には対応していない上位支援情報を上位支援部73から取得している場合であっても、各自動車10の自車センサにより検出される現実に対して十分に対応している進路情報を生成して、対応する各自動車10へ提供することができる。個別支援部71がこのような調整処理を下位側において実行することにより、上位支援部73は、複数の自動車10の現実の走行環境についてのすべての情報を得ていなくとも、基本的に複数の自動車10が安全に走行を継続することが可能な上位支援情報を生成することができる。
これにより、各自動車10に対応する個別支援部71は、現実と十分には対応していない上位支援情報を上位支援部73から取得している場合であっても、各自動車10の自車センサにより検出される現実に対して十分に対応している進路情報を生成して、対応する各自動車10へ提供することができる。個別支援部71がこのような調整処理を下位側において実行することにより、上位支援部73は、複数の自動車10の現実の走行環境についてのすべての情報を得ていなくとも、基本的に複数の自動車10が安全に走行を継続することが可能な上位支援情報を生成することができる。
以上の実施形態は、本発明の好適な実施形態の例であるが、本発明は、これに限定されるものではなく、発明の要旨を逸脱しない範囲において種々の変形または変更が可能である。
上述した実施形態では、複数の自動車10の走行環境を判断して各自動車10への上位支援情報を生成する上位支援部73は、基本的に、図3の狭地域サーバ装置52若しくは広地域サーバ装置53、または上位サーバ装置55において実現されている。
この他にもたとえば、上位支援部73は、複数の基地局サーバ装置51の中の一部において実現されてもよい。
複数のサーバ装置50における、複数の個別支援部71と上位支援部73との配置は、図3のものには限られない。たとえば上位支援部73は、1つの基地局サーバ装置51において、個別支援部71とともに配置されてよい。
また、本発明が適用可能な走行制御支援システム1は、図3の複数のサーバ装置50の構成に限られない。複数のサーバ装置50の構成は、走行制御支援システム1が管理する地域の地形や都市配置、人口密度の分布、高速道路の有無、などの各種の設置環境に応じてデザインしてよい。
この他にもたとえば、上位支援部73は、複数の基地局サーバ装置51の中の一部において実現されてもよい。
複数のサーバ装置50における、複数の個別支援部71と上位支援部73との配置は、図3のものには限られない。たとえば上位支援部73は、1つの基地局サーバ装置51において、個別支援部71とともに配置されてよい。
また、本発明が適用可能な走行制御支援システム1は、図3の複数のサーバ装置50の構成に限られない。複数のサーバ装置50の構成は、走行制御支援システム1が管理する地域の地形や都市配置、人口密度の分布、高速道路の有無、などの各種の設置環境に応じてデザインしてよい。
1…走行制御支援システム、10…自動車(車両)、11…駆動制御部、12…操舵制御部、13…制動制御部、14…運転操作部、15…自車センサ部、16…走行制御部、17…車両通信部、18…セントラルゲートウェイ装置、19…ケーブル、21…加速度センサ、22…コーナレーダ、23…ステレオカメラ、24…Lidar、25…全周囲カメラ、26…GNSS受信機、31…車両メモリ、32…車両ECU、33…車両の高精度地図データ、40…基地局、41,60…サーバ装置、42…キャリア通信ケーブル、43…ローカルシステム、44…他のサーバ装置、45…広域通信網、46…ゲートウェイ装置、50…複数のサーバ装置、51…基地局サーバ装置、52…狭地域サーバ装置、53…広地域サーバ装置、54…アクセラレーションサーバ装置、55…上位サーバ装置、57…キャリア広域通信網、61…サーバ通信部、62…サーバGNSS受信機、63…サーバメモリ、64…サーバCPU、65…サーババス、67…管轄地域の高精度地図データ、68…他のサーバ装置、71…個別支援部、72…遠隔検出部、73…上位支援部(上位収集部,上位提供部)、110…GNSS衛星
Claims (9)
- 複数の車両と複数のサーバ装置とが複数の基地局を通じた無線通信を実行して複数の前記車両の走行制御を複数の前記サーバ装置により支援する車両の走行制御支援システムであって、
複数の前記車両の各々は、
各々に設けられる自車センサの検出情報に基づく走行制御を実行可能な走行制御部と、
前記基地局を通じた無線通信により前記サーバ装置から、前記走行制御部の走行制御に用いる情報を取得する車両通信部と、を有し、
複数の前記サーバ装置の各々は、
複数の前記車両の各々と対応して生成されて、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報を、前記基地局を通じた無線通信により前記車両通信部へ提供して、対応する前記車両の走行制御を支援する複数の個別支援部と、
複数の前記個別支援部の各々から、各前記個別支援部が対応している前記車両の情報を収集する上位収集部と、
前記上位収集部により収集された複数の前記車両の情報を用いて、複数の前記車両の走行状態に基づく各前記車両の走行制御のための上位支援情報を生成する上位支援部と、
前記上位支援部が複数の前記車両の各々へ提供するために生成した上位支援情報を、複数の前記車両の各々と対応して生成されている複数の前記個別支援部へ提供する上位提供部と、
の中の少なくとも1つを備えて、複数の前記サーバ装置の全体において複数の前記個別支援部、前記上位収集部、前記上位支援部、および前記上位提供部を備え、
複数の前記車両の各々と対応して生成される複数の前記個別支援部の各々は、
対応する前記車両から取得する情報と、前記上位提供部から提供される上位支援情報とに基づいて、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報を生成して、対応する前記車両の前記車両通信部へ送信する、
車両の走行制御支援システム。
- 前記車両と対応して前記サーバ装置に備えられる前記個別支援部は、
対応する前記車両から前記基地局を通じた無線通信により前記自車センサの検出情報を取得し、
取得した前記自車センサの検出情報を処理して二次的な検出情報を生成し、
生成した二次的な検出情報を、対応する前記車両の前記車両通信部へ送信し、
対応する前記車両の前記走行制御部は、
前記車両通信部が受信した前記二次的な検出情報と、各々の前記車両に設けられる前記自車センサの検出情報と、を用いて走行制御を実行する、
請求項1記載の、車両の走行制御支援システム。
- 前記個別支援部は、
対応する前記車両から前記自車センサにより前記車両の周辺を検出した空間情報を含む前記自車センサの検出情報を取得し、
取得した周辺の前記空間情報を処理して、前記車両の周辺の走行路の認識情報または前記車両の周辺物の認識情報を、前記二次的な検出情報として生成し、
生成した前記車両の周辺の走行路の認識情報または前記車両の周辺物の認識情報についての前記二次的な検出情報を、対応する前記車両の前記車両通信部へ送信する、
請求項2記載の、車両の走行制御支援システム。
- 複数の前記サーバ装置に備えられる前記上位収集部は、
複数の前記個別支援部の各々から、複数の前記個別支援部の各々が対応している複数の前記車両の少なくとも位置に関する情報を収集し、
前記上位支援部は、
前記上位収集部により収集された複数の前記車両の位置を、高精度地図データに基づく走行路図にマッピングし、
複数の前記車両を前記マッピングした走行路図における走行状態に基づいて、各前記車両の前記走行制御部が各々の走行環境に応じた走行制御のために使用可能な上位支援情報を生成する、
請求項1から3のいずれか一項記載の、車両の走行制御支援システム。
- 前記車両と対応して前記サーバ装置に備えられる前記個別支援部は、
対応する前記車両から、前記自車センサの検出情報を取得し、
前記上位支援部から、対応する前記車両の走行環境に応じた上位支援情報を取得し、
対応する前記車両の前記走行制御部が前記上位支援情報にしたがって走行した場合に、前記自車センサの検出情報に基づいて認識可能な走行路または周辺物と干渉しないときには、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報として、前記上位支援情報にしたがう情報を生成し、
対応する前記車両の前記走行制御部が前記上位支援情報にしたがって走行した場合に、前記自車センサの検出情報に基づいて認識可能な走行路または周辺物と干渉するときには、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報として、前記上位支援情報にしたがった走行を干渉が生じ難くなるように変更した情報を生成する、
請求項1から4のいずれか一項記載の、車両の走行制御支援システム。
- 複数の前記サーバ装置の間での通信には、通信元と通信先との相互認証による仮想プライベートネットワークを用い、
走行により移動する各前記車両とそれに対応する前記個別支援部を備える前記サーバ装置との前記基地局を通じた通信には、前記サーバ装置の認証による仮想プライベートネットワークを用いる、
請求項1から5のいずれか一項記載の、車両の走行制御支援システム。
- 複数の前記サーバ装置には、
1乃至複数の前記基地局が設けられるエリアごとに設けられる複数のエリアサーバ装置が含まれ、
複数の前記車両の各々に対応して生成される複数の前記個別支援部は、
複数の前記エリアサーバ装置の中で、各前記車両の前記車両通信部が通信する前記基地局に対応する前記エリアサーバ装置に備えられ、
各前記車両の走行に応じて複数の前記エリアサーバ装置の間で動的に割り当てが切り替えられる、
請求項1から6のいずれか一項記載の、車両の走行制御支援システム。
- 複数の車両と複数のサーバ装置とが複数の基地局を通じた無線通信を実行して複数の前記車両の走行制御を複数の前記サーバ装置により支援する車両の走行制御支援システムに用いられるサーバ装置であって、
他の前記サーバ装置との間で、前記基地局を通じた無線通信を含むことがない有線接続により通信を実行するサーバ通信部と、
複数の前記車両の走行制御を複数の前記サーバ装置により支援する制御を実行するサーバ制御部と、を有し、
前記サーバ制御部は、
複数の前記車両の各々と対応して生成されて、対応する前記車両の前記走行制御部が走行制御のために使用可能な情報を、前記基地局を通じた無線通信により前記車両通信部へ提供して、対応する前記車両の走行制御を支援する複数の個別支援部と、
複数の前記個別支援部の各々から、各前記個別支援部が対応している前記車両の情報を収集する上位収集部と、
前記上位収集部により収集された複数の前記車両の情報を用いて、複数の前記車両の走行状態に基づく各前記車両の走行制御のための上位支援情報を生成する上位支援部と、
前記上位支援部が複数の前記車両の各々へ提供するために生成した上位支援情報を、複数の前記車両の各々と対応して生成されている複数の前記個別支援部へ提供する上位提供部と、
の中の少なくとも1つの前記個別支援部または少なくとも前記上位支援部についての制御を実行する、
サーバ装置。
- 自車を含む複数の車両と走行制御支援システムの複数のサーバ装置とが複数の基地局を通じた無線通信を実行して自車の走行制御が複数の前記サーバ装置により支援可能な車両であって、
自車センサと、
前記自車センサの検出情報に基づく走行制御を実行可能な走行制御部と、
前記基地局を通じた無線通信により前記サーバ装置から、前記走行制御部の走行制御に用いる情報を取得する車両通信部と、を有し、
前記車両通信部は、
前記自車センサの検出情報を、自車に対応する個別支援部が実現されている前記サーバ装置へ送信し、
前記個別支援部による前記自車センサの検出情報の処理により生成される二次的な検出情報を、自車に対応する個別支援部が実現されている前記サーバ装置から受信し、
前記走行制御部は、
前記車両通信部が受信した前記二次的な検出情報と、前記自車センサの検出情報と、を用いて走行制御を実行する、
車両。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/040676 WO2023079658A1 (ja) | 2021-11-04 | 2021-11-04 | 車両の走行制御支援システム、サーバ装置、および、車両 |
JP2023557520A JP7569942B2 (ja) | 2021-11-04 | 2021-11-04 | 車両の走行制御支援システム、サーバ装置、および、車両 |
US18/549,484 US20240321093A1 (en) | 2021-11-04 | 2021-11-04 | Vehicle travel control assistance system, server apparatus, and vehicle |
DE112021008427.5T DE112021008427T5 (de) | 2021-11-04 | 2021-11-04 | Fahrzeugfahrtsteuerungs-assistenzsystem, servervorrichtung und fahrzeug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/040676 WO2023079658A1 (ja) | 2021-11-04 | 2021-11-04 | 車両の走行制御支援システム、サーバ装置、および、車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023079658A1 true WO2023079658A1 (ja) | 2023-05-11 |
Family
ID=86240832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040676 WO2023079658A1 (ja) | 2021-11-04 | 2021-11-04 | 車両の走行制御支援システム、サーバ装置、および、車両 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240321093A1 (ja) |
JP (1) | JP7569942B2 (ja) |
DE (1) | DE112021008427T5 (ja) |
WO (1) | WO2023079658A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036495A (ja) * | 2001-07-25 | 2003-02-07 | Denso Corp | 移動体管制システム、移動体の管制方法および通信装置 |
JP2018124791A (ja) * | 2017-01-31 | 2018-08-09 | 本田技研工業株式会社 | 情報提供システム |
JP2021111343A (ja) * | 2019-12-30 | 2021-08-02 | 株式会社Subaru | 移動情報提供システム、サーバ装置、および車両 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6771437B2 (ja) | 2017-07-28 | 2020-10-21 | 株式会社日立製作所 | ルート探索システム及び情報処理装置 |
US11269352B2 (en) | 2017-12-15 | 2022-03-08 | Baidu Usa Llc | System for building a vehicle-to-cloud real-time traffic map for autonomous driving vehicles (ADVS) |
JP2019185232A (ja) | 2018-04-05 | 2019-10-24 | アイシン・エィ・ダブリュ株式会社 | 交通情報案内システム及び交通情報配信装置 |
-
2021
- 2021-11-04 WO PCT/JP2021/040676 patent/WO2023079658A1/ja active Application Filing
- 2021-11-04 DE DE112021008427.5T patent/DE112021008427T5/de active Pending
- 2021-11-04 JP JP2023557520A patent/JP7569942B2/ja active Active
- 2021-11-04 US US18/549,484 patent/US20240321093A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036495A (ja) * | 2001-07-25 | 2003-02-07 | Denso Corp | 移動体管制システム、移動体の管制方法および通信装置 |
JP2018124791A (ja) * | 2017-01-31 | 2018-08-09 | 本田技研工業株式会社 | 情報提供システム |
JP2021111343A (ja) * | 2019-12-30 | 2021-08-02 | 株式会社Subaru | 移動情報提供システム、サーバ装置、および車両 |
Also Published As
Publication number | Publication date |
---|---|
US20240321093A1 (en) | 2024-09-26 |
DE112021008427T5 (de) | 2024-08-22 |
JP7569942B2 (ja) | 2024-10-18 |
JPWO2023079658A1 (ja) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7137673B2 (ja) | 車両運転支援システム | |
JP7308920B2 (ja) | 自律運転デバイス、システム、および方法、ならびに遠隔操縦車両 | |
US10349011B2 (en) | System and method for improved obstacle awareness in using a V2X communications system | |
US10229590B2 (en) | System and method for improved obstable awareness in using a V2X communications system | |
US10613547B2 (en) | System and method for improved obstacle awareness in using a V2X communications system | |
JP7545284B2 (ja) | 移動情報提供システム、サーバ装置、および車両 | |
JP2020514850A (ja) | 自律走行車のための帯域幅制約画像処理 | |
US11340884B2 (en) | Systems and methods for distributing updates | |
US20220369083A1 (en) | Methods of Operating A Wireless Data Bus In Vehicle Platoons | |
US11767031B2 (en) | Oversight system to autonomous vehicle communications | |
US20220348223A1 (en) | Autonomous vehicle to oversight system communications | |
CN114501385A (zh) | 一种应用于智能网联交通系统的协同自动驾驶系统 | |
US11767032B2 (en) | Direct autonomous vehicle to autonomous vehicle communications | |
WO2023079658A1 (ja) | 車両の走行制御支援システム、サーバ装置、および、車両 | |
WO2022145379A1 (ja) | 車両の走行制御システム、これに用いられるサーバ装置、および車両 | |
EP4089368A1 (en) | Oversight system to autonomous vehicle communications | |
CN117083578A (zh) | 执行遥控驾驶会话的方法、计算机程序和设备 | |
WO2022145378A1 (ja) | 車両の走行制御システム、およびこれに用いるサーバ装置 | |
US20240355202A1 (en) | Vehicle travel control system, server device used thereby, and vehicle | |
US20240083452A1 (en) | Autonomous driving vehicle as data center infrastructure | |
EP4397947A1 (en) | Leveraging external data streams to optimize autonomous vehicle fleet operations | |
US20240353521A1 (en) | Dynamic signal transfer configuration for driverless vehicle remote monitoring | |
CN113677581B (en) | Lane keeping method, vehicle-mounted equipment and storage medium | |
WO2024084645A1 (ja) | 車両の管制制御システム | |
JP2024095946A (ja) | 車両操作を通じてデッドロックを回避するシステム及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21963254 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18549484 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023557520 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112021008427 Country of ref document: DE |