WO2023078090A1 - 天线装置及终端设备 - Google Patents

天线装置及终端设备 Download PDF

Info

Publication number
WO2023078090A1
WO2023078090A1 PCT/CN2022/126348 CN2022126348W WO2023078090A1 WO 2023078090 A1 WO2023078090 A1 WO 2023078090A1 CN 2022126348 W CN2022126348 W CN 2022126348W WO 2023078090 A1 WO2023078090 A1 WO 2023078090A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating metal
metal patch
patch
antenna
antenna device
Prior art date
Application number
PCT/CN2022/126348
Other languages
English (en)
French (fr)
Inventor
柳青
施奇
郭群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078090A1 publication Critical patent/WO2023078090A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna device and a terminal device.
  • the low-frequency bandwidth is generally expanded by increasing the size of the antenna, but the size of the antenna is too large, which is not conducive to the size design of the terminal product.
  • an antenna switch is also used to switch the working state of the antenna so as to cover low-frequency bandwidth, but adding an antenna switch requires additional costs and brings other technical problems related to the antenna switch.
  • the purpose of the present application is to provide an antenna device and terminal equipment to solve the above-mentioned problems in the prior art that the size of the antenna is too large or the cost of an antenna switch is increased in order to expand the low-frequency bandwidth.
  • the first aspect of the present application provides an antenna device, which includes an antenna patch, a feeding line, a capacitor, and a grounding line, one end of the feeding line is connected to the antenna patch, and is used to provide the antenna patch feeding, the other end of the feeding line is connected in series with the capacitor, the capacitor is connected to the feeding point on the floor, one end of the grounding line is connected to the antenna patch, and the other end of the grounding line is connected to the In order to connect the floor, there is a gap between the antenna patch and the floor, wherein the joint action of the antenna patch, the feed line and the ground line excites three resonant operating modes, increasing The low frequency bandwidth of the antenna arrangement.
  • the antenna device provided by the present application can form three resonant circuits with the floor through the joint action of the antenna patch, feeder wire, capacitor and ground wire, that is, three resonance working modes are excited, so that the antenna device Without any additional components such as antenna switches, a large low-frequency bandwidth can be obtained, covering a frequency range of 698MHz-1500MHz.
  • the structure and size of the antenna device are simplified to make it simpler under the condition of ensuring good radiation performance. Compact to meet the needs of miniaturization design.
  • the antenna patch includes a first horizontal radiating metal patch, a first vertical radiating metal patch, and a second vertical radiating metal patch, and the first vertical radiating metal patch and the The second vertical radiating metal patch is vertically connected to both ends of the first horizontal radiating metal patch, and the first vertical radiating patch and the second vertical radiating metal patch face the direction of the floor Extension; the ends of the feeder wire and the ground wire away from the floor are both connected to the first horizontal radiating metal patch, and the feeder wire is arranged on the ground wire and the first vertical radiating metal patch between. Therefore, the antenna can have good radiation performance, and at the same time, it is beneficial to broaden the low-frequency bandwidth.
  • the ground wire is connected to the center of the first horizontal radiating metal patch, and the first vertical radiating metal patch and the second vertical radiating metal patch are relatively The positions of the grounding wires are distributed symmetrically. Therefore, it is beneficial for the antenna device to radiate electromagnetic waves uniformly.
  • the operating modes of the three resonances are respectively the first common mode, the differential mode and the second common mode, wherein the local current directions in the second common mode are sequentially Passing through the feeding line, the first horizontal radiating metal patch located between the feeding line and the first vertical radiating metal patch, and the first vertical radiating metal patch, the feeding line, the first vertical radiating metal patch
  • the sum of the lengths of the first horizontal radiating metal patch located between the feeder line and the first vertical radiating metal patch and the length of the first vertical radiating metal patch is the second common mode resonance wavelength 1/4.
  • a dielectric block is further included, the dielectric block is connected to the floor, and the antenna patch, the feeder wire, and the ground wire are all attached to the dielectric block.
  • the antenna device forms an on-board antenna, and the antenna has no headroom, thereby saving space on the floor and facilitating the arrangement of more devices.
  • the antenna patch includes a second horizontal radiating metal patch, a third vertical radiating metal patch, and a fourth vertical radiating metal patch, and the third vertical radiating metal patch and the The fourth vertical radiating metal patch is vertically connected to both ends of the second horizontal radiating metal patch, and the second horizontal radiating metal patch, the third vertical radiating metal patch and the fourth vertical radiating metal patch sheets are attached to the top surface of the dielectric block, the feeder and the grounding wire are attached to the side wall adjacent to the top surface of the dielectric block, and the feeder and the grounding One end of the wire away from the floor is connected to the second horizontal radiating metal patch. Therefore, the antenna device with the above structure does not need to reserve a clear space above the floor, thereby saving the space above the floor. In addition, the antenna device is attached to the dielectric block, so that the antenna has a larger radiation surface and can also ensure Stability of the antenna installation.
  • the length of the third vertically radiating metal patch is shorter than the length of the fourth vertically radiating metal patch. Therefore, it is beneficial to excite three different resonances, and widen the low-frequency bandwidth of the antenna device.
  • the ground wire is connected to a position where a center position of the second horizontal radiating metal patch is offset by a first distance toward a direction of the third vertical radiating metal patch. Therefore, it is beneficial to excite three different resonances, and widen the low-frequency bandwidth of the antenna device.
  • the first distance is 3 mm.
  • the second distance is 6.5mm-8mm.
  • the low-frequency bandwidth covers a frequency band of 698MHz-1500MHz.
  • the second aspect of the present application further provides a terminal device, which includes the antenna device provided in the first aspect of the present application.
  • FIG. 1 is a schematic diagram of a state in which an antenna device is connected to a floor provided by an embodiment of the present application;
  • Fig. 2 is an enlarged view at the position of the antenna device in Fig. 1;
  • Fig. 3 is a simulation S11 curve diagram of the antenna device provided by an embodiment of the present application.
  • FIG. 4 is an efficiency curve diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the current distribution of the antenna device provided in an embodiment of the present application in the first common mode mode;
  • FIG. 6 is a schematic diagram of a current distribution of an antenna device in a differential mode mode provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of the current distribution of the antenna device provided in an embodiment of the present application in the second common mode mode;
  • FIG. 8 is a schematic diagram of a state in which an antenna device is connected to a floor provided by another embodiment of the present application.
  • Fig. 9 is a side view of an antenna device connected to a floor provided by another embodiment of the present application.
  • FIG. 10 is a top view of an antenna device connected to a floor provided by another embodiment of the present application.
  • Fig. 11 is a simulation S11 curve diagram of the antenna device provided by another embodiment of the present application.
  • FIG. 12 is an efficiency curve diagram of an antenna device provided by another embodiment of the present application, as shown in FIG. 12 ;
  • FIG. 13 is a schematic diagram of the current distribution of the antenna device provided in another embodiment of the present application in the first common mode mode;
  • FIG. 14 is a schematic diagram of the current distribution of the antenna device in the differential mode mode provided by another embodiment of the present application.
  • Fig. 15 is a schematic diagram of the current distribution of the antenna device in the second common mode mode provided by another embodiment of the present application.
  • connection can be a fixed connection, a detachable connection, or an integrated Connected, or electrically connected; either directly or indirectly through an intermediary.
  • Antenna is a common device for sending and receiving wireless signals, and is often integrated into various terminal devices, such as mobile phones, tablet computers, readers, speakers, etc.
  • antennas need to integrate more and more frequency bands.
  • the bandwidth of the low frequency band is to be widened, the overall size of the antenna needs to be increased, but this is difficult to apply to terminal equipment with a small size, resulting in relatively low-frequency bandwidth expansion. Big limitations.
  • the prior art although there is also a technique of using an antenna switch to switch the working state of the antenna so as to cover a low-frequency bandwidth, the application of the antenna switch requires a lot of cost.
  • FIG. 1 is a schematic diagram of the state where the antenna device is connected to the floor provided by an embodiment of the present application.
  • FIG. 2 is an enlarged view at the position of the antenna device in FIG. 1 , as As shown in Figures 1 and 2, it includes an antenna patch 1, a feeder 2, a capacitor 5 and a ground wire 3, and one end of the feeder 2 is connected to the antenna patch 1 for feeding the antenna patch 1, and the feeder The other end of 2 is connected in series with the capacitor 5, the capacitor 5 is connected to the feed point 7 of the floor 4, one end of the ground wire 3 is connected to the antenna patch 1, and the other end of the ground wire 3 is used to connect the floor 4, the antenna patch 1 There is a distance from the floor 4, wherein the joint action of the antenna patch 1, the feeder 2 and the grounding wire 3 excites three resonant working modes, increasing the low-frequency bandwidth of the antenna device.
  • the antenna device can form three resonant circuits together with the floor 4 through the joint action of the antenna patch 1, the feed line 2, the capacitor 5 and the ground wire 3, that is, to excite three resonant working modes, so that the antenna
  • the low-frequency bandwidth of the device is widened and can cover the frequency band of 698MHz-1500MHz, so that the antenna device can work in frequency bands such as B12, B17, B5, B8, B11, etc., and all have good radiation performance.
  • the antenna device can be applied to automobile terminal equipment or other types of terminal equipment to realize a cellular communication antenna, and the cellular communication antenna generally needs to support 698MHz-960MHz at a low frequency.
  • the antenna can obtain a large low-frequency bandwidth without any additional components such as antenna switches, and at the same time, under the condition of ensuring good radiation performance, the structure and size of the antenna device can be simplified to make it simpler and more compact. Meet the miniaturization design requirements.
  • the capacitance value in this embodiment is 1.5pF, and this capacitance 5 can realize that the antenna forms three resonant circuits, realizes bandwidth widening, and makes the antenna obtain a better port in the specific frequency band required Matching does not need to change the resonant frequency by designing complex antenna shapes, which is beneficial to simplify the shape of the antenna.
  • the floor 4 can be a PCB floor 4, and the PCB floor 4 has a clearance area near its edge, the clearance area refers to a non-conductive material coverage area, and the size of the clearance area can accommodate the antenna device.
  • the shape of the PCB floor 4 can be rectangular, square or polygonal, etc., and the shape of the headroom can be rectangular, square, or polygonal, etc., which is not limited in this embodiment.
  • the antenna device is arranged in the clearance area to form an off-board antenna device.
  • the antenna patch 1 includes a first horizontal radiating metal patch 11, a first vertical radiating metal patch 12 and a second vertical radiating metal patch 13, the first vertical radiating metal patch 13, A vertical radiating metal patch 12 and a second vertical radiating metal patch 13 are respectively vertically connected to both ends of the first horizontal radiating metal patch 11, and the first vertical radiating patch and the second vertical radiating metal patch 13 face the floor 4; the ends of the feeding wire 2 and the grounding wire 3 facing away from the floor 4 are both connected to the first horizontal radiating metal patch 11, and the feeding wire 2 is arranged between the grounding wire 3 and the first vertical radiating metal patch 12.
  • the first horizontal radiating metal patch 11, the first vertical radiating metal patch 12, and the second vertical radiating metal patch 13 are thin sheet structures of metal good conductors, such as steel sheets, copper sheets, etc.
  • the first horizontal The radiating metal patch 11 , the first vertical radiating metal patch 12 and the second vertical radiating metal patch 13 can radiate electromagnetic wave signals.
  • the first horizontal radiating metal patch 11 extends in a direction parallel to the floor 4, and the first vertical radiating metal patch 12 and the second vertical radiating metal patch 13 are both perpendicular to the first horizontal radiating metal patch 11 and point toward the floor. 4, while maintaining a certain distance from the floor 4.
  • the first horizontal radiating metal patch 11, the first vertical radiating metal patch 12, and the second vertical radiating metal patch 13 form a T-shaped box-shaped structure with one side open, which can make the antenna have good radiation performance, while helping to broaden the low-frequency bandwidth.
  • first vertical radiating metal patch 12 and the second vertical radiating metal patch 13 can be welded to the first horizontal radiating metal patch 11, of course the first horizontal radiating metal patch 11, the first vertical radiating metal patch 12 and The second vertically radiating metal patch 13 may also be integrally formed.
  • the ground wire 3 is connected to the center of the first horizontal radiating metal patch 11, and the first vertical radiating metal patch 12 and the second vertical radiating metal patch 13 are symmetrically distributed relative to the ground wire 3. .
  • the grounding wire 3 is connected to the 1/2 position of the first horizontal radiation metal patch 11 in the length direction, so as to facilitate the uniform radiation of electromagnetic waves by the antenna device.
  • the length of the first horizontal radiating metal patch 11 is 83mm, the distance between it and the floor 4 is 18mm, the width of the grounding line 3 is 3mm, and the width of the feeding line 2 is 3mm.
  • the second distance may be 6.5mm ⁇ 8mm.
  • the distance between the feeding line 2 and the grounding line 3 is 8mm, which enables the three resonances excited by the antenna device to cover 698MHz-1500MHz.
  • the dimensions of the antenna patch 1 , the feeder 2 and the grounding wire 3 can also be adjusted adaptively, so that the resonant frequency of the antenna device can be adjusted so that it is suitable for different application scenarios.
  • FIG. 3 is a graph of a simulation S11 of an antenna device provided by an embodiment of the present application, where S11 is an input return loss.
  • the antenna device excites three resonances, which can cover the low frequency bandwidth of 698MHz-1500MHz, wherein, at the frequency of 698MHz, the return loss is -8.3233dB, and at the frequency of 1500MHz, the return loss is -5.498dB. Therefore, when the low frequency bandwidth is 698MHz-1500MHz, the return loss of the antenna device is relatively low and has good radiation performance.
  • FIG. 4 is an efficiency curve diagram of an antenna device provided by an embodiment of the present application. As shown in FIG. 4 , the antenna device has good radiation performance in the 698MHz-1500MHz frequency band.
  • the three resonant operating modes are respectively the first common mode, the differential mode and the second common mode.
  • Fig. 5 is a schematic diagram of the current distribution of the antenna device provided in an embodiment of the present application in the first common mode mode
  • Fig. 6 is a schematic diagram of the current distribution of the antenna device provided in an embodiment of the present application in the differential mode mode
  • Fig. 7 A schematic diagram of the current distribution of the antenna device in the second common mode mode provided for an embodiment of the present application, as shown in FIGS.
  • the direction of the local current in the second common mode mode passes through the feeder 2 sequentially, and the first horizontal radiating metal patch 11 is located between the feeder 2 and the first vertical radiating metal patch 12 position and the first vertical radiating metal patch, the feeder 2, the first horizontal radiating metal patch 11 located between the feeder 2 and the first vertical radiating metal patch 12, and the sum of the lengths of the first vertical radiating metal patch is 1/4 of the resonance wavelength of the second common mode mode, thus, it can be ensured that the resonant circuit formed between the feeder 2, the antenna patch 1 and the floor 4 can work in the frequency band corresponding to the second common mode mode, and the radiation can be improved performance.
  • FIG. 8 is a schematic diagram of the state where the antenna device provided by another embodiment of the present application is connected to the floor
  • FIG. 9 is a side view of the antenna device provided by another embodiment of the present application connected to the floor
  • Figure 10 is a top view of an antenna device connected to the floor provided by another embodiment of the present application, as shown in Figures 8 to 10, the antenna device includes an antenna patch 1, a feed line 2, a ground line 3 and a dielectric block 6.
  • the dielectric block 6 is connected to the floor 4 , and the antenna patch 1 , the feeding line 2 and the grounding line 3 are all attached to the dielectric block 6 .
  • the dielectric block 6 and the floor 4 can be made of the same material, such as ceramics, epoxy resin, polytetrafluoroethylene, FR-4 composite material or F4B composite material.
  • the antenna device is attached to the dielectric block 6, so that the antenna device forms an on-board antenna, and the antenna has no clearance, thereby saving space on the floor 4 and facilitating the arrangement of more devices.
  • the antenna device can be arranged near the corner of the floor 4, so as to avoid being blocked by other devices, so that the antenna device has better radiation performance.
  • the capacitance value in this embodiment is 1.3pF, and this capacitance 5 can realize that the antenna forms three resonant circuits, realizes bandwidth widening, and enables the antenna to obtain a better port in the specific frequency band required Matching does not need to change the resonant frequency by designing complex antenna shapes, which is beneficial to simplify the shape of the antenna.
  • the antenna patch 1 includes a second horizontal radiating metal patch 14, a third vertical radiating metal patch 15, and a fourth vertical radiating metal patch 16.
  • the third vertical radiating metal patch The sheet 15 and the fourth vertical radiating metal patch 16 are respectively vertically connected to both ends of the second horizontal radiating metal patch 14, and the second horizontal radiating metal patch 14, the third vertical radiating metal patch 15 and the fourth vertical radiating metal patch
  • the metal patch 16 is all attached to the top surface 61 of the dielectric block 6, the feeder 2 and the grounding wire 3 are all attached to the side wall 62 adjacent to the top surface 61 on the dielectric block 6, and the feeder 2 and the grounding wire 3 deviate from One end of the floor 4 is connected to the second horizontal radiating metal patch 14 .
  • the dielectric block 6 may be a regular cube such as a cuboid or a cube, and of course may also be an irregular cube.
  • the medium block 6 is preferably a cuboid, and the top surface 61 of the medium block 6 is a surface away from the floor 4, which is parallel to the floor 4.
  • the bottom surface of the medium block 6 is connected to the floor 4, and the surrounding of the medium block 6 has The four side walls 62, the second horizontal radiating metal patch 14, the third vertical radiating metal patch 15, and the fourth vertical radiating metal patch 16 are all attached to the top surface 61 of the dielectric block 6, the feeder 2 and the connection line Then it is preferably attached to the side wall surface 62 facing the outside of the floor 4 on the dielectric block 6, so as to facilitate the external radiation of electromagnetic waves.
  • the antenna device provided by this embodiment does not need to reserve a clearance area above the floor 4, thereby saving the space above the floor 4.
  • the antenna device is attached to the dielectric block 6, so that the antenna has a larger radiation surface, and can also Ensure the stability of the antenna device.
  • the length of the third vertically radiating metal patch 15 is shorter than the length of the fourth vertically radiating metal patch 16 . Therefore, it is beneficial to excite three different resonances, and widen the low-frequency bandwidth of the antenna device.
  • the ground wire 3 is connected to a position where the center position of the second horizontal radiating metal patch 14 is shifted by a first distance toward the direction of the third vertical radiating metal patch 15 .
  • the antenna device since the length of the third vertically radiating metal patch 15 is shorter than the length of the fourth vertically radiating metal patch 16, the antenna device is not a symmetrical structure, and the position of the grounding line 3 is biased towards the third vertically radiating metal patch with a smaller length. 15, it is beneficial to excite three different resonances, so as to widen the low-frequency bandwidth of the antenna device.
  • the above-mentioned first distance may be 3 mm.
  • the length of the second horizontal radiating metal patch 14 is 93mm, the distance between it and the floor 4 is 18.03mm, the width of the grounding line 3 is 6mm, and the width of the feeding line 2 is 3mm.
  • the second distance may be 6.5mm ⁇ 8mm.
  • the distance between the feeding line 2 and the grounding line 3 is 6.5mm, which enables the three resonances excited by the antenna device to cover 698MHz-1500MHz.
  • the sizes of the antenna patch 1 , feeder 2 and grounding wire 3 can also be adjusted adaptively, so that the resonant frequency of the antenna device can be adjusted, and the bandwidth of the antenna can be controlled to make it suitable for different application scenarios.
  • FIG. 11 is a graph of a simulation S11 of an antenna device provided by another embodiment of the present application, where S11 is an input return loss.
  • the antenna device excites three resonances, which can cover the low frequency bandwidth of 698MHz-1500MHz, wherein, at the frequency of 698MHz, the return loss is -4.4188dB, and at the frequency of 1500MHz, the return loss is -3.7739dB. Therefore, when the low frequency bandwidth is 698MHz-1500MHz, the return loss of the antenna device is relatively low and has good radiation performance.
  • FIG. 12 is an efficiency curve diagram of an antenna device provided by another embodiment of the present application. As shown in FIG. 12 , the antenna device has good radiation performance in the 698MHz-1500MHz frequency band.
  • the three resonant operating modes are respectively the first common mode, the differential mode and the second common mode.
  • Fig. 13 is a schematic diagram of the current distribution of the antenna device provided in another embodiment of the present application in the first common mode mode
  • Fig. 14 is a schematic diagram of the current distribution of the antenna device provided in another embodiment of the present application in the differential mode mode
  • FIG. 15 is a schematic diagram of the current distribution of the antenna device provided in another embodiment of the present application in the second common mode mode
  • FIG. 13 to FIG. 15 are schematic diagrams of the antenna device in a deployed state, so as to show the current distribution as a whole.
  • three different resonant circuits are formed between the antenna patch 1, the feeder 2, the grounding wire 3 and the floor 4, and the three resonant circuits respectively cover different low-frequency bands, so that the antenna device Get a larger low frequency bandwidth.
  • An embodiment of the present application further provides a terminal device, which includes the antenna device provided in any embodiment of the present application, and the terminal device may be a handheld device, a vehicle-mounted device, etc. with a wireless connection function.
  • Terminals include, for example: mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (mobile internet device, MID), wearable devices, such as smart watches, smart bracelets, pedometers, and the like.
  • the terminal device provided in the embodiment of the present application can greatly widen the low-frequency bandwidth through the three resonance modes excited by the antenna device, and improve the radiation performance of the antenna device.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种天线装置及终端设备,其中,该天线装置包括天线贴片、馈电线、电容和接地线,馈电线的一端与天线贴片相连,馈电线的另一端与电容串接,接地线的一端与天线贴片相连,接地线的另一端用于连接地板,天线贴片与地板之间保持有间隔,其中,天线贴片、馈电线和接地线的共同作用,激励出三个谐振的工作模式,增加天线装置的低频带宽。本申请可以通过天线贴片、馈电线、电容和接地线的共同作用,使该天线装置与地板共同形成三个谐振回路,即激励出三个谐振的工作模式,使天线装置获得较大的低频带宽,能够覆盖频段为698MHz-1500MHz,同时在保证良好的辐射性能条件下,精简天线装置的结构和尺寸,使其更加简单紧凑,满足小型化设计需求。

Description

天线装置及终端设备
本申请要求于2021年11月05日提交中国国家知识产权局、申请号为202111304069.X、申请名称为“天线装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线装置及终端设备。
背景技术
随着通信技术的发展,各种无线终端产品应用越来越普及。大众在享受无线通信设备带来的各种便利之时,也日益对终端的便携性要求越来越高,天线需要集成的频段越来越多。对于低频来说,由于频段波长长、同时终端尺寸小,所以在低频的带宽扩展方面是天线设计的瓶颈。
现有技术中一般通过增大天线尺寸来扩展低频带宽,但天线尺寸过大,不利于终端产品的尺寸设计。此外,现有技术中也存在采用天线开关来切换天线工作状态,以实现覆盖低频带宽,但增加天线开关需要耗费额外成本,同时也会带来涉及天线开关的其他技术问题。
申请内容
本申请的目的在于提供一种天线装置及终端设备,以解决上述现有技术为了扩大低频带宽而造成天线尺寸过大或增加天线开关耗费成本的问题。
本申请的第一方面提供了一种天线装置,其中,包括天线贴片、馈电线、电容和接地线,所述馈电线的一端与所述天线贴片相连,用于为所述天线贴片馈电,所述馈电线的另一端与所述电容串接,所述电容连接于地板的馈电点,所述接地线的一端与所述天线贴片相连,所述接地线的另一端用于连接地板,所述天线贴片与所述地板之间保持有间隔,其中,所述天线贴片、所述馈电线和所述接地线的共同作用,激励出三个谐振的工作模式,增加所述天线装置的低频带宽。
本申请提供的天线装置,可以通过天线贴片、馈电线、电容和接地线的共同作用,使该天线装置与地板共同形成三个谐振回路,即激励出三个谐振的工作模式,使天线装置在没有任何如天线开关等额外器件的情况下,获得较大的低频带宽,能够覆盖频段为698MHz-1500MHz,同时在保证良好的辐射性能条件下,精简天线装置的结构和尺寸,使其更加简单紧凑,满足小型化设计需求。
在一种可能的实现方式中,所述天线贴片包括第一水平辐射金属贴片、第一垂直辐射金属贴片和第二垂直辐射金属贴片,所述第一垂直辐射金属贴片和所述第二垂直辐射金属贴片分别垂直连接于所述第一水平辐射金属贴片的两端,且所述第一垂直辐射贴片和所述第二垂直辐射金属贴片向所述地板的方向延伸;所述馈电线和所述接地线背离所述地板的一端均连接于所述第一水平辐射金属贴片,所述馈电线设置于所述接地线和所述第一垂直辐射金属贴片之间。从而可以使天线具有良好的辐射性能,同 时有利于展宽低频带宽。
在一种可能的实现方式中,所述接地线连接于所述第一水平辐射金属贴片的中心位置,所述第一垂直辐射金属贴片和所述第二垂直辐射金属贴片相对于所述接地线位置对称分布。从而有利于天线装置均匀辐射电磁波。
在一种可能的实现方式中,所述三个谐振的工作模式分别为第一共模模式、差模模式和第二共模模式,其中,所述第二共模模式中的局部电流方向依次经过所述馈电线、所述第一水平辐射金属贴片位于所述馈电线和所述第一垂直辐射金属贴片之间部位及所述第一垂直辐射金属贴片,所述馈电线、所述第一水平辐射金属贴片位于所述馈电线和所述第一垂直辐射金属贴片之间部位及所述第一垂直辐射金属贴片的长度总和为所述第二共模模式谐振波长的1/4。由此,可以保证由馈电线、天线贴片和地板之间形成的谐振回路能够工作在与第二共模模式对应的频段,提升辐射性能。
在一种可能的实现方式中,还包括介质块,所述介质块连接于所述地板,所述天线贴片、所述馈电线和所述接地线均贴附于所述介质块。其中,通过使该天线装置贴附于介质块上,使天线装置形成一种on-board天线,天线无净空,从而可以节省地板上的空间,有利于布置更多的器件。
在一种可能的实现方式中,所述天线贴片包括第二水平辐射金属贴片、第三垂直辐射金属贴片和第四垂直辐射金属贴片,所述第三垂直辐射金属贴片和所述第四垂直辐射金属贴片分别垂直连接于所述第二水平辐射金属贴片的两端,且所述第二水平辐射金属贴片、第三垂直辐射金属贴片和第四垂直辐射金属贴片均贴附于所述介质块顶面,所述馈电线和所述接地线均贴附于所述介质块上与所述顶面相邻的侧壁面,且所述馈电线和所述接地线背离所述地板的一端均连接于所述第二水平辐射金属贴片。由此,具有上述结构的天线装置,无需在地板上方预留净空区,从而节省了地板上方空间,此外,使天线装置贴附于介质块,使天线具有更大的辐射面,同时也可以保证天线装置的稳定。
在一种可能的实现方式中,所述第三垂直辐射金属贴片的长度小于所述第四垂直辐射金属贴片的长度。从而有利于激励出三个不同谐振,实现展宽该天线装置的低频带宽。
在一种可能的实现方式中,所述接地线连接于所述第二水平辐射金属贴片的中心位置向所述第三垂直辐射金属贴片的方向偏移第一距离的位置处。从而有利于激励出三个不同谐振,实现展宽该天线装置的低频带宽。
在一种可能的实现方式中,所述第一距离为3mm。
在一种可能的实现方式中,所述馈电线和所述接地线之间间隔有预设的第二距离。该间隔可以使天线装置激励的三个谐振能够覆盖698MHz-1500MHz。
在一种可能的实现方式中,所述第二距离为6.5mm~8mm。
在一种可能的实现方式中,所述低频带宽覆盖频段为698MHz-1500MHz。
本申请的第二方面还提供了一种终端设备,其中,包括本申请第一方面提供的所述的天线装置。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请一种实施例提供的天线装置连接于地板的状态示意图;
图2为图1中在天线装置位置处的放大图;
图3为本申请一种实施例提供的天线装置的仿真S11曲线图;
图4本申请一种实施例提供的天线装置的效率曲线图;
图5为本申请一种实施例提供的天线装置在第一共模模式中的电流分布示意图;
图6为本申请一种实施例提供的天线装置在差模模式中的电流分布示意图;
图7为本申请一种实施例提供的天线装置在第二共模模式中的电流分布示意图;
图8为本申请另一种实施例提供的天线装置连接于地板的状态示意图;
图9为本申请另一种实施例提供的天线装置连接于地板的侧视图;
图10为本申请另一种实施例提供的天线装置连接于地板的俯视图;
图11为本申请另一种实施例提供的天线装置的仿真S11曲线图;
图12为本申请另一种实施例提供的天线装置的效率曲线图,如图12所示;
图13为本申请另一种实施例提供的天线装置在第一共模模式中的电流分布示意图;
图14为本申请另一种实施例提供的天线装置在差模模式中的电流分布示意图;
图15为本申请另一种实施例提供的天线装置在第二共模模式中的电流分布示意图。
附图标记:
1-天线贴片;
11-第一水平辐射金属贴片;
12-第一垂直辐射金属贴片;
13-第二垂直辐射金属贴片;
14-第二水平辐射金属贴片;
15-第三垂直辐射金属贴片;
16-第四垂直辐射金属贴片;
2-馈电线;
3-接地线;
4-地板;
5-电容;
6-介质块;
61-顶面;
62-侧壁面;
7-馈电点。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
天线是收发无线信号的常用装置,常集成于各种终端设备中,如手机、平板电脑、阅读器、音箱等。随着大众对终端设备便携性的要求越来越高,天线需要集成的频段越来越多。但是,对于低频而言,由于低频频段波长较长,若要展宽低频的带宽,则需要增大天线的整体尺寸,但这对于尺寸较小的终端设备难以适用,导致低频带宽的扩展方面具有较大的局限性。此外,在现有技术中虽然也存在采用天线开关来切换天线工作状态,以实现覆盖低频带宽的技术,但天线开关的应用需要耗费大量的成本。
为此,本申请实施例提供了一种天线装置,图1为本申请一种实施例提供的天线装置连接于地板的状态示意图,图2为图1中在天线装置位置处的放大图,如图1和图2所示,其包括天线贴片1、馈电线2、电容5和接地线3,馈电线2的一端与天线贴片1相连,用于为天线贴片1馈电,馈电线2的另一端与电容5串接,电容5连接于地板4的馈电点7,接地线3的一端与天线贴片1相连,接地线3的另一端用于连接地板4,天线贴片1与地板4之间保持有间隔,其中,天线贴片1、馈电线2和接地线3的共同作用,激励出三个谐振的工作模式,增加天线装置的低频带宽。
该天线装置可以通过天线贴片1、馈电线2、电容5和接地线3的共同作用,使该天线装置与地板4共同形成三个谐振回路,即激励出三个谐振的工作模式,使天线装置的低频带宽得以展宽,能够覆盖频段为698MHz-1500MHz,使天线装置可工作在如B12、B17、B5、B8、B11等频段,且均具有良好的辐射性能。该天线装置可以应用在汽车终端设备上或其他类终端设备上,实现蜂窝通讯天线,蜂窝通讯天线在低频一般需要支持698MHz-960MHz。由此,该天线可以在没有任何如天线开关等额外器件的情况下,获得较大的低频带宽,同时在保证良好的辐射性能条件下,精简天线装置的结构和尺寸,使其更加简单紧凑,满足小型化设计需求。
其中,如图1和图2所示,本实施例中的电容值为1.5pF,该电容5可以实现天线形成三个谐振回路,实现带宽展宽,使天线在需要的特定频段获得较好的端口匹配,无需通过设计复杂的天线形状来改变谐振频率,有利于简化天线的形状。
具体地,地板4可以为PCB地板4,PCB地板4在其边缘附近具有净空区,净空区是 指非导电材料覆盖区,净空区的大小能够容纳该天线装置即可。PCB地板4的形状可以为长方形、正方形或多边形等,净空区的形状可以为长方形、正方形或多边形等,具体本实施例不做限定。该天线装置设置于净空区,形成一种off-board天线装置。
作为一种具体地实现方式,如图1和图2所示,天线贴片1包括第一水平辐射金属贴片11、第一垂直辐射金属贴片12和第二垂直辐射金属贴片13,第一垂直辐射金属贴片12和第二垂直辐射金属贴片13分别垂直连接于第一水平辐射金属贴片11的两端,且第一垂直辐射贴片和第二垂直辐射金属贴片13向地板4的方向延伸;馈电线2和接地线3背离地板4的一端均连接于第一水平辐射金属贴片11,馈电线2设置于接地线3和第一垂直辐射金属贴片12之间。
具体地,该第一水平辐射金属贴片11、第一垂直辐射金属贴片12和第二垂直辐射金属贴片13均为金属良导体的薄片结构,如钢片、铜片等,第一水平辐射金属贴片11、第一垂直辐射金属贴片12和第二垂直辐射金属贴片13可以辐射电磁波信号。该第一水平辐射金属贴片11在平行于地板4的方向延伸,第一垂直辐射金属贴片12和第二垂直辐射金属贴片13均与第一水平辐射金属贴片11垂直,且向地板4的方向延伸,同时与地板4之间保持有一定的距离。由此,第一水平辐射金属贴片11、第一垂直辐射金属贴片12和第二垂直辐射金属贴片13之间围成一侧开口的T形盒状结构,可以使天线具有良好的辐射性能,同时有利于展宽低频带宽。
其中,第一垂直辐射金属贴片12和第二垂直辐射金属贴片13可以焊接于第一水平辐射金属贴片11,当然第一水平辐射金属贴片11、第一垂直辐射金属贴片12和第二垂直辐射金属贴片13也可以为一体成型结构。
作为一种具体的实现方式,接地线3连接于第一水平辐射金属贴片11的中心位置,第一垂直辐射金属贴片12和第二垂直辐射金属贴片13相对于接地线3位置对称分布。其中,接地线3连接于第一水平辐射金属贴片11在长度方向上的1/2位置处,从而有利于天线装置均匀辐射电磁波。
本实施例中,第一水平辐射金属贴片11的长度为83mm,其与地板4之间的距离为18mm,接地线3的宽度为3mm,馈电线2宽度为3mm。其中,馈电线2和接地线3之间间隔有预设的第二距离。具体地,该第二距离可以为6.5mm~8mm。本实施例中,馈电线2和接地线3之间间隔8mm,该间隔可以使天线装置激励的三个谐振能够覆盖698MHz-1500MHz。
当然,天线贴片1、馈电线2及接地线3的尺寸也可以适应性地调整,从而可以调节天线装置的谐振频率,以使其适用于不同的应用场景。
图3为本申请一种实施例提供的天线装置的仿真S11曲线图,S11为输入回波损耗。如图3所示,天线装置激励出三个谐振,可以覆盖低频带宽为698MHz-1500MHz,其中,在频率为698MHz,回波损耗为-8.3233dB,在频率1500MHz,回波损耗为-5.498dB。由此,在低频带宽为698MHz-1500MHz,天线装置的回波损耗较低,具有良好的辐射性能。图4为本申请一种实施例提供的天线装置的效率曲线图,如图4所示,天线装置在698MHz-1500MHz频段具有良好的辐射性能。
本实施例中,三个谐振的工作模式分别为第一共模模式、差模模式和第二共模模式。图5为本申请一种实施例提供的天线装置在第一共模模式中的电流分布示意图,图 6为本申请一种实施例提供的天线装置在差模模式中的电流分布示意图,图7为本申请一种实施例提供的天线装置在第二共模模式中的电流分布示意图,如图5至图7所示,天线贴片1、馈电线2、接地线3和地板4之间形成三个不同的谐振回路,三个谐振回路分别覆盖不同的低频频段,从而使该天线装置获得较大的低频带宽。
需要说明的是,如图7所示,第二共模模式中的局部电流方向依次经过馈电线2、第一水平辐射金属贴片11位于馈电线2和第一垂直辐射金属贴片12之间部位及第一垂直辐射金属贴片,馈电线2、第一水平辐射金属贴片11位于馈电线2和第一垂直辐射金属贴片12之间部位及第一垂直辐射金属贴片的长度总和为第二共模模式谐振波长的1/4,由此,可以保证由馈电线2、天线贴片1和地板4之间形成的谐振回路能够工作在与第二共模模式对应的频段,提升辐射性能。
在另一种具体的实现方式中,图8为本申请另一种实施例提供的天线装置连接于地板的状态示意图,图9为本申请另一种实施例提供的天线装置连接于地板的侧视图,图10为本申请另一种实施例提供的天线装置连接于地板的俯视图,如图8至图10所示,该天线装置包括天线贴片1、馈电线2、接地线3和介质块6,该介质块6连接于地板4,天线贴片1、馈电线2和接地线3均贴附于介质块6。该介质块6与地板4可以为相同材质,如陶瓷、环氧树脂、聚四氟乙烯、FR-4复合材料或者F4B复合材料等。
其中,该天线装置贴附于介质块6上,使天线装置形成一种on-board天线,天线无净空,从而可以节省地板4上的空间,有利于布置更多的器件。该天线装置可以布置于地板4靠近角落的位置,从而可以避免其他器件遮挡,使天线装置具有更好的辐射性能。
其中,如图8和图9所示,本实施例中的电容值为1.3pF,该电容5可以实现天线形成三个谐振回路,实现带宽展宽,使天线在需要的特定频段获得较好的端口匹配,无需通过设计复杂的天线形状来改变谐振频率,有利于简化天线的形状。
具体地,如图8至图10所示,天线贴片1包括第二水平辐射金属贴片14、第三垂直辐射金属贴片15和第四垂直辐射金属贴片16,第三垂直辐射金属贴片15和第四垂直辐射金属贴片16分别垂直连接于第二水平辐射金属贴片14的两端,且第二水平辐射金属贴片14、第三垂直辐射金属贴片15和第四垂直辐射金属贴片16均贴附于介质块6顶面61,馈电线2和接地线3均贴附于介质块6上与顶面61相邻的侧壁面62,且馈电线2和接地线3背离地板4的一端均连接于第二水平辐射金属贴片14。
其中,介质块6可以长方体、正方体等规则立方体,当然也可以为不规则的立方体。本实施例中,介质块6优选为长方体,介质块6的顶面61为背离地板4一侧的表面,其平行于地板4,介质块6的底面连接于地板4,介质块6的周围具有四个侧壁面62,第二水平辐射金属贴片14和第三垂直辐射金属贴片15和第四垂直辐射金属贴片16均贴附于介质块6的顶面61,馈电线2和接电线则优选贴附于介质块6上朝向地板4外部的一侧壁面62,从而有利于对外辐射电磁波。
本实施例提供的天线装置,无需在地板4上方预留净空区,从而节省了地板4上方空间,此外,使天线装置贴附于介质块6,使天线具有更大的辐射面,同时也可以保证天线装置的稳定。
具体地,如图10所示,第三垂直辐射金属贴片15的长度小于第四垂直辐射金属贴片16的长度。从而有利于激励出三个不同谐振,实现展宽该天线装置的低频带宽。
具体地,接地线3连接于第二水平辐射金属贴片14的中心位置向第三垂直辐射金属贴片15的方向偏移第一距离的位置处。其中,由于第三垂直辐射金属贴片15的长度小于第四垂直辐射金属贴片16的长度,使该天线装置并非对称结构,接地线3的位置偏向长度较小的第三垂直辐射金属贴片15一侧,有利于激励出三个不同谐振,实现展宽该天线装置的低频带宽。
其中,上述第一距离可以为3mm。本实施例中,第二水平辐射金属贴片14的长度为93mm,其与地板4之间的距离为18.03mm,接地线3的宽度为6mm,馈电线2宽度为3mm。其中,馈电线2和接地线3之间间隔有预设的第二距离。具体地,该第二距离可以为6.5mm~8mm。本实施例中,馈电线2和接地线3之间间隔6.5mm,该间隔可以使天线装置激励的三个谐振能够覆盖698MHz-1500MHz。
当然,天线贴片1、馈电线2及接地线3的尺寸也可以适应性地调整,从而可以调节天线装置的谐振频率,进而可以控制天线的带宽,以使其适用于不同的应用场景。
图11为本申请另一种实施例提供的天线装置的仿真S11曲线图,S11为输入回波损耗。如图11所示,天线装置激励出三个谐振,可以覆盖低频带宽为698MHz-1500MHz,其中,在频率为698MHz,回波损耗为-4.4188dB,在频率1500MHz,回波损耗为-3.7739dB。由此,在低频带宽为698MHz-1500MHz,天线装置的回波损耗较低,具有良好的辐射性能。图12为本申请另一种实施例提供的天线装置的效率曲线图,如图12所示,天线装置在698MHz-1500MHz频段具有良好的辐射性能。
本实施例中,三个谐振的工作模式分别为第一共模模式、差模模式和第二共模模式。图13为本申请另一种实施例提供的天线装置在第一共模模式中的电流分布示意图,图14为本申请另一种实施例提供的天线装置在差模模式中的电流分布示意图,图15为本申请另一种实施例提供的天线装置在第二共模模式中的电流分布示意图,其中,图13至图15为天线装置为展开状态下的示意图,以便整体显示电流分布。如图13至图15所示,天线贴片1、馈电线2、接地线3和地板4之间形成三个不同的谐振回路,三个谐振回路分别覆盖不同的低频频段,从而使该天线装置获得较大的低频带宽。
本申请实施例还提供了一种终端设备,其包括本申请任意实施例提供的天线装置,该终端设备可以为具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
本申请实施例提供的终端设备,通过天线装置激励出的三个谐振模式,可以极大程度地展宽低频带宽,提升了天线装置的辐射性能。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种天线装置,其特征在于,包括天线贴片、馈电线、电容和接地线,所述馈电线的一端与所述天线贴片相连,用于为所述天线贴片馈电,所述馈电线的另一端与所述电容串接,所述电容连接于地板的馈电点,所述接地线的一端与所述天线贴片相连,所述接地线的另一端用于连接所述地板,所述天线贴片与所述地板之间保持有间隔,其中,所述天线贴片、所述馈电线和所述接地线的共同作用,激励出三个谐振的工作模式,增加所述天线装置的低频带宽。
  2. 根据权利要求1所述的天线装置,其特征在于,所述天线贴片包括第一水平辐射金属贴片、第一垂直辐射金属贴片和第二垂直辐射金属贴片,所述第一垂直辐射金属贴片和所述第二垂直辐射金属贴片分别垂直连接于所述第一水平辐射金属贴片的两端,且所述第一垂直辐射贴片和所述第二垂直辐射金属贴片向所述地板的方向延伸;
    所述馈电线和所述接地线背离所述地板的一端均连接于所述第一水平辐射金属贴片,所述馈电线设置于所述接地线和所述第一垂直辐射金属贴片之间。
  3. 根据权利要求2所述的天线装置,其特征在于,所述接地线连接于所述第一水平辐射金属贴片的中心位置,所述第一垂直辐射金属贴片和所述第二垂直辐射金属贴片相对于所述接地线位置对称分布。
  4. 根据权利要求2所述的天线装置,其特征在于,所述三个谐振的工作模式分别为第一共模模式、差模模式和第二共模模式,其中,所述第二共模模式中的局部电流方向依次经过所述馈电线、所述第一水平辐射金属贴片位于所述馈电线和所述第一垂直辐射金属贴片之间部位及所述第一垂直辐射金属贴片,所述馈电线、所述第一水平辐射金属贴片位于所述馈电线和所述第一垂直辐射金属贴片之间部位及所述第一垂直辐射金属贴片的长度总和为所述第二共模模式谐振波长的1/4。
  5. 根据权利要求1所述的天线装置,其特征在于,还包括介质块,所述介质块连接于所述地板,所述天线贴片、所述馈电线和所述接地线均贴附于所述介质块。
  6. 根据权利要求5所述的天线装置,其特征在于,所述天线贴片包括第二水平辐射金属贴片、第三垂直辐射金属贴片和第四垂直辐射金属贴片,所述第三垂直辐射金属贴片和所述第四垂直辐射金属贴片分别垂直连接于所述第二水平辐射金属贴片的两端,且所述第二水平辐射金属贴片、第三垂直辐射金属贴片和第四垂直辐射金属贴片均贴附于所述介质块顶面,所述馈电线和所述接地线均贴附于所述介质块上与所述顶面相邻的侧壁面,且所述馈电线和所述接地线背离所述地板的一端均连接于所述第二水平辐射金属贴片。
  7. 根据权利要求6所述的天线装置,其特征在于,所述第三垂直辐射金属贴片的长度小于所述第四垂直辐射金属贴片的长度。
  8. 根据权利要求6所述的天线装置,其特征在于,所述接地线连接于所述第二水平辐射金属贴片的中心位置向所述第三垂直辐射金属贴片的方向偏移第一距离的位置处。
  9. 根据权利要求8所述的天线装置,其特征在于,所述第一距离为3mm。
  10. 根据权利要求1-9任一项所述的天线装置,其特征在于,所述馈电线和所述接地线之间间隔有预设的第二距离。
  11. 根据权利要求10所述的天线装置,其特征在于,所述第二距离为6.5mm~8mm。
  12. 根据权利要求1-11任一项所述的天线装置,其特征在于,所述低频带宽覆盖频段为698MHz-1500MHz。
  13. 一种终端设备,其特征在于,包括权利要求1-12任一项所述的天线装置。
PCT/CN2022/126348 2021-11-05 2022-10-20 天线装置及终端设备 WO2023078090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111304069.X 2021-11-05
CN202111304069.XA CN116093591A (zh) 2021-11-05 2021-11-05 天线装置及终端设备

Publications (1)

Publication Number Publication Date
WO2023078090A1 true WO2023078090A1 (zh) 2023-05-11

Family

ID=86203020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126348 WO2023078090A1 (zh) 2021-11-05 2022-10-20 天线装置及终端设备

Country Status (2)

Country Link
CN (1) CN116093591A (zh)
WO (1) WO2023078090A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160261039A1 (en) * 2015-03-06 2016-09-08 Harris Corporation Electronic device including patch antenna assembly having capacitive feed points and spaced apart conductive shielding vias and related methods
CN106410414A (zh) * 2016-08-30 2017-02-15 电子科技大学 一种具有金属边框与后盖的可重构智能机天线
CN108448234A (zh) * 2018-01-25 2018-08-24 西安电子科技大学 基于复合左右手传输线结构的三频段mimo终端天线
CN210272672U (zh) * 2019-08-02 2020-04-07 广州视源电子科技股份有限公司 天线以及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160261039A1 (en) * 2015-03-06 2016-09-08 Harris Corporation Electronic device including patch antenna assembly having capacitive feed points and spaced apart conductive shielding vias and related methods
CN106410414A (zh) * 2016-08-30 2017-02-15 电子科技大学 一种具有金属边框与后盖的可重构智能机天线
CN108448234A (zh) * 2018-01-25 2018-08-24 西安电子科技大学 基于复合左右手传输线结构的三频段mimo终端天线
CN210272672U (zh) * 2019-08-02 2020-04-07 广州视源电子科技股份有限公司 天线以及电子设备

Also Published As

Publication number Publication date
CN116093591A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
US10056696B2 (en) Antenna structure
JP4384102B2 (ja) 携帯無線機およびアンテナ装置
US10276943B2 (en) Antenna device including patch array antenna and conductive metal member
JP5301608B2 (ja) 無線端末装置用のアンテナ
US9620848B2 (en) Dual band antenna
US11923626B2 (en) Antenna apparatus and mobile terminal
KR20050042076A (ko) 소형, 저 프로파일, 단일 피드, 다중-대역, 인쇄형 안테나
WO2022179324A1 (zh) 天线装置、壳体及电子设备
WO2021022941A1 (zh) 天线阵列及终端
CN103682583A (zh) 移动装置
CN113922092B (zh) 谐振腔天线及电子设备
WO2021104229A1 (zh) 天线单元和电子设备
TWI412177B (zh) 天線模組及其應用之電子裝置
CN114512797A (zh) 天线装置及电子设备
JP2013530623A (ja) 平面導電素子を有するアンテナ
JP2005229161A (ja) アンテナ及び当該アンテナを有する無線通信機器
CN110690552B (zh) 移动装置
CN109309284A (zh) 天线装置和移动装置
WO2023078090A1 (zh) 天线装置及终端设备
US20100245203A1 (en) Multiband antenna
CN113972497B (zh) 一种电子设备
TW201304271A (zh) 天線
JPH09232854A (ja) 移動無線機用小型平面アンテナ装置
CN109088168B (zh) 一种移动终端天线和移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022889115

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006768

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022889115

Country of ref document: EP

Effective date: 20240411