WO2023077888A1 - 一种检测高压电缆交叉换位接地系统缺陷的装置及方法 - Google Patents

一种检测高压电缆交叉换位接地系统缺陷的装置及方法 Download PDF

Info

Publication number
WO2023077888A1
WO2023077888A1 PCT/CN2022/110126 CN2022110126W WO2023077888A1 WO 2023077888 A1 WO2023077888 A1 WO 2023077888A1 CN 2022110126 W CN2022110126 W CN 2022110126W WO 2023077888 A1 WO2023077888 A1 WO 2023077888A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
transposition
coaxial cable
cross
Prior art date
Application number
PCT/CN2022/110126
Other languages
English (en)
French (fr)
Inventor
曹京荥
黄强
杨景刚
陈杰
孙蓉
刘建军
谭笑
胡丽斌
李陈莹
张伟
Original Assignee
国网江苏省电力有限公司电力科学研究院
国网江苏省电力有限公司
江苏省电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司电力科学研究院, 国网江苏省电力有限公司, 江苏省电力试验研究院有限公司 filed Critical 国网江苏省电力有限公司电力科学研究院
Priority to US18/001,706 priority Critical patent/US20240110997A1/en
Publication of WO2023077888A1 publication Critical patent/WO2023077888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the invention relates to a device and method for detecting defects in a high-voltage cable cross-transposition grounding system, belonging to the technical field of power transmission and transformation equipment.
  • connection defects of the cable cross-transposition grounding system can easily cause the discharge of the metal in the aluminum sheath of the cable or the metal inside the cable accessories, and cause cable faults. Due to the long length of the cable cross interconnection section, the cable metal sheath in the interconnection section is connected to the accessory tail pipe and the copper bar of the grounding box, and the electrical connection is complicated. Traditional detection methods can only be tested when the line is out of service and the cross-transposition system is disassembled, which has poor timeliness and limitations.
  • the present invention provides a device and method for detecting defects in the high-voltage cable cross-transposition grounding system, which can detect the electrical connection status of the cable cross-transposition grounding system when the power is on and the power is off, and the operation is simple and convenient. efficient.
  • the invention provides a device for detecting defects in a high-voltage cable cross-transposition grounding system, including an AC power supply, signal acquisition equipment, input current test equipment, signal excitation coupler, output current test equipment, and test sensors;
  • the AC power supply is connected to the signal excitation coupler, and the AC power supply is used to provide the signal excitation coupler with an AC power supply that distinguishes between power frequency and on-site interference frequency;
  • the signal excitation coupler is installed on the coaxial cable with cross-transposed grounding leads, and the signal excitation coupler is used to couple a stable current signal into the cable cross-transposition grounding system;
  • the AC power supply is connected to the input current testing equipment, and the input current testing equipment is used to test the effective value and phase of the current output by the AC power supply;
  • the output current test equipment is connected to the test sensor, the test sensor is installed on the coaxial cable with cross-transposed grounding leads, and the output current test equipment is used to test the response of the cross-transposed ground system coaxial cable at the excitation frequency Current RMS and phase;
  • Both the input current testing equipment and the output current testing equipment are connected to the signal acquisition equipment, and the signal acquisition equipment is used for sampling the current information output by the input current testing equipment and the output current testing equipment.
  • the input current testing equipment is AC measuring equipment.
  • the present invention also provides a method for detecting defects in a high-voltage cable cross-transposition grounding system, including:
  • the A-phase, B-phase and C-phase axial cables of a certain protective earthing box of the cross transposition earthing system are respectively coupled and injected into the F1 frequency current stabilization signal by a signal excitation coupler;
  • the input current test equipment is used to test the effective value and phase of the output current of the AC power supply, and the output current test equipment is used to test the cross-transposition grounding system A Current RMS value and phase response of phase, B phase and C coaxial cables;
  • U1i ⁇ i is the induced voltage of the cross-transposition grounding system under phase ⁇ i
  • ⁇ i is the induced phase
  • Ii and ⁇ i are the effective value and phase of the output current of the AC power supply
  • Pi is the real part of the complex number U1i
  • Qi is the complex number of U1i
  • k1 is the proportional coefficient
  • ⁇ i is the phase difference
  • IA_1, IB_1 and IC_1 are the measured current RMS values of the A-phase, B-phase and C-coaxial cables when the A-coaxial cable couples and injects the F1 frequency current stabilization signal
  • ⁇ A_1, ⁇ B_1 and ⁇ C_1 are the measured A-phase , B phase and C coaxial cable response current phase
  • IAB_1, IBC_1 and ICA_1 are the A1-B2 lead current
  • ⁇ AB_1, ⁇ BC_1 and ⁇ CA_1 are the A1-B2 lead current phase
  • the real part of Y1j is the imaginary part of the complex numbers of IAB_1, IBC_
  • IA_2, IB_2 and IC_2 are the measured current RMS values of A-phase, B-phase and C-coaxial cables when the B-coaxial cable couples and injects the F1 frequency current stabilization signal
  • ⁇ A_2, ⁇ B_2 and ⁇ C_2 are the measured A-phase , B phase and C coaxial cable response current phase
  • IAB_2, IBC_2 and ICA_2 are the A1-B2 lead current, B1-C2 lead current and C1 inside the coaxial cable when the B coaxial cable couples and injects F1 frequency current stabilization signal - A3 lead current
  • ⁇ AB_2, ⁇ BC_2 and ⁇ CA_2 are the A1-B2 lead current phase, B1-C2 lead current phase and C1-A3 lead current phase respectively
  • the real part of Y2j is the imaginary part of the complex numbers of IAB_2, IBC_2
  • IA_3, IB_3 and IC_3 are the measured current RMS values of A phase, B phase and C coaxial cable response when the C coaxial cable couples and injects the F1 frequency current stabilization signal
  • ⁇ A_3, ⁇ B_3 and ⁇ C_3 are the measured A phase , B phase and C coaxial cable response current phase
  • IAB_3, IBC_3 and ICA_3 are respectively the A1-B2 lead current, B1-C2 lead current and C1 inside the coaxial cable when the C coaxial cable couples and injects the F1 frequency current stabilization signal - A3 lead current
  • ⁇ AB_3, ⁇ BC_3 and ⁇ CA_3 are the A1-B2 lead current phase
  • B1-C2 lead current phase and C1-A3 lead current phase respectively
  • the real part of Y3j is the imaginary part of the complex numbers of IAB_3, IBC_3 and
  • R1, R2 and R3 are the A1-B2-C3 branch resistance, B1-C2-A3 branch resistance and C1-A2-B3 branch resistance of the cross transposition grounding system respectively;
  • X1, X2 and X3 are the cross transposition grounding system Grounding system A1-B2-C3 branch inductive reactance, B1-C2-A3 branch inductive reactance and C1-A2-B3 branch inductive reactance.
  • the defect of the high-voltage cable cross-transposition grounding system is determined:
  • Each branch of the cable cross-connection grounding system has at least one branch resistance greater than or equal to 0.3 ⁇ ;
  • At least one of the two-to-two ratios of each branch resistance of the cable cross-connection grounding system exceeds 1.2.
  • the present invention selects a protective grounding box in the cross-transposition grounding system, and uses a signal excitation coupler to couple a stable signal of F1 frequency that distinguishes power frequency or field interference into the cross-transposition grounding system; based on the same
  • the current effective value and phase of the shaft cable response, as well as the input current effective value and phase simultaneous equations calculate and obtain the resistance and inductance parameters of each branch of the cable line cross-transposition system.
  • the resistance is greater than or equal to 0.3 ⁇ or the two-to-two ratio exceeds 1.2, it is determined that the connection of the cable cross-transposition grounding system is defective.
  • the invention has simple and convenient operation and high efficiency, fills up the gap in this technical field, and has good application prospects.
  • Figure 1 is a schematic diagram of a cable line cross-transposition grounding system
  • Fig. 2 is a structural diagram of a device for detecting defects in a high-voltage cable cross-transposition grounding system provided by an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the coaxial test of the cable grounding system A in the embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram for testing coaxial cables with phase A in the embodiment of the present invention.
  • the cable adopts the cross-transposition grounding method, and the transposition sections A1-B2-C3, A2-B3-C1, A3-B1-C2 are connected to each other, and there are A, B, and C coaxial cables at the grounding box, as shown in Figure 1.
  • An embodiment of the present invention provides a device for detecting defects in the high-voltage cable cross-transposition grounding system, see Figure 2, including: AC power supply, signal acquisition equipment, voltage testing equipment, input current testing equipment, signal excitation coupler, output current Test equipment and test sensors.
  • the AC power supply is connected to the signal excitation coupler to provide the signal excitation coupler with an AC power supply that distinguishes between power frequency and on-site interference frequency;
  • the AC power supply is also connected to the input current testing equipment, which is used to test the effective value and phase of the output current of the AC power supply;
  • the signal excitation coupler is installed on the coaxial cable of the cross-transposition grounding lead, and the stable signal coupling is injected into the cable cross-transposition grounding system through electromagnetic induction;
  • the output current test equipment is connected with the test sensor, the test sensor is installed on the coaxial cable with the cross-transposition grounding lead, and the output current test equipment is used to test the current effective value and phase at the excitation frequency of the coaxial cable of the cross-transposition ground system through the test sensor;
  • Both the input current test equipment and the output current test equipment are connected with the signal acquisition equipment, and the signal acquisition equipment is used to sample and compare the phase parameters of the input current of the AC power supply and the coupled induction current of the cross-transposition grounding system.
  • Voltage test equipment is used to observe the voltage injected by the coupling coil.
  • the output signal of the AC power supply is an AC signal with an adjustable frequency.
  • the input current testing equipment is AC measuring equipment, which can test the current effective value and phase parameters at different frequencies.
  • the output current testing equipment can test the current effective value and phase parameters at different frequencies through the testing sensor.
  • Another embodiment of the present invention provides a method for detecting defects in a high-voltage cable cross-transposition grounding system, including:
  • the F1 frequency current stabilization signal is respectively coupled and injected into the A-phase, B-phase and C-phase coaxial cables of a certain protective earthing box of the cross-transposition earthing system through a signal excitation coupler;
  • the input current test equipment is used to test the effective value and phase of the output current of the AC power supply, and the output current test equipment is used to test the cross-transposition grounding system A Current RMS value and phase response of phase, B phase and C coaxial cables;
  • a method for detecting defects in a high-voltage cable cross-transposition grounding system specifically includes the following steps:
  • the unit of Ii is A
  • the unit of U1i is mV
  • the unit of ⁇ i and ⁇ i is degree
  • Pi is the real part of the complex number U1i
  • Qi is the real part of the complex number U1i
  • k1 is the proportional coefficient, which is generally artificially set during coupling injection and is dimensionless.
  • ⁇ i is the phase difference
  • a coaxial cable couples and injects a stable signal with a frequency of F1
  • the current effective value of the A coaxial cable is IA_1, and the phase is ⁇ A_1
  • the effective value of the B coaxial cable is IB_1, and the phase is ⁇ B_1
  • the effective value of the C coaxial cable is IC_1,
  • the phase is ⁇ C_1;
  • the phase current inside the coaxial cable is IAB_1
  • the phase is ⁇ AB_1
  • the B1-C2 lead current is IBC_1
  • the phase is ⁇ BC_1
  • the C1-A3 lead current is ICA_1
  • the phase current is ⁇ CA_1
  • the unit of IA_1, IB_1, IC_1, IAB_1, IBC_1, and ICA_1 is A
  • the unit of ⁇ A_1, ⁇ B_1, and ⁇ C_1 is degree
  • the A1-B2 lead current inside the coaxial cable is IAB_2, the phase is ⁇ AB_2, the IBC_2 lead current is IBC_2, the phase is ⁇ BC_2, the ICA_2 lead current is ICA_2, and the phase is ⁇ CA_2, then there is the following relationship:
  • the unit of IA_2, IB_2, IC_2, IAB_2, IBC_2, and ICA_2 is A
  • the unit of ⁇ A_2, ⁇ B_2, and ⁇ C_2 is degree
  • the solution is obtained under the stable signal of B coaxial cable coupling injection frequency F1, A1-B2 lead current IAB_2, phase ⁇ AB_2, B1-C2 lead current IBC_2, phase ⁇ BC_2, C1- A3 lead current ICA_2, phase current ⁇ CA_2, and then get X2j and Y2j.
  • the A1-B2 lead current inside the coaxial cable is IAB_3, the phase is ⁇ AB_3, the B1-C2 lead current is , the phase is IBC_3, the phase is ⁇ BC_3, the C1-A3 lead current is , the phase is ICA_3, and the phase is ⁇ CA_3, then :
  • the unit of IA_3, IB_3, IC_3, IAB_3, IBC_3, and ICA_3 is A
  • the unit of ⁇ A_3, ⁇ B_3, and ⁇ C_3 is degree
  • both the excitation coupler and the test sensor can be opened and closed to clamp and hold the coaxial cable like pliers to inject current and test current. .
  • ZB1-C2-A3 R2+jX2;
  • ZC1-A2-B3 R3+jX3;
  • R1 is the resistance of the A1-B2-C3 branch of the cross-transposition grounding system, m ⁇ ;
  • X1 is the inductance of the A1-B2-C3 branch of the cross-transposition grounding system at frequency F1, m ⁇ ;
  • ZA1-B2-C3 is A1 -B2-C3 branch impedance;
  • R2 is the resistance of the B1-C2-A3 branch of the cross-transposition grounding system, m ⁇ ;
  • X2 is the inductance of the B1-C2-A3 branch of the cross-transposition grounding system at frequency F1, m ⁇ ;
  • ZB1-C2-A3 is B1 - C2-A3 branch impedance;
  • R3 is the resistance of the C1-A2-B3 branch of the cross-transposition grounding system, m ⁇ ;
  • X3 is the inductance of the C1-A2-B3 branch of the cross-transposition grounding system at frequency F1, m ⁇ ;
  • ZC1-A2-B3 is C1 - A2-B3 branch impedance.
  • L1 is the inductance of the A1-B2-C3 branch of the cross transposition grounding system
  • L2 is the inductance of the B1-C2-A3 branch of the cross-transposition grounding system
  • L3 is the inductance of the C1-A2-B3 branch of the cross transposition grounding system.
  • the first protective grounding box of the cross-transposition grounding system is selected, as shown in Figure 3, the signal excitation couplers are respectively connected to the same axial cable of the protective grounding box A, and a certain power frequency or field interference is selected by using an AC power supply
  • the stable current signal of F1 frequency is coupled and injected into the cross-transposition grounding system, and the output current test equipment is used to test the current effective value and phase of the coaxial cables of A, B, and C.
  • Select the same protective grounding box for the same test and connect the signal excitation coupler to the B phase and C coaxial cables of the protective grounding box respectively, and get the current effective value and phase response of the A, B, and C coaxial cables through the test. Based on the test results, the current and phase of the inner leads of the coaxial cable are calculated.
  • the initial phase of the excitation coaxial cable test current signal is 0, and the output current frequency of the AC current source is 70Hz.
  • the test data of the coaxial cables A, B, and C are as follows:
  • test data of coaxial cables A, B, and C are as follows:
  • test data of coaxial cables A, B, and C are as follows:
  • L1 is the inductance of the A1-B2-C3 branch of the cross transposition grounding system
  • L2 is the inductance of the B1-C2-A3 branch of the cross-transposition grounding system
  • L3 is the inductance of the C1-A2-B3 branch of the cross transposition grounding system.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种检测高压电缆交叉换位接地系统缺陷的装置及方法,选取交叉换位接地系统某一保护接地箱,将信号激励耦合器分别接入保护接地箱A相、B相、C相同轴电缆,选取某一区别工频和现场干扰的F1频率的稳定信号,分别测试在保护接地箱A、B、C相同轴电缆耦合注入频率为F1稳定信号时在A、B、C相同轴电缆的响应的电流有效值和相位;根据测量数据计算获取电缆线路交叉换位系统各支路的电阻及电感参数,当电缆交叉互联接地系统各支路任一电阻大于等于0.3Ω或两两比值超过1.2,判定电缆交叉换位接地系统连接缺陷。基于检测高压电缆交叉换位接地系统缺陷的装置检测高压电缆交叉换位接地系统缺陷,操作简单、方便,效率高。

Description

一种检测高压电缆交叉换位接地系统缺陷的装置及方法 技术领域
本发明涉及一种检测高压电缆交叉换位接地系统缺陷的装置及方法,属于输变电设备技术领域。
背景技术
目前电缆交叉换位接地系统连接缺陷极易引起电缆铝护套或电缆附件内部金属悬浮放电而引发电缆故障。由于电缆交叉互联段长度长,互联段内的电缆金属护套与附件尾管和接地箱铜排连接,电气连接复杂。传统检测方法仅能在线路停役时、拆卸交叉换位系统开展测试,时效差且存在局限性。
发明内容
为了克服现有技术中存在的不足,本发明提供了一种检测高压电缆交叉换位接地系统缺陷的装置及方法,可带电、停电检测电缆交叉换位接地系统电气连接状态,操作简单、方便,效率高。
为达到上述目的,本发明采用的技术方案为:
本发明提供一种检测高压电缆交叉换位接地系统缺陷的装置,包括交流电源、信号采集设备、输入电流测试装备、信号激励耦合器、输出电流测试装备和测试传感器;
所述交流电源与信号激励耦合器连接,所述交流电源用于为信号激励耦合器提供区别工频和现场干扰频率的交流电源;
所述信号激励耦合器安装于交叉换位接地引线同轴电缆,所述信号激励耦合器用于将稳定电流信号耦合注入电缆交叉换位接地系统;
所述交流电源连接所述输入电流测试装备,所述输入电流测试装备用于测试所述交流电源输出的电流有效值及相位;
所述输出电流测试装备与所述测试传感器连接,所述测试传感器安装于交叉换位接地引线同轴电缆,所述输出电流测试装备用于测试交叉换位接地系统同轴电缆激励频率下响应的电流有效值和相位;
所述输入电流测试设备和输出电流测试装备均与所述信号采集设备连接,所述信号采集设备用于采样输入电流测试设备和输出电流测试装备输出的电流信息。
进一步的,所述输入电流测试设备为交流测量装备。
本发明还提供一种检测高压电缆交叉换位接地系统缺陷的方法,包括:
利用交流电源选取某一区别工频和现场干扰的F1频率电流稳定信号;
通过信号激励耦合器将所述F1频率电流稳定信号分别耦合注入交叉换位接地系统的某一保护 接地箱的A相、B相和C相同轴电缆;
在A相、B相和C相同轴电缆耦合注入F1频率电流稳定信号下,分别采用输入电流测试设备测试交流电源输出电流的有效值和相位,以及采用输出电流测试装备测试交叉换位接地系统A相、B相和C相同轴电缆响应的电流有效值和相位;
基于测试数据计算交叉换位系统各支路的电阻;
基于所计算的电阻确定高压电缆交叉换位接地系统缺陷。
进一步的,采用输入电流测试设备测试交流电源输出电流的有效值和相位,根据下式计算得到交叉换位接地系统的感应电压:
U1i∠αi=k1*F1*Ii*[cosαi+j*sinαi]=Pi+j*Qi;
αi=βi+θi;
其中,U1i∠αi为相位αi下交叉换位接地系统的感应电压,αi为感应相位,Ii和βi为交流电源输出电流的有效值和相位,Pi为复数U1i的实部,Qi为复数U1i的实部,k1为比例系数,θi为相位差,i=1,2,3表示第i次耦合注入;
根据测试数据计算得到U1i和αi,进而得到Pi和Qi。
进一步的,采用输出电流测试装备测试交叉换位接地系统A相、B相和C相同轴电缆响应的电流有效值和相位,根据如下方式计算同轴电缆内部引线的电流及相位:
当A相同轴电缆耦合注入F1频率电流稳定信号时,采用下式计算同轴电缆内部引线的电流及相位:
Figure PCTCN2022110126-appb-000001
其中,IA_1、IB_1和IC_1为A相同轴电缆耦合注入F1频率电流稳定信号时测量得到的A相、B相和C相同轴电缆响应的电流有效值,γA_1、γB_1和γC_1为测量得到的A相、B相和C相同轴电缆响应的电流相位,IAB_1、IBC_1和ICA_1分别为A相同轴电缆耦合注入F1频率电流稳定信号时同轴电缆内部的A1-B2引线电流、B1-C2引线电流和C1-A3引线电流,γAB_1、γBC_1和γCA_1分别为A1-B2引线电流相位、B1-C2引线电流相位和C1-A3引线电流相位,X1j,j=1、2、3分别为IAB_1、IBC_1、ICA_1复数的实部,Y1j分别为IAB_1、IBC_1、ICA_1复数的虚部;
当B相同轴电缆耦合注入F1频率电流稳定信号时,采用下式计算同轴电缆内部引线的电流及 相位:
Figure PCTCN2022110126-appb-000002
其中,IA_2、IB_2和IC_2为B相同轴电缆耦合注入F1频率电流稳定信号时测量得到的A相、B相和C相同轴电缆响应的电流有效值,γA_2、γB_2和γC_2为测量得到的A相、B相和C相同轴电缆响应的电流相位,IAB_2、IBC_2和ICA_2分别为B相同轴电缆耦合注入F1频率电流稳定信号时同轴电缆内部的A1-B2引线电流、B1-C2引线电流和C1-A3引线电流,γAB_2、γBC_2和γCA_2分别为A1-B2引线电流相位、B1-C2引线电流相位和C1-A3引线电流相位,X2j,j=1、2、3分别为IAB_2、IBC_2、ICA_2复数的实部,Y2j分别为IAB_2、IBC_2、ICA_2复数的虚部;
当C相同轴电缆耦合注入F1频率电流稳定信号时,采用下式计算同轴电缆内部引线的电流及相位:
Figure PCTCN2022110126-appb-000003
其中,IA_3、IB_3和IC_3为C相同轴电缆耦合注入F1频率电流稳定信号时测量得到的A相、B相和C相同轴电缆响应的电流有效值,γA_3、γB_3和γC_3为测量得到的A相、B相和C相同轴电缆响应的电流相位,IAB_3、IBC_3和ICA_3分别为C相同轴电缆耦合注入F1频率电流稳定信号时同轴电缆内部的A1-B2引线电流、B1-C2引线电流和C1-A3引线电流,γAB_3、γBC_3和γCA_3分别为A1-B2引线电流相位、B1-C2引线电流相位和C1-A3引线电流相位,X3j,j=1、2、3分别为IAB_3、IBC_3、ICA_3复数的实部,Y3j分别为IAB_3、IBC_3、ICA_3复数的虚部。
进一步的,采用下式计算交叉换位系统各支路的电阻:
Figure PCTCN2022110126-appb-000004
其中,R1、R2和R3分别为交叉换位接地系统A1-B2-C3支路电阻、B1-C2-A3支路电阻和 C1-A2-B3支路电阻;X1、X2和X3分别为交叉换位接地系统A1-B2-C3支路感抗、B1-C2-A3支路感抗和C1-A2-B3支路感抗。
进一步的,如果满足如下两个条件中的任意一个,则确定高压电缆交叉换位接地系统缺陷:
A、电缆交叉互联接地系统各支路至少有一个支路电阻大于等于0.3Ω;
B、电缆交叉互联接地系统各支路电阻两两比值中,至少有一个超过1.2。
本发明的有益效果为:
本发明选取交叉换位接地系统某一保护接地箱,利用信号激励耦合器将某一区别工频或现场干扰的F1频率的稳定信号,耦合注入交叉换位接地系统;基于A、B、C相同轴电缆的响应的电流有效值和相位,以及输入电流有效值和相位联立方程,计算获取电缆线路交叉换位系统各支路的电阻及电感参数,当电缆交叉互联接地系统各支路任一电阻大于等于0.3Ω或两两比值超过1.2,判定电缆交叉换位接地系统连接缺陷。本发明操作简单、方便,效率高,弥补了该技术领域的空白,具有良好的应用前景。
附图说明
图1为电缆线路交叉换位接地系统示意图;
图2为本发明实施例提供的一种检测高压电缆交叉换位接地系统缺陷的装置结构图;
图3为本发明实施例中电缆接地系统A相同轴测试示意图;
图4为本发明实施例中A相同轴电缆测试等效电路图。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
电缆采用交叉换位接地方式,换位段A1-B2-C3、A2-B3-C1、A3-B1-C2相互连接,并在接地箱处有A、B、C相同轴电缆,如图1。
本发明的一个实施例提供一种检测高压电缆交叉换位接地系统缺陷的装置,参见图2,包括:交流电源、信号采集设备、电压测试设备、输入电流测试装备、信号激励耦合器、输出电流测试装备和测试传感器。
具体的,交流电源与信号激励耦合器连接,为信号激励耦合器提供区别工频和现场干扰频率的交流电源;
交流电源还与输入电流测试设备连接,输入电流测试装备用于测试交流电源输出的电流有效值及相位;
信号激励耦合器安装于交叉换位接地引线同轴电缆,通过电磁感应的方式将稳定信号耦合注入电缆交叉换位接地系统;
输出电流测试装备与测试传感器连接,测试传感器安装于交叉换位接地引线同轴电缆,输出电流测试装备用于通过测试传感器测试交叉换位接地系统同轴电缆激励频率下电流有效值和相位;
输入电流测试设备和输出电流测试装备均与信号采集设备连接,信号采集设备用于采样对比交流电源输入电流和交叉换位接地系统耦合感应电流的相位参数。
电压测试设备用于观察耦合线圈注入的电压。
作为一种优选的实施方式,交流电源输出信号为交流信号、频率可调。
作为一种优选的实施方式,输入电流测试设备为交流测量装备,可测试不同频率下的电流有效值及相位参数。
作为一种优选的实施方式,输出电流测试设备通过测试传感器可测试不同频率下的电流有效值及相位参数。
本发明的另一个实施例提供一种检测高压电缆交叉换位接地系统缺陷的方法,包括:
利用交流电源选取某一区别工频和现场干扰的F1频率电流稳定信号;
通过信号激励耦合器将所述F1频率电流稳定信号分别耦合注入交叉换位接地系统的某一保护接地箱的A相、B相和C相同轴电缆;
在A相、B相和C相同轴电缆耦合注入F1频率电流稳定信号下,分别采用输入电流测试设备测试交流电源输出电流的有效值和相位,以及采用输出电流测试装备测试交叉换位接地系统A相、B相和C相同轴电缆响应的电流有效值和相位;
基于测试数据计算交叉换位系统各支路的电阻;
基于所计算的电阻确定高压电缆交叉换位接地系统缺陷。
作为一种优选的实施方式,一种检测高压电缆交叉换位接地系统缺陷的方法,具体包括如下步骤:
(1)选取交叉换位接地系统某一保护接地箱,将信号激励耦合器分别接入保护接地箱A相、B相、C相同轴电缆,利用交流电源选取某一区别工频和现场干扰的F1频率电流稳定信号,耦合注入交叉换位接地系统,并通过输入电流测试设备测试交流电源输出电流的有效值Ii、相位βi,令交叉换位接地系统的感应电压有效值为U1i、相位为αi,存在如下关系:
U1i∠αi=k1*F1*Ii*[cosαi+j*sinαi]=Pi+j*Qi;
αi=βi+θi;
基于测试结果,计算得到U1i和αi,进而得到Pi和Qi。
其中,Ii单位为A,U1i为mV,αi、βi单位为度,Pi为复数U1i的实部,Qi为复数U1i的实部,k1为比例系数,一般耦合注入时人为设定,无量纲,θi为相位差,i=1,2,3表示第i次耦合注入测量。
(2)采用输出电流测试装备测试信号激励耦合器分别在保护接地箱A、B、C相同轴电缆耦合注入频率为F1电流稳定信号时A、B、C相同轴电缆响应的电流有效值和相位,设测试电流正方向为距离最近的接地箱侧方向,计算同轴电缆内部引线的电流及相位。具体为:
当A相同轴电缆耦合注入频率为F1的稳定信号,A相同轴电缆电流有效值为IA_1,相位为γA_1;B相同轴电缆有效值为IB_1,相位为γB_1;C相同轴电缆有效值为IC_1,相位为γC_1;
其中令同轴电缆内部的A1-B2引线电流为IAB_1、相位为γAB_1,B1-C2引线电流为IBC_1、相位为γBC_1,C1-A3引线电流为ICA_1、相位电流为γCA_1,则存在如下关系:
Figure PCTCN2022110126-appb-000005
其中,IA_1、IB_1、IC_1、IAB_1、IBC_1、ICA_1单位为A,γA_1、γB_1、γC_1单位为度;X1j,j=1、2、3分别为IAB_1、IBC_1、ICA_1复数的实部,Y1j,j=1、2、3分别为IAB_1、IBC_1、ICA_1复数的虚部。
基于上述关系和测试数据,求解得到A相同轴电缆耦合注入频率为F1的稳定信号下,同轴电缆内部的A1-B2引线电流IAB_1、相位γAB_1,B1-C2引线电流IBC_1、相位γBC_1,C1-A3引线电流ICA_1、相位电流γCA_1,进而得到X1j和Y1j。
同理,当B相同轴电缆耦合注入频率为F1的稳定信号,A相同轴电缆电流有效值为IA_2,相位为γA_2,B相同轴电缆有效值为IB_2,相位为γB_2,C相同轴电缆有效值为IC_2,相位为γC_2;
其中令同轴电缆内部的A1-B2引线电流为IAB_2、相位为γAB_2,IBC_2引线电流为IBC_2、相位为γBC_2,ICA_2引线电流为ICA_2、相位为γCA_2,则存在如下关系:
Figure PCTCN2022110126-appb-000006
Figure PCTCN2022110126-appb-000007
其中,IA_2、IB_2、IC_2、IAB_2、IBC_2、ICA_2单位为A,γA_2、γB_2、γC_2单位为度;X2j,j=1、2、3分别为IAB_2、IBC_2、ICA_2复数的实部,Y2j,j=1、2、3分别为IAB_2、IBC_2、ICA_2复数的虚部。
基于上述关系和测试数据,求解得到B相同轴电缆耦合注入频率为F1的稳定信号下,同轴电缆内部的A1-B2引线电流IAB_2、相位γAB_2,B1-C2引线电流IBC_2、相位γBC_2,C1-A3引线电流ICA_2、相位电流γCA_2,进而得到X2j和Y2j。
同理,当C相同轴电缆耦合注入频率为F1的稳定信号,A相同轴电缆电流有效值为IA_3,相位为γA_3,B相同轴电缆有效值为IB_3,相位为γB_3,C相同轴电缆有效值为IC_3,相位为γC_3;
其中令同轴电缆内部的A1-B2引线电流为IAB_3、相位为γAB_3,B1-C2引线电流为、相位为IBC_3、相位为γBC_3,C1-A3引线电流为、相位为ICA_3、相位为γCA_3,则:
Figure PCTCN2022110126-appb-000008
其中,IA_3、IB_3、IC_3、IAB_3、IBC_3、ICA_3单位为A,γA_3、γB_3、γC_3单位为度;X3j,j=1、2、3分别为IAB_3、IBC_3、ICA_3复数的实部,Y3j,j=1、2、3分别为IAB_3、IBC_3、ICA_3复数的虚部。
基于上述关系和测试数据,求解得到C相同轴电缆耦合注入频率为F1的稳定信号下,同轴电缆内部的A1-B2引线电流IAB_3、相位γAB_3,B1-C2引线电流IBC_3、相位γBC_3,C1-A3引线电流ICA_3、相位电流γCA_3,进而得到X3j和Y3j。
本领域人员应该知道,现场测试时,同轴电缆是固定不动的,激励耦合器和测试传感器都是可开合的,像钳子一样卡住、抱住同轴电缆,来注入电流、测试电流。
(3)根据电磁感应电缆及欧姆电缆组件联立方程,计算获取电缆线路交叉换位系统各支路的电阻及电感参数,具体为:
Figure PCTCN2022110126-appb-000009
Figure PCTCN2022110126-appb-000010
其中,
ZA1-B2-C3=R1+jX1;
ZB1-C2-A3=R2+jX2;
ZC1-A2-B3=R3+jX3;
R1为交叉换位接地系统A1-B2-C3支路的电阻,mΩ;X1为交叉换位接地系统A1-B2-C3支路的在频率F1的感抗,mΩ;ZA1-B2-C3为A1-B2-C3支路阻抗;
R2为交叉换位接地系统B1-C2-A3支路的电阻,mΩ;X2为交叉换位接地系统B1-C2-A3支路的在频率F1的感抗,mΩ;ZB1-C2-A3为B1-C2-A3支路阻抗;
R3为交叉换位接地系统C1-A2-B3支路的电阻,mΩ;X3为交叉换位接地系统C1-A2-B3支路的在频率F1的感抗,mΩ;ZC1-A2-B3为C1-A2-B3支路阻抗。
计算各支路的电感为:
L1=X1/(2*π*F1)
L2=X2/(2*π*F1)
L3=X2/(2*π*F1)
L1为交叉换位接地系统A1-B2-C3支路的电感;
L2为交叉换位接地系统B1-C2-A3支路的电感;
L3为交叉换位接地系统C1-A2-B3支路的电感。
(4)当电缆交叉互联接地系统各支路任一电阻大于等于0.3Ω或两两比值超过1.2,判定电缆交叉换位接地系统连接缺陷。
实施例1
本实施例选取交叉换位接地系统第一保护接地箱,如图3所示,将信号激励耦合器分别接入保护接地箱A相同轴电缆,利用交流电源选取某一区别工频或现场干扰的F1频率的稳定电流信号, 耦合注入交叉换位接地系统,采用输出电流测试装备测试A、B、C相同轴电缆响应的电流有效值和相位。同理测试选同一保护接地箱,将信号激励耦合器分别接入保护接地箱B相、C同轴电缆,测试得到A、B、C相同轴电缆响应的电流有效值和相位。基于测试结果,计算同轴电缆内部引线的电流及相位。
A相同轴电缆注入交流信号的等效电路图如图4所示,根据电磁感应电缆及欧姆电缆组件电阻、电流及电压参数的联立方程,计算获取电缆线路交叉换位系统各支路的电阻及电感参数,当电缆交叉互联接地系统各支路任一电阻大于等于0.3Ω或两两比值超过1.2,判定电缆交叉换位接地系统连接缺陷,操作简单、方便,效率高,弥补了该技术领域的空白,具有良好的应用前景。
实施例2
取激励同轴电缆测试电流信号初始相位为0,交流电流源输出电流频率为70Hz,在电缆第一组交叉互联箱A相同轴电缆注入下,A、B、C相同轴电缆测试的数据如下:
I1=5A,β1=-173.7°;IA_1=0.919,γA_1=0°;IB_1=1.712,γB_1=-139.99°;IC_1=1.168,γC_1=70.37°。
在电缆第一组交叉互联箱B相同轴电缆注入下,A、B、C相同轴电缆测试的数据如下:
I2=5A,β2=-173.77°;IA_2=0.931,γA_2=0°;IB_2=1.736,γB_2=-140.01°;IC_2=1.185,γC_2=70.32°。
在电缆第一组交叉互联箱C相同轴电缆注入下,A、B、C相同轴电缆测试的数据如下:
I3=5A,β3=-264.08;IA_3=0.001,γA_3=0°;IB_3=2.488,γB_3=-244.07°;IC_3=2.487,γC_3=-64.10°。
基于上述测试数据计算交叉换位接地系统感应电压参数:
取k1=1.6,θi=90°,i=1、2、3。
则,
α1=-83.70°;α2=-83.77°;α3=-174.08°。
U1∠α1=1.6*70*I1*[cosα1+j*sinα1]=P1+j*Qi=242.631+j*(-2197.446)(mV);
U2∠α2=1.6*70*I1*[cosα2+j*sinα2]=P2+j*Q2=243.032+j*(-2226.777)(mV);
U3∠α3=1.6*70*I1*[cosα2+j*sinα2]=P3+j*Q3=-2199.025+j*(-227.870)(mV);
则:
P1=242.631,Q1=-2197.446;P2=243.032,Q2=-2226.777;P3=-2199.025,Q3=-227.870。
计算同轴电缆线芯电流参数:
Figure PCTCN2022110126-appb-000011
其中,X1j,j=1、2、3分别为IAB_1、IBC_1、ICA_1复数的实部,Y1j,j=1、2、3分别为IAB_1、IBC_1、ICA_1复数的虚部。
求解得到X11=-0.392,Y11=-1.100;X12=1.311,Y12=1.100;X13=-0.919,Y13=0。
同理,求出:
X21=-0.399,Y21=-1.116;X22=1.330,Y22=1.116;X23=-0.931,Y23=0;其中,X2j,j=1、2、3分别为IAB_2、IBC_2、ICA_2复数的实部,Y2j,j=1、2、3分别为IAB_2、IBC_2、ICA_2复数的虚部。
X31=-1.087,Y31=2.237;X32=1.088,Y32=-2.237;X33=-0.001,Y33=0。其中,X3j,j=1、2、3分别为IAB_3、IBC_3、ICA_3复数的实部,Y3j,j=1、2、3分别为IAB_3、IBC_3、ICA_3复数的虚部。
最后,根据电磁感应电缆及欧姆电缆组件联立方程,计算获取电缆线路交叉换位系统各支路的电阻及电感参数,具体为:
Figure PCTCN2022110126-appb-000012
Figure PCTCN2022110126-appb-000013
计算各支路的电感为:
L1=X1/(2*π*F1)=411.234/(2*π*70)=0.935mH;
L2=X2/(2*π*F1)=418.272/(2*π*70)=0.951mH;
L3=X2/(2*π*F1)=416.952/(2*π*70)=0.948mH;
L1为交叉换位接地系统A1-B2-C3支路的电感;
L2为交叉换位接地系统B1-C2-A3支路的电感;
L3为交叉换位接地系统C1-A2-B3支路的电感。
根据交叉换位接地系统A1-B2-C3支路的电阻R1=1200mΩ大于300mΩ,判断为缺陷。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (7)

  1. 一种检测高压电缆交叉换位接地系统缺陷的装置,其特征在于,包括交流电源、信号采集设备、输入电流测试装备、信号激励耦合器、输出电流测试装备和测试传感器;
    所述交流电源与信号激励耦合器连接,所述交流电源用于为信号激励耦合器提供区别工频和现场干扰频率的交流电源;
    所述信号激励耦合器安装于交叉换位接地引线同轴电缆,所述信号激励耦合器用于将稳定电流信号耦合注入电缆交叉换位接地系统;
    所述交流电源连接所述输入电流测试装备,所述输入电流测试装备用于测试所述交流电源输出的电流有效值及相位;
    所述输出电流测试装备与所述测试传感器连接,所述测试传感器安装于交叉换位接地引线同轴电缆,所述输出电流测试装备用于测试交叉换位接地系统同轴电缆激励频率下响应的电流有效值和相位;
    所述输入电流测试设备和输出电流测试装备均与所述信号采集设备连接,所述信号采集设备用于采样输入电流测试设备和输出电流测试装备输出的电流信息。
  2. 根据权利要求1所述的一种检测高压电缆交叉换位接地系统缺陷的装置,其特征在于,所述输入电流测试设备为交流测量装备。
  3. 一种检测高压电缆交叉换位接地系统缺陷的方法,其特征在于,包括:
    利用交流电源选取某一区别工频和现场干扰的F1频率电流稳定信号;所述交流电源为权利要求1至2任意一项所述的交流电源;
    通过信号激励耦合器将所述F1频率电流稳定信号分别耦合注入交叉换位接地系统的某一保护接地箱的A相、B相和C相同轴电缆;所述信号激励耦合器为权利要求1至2任意一项所述的信号激励耦合器;
    在A相、B相和C相同轴电缆耦合注入F1频率电流稳定信号下,分别采用输入电流测试设备测试交流电源输出电流的有效值和相位,以及采用输出电流测试装备测试交叉换位接地系统A相、B相和C相同轴电缆响应的电流有效值和相位;所述输入电流测试设备为权利要求1至2任意一项所述的输入电流测试设备;所述输出电流测试装备为权利要求1至2任意一项所述的输出电流测试装备;
    基于测试数据计算交叉换位系统各支路的电阻;
    基于所计算的电阻确定高压电缆交叉换位接地系统缺陷。
  4. 根据权利要求3所述的一种检测高压电缆交叉换位接地系统缺陷的方法,其特征在于,采用 输入电流测试设备测试交流电源输出电流的有效值和相位,根据下式计算得到交叉换位接地系统的感应电压:
    U1i∠αi=k1*F1*Ii*[cosαi+j*sinαi]=Pi+j*Qi;
    αi=βi+θi;
    其中,U1i∠αi为相位αi下交叉换位接地系统的感应电压,αi为感应相位,Ii和βi为交流电源输出电流的有效值和相位,Pi为复数U1i的实部,Qi为复数U1i的实部,k1为比例系数,θi为相位差,i=1,2,3表示第i次耦合注入;
    根据测试数据计算得到U1i和αi,进而得到Pi和Qi。
  5. 根据权利要求4所述的一种检测高压电缆交叉换位接地系统缺陷的方法,其特征在于,采用输出电流测试装备测试交叉换位接地系统A相、B相和C相同轴电缆响应的电流有效值和相位,根据如下方式计算同轴电缆内部引线的电流及相位:
    当A相同轴电缆耦合注入F1频率电流稳定信号时,采用下式计算同轴电缆内部引线的电流及相位:
    Figure PCTCN2022110126-appb-100001
    其中,IA_1、IB_1和IC_1为A相同轴电缆耦合注入F1频率电流稳定信号时测量得到的A相、B相和C相同轴电缆响应的电流有效值,γA_1、γB_1和γC_1为测量得到的A相、B相和C相同轴电缆响应的电流相位,IAB_1、IBC_1和ICA_1分别为A相同轴电缆耦合注入F1频率电流稳定信号时同轴电缆内部的A1-B2引线电流、B1-C2引线电流和C1-A3引线电流,γAB_1、γBC_1和γCA_1分别为A1-B2引线电流相位、B1-C2引线电流相位和C1-A3引线电流相位,X1j,j=1、2、3分别为IAB_1、IBC_1、ICA_1复数的实部,Y1j分别为IAB_1、IBC_1、ICA_1复数的虚部;
    当B相同轴电缆耦合注入F1频率电流稳定信号时,采用下式计算同轴电缆内部引线的电流及相位:
    Figure PCTCN2022110126-appb-100002
    Figure PCTCN2022110126-appb-100003
    其中,IA_2、IB_2和IC_2为B相同轴电缆耦合注入F1频率电流稳定信号时测量得到的A相、B相和C相同轴电缆响应的电流有效值,γA_2、γB_2和γC_2为测量得到的A相、B相和C相同轴电缆响应的电流相位,IAB_2、IBC_2和ICA_2分别为B相同轴电缆耦合注入F1频率电流稳定信号时同轴电缆内部的A1-B2引线电流、B1-C2引线电流和C1-A3引线电流,γAB_2、γBC_2和γCA_2分别为A1-B2引线电流相位、B1-C2引线电流相位和C1-A3引线电流相位,X2j,j=1、2、3分别为IAB_2、IBC_2、ICA_2复数的实部,Y2j分别为IAB_2、IBC_2、ICA_2复数的虚部;
    当C相同轴电缆耦合注入F1频率电流稳定信号时,采用下式计算同轴电缆内部引线的电流及相位:
    Figure PCTCN2022110126-appb-100004
    其中,IA_3、IB_3和IC_3为C相同轴电缆耦合注入F1频率电流稳定信号时测量得到的A相、B相和C相同轴电缆响应的电流有效值,γA_3、γB_3和γC_3为测量得到的A相、B相和C相同轴电缆响应的电流相位,IAB_3、IBC_3和ICA_3分别为C相同轴电缆耦合注入F1频率电流稳定信号时同轴电缆内部的A1-B2引线电流、B1-C2引线电流和C1-A3引线电流,γAB_3、γBC_3和γCA_3分别为A1-B2引线电流相位、B1-C2引线电流相位和C1-A3引线电流相位,X3j,j=1、2、3分别为IAB_3、IBC_3、ICA_3复数的实部,Y3j分别为IAB_3、IBC_3、ICA_3复数的虚部。
  6. 根据权利要求5所述的一种检测高压电缆交叉换位接地系统缺陷的方法,其特征在于,采用下式计算交叉换位系统各支路的电阻:
    Figure PCTCN2022110126-appb-100005
    其中,R1、R2和R3分别为交叉换位接地系统A1-B2-C3支路电阻、B1-C2-A3支路电阻和C1-A2-B3支路电阻;X1、X2和X3分别为交叉换位接地系统A1-B2-C3支路感抗、B1-C2-A3支路感抗和C1-A2-B3支路感抗。
  7. 根据权利要求6所述的一种检测高压电缆交叉换位接地系统缺陷的方法,其特征在于,如果满足如下两个条件中的任意一个,则确定高压电缆交叉换位接地系统缺陷:
    A、电缆交叉互联接地系统各支路至少有一个支路电阻大于等于0.3Ω;
    B、电缆交叉互联接地系统各支路电阻两两比值中,至少有一个超过1.2。
PCT/CN2022/110126 2021-11-02 2022-08-04 一种检测高压电缆交叉换位接地系统缺陷的装置及方法 WO2023077888A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/001,706 US20240110997A1 (en) 2021-11-02 2022-08-04 Device and method for detecting defects of high-voltage cable cross-bonded grounding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111286783.0 2021-11-02
CN202111286783.0A CN114113758A (zh) 2021-11-02 2021-11-02 一种检测高压电缆交叉换位接地系统缺陷的装置及方法

Publications (1)

Publication Number Publication Date
WO2023077888A1 true WO2023077888A1 (zh) 2023-05-11

Family

ID=80379947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110126 WO2023077888A1 (zh) 2021-11-02 2022-08-04 一种检测高压电缆交叉换位接地系统缺陷的装置及方法

Country Status (3)

Country Link
US (1) US20240110997A1 (zh)
CN (1) CN114113758A (zh)
WO (1) WO2023077888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031357A (zh) * 2023-10-08 2023-11-10 江苏省电力试验研究院有限公司 单端接地的单芯电缆金属护套的接地缺陷定位方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113758A (zh) * 2021-11-02 2022-03-01 国网江苏省电力有限公司电力科学研究院 一种检测高压电缆交叉换位接地系统缺陷的装置及方法
CN115792328B (zh) * 2022-09-29 2024-01-19 江苏省电力试验研究院有限公司 基于同轴电缆测试电缆交叉互联接地系统环流方法与装置
CN115656630B (zh) * 2022-09-29 2024-02-13 江苏省电力试验研究院有限公司 电缆交叉互联接地系统回路电阻高精度测试方法与装置
CN115856708B (zh) * 2023-02-28 2023-05-23 江苏省电力试验研究院有限公司 一种利用同轴电缆的交叉互联接地测试方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163584A (ja) * 1995-12-04 1997-06-20 Mitsubishi Electric Corp 地絡検出回路及びこの地絡検出回路を備えた回路遮断器
CN108152662A (zh) * 2017-11-24 2018-06-12 国网浙江省电力公司台州供电公司 一种基于接地电流的交叉互联箱故障诊断方法及系统
CN209446711U (zh) * 2019-02-01 2019-09-27 北京杰安源科技有限公司 高压电缆交叉互联及绝缘在线监测系统
CN113009376A (zh) * 2021-02-25 2021-06-22 江苏省电力试验研究院有限公司 用于高压电缆交叉互联接地系统的参数测试方法、装置
CN113219369A (zh) * 2021-05-13 2021-08-06 广东威恒输变电工程有限公司 一种用于铺设现场电缆交叉互联性能检验的试验方法
US20210293893A1 (en) * 2020-03-17 2021-09-23 Utah State University Power electronic instrument for continuously monitoring stability and stabilizing a dc microgrid
CN113504487A (zh) * 2021-06-02 2021-10-15 国网江苏省电力有限公司电力科学研究院 一种高压电缆交叉互联接地系统连接状态检测方法及其检测装置
CN113805101A (zh) * 2021-07-14 2021-12-17 国网江苏省电力有限公司电力科学研究院 一种电缆交叉互联系统连接状态测试方法及测试装置
CN114113758A (zh) * 2021-11-02 2022-03-01 国网江苏省电力有限公司电力科学研究院 一种检测高压电缆交叉换位接地系统缺陷的装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163584A (ja) * 1995-12-04 1997-06-20 Mitsubishi Electric Corp 地絡検出回路及びこの地絡検出回路を備えた回路遮断器
CN108152662A (zh) * 2017-11-24 2018-06-12 国网浙江省电力公司台州供电公司 一种基于接地电流的交叉互联箱故障诊断方法及系统
CN209446711U (zh) * 2019-02-01 2019-09-27 北京杰安源科技有限公司 高压电缆交叉互联及绝缘在线监测系统
US20210293893A1 (en) * 2020-03-17 2021-09-23 Utah State University Power electronic instrument for continuously monitoring stability and stabilizing a dc microgrid
CN113009376A (zh) * 2021-02-25 2021-06-22 江苏省电力试验研究院有限公司 用于高压电缆交叉互联接地系统的参数测试方法、装置
CN113219369A (zh) * 2021-05-13 2021-08-06 广东威恒输变电工程有限公司 一种用于铺设现场电缆交叉互联性能检验的试验方法
CN113504487A (zh) * 2021-06-02 2021-10-15 国网江苏省电力有限公司电力科学研究院 一种高压电缆交叉互联接地系统连接状态检测方法及其检测装置
CN113805101A (zh) * 2021-07-14 2021-12-17 国网江苏省电力有限公司电力科学研究院 一种电缆交叉互联系统连接状态测试方法及测试装置
CN114113758A (zh) * 2021-11-02 2022-03-01 国网江苏省电力有限公司电力科学研究院 一种检测高压电缆交叉换位接地系统缺陷的装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031357A (zh) * 2023-10-08 2023-11-10 江苏省电力试验研究院有限公司 单端接地的单芯电缆金属护套的接地缺陷定位方法及装置
CN117031357B (zh) * 2023-10-08 2024-01-19 江苏省电力试验研究院有限公司 单端接地的单芯电缆金属护套的接地缺陷定位方法及装置

Also Published As

Publication number Publication date
US20240110997A1 (en) 2024-04-04
CN114113758A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023077888A1 (zh) 一种检测高压电缆交叉换位接地系统缺陷的装置及方法
CN105004260A (zh) 采用扫频短路阻抗法对变压器绕组进行变形测试的方法
CN103954894B (zh) 一种三相交叉互联电缆局放定位方法
CN110687408B (zh) 一种电缆绝缘监测方法及装置
CN103344884B (zh) 电力架空线路故障双频信号检测定位方法及其专用定位仪
CN104237738A (zh) 配电馈线单相接地定位系统及定位方法
CN103630797B (zh) 一种变压器匝间短路检测装置
CN103293504A (zh) 现场电流互感器综合检测装置及其测试方法
CN111638423B (zh) 一种电力电缆护套层和铠装层接地故障的定位方法
CN113759279A (zh) 一种高压电缆单端接地系统接地连接缺陷带电测试方法及装置
CN103743993B (zh) 一种检测变压器绕组变形的方法
CN116718875B (zh) 高压电缆单端接地系统中护套层接地的定位方法与仪器
CN113109662A (zh) 基于相间相对介损确定电缆相对老化程度的方法及系统
CN116859182A (zh) 考虑电缆接头的频域反射谱高压电缆缺陷定位方法及系统
CN115856708B (zh) 一种利用同轴电缆的交叉互联接地测试方法及系统
CN107153154A (zh) 一种双端接地电缆绝缘劣化诊断方法
CN114839420B (zh) 测试交叉互联接地系统环流最大值的方法及装置
CN103558450B (zh) 变压器夹件接地电流的三互感器在线监测装置
CN216646645U (zh) 一种大截面电缆导体测试装置
CN208568874U (zh) 一种极化去极化电流测试中屏蔽干扰的装置
Ji et al. A New Type of Current Mining Device for Testing the Insulation of High-Voltage Cables by Ground Current Method
CN117031357B (zh) 单端接地的单芯电缆金属护套的接地缺陷定位方法及装置
Cao et al. Research on eddy current testing technology for lead seal crack defects of high voltage cable
CN115656630B (zh) 电缆交叉互联接地系统回路电阻高精度测试方法与装置
CN104297549A (zh) 一种柔性钳形电流测试仪

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18001706

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888923

Country of ref document: EP

Kind code of ref document: A1