WO2023077548A1 - 高温结构材料的制造方法以及前驱体 - Google Patents

高温结构材料的制造方法以及前驱体 Download PDF

Info

Publication number
WO2023077548A1
WO2023077548A1 PCT/CN2021/130371 CN2021130371W WO2023077548A1 WO 2023077548 A1 WO2023077548 A1 WO 2023077548A1 CN 2021130371 W CN2021130371 W CN 2021130371W WO 2023077548 A1 WO2023077548 A1 WO 2023077548A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
temperature
manufacturing
component
technology
Prior art date
Application number
PCT/CN2021/130371
Other languages
English (en)
French (fr)
Inventor
吕坚
刘果
殷建安
张小锋
鲁馨雅
Original Assignee
香港城市大学深圳福田研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港城市大学深圳福田研究院 filed Critical 香港城市大学深圳福田研究院
Priority to US17/683,511 priority Critical patent/US20230135069A1/en
Publication of WO2023077548A1 publication Critical patent/WO2023077548A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet

Definitions

  • the present application relates to the technical field of high-temperature material processing, and in particular to a manufacturing method and precursor of high-temperature structural materials.
  • High-temperature structural materials such as ceramics, glass, metal and diamond materials
  • ceramics, glass, metal and diamond materials due to their inherent characteristics, such as high hardness and high melting point, it is usually difficult or even impossible to prepare structures with complex shapes and high precision by conventional machining.
  • brittle materials such as ceramics and glass
  • traditional machining can lead to cracks and even fractures. Therefore, the conventional processing technology of high-temperature structural materials usually has the problems of high cost, low precision and high pollution.
  • the main purpose of this application is to propose a manufacturing method and precursor of high-temperature structural materials, aiming to solve the problem that it is difficult to prepare high-temperature structural materials into structures with complex shapes and high precision by conventional mechanical processing.
  • a method for manufacturing a high-temperature structural material proposed by this application includes the following steps:
  • a precursor is provided, the material of the precursor includes a polymer or the polymer and a high-temperature material;
  • the processed precursor component is converted into a high-temperature material component through a set treatment method.
  • the polymer comprises at least one of silicone material, cellulose, hydrogel, and ammonium acrylate polymer;
  • the high-temperature material includes one of ceramics, glass, metal, diamond and high-temperature composite materials.
  • the step of processing the precursor into a shaped precursor component includes:
  • the precursor is processed into a precursor component of a set shape by a high-energy beam.
  • the high-energy beam includes at least one of laser, high-pressure water beam, electron beam and ion beam.
  • the step of processing the precursor into a precursor component of a predetermined shape by using a high-energy beam includes:
  • the step of providing a precursor includes:
  • the pre-formed precursor is converted into a solid state of the precursor by an additive manufacturing technique.
  • the set form includes at least one of liquid state, solid powder material and solid wire material.
  • the step of converting the precursor in a predetermined form into a solid precursor by additive manufacturing technology includes:
  • the liquid precursor is converted into a solid precursor by additive manufacturing technology.
  • the step of converting the precursor in a predetermined form into a solid precursor by additive manufacturing technology includes:
  • the step of converting the processed precursor component into a high-temperature material component through a set treatment method includes:
  • the processed precursor component is converted into a high-temperature material component by at least one of heat treatment, mechanical treatment and chemical treatment.
  • the step of converting the processed precursor component into a high-temperature material component by at least one of heat treatment, mechanical treatment and chemical treatment includes:
  • the precursor building block is heat treated in vacuum or in an inert atmosphere or in an oxidizing atmosphere or in a reducing atmosphere.
  • the form of the high-temperature material is at least one of powder, fiber, whisker, and sheet.
  • the manufacturing method of the high-temperature structural material can be used for preparing electronic equipment backplanes, researching and repairing cultural relics, and preparing high-temperature micro-electromechanical systems.
  • the present application also provides a precursor, the material of the precursor includes:
  • a polymer or said polymer and a high temperature material A polymer or said polymer and a high temperature material.
  • the polymer includes at least one of silicone material, cellulose, hydrogel and ammonium acrylate polymer.
  • the high-temperature material includes one of ceramics, glass, metal, and diamond.
  • a precursor is provided, and the material of the precursor includes a polymer or the polymer and a high-temperature material; due to the characteristics of the polymer, the precursor can be processed into a set shape Precursor components, and then the processed precursor components are converted into high-temperature material components through a set treatment method, so as to overcome the difficulty that the high-temperature materials are difficult to process, and manufacture various The high-temperature material component of the required shape; by this method, the high-temperature material can be processed into a complex shape while retaining the characteristics of the high-temperature material, and the manufacturing method is ingenious and highly practical.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for manufacturing a high-temperature structural material provided by the present application.
  • the directional indications are only used to explain the position in a certain posture (as shown in the attached figure). If the specific posture changes, the directional indication will also change accordingly.
  • High-temperature structural materials such as ceramics, glass, metal and diamond materials
  • ceramics, glass, metal and diamond materials due to their inherent characteristics, such as high hardness and high melting point, it is usually difficult or even impossible to prepare structures with complex shapes and high precision by conventional machining.
  • brittle materials such as ceramics and glass
  • traditional machining can lead to cracks and even fractures. Therefore, the conventional processing technology of high-temperature structural materials usually has the problems of high cost, low precision and high pollution.
  • the present application provides a precursor, the material of the precursor includes a polymer or the polymer and a high-temperature material, the material of the precursor includes the polymer, and due to the characteristics of the polymer, the The precursor is processed into a precursor component with a set shape, and then the processed precursor component is converted into a high-temperature material component through a set treatment method, so as to overcome the difficulty of processing the high-temperature material
  • the difficult problem is to manufacture the high-temperature material components of various required shapes; that is, the precursor can be used in the production and manufacture of high-temperature structural materials, improve the production efficiency of the high-temperature structural materials, and reduce cost consumption.
  • the polymer includes at least one of silicone material, cellulose, hydrogel, and ammonium acrylate polymer; in this embodiment, the polymer in the precursor contains the In the case of organosilicon materials, the precursor is processed into the precursor component of a predetermined shape, and then the precursor material is converted into glass or ceramics through a predetermined processing method; this application does not limit the size of the organosilicon type, in this embodiment, the silicone material is set to silica gel; similarly, the cellulose, the hydrogel, and the ammonium acrylate polymer correspond to different types of high-temperature materials to manufacture Different kinds of high temperature structural materials. The manufacturing process is simple and the cost is low.
  • the high-temperature material includes one of ceramics, glass, metal, and diamond; Cracks or even fractures are easy to occur during the process.
  • the ceramics can be obtained by containing the The organosilicon material or the cellulose or the hydrogel and the precursor of ceramic particle additives are manufactured to form amorphous-crystalline dual-phase ceramics or crystalline ceramics; the glass can be directly obtained by containing the organosilicon
  • the precursor manufacturing of the material by adding the metal and the diamond to form the required precursors in the cellulose or the hydrogel, and the ammonium acrylate polymer respectively, and then The required precursor is processed into a set shape to form the precursor component, and then the precursor component is converted into the high-temperature structural material through a set treatment method; after the precursor component is converted into During the high temperature construction of the material, material
  • the application does not limit the form of the high-temperature material, which can be at least one of powder, fiber, whisker, and sheet , That is to say, in the actual production process, it can be one of powder, fiber, whisker, and sheet, or a combination of powder, fiber, whisker, and sheet.
  • the structures of the ceramics, the glass, the metal and the diamond are respectively set as the powder of the ceramic, the powder of the glass, the powder of the metal and the powder of the diamond; it should be noted that, due to The organosilicon material can be converted into the glass through a set process, and when it needs to be mixed with other polymers, the powder of the glass can be added to be converted into a glass in a set process in a subsequent step.
  • the glass so arranged, increases the flexibility of the manufacturing process and enables faster mixing of the polymer with the corresponding high temperature material.
  • the present application also provides a method for manufacturing a high-temperature structural material, please refer to FIG. 1 , the method for manufacturing a high-temperature structural material includes the following steps:
  • S10 providing a precursor, the material of the precursor includes a polymer or the polymer and a high-temperature material;
  • a precursor is provided, and the material of the precursor includes a polymer or the polymer and a high-temperature material; due to the characteristics of the polymer, the precursor can be processed into a set shape Precursor components, and then the processed precursor components are converted into high-temperature material components through a set treatment method, so as to overcome the difficulty that the high-temperature materials are difficult to process, and manufacture various The high-temperature material component with a desired shape; through this method, the high-temperature material can be processed into a complex shape while retaining the characteristics of the high-temperature material.
  • the manufacturing method is ingenious and has high practicability.
  • the step S20 includes:
  • S21 Processing the precursor into a precursor component of a predetermined shape by using a high-energy beam.
  • the high-energy beam includes at least one of laser, high-pressure water beam, electron beam and ion beam, which is not limited here.
  • Described step S21 comprises:
  • S211 Engraving or cutting or both engraving and cutting by the high-energy beam, so as to process the precursor into a precursor component of a predetermined shape.
  • the processing method includes laser engraving method, laser cutting method, water cutting method and water engraving method, because laser, electron beam and ion beam are all processing methods with high energy, and adopt controller to control , easy to operate and high precision, so it is generally used in the processing technology of engraving and cutting. Compared with laser, electron beam and ion beam, the high-pressure water beam is not easy to operate and the precision is difficult to control. It is generally used for cutting processing In process.
  • the roundness of the high-temperature material hole with a diameter of 0.85mm obtained by laser processing is less than 0.082.
  • the roundness of the high-temperature material holes with a diameter of 0.85mm obtained by high-pressure water jet machining is less than 0.018.
  • the circularity of the holes of the high-temperature structural material with a diameter of 0.85 mm obtained through the laser processing can be less than 0.082, and the circularity of the holes of the high-temperature structural material with a diameter of 0.85 mm obtained through the high-pressure water beam processing can be as small as 0.018 or smaller.
  • the laser engraving method can be used to manufacture the precursor of the ceramic as the high-temperature material into single ceramic gears or ceramic planetary gears with diameters of 5.6mm, 2.8mm, 1.4mm, and 0.7mm. system, and for the macroscopic ceramic gear system prepared by the laser engraving method of the precursor, the diameter of the external tooth can reach 700 ⁇ m.
  • the high temperature material can be processed into the precursor of glass by the water cutting method to process holes with higher precision.
  • the water cutting method can process the precursor whose high-temperature material is ceramics, so as to process the planetary gear system of the ceramic precursor for meshing transmission. In this way, by combining the precursor with at least one of the laser engraving method, the laser cutting method, the water cutting method and the water engraving method, high-temperature materials that cannot be processed by traditional processing methods can be processed, and The processing method is simple, the processing efficiency is high, and the processing precision is high.
  • step S10 also includes steps:
  • the additive manufacturing technology refers to a scientific and technological system that directly manufactures parts driven by the three-dimensional data of the parts based on the discrete-accumulation principle, for example, 3D printing technology or 4D printing technology, that is, through the additive manufacturing technology, the set The precursor of the shape is converted into the solid state of the predetermined shape.
  • the present application does not limit the set shape, and the set shape includes at least one of liquid, solid powder and solid wire, specifically by Operators set according to different needs.
  • Step S01 converting the liquid precursor into a solid precursor by additive manufacturing technology
  • step S00 also includes:
  • the ink direct writing technology is to extrude the precursor in the form of ink into a filament by means of air pressure or a screw, and control the displacement of its nozzle through a program, and stack it layer by layer into a 3D structure, and then solidify it into a solid
  • the precursor of the film the scraping film technology is to form the precursor in the ink state into a thin film structure on the substrate through a scraper, and then solidify the precursor into a solid, which is also a method of additive manufacturing;
  • the Material extrusion technology is to continuously form a certain shape of the precursor in the state of solid wire through a nozzle of a certain shape under the action of heating, melting and extrusion, and then solidify into a solid precursor; the operation is simple and the process is easy to operate , can be produced automatically, and the production efficiency is high;
  • the material jetting technology is one of the 3D printing technologies, and a printing head corresponding to a paper inkjet head is used to deposit the liquid droplets of the precursor to the desired position
  • the ink direct writing technology when actually manufacturing the high-temperature structural material, the ink direct writing technology, the scraping film technology, the material extrusion technology, the material jetting technology, the photopolymerization technology, the One of the above-mentioned powder bed fusion technologies converts the precursor in a predetermined form into a solid-state precursor. It is also possible to choose two technologies for combination, three technologies for combination, and four technologies according to actual needs. Combination, combination of five technologies, or even combination of six technologies to convert the precursor in the set state into the precursor in the solid state, which needs to be changed according to the actual needs of the operator, and there is no limit here .
  • the step S30 includes:
  • S31 Transform the processed precursor component into a high-temperature material component by at least one of heat treatment, mechanical treatment, and chemical treatment.
  • the present application does not limit the method of converting the precursor component into a high-temperature material component, which specifically includes heat treatment, mechanical treatment and chemical treatment.
  • One of the treatment methods can be selected, or a combination of two treatment methods can be selected, or A combination of three processing methods can be used, which need to be changed according to the actual needs of the operator, and there is no limitation here.
  • step S31 includes:
  • S311 Perform heat treatment on the precursor component in vacuum or in an inert atmosphere or in an oxidizing atmosphere or in a reducing atmosphere.
  • the processing environment includes vacuum, inert atmosphere, oxidizing atmosphere and reducing atmosphere.
  • the operator can according to The high-temperature material in the high-temperature material component is selected to correspond to a suitable processing environment, which is not limited here.
  • the precursor of the high-temperature material can be processed by using the additive manufacturing technology, the laser engraving method, and the laser cutting method.
  • the ceramic In addition to the excellent electromagnetic signal transmission capability of the material, the glossy appearance and delicate texture of the well-polished ceramic structure can provide excellent visual and tactile experience, and the precursor can be processed by the laser cutting method or the laser engraving method, Therefore, the processing of the camera hole and the engraving of the inner surface texture of the mobile phone back plate can be realized at a relatively low cost. Adopting such a method has low cost and good environmental protection performance.
  • the laser engraving method can also be used to produce ceramic MEMS (high temperature microelectromechanical systems) resonant strain sensors.
  • the sensor has a length of up to 12 cm, 2812 pairs of electrodes, and the width and gap of the tuning fork are about 80 ⁇ m, achieving large size and high precision at the same time. Due to the characteristics of the ceramic, the ceramic MEMS resonant strain sensor can resist high temperature, temperature gradient, humidity and other environmental influences, and the scalability of the ceramic MEMS strain resonant sensor can be made to improve strain sensitivity;
  • the production method of the high-temperature structural material can also be applied to the research of cultural relics. Since most of the cultural relics have complex structures, the production method of the high-temperature structural material can be used to process some restoration parts of glass or ceramic cultural relics to restore cultural relics; or The production method of the high-temperature structural material can be used to produce paintings or calligraphy one-to-one or according to a certain ratio for research by researchers, which can provide greater research value while protecting cultural relics.
  • the laser cutting method is used to open a ceramic precursor hole on the precursor component having the ceramic, and the diameter of the ceramic precursor hole is within 0.21 mm to 0.31 mm, which can specifically reach 0.26 mm, the precursor component is subjected to heat treatment, and after the heat treatment, the precursor component shrinks and transforms into the high-temperature structural material, so that the size of the pores of the ceramic precursor shrinks smaller, and the ceramic precursor
  • the diameter of the body hole is within 0.15 mm to 0.25 mm, and specifically can reach 0.2 mm.
  • the roundness of the ceramic precursor hole is 0.102, after the heat treatment , The diameter of the ceramic precursor hole of the high-temperature structural material is within 0.8 mm to 0.9 mm, specifically 0.85 mm, and the roundness is 0.082. In this way, the heat treatment is combined with the laser cutting method to improve the processing precision.
  • the laser engraving method is used to prepare the precursor component of the high temperature material with the ceramic to prepare a macroscopic ceramic gear system, since the precursor of the high temperature material with the ceramic
  • the characteristics of the body, and the laser engraving method has high precision and good operation performance, so that the diameter of the outer tooth can be as small as 700 ⁇ m, and the precursor component is subjected to heat treatment, which can be converted into Amorphous-crystalline dual phase ceramics, or amorphous glass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Micromachines (AREA)

Abstract

一种高温结构材料的制造方法以及前驱体,所述高温结构材料的制造方法包括以下步骤:提供一前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料;将所述前驱体加工成设定形状的前驱体构件;将加工后的所述前驱体构件通过设定的处理方式转化为高温材料构件。从而能够克服所述高温材料难以加工的困难,制造各种所需形状的所述高温材料构件;能够将所述高温材料进行形状复杂的加工的同时还保留了所述高温材料的特性,制作方法巧妙,实用性高。

Description

高温结构材料的制造方法以及前驱体
本申请要求于2021年11月3日申请的、申请号为202111294182.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及高温材料加工的技术领域,具体涉及一种高温结构材料的制造方法以及前驱体。
背景技术
高温结构材料,如陶瓷、玻璃、金属和钻石材料,以其固有特性,如硬度高熔点高等的缘故,通常很难甚至无法通过常规的机械加工的方式制备出形状复杂且精度高的结构。而对于脆性材料,如陶瓷和玻璃等,传统机械加工则会导致裂纹产生甚至断裂。因此,高温结构材料的常规加工工艺通常存在高成本、低精度和高污染的问题。
技术问题
本申请的主要目的是提出一种高温结构材料的制造方法以及前驱体,旨在解决常规的机械加工的方式难以将高温结构材料制备出形状复杂且精度高的结构的问题。
技术解决方案
为实现上述目的,本申请提出的一种高温结构材料的制造方法,包括以下步骤:
提供一前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料;
将所述前驱体加工成设定形状的前驱体构件;
将加工后的所述前驱体构件通过设定的处理方式转化为高温材料构件。
在一实施例中,所述聚合物包括有机硅材料、纤维素、水凝胶、以及丙烯酸铵盐聚合物中的至少一种;
所述高温材料包括陶瓷、玻璃、金属、钻石以及高温复合材料的其中一种。
在一实施例中,将所述前驱体加工成设定形状的前驱体构件的步骤包括:
通过高能束将所述前驱体加工成设定形状的前驱体构件。
在一实施例中,所述高能束包括激光、高压水束、电子束以及离子束中的至少一种。
在一实施例中,通过高能束将所述前驱体加工成设定形状的前驱体构件的步骤包括:
通过所述高能束雕刻和/或切割,以将所述前驱体加工成设定形状的前驱体构件。
在一实施例中,提供一所述前驱体的步骤之前包括:
通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体。
在一实施例中,所述设定形态包括液态、固态粉材以及固态线材中的至少一种。
在一实施例中,通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体的步骤包括:
通过增材制造技术将液态的所述前驱体转换成固态的所述前驱体。
在一实施例中,通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体的步骤包括:
通过墨水直写技术、刮膜技术、材料挤出技术、材料喷射技术、光聚合技术、粉末床融合技术中的至少一种技术将设定形态的所述前驱体转换成固态的所述前驱体。
在一实施例中,将加工后的所述前驱体构件通过设定的处理方式转化为高温材料构件的步骤包括:
通过热处理、机械处理以及化学处理中的至少一种处理方式,将加工后的前驱体构件转化为高温材料构件。
在一实施例中,通过热处理、机械处理以及化学处理中的至少一种处理方式,将加工后的前驱体构件转化为高温材料构件的步骤包括:
在真空中或在惰性气氛或在氧化气氛或在还原气氛下对所述前驱体构件进行热处理。
在一实施例中,所述高温材料的形态为粉末、纤维、晶须、片材中的至少一种。
在一实施例中,所述高温结构材料的制造方法可以用于制备电子设备背板,文物研究和修复以及制备高温微机电系统。
本申请还提供一种前驱体,所述前驱体的材料包括:
聚合物或者所述聚合物以及高温材料。
在一实施例中,所述聚合物包括有机硅材料、纤维素、水凝胶以及丙烯酸铵盐聚合物中至少一种。
在一实施例中,所述高温材料包括陶瓷、玻璃、金属、钻石的其中一种。
有益效果
本申请的技术方案中,提供一前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料;由于所述聚合物的特性,从而能够将所述前驱体加工成设定形状的前驱体构件,再将加工后的所述前驱体构件通过设定的处理方式,将所述前驱体转化为高温材料构件,从而能够克服所述高温材料难以加工的困难的问题,制造各种所需形状的所述高温材料构件;通过这种方法能够将所述高温材料进行形状复杂的加工的同时还保留了所述高温材料的特性,制作方法巧妙,实用性高。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提供的高温结构材料的制造方法的一实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
高温结构材料,如陶瓷、玻璃、金属和钻石材料,以其固有特性,如硬度高熔点高等的缘故,通常很难甚至无法通过常规的机械加工的方式制备出形状复杂且精度高的结构。而对于脆性材料,如陶瓷和玻璃等,传统机械加工则会导致裂纹产生甚至断裂。因此,高温结构材料的常规加工工艺通常存在高成本、低精度和高污染的问题。
本申请提供一种前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料,所述前驱体的材料包括所述聚合物,由于所述聚合物的特征,从而能够将所述前驱体加工成设定形状的前驱体构件,再将加工后的所述前驱体构件通过设定的处理方式,将所述前驱体转化为高温材料构件,从而能够克服所述高温材料难以加工的困难的问题,制造各种所需形状的所述高温材料构件;即所述前驱体可以用于高温结构材料的生产制造,提高所述高温结构材料的生产效率,降低成本消耗。
具体地,所述聚合物包括有机硅材料、纤维素、水凝胶、以及丙烯酸铵盐聚合物中至少一种;在本实施例中,在所述前驱体内的所述聚合物内含有所述有机硅材料时,将所述前驱体加工成设定形状的所述前驱体构件,再经过设定的处理方式将所述前驱体材料转化成玻璃或者陶瓷;本申请不限制所述有机硅的种类,在本实施例中,所述有机硅材料设置为硅胶;同理,所述纤维素、所述水凝胶、和所述丙烯酸铵盐聚合物分别对应不同种类的所述高温材料以制造不同种类的高温结构材料。制造过程简单,且成本低。
本申请不限制所述高温材料的种类,所述高温材料包括陶瓷、玻璃、金属、钻石的其中一种;在传统的制造工艺中,由于所述陶瓷和所述玻璃比较脆,在传统机械加工的过程中容易产生裂纹甚至断裂,对于钻石和高温金属因其固有特性硬度高熔点高的缘故,很难以制备出形状复杂且精度高的结构;在本实施例中,所述陶瓷能够通过含有所述有机硅材料或所述纤维素或所述水凝胶和陶瓷颗粒添加物的所述前驱体制造,形成非晶-晶体双相陶瓷或晶体陶瓷;所述玻璃能够直接通过含有所述有机硅材料的所述前驱体制造;通过在所述纤维素或所述水凝胶,和所述丙烯酸铵盐聚合物中分别加入所述金属和所述钻石形成所需的所述前驱体,再将所需的所述前驱体加工成设定的形状形成所述前驱体构件,再经过设定的处理方式使所述前驱体构件转化成所述高温结构材料;在由所述前驱体构件转化成所述高温结构材料的过程中,材料由所述纤维素或所述水凝胶和所述金属、所述丙烯酸铵盐聚合物和所述钻石转化成所述金属和所述钻石。如此,通过中间转换的方法,能够将所述高温材料进行形状复杂的加工的同时还保留了所述高温材料的特性,制作方法巧妙,实用性高。
为了方便所述聚合物与所述高温材料的混合,且方便形成所述高温结构材料,本申请不限制所述高温材料的形态,可以是粉末、纤维、晶须、片材中的至少一种,也就是说,在实际的制作过程中,可以是粉末、纤维、晶须、片材中的一种,也可以是粉末、纤维、晶须、片材中的组合,在本实施例中,所述陶瓷、所述玻璃、所述金属以及所述钻石的结构分别设置为所述陶瓷的粉末、所述玻璃的粉末、所述金属的粉末以及所述钻石的粉末;需要说明的是,由于所述有机硅材料能够通过设定的处理转化成所述玻璃,此外在需要与其他的所述聚合物混合时,能够添加所述玻璃的粉末以在后续步骤中经过设定的处理方式转化成所述玻璃,如此设置,提高制造过程的灵活性,并且能够加快所述聚合物与对应的所述高温材料的混合。
本申请还提供一种高温结构材料的制造方法,请参照图1,所述高温结构材料的制造方法包括以下步骤:
S10:提供一前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料;
S20:将所述前驱体加工成设定形状的前驱体构件;
S30:将加工后的所述前驱体构件通过设定的处理方式转化为高温材料构件。
本申请的技术方案中,提供一前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料;由于所述聚合物的特性,从而能够将所述前驱体加工成设定形状的前驱体构件,再将加工后的所述前驱体构件通过设定的处理方式将所述前驱体转化为高温材料构件,从而能够克服所述高温材料难以加工的困难的问题,制造各种所需形状的所述高温材料构件;通过这种方法能够将所述高温材料进行形状复杂的加工的同时还保留了所述高温材料的特性,制作方法巧妙,实用性高。
为了将所述前驱体加工成设定形状的前驱体构件,所述步骤S20包括:
S21:通过高能束将所述前驱体加工成设定形状的前驱体构件。
需要说明的是,所述高能束包括激光、高压水束、电子束以及离子束中的至少一种,在此不做限制。
所述步骤S21包括:
S211:通过所述高能束雕刻或者切割或者同时雕刻和切割,以将所述前驱体加工成设定形状的前驱体构件。
在本实施例中,所述加工方法包括激光雕刻方法、激光切割方法、水切割方法以及水雕刻方法,由于激光、电子束和离子束的均为能量较高的加工方法,并且采用控制器控制,操作方便,精度高,所以一般用于雕刻和切割的加工工艺中,而高压水束相较于激光、电子束和离子束,操作不太方便且精度较难调控,一般用于切割的加工工艺中。
步骤S212:
通过激光加工得到的直径为0.85mm的高温材料孔的圆度小于0.082。
通过高压水束加工得到的直径为0.85mm的高温材料孔的圆度小于0.018。
通过所述激光加工得到的直径为0.85mm的高温结构材料的孔的圆度可以小于0.082,通过所述高压水束加工得到的直径为0.85mm的高温结构材料的孔的圆度可以小到0.018或更小。
例如,可以采用所述激光雕刻方法将所述高温材料为所述陶瓷的所述前驱体制作成直径分别为5.6mm,2.8mm,1.4mm,和0.7mm的单个陶瓷齿轮或者啮合传动的陶瓷行星齿轮系,且对于所述前驱体采用激光雕刻的方法制备的宏观陶瓷齿轮系统,外齿直径可达700µm。
此外,由于所述水切割方法的精度比所述激光雕刻方法的精度高,可以通过将所述水切割方法加工所述高温材料为玻璃的所述前驱体,能够加工精度更高的孔,同理所述水切割方法可以加工所述高温材料为陶瓷的所述前驱体,以加工啮合传动的陶瓷前驱体行星齿轮系统。如此通过将所述前驱体与所述激光雕刻方法、所述激光切割方法、所述水切割方法以及水雕刻方法中的至少一个方法相结合,能够加工传统加工方法所不能加工的高温材料,且加工方法简单,加工效率高,加工精度高。
为了制作较为复杂的所述前驱体的形状,所述步骤S10之前还包括步骤:
S00:通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体。
所述增材制造技术是指基于离散-堆积原理,由零件三维数据驱动直接制造零件的科学技术体系,例如,3D打印技术或者4D打印技术,也就是可以通过所述增材制造技术将设定形态的所述前驱体转换成设定形状的固态的所述前驱体,本申请不限制设定形态,且所述设定形态包括液态、固态粉材以及固态线材中的至少一种,具体由操作人员根据不同的需求所设定。
具体地,还包括:
步骤S01:通过增材制造技术将液态的所述前驱体转换成固态的所述前驱体
此外,步骤S00还包括:
S02:通过墨水直写技术、刮膜技术、材料挤出技术、材料喷射技术、光聚合技术、粉末床融合技术中的至少一种技术将设定形态的所述前驱体转换成固态的所述前驱体;
具体地,所述墨水直写技术是将墨水形态的所述前驱体通过气压或螺杆的方式挤压出丝,并通过程序控制其喷头的位移,而逐层堆叠成3D结构,然后固化为固体的所述前驱体;所述刮膜技术是将墨水状态的所述前驱体通过刮刀在基板上成型为薄膜结构,然后固化为固体的所述前驱体,也是一种增材制造方法;所述材料挤出技术是将固态线材状态的所述前驱体在加热熔化和挤压作用下通过一定形状的喷头而连续形成一定的形状,然后固化为固体的所述前驱体;操作简单,工艺易操作,可以自动化生产,生产效率高;所述材料喷射技术是3D打印技术的其中之一,采用与纸质喷墨头相应的打印头将液态的所述前驱体的液滴沉积到所需位置,且一个打印头上一般具有几十至数百个用于材料沉积的喷嘴;所述光聚合技术是利用紫外光或可见光引发具有化学反应活性的液态物质快速转变为固态物质的过程,从而能够将液态的所述前驱体转换成固态的所述前驱体,且光聚合技术节能环保,无溶剂挥发,生产效率高,适应性广,成本低;所述粉末床融合技术是一种增材制造技术,设计灵活、资源有效利用率高,具体是在基板上铺设一薄层粉末材料,电子束或激光辐照整个粉末层,对粉末层进行加热,然后一层再一层的进行铺设,并同时采用电子束或激光辐照整个粉末层,对粉末层进行加热,如此一层一层的堆砌形成设定形状的所述前驱体;在本实施例中,采用了墨水直写技术或刮膜技术。
需要说明的是,在实际制造所述高温结构材料时,可以选择所述墨水直写技术、所述刮膜技术、所述材料挤出技术、所述材料喷射技术、所述光聚合技术、所述粉末床融合技术中的其中一种技术将设定形态的所述前驱体转换成固态的所述前驱体,也可以根据实际需要选择两种技术进行组合、三种技术进行组合、四种技术进行组合、五种技术进行组合、甚至六种技术进行组合来将设定态的所述前驱体转换成固态的所述前驱体,具体需根据操作人员的实际需求所改变,在此不做限制。
具体地,所述步骤S30包括:
S31:通过热处理、机械处理以及化学处理中的至少一种处理方式,将加工后的前驱体构件转化为高温材料构件。
本申请不限制将所述前驱体构件转化为高温材料构件的方法,具体包括热处理、机械处理以及化学处理,可以任选其中一种方式进行处理,也可以任选两种处理方式进行组合,也可以采用三种处理方式组合,具体需根据操作人员的实际需求所改变,在此不做限制。
更具体地,所述步骤S31包括:
S311:在真空中或在惰性气氛或在氧化气氛或在还原气氛下对所述前驱体构件进行热处理。
根据所要制造的所述高温材料构件中的所述高温材料的不同,可以采用不同的加工环境,所述加工环境包括真空、惰性气氛、氧化气氛以及还原气氛,在实际制作中,操作人员可以根据所述高温材料构件中的所述高温材料的不同以挑选对应合适的加工环境,在此不做限制。
在实际运用的过程中,可以采用所述增材制造技术和所述激光雕刻方法以及所述激光切割方法加工所述高温材料为陶瓷的所述前驱体,在手机的应用领域中,所述陶瓷材料具有优异的电磁信号传输能力外,抛光良好的陶瓷结构的光泽外观和细腻质地,可以提供卓越的视觉和触觉体验,可以通过所述激光切割方法或者所述激光雕刻方法加工所述前驱体,从而能够以较低的成本实现相机孔的加工和手机背板内部表面纹理的雕刻,采用此类方法,成本低,具有良好的环保性能。
还可以采用所述激光雕刻方法生产陶瓷MEMS(高温微机电系统)谐振应变传感器。在本实施例中,所述传感器长度可达12 cm,有2812对电极,音叉的宽度和间隙约为80µm,同时实现了大尺寸和高精度。由于所述陶瓷的特性,使得所述陶瓷MEMS谐振应变传感器能抵抗高温、温度梯度、湿度和其他环境影响,并且制作陶瓷MEMS应变谐振传感器的可扩展性来提高应变灵敏度;
此外,还可以将所述高温结构材料的制作方法运用于文物研究中,由于文物大多结构复杂,可以采用所述高温结构材料的制作方法加工一些玻璃或者陶瓷文物的修复部件,以修复文物;或者可以采用所述高温结构材料的制作方法一比一或者按照一定比例制作出画作或者书法,以供研究人员研究,在保护文物的同时还能够提供较大的研究价值。
在本实施例中,采用所述激光切割方法在具有所述陶瓷的所述前驱体构件上开设陶瓷前驱体孔,所述陶瓷前驱体孔的直径在0.21mm~0.31mm之内,具体能够达到0.26mm,将所述前驱体构件进行热处理,在进行所述热处理之后,所述前驱体构件收缩转化成所述高温结构材料,从而所述陶瓷前驱体孔的尺寸收缩变小,所述陶瓷驱体孔的直径在0.15mm~0.25mm之内,具体能够达到0.2mm。
此外,采用所述激光切割方法在具有所述陶瓷的所述前驱体构件上开设直径为1mm的所述陶瓷前驱体孔,所述陶瓷前驱体孔的圆度为0.102,在进行所述热处理之后,所述高温结构材料的所述陶瓷前驱体孔的直径在0.8mm~0.9mm之内,具体为0.85mm,且圆度为0.082。如此通过热处理与所述激光切割方法结合,使加工的精度提高。
在一实施例中,采用所述激光雕刻方法制备具有所述陶瓷的所述高温材料的所述前驱体构件,以制备宏观陶瓷齿轮系统,由于具有所述陶瓷的所述高温材料的所述前驱体的特性,且所述激光雕刻方法具有较高的精度和良好的操作性能,以使外齿直径可小至700µm,将所述前驱体构件进行热处理,根据不同的热处理的时间,可以转化成非晶-晶体双相陶瓷,或非晶玻璃。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (16)

  1. 一种高温结构材料的制造方法,其中,包括以下步骤:
    提供一前驱体,所述前驱体的材料包括聚合物或者所述聚合物以及高温材料;
    将所述前驱体加工成设定形状的前驱体构件;
    将加工后的所述前驱体构件通过设定的处理方式转化为高温材料构件。
  2. 如权利要求1所述的高温结构材料的制造方法,其中,所述聚合物包括有机硅材料、纤维素、水凝胶、以及丙烯酸铵盐聚合物中的至少一种;
    所述高温材料包括陶瓷、玻璃、金属、钻石以及高温复合材料的其中一种。
  3. 如权利要求1所述的高温结构材料的制造方法,其中,将所述前驱体加工成设定形状的前驱体构件的步骤包括:
    通过高能束将所述前驱体加工成设定形状的前驱体构件。
  4. 如权利要求3所述的高温结构材料的制造方法,其中,所述高能束包括激光、高压水束、电子束以及离子束中的至少一种。
  5. 如权利要求3所述的高温结构材料的制造方法,其中,通过高能束将所述前驱体加工成设定形状的前驱体构件的步骤包括:
    通过所述高能束雕刻和/或切割,以将所述前驱体加工成设定形状的前驱体构件。
  6. 如权利要求1所述的高温结构材料的制造方法,其中,提供一所述前驱体的步骤之前包括:
    通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体。
  7. 如权利要求6所述的高温结构材料的制造方法,其中,所述设定形态包括液态、固态粉材以及固态线材中的至少一种。
  8. 如权利要求7所述的高温结构材料的制造方法,其中,通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体的步骤包括:
    通过增材制造技术将液态的所述前驱体转换成固态的所述前驱体。
  9. 如权利要求6所述的高温结构材料的制造方法,其中,通过增材制造技术将设定形态的所述前驱体转换成固态的所述前驱体的步骤包括:
    通过墨水直写技术、刮膜技术、材料挤出技术、材料喷射技术、光聚合技术、粉末床融合技术中的至少一种技术将设定形态的所述前驱体转换成固态的所述前驱体。
  10. 如权利要求1所述的高温结构材料的制造方法,其中,将加工后的所述前驱体构件通过设定的处理方式转化为高温材料构件的步骤包括:
    通过热处理、机械处理以及化学处理中的至少一种处理方式,将加工后的前驱体构件转化为高温材料构件。
  11. 如权利要求10所述的高温结构材料的制造方法,其中,通过热处理、机械处理以及化学处理中的至少一种处理方式,将加工后的前驱体构件转化为高温材料构件的步骤包括:
    在真空中或在惰性气氛或在氧化气氛或在还原气氛下对所述前驱体构件进行热处理。
  12. 如权利要求1所述的高温结构材料的制造方法,其中,所述高温材料的形态为粉末、纤维、晶须、片材中的至少一种。
  13. 如权利要求1所述的高温结构材料的制造方法,其中,所述高温结构材料的制造方法可以用于制备电子设备背板,文物研究和修复以及制备高温微机电系统。
  14. 一种前驱体,其中,所述前驱体的材料包括:
    聚合物或者所述聚合物以及高温材料。
  15. 如权利要求14所述的前驱体,其中,所述聚合物包括有机硅材料、纤维素、水凝胶以及丙烯酸铵盐聚合物中至少一种。
  16. 如权利要求14所述的前驱体,其中,所述高温材料包括陶瓷、玻璃、金属、钻石的其中一种。
PCT/CN2021/130371 2021-11-03 2021-11-12 高温结构材料的制造方法以及前驱体 WO2023077548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/683,511 US20230135069A1 (en) 2021-11-03 2022-03-01 Method for manufacturing high-temperature structural material and precursor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111294182.4 2021-11-03
CN202111294182.4A CN114178704A (zh) 2021-11-03 2021-11-03 高温结构材料的制造方法以及前驱体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/683,511 Continuation US20230135069A1 (en) 2021-11-03 2022-03-01 Method for manufacturing high-temperature structural material and precursor

Publications (1)

Publication Number Publication Date
WO2023077548A1 true WO2023077548A1 (zh) 2023-05-11

Family

ID=80540608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130371 WO2023077548A1 (zh) 2021-11-03 2021-11-12 高温结构材料的制造方法以及前驱体

Country Status (2)

Country Link
CN (1) CN114178704A (zh)
WO (1) WO2023077548A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446480A (zh) * 2014-10-17 2015-03-25 武汉科技大学 一种碳化锆陶瓷有机前驱体及其制备方法
US20190031939A1 (en) * 2016-02-01 2019-01-31 Cabot Corporation Thermally conductive polymer compositions containing carbon black
EP3436521A1 (en) * 2016-03-31 2019-02-06 ExxonMobil Chemical Patents Inc. Low crystalline polymer compositions prepared in a dual reactor
CN109455665A (zh) * 2018-10-22 2019-03-12 清华大学 一种非光刻的介观尺度结构力学组装成型方法
CN109678527A (zh) * 2019-03-01 2019-04-26 哈尔滨工业大学 一种4d打印陶瓷制备方法和4d打印太空舱及其展开方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377076B2 (en) * 2017-07-31 2019-08-13 City University Of Hong Kong System and method for four-dimensional printing of ceramic origami structures
FR3092109B1 (fr) * 2019-01-25 2023-12-08 Commissariat Energie Atomique Composition et procédé pour fabriquer des pièces constituées par des céramiques oxydes ou des pièces hybrides par une technique de stéréolithographie.
CN109734450B (zh) * 2019-02-26 2021-09-28 天津大学 一种用于光固化增材制造的光敏陶瓷液的制备方法
CN112779561A (zh) * 2019-11-10 2021-05-11 青岛农业大学 一种激光诱导电催化剂-半导体-三维多孔石墨烯三元复合光电极的制备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446480A (zh) * 2014-10-17 2015-03-25 武汉科技大学 一种碳化锆陶瓷有机前驱体及其制备方法
US20190031939A1 (en) * 2016-02-01 2019-01-31 Cabot Corporation Thermally conductive polymer compositions containing carbon black
EP3436521A1 (en) * 2016-03-31 2019-02-06 ExxonMobil Chemical Patents Inc. Low crystalline polymer compositions prepared in a dual reactor
CN109455665A (zh) * 2018-10-22 2019-03-12 清华大学 一种非光刻的介观尺度结构力学组装成型方法
CN109678527A (zh) * 2019-03-01 2019-04-26 哈尔滨工业大学 一种4d打印陶瓷制备方法和4d打印太空舱及其展开方法

Also Published As

Publication number Publication date
CN114178704A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
JP2022095705A (ja) 特注の組成プロファイルを有するガラス成分およびその調製方法
CN104692332B (zh) 一种采用模板法构筑空心管微点阵金属氧化物材料及其制备方法
CN112521130B (zh) 一种基于3d打印技术的陶瓷零件的制备方法
JP2018537587A (ja) 積層造形された金属マトリックス複合体を生成する装置及び方法並びにその製造品
JPH11508326A (ja) 基板上への焼結体の製造方法
KR20070113763A (ko) 탄소나노튜브 패턴 형성방법 및 그에 의해 수득된탄소나노튜브 패턴
WO2014166082A1 (en) Flexible glass/metal foil composite articles and production process thereof
JP4874644B2 (ja) セラミック構造体の製造方法
JP5786217B2 (ja) コンポジット成形体及びシリカガラス、並びに、それらの製造方法
DE102017008619A1 (de) Verfahren zur Herstellung eines Glasgegenstands und ein Glasgegenstand
CN101032832A (zh) 激光三维加工陶瓷坯体方法与装置
WO2023077548A1 (zh) 高温结构材料的制造方法以及前驱体
CN101949017A (zh) 孔间距和孔直径可独立调节的Si纳米孔阵列模板的制备方法
DE102011086683A1 (de) Fensterpanel und Herstellungsverfahren für dasselbe, berührungsempfindliche Bildschirmtafel mit integriertem Fensterpanel und Herstellungsverfahren für dieselbe
Sun et al. Review of the applications of 3D printing technology in the field of piezoelectric ceramics
CN112958765B (zh) 一种激光辅助复杂曲面异形结构共形3d打印的方法
US20230135069A1 (en) Method for manufacturing high-temperature structural material and precursor
CN206869308U (zh) 一种激光诱导等离子体直写加工头
CN1321223C (zh) 顺次多种等离子体处理碳纳米管薄膜表面形貌的方法
KR20200051892A (ko) 잉크젯 프린팅을 이용한 고분자-세라믹 복합막 및 그 제조 방법
EP1285102B1 (en) High density ceramic thick film fabrication method by screen printing
DE102015108646A1 (de) Verfahren zur Herstellung keramischer Multilagen-Schaltungsträger auf Basis einer schlickerbasierten additiven Fertigung
Charoensopa et al. 3D printed titanium dioxide thin films for optoelectronic applications
CN109920583B (zh) 一种透明金属网格导电薄膜
KR101027479B1 (ko) 디스플레이 패널용 플렉서블 기판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963056

Country of ref document: EP

Kind code of ref document: A1