WO2023075024A1 - 선박용 재액화 시스템의 누수 감지 시스템 - Google Patents

선박용 재액화 시스템의 누수 감지 시스템 Download PDF

Info

Publication number
WO2023075024A1
WO2023075024A1 PCT/KR2021/019905 KR2021019905W WO2023075024A1 WO 2023075024 A1 WO2023075024 A1 WO 2023075024A1 KR 2021019905 W KR2021019905 W KR 2021019905W WO 2023075024 A1 WO2023075024 A1 WO 2023075024A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
refrigerant
heat exchanger
gas
compressor
Prior art date
Application number
PCT/KR2021/019905
Other languages
English (en)
French (fr)
Inventor
송지훈
최원재
이승철
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Publication of WO2023075024A1 publication Critical patent/WO2023075024A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point

Definitions

  • the present invention relates to a leak detection system of a re-liquefaction system for a ship, and more particularly, in a re-liquefaction system for re-liquefying boil-off gas generated in a ship, it is possible to check and detect leaks in a heat exchanger during initial operation or re-operation after stopping. It is about a leak detection system that can be.
  • Natural gas has methane (methane) as a main component, and there is little emission of environmental pollutants during combustion, so it is attracting attention as an eco-friendly fuel.
  • Liquefied Natural Gas LNG is obtained by liquefying natural gas by cooling it to about -163°C under atmospheric pressure, and since its volume is reduced to about 1/600 of that in gaseous state, it is suitable for long-distance transportation through sea. very suitable Therefore, natural gas is mainly stored and transported in the form of liquefied natural gas, which is easy to store and transport.
  • the liquefaction point of natural gas is a cryogenic temperature of about -163 ° C. at atmospheric pressure
  • LNG storage tanks it is common for LNG storage tanks to be insulated so that LNG can remain in a liquid state.
  • the LNG storage tank is insulated, there is a limit to blocking external heat, and since external heat is continuously transferred to the LNG storage tank, LNG is continuously stored in the LNG storage tank during the LNG transportation process. It is vaporized and boil-off gas (BOG) is generated.
  • BOG boil-off gas
  • boil-off gas When boil-off gas is continuously generated in the LNG storage tank, it becomes a factor that increases the internal pressure of the LNG storage tank. If the internal pressure of the storage tank exceeds the set safety pressure, it may cause an emergency situation such as tank rupture, so the boil-off gas must be discharged to the outside of the storage tank using a safety valve.
  • boil-off gas is a kind of LNG loss, and since it is an important problem in the transportation efficiency and fuel efficiency of LNG, various methods for treating boil-off gas generated in the storage tank are used.
  • typical liquefaction methods that can be adopted include processes using an SMR cycle and a C3MR cycle.
  • the C3MR cycle Provide-precooled Mixed Refrigerant Cycle
  • SMR cycle is a process of cooling natural gas using a single refrigerant, propane, and then liquefying and supercooling it using a mixed refrigerant. It is a process of liquefying natural gas using a mixed refrigerant composed of refrigerants.
  • Both the SMR cycle and the C3MR cycle are processes using mixed refrigerants.
  • the refrigerant leaks during the liquefaction process and the composition ratio of the mixed refrigerant changes, the liquefaction efficiency decreases.
  • the composition of the refrigerant must be maintained by filling the components.
  • a single cycle liquefaction process using a nitrogen refrigerant may be used.
  • Nitrogen refrigerant has a relatively low efficiency compared to a cycle using a mixed refrigerant, but has a high safety because the refrigerant is inert and is easier to apply to ships because there is no phase change of the refrigerant.
  • the re-liquefaction system includes a compressor that receives and compresses boil-off gas, a heat exchanger that cools the compressed gas compressed in the compressor by heat exchange with a refrigerant, and a refrigerant circulation unit that circulates a refrigerant that exchanges heat with the compressed gas in the heat exchanger, and nitrogen refrigerant
  • the refrigerant discharged after heat exchange in the heat exchanger may be compressed, cooled through the heat exchanger, expanded and cooled again, and then circulated through the heat exchanger in the refrigerant circulation unit.
  • cryogenic LNG boil-off gas and nitrogen refrigerant at a lower temperature than boil-off gas. If such cryogenic flammable materials leak due to equipment damage or other causes, it poses a great risk to the safety of crew and ships. can cause
  • the present invention solves this problem and proposes a method for securing ship safety by quickly checking whether or not there is a leak in the heat exchanger even when the re-liquefaction system is restarted after the initial operation and stop.
  • the gas supply line for supplying the boil-off gas generated from the liquefied gas stored in the storage tank of the ship to the compressor;
  • a re-liquefaction line for cooling and re-liquefying the compressed gas compressed in the compressor through a heat exchanger and returning it to the storage tank;
  • a refrigerant compressor provided in the refrigerant circulation line and cooling the compressed gas in the heat exchanger and compressing the discharged refrigerant;
  • a refrigerant expander that expands and cools the refrigerant compressed in the refrigerant compressor and then cooled through the heat exchanger to supply the refrigerant to the heat exchanger;
  • a refrigerant filling line connected from an inventory tank filled with nitrogen to a front end of the refrigerant compressor of the refrigerant circulation line;
  • nitrogen is supplied to the front end of the refrigerant compressor through the refrigerant filling line to check whether the refrigerant circulation line is leaked. system is provided.
  • a first valve provided in front of the connection point of the refrigerant charging line in the refrigerant circulation line; a second valve provided between the refrigerant expander and the heat exchanger in the refrigerant circulation line; and a third valve provided in the refrigerant filling line.
  • nitrogen passes through the refrigerant circulation line from the high-pressure part at the rear end of the refrigerant compressor to the low-pressure part at the rear end of the refrigerant expander.
  • opening the valve it is possible to fill the refrigerant circulation line with nitrogen refrigerant while checking for leakage from the low-pressure part at the rear end of the refrigerant expander to the low-pressure part at the front end of the refrigerant compressor.
  • the gas supply line is connected to the compressor via the heat exchanger, and includes a fourth valve provided in front of the heat exchanger in the gas supply line; And a fifth valve provided at the front end of the compressor in the gas supply line, and when the re-liquefaction process is initially operated or restarted after the process is stopped, the fourth and fifth valves are closed and the refrigerant circulation line is leaked. Independently of the confirmation, it is possible to check whether or not there is leakage of the low pressure part of the heat exchanger passing through the heat exchanger along the gas supply line.
  • a preheating line branched from the gas supply line at a front end of the fourth valve and connected to a gas supply line at a front end of the heat exchanger; a preheater provided in the preheating line and heating the evaporation gas; a sixth valve provided at a rear end of the preheater in the preheating line; and a seventh valve provided in a pipe connected to a front end of the compressor by bypassing the heat exchanger at a rear end of the preheater.
  • a gas-liquid separator provided downstream of the heat exchanger in the re-liquefaction line for gas-liquid separation of re-liquefaction gas; a bypass line branched from the rear end of the heat exchanger of the re-liquefaction line and connected to a storage tank by bypassing the gas-liquid separator; An eighth valve provided in front of the heat exchanger in the reliquefaction line; a ninth valve provided in front of the gas-liquid separator in the re-liquefaction line; And a 10th valve provided in the bypass line: further comprising, when the re-liquefaction process is initially operated or re-operated after the process is stopped, the eighth to tenth valves are closed and independent of checking whether the refrigerant circulation line is leaked. Accordingly, it is possible to check whether there is a leak in the high-pressure part of the heat exchanger passing through the heat exchanger along the reliquefaction line.
  • a pressure compensation line branched from the reliquefaction line downstream of the compressor and connected to an upper portion of the gas-liquid separator; a nitrogen blanket line supplying nitrogen to the pressure compensating line; an eleventh valve provided upstream of a connection point of a nitrogen blanket line in the pressure compensation line; a twelfth valve provided in the nitrogen blanket line; and a thirteenth valve provided downstream of the connection point of the nitrogen blanket line in the pressure compensation line, wherein the pressure compensation line may supply boil-off gas or nitrogen to adjust the internal pressure of the gas-liquid separator.
  • the 8th to 10th valves and the 13th valve are closed, and the 11th and 12th valves are opened to supply nitrogen from the nitrogen blanket line and pass through the heat exchanger along the reliquefaction line. can check whether
  • FIG. 1 to 3 schematically illustrate a process of checking whether a heat exchanger and each connection line leak in a leak detection system of a reliquefaction system for a ship according to an embodiment of the present invention.
  • the vessel may be any type of vessel provided with a storage tank for storing liquefied gas.
  • ships with self-propelled capabilities such as LNG carriers, liquid hydrogen carriers, and LNG RV (Regasification Vessel), as well as LNG FPSO (Floating Production Storage Offloading) and LNG FSRU (Floating Storage Regasification Unit) Offshore structures that do not have the capability but are floating on the sea may also be included.
  • the present embodiment can be transported by liquefying the gas at a low temperature, and can be applied to a re-liquefaction cycle of all types of liquefied gas in which boil-off gas is generated in a stored state.
  • liquefied gases are, for example, liquefied petrochemicals such as LNG (Liquefied Natural Gas), LEG (Liquefied Ethane Gas), LPG (Liquefied Petroleum Gas), liquefied ethylene gas, and liquefied propylene gas.
  • LNG Liquefied Natural Gas
  • LEG Liquefied Ethane Gas
  • LPG Liquefied Petroleum Gas
  • liquefied ethylene gas liquefied ethylene gas
  • propylene gas liquefied propylene gas.
  • FIG. 1 to 3 schematically illustrate a process of checking whether a heat exchanger and each connection line leak in a leak detection system of a reliquefaction system for a ship according to an embodiment of the present invention.
  • the vessel re-liquefaction system of the present embodiment discharges boil-off gas generated from liquefied gas stored in the storage tank of the ship to a vapor header, supplies it as fuel on board, and re-liquefies the boil-off gas that is not supplied as fuel and recovers it to the storage tank. It is a device for
  • a gas supply line (GSL) supplied from the vapor header (VH) to the compressor 100 is connected, and the compressed gas compressed in the compressor 100 is transferred to a heat exchanger.
  • a re-liquefaction line (RL) for cooling through 200, re-liquefying and recovering to the storage tank, and a refrigerant circulation line (CL) for circulating the refrigerant that exchanges heat with the compressed gas in the heat exchanger 200 are provided.
  • the refrigerant circulation line (CL) includes a refrigerant compressor 300 that cools the compressed gas in the heat exchanger and compresses the discharged refrigerant, and expands and cools the refrigerant cooled through the heat exchanger after compression in the refrigerant compressor to supply the refrigerant to the heat exchanger.
  • a refrigerant expander 350 is provided, and a refrigerant filling line NL is connected from an inventory tank filled with nitrogen to a front end of a refrigerant compressor in a refrigerant circulation line.
  • the gas supply line (GSL) is connected from the storage tank to the compressor 100 via the heat exchanger 200, so that the uncompressed boil-off gas generated in the storage tank supplies cold heat to the heat exchanger and then is supplied to the compressor and compressed.
  • the compressor 100 compresses the boil-off gas, for example, it can be compressed to the fuel supply pressure of the main engine of the ship. For example, if a DF engine is provided, it can be compressed to 5.5 barg, to 15 barg if an X-DF engine is provided, and to around 300 barg if an ME-GI engine is provided.
  • the compressed boil-off gas may be supplied as fuel to the ship's engine (not shown), and the boil-off gas not supplied as fuel may be re-liquefied.
  • a compressor that supplies fuel to an engine must be designed for redundancy in preparation for an emergency situation, so although one compressor is shown in the drawing, the compressor may include a main compressor and a redundancy compressor, It may be provided as a multi-stage compressor in which a plurality of compressors and an intercooler are provided.
  • the boil-off gas compressed in the compressor 100 is introduced into the heat exchanger 200 along the reliquefaction line RL and cooled through heat exchange.
  • a heat exchanger 200 for cooling the boil-off gas compressed by the compressor and a gas-liquid separator 400 for gas-liquid separation of the boil-off gas cooled through the heat exchanger and supplying the liquefied gas to the storage tank are provided.
  • the boil-off gas is cooled through heat exchange with the refrigerant circulating in the refrigerant circulation line (CL).
  • a refrigerant expander 350 for expanding and cooling the refrigerant to be supplied to the heat exchanger, and a refrigerant compressor 300 for cooling the boil-off gas discharged from the heat exchanger and compressing the discharged refrigerant are provided.
  • the refrigerant compressor and the refrigerant expander may be provided as a compander that is axially connected to use expansion energy of the refrigerant for refrigerant compression, and power required to drive the refrigerant cycle may be reduced.
  • Nitrogen (N 2 ) may be used as a refrigerant supplied to the heat exchanger while circulating in the refrigerant circulation line (CL).
  • the refrigerant compressed in the refrigerant compressor 300 is cooled in the heat exchanger 200, expanded and cooled in the refrigerant expander 350, and supplied to the refrigerant of the heat exchanger 200 again, and circulates through the refrigerant circulation line CL. Accordingly, in the heat exchanger 200, four flows of evaporation gas compressed in the compressor, uncompressed evaporation gas to be introduced into the compressor, refrigerant expanded and cooled in the expander, and refrigerant compressed in the refrigerant compressor are heat-exchanged.
  • a preheating line (PHL) capable of adjusting the temperature of boil-off gas introduced into the heat exchanger is provided in the gas supply line (GSL) at the front end of the heat exchanger 200 so as to minimize thermal stress in the heat exchanger.
  • a preheating line (PHL) for heating all or part of the boil-off gas upstream of the heat exchanger 200 of the gas supply line (GSL) and supplying it to the front end of the heat exchanger of the gas supply line is branched, and the preheating line is branched to heat the boil-off gas
  • a preheater 250 is provided.
  • glycol water, steam, seawater, or fresh water may be supplied as a heat source of the preheater.
  • the boil-off gas passing through the preheating line (PHL) does not branch to the preheating line, but is joined with the boil-off gas passing through the gas supply line (GSL) and introduced into the heat exchanger 200, and the boil-off gas passing through the heat exchanger is compressed by a compressor. After being compressed in 100, it is introduced into the heat exchanger 200 again and cooled through heat exchange with nitrogen refrigerant in the refrigerant circulation line (CL) and uncompressed boil-off gas in the gas supply line (GSL).
  • the evaporated gas cooled while passing through the heat exchanger is gas-liquid separated in the gas-liquid separator 400, and the separated re-liquefied gas is transferred to the storage tank CT.
  • a bypass line (BL) branched off from the reliquefaction line and bypasses the gas-liquid separator and is connected to the storage tank, so that the reliquefaction gas cooled in the heat exchanger can be directly transferred to the storage tank.
  • the internal pressure of the gas-liquid separator may change. pressure can be maintained.
  • the pressure compensating line ( PL) and a nitrogen blanket line (BKL) supplying nitrogen through the pressure compensation line.
  • nitrogen refrigerant when the re-liquefaction process is initially operated or re-operated after the process is stopped, nitrogen refrigerant must be charged to the refrigerant circulation line of the re-liquefaction system.
  • nitrogen is supplied to the front of the refrigerant compressor 300 through the refrigerant filling line NL. It is characterized by reducing the preparation time for operation and securing ship safety.
  • Valves for opening and closing each pipe are installed in the reliquefaction system, and by opening and closing each valve, leaks in the heat exchanger and each connection pipe can be checked simultaneously when the refrigerant is charged.
  • a fourth valve (V4) is provided at the front end of the heat exchanger 200, and a fifth valve (V5) is provided at the rear end of the heat exchanger in the gas supply line and at the front end of the compressor 100, and is provided at the front end of the fourth valve.
  • the preheating line (PHL) is branched from the gas supply line at .
  • a sixth valve V6 is provided at the rear end of the preheater 250 in the preheating line, and a seventh valve V7 is provided in a pipe connected to the front end of the compressor bypassing the heat exchanger at the rear end of the preheater.
  • an eighth valve (V8) is provided in front of the heat exchanger (200) and a ninth valve (V9) is provided in front of the gas-liquid separator (400), and a bypass line branched from the front end of the ninth valve.
  • (BL) is provided with a tenth valve (V10).
  • the 11th valve V11 is installed upstream of the connection point of the nitrogen blanket line (BKL) in the pressure compensation line (PL), the twelfth valve (V12) is installed in the nitrogen blanket line (BKL), and the nitrogen blanket is connected to the pressure compensation line (PL).
  • a thirteenth valve V13 is provided downstream of the connection point of the line BKL.
  • the nitrogen refrigerant is charged from the inventory in which nitrogen is stored to the refrigerant circulation line (CL) before operation.
  • the first and second valves V1 and V2 are closed and the third valve V3 is opened to supply nitrogen from the inventory tank to the front end of the refrigerant compressor 300 through the refrigerant filling line NL, while nitrogen passes through the refrigerant. It is first checked whether there is water leakage from the high-pressure part at the rear end of the refrigerant compressor 300 to the low-pressure part at the rear end of the refrigerant expander 350 in the circulation line CL.
  • the fourth and fifth valves (V4 and V5) are closed, and the independent heat exchanger low-pressure part is checked for leaks along the gas supply line (GSL), and the eighth to tenth valves are checked. (V8, V9, V10) can be closed and leakage checks in the high pressure part of the heat exchanger can be performed simultaneously along the reliquefaction line.
  • the sixth and seventh valves V6 and V7 and the eleventh to thirteenth valves V11, V12, and V13 are also closed to check for leaks.
  • the leak check is complete. 2 the first and second valves V1 and V2 are opened, and as shown in FIG. 2, it is checked whether the remaining parts of the refrigerant circulation line are leaked.
  • the fourth and fifth valves and the eighth to tenth valves are closed and the boil-off gas passes through the heat exchanger along the gas supply line and the re-liquefaction line. It is possible to check whether there is a leak in the low pressure part and the high pressure part at the same time.
  • the refrigerant circulation line (CL)
  • the gas-liquid separator 400 is filled with nitrogen for pressure compensation through the nitrogen blanket line (BKL) to evaporate the heat exchanger. You can check whether there is a leak in the gas passage part.
  • the eighth to tenth valves V8 to V10 and the thirteenth valve V13 are closed, and the eleventh and twelfth valves V11 and V12 are opened to pass through the nitrogen blanket line BKL.
  • Nitrogen is supplied and sent to the front end of the heat exchanger 200 of the reliquefaction line RL, and while passing through the heat exchanger along the reliquefaction line, it is possible to check whether there is a leak in the high-pressure part of the heat exchanger through which the compressed gas to be reliquefied passes.
  • leaks in the heat exchanger and each connection pipe are simultaneously checked in the preceding refrigerant filling process by manipulating the valves in which each pipe is installed. It is possible to secure the safety of the ship while shortening the preparation time for operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

선박용 재액화 시스템의 누수 감지 시스템이 개시된다. 본 발명의 선박용 재액화 시스템의 누수 감지 시스템은, 선박의 저장탱크에 저장된 액화가스로부터 발생하는 증발가스를 압축기로 공급하는 가스공급라인; 상기 압축기에서 압축된 압축가스를 열교환기를 거쳐 냉각하고 재액화하여 상기 저장탱크로 회수하는 재액화라인; 상기 열교환기에서 상기 압축가스와 열교환되는 냉매가 순환하는 냉매순환라인; 상기 냉매순환라인에 마련되며 상기 열교환기에서 상기 압축가스를 냉각시키고 배출되는 냉매를 압축하는 냉매압축기; 상기 냉매압축기에서 압축 후 열교환기를 거쳐 냉각된 냉매를 팽창 냉각시켜 열교환기의 냉매로 공급하는 냉매팽창기; 및 질소가 충진된 인벤토리 탱크로부터 상기 냉매순환라인의 냉매압축기 전단으로 연결되는 냉매충진라인:을 포함하며, 재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 냉매충진라인을 통해 상기 냉매압축기 전단으로 질소를 공급하여 상기 냉매순환라인의 누수 여부를 확인하는 것을 특징으로 한다.

Description

선박용 재액화 시스템의 누수 감지 시스템
본 발명은 선박용 재액화 시스템의 누수 감지 시스템에 관한 것으로, 더욱 상세하게는 선박에서 발생하는 증발가스를 재액화시키는 재액화 시스템에서 최초 운전 또는 정지 후 재운전 시 열교환기의 누수 여부를 확인하여 감지할 수 있는 누수 감지 시스템에 관한 것이다.
천연가스(natural gas)는, 메탄(methane)을 주성분으로 하며, 연소 시 환경오염 물질의 배출이 거의 없어 친환경 연료로서 주목받고 있다. 액화천연가스(LNG; Liquefied Natural Gas)는 천연가스를 상압 하에서 약 -163℃로 냉각시켜 액화시킴으로써 얻어지는 것으로, 가스 상태일 때보다 부피가 약 1/600로 줄어들기 때문에, 해상을 통한 원거리 운반에 매우 적합하다. 따라서, 천연가스는 주로 저장 및 이송이 용이한 액화천연가스 상태로 저장 및 이송된다.
천연가스의 액화점은 상압에서 약 -163℃의 극저온이므로, LNG 저장탱크는 LNG가 액체 상태를 유지하도록 단열처리되는 것이 일반적이다. 그러나 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열을 차단하는 데에는 한계가 있고, 외부의 열이 LNG 저장탱크에 지속적으로 전달되므로 LNG 수송과정에서 LNG가 LNG 저장탱크 내에서 지속적으로 자연 기화되어 증발가스(BOG; Boil-Off Gas)가 발생한다.
LNG 저장탱크에서 증발가스가 지속적으로 생성되면, LNG 저장탱크의 내압을 상승시키는 요인이 된다. 저장탱크의 내압이 설정된 안전압력 이상이 되면 탱크 파손(rupture) 등 위급상황을 초래할 수 있으므로, 안전밸브를 이용하여 증발가스를 저장탱크 외부로 배출시켜야만 한다. 그러나 증발가스는 일종의 LNG 손실로서 LNG의 수송 효율 및 연료 효율에 있어 중요한 문제이므로, 저장탱크에서 발생하는 증발가스를 처리하기 위한 다양한 방법이 사용되고 있다.
최근에는, 증발가스를 선박의 엔진 등 연료 수요처에서 사용하는 방법, 증발가스를 재액화시켜 저장탱크로 회수하는 방법 또는 이러한 두 가지 방법을 복합적으로 사용하는 방법 등이 개발되어 적용되고 있다.
선박에서 증발가스를 재액화하기 위하여 재액화 사이클을 적용하는 경우, 대표적으로 채택할 수 있는 액화 방법은 SMR 사이클과 C3MR 사이클을 이용한 공정을 예로 들 수 있다. C3MR 사이클(Propane-precooled Mixed Refrigerant Cycle)은 천연가스를 프로판 단일냉매를 이용하여 냉각시키고, 그 후 혼합냉매를 이용하여 액화 및 과냉각시키는 공정이고, SMR 사이클(SinGSLe Mixed Refrigerant Cycle)은 복수의 성분으로 이루어진 혼합냉매를 사용하여 천연가스를 액화시키는 공정이다.
이러한 SMR 사이클과 C3MR 사이클 모두 혼합냉매를 이용하는 공정인데, 액화 공정이 진행되면서 냉매의 누수가 발생하여 혼합냉매의 조성비가 변화하는 경우 액화 효율이 떨어지므로, 혼합냉매의 조성비를 지속적으로 계측하면서 부족한 냉매 성분을 충진하여 냉매의 조성을 유지해야 한다.
증발가스를 재액화하기 위한 재액화 사이클의 다른 방법으로는, 질소 냉매를 이용한 단일 사이클 액화공정을 들 수 있다.
질소 냉매는 혼합 냉매를 이용한 사이클에 비해 상대적으로 효율이 낮으나, 냉매가 불활성이어서 안전성이 높고, 냉매의 상 변화가 없기 때문에 선박에 적용하기 보다 용이한 장점이 있다.
재액화 시스템은 증발가스를 공급받아 압축하는 압축기와, 압축기에서 압축된 압축가스를 냉매와 열교환으로 냉각하는 열교환기, 열교환기에서 압축가스와 열교환되는 냉매가 순환하는 냉매순환부를 포함하고, 질소 냉매를 이용한 냉동 사이클이 적용된 재액화 시스템의 경우 냉매순환부에는 열교환기에서 열교환 후 배출된 냉매가 압축 후 열교환기를 거쳐 냉각되고 다시 팽창냉각된 후 열교환기로 순환될 수 있다.
이와 같이 재액화 시스템, 특히 열교환기에는 극저온인 LNG 증발가스와 증발가스보다도 낮은 온도의 질소 냉매가 공급되는데, 장치 손상 등 원인으로 이러한 극저온 인화성 물질의 누수가 발생하면 선원 및 선박 안전에 큰 위험을 초래할 수 있다.
재액화 시스템 운전 중에는 열교환기의 각 연결라인 전/후단에 설치된 압력센서 경고 신호를 통해 즉각적인 누수 확인이 가능하다. 그러나, 최초 운전 시 또는 재액 시스템 정지 후 재가동 시와 같은 때에는 압력센서에 의한 누수 감지가 불가능하고 따로 이를 확인할 수 있는 장치 및 지침이 없어, 누수 확인이 늦어지는 문제가 있었다.
본 발명은 이러한 문제를 해결하여 재액화 시스템의 최초 운전 및 정지 후 재가동 시에도 열교환기의 누수 여부를 신속히 확인하여, 선박 안전을 확보할 수 있는 방안을 제안하고자 한다.
상술한 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 선박의 저장탱크에 저장된 액화가스로부터 발생하는 증발가스를 압축기로 공급하는 가스공급라인;
상기 압축기에서 압축된 압축가스를 열교환기를 거쳐 냉각하고 재액화하여 상기 저장탱크로 회수하는 재액화라인;
상기 열교환기에서 상기 압축가스와 열교환되는 냉매가 순환하는 냉매순환라인;
상기 냉매순환라인에 마련되며 상기 열교환기에서 상기 압축가스를 냉각시키고 배출되는 냉매를 압축하는 냉매압축기;
상기 냉매압축기에서 압축 후 열교환기를 거쳐 냉각된 냉매를 팽창 냉각시켜 열교환기의 냉매로 공급하는 냉매팽창기; 및
질소가 충진된 인벤토리 탱크로부터 상기 냉매순환라인의 냉매압축기 전단으로 연결되는 냉매충진라인:을 포함하며,
재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 냉매충진라인을 통해 상기 냉매압축기 전단으로 질소를 공급하여 상기 냉매순환라인의 누수 여부를 확인하는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템이 제공된다.
바람직하게는, 상기 냉매순환라인에서 상기 냉매충진라인의 연결지점 전단에 마련되는 제1 밸브; 상기 냉매순환라인에서 상기 냉매팽창기와 열교환기 사이에 마련되는 제2 밸브; 및 상기 냉매충진라인에 마련되는 제3 밸브:를 더 포함할 수 있다.
바람직하게는, 상기 제1 및 제2 밸브를 닫고 제3 밸브를 열어 질소를 통과시켜 상기 냉매순환라인의 냉매압축기 후단 고압부부터 냉매팽창기 후단 저압부까지 누수 여부를 먼저 확인한 후, 제1 및 제2 밸브를 열어 상기 냉매팽창기 후단 저압부부터 냉매압축기 전단 저압부까지 누수 여부를 확인하며 냉매순환라인에 질소 냉매를 충진할 수 있다.
바람직하게는, 상기 가스공급라인은 상기 열교환기를 거쳐 상기 압축기로 연결되며, 상기 가스공급라인에서 상기 열교환기 전단에 마련되는 제4 밸브; 및 상기 가스공급라인에서 상기 압축기 전단에 마련되는 제5 밸브:를 더 포함하고, 재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 제4 및 제5 밸브를 닫고 상기 냉매순환라인의 누수 여부 확인과 독립하여 상기 가스공급라인을 따라 상기 열교환기를 통과하는 열교환기 저압부 누수 여부를 확인할 수 있다.
바람직하게는, 상기 제4 밸브 전단에서 상기 가스공급라인으로부터 분기되어 상기 열교환기 전단의 가스공급라인으로 연결되는 예열라인; 상기 예열라인에 마련되며 증발가스를 가온하는 예열기; 상기 예열라인의 예열기 후단에 마련되는 제6 밸브; 및 상기 예열기 후단에서 상기 열교환기를 우회하여 상기 압축기 전단으로 연결되는 배관에 마련되는 제7 밸브:를 더 포함할 수 있다.
바람직하게는, 상기 재액화라인에서 상기 열교환기의 하류에 마련되어 재액화가스를 기액분리하는 기액분리기; 상기 재액화라인의 상기 열교환기 후단에서 분기되어 상기 기액분리기를 우회하여 저장탱크로 연결되는 바이패스라인; 상기 재액화라인에서 상기 열교환기 전단에 마련되는 제8 밸브; 상기 재액화라인에서 상기 기액분리기 전단에 마련되는 제9 밸브; 및 상기 바이패스라인에 마련되는 제10 밸브:를 더 포함하고, 재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 제8 내지 제10 밸브를 닫고 상기 냉매순환라인의 누수 여부 확인과 독립하여 상기 재액화라인을 따라 상기 열교환기를 통과하는 열교환기 고압부 누수 여부를 확인할 수 있다.
바람직하게는, 상기 압축기의 하류에서 상기 재액화라인으로부터 분기되어 상기 기액분리기의 상부로 연결되는 압력보상라인; 상기 압력보상라인으로 질소를 공급하는 질소블랭킷라인; 상기 압력보상라인에서 질소블랭킷라인의 연결지점 상류에 마련되는 제11 밸브; 상기 질소블랭킷라인에 마련되는 제12 밸브; 및 상기 압력보상라인에서 질소블랭킷라인의 연결지점 하류에 마련되는 제13 밸브:을 더 포함하고, 상기 압력보상라인을 통해 증발가스 또는 질소를 공급하여 상기 기액분리기의 내부 압력을 조절할 수 있다.
바람직하게는, 상기 제8 내지 제10 밸브, 제13 밸브를 닫고, 제11 및 제12 밸브를 열어, 질소블랭킷라인으로부터 질소를 공급하여 상기 재액화라인을 따라 상기 열교환기를 통과하는 열교환기 고압부 누수 여부를 확인할 수 있다.
본 발명에서는 재액화 시스템에서 최초 운전 또는 정지 후 재운전 시, 냉매를 충진하는 과정에서 열교환기 및 각 연결라인의 누수 여부를 신속하게 확인할 수 있도록 한다.
누수 확인을 위한 별도의 추가 장비 설치를 필요로 하지 않아 비용을 절감하면서, 열교환기에 연결된 각 배관들의 밸브 조작을 통해 냉매 충진 과정 중에 열교환기 누수를 확인할 수 있도록 하여 운전 시간을 단축하고, 선박 안전을 확보한다.
도 1 내지 3에는 본 발명의 일 실시예에 따른 선박용 재액화 시스템의 누수 감지 시스템에서 열교환기 및 각 연결라인의 누수 여부를 확인하는 과정을 개략적으로 도시하였다.
본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야만 한다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서 각 도면의 구성요소들에 대해 참조 부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.
후술하는 본 발명의 일 실시예에서 선박은, 액화가스를 저장하는 저장탱크가 마련되는 모든 종류의 선박일 수 있다. 대표적으로 LNG 운반선(LNG Carrier), 액체수소 운반선, LNG RV(Regasification Vessel)와 같은 자체 추진 능력을 갖춘 선박을 비롯하여, LNG FPSO(Floating Production Storage Offloading), LNG FSRU(Floating Storage Regasification Unit)와 같이 추진 능력을 갖추지는 않지만 해상에 부유하고 있는 해상 구조물도 포함될 수 있다.
또한, 본 실시예는 가스를 저온으로 액화시켜 수송될 수 있고, 저장된 상태에서 증발가스가 발생하는 모든 종류의 액화가스의 재액화 사이클에 적용될 수 있다. 이러한 액화가스는 예를 들어 LNG(Liquefied Natural Gas), LEG(Liquefied Ethane Gas), LPG(Liquefied Petroleum Gas), 액화에틸렌가스(Liquefied Ethylene Gas), 액화프로필렌가스(Liquefied Propylene Gas) 등과 같은 액화석유화학가스일 수 있다. 다만, 후술하는 실시예에서는 대표적인 액화가스인 LNG가 적용되는 것을 예로 들어 설명하기로 한다.
도 1 내지 3에는 본 발명의 일 실시예에 따른 선박용 재액화 시스템의 누수 감지 시스템에서 열교환기 및 각 연결라인의 누수 여부를 확인하는 과정을 개략적으로 도시하였다.
본 실시예의 선박용 재액화 시스템은, 선박의 저장탱크에 저장된 액화가스로부터 발생하는 증발가스를 베이퍼헤더로 배출하고 이를 선내 연료로 공급하고 연료로 공급되지 않은 증발가스는 재액화하여 저장탱크로 회수하기 위한 장치이다.
도 1 내지 3에 도시된 바와 같이 본 실시예 시스템에는, 베이퍼헤더(VH)로부터 압축기(100)로 공급하는 가스공급라인(GSL)이 연결되고, 압축기(100)에서 압축된 압축가스를 열교환기(200)를 거쳐 냉각하고 재액화하여 저장탱크로 회수하는 재액화라인(RL)과, 열교환기(200)에서 압축가스와 열교환되는 냉매가 순환하는 냉매순환라인(CL)이 마련된다.
냉매순환라인(CL)에는 열교환기에서 압축가스를 냉각시키고 배출되는 냉매를 압축하는 냉매압축기(300)와, 냉매압축기에서 압축 후 열교환기를 거쳐 냉각된 냉매를 팽창 냉각시켜 열교환기의 냉매로 공급하는 냉매팽창기(350)가 마련되며, 선내에 마련되며 질소가 충진된 인벤토리 탱크로부터 냉매순환라인의 냉매압축기 전단으로 냉매충진라인(NL)이 연결된다.
가스공급라인(GSL)은 저장탱크로부터 열교환기(200)를 거쳐 압축기(100)로 연결됨으로써, 저장탱크에서 발생한 미압축 증발가스는 열교환기에 냉열을 공급한 후 압축기로 공급되어 압축된다.
압축기(100)에서는 증발가스를 압축하는데, 예를 들어 선박의 주엔진의 연료공급압력으로 압축할 수 있다. 예를 들어 DF 엔진이 마련된 경우라면 5.5 barg, X-DF 엔진이 마련된 경우라면 15 barg, ME-GI 엔진이 마련된 경우는 300 barg 내외로 압축할 수 있다. 압축된 증발가스는 선박의 엔진(미도시)에 연료로도 공급될 수 있고, 연료로 공급되지 않은 증발가스를 재액화시킬 수 있다.
선박 규정상 엔진으로 연료를 공급하는 압축기는, 비상 상황을 대비하여 리던던시(Redundancy) 설계를 하여야 하므로, 도면에서는 한 대의 압축기를 도시하였지만, 압축기는 주압축기와 리던던시 압축기를 포함하여 구성된 것일 수 있고, 복수의 컴프레서와 중간냉각기가 마련되는 다단압축기로 마련될 수 있다.
압축기(100)에서 압축된 증발가스는 재액화 라인(RL)을 따라 열교환기(200)로 도입되어 열교환을 통해 냉각된다.
재액화라인(RL)에는, 압축기에서 압축된 증발가스를 냉각하는 열교환기(200), 열교환기를 거쳐 냉각된 증발가스를 기액분리하여 액화가스를 저장탱크로 공급하는 기액분리기(400)가 마련된다.
열교환기(200)에서는 냉매순환라인(CL)을 순환하는 냉매와 열교환을 통해 증발가스가 냉각된다. 냉매순환라인에는, 열교환기로 공급될 냉매가 팽창 냉각되는 냉매팽창기(350), 열교환기에서 배출되는 증발가스를 냉각시키고 배출되는 냉매를 압축하는 냉매압축기(300)가 마련된다. 냉매압축기와 냉매팽창기는 축 연결되어 냉매의 팽창에너지를 냉매 압축에 이용하는 컴팬더로 마련될 수 있고, 냉매 사이클을 구동하기 위해 필요한 전력을 줄일 수 있다.
냉매순환라인(CL)을 순환하며 열교환기로 공급되는 냉매로는 질소(N2)가 이용될 수 있다.
냉매압축기(300)에서 압축된 냉매는 열교환기(200)에서 냉각된 후 냉매팽창기(350)에서 팽창 냉각되어 다시 열교환기(200)의 냉매로 공급되며 냉매순환라인(CL)을 순환한다. 그에 따라, 열교환기(200)에서는 압축기에서 압축된 증발가스, 압축기로 도입될 미압축 증발가스, 팽창기에서 팽창 냉각된 냉매 및 냉매압축기에서 압축된 냉매의 4가지 흐름이 열교환된다.
한편, 열교환기(200) 전단의 가스공급라인(GSL)에는 열교환기에 열응력을 최소화할 수 있도록 열교환기로 도입되는 증발가스의 온도를 조절할 수 있는 예열라인(PHL)이 마련된다.
가스공급라인(GSL)의 열교환기(200) 상류에서 증발가스의 전부 또는 일부를 가열하여 가스공급라인의 열교환기 전단으로 공급하는 예열라인(PHL)이 분기되고, 예열라인에는 증발가스를 가열하는 예열기(250)가 마련된다. 예열기의 열원으로는 예를 들어 글리콜워터, 스팀, 해수 또는 청수 등이 공급될 수 있다.
이와 같이 예열라인(PHL)을 통과한 증발가스는 예열라인으로 분기되지 않고 가스공급라인(GSL)을 통과한 증발가스와 합류되어 열교환기(200)로 도입되고, 열교환기를 통과한 증발가스는 압축기(100)에서 압축된 후 다시 열교환기(200)로 도입되어 냉매순환라인(CL)의 질소 냉매 및 가스공급라인(GSL)의 미압축 증발가스와 열교환을 통해 냉각된다.
열교환기를 통과하며 냉각된 증발가스는 기액분리기(400)에서 기액분리되어, 분리된 재액화가스가 저장탱크(CT)로 이송된다. 열교환기 후단에서 재액화라인으로부터 분기되어 기액분리기를 우회하여 저장탱크로 연결되는 바이패스라인(BL)이 마련되어, 열교환기에서 냉각된 재액화가스를 바로 저장탱크로 이송할 수도 있다.
한편, 저장탱크로 이송하기 위해 기액분리기 후단의 밸브를 열게 되면, 기액분리기의 내부 압력이 변화할 수 있는데, 기액분리기로 도입되는 액화가스로부터 발생하는 플래시가스, 즉 오프가스에 의해 기액분리기의 내부 압력을 유지할 수 있다.
이때 질소 냉매와 열교환으로 냉각된 액화가스가 과냉각되어 기액분리기로 유입되는 경우 오프가스가 발생하지 않거나 적게 발생하고, 기액분리기 후단의 밸브를 열면, 급격하게 기액분리기의 내부 압력이 떨어질 수 있다. 본 실시예에서는 이와 같은 때에 기액분리기의 압력을 보상하여 내부 압력을 유지할 수 있도록 압축기(100)의 하류에서 재액화라인(RL)으로부터 분기되어 기액분리기(400)의 상부로 연결되는 압력보상라인(PL)과, 압력보상라인으로 질소를 공급하는 질소블랭킷라인(BKL)을 마련한다. 이를 통해 기액분리기로부터 저장탱크로 재액화가스 이송 시 압력보상라인(PL)을 통해 증발가스 또는 질소를 기액분리기에 공급하여 기액분리기의 내부 압력을 유지할 수 있다.
본 실시예 시스템에서는 재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 재액화 시스템의 냉매순환라인으로 질소 냉매 충진이 선행되어야 한다.
질소 냉매 충진 시 냉매충진라인(NL)을 통해 냉매압축기(300) 전단으로 질소를 공급하게 되는데, 본 실시예에서는 이러한 냉매 충진 과정에서 열교환기 및 각 연결배관들의 누수 여부를 동시에 확인할 수 있도록 하여, 운전 준비 시간을 단축하면서 선박 안전을 확보할 수 있도록 한 것이 특징이다.
재액화 시스템에는 각 배관들의 개폐를 위한 밸브들이 설치되는데, 이러한 각 밸브들의 개폐에 의해 냉매 충진 시 열교환기 및 각 연결배관들의 누수를 동시에 확인할 수 있도록 한다.
각 밸브들을 살펴보면, 도 1 내지 도 3에 도시된 바와 같이 냉매순환라인(CL)에서 냉매충진라인(NL)의 연결지점 전단에 제1 밸브(V1), 냉매순환라인(CL)에서 냉매팽창기(350)와 열교환기(200) 사이에 제2 밸브(V2), 냉매충진라인(NL)에 제3 밸브(V3)가 각 마련된다.
가스공급라인(GSL)에서 열교환기(200) 전단에는 제4 밸브(V4)가, 가스공급라인의 열교환기 후단, 압축기(100) 전단에 제5 밸브(V5)가 마련되며, 제4 밸브 전단에서 가스공급라인으로부터 예열라인(PHL)이 분기된다. 예열라인의 예열기(250) 후단에 제6 밸브(V6)가 마련되고, 예열기 후단에서 열교환기를 우회하여 압축기 전단으로 연결되는 배관에 제7 밸브(V7)가 마련된다.
재액화라인(RL)을 따라 열교환기(200) 전단에는 제8 밸브(V8)가, 기액분리기(400) 전단에는 제9 밸브(V9)가 마련되고, 제9 밸브 전단에서 분기된 바이패스라인(BL)에 제10 밸브(V10)가 마련된다.
압력보상라인(PL)에서 질소블랭킷라인(BKL)의 연결지점 상류에 제11 밸브(V11)가, 질소블랭킷라인(BKL)에는 제12 밸브(V12)가, 압력보상라인(PL)에서 질소블랭킷라인(BKL)의 연결지점 하류에는 제13 밸브(V13)가 각 마련된다.
도 1 내지 3을 통해 재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 열교환기 및 각 연결배관의 누수 여부 확인 과정을 살펴본다.
먼저 도 1에 도시된 바와 같이, 재액화 공정의 최초 운전 또는 정지 후 재운전 시 운전 전에 질소가 저장된 인벤토리로부터 냉매순환라인(CL)으로 질소 냉매 충전이 선행된다.
이 때 제1 및 제2 밸브(V1, V2)를 닫고 제3 밸브(V3)를 열어 냉매충진라인(NL)을 통해 인벤토리 탱크로부터 냉매압축기(300) 전단으로 질소를 공급하면서 질소를 통과시켜 냉매순환라인(CL)의 냉매압축기(300) 후단 고압부부터 냉매팽창기(350) 후단 저압부까지 누수 여부를 먼저 확인한다.
이 경우 냉매순환라인의 누수 여부 확인과 독립하여, 제4 및 제5 밸브(V4, V5)를 닫고 가스공급라인(GSL)을 따라 독립된 열교환기 저압부의 누수 여부 확인과, 제8 내지 제10 밸브(V8, V9, V10)를 닫고 재액화라인을 따라 독립된 열교환기 고압부의 누수 여부 확인을 동시에 수행할 수 있다. 이때는 제6 및 제7 밸브(V6, V7), 제11 내지 제13 밸브(V11, V12, V13)도 닫고 누수 확인을 수행한다.
도 1에 도시된 제1 밸브(V1)가 마련된 냉매순환라인(CL)부터 냉매압축기(300) 후단 고압부, 냉매팽창기(350) 후단 저압부 및 제2 밸브(V2) 설치 위치까지 누수 확인이 완료되면, 제1 및 제2 밸브(V1, V2)를 열고 도 2에 도시된 바와 같이 냉매순환라인의 나머지 부분에 대한 누수 여부를 확인한다.
제1 및 제2 밸브(V1, V2)를 열어 냉매팽창기(350) 후단 저압부부터 냉매압축기(300) 전단 저압부까지, 냉매순환라인(CL)이 통과하는 열교환기(200) 저온부의 누수 여부를 확인하면서 냉매순환라인(CL)에 질소 냉매를 충진하게 된다.
이 때에도 전술한 바와 같이 냉매순환라인의 누수 여부 확인과 독립하여, 제4 및 제5 밸브와 제8 내지 제10 밸브를 닫고 가스공급라인과 재액화라인을 따라 증발가스가 통과하는 열교환기를 통과하는 저압부 및 고압부의 누수 여부 확인을 동시에 수행할 수 있다.
한편, 냉매순환라인의 누수 여부 확인이 완료되면 계속해서 냉매순환라인(CL)으로 냉매를 충전하고, 질소블랭킷라인(BKL)을 통해 기액분리기(400)에 압력 보상용 질소를 충진하면서 열교환기 증발가스 통과 부분의 누수 여부를 확인할 수 있다.
도 3에 도시된 바와 같이, 제8 내지 제10 밸브(V8 ~ V10), 제13 밸브(V13)를 닫고, 제11 및 제12 밸브(V11, V12)를 열어 질소블랭킷라인(BKL)을 통해 질소를 공급하고 이를 재액화라인(RL)의 열교환기(200) 전단으로 보내, 재액화라인을 따라 열교환기를 통과시키면서 재액화될 압축가스가 지나는 열교환기 고압부의 누수 여부를 확인할 수 있다.
누수 여부 확인이 완료되면 질소는 기액분리기로 보내 압력 보상용 질소로 기액분리기에 충진한다.
이상에서 살펴본 바와 같이 본 실시예에서는 각 배관이 설치된 밸브들의 조작을 통해 재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 선행하는 냉매 충진 과정에서 열교환기 및 각 연결배관들의 누수 여부를 동시에 확인할 수 있도록 하여, 운전 준비 시간을 단축하면서 선박 안전을 확보할 수 있다.
본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명한 것이다.

Claims (8)

  1. 선박의 저장탱크에 저장된 액화가스로부터 발생하는 증발가스를 압축기로 공급하는 가스공급라인;
    상기 압축기에서 압축된 압축가스를 열교환기를 거쳐 냉각하고 재액화하여 상기 저장탱크로 회수하는 재액화라인;
    상기 열교환기에서 상기 압축가스와 열교환되는 냉매가 순환하는 냉매순환라인;
    상기 냉매순환라인에 마련되며 상기 열교환기에서 상기 압축가스를 냉각시키고 배출되는 냉매를 압축하는 냉매압축기;
    상기 냉매압축기에서 압축 후 열교환기를 거쳐 냉각된 냉매를 팽창 냉각시켜 열교환기의 냉매로 공급하는 냉매팽창기; 및
    질소가 충진된 인벤토리 탱크로부터 상기 냉매순환라인의 냉매압축기 전단으로 연결되는 냉매충진라인:을 포함하며,
    재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 냉매충진라인을 통해 상기 냉매압축기 전단으로 질소를 공급하여 상기 냉매순환라인의 누수 여부를 확인하는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템.
  2. 제 1항에 있어서,
    상기 냉매순환라인에서 상기 냉매충진라인의 연결지점 전단에 마련되는 제1 밸브;
    상기 냉매순환라인에서 상기 냉매팽창기와 열교환기 사이에 마련되는 제2 밸브; 및
    상기 냉매충진라인에 마련되는 제3 밸브:를 더 포함하는 선박용 재액화 시스템의 누수 감지 시스템.
  3. 제 2항에 있어서,
    상기 제1 및 제2 밸브를 닫고 제3 밸브를 열어 질소를 통과시켜 상기 냉매순환라인의 냉매압축기 후단 고압부부터 냉매팽창기 후단 저압부까지 누수 여부를 먼저 확인한 후, 제1 및 제2 밸브를 열어 상기 냉매팽창기 후단 저압부부터 냉매압축기 전단 저압부까지 누수 여부를 확인하며 냉매순환라인에 질소 냉매를 충진하는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템.
  4. 제 2항에 있어서,
    상기 가스공급라인은 상기 열교환기를 거쳐 상기 압축기로 연결되며,
    상기 가스공급라인에서 상기 열교환기 전단에 마련되는 제4 밸브; 및
    상기 가스공급라인에서 상기 압축기 전단에 마련되는 제5 밸브:를 더 포함하고,
    재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 제4 및 제5 밸브를 닫고 상기 냉매순환라인의 누수 여부 확인과 독립하여 상기 가스공급라인을 따라 상기 열교환기를 통과하는 열교환기 저압부 누수 여부를 확인하는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템.
  5. 제 4항에 있어서,
    상기 제4 밸브 전단에서 상기 가스공급라인으로부터 분기되어 상기 열교환기 전단의 가스공급라인으로 연결되는 예열라인;
    상기 예열라인에 마련되며 증발가스를 가온하는 예열기;
    상기 예열라인의 예열기 후단에 마련되는 제6 밸브; 및
    상기 예열기 후단에서 상기 열교환기를 우회하여 상기 압축기 전단으로 연결되는 배관에 마련되는 제7 밸브:를 더 포함하는 선박용 재액화 시스템의 누수 감지 시스템.
  6. 제 4항에 있어서,
    상기 재액화라인에서 상기 열교환기의 하류에 마련되어 재액화가스를 기액분리하는 기액분리기;
    상기 재액화라인의 상기 열교환기 후단에서 분기되어 상기 기액분리기를 우회하여 저장탱크로 연결되는 바이패스라인;
    상기 재액화라인에서 상기 열교환기 전단에 마련되는 제8 밸브;
    상기 재액화라인에서 상기 기액분리기 전단에 마련되는 제9 밸브; 및
    상기 바이패스라인에 마련되는 제10 밸브:를 더 포함하고,
    재액화 공정의 최초 운전 또는 공정 정지 후 재운전 시, 상기 제8 내지 제10 밸브를 닫고 상기 냉매순환라인의 누수 여부 확인과 독립하여 상기 재액화라인을 따라 상기 열교환기를 통과하는 열교환기 고압부 누수 여부를 확인하는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템.
  7. 제 6항에 있어서,
    상기 압축기의 하류에서 상기 재액화라인으로부터 분기되어 상기 기액분리기의 상부로 연결되는 압력보상라인;
    상기 압력보상라인으로 질소를 공급하는 질소블랭킷라인;
    상기 압력보상라인에서 질소블랭킷라인의 연결지점 상류에 마련되는 제11 밸브;
    상기 질소블랭킷라인에 마련되는 제12 밸브; 및
    상기 압력보상라인에서 질소블랭킷라인의 연결지점 하류에 마련되는 제13 밸브:을 더 포함하고,
    상기 압력보상라인을 통해 증발가스 또는 질소를 공급하여 상기 기액분리기의 내부 압력을 조절할 수 있는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템.
  8. 제 7항에 있어서,
    상기 제8 내지 제10 밸브, 제13 밸브를 닫고, 제11 및 제12 밸브를 열어, 질소블랭킷라인으로부터 질소를 공급하여 상기 재액화라인을 따라 상기 열교환기를 통과하는 열교환기 고압부 누수 여부를 확인하는 것을 특징으로 하는 선박용 재액화 시스템의 누수 감지 시스템.
PCT/KR2021/019905 2021-10-29 2021-12-27 선박용 재액화 시스템의 누수 감지 시스템 WO2023075024A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210147144A KR102538598B1 (ko) 2021-10-29 2021-10-29 선박용 재액화 시스템의 누수 감지 시스템
KR10-2021-0147144 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023075024A1 true WO2023075024A1 (ko) 2023-05-04

Family

ID=86160029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019905 WO2023075024A1 (ko) 2021-10-29 2021-12-27 선박용 재액화 시스템의 누수 감지 시스템

Country Status (2)

Country Link
KR (1) KR102538598B1 (ko)
WO (1) WO2023075024A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541615B2 (ja) * 1987-03-27 1996-10-09 ライボルト・アクチエンゲゼルシヤフト 漏洩検査器及びこれの運転法
KR20160144884A (ko) * 2015-06-09 2016-12-19 현대중공업 주식회사 빌지 처리 시스템
KR101701702B1 (ko) * 2015-06-19 2017-02-03 삼성중공업 주식회사 연료가스 공급시스템
CN107543663A (zh) * 2016-09-14 2018-01-05 北京卫星环境工程研究所 浮空器氦质谱检漏方法
KR102033538B1 (ko) * 2019-08-27 2019-10-17 대우조선해양 주식회사 선박의 증발가스 재액화 시스템 및 방법
KR20200112050A (ko) * 2019-03-20 2020-10-05 대우조선해양 주식회사 선박의 혼합냉매 충진 시스템 및 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102624234B1 (ko) * 2018-11-30 2024-01-12 한화오션 주식회사 증발가스 재액화 시스템 및 방법
KR102647309B1 (ko) * 2019-02-19 2024-03-13 한화오션 주식회사 재액화 사이클 냉매 충진 시스템 및 방법
KR102271875B1 (ko) * 2019-08-23 2021-07-01 한국가스공사 수소 충전용 냉각 장치 및 이를 이용한 수소 자동차 충전 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541615B2 (ja) * 1987-03-27 1996-10-09 ライボルト・アクチエンゲゼルシヤフト 漏洩検査器及びこれの運転法
KR20160144884A (ko) * 2015-06-09 2016-12-19 현대중공업 주식회사 빌지 처리 시스템
KR101701702B1 (ko) * 2015-06-19 2017-02-03 삼성중공업 주식회사 연료가스 공급시스템
CN107543663A (zh) * 2016-09-14 2018-01-05 北京卫星环境工程研究所 浮空器氦质谱检漏方法
KR20200112050A (ko) * 2019-03-20 2020-10-05 대우조선해양 주식회사 선박의 혼합냉매 충진 시스템 및 방법
KR102033538B1 (ko) * 2019-08-27 2019-10-17 대우조선해양 주식회사 선박의 증발가스 재액화 시스템 및 방법

Also Published As

Publication number Publication date
KR102538598B1 (ko) 2023-05-31
KR20230062161A (ko) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2017082552A1 (ko) 선박
WO2015130122A1 (ko) 증발가스 처리 시스템
WO2021015399A1 (ko) 선박의 연료가스 관리시스템
WO2016200089A1 (ko) 연료가스 공급시스템
WO2017171172A1 (ko) 선박
WO2019132608A1 (ko) 액화가스 재기화 시스템의 증발가스 처리 장치 및 방법
WO2017099317A1 (ko) 엔진을 포함하는 선박
WO2023075024A1 (ko) 선박용 재액화 시스템의 누수 감지 시스템
WO2017171171A1 (ko) 선박
WO2023043030A1 (ko) 증발가스 재액화 시스템 및 이를 포함하는 선박
KR102213508B1 (ko) 선박의 혼합냉매 충진 시스템 및 방법
WO2023042975A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2016195237A1 (ko) 증발가스 재액화 시스템
WO2023075025A1 (ko) 선박용 재액화 시스템의 블로다운 방법
WO2018174364A1 (ko) 선박용 증발가스 재액화 시스템 및 방법
WO2023075023A1 (ko) 선박의 증발가스 재액화 시스템 및 방법
WO2020204218A1 (ko) 냉각시스템
WO2017069520A1 (ko) 증발가스 재액화 장치 및 방법
WO2023282415A1 (ko) 선박의 증발가스 재액화 시스템 및 방법
WO2023068449A1 (ko) 선박용 재액화 시스템의 냉매 충진 시스템
WO2023075026A1 (ko) 선박용 재액화 시스템의 미세누수 감지 시스템
WO2023096019A1 (ko) 선박의 증발가스 재액화 시스템 및 방법
WO2023080331A1 (ko) 선박용 증발가스 재액화장치의 퍼징 시스템 및 방법
WO2023017924A1 (ko) 선박의 증발가스 재액화 시스템 및 방법, 재액화장치의 오프가스 처리시스템 및 방법
WO2022244941A1 (ko) 전력 절감형 액화가스 연료 선박 및 상기 액화가스 연료 선박의 증발가스 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962647

Country of ref document: EP

Kind code of ref document: A1