WO2023074938A1 - Core manufacturing apparatus and core manufacturing method - Google Patents

Core manufacturing apparatus and core manufacturing method Download PDF

Info

Publication number
WO2023074938A1
WO2023074938A1 PCT/KR2021/015264 KR2021015264W WO2023074938A1 WO 2023074938 A1 WO2023074938 A1 WO 2023074938A1 KR 2021015264 W KR2021015264 W KR 2021015264W WO 2023074938 A1 WO2023074938 A1 WO 2023074938A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
heater
members
lamina
laminated
Prior art date
Application number
PCT/KR2021/015264
Other languages
French (fr)
Korean (ko)
Inventor
우덕균
지정규
권재상
홍이경
이정일
최성진
이야곱
강석조
남기택
Original Assignee
(주)포스코에스피에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코에스피에스 filed Critical (주)포스코에스피에스
Publication of WO2023074938A1 publication Critical patent/WO2023074938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • B32B38/1833Positioning, e.g. registration or centering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications

Definitions

  • the present invention relates to a core manufacturing apparatus and manufacturing method for manufacturing a core of a laminated structure by an adhesive method, and more particularly, by bonding the interfaces of laminated laminar members (laminar members) for the iron core in an adhesive manner. It relates to a core manufacturing apparatus and manufacturing method for manufacturing a core (laminated core) of a laminated structure.
  • a laminated core refers to a core of a laminated structure manufactured by integrating a plurality of thin plates, that is, laminar members, and, for example, a plurality of laminae obtained by punching a metal strip. It means a core structure in which members are integrated into a laminated structure.
  • Such laminated cores are used as cores of various devices such as rotating devices such as motors, transformers, or iron cores for ignition systems, and various methods for manufacturing them are known.
  • the core of the laminated structure that is, the above-mentioned laminated core is manufactured. It can be.
  • a tab fixing method using an interlock tab As a method of integrating the laminar members, a tab fixing method using an interlock tab, a welding fixing method using, for example, laser welding, a rivet fixing method, and the like are known.
  • Examples of the tab fixing method are disclosed in patent documents such as Korean Patent Publication Nos. 10-2008-0067426 and 10-2008-0067428. There is a limit to the embossing process for forming the tab.
  • the cost can be reduced compared to laser welding, and the adhesive fixing method is known as a technology capable of responding to thinning of a steel plate.
  • the laminator (Laminator), more specifically, the internal space (lamination hole) of the mold (lower mold) in a laminated state, the interface (boundary surface) of the lamina members is bonded.
  • a plurality of sheets can be integrated by
  • the laminator includes a squeeze member (squeeze ring of Japanese Unexamined Patent Publication No. 2009-297758) for alignment/lamination of the lamina members, and the laminator is configured at a predetermined timing ( Timing) after rotating the lamina members by a predetermined angle (index rotation), a new lamina member is supplied (index rotation lamination).
  • a squeeze member squeeze ring of Japanese Unexamined Patent Publication No. 2009-297758
  • the present invention provides a core manufacturing apparatus and a core manufacturing method using the same capable of heating the lamina members together from the outside and the inside in order to bond the lamina members forming the core of the laminated structure by an adhesive method. There is a purpose.
  • One aspect of the present invention is a core manufacturing apparatus for forming a laminated core by integrating a plurality of lamina members by an adhesive method: having a lamination hole formed through in the vertical direction so as to pass the lamina members in a laminated state,
  • a laminator including a first heater for heating the lamina members passing through the lamination hole from the outside of the lamina members so that the lamina members are integrated by the adhesive present at the interface of the lamina members (Limanator); a core support movably provided at a lower side of the laminated hole to support the laminated core discharged from the laminated hole; And a second heater capable of entering the inside of the lamination hole through the lower end of the lamination hole and moving vertically through the core support to heat the lamina members inside the lamina members
  • Core manufacturing apparatus including provides
  • the core support may generate heat for heating the lamina members.
  • the second heater may be an inner guide that is inserted into the laminar members to align the lamina members.
  • the second heater When the lamina members into which the second heater is inserted rotate, it is possible to rotate at the same angle together with the lamina members into which the second heater is inserted in order to induce an integral behavior of the lamina members, forming the laminated cores Slip can be prevented from occurring at the adhesive interface of the lamina members.
  • the upper end of the second heater may descend below the upper surface of the core support, and thus, when the core is taken out, interference by the second heater may be excluded and the descending height of the core support may be minimized.
  • the upper end of the second heater is capable of rising to a height equal to or higher than the height of the upper end of the heater;
  • a core engaging portion may be formed on an outer circumferential surface of the second heater so that the second heater catches the lamina members in a rotational direction;
  • the core engaging portion may be engaged with grooves or protrusions formed on the inner circumferential surfaces of the lamina members.
  • the second heater It can move up and down independently with respect to the core support.
  • Another aspect of the present invention is a core manufacturing method for forming a laminated core by integrating a plurality of lamina members by an adhesive method: the lamina members pass through in a laminated state to the adhesive present at the interface of the lamina members Heating the lamina members with a first heater and a second heater for heating the lamina members from outside and inside of the lamina members, respectively, so as to be integrated by; And to take out the laminated core, it provides a core manufacturing method comprising the step of lowering the upper end of the second heater for heating the lamina member below the upper end of the core support supporting the bottom surface of the laminated core.
  • the present invention it is possible to minimize/prevent the occurrence of temperature deviation and adhesive strength deviation for heat curing of adhesive from the edge of the lamina members forming the laminated core to the inside, and Warpage and defects of the laminated core can be minimized/prevented.
  • the progress of an additional core heating process to improve warpage of the laminated core and the resulting additional production cost can be prevented.
  • the bottom of the laminated core can be heated while applying back pressure to the laminated core during extraction of the laminated core, the phenomenon of warping on the bottom surface of the laminated core can be minimized/prevented. .
  • the lamina members forming the laminated core move integrally without relative movement to each other inside the laminated hole, the straightness of the lamina members can be stably managed, and the rotational lamination of the lamina members (index lamination), the perpendicularity of the laminated cores can be precisely managed and the occurrence of thickness deviation can be minimized.
  • the integrated behavior of the lamina members is implemented based on the center hole of the lamina members forming the shaft hole (inner diameter) of the laminated core, a separate structure for guiding the movement of the lamina members is formed. There is no need to do this, and since grooves and/or protrusions formed on the inner circumferential surface (periphery of the center hole) of the lamina members can be set as a standard for the integral behavior of the lamina members in order to firmly couple the axis to the laminated core, the appearance of the finished product It is possible to precisely implement all the behaviors (rotational motion, straight motion) of the laminar member without being limited by.
  • FIG. 1 is a view schematically showing an embodiment of a core manufacturing apparatus according to the present invention
  • FIG. 2 is a diagram illustrating a structure in which the device shown in FIG. 1 is applied to a progressive mold type device;
  • Figure 3 is a view illustrating a method for manufacturing a laminated core by the apparatus shown in Figure 2;
  • FIG. 4 is a diagram illustrating an elevating structure of a core support and a second heater of the device shown in FIG. 1;
  • FIG. 5 is diagrams illustrating a second heater applicable to the device shown in FIG. 1;
  • FIG. 6 is a view illustrating a core support applicable to the device shown in FIG. 1;
  • FIG. 7 is a plan view showing a state in which an embodiment of the second heater shown in FIG. 4 is inserted into an example of a lamina member.
  • FIG. 8 to 10 are diagrams illustrating the operation of the device shown in FIG.
  • FIGS. 1 to 4 is a view schematically showing an embodiment of a core manufacturing apparatus according to the present invention
  • FIG. 2 is a view illustrating a structure in which the apparatus shown in FIG. 1 is applied to a progressive mold type apparatus
  • FIG. 3 is FIG. 2
  • FIG. 4 is a diagram illustrating a lifting structure of a core support and a second heater of the device shown in FIG. 1 .
  • the core manufacturing apparatus is a device for forming a laminated core by integrating a plurality of lamina members (L) by a heat bonding method.
  • the core manufacturing apparatus includes a first heater 110 for externally heating the lamina members (L) and a laminator (100; Laminator) in which the lamina members (L) are laminated. And, a core support 210 supporting the laminated core C discharged from the laminator 100, and a second heater 310 for heating the lamina members L from the inside of the lamina members L ).
  • the laminator 100 has a lamination hole 100a formed through in the vertical direction so as to pass the lamina members L in a laminated state. And the first heater 110, the lamina members passing through the lamination hole (100a) so that the lamina members are integrated in an adhesive method by the adhesive present at the interface of the lamina members, the lamina members It is a component that heats them from the outside.
  • the core support 210 is movably provided on the lower side of the stacking hole 100a to support the stacked core C discharged from the stacking hole 100a, and the second heater 210 ) is capable of entering the inside of the lamination hole 100a through the lower end of the lamination hole 100a to heat the lamina members L from the inside of the lamina members L, and the core support ( 210) is a component that can be moved in the vertical direction through
  • the first heater 110 performs heating on the lamina members at the periphery of the lamina members, and the second heater 210 is inserted into the lamina members to perform heating on the lamina members. Since the heating is performed on the lamina member, it is possible to reduce the occurrence of temperature deviation from the edge portion to the center portion of the lamina member.
  • the core support 210 may be made of a configuration capable of generating heat for heating the lamina members (L).
  • the core support 210 may include a heat source capable of heating the bottom surface of the laminated core (C).
  • the lamina members (L) put into the laminator 100 are heated while passing through the lamination hole 100a in a laminated state, and a plurality of lamina members (L)
  • the laminated core (C) is formed by being integrated by a heat bonding method.
  • the lamina members injected from the upper side of the laminator 100 are heated while passing through the lamination hole 100a in a laminated state, and a plurality of lamina members are heated and cured by the adhesive present at the interface of the lamina members.
  • the lamina members of the intestine are integrated to form the laminated core (C).
  • the stacking hole 100a may be formed through the laminator 100 in the vertical direction as in the present embodiment.
  • the lamina members (L) passing through the stacking hole (100a) from top to bottom are integrated one by one by an adhesive method, thereby sequentially forming the stacked cores (C).
  • the core support 210 is provided movably on the lower side of the laminator 100 so as to sequentially support the laminated cores C discharged from the laminator 100 .
  • the core support 210 moves upward toward the laminator 100 to support the bottom surface of the laminated core C discharged from the laminator 100, and the laminated core C descend while supporting Then, after one laminated core is taken out, it rises again to support the bottom of the next laminated core.
  • the second heater 310 can rise through the core support 210 and protrude upward from the core support 210, and is inserted into the lamina members L so that the lamina The members are heated from the inside.
  • the second heater 310 is provided to be able to move up and down on the core support 200, and enters the inside (lamination hole) of the laminator 100 through the lower end (exit) of the laminator 100. Enter to a predetermined height. The lifting stroke of the second heater 310 may be adjusted.
  • the second heater 310 may be an alignment guide, that is, an inner guide, which is inserted into the lamina members L to align the lamina members.
  • the second heater 310 induces coaxial alignment while the lamina members pass through the lamination hole 100a while forming the laminated core, and furthermore, the lamina members L are integrated. Relative movement between the laminar members (L) by inducing behavior, for example, relative rotation may be prevented.
  • the core support 210 supports the bottom surface (bottom surface) of each laminated core discharged from the stacking hole, and is connected to a lifter 220 that lifts the core support 210 .
  • the second heater 310 is also connected to a lifter 320 that moves the second heater 310 up and down, and can move up and down through the core support 210 .
  • the lifter 220 that lifts the core support 210 is referred to as a first lifter
  • the lifter 320 that lifts the second heater 310 is referred to as a second lifter.
  • the core support 210 is the lower side of the laminator 100 in order to sequentially support the laminated cores C sequentially discharged from the laminator 100, particularly the laminated hole 100a. It is provided so that it can be lifted on.
  • the first lifter 220 is connected to the core support 210 to move the core support 210 up and down, supports the core support 210, for example, a plate for core support, and lifts the core support 210. It is a component that
  • the first lifter 220 may include, but is not limited to, a telescopic cylinder such as a hydraulic or pneumatic cylinder, and for example, an electric actuator using a device such as a linear motor that implements a linear motion.
  • a telescopic cylinder such as a hydraulic or pneumatic cylinder
  • an electric actuator using a device such as a linear motor that implements a linear motion.
  • Various devices capable of realizing elevation of the core support may be applied as the first lifter 220 .
  • the core support 210 may be rotatably provided on top of the first lifter 220, and the lamina members (L) may be provided to manage the perpendicularity and thickness deviation of the laminated cores (C).
  • the lamina members (L) may be provided to manage the perpendicularity and thickness deviation of the laminated cores (C).
  • the core support 210 is rotatably installed on the top of the first lifter 220 .
  • a bearing 230 is installed on the upper side of the first lifter 220, and the core support 210 can rotate freely by the bearing 230, that is, it can be installed as a rotating material. there is.
  • the first lifter 220 includes a first cylinder head 221 and an elastic first cylinder body 222, and the core support 210 is It is rotatably provided at the top by the bearing 230.
  • Functions and types of cylinders and bearings are well known to those skilled in the art (hereinafter referred to as 'ordinary technicians'), so additional description thereof will be omitted.
  • the core support 210 descends while the laminated core C is seated on the upper side of the core support, and when the core support reaches the lower limit position, a core extractor (not shown) such as a conveyor By this, the laminated core can be taken out. After that, the core support 210 rises again to support the bottom surface of the laminated core discharged in the next order.
  • the core support and the first lifter are back pressure devices, and since the function of the core support itself and the take-out mechanism of the laminated core are known in the field of core manufacturing technology, additional description thereof will be omitted.
  • the second heater 310 is provided to be able to move up and down on the lower side of the laminator 100 so as to be able to enter the lamination hole 100a, and the lamination reaches a predetermined height or less within the lamination hole 100a. It is inserted through the members (L).
  • the second heater 310 is configured to enter the inside of the liner 100, and enters the inside of the laminator 100 to a predetermined height through the lower end of the laminator 100, that is, the lower end of the stacking hole. , It performs a heating function while being inserted into the lamina members (L) located below a predetermined height, and furthermore, as an internal guide, the lamina members supplied through the upper end (inlet) of the laminator 100 act integrally as a whole. induce
  • the second lifter 320 is configured to support the second heater 310 in order to move the second heater 310 up and down, and is connected to the second heater 310 to lift the second heater 310. moves up and down.
  • the second lifter 320 may also include a telescopic cylinder such as a hydraulic or pneumatic cylinder, but is not limited thereto, and for example, the core guide, such as an electric actuator using a linear motor, etc.
  • a variety of devices that can implement the lifting of can be applied to the second lifter (320).
  • the second heater 310 descends through the core support 210 to take out the laminated core C, and when the core support 210 reaches the lower limit, the second The upper end of the heater is lowered by the second lifter 320 so as to be located at a level lower than the upper end surface of the core support 210 .
  • the second heater 310 enters the laminated hole 100a again, and the upper end of the second heater 310 is the laminator ( 100) It can rise to a predetermined height inside and perform a heating function inside the laminar members below a certain height.
  • the second heater 310 passes through the core support 210 and moves in the vertical direction, and in the center of the core support 210, there is a floor hole for lifting the second heater 310 ( Hole) is formed through in the vertical direction. That is, as in the examples shown in FIGS. 8 to 10 , the second heater 310 passes through the core support 210 and moves up and down by the second lifter 320 .
  • the second heater 310 is provided to be able to move up and down inside the core support 210, and the second heater 310 is moved by the second lifter 320 to the core support 210. ) can rise above. Therefore, in this embodiment, the second heater 310 has a structure capable of relative vertical movement with respect to the core support 210, and the protruding height of the second heater 310 from the upper side of the core support 210 may be adjusted.
  • the second heater 310 may be rotatably provided above the second lifter 320 .
  • the second heater 310 operates on the lamina inside the laminated hole. It can rotate with members.
  • the second heater 310 is rotatably installed on the top of the second lifter 320 .
  • a bearing 330 is installed on the upper side of the second lifter 320, and the second heater 310 can freely rotate by the bearing 330, that is, it is installed as a rotating material.
  • the bearing 230 supporting rotation of the core support 210 and the bearing 330 supporting rotation of the second heater 310 are separately installed.
  • the bearing 230 supporting rotation of the core support 210 is referred to as a first bearing
  • the bearing 330 supporting rotation of the second heater 310 is referred to as a second bearing.
  • the core support 210 and the second heater 310 have a structure capable of mutually independent rotation.
  • the core support 210 and the second heater 310 rotate at the same angle at the same time, so that the second heater is inserted into the lamina member Integral rotation of the laminar members and other laminar members stacked thereon is made.
  • the second lifter 320 includes a second cylinder head 321 supporting the second heater and a second cylinder body 322 lifting the second cylinder head.
  • the second heater 310 is rotatably provided at an upper end of the second cylinder head 321 by the second bearing 330 .
  • the second heater 310 moves up and down through the core support 210, and the second cylinder body 322 is shown in FIGS. 8 to 10
  • the first cylinder body 222 may be a lifting structure provided to be drawn in and out in the vertical direction. Accordingly, a structure in which the second lifter is combined with the first lifter may be used.
  • the core support and the second heater may be moved up and down by a plurality of cylinders or, more specifically, two or more cylinders.
  • the core support and the second heater may be driven by separate lifting devices.
  • the second heater 310 may include heat sources 310a and 310b for internally heating the lamina members.
  • the heat sources 310a and 310b are devices that convert electrical energy into thermal energy, for example, as shown in FIG. It may include, but is not limited to, an induction heater such as an electric heating wire supplied or a high-frequency induction heating method.
  • the heat source may include a flow path through which a high-temperature fluid flows, and the heat source may have various shapes and methods. can be changed to
  • the second heater 310 may include through holes 311a formed in the body 311 of the second heater to emit heat.
  • through holes 311a through which hot air is discharged may be formed in the body 311 of the second heater.
  • a blower 311b for forced release of heat may be provided inside the body 311 of the second heater, and a heat source 310b for generating heat, for example, an electrothermal heating element may be provided.
  • the second heater 310 may be in the form of dissipating hot air introduced from the outside.
  • the core support 210 may include a heat source 210a for heating the bottom surface of the laminated core.
  • the heat source 210a of the core support is a device that converts electrical energy into thermal energy, for example, as shown in FIG. 6, provided on the body 311 of the second heater and supplied with current by a power line L It may include an induction heater such as an electric heating wire or a high frequency induction heating method.
  • the heat source 210a of the core support may also include a passage through which a high-temperature fluid flows, and the heat source 210a of the core support may also be changed in various forms or methods.
  • the heat source 210a of the core support and the heat sources 310a and 310c of the second heater may be supplied with current through the same power line L or may be supplied with power separately.
  • the electrical connection method between the stationary body and the rotating body for example, the electrical connection method using a rotating electrode itself is a known technology, additional description thereof will be omitted.
  • the present invention may provide an embodiment of a core manufacturing method of forming a laminated core by integrating a plurality of lamina members by an adhesive method.
  • the lamina members are formed on the outside and inside of the lamina members, respectively, so that the lamina members are integrated by the adhesive present at the interface of the lamina members while passing in a laminated state.
  • the core support and the second heater are raised to bring the core support into close contact with the lamina member forming the bottom of the laminated core, and the second heater is entered into the lamina members.
  • the second heater 310 when the lamina members into which the second heater 310 is inserted rotate at a predetermined angle by the laminator 100, the lamina member into which the second heater 310 is inserted. It rotates at the same angle with the lamina members, and prevents slip generation, that is, relative rotation between the lamina members at the adhesive interface of the lamina members.
  • the second heater 310 is inserted into a hole penetrating the lamina member.
  • the lamina members are combined into a laminated structure by the laminator to form the above-described laminated cores (C)
  • axially penetrating holes that is, shaft holes, are formed in the center of the laminated cores (C)
  • the second heater 310 is inserted into the shaft hole of the laminated core discharged from the laminator.
  • the second heater 310 is caught in the center hole H of the lamina members in the rotational direction of the lamina members to receive rotational force, and as a reaction thereto, the integral behavior of the lamina members, more specifically, the integral rotation can be implemented.
  • the second heater 310 is a core engaging portion formed on the outer circumferential surface of the core guide 310 so as to be caught in the center hole H of the lamina members L in the rotation direction ( 312).
  • the core engaging portion 312 is engaged with the grooves or protrusions formed on the inner circumferential surfaces of the lamina members, that is, on the rim of the aforementioned center hole.
  • a laminated core rotor core
  • a hole for preventing relative rotation between the shaft and the laminated core is formed in the shaft hole of the laminated core.
  • / or protrusions are formed, and grooves or protrusions of the same shape are formed in the center hole of the lamina member for manufacturing the laminated core of this structure.
  • the core guide 310 of the core manufacturing apparatus according to the present embodiment is It has a core hooking part 311 of a shape corresponding to the groove and/or protrusion formed in the center hole of the member, that is, of an engaging shape.
  • the outer circumferential surface of the core guide 310 has a groove-shaped core.
  • the hooking portion 312 is formed long in the vertical direction.
  • the lamina member Protrusions P may be formed at equal angular intervals in the center hole of (L).
  • the laminator 100 rotates the lamina members L at 90 degrees or 180 degrees to perform index rotational lamination.
  • a structure such as a magnet hole for inserting a magnet may be formed in an outer region of the central hole of the lamina member.
  • the lamina member shown in FIG. 7 is an example in which two protrusions P are formed symmetrically with each other at an interval of 180 degrees in a center hole, and a rotation angle of 180 degrees for index rotation lamination may be applied.
  • the second heater 310 has a shape corresponding to the center hole of the lamina member, that is, a cylindrical shape, and at least one core engaging part 312 is provided on the outer circumferential surface of the second heater 310 in upper and lower directions. It is formed long in the direction, but the shape of the core guide can be changed to match the shape of the laminated core.
  • the second heater 310 is a component capable of independent vertical movement and rotational movement with respect to the core support 210, at least one for coupling the axis to the center hole of the lamina member
  • the core holding portion may be implemented in a protrusion shape formed long along the vertical direction on the outer circumferential surface of the core guide.
  • the core support 210 and the second heater 310 are raised to the upper limit, when the core support 210 is lowered again, the second heater 310 remains at the upper limit height Internal heating and integral motion (integral rotation) of the lamina members on the upper side of the core support may be implemented while being
  • the core support 210 and the second heater 310 are rotatably supported by separate bearings, that is, the first bearing 230 and the second bearing 330, mutually independent rotation is possible.
  • the lamina members (L) rotate
  • the core support 210 and the second heater 310 simultaneously rotate at the same angle and perform their respective functions.
  • the present embodiment is an apparatus for manufacturing an adhesive laminated core, that is, an apparatus for manufacturing a core of a laminated structure by combining the boundary surfaces of lamina members with an adhesive material (adhesive), for curing the adhesive material (adhesive) by heat, that is, heat curing.
  • the laminator 100 includes the aforementioned first heater 110 (Heater). That is, the first heater 110 has a heat source for externally heating the lamina members for curing of the adhesive present in the adhesive interface of the lamina members (L).
  • the upper end of the second heater 310 is preferably able to rise from the height of the upper end of the first heater 110 to a section below the upper end of the laminator.
  • the second heater 310 It rises to a height higher than the upper end of the first heater 110 (the inlet of the first heater) to guide the movement of the lamina members (L).
  • the core manufacturing apparatus forms a laminated core (C) by integrating the lamina members (L) passing through the lamination hole by an adhesive method by a predetermined number, and the lamina member ( L) may be formed by blanking in a progressive mold device.
  • the laminator 100 may be applied to a progressive mold device, and more specifically, may be provided below the blanking unit 400 .
  • the laminator 100 has an internal space for aligning and lamination and integration of the lamina members (L), that is, the above-described laminating hole (100a; Laminating Hole), and sequentially in the laminating hole (100a) by blanking of the material.
  • the laminar members (L) continuously supplied to are stacked in a vertically aligned state.
  • the laminator 100 sequentially discharges the laminated structure, that is, the laminated cores C, which are continuously formed by integrating the lamina members L. Therefore, the upper end of the laminator 100 becomes the inlet of the lamina member and the lower end of the laminator becomes the outlet of the laminated core C.
  • the blanking unit 400 is a device for blanking a material for the manufacture of the lamina members (L), for example, a metal strip (S) such as an electrical steel sheet is punched out to sequentially form the lamina members (L). Forming, the lamina member (L) formed at the same time as the punching (blanking) of the material is pushed into the inside of the laminator 100, that is, the lamination hole 100a.
  • a metal strip (S) such as an electrical steel sheet
  • the lamina members inside the laminator 100 are pushed and moved downward by one pitch as much as the thickness of the metal strip (S).
  • the laminator 100 includes the first heater 110 for heating and curing the adhesive, a squeeze mechanism 120 for inducing alignment/lamination of the laminar members, and the laminated core.
  • (C) may include a pinch mechanism (130; Pincher) for preventing the fall.
  • the squeeze mechanism 120 has a structure through which the lamina members L manufactured by the blanking unit 400 pass through in a forcibly fitted state (press-fitting state) in the vertical direction. More specifically, the squeeze mechanism 120 stacks and lowers the lamina members L so that the lamina members L are stacked in a coaxially aligned state in the upper section of the laminator 100. guide the movement
  • the squeeze mechanism 120 may include at least one hollow squeeze member that penetrates in the vertical direction, that is, a squeeze ring.
  • the pinch mechanism 130 is configured to pass the laminated core (C) in the lower section of the laminator 100, and is provided below the squeeze mechanism 120, and the laminated core (C)
  • a tubular mechanism that is elastically expandable to press the circumference and has a restoring force, or a mechanism that presses the outer circumference of the laminated core by using the elastic force of a spring may be used.
  • An external guide 140 for guiding the lamina members (L) may be provided between the squeeze mechanism 120 and the pinch mechanism 130.
  • the heater 110 is provided in a region between the squeeze mechanism and the pinch mechanism 130, and the outer guide 140 has a cylindrical shape penetrating the inside of the first heater 110 in a vertical direction. can be provided in
  • the lamina members passing through the inside of the first heater 110 are heated by the first heater 110.
  • a high-frequency induction heating device may be applied as the first heater 110, but the type of the first heater is not limited thereto, and other types of heaters such as an electric resistance heating wire, that is, a heating wire structure, are natural.
  • the outer guide 140 may be made of a non-conductive material so as not to be affected by high-frequency induction heating.
  • the pinch mechanism 130 forms a movement passage for the laminated core C in the lower region of the first heater 110, and more specifically, lamina members by a predetermined number than the lamina members L. It is a mechanism for holding the laminated core with a predetermined force by pressing the circumference of the laminated core (C) formed by interlayer bonding of (L), that is, a mechanism for applying lateral pressure. Therefore, the pinch mechanism 130 can prevent the laminated core discharged from the laminator 100 from falling down before being supported by the core support 210 .
  • the blanking unit 400 includes a blanking punch 410 provided with an upper mold 10 capable of moving up and down, and a blanking die 420 provided below the upper mold 10 .
  • the blanking die 420 is provided directly above the laminator 100 .
  • the blanking die 420 may be provided on the upper side of the squeeze mechanism 120 coaxially with the squeeze mechanism.
  • the core manufacturing apparatus in order to form the above-described laminated core (C) by integrating the lamina members (L) by a predetermined number, between the layers of the lamina members (L) Cures the existing adhesive. More specifically, the adhesive present between the layers of the lamina members (L) is the above-described laminator 100, particularly the first heater 110 and the second heater 310, further by the core support 210 It is possible to stably realize the integration of lamina members while curing evenly.
  • An adhesive for interlayer adhesion may be applied by an adhesive applicator to the material S passing between the upper mold 10 and the lower mold 20 of the laminated core manufacturing apparatus, or the material already coated with the adhesive, that is, the adhesive coating layer (
  • the material S having S1 and S2 may be supplied between the upper mold 10 and the lower mold 20.
  • a technology of manufacturing an adhesive laminated core by applying an adhesive to the surface of a material, that is, a metal strip, and punching out the metal strip, and a technology of manufacturing an adhesive laminated core by receiving and punching a metal strip already coated with an adhesive are those skilled in the art. Since it is a well-known technique, additional description thereof is omitted.
  • a cooling system for cooling the laminator 100 and its surroundings may be applied to the lower mold 20, and a heat insulating member may be applied between components forming the laminator 100 to block heat conduction. there is.
  • the upper mold 10 may further include at least one punch 11 for forming a predetermined slot or hole (for example, the center hole of the lamina member described above) in the lamina member L, ,
  • the upper side of the lower mold 20 may be provided with a die hole 21 facing the punch 11 described above.
  • examples of molding devices provided to the upper and lower molds for processing the shape of laminar members are variously known, so additional description is omitted.
  • the laminar members (L) stacked up and down inside the laminator 100 are separated based on a solid line, and the boundary surface indicated by the dotted line illustrates a portion (adhesive interface) where interlayer adhesion is made.
  • the laminator 100 may rotate the lamina members by a predetermined angle for the aforementioned index rotation lamination.
  • the squeeze mechanism 120 and the pinch mechanism 130 may rotate simultaneously at the same angular velocity.
  • the squeeze mechanism 120 is fixed inside the hollow rotary die 150 capable of rotating in place and rotates integrally with the rotary die 150 .
  • the blanking die 420 is also provided on the rotating die and rotates together with the squeeze mechanism 120 .
  • the pinch mechanism 130 also rotates simultaneously at the same angle as the squeeze mechanism in place.
  • the squeeze mechanism 120 and the pinch mechanism 130 are rotated by a rotary actuator, and may rotate by, for example, a gear transmission mechanism.
  • a gear transmission mechanism the rotary die 150 is connected to the first gear 510 rotated by the motor M to receive rotational force, and the pinch mechanism 130 is also connected to the second gear 520. It can be connected and rotated.
  • a ring gear 151 meshing with the first gear may be installed on the rotating die 150 .
  • the rotation mechanism of the squeeze mechanism 120 and the pinch mechanism 130 is not limited to the gear transmission method, and may be variously changed, such as a belt transmission method, for example.
  • the rotating die 150 and the pinch 130 are rotatably installed on the lower die by bearings.
  • the external guide 140 follows the squeeze mechanism 120 and the pinch mechanism 130 to rotate together, and the first heater 110 does not rotate. And, the rotational force of the squeeze mechanism 120 and the pinch mechanism 130 is transmitted to the core guide 310 through the lamina members L, and the lamina member into which the core guide 310 is inserted. Since they are caught on the core guide 310 in the rotational direction to ensure rotational integrity, the interfacial slip phenomenon of the lamina members can be prevented.
  • the first heater 110, the squeeze mechanism 120, and the pinch mechanism 130 may all be installed inside the rotating die and rotate simultaneously with the core guide 310 described above.
  • connection pin 610 is provided in any one of the core support 210 and the pinch mechanism 130, and the other A pin hole 620 into which the connecting pin 610 is inserted may be formed in one.
  • connection pin 610 is provided in the core support 210, the pin hole 620 is formed in the pinch mechanism 130, and the connection pin 610 is in the pin hole 620.
  • the core support 210 and the pinch mechanism 130 are coupled. Therefore, the core support 210 and the pinch mechanism 130 are rotated by the connecting pin 610 and the pin hole 620 Integrity can be strengthened.
  • the core support 210 is raised by the first cylinder body 222 and supports the lower surface of the laminated core C to be taken out through the lower end of the laminator 100 .
  • the second heater 310 enters the inside of the stacking hole 100a through the lower end of the laminator 100 and forms holes of the lamina members L having a predetermined height or less, for example, the center hole H is inserted into
  • the core hooking part 312 of the second heater is fitted into and engaged with grooves or protrusions formed in the center holes of the lamina members.
  • the second heater 310 rises to the inlet (top) of the first heater 110 or the bottom of the squeeze mechanism 120, internal heating for the lamina members (L), Furthermore, the integral behavior of the laminar members (L) is implemented.
  • the core support 210 and the second heater 310 may rise together, or one may rise first and then the other.
  • the core support 210 and the second heater 310 rise to a predetermined height (upper limit), as shown in the example shown in FIG. 9, the core support 210 by the downward movement of the lamina members (L) ) rotates together with the laminated core (C) on the core support 210 while descending stepwise by a height corresponding to the thickness of one lamina member, for example, 1 pitch, and the second heater 310
  • the integral rotation of the lamina members (L) is induced while maintaining a relative height to the first heater.
  • the core support 210 and the second heater 310 also descends. At this time, the height of the upper end of the second heater 310 is lowered to a height lower than the upper side of the core support 210, so that the laminated core C on the core support 210 is not interfered with when taking out .
  • the operation of the core support 210 and the second heater 310 may be controlled by a control unit wired or wirelessly.
  • the present invention relates to a core manufacturing apparatus, and can be used in the field of manufacturing various types of cores, such as cores for rotors and stators. there is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Disclosed are a core manufacturing apparatus and a core manufacturing method by which a laminated core is formed by integrating a plurality of laminar members using a bonding method. The core manufacturing apparatus according to the present invention comprises: a laminator having a lamination hole and including a first heater, wherein the lamination hole is formed passing through vertically in order to pass the laminar members therethrough in a laminated state, and the first heater heats the laminar members, passing through the lamination hole, from the outside of the laminar members so that the laminar members are integrated by adhesive present at the interfaces between the laminar members; a core support capable of ascending and descending and provided below the lamination hole in order to support the laminated core discharged from the lamination hole; and a second heater which can enter the lamination hole via the lower end of the lamination hole so as to heat the laminar members from the inside of the laminar members, and can move up and down by passing through the core support. According to the present invention, the laminar members are heated from the outside and inside, and thus the adhesive can be uniformly cured, and interlayer bonding between the laminar members can occur stably.

Description

코어 제조장치 및 제조방법Core manufacturing device and manufacturing method
본 발명은 접착방식으로 적층 구조의 철심(Core)을 제조하는 코어 제조장치 및 제조방법에 관한 것으로서, 보다 상세하게는 철심용 적층된 라미나 부재(박판; Laminar member)들의 계면을 접착식으로 결합해서 적층 구조의 코어(적층코어)를 제조하는 코어 제조장치 및 제조방법에 관한 것이다.The present invention relates to a core manufacturing apparatus and manufacturing method for manufacturing a core of a laminated structure by an adhesive method, and more particularly, by bonding the interfaces of laminated laminar members (laminar members) for the iron core in an adhesive manner. It relates to a core manufacturing apparatus and manufacturing method for manufacturing a core (laminated core) of a laminated structure.
일반적으로, 적층코어(Laminated Core)는 복수 장의 얇은 판 즉 라미나 부재Laminar member)들을 일체화함으로써 제조되는 적층 구조의 코어를 의미하며, 예를 들면 금속 스트립(Strip)의 타발에 의해 얻어지는 복수 장의 라미나 부재들이 적층 구조로 일체화된 코어 구조물을 의미한다. In general, a laminated core refers to a core of a laminated structure manufactured by integrating a plurality of thin plates, that is, laminar members, and, for example, a plurality of laminae obtained by punching a metal strip. It means a core structure in which members are integrated into a laminated structure.
이러한 적층식 코어는 모터 등의 회전기기나 변압기 또는 점화시스템용 철심 등과 같은 다양한 장치의 코어(Core)로 사용되고 있으며, 이를 제조하는 다양한 방법이 알려져 있다. Such laminated cores are used as cores of various devices such as rotating devices such as motors, transformers, or iron cores for ignition systems, and various methods for manufacturing them are known.
대표적인 방법으로, 프로그레시브(progressive) 금형장치를 이용해서 소정 형상의 라미나 부재들을 연속적으로 성형 및 적층하고, 적층된 라미나 부재들을 복수 장씩 층간결합시키면, 적층 구조의 코어 즉 상술한 적층코어가 제조될 수 있다.As a representative method, by continuously forming and stacking laminar members of a predetermined shape using a progressive mold device, and bonding the stacked lamina members layer by layer, the core of the laminated structure, that is, the above-mentioned laminated core is manufactured. It can be.
상기 라미나 부재들을 일체화하는 방법으로는, 인터록 탭을 이용한 탭 고정법과, 용접 예를 들어 레이저 용접을 이용한 웰딩 고정법과, 리벳 고정법 등이 알려져 있다.As a method of integrating the laminar members, a tab fixing method using an interlock tab, a welding fixing method using, for example, laser welding, a rivet fixing method, and the like are known.
상기 탭 고정법의 예는 대한민국 공개특허공보 제10-2008-0067426호와 제10-2008-0067428호 등의 특허문헌에 개시되어 있는데, 철손(Iron Loss) 문제가 있으며, 소재 즉 강판이 박판화되면서 인터록 탭 형성을 위한 엠보싱(Embossing) 가공에 한계가 있다.Examples of the tab fixing method are disclosed in patent documents such as Korean Patent Publication Nos. 10-2008-0067426 and 10-2008-0067428. There is a limit to the embossing process for forming the tab.
근래에는, 라미나 부재들의 층간 결합을 접착방식으로 구현하는 기술(접착 고정법)이 개발/사용되고 있다. 예를 들면, 적층코어를 제조하는 장치(금형)에 공급되는 금속 스트립의 표면에 접착제를 도포하고 상기 금속 스트립을 타발해서 적층코어를 제조하는 발명이 대한민국 등록특허 제10-1566491호와 일본 공개특허 특개평5-304037호 및 일본 공개특허 특개2009-297758호 등의 특허 문헌에 개시되어 있다. Recently, a technology (adhesive fixing method) for implementing interlayer bonding of lamina members by an adhesive method has been developed/used. For example, the invention of manufacturing a laminated core by applying an adhesive to the surface of a metal strip supplied to a device (mold) for manufacturing a laminated core and punching the metal strip is disclosed in Korean Patent Registration No. 10-1566491 and Japanese Laid-open Patent It is disclosed in patent documents, such as Unexamined-Japanese-Patent No. 5-304037 and Unexamined-Japanese-Patent No. 2009-297758.
그리고, 접착제가 코팅되어 있는 상태의 금속 스트립을 공급받아 타발함으로써 상술한 적층코어를 제조하는 발명이 대한민국 등록특허 제10-1659238호와 일본 공개특허 특개2001-291627호와 일본 공개특허 특개2004-023829호 등의 특허문헌에 개시되어 있다.In addition, the invention of manufacturing the above-described laminated core by receiving and punching a metal strip coated with an adhesive is disclosed in Korean Patent Registration No. 10-1659238, Japanese Patent Laid-Open No. 2001-291627 and Japanese Patent Laid-Open No. 2004-023829 It is disclosed in patent documents such as Ho.
상술한 종래의 접착 고정법에 의하면 레이저 용접에 비해 비용이 절감될 수 있고, 접착 고정법은 강판이 박판화에 대응할 수 있는 기술로 알려져 있다.According to the conventional adhesive fixing method described above, the cost can be reduced compared to laser welding, and the adhesive fixing method is known as a technology capable of responding to thinning of a steel plate.
상술한 접착 고정법에 의하면, 상기 라미나 부재들이 라미네이터(Laminator), 보다 구체적으로는 금형(하형)의 내부 공간(적층홀)을 적층된 상태로 통과하면서, 라미나 부재들의 계면(경계면) 접착에 의해 복수 장씩 일체화될 수 있다.According to the above-described adhesive fixing method, while the lamina members pass through the laminator (Laminator), more specifically, the internal space (lamination hole) of the mold (lower mold) in a laminated state, the interface (boundary surface) of the lamina members is bonded. A plurality of sheets can be integrated by
상기 라미네이터는, 상기 라미나 부재들의 정렬/적층을 위한 스퀴즈 부재(일본 공개특허 특개2009-297758호의 스퀴즈 링)를 포함하며, 적층코어의 직각도 및 두께편차 관리를 위해 상기 라미네이터가 소정의 타이밍(Timing)마다 상기 라미나 부재들을 소정 각도씩 회전(인덱스 회전)시킨 후에 새로운 라미나 부재를 공급받는 방식(인덱스 회전 적층)이 사용되고 있다. The laminator includes a squeeze member (squeeze ring of Japanese Unexamined Patent Publication No. 2009-297758) for alignment/lamination of the lamina members, and the laminator is configured at a predetermined timing ( Timing) after rotating the lamina members by a predetermined angle (index rotation), a new lamina member is supplied (index rotation lamination).
상기 라미나 부재들이 인덱스 회전하는 방식의 적층코어 제조장치가, 등록특허공보 제10-1876292호와 등록특허공보 제10-1990291호와 등록특허공보 제10-1990296호 등에 개시되어 있으며, 적층코어의 직각도 및 두께편차 관리를 위한 인덱스 회전 적층 기술 그 자체는 공지된 기술이다.An apparatus for manufacturing a laminated core in which the lamina members index rotate is disclosed in Patent Registration Nos. 10-1876292, 10-1990291, and 10-1990296, etc. The index rotational lamination technique itself for squareness and thickness variation management is a well-known technique.
본 발명은, 적층 구조의 코어를 형성하는 라미나 부재들을 접착방식으로 결합시키기 위하여, 상기 라미나 부재들을 외부와 내부에서 함께 가열할 수 있는 코어 제조장치 및 이를 이용한 코어 제조방법을 제공하는 데 그 목적이 있다.The present invention provides a core manufacturing apparatus and a core manufacturing method using the same capable of heating the lamina members together from the outside and the inside in order to bond the lamina members forming the core of the laminated structure by an adhesive method. There is a purpose.
본 발명의 일 형태는, 복수장의 라미나 부재들을 접착방식으로 일체화해서 적층코어를 형성하는 코어 제조장치로서: 상기 라미나 부재들을 적층상태로 통과시키도록 상하방향으로 관통 형성되는 적층홀을 가지며, 상기 라미나 부재들의 계면에 존재하는 접착제에 의해 상기 라미나 부재들이 일체화되도록 상기 적층홀을 통과하는 라미나 부재들을 상기 라미나 부재들의 외부에서 가열하는 제1 히터를 포함하는 라미네이터(Limanator); 상기 적층홀에서 배출되는 상기 적층코어를 받치기 위해, 상기 적층홀의 하측에 승강 가능하게 구비되는 코어 받침; 그리고 상기 라미나 부재들의 내부에서 상기 라미나 부재들을 가열하도록 상기 적층홀의 하단을 통해 상기 적층홀의 내부로 진입 가능하며, 상기 코어 받침을 관통해서 상하방향으로 이동 가능한 제2 히터를 포함하는 코어 제조장치를 제공한다.One aspect of the present invention is a core manufacturing apparatus for forming a laminated core by integrating a plurality of lamina members by an adhesive method: having a lamination hole formed through in the vertical direction so as to pass the lamina members in a laminated state, A laminator including a first heater for heating the lamina members passing through the lamination hole from the outside of the lamina members so that the lamina members are integrated by the adhesive present at the interface of the lamina members (Limanator); a core support movably provided at a lower side of the laminated hole to support the laminated core discharged from the laminated hole; And a second heater capable of entering the inside of the lamination hole through the lower end of the lamination hole and moving vertically through the core support to heat the lamina members inside the lamina members Core manufacturing apparatus including provides
상기 코어 받침은, 상기 라미나 부재들의 가열을 위해 발열 가능할 수도 있다. 그리고 상기 제2 히터는, 상기 라미나 부재들의 내부에 삽입되어서 상기 라미나 부재들을 정렬시키는 내부 가이드가 될 수도 있다.The core support may generate heat for heating the lamina members. Also, the second heater may be an inner guide that is inserted into the laminar members to align the lamina members.
상기 제2 히터는; 상기 제2 히터가 끼워진 라미나 부재들이 회전할 때, 상기 라미나 부재들의 일체 거동을 유도하기 위해 상기 제2 히터가 끼워진 라미나 부재들과 함께 동일 각도로 회전 가능하며, 상기 적층코어들을 형성하는 라미나 부재들의 접착 계면에서 슬립(Slip) 발생을 방지할 수 있다.The second heater; When the lamina members into which the second heater is inserted rotate, it is possible to rotate at the same angle together with the lamina members into which the second heater is inserted in order to induce an integral behavior of the lamina members, forming the laminated cores Slip can be prevented from occurring at the adhesive interface of the lamina members.
상기 제2 히터의 상단은 상기 코어 받침의 상단면 이하로 하강할 수 있으며, 이에 따라 코어가 취출될 때 상기 제2 히터에 의한 간섭이 배제될 수 있고 코어 받침의 하강 높이가 최소화될 수 있다.The upper end of the second heater may descend below the upper surface of the core support, and thus, when the core is taken out, interference by the second heater may be excluded and the descending height of the core support may be minimized.
보다 구체적으로, 상기 제2 히터의 상단은, 상기 히터의 상단 높이 이상까지 상승 가능하고; 상기 제2 히터가 상기 라미나 부재들이 회전 방향으로 걸리도록, 상기 제2 히터의 외주면에는 코어 걸림부가 형성될 수 있으며; 상기 코어 걸림부는, 상기 라미나 부재들의 내주면에 형성되는 홈 또는 돌기에 맞물림될 수도 있다.More specifically, the upper end of the second heater is capable of rising to a height equal to or higher than the height of the upper end of the heater; A core engaging portion may be formed on an outer circumferential surface of the second heater so that the second heater catches the lamina members in a rotational direction; The core engaging portion may be engaged with grooves or protrusions formed on the inner circumferential surfaces of the lamina members.
상기 제2 히터는; 상기 코어 받침에 대해 독립적인 상하 이동할 수 있다.The second heater; It can move up and down independently with respect to the core support.
본 발명의 다른 일 형태는, 복수장의 라미나 부재들을 접착방식으로 일체화해서 적층코어를 형성하는 코어 제조방법으로서: 상기 라미나 부재들이 적층상태로 통과하면서 상기 라미나 부재들의 계면에 존재하는 접착제에 의해 일체화되도록, 상기 라미나 부재들의 외부와 내부에서 각각 상기 라미나 부재들을 가열하는 제1 히터와 제2 히터로 상기 라미나 부재를 가열하는 단계; 그리고 상기 적층코어의 취출을 위해, 상기 라미나 부재를 가열하기 위한 제2 히터의 상단을 상기 적층코어의 바닥면을 받치는 코어 받침의 상단면 이하로 하강시키는 단계를 포함하는 코어 제조방법를 제공한다.Another aspect of the present invention is a core manufacturing method for forming a laminated core by integrating a plurality of lamina members by an adhesive method: the lamina members pass through in a laminated state to the adhesive present at the interface of the lamina members Heating the lamina members with a first heater and a second heater for heating the lamina members from outside and inside of the lamina members, respectively, so as to be integrated by; And to take out the laminated core, it provides a core manufacturing method comprising the step of lowering the upper end of the second heater for heating the lamina member below the upper end of the core support supporting the bottom surface of the laminated core.
본 발명에 따른 코어 제조장치 및 제조방법에 의하면 다음과 같은 효과가 있다.According to the core manufacturing apparatus and manufacturing method according to the present invention has the following effects.
첫째, 본 발명에 의하면, 적층코어를 형성하는 라미나 부재들의 가장자리 부분에서 내부에 이르기까지 접착제의 가열 경화를 위한 온도 편차 및 접착력의 편차 발생을 최소화/방지할 수 있으며, 부위별 온도 편차로 인한 적층코어의 휨 발생 및 불량 발생이 최소화/방지될 수 있다.First, according to the present invention, it is possible to minimize/prevent the occurrence of temperature deviation and adhesive strength deviation for heat curing of adhesive from the edge of the lamina members forming the laminated core to the inside, and Warpage and defects of the laminated core can be minimized/prevented.
둘째, 본 발명에 의하면, 적층코어의 휨 발생을 개선하기 위해 추가적인 코어 가열공정의 진행 및 그로 인한 생산 비용의 추가 발생이 방지될 수 있다.Second, according to the present invention, the progress of an additional core heating process to improve warpage of the laminated core and the resulting additional production cost can be prevented.
셋째, 본 발명에 의하면, 적층코어의 취출 중에 상기 적층코어에 배압을 가하면서 상기 적층코어의 바닥에 대한 가열이 가능하므로, 적층코어의 바닥면에 휨이 발생하는 현상이 최소화/방지될 수 있다.Thirdly, according to the present invention, since the bottom of the laminated core can be heated while applying back pressure to the laminated core during extraction of the laminated core, the phenomenon of warping on the bottom surface of the laminated core can be minimized/prevented. .
넷째, 본 발명에 의하면, 적층코어를 형성하는 라미나 부재들이 적층홀의 내부에서 상호간에 상대적 운동없이 일체 거동하므로 라미나 부재들의 직진도가 안정적으로 관리될 수 있고, 라미나 부재들의 회전 적층(인덱스 적층)을 통해 적층코어들의 직각도가 정밀하게 관리될 수 있으며 두께 편차 발생이 최소화될 수 있다.Fourth, according to the present invention, since the lamina members forming the laminated core move integrally without relative movement to each other inside the laminated hole, the straightness of the lamina members can be stably managed, and the rotational lamination of the lamina members (index lamination), the perpendicularity of the laminated cores can be precisely managed and the occurrence of thickness deviation can be minimized.
다섯째, 본 발명에 의하면, 라미나 부재들의 인덱스 회전 시에 라미나 부재들 사이의 경계면에서 라미나 부재들 사이의 상대적 회전(슬립 현상)이 방지될 수 있으므로, 라미나 부재들의 층간에 존재하는 접착제의 가열 경화를 통해 적층코어를 형성할 때 라미나 부재들의 일체성이 강화되고 계면 분할 현상이 방지될 수 있다.Fifth, according to the present invention, since the relative rotation (slip phenomenon) between the lamina members can be prevented at the interface between the lamina members during index rotation of the lamina members, the adhesive present between the layers of the lamina members When the laminated core is formed through heat curing of the lamina member integrity can be strengthened and the interfacial split phenomenon can be prevented.
여섯째, 본 발명에 의하면, 적층코어의 축공(내경)을 형성하는 라미나 부재의 중심홀을 기준으로 라미나 부재들의 일체 거동을 구현하므로, 라미나 부재들의 운동을 가이드하기 위한 별도의 구조를 형성할 필요가 없으며, 적층코어에 축을 견고하게 결합하기 위해 라미나 부재들의 내주면(중심홀의 둘레)에 형성되는 홈 및/또는 돌기를 라미나 부재들의 일체 거동을 위한 기준으로 설정할 수 있으므로, 완성품의 외형에 제한을 받지 않으면서도 라미나 부재의 일체 거동(회전 운동, 직진 운동)을 정밀하게 구현할 수 있다.Sixth, according to the present invention, since the integrated behavior of the lamina members is implemented based on the center hole of the lamina members forming the shaft hole (inner diameter) of the laminated core, a separate structure for guiding the movement of the lamina members is formed. There is no need to do this, and since grooves and/or protrusions formed on the inner circumferential surface (periphery of the center hole) of the lamina members can be set as a standard for the integral behavior of the lamina members in order to firmly couple the axis to the laminated core, the appearance of the finished product It is possible to precisely implement all the behaviors (rotational motion, straight motion) of the laminar member without being limited by.
본 발명의 특징 및 장점들은 후술되는 본 발명의 실시예들에 대한 상세한 설명과 함께 다음에 설명되는 도면들을 참고하여 더 잘 이해될 수 있으며, 상기 도면들 중:The features and advantages of the present invention may be better understood with reference to the following drawings in conjunction with the detailed description of embodiments of the present invention, of which:
도 1은 본 발명에 따른 코어 제조장치의 일 실시 예를 개략적으로 나타낸 도면;1 is a view schematically showing an embodiment of a core manufacturing apparatus according to the present invention;
도 2는 도 1에 도시된 장치가 프로그레시브 금형 타입의 장치에 적용된 구조를 예시한 도면;FIG. 2 is a diagram illustrating a structure in which the device shown in FIG. 1 is applied to a progressive mold type device;
도 3은 도 2에 도시된 장치에 의한 적층코어 제조 방식을 예시한 도면;Figure 3 is a view illustrating a method for manufacturing a laminated core by the apparatus shown in Figure 2;
도 4는 도 1에 도시된 장치의 코어 받침과 제2 히터의 승강 구조를 예시한 도면;FIG. 4 is a diagram illustrating an elevating structure of a core support and a second heater of the device shown in FIG. 1;
도 5는 도 1에 도시된 장치에 적용 가능한 제2 히터를 예시한 도면들;5 is diagrams illustrating a second heater applicable to the device shown in FIG. 1;
도 6은 도 1에 도시된 장치에 적용 가능한 코어 받침을 예시한 도면;6 is a view illustrating a core support applicable to the device shown in FIG. 1;
도 7은 도 4에 도시된 제2 히터의 일 실시 예가 라미나 부재의 일 예에 끼워진 상태를 나타낸 평면도; 그리고 7 is a plan view showing a state in which an embodiment of the second heater shown in FIG. 4 is inserted into an example of a lamina member; and
도 8 내지 도 10은 도 1에 도시된 장치의 작동을 예시한 도면들이다.8 to 10 are diagrams illustrating the operation of the device shown in FIG.
이하, 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시 예가 첨부된 도면을 참조하여 설명된다. 본 실시 예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 하기에서 생략된다.Hereinafter, preferred embodiments of the present invention in which the object of the present invention can be realized in detail will be described with reference to the accompanying drawings. In describing the present embodiment, the same name and the same reference numeral are used for the same configuration, and additional description thereof will be omitted below.
본 명세서에서 사용되는 용어는 본 발명의 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니며, "제1"과 "제2" 등과 같이 서수를 포함하는 용어는 동일 명칭의 구성요소들을 설명할 때 이들을 상호 구분하는데 사용될 수 있지만 구성요소의 수를 정의하거나 한정하는 것은 아니다.Terms used in this specification are used to describe embodiments of the present invention, and are not intended to limit the present invention, and terms including ordinal numbers such as “first” and “second” constitute the same name. When describing elements, they may be used to distinguish them from each other, but do not define or limit the number of elements.
그리고 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재하는 연결 관계 즉 간접적으로 연결되는 관계도 포함한다고 이해되어야 할 것이다. And when a component is said to be "connected" or "connected" to another component, it may be directly connected or connected to the other component, but a connection with another component in the middle. It should be understood that a relationship, that is, a relationship that is indirectly connected is also included.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 의미하는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 즉 부가 가능성을 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as "include" or "have" mean that features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, and that one or more other features are present. However, it should be understood that the existence of numbers, steps, operations, components, parts, or combinations thereof, i.e., the possibility of addition is not excluded.
먼저 도 1 내지 도 4를 참조하여 본 발명의 일 실시 예에 따른 접착식 적층코어 제조장치가 설명된다. 도 1은 본 발명에 따른 코어 제조장치의 일 실시 예를 개략적으로 나타낸 도면이고, 도 2는 도 1에 도시된 장치가 프로그레시브 금형 타입의 장치에 적용된 구조를 예시한 도면이며, 도 3은 도 2에 도시된 장치에 의한 적층코어 제조 방식을 예시한 도면이고, 도 4는 도 1에 도시된 장치의 코어 받침과 제2 히터의 승강 구조를 예시한 도면이다.First, an apparatus for manufacturing an adhesive laminated core according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. 1 is a view schematically showing an embodiment of a core manufacturing apparatus according to the present invention, FIG. 2 is a view illustrating a structure in which the apparatus shown in FIG. 1 is applied to a progressive mold type apparatus, and FIG. 3 is FIG. 2 , FIG. 4 is a diagram illustrating a lifting structure of a core support and a second heater of the device shown in FIG. 1 .
도 1 내지 도 4를 참조하면, 본 발명의 일 실시 예에 따른 코어 제조장치는, 복수장의 라미나 부재(L)들을 가열 접착방식으로 일체화해서 적층코어를 형성하는 장치이다.1 to 4, the core manufacturing apparatus according to an embodiment of the present invention is a device for forming a laminated core by integrating a plurality of lamina members (L) by a heat bonding method.
본 발명의 일 실시 예에 따른 코어 제조장치는, 라미나 부재(L)들을 외부에서 가열하기 위한 제1 히터(110)를 포함하며 라미나 부재(L)들의 적층이 이루어지는 라미네이터(100; Laminator)와, 상기 라미네이터(100)에서 배출되는 적층코어(C)를 받치는 코어 받침(210)과, 상기 라미나 부재(L)들의 내부에서 상긴 라미나 부재(L)들을 가열하기 위한 제2 히터(310)을 포함한다.The core manufacturing apparatus according to an embodiment of the present invention includes a first heater 110 for externally heating the lamina members (L) and a laminator (100; Laminator) in which the lamina members (L) are laminated. And, a core support 210 supporting the laminated core C discharged from the laminator 100, and a second heater 310 for heating the lamina members L from the inside of the lamina members L ).
상기 라미네이터(100)는, 상기 라미나 부재(L)들을 적층상태로 통과시키도록 상하방향으로 관통 형성되는 적층홀(100a)을 갖는다. 그리고 상기 제1 히터(110)는, 상기 라미나 부재들의 계면에 존재하는 접착제에 의해 상기 라미나 부재들이 접착방식으로 일체화되도록, 상기 적층홀(100a)을 통과하는 라미나 부재들을 상기 라미나 부재들의 외부에서 가열하는 구성요소이다..The laminator 100 has a lamination hole 100a formed through in the vertical direction so as to pass the lamina members L in a laminated state. And the first heater 110, the lamina members passing through the lamination hole (100a) so that the lamina members are integrated in an adhesive method by the adhesive present at the interface of the lamina members, the lamina members It is a component that heats them from the outside.
상기 코어 받침(210)은, 상기 적층홀(100a)에서 배출되는 상기 적층코어(C)를 받치기 위해, 상기 적층홀(100a)의 하측에 승강 가능하게 구비된다, 그리고 상기 제2 히터(210)는, 상기 라미나 부재(L)들의 내부에서 상기 라미나 부재(L)들을 가열하도록 상기 적층홀(100a)의 하단을 통해 상기 적층홀(100a)의 내부로 진입 가능하고, 상기 코어 받침(210)을 관통해서 상하방향으로 이동 가능한 구성요소이다,The core support 210 is movably provided on the lower side of the stacking hole 100a to support the stacked core C discharged from the stacking hole 100a, and the second heater 210 ) is capable of entering the inside of the lamination hole 100a through the lower end of the lamination hole 100a to heat the lamina members L from the inside of the lamina members L, and the core support ( 210) is a component that can be moved in the vertical direction through
따라서, 상기 제1 히터(110)는 상기 라미나 부재들의 외곽에서 상기 라미나 부재들에 대한 가열을 수행하고, 상기 제2 히터(210)는 상기 라미나 부재들의 내부에 끼워져서 상기 라미나 부재들에 대한 가열을 수행하므로, 라미나 부재의 가장자리 부분에서 중심부에 이르기까지 온도 편차의 발생을 줄일 수 있다.Therefore, the first heater 110 performs heating on the lamina members at the periphery of the lamina members, and the second heater 210 is inserted into the lamina members to perform heating on the lamina members. Since the heating is performed on the lamina member, it is possible to reduce the occurrence of temperature deviation from the edge portion to the center portion of the lamina member.
또한, 상기 코어 받침(210)은, 상기 라미나 부재(L)들의 가열을 위해 발열 가능한 구성으로 이루어질 수도 있다. 예를 들면, 상기 코어 받침(210)은, 적층코어(C)의 바닥면을 가열할 수 있는 열원을 포함할 수 있다.In addition, the core support 210 may be made of a configuration capable of generating heat for heating the lamina members (L). For example, the core support 210 may include a heat source capable of heating the bottom surface of the laminated core (C).
본 실시 예를 보다 구체적으로 설명하면, 상기 라미네이터(100)에 투입되는 라미나 부재(L)들은, 상기 적층홀(100a)을 적층상태로 통과하면서 가열되고, 복수장의 라미나 부재(L)들이 가열 접착방식으로 일체화됨으로써 적층코어(C)를 형성한다.To describe this embodiment in more detail, the lamina members (L) put into the laminator 100 are heated while passing through the lamination hole 100a in a laminated state, and a plurality of lamina members (L) The laminated core (C) is formed by being integrated by a heat bonding method.
본 실시 예에서는, 상기 라미네이터(100)의 상측에서 투입되는 라미나 부재들이 상기 적층홀(100a)을 적층상태로 통과하면서 가열되고, 상기 라미나 부재들의 계면에 존재하는 접착제의 가열 경화에 의해 복수장의 라미나 부재들이 일체화되어서 적층코어(C)를 형성한다. In this embodiment, the lamina members injected from the upper side of the laminator 100 are heated while passing through the lamination hole 100a in a laminated state, and a plurality of lamina members are heated and cured by the adhesive present at the interface of the lamina members. The lamina members of the intestine are integrated to form the laminated core (C).
상술한 바와 같이, 상기 적층홀(100a)은 본 실시 예처럼 상기 라미네이터(100)에 상하방향으로 관통 형성될 수 있다. 그리고, 상기 적층홀(100a)을 위에서 아래로 통과하는 상기 라미나 부재(L)들은 접착방식으로 복수장씩 일체화됨으로써, 적층코어(C)들을 연속해서 순차적으로 형성한다.As described above, the stacking hole 100a may be formed through the laminator 100 in the vertical direction as in the present embodiment. In addition, the lamina members (L) passing through the stacking hole (100a) from top to bottom are integrated one by one by an adhesive method, thereby sequentially forming the stacked cores (C).
그리고 상기 코어 받침(210)은, 상기 라미네이터(100)에서 배출되는 상기 적층코어(C)들을 순차적으로 받치도록, 상기 라미네이터(100)의 하측에 승강 가능하게 구비된다. Further, the core support 210 is provided movably on the lower side of the laminator 100 so as to sequentially support the laminated cores C discharged from the laminator 100 .
보다 구제적으로 설명하면, 상기 코어 받침(210)은, 상기 라미네이터(100)를 향해 상방으로 움직여서 상기 라미네이터(100)에서 배출되는 적층코어(C)의 저면을 지지하며, 상기 적층코어(C)를 받친 상태로 하강한다. 그리고, 하나의 적층코어가 취출된 후에는 다시 상승해서 다음 적층코어의 저면을 받친다.More specifically, the core support 210 moves upward toward the laminator 100 to support the bottom surface of the laminated core C discharged from the laminator 100, and the laminated core C descend while supporting Then, after one laminated core is taken out, it rises again to support the bottom of the next laminated core.
다음으로, 상기 제2 히터(310)는, 상기 코어 받침(2l0)을 통해 상승해서 상기 코어 받침(210)의 상방으로 돌출 가능하며, 상기 라미나 부재(L)들의 내부에 삽입되어서 상기 라미나 부재들을 내부에서 가열한다.Next, the second heater 310 can rise through the core support 210 and protrude upward from the core support 210, and is inserted into the lamina members L so that the lamina The members are heated from the inside.
본 실시 예에서, 상기 제2 히터(310)는 상기 코어 받침(200)에 승강 가능하게 구비되며, 상기 라미네이터(100)의 하단(출구)을 통해 상기 라미네이터(100)의 내부(적층홀)로 기설정된 높이까지 진입한다. 상기 제2 히터(310)의 승강 스트로크는 조절될 수도 있다.In this embodiment, the second heater 310 is provided to be able to move up and down on the core support 200, and enters the inside (lamination hole) of the laminator 100 through the lower end (exit) of the laminator 100. Enter to a predetermined height. The lifting stroke of the second heater 310 may be adjusted.
그리고 상기 제2 히터(310)는, 상기 라미나 부재(L)들의 내부에 삽입되어서 상기 라미나 부재들을 정렬시키는 정렬 가이드(Guide), 즉 내부 가이드가 될 수도 있다.Also, the second heater 310 may be an alignment guide, that is, an inner guide, which is inserted into the lamina members L to align the lamina members.
다시 말해서, 상기 제2 히터(310)는, 상기 라미나 부재들이 상기 적층홀(100a)를 통과하면서 적층코어를 형성하는 중에 동축상의 정렬을 유도하며, 더 나아가 상기 라미나 부재(L)들의 일체 거동을 유도해서 상기 라미나 부재(L)들간의 상대적 운동, 예를 들면 상대 회전을 방지할 수도 있다. In other words, the second heater 310 induces coaxial alignment while the lamina members pass through the lamination hole 100a while forming the laminated core, and furthermore, the lamina members L are integrated. Relative movement between the laminar members (L) by inducing behavior, for example, relative rotation may be prevented.
그리고 본 실시 예에서 상기 코어 받침(210)은, 상기 적층홀에서 배출되는 각 적층코어의 저면(바닥면)을 받치며, 상기 코어 받침(210)을 승강시키는 리프터(Lifter; 220)에 연결된다. 상기 제2 히터(310) 역시 상기 제2 히터(310)를 승강시키는 리프터(320)에 연결되며, 상기 코어 받침(210)을 관통해서 상하방향으로 움직일 수 있다.And in this embodiment, the core support 210 supports the bottom surface (bottom surface) of each laminated core discharged from the stacking hole, and is connected to a lifter 220 that lifts the core support 210 . The second heater 310 is also connected to a lifter 320 that moves the second heater 310 up and down, and can move up and down through the core support 210 .
이하에서는, 상기 코어 받침(210)을 승강시키는 리프터(220)를 제1 리프터라 칭하고, 상기 제2 히터(310)를 승강시키는 리프터(320)를 제2 리프터라 칭한다.Hereinafter, the lifter 220 that lifts the core support 210 is referred to as a first lifter, and the lifter 320 that lifts the second heater 310 is referred to as a second lifter.
상술한 바와 같이, 상기 코어 받침(210)은, 상기 라미네이터(100) 특히 상기 적층홀(100a)에서 순차적으로 배출되는 상기 적층코어(C)들을 순차적으로 받치기 위해, 상기 라미네이터(100)의 하측에 승강 가능하게 구비된다. 그리고 상기 제1 리프터(220)는, 상기 코어 받침(210)을 승강시키기 위해 상기 코어 받침(210)에 연결되며, 상기 코어 받침(210) 예를 들면 코어 받침용 플레이트(Plate)를 지지하고 승강시키는 구성요소이다. As described above, the core support 210 is the lower side of the laminator 100 in order to sequentially support the laminated cores C sequentially discharged from the laminator 100, particularly the laminated hole 100a. It is provided so that it can be lifted on. In addition, the first lifter 220 is connected to the core support 210 to move the core support 210 up and down, supports the core support 210, for example, a plate for core support, and lifts the core support 210. It is a component that
상기 제1 리프터(220)는 유압 또는 공압 실린더 등과 같은 신축식 실린더를 포함할 수 있으나 이에 한정되는 것은 아니며, 예를 들면 선형 운동을 구현하는 리니어 모터(Linear Motor) 등의 장치을 이용한 전동 액츄에이터 등과 같이 상기 코어 받침의 승강을 구현할 수 있는 다양한 장치가 상기 제1 리프터(220)로 적용될 수 있다. The first lifter 220 may include, but is not limited to, a telescopic cylinder such as a hydraulic or pneumatic cylinder, and for example, an electric actuator using a device such as a linear motor that implements a linear motion. Various devices capable of realizing elevation of the core support may be applied as the first lifter 220 .
그리고 상기 코어 받침(210)은, 상기 제1 리프터(220)의 상부에 회전 가능하게 구비될 수 있으며, 상기 적층코어(C)들의 직각도 및 두께 편차 관리를 위해 상기 라미나 부재(L)들이 상기 라미네이터(100)에 의해 인덱스(Index) 회전할 때, 상기 라미네이터(100)에서 배출되는 적층코어의 밑면(바닥면)을 받친 채로 상기 적층코어(C)와 함께 회전할 수 있다.In addition, the core support 210 may be rotatably provided on top of the first lifter 220, and the lamina members (L) may be provided to manage the perpendicularity and thickness deviation of the laminated cores (C). When index rotates by the laminator 100, it can rotate together with the laminated core C while supporting the underside (bottom surface) of the laminated core discharged from the laminator 100.
보다 구체적인 예로서, 상기 코어 받침(210)은 상기 제1 리프터(220)의 상단에 회전 자재로 설치된다. 예를 들면, 상기 제1 리프터(220)의 상측에 베어링(230; Bearing)이 설치되고, 상기 코어 받침(210)이 상기 베어링(230)에 의해 자유로운 회전이 가능한 상태 즉 회전 자재로 설치될 수 있다.As a more specific example, the core support 210 is rotatably installed on the top of the first lifter 220 . For example, a bearing 230 is installed on the upper side of the first lifter 220, and the core support 210 can rotate freely by the bearing 230, that is, it can be installed as a rotating material. there is.
본 실시 예에서 상기 제1 리프터(220)는, 제1실린더 헤드(221)와 신축 가능한 제1실린더 몸체(222)를 포함하며, 상기 코어 받침(210)은 상기 제1실린더 헤드(221)의 상단에 상기 베어링(230)에 의해 회전 가능하게 구비된다. 실린더와 베어링의 기능 및 종류 등은 본 기술 분야에서 통상의 지식을 가진 사람(이하 '통상의 기술자')에게 공지된 것이므로 그에 대한 부가적인 설명은 생략된다.In this embodiment, the first lifter 220 includes a first cylinder head 221 and an elastic first cylinder body 222, and the core support 210 is It is rotatably provided at the top by the bearing 230. Functions and types of cylinders and bearings are well known to those skilled in the art (hereinafter referred to as 'ordinary technicians'), so additional description thereof will be omitted.
상기 코어 받침(210)은, 상기 코어 받침의 상측면에 상기 적층코어(C)가 안착된 채로 하강하며, 상기 코어 받침이 하한의 위치에 도달하면 컨베이어 등의 코어 취출기(도시되지 않음)에 의해 상기 적층코어의 취출이 이루어질 수 있다. 그 후, 상기 코어 받침(210)은 다시 상승해서 다음 순서로 배출되는 적층코어의 밑면을 받치게 된다. The core support 210 descends while the laminated core C is seated on the upper side of the core support, and when the core support reaches the lower limit position, a core extractor (not shown) such as a conveyor By this, the laminated core can be taken out. After that, the core support 210 rises again to support the bottom surface of the laminated core discharged in the next order.
상기 코어 받침과 제1 리프터는 배압장치로서, 상기 코어 받침의 기능 그 자체와 적층코어의 취출 메카니즘은 코어 제조기술 분야에 공지된 기술이므로 그에 대한 부가적인 설명은 생략된다.The core support and the first lifter are back pressure devices, and since the function of the core support itself and the take-out mechanism of the laminated core are known in the field of core manufacturing technology, additional description thereof will be omitted.
그리고 상기 제2 히터(310)는 상기 적층홀(100a)에 진입 가능하도록 상기 라미네이터(100)의 하측에 승강 가능하게 구비되며, 상기 적층홀(100a) 내부에서 기설정된 소정 높이 이하에 도달한 라미나 부재(L)들을 관통해서 끼워진다. And, the second heater 310 is provided to be able to move up and down on the lower side of the laminator 100 so as to be able to enter the lamination hole 100a, and the lamination reaches a predetermined height or less within the lamination hole 100a. It is inserted through the members (L).
즉, 상기 제2 히터(310)는 상기 라이네이터(100)의 내부로 진입 가능한 구성이며, 상기 라미네이터(100)의 하단 즉 적층홀의 하단을 통해 상기 라미네이터(100)의 내부로 소정 높이까지 진입함으로써, 소정 높이 이하에 위치해 있는 라미나 부재(L)들에 끼워진 채로 가열 기능을 수행하고, 더 나아가 내부 가이드로서 상기 라미네이터(100)의 상단(입구)를 통해 공급되는 라미나 부재들이 전체적으로 일체 거동하도록 유도한다. That is, the second heater 310 is configured to enter the inside of the liner 100, and enters the inside of the laminator 100 to a predetermined height through the lower end of the laminator 100, that is, the lower end of the stacking hole. , It performs a heating function while being inserted into the lamina members (L) located below a predetermined height, and furthermore, as an internal guide, the lamina members supplied through the upper end (inlet) of the laminator 100 act integrally as a whole. induce
상기 제2 리프터(320)는, 상기 제2 히터(310)를 승강시키기 위해 상기 제2 히터(310)를 지지하는 구성으로서, 상기 제2 히터(310)에 연결되어서 상기 제2 히터(310)를 상하방향으로 이동시킨다.The second lifter 320 is configured to support the second heater 310 in order to move the second heater 310 up and down, and is connected to the second heater 310 to lift the second heater 310. moves up and down.
상기 제2 리프터(320) 역시 유압 또는 공압 실린더 등과 같은 신축식 실린더를 포함할 수 있으나 이에 한정되는 것은 아니며, 예를 들면 리니어 모터(Linear Motor) 등을 이용한 전동 액츄에이터(Actuator) 등과 같이 상기 코어 가이드의 승강을 구현할 수 있는 다양한 장치가 상기 제2 리프터(320)로 적용될 수 있다. The second lifter 320 may also include a telescopic cylinder such as a hydraulic or pneumatic cylinder, but is not limited thereto, and for example, the core guide, such as an electric actuator using a linear motor, etc. A variety of devices that can implement the lifting of can be applied to the second lifter (320).
보다 구체적으로 설명하면, 상기 적층코어(C)의 취출을 위해 상기 제2 히터(310)가 상기 코어 받침(210)을 통해 하강하며, 상기 코어 받침(210)이 하한에 도달했을 때 상기 제2 히터의 상단은 상기 코어 받침(210)의 상단면 이하의 높이에 위치할 수 있도록 상기 제2 리프터(320)에 의해 하강한다. More specifically, the second heater 310 descends through the core support 210 to take out the laminated core C, and when the core support 210 reaches the lower limit, the second The upper end of the heater is lowered by the second lifter 320 so as to be located at a level lower than the upper end surface of the core support 210 .
그리고, 적층코어(C)가 상기 코어 받침(210)을 벗어나면, 다시 상기 제2 히터(310)가 상기 적층홀(100a)에 진입하며, 상기 제2 히터(310)의 상단이 상기 라미네이터(100) 내부의 기설정된 높이까지 상승해서 일정 높이 이하의 라미나 부재들의 내부에서 가열 기능을 수행할 수 있다.Then, when the laminated core (C) leaves the core support 210, the second heater 310 enters the laminated hole 100a again, and the upper end of the second heater 310 is the laminator ( 100) It can rise to a predetermined height inside and perform a heating function inside the laminar members below a certain height.
본 실시 예에서 상기 제2 히터(310)는 상기 코어 받침(210)을 관통해서 상하방향으로 움직이며, 상기 코어 받침(210)의 중심부에는 상기 제2 히터(310)의 승강을 위한 바닥 홀(Hole)이 상하방향으로 관통 형성된다. 즉, 도 8 내지 도 10에 도시된 예처럼, 상기 재2 히터(310)는, 상기 코어 받침(210)을 관통해서 상기 제2 리프터(320)에 의해 상하방향으로 움직인다. In this embodiment, the second heater 310 passes through the core support 210 and moves in the vertical direction, and in the center of the core support 210, there is a floor hole for lifting the second heater 310 ( Hole) is formed through in the vertical direction. That is, as in the examples shown in FIGS. 8 to 10 , the second heater 310 passes through the core support 210 and moves up and down by the second lifter 320 .
보다 구체적으로는, 상기 코어 받침(210)의 내부에 상기 제2 히터(310)가 승강 가능하게 구비되며, 상기 제2 리프터(320)에 의해 상기 제2 히터(310)가 상기 코어 받침(210)의 위로 솟을 수 있다. 따라서, 본 실시 예에서는, 상기 제2 히터(310)가 상기 코어 받침(210) 대해 상대적 상하 운동이 가능한 구조이며, 상기 코어 받침(210)의 상측면으로부터 상기 제2 히터(310)의 돌출 높이가 조절될 수도 있다.More specifically, the second heater 310 is provided to be able to move up and down inside the core support 210, and the second heater 310 is moved by the second lifter 320 to the core support 210. ) can rise above. Therefore, in this embodiment, the second heater 310 has a structure capable of relative vertical movement with respect to the core support 210, and the protruding height of the second heater 310 from the upper side of the core support 210 may be adjusted.
상기 제2 히터(310)는, 상기 제2 리프터(320)의 상부에 회전 가능하게 구비될 수도 있다. 상기 적층코어(C)들의 직각도 및 두께 편차 관리를 위해 상기 라미나 부재(L)들이 상기 라미네이터(100)에 의해 인덱스 회전할 때, 상기 제2 히터(310)가 상기 적층홀 내부의 라미나 부재들과 함께 회전할 수 있다.The second heater 310 may be rotatably provided above the second lifter 320 . When the lamina members (L) are index-rotated by the laminator 100 to manage the perpendicularity and thickness deviation of the laminated cores (C), the second heater 310 operates on the lamina inside the laminated hole. It can rotate with members.
보다 구체적인 예로서, 상기 제2 히터(310)는 상기 제2 리프터(320)의 상단에 회전 자재로 설치된다. 예를 들면, 상기 제2 리프터(320)의 상측에 베어링(330; Bearing)이 설치되고, 상기 제2 히터(310)가 상기 베어링(330)에 의해 자유로운 회전이 가능한 상태 즉 회전 자재로 설치될 수 있다. As a more specific example, the second heater 310 is rotatably installed on the top of the second lifter 320 . For example, a bearing 330 is installed on the upper side of the second lifter 320, and the second heater 310 can freely rotate by the bearing 330, that is, it is installed as a rotating material. can
본 실시 예에서는 상기 코어 받침(210)의 회전을 지지하는 베어링(230)과 상기 제2 히터(310)의 회전을 지지하는 베어링(330)이 각각 별도로 설치된다. 본 명세서에서는, 상기 코어 받침(210)의 회전을 지지하는 베어링(230)을 제1베어링이라 하고, 상기 제2 히터(310)의 회전을 지지하는 베어링(330)을 제2베어링이라 칭한다. In this embodiment, the bearing 230 supporting rotation of the core support 210 and the bearing 330 supporting rotation of the second heater 310 are separately installed. In the present specification, the bearing 230 supporting rotation of the core support 210 is referred to as a first bearing, and the bearing 330 supporting rotation of the second heater 310 is referred to as a second bearing.
따라서, 본 실시 예에서는 상기 코어 받침(210)과 제2 히터(310)는 상호 독립적인 회전이 가능한 구조이다. 다만, 상기 라미네이터(100)에 의해 라미나 부재(L)들이 인덱스 회전할 때 상기 코어 받침(210)과 제2 히터(310)가 동일 각도로 동시에 회전함으로써, 상기 제2 히터가 끼워진 라미나 부재들과 그 위에 적층되어 있는 다른 라미나 부재들의 일체 회전이 이루어진다.Therefore, in this embodiment, the core support 210 and the second heater 310 have a structure capable of mutually independent rotation. However, when the lamina members (L) are index-rotated by the laminator 100, the core support 210 and the second heater 310 rotate at the same angle at the same time, so that the second heater is inserted into the lamina member Integral rotation of the laminar members and other laminar members stacked thereon is made.
본 실시 예에서 상기 제2 리프터(320)는, 상기 제2 히터를 지지하는 제2실린더 헤드(321)와, 상기 제2실린더 헤드를 승강시키는 제2실린더 몸체(322)를 포함한다. 상기 제2 히터(310)는 상기 제2베어링(330)에 의해 상기 제2실린더 헤드(321)의 상단에 회전 가능하게 구비된다. In this embodiment, the second lifter 320 includes a second cylinder head 321 supporting the second heater and a second cylinder body 322 lifting the second cylinder head. The second heater 310 is rotatably provided at an upper end of the second cylinder head 321 by the second bearing 330 .
예를 들면, 상술한 바와 같이, 상기 제2 히터(310)는 상기 상기 코어 받침(210)을 관통해서 상하방향으로 움직이고, 상기 제2실린더 몸체(322)는, 도 8 내지 도 10에 도시된 예처럼, 상기 제1실린더 몸체(222)에 상하방향으로 인출입 가능하게 구비되는 승강 구조가 될 수 있다. 따라서, 상기 제1 리프터에 제2 리프터가 합체된 구조가 될 수도 있으며, 예를 들면 복수단의 실린더 보다 구체적으로는 2단 이상의 실린더에 의해 코어 받침과 제2 히터의 승강이 이루어질 수 있다. 물론, 상기 코어 받침과 제2 히터가 각각 별도의 승강 장치에 의해 구동될 수도 있다.For example, as described above, the second heater 310 moves up and down through the core support 210, and the second cylinder body 322 is shown in FIGS. 8 to 10 As in the example, the first cylinder body 222 may be a lifting structure provided to be drawn in and out in the vertical direction. Accordingly, a structure in which the second lifter is combined with the first lifter may be used. For example, the core support and the second heater may be moved up and down by a plurality of cylinders or, more specifically, two or more cylinders. Of course, the core support and the second heater may be driven by separate lifting devices.
도 5 및 도 6을 참조하면, 상기 제2 히터(310)는 상기 라미나 부재들을 내부에서 가열하기 위한 열원(310a, 310b)을 포함할 수 있다. 상기 열원(310a, 310b)은 전기 에너지를 열 에너지로 변환하는 장치, 예를 들면 도 5의 (a)처럼, 상기 제2 히터의 몸체(311)에 구비되며 전원선(L)에 의해 전류를 공급받는 전열선이나 고주파 유도 가열방식 등의 유도 가열기를 포함할 수 있으나 이에 한정되는 것은 아니며, 예를 들면 상기 열원이 고온의 유체가 유동하는 유로를 포함할 수도 있으며, 상기 열원의 형태나 방식은 다양하게 변경될 수 있다.Referring to FIGS. 5 and 6 , the second heater 310 may include heat sources 310a and 310b for internally heating the lamina members. The heat sources 310a and 310b are devices that convert electrical energy into thermal energy, for example, as shown in FIG. It may include, but is not limited to, an induction heater such as an electric heating wire supplied or a high-frequency induction heating method. For example, the heat source may include a flow path through which a high-temperature fluid flows, and the heat source may have various shapes and methods. can be changed to
상기 제2 히터(310)는, 열기를 방출하기 위해 상기 제2 히터의 몸체(311)에 형성되는 통공(311a)들을 포함할 수도 있다. 보다 구체적인 예로서, 상기 제2 히터의 몸체(311)에는 열풍을 방출하는 통공(311a)들이 형성될 수 있다. 그리고 상기 제2 히터의 몸체(311)의 내부에는, 열기의 강제 방출을 위한 송풍기(311b)가 구비될 수 열을 생성하는 열원(310b) 예를 들면 전열식 발열체가 구비될 수 있다. 물론, 상기 제2 히터(310)는 외부에서 도입되는 열풍을 발산하는 형태가 될 수도 있다.The second heater 310 may include through holes 311a formed in the body 311 of the second heater to emit heat. As a more specific example, through holes 311a through which hot air is discharged may be formed in the body 311 of the second heater. In addition, a blower 311b for forced release of heat may be provided inside the body 311 of the second heater, and a heat source 310b for generating heat, for example, an electrothermal heating element may be provided. Of course, the second heater 310 may be in the form of dissipating hot air introduced from the outside.
그리고 상기 코어 받침(210)은, 상술한 바와 같이 적층코어의 바닥면을 가열하기 위한 열원(210a)을 포함할 수 있다. 상기 코어 받침의 열원(210a)은, 전기 에너지를 열 에너지로 변환하는 장치, 예를 들면 도 6처럼, 상기 제2 히터의 몸체(311)에 구비되며 전원선(L)에 의해 전류를 공급받는 전열선이나 고주파 유도 가열방식 등의 유도 가열기를 포함할 수 있다. 물론, 상기 코어 받침의 열원(210a) 역시, 고온의 유체가 유동하는 유로를 포함할 수도 있으며, 상기 코어 받침의 열원(210a) 역시 다양한 형태나 방식으로 변경될 수 있다.And, as described above, the core support 210 may include a heat source 210a for heating the bottom surface of the laminated core. The heat source 210a of the core support is a device that converts electrical energy into thermal energy, for example, as shown in FIG. 6, provided on the body 311 of the second heater and supplied with current by a power line L It may include an induction heater such as an electric heating wire or a high frequency induction heating method. Of course, the heat source 210a of the core support may also include a passage through which a high-temperature fluid flows, and the heat source 210a of the core support may also be changed in various forms or methods.
상기 코어 받침의 열원(210a)과 제2 히터의 열원(310a, 310c)은 동일한 전원선(L)을 통해 전류를 공급받을 수도 있고, 각각 별도로 전원을 공급받을 수도 있다. 그리고 고정체와 회전체간의 전기적 연결 방식, 예를 들면 회전 전극을 이용한 전기적 연결 방식 그 자체는 공지된 기술이므로, 그에 대한 부가적인 설명은 생략된다.The heat source 210a of the core support and the heat sources 310a and 310c of the second heater may be supplied with current through the same power line L or may be supplied with power separately. In addition, since the electrical connection method between the stationary body and the rotating body, for example, the electrical connection method using a rotating electrode itself is a known technology, additional description thereof will be omitted.
본 발명은, 복수장의 라미나 부재들을 접착방식으로 일체화해서 적층코어를 형성하는 코어 제조방법의 일 실시 예를 제공할 수 있다.The present invention may provide an embodiment of a core manufacturing method of forming a laminated core by integrating a plurality of lamina members by an adhesive method.
상기 코어 제조방법의 일 실시 예는, 상기 라미나 부재들이 적층상태로 통과하면서 상기 라미나 부재들의 계면에 존재하는 접착제에 의해 일체화되도록, 상기 라미나 부재들의 외부와 내부에서 각각 상기 라미나 부재들을 가열하는 제1 히터와 제2 히터로 상기 라미나 부재를 가열하는 (a)단계와, 상기 적층코어의 취출을 위해, 상기 라미나 부재를 가열하기 위한 제2 히터의 상단을 상기 적층코어의 바닥면을 받치는 코어 받침의 상단면 이하로 하강시키는 (b)단계를 포함할 수 있다. In one embodiment of the core manufacturing method, the lamina members are formed on the outside and inside of the lamina members, respectively, so that the lamina members are integrated by the adhesive present at the interface of the lamina members while passing in a laminated state. Step (a) of heating the laminar member with a first heater and a second heater to heat, and for taking out the laminated core, the upper end of the second heater for heating the lamina member is placed on the bottom of the laminated core. It may include a step (b) of lowering the surface below the top surface of the core support.
상기 (a)단계는, 상기 코어 받침과 상기 제2 히터를 상승시켜서 상기 코어 받침을 적층코어의 바닥을 형성하는 라미나 부재에 밀착시키고, 상기 제2 히터를 라미나 부재들의 내부로 진입시키는 단계를 포함한다.In the step (a), the core support and the second heater are raised to bring the core support into close contact with the lamina member forming the bottom of the laminated core, and the second heater is entered into the lamina members. includes
한편, 상기 제2 히터(310)는, 상기 제2 히터(310)가 끼워진 라미나 부재들이 상기 라미네이터(100)에 의해 소정 각도로 회전할 때, 상기 제2 히터(310)가 끼워진 라미나 부재들과 함께 동일 각도로 회전하며, 상기 라미나 부재들의 접착 계면에서 슬립(Slip) 발생 즉 라미나 부재들간의 상대적 회전 발생을 방지한다.On the other hand, the second heater 310, when the lamina members into which the second heater 310 is inserted rotate at a predetermined angle by the laminator 100, the lamina member into which the second heater 310 is inserted. It rotates at the same angle with the lamina members, and prevents slip generation, that is, relative rotation between the lamina members at the adhesive interface of the lamina members.
본 실시 예에서 상기 제2 히터(310)는 상기 라미나 부재를 관통하는 홀(Hole)에 끼워진다. 상기 라미나 부재들이 상기 라미네이터에 의해 적층 구조로 결합됨으로써 상술한 적층코어(C)를 형성하면, 상기 적층코어(C)들의 중심부에는 축방향으로 관통된 구멍 즉 축공이 형성되고, 상기 제2 히터(310)는 상기 라미네이터에서 배출되는 적층코어의 축공에 끼워진다.In this embodiment, the second heater 310 is inserted into a hole penetrating the lamina member. When the lamina members are combined into a laminated structure by the laminator to form the above-described laminated cores (C), axially penetrating holes, that is, shaft holes, are formed in the center of the laminated cores (C), and the second heater 310 is inserted into the shaft hole of the laminated core discharged from the laminator.
상기 제2 히터(310)는 상기 라미나 부재들의 중심홀(H)에 상기 라미나 부재들의 회전 방향으로 걸려서 회전력을 전달받고, 그에 대한 반작용으로 상기 라미나 부재들의 일체 거동, 보다 구체적으로는 일체 회전을 구현할 수 있다.The second heater 310 is caught in the center hole H of the lamina members in the rotational direction of the lamina members to receive rotational force, and as a reaction thereto, the integral behavior of the lamina members, more specifically, the integral rotation can be implemented.
보다 구체적으로 설명하면, 상기 제2 히터(310)는, 상기 라미나 부재(L)들의 중심홀(H)에 회전 방향으로 걸리도록, 상기 코어 가이드(310)의 외주면에는 형성되는 코어 걸림부(312)를 갖는다.More specifically, the second heater 310 is a core engaging portion formed on the outer circumferential surface of the core guide 310 so as to be caught in the center hole H of the lamina members L in the rotation direction ( 312).
상기 코어 걸림부(312)는, 상기 라미나 부재들의 내주면 즉 상술한 중심홀의 테두리에 형성되는 홈 또는 돌기에 맞물림된다. 예를 들면, 중심부에 형성된 구멍(축공)에 축(Shaft)이 결합되는 구조의 적층코어(회전자 코어)를 제조하는 경우, 상기 적층코어의 축공에는 축과 적층코어의 상대적 회전을 방지하는 홈 및/또는 돌기가 형성되며, 이러한 구조의 적층코어 제조를 위한 라미나 부재의 중심홀에도 동일한 형상의 홈 또는 돌기가 형성되는데, 본 실시 예에 따른 코어 제조장치의 코어 가이드(310)는 상기 라미나 부재의 중심홀에 형성되는 홈 및/또는 돌기에 대응되는 형상 즉 맞물리는 형상의 코어 걸림부(311)를 갖는다.The core engaging portion 312 is engaged with the grooves or protrusions formed on the inner circumferential surfaces of the lamina members, that is, on the rim of the aforementioned center hole. For example, when manufacturing a laminated core (rotor core) having a structure in which a shaft is coupled to a hole (shaft hole) formed in the center, a groove for preventing relative rotation between the shaft and the laminated core is formed in the shaft hole of the laminated core. And / or protrusions are formed, and grooves or protrusions of the same shape are formed in the center hole of the lamina member for manufacturing the laminated core of this structure. The core guide 310 of the core manufacturing apparatus according to the present embodiment is It has a core hooking part 311 of a shape corresponding to the groove and/or protrusion formed in the center hole of the member, that is, of an engaging shape.
보다 구체적인 예로서, 도 7에 도시된 예처럼, 상기 라미나 부재(L)의 중심홀에 돌기(P)가 형성된 구조의 경우, 상기 코어 가이드(310)의 외주면에는 홈(Groove) 형상의 코어 걸림부(312)가 상하방향으로 길게 형성된다. As a more specific example, as in the example shown in FIG. 7, in the case of a structure in which a protrusion P is formed in the center hole of the lamina member L, the outer circumferential surface of the core guide 310 has a groove-shaped core. The hooking portion 312 is formed long in the vertical direction.
그리고 소정의 타이밍마다 상기 라미네이트의 축선(Axis)을 기준으로 라미나 부재들을 소정 각도씩 일체로 돌리면서 새로운 라미나 부재의 적층을 진행하는 적층코어 제조방식 즉 인덱스 회전 적층의 경우, 상기 라미나 부재(L)의 중심홀에는 등각도 간격으로 돌기(P)들이 형성될 수 있다.In addition, in the case of a laminated core manufacturing method, that is, index rotation lamination, in which a new lamina member is laminated while integrally rotating the lamina members by a predetermined angle with respect to the axis of the laminate at a predetermined timing, the lamina member Protrusions P may be formed at equal angular intervals in the center hole of (L).
예를 들면, 라미나 부재의 중심홀에 90도의 각도 단위로 동일 형상의 돌기들이 형성된 경우, 상기 라미네이터(100)는 90도 또는 180도 단위로 라미나 부재(L)들을 돌리면서 인덱스 회전 적층을 수행할 수 있다. 도시되지는 않았으나, 라미나 부재의 중심홀 외부 영역에는 자석 삽입을 위한 자석홀 등의 구조가 형성될 수 있다. 도 7에 도시된 라미나 부재는 중심홀에 2개의 돌기(P)가 180도 간격으로 상호 대칭되게 형성된 예이며, 인덱스 회전 적층을 위한 회전 각도는 180도가 적용될 수 있다.For example, when protrusions of the same shape are formed in the center hole of the lamina member at an angle of 90 degrees, the laminator 100 rotates the lamina members L at 90 degrees or 180 degrees to perform index rotational lamination. can be done Although not shown, a structure such as a magnet hole for inserting a magnet may be formed in an outer region of the central hole of the lamina member. The lamina member shown in FIG. 7 is an example in which two protrusions P are formed symmetrically with each other at an interval of 180 degrees in a center hole, and a rotation angle of 180 degrees for index rotation lamination may be applied.
본 실시 예에서는, 상기 제2 히터(310)가 상기 라미나 부재의 중심홀에 대응되는 형상 즉 원기둥 형상이며, 상기 제2 히터(310)의 외주면에 적어도 하나의 코어 걸림부(312)가 상하방향으로 길게 형성되나, 상기 코어 가이드의 형상은 적층코어의 형상에 맞춰서 변경될 수 있다. In this embodiment, the second heater 310 has a shape corresponding to the center hole of the lamina member, that is, a cylindrical shape, and at least one core engaging part 312 is provided on the outer circumferential surface of the second heater 310 in upper and lower directions. It is formed long in the direction, but the shape of the core guide can be changed to match the shape of the laminated core.
그리고 본 실시 예에서 상기 제2 히터(310)는, 상기 코어 받침(210)에 대해 독립적인 상하 이동 및 회전 운동이 가능한 구성요소이며, 상기 라미나 부재의 중심홀에 축의 결합을 위한 적어도 하나의 홈이 형성된 경우, 상기 코어 걸림부는 상기 코어 가이드의 외주면에 상하방향을 따라 길게 형성되는 돌기 형상으로 구현될 수 있다. And in this embodiment, the second heater 310 is a component capable of independent vertical movement and rotational movement with respect to the core support 210, at least one for coupling the axis to the center hole of the lamina member When the groove is formed, the core holding portion may be implemented in a protrusion shape formed long along the vertical direction on the outer circumferential surface of the core guide.
예를 들면, 상기 코어 받침(210)과 제2 히터(310)가 모두 상한까지 상승 완료된 후 상기 코어 받침(210)이 다시 하강할 때, 상기 제2 히터(310)는 상한의 높이에 그대로 유지된 채로 상기 코어 받침 상측의 라미나 부재들에 대한 내부 가열 및 일체 거동(일체 회전)을 구현할 수도 있다. 그리고 상기 코어 받침(210)과 제2 히터(310)는, 각각 별도의 베어링 즉 제1베어링(230)과 제2베어링(330)에 의해 회전 가능하게 지지되므로, 상호 독립적인 회전이 가능하다. 다만, 본 실시 예에서는, 상기 라미나 부재(L)들이 회전할 때, 상기 코어 받침(210)과 제2 히터(310)가 동일 각도로 동시에 회전하면서 각자의 기능을 수행한다.For example, after both the core support 210 and the second heater 310 are raised to the upper limit, when the core support 210 is lowered again, the second heater 310 remains at the upper limit height Internal heating and integral motion (integral rotation) of the lamina members on the upper side of the core support may be implemented while being In addition, since the core support 210 and the second heater 310 are rotatably supported by separate bearings, that is, the first bearing 230 and the second bearing 330, mutually independent rotation is possible. However, in this embodiment, when the lamina members (L) rotate, the core support 210 and the second heater 310 simultaneously rotate at the same angle and perform their respective functions.
본 실시 예는 접착식 적층코어 제조장치, 즉 라미나 부재들의 경계면을 접착물질(접착제)로 결합해서 적층 구조의 코어를 제조하는 장치로서, 열에 의한 접착물질(접착제)의 경화 즉 가열 경화를 위해 상기 라미네이터(100)는 상술한 제1 히터(110; Heater)를 포함한다. 즉, 상기 제1 히터(110)는, 라미나 부재(L)들의 접착 계면에 존재하는 접착제의 경화를 위해 상기 라미나 부재들을 외부에서 가열하기 위한 열원을 갖는다.The present embodiment is an apparatus for manufacturing an adhesive laminated core, that is, an apparatus for manufacturing a core of a laminated structure by combining the boundary surfaces of lamina members with an adhesive material (adhesive), for curing the adhesive material (adhesive) by heat, that is, heat curing. The laminator 100 includes the aforementioned first heater 110 (Heater). That is, the first heater 110 has a heat source for externally heating the lamina members for curing of the adhesive present in the adhesive interface of the lamina members (L).
그리고 상기 제2 히터(310)의 상단은, 최대 상기 제1 히터(110)의 상단 높이 이상에서 라미네이터의 상단 이하의 구간까지 상승할 수 있는 것이 좋으며, 본 실시 예에서는 상기 제2 히터(310)가 상기 제1 히터(110)의 상단(제1 히터의 입구) 이상의 높이까지 상승해서 상기 라미나 부재(L)들의 움직임을 가이드한다.And the upper end of the second heater 310 is preferably able to rise from the height of the upper end of the first heater 110 to a section below the upper end of the laminator. In this embodiment, the second heater 310 It rises to a height higher than the upper end of the first heater 110 (the inlet of the first heater) to guide the movement of the lamina members (L).
본 실시 예에 따른 코어 제조장치는, 상술한 바와 같이 상기 적층홀을 통과하는 라미나 부재(L)들을 접착방식으로 기설정된 매수씩 일체화해서 적층코어(C)를 형성하며, 상기 라미나 부재(L)는 프로그레시브 금형장치에서 블랭킹(Blanking)에 의해 형성될 수 있다.As described above, the core manufacturing apparatus according to the present embodiment forms a laminated core (C) by integrating the lamina members (L) passing through the lamination hole by an adhesive method by a predetermined number, and the lamina member ( L) may be formed by blanking in a progressive mold device.
도 1 내지 도 3을 참조하면, 상기 라미네이터(100)는 프로그레시브 금형장치에 적용될 수 있으며, 보다 구체적으로는 블랭킹 유닛(400)의 하측에 구비될 수 있다. Referring to FIGS. 1 to 3 , the laminator 100 may be applied to a progressive mold device, and more specifically, may be provided below the blanking unit 400 .
그리고 상기 라미네이터(100)는 상기 라미나 부재(L)들의 정렬 적층 및 일체화를 위한 내부 공간 즉 상술한 적층홀(100a; Laminating Hole)을 가지며, 소재의 블랭킹에 의해 상기 적층홀(100a)에 순차적으로 연속 공급되는 라미나 부재(L)들이 상하 정렬된 상태로 적층된다.And the laminator 100 has an internal space for aligning and lamination and integration of the lamina members (L), that is, the above-described laminating hole (100a; Laminating Hole), and sequentially in the laminating hole (100a) by blanking of the material. The laminar members (L) continuously supplied to are stacked in a vertically aligned state.
상기 라미네이터(100)는, 라미나 부재(L)들의 일체화에 의해 연속적으로 성형되는 적층 구조체 즉 적층코어(C)들을 순차적으로 배출한다. 따라서, 상기 라미네이터(100)의 상단이 라미나 부재의 입구가 되고 라미네이터의 하단이 적층코어(C)의 출구가 된다. The laminator 100 sequentially discharges the laminated structure, that is, the laminated cores C, which are continuously formed by integrating the lamina members L. Therefore, the upper end of the laminator 100 becomes the inlet of the lamina member and the lower end of the laminator becomes the outlet of the laminated core C.
상기 블랭킹 유닛(400)은 상기 라미나 부재(L)들의 제조를 위해 소재를 블랭킹하는 장치로서, 소재 예를 들면 전기 강판 등과 같은 금속 스트립(S)을 타발해서 라미나 부재(L)들을 순차적으로 형성하며, 소재의 타발(블랭킹)과 동시에 형성되는 라미나 부재(L)를 상기 라미네이터(100)의 내부 즉 적층홀(100a)에 밀어 넣는다. The blanking unit 400 is a device for blanking a material for the manufacture of the lamina members (L), for example, a metal strip (S) such as an electrical steel sheet is punched out to sequentially form the lamina members (L). Forming, the lamina member (L) formed at the same time as the punching (blanking) of the material is pushed into the inside of the laminator 100, that is, the lamination hole 100a.
따라서, 상기 금속 스트립(S)이 블랭킹될 때마다, 상기 라미네이터(100) 내부의 라미나 부재들이 밀려서 금속 스트립(S)의 두께만큼 1피치씩 아래로 이동하게 된다.Therefore, whenever the metal strip (S) is blanked, the lamina members inside the laminator 100 are pushed and moved downward by one pitch as much as the thickness of the metal strip (S).
본 실시 예처럼, 상기 라미네이터(100)은, 접착제의 가열 경화를 위한 상기 제1 히터(110)와, 상기 라미나 부재들을 정렬/적층을 유도하는 스퀴즈 기구(120; Squeezer)와, 상기 적층코어(C)의 낙하를 방지하기 위한 핀치 기구(130; Pincher)를 포함할 수 있다.As in the present embodiment, the laminator 100 includes the first heater 110 for heating and curing the adhesive, a squeeze mechanism 120 for inducing alignment/lamination of the laminar members, and the laminated core. (C) may include a pinch mechanism (130; Pincher) for preventing the fall.
상기 스퀴즈 기구(120)는, 상기 블랭킹 유닛(400)에 의해 제조되는 상기 라미나 부재(L)들이 억지 끼움된 상태(압입 상태)로 통과하도록 상하 방향으로 관통된 구조이다. 보다 구체적으로, 상기 스퀴즈 기구(120)는, 상기 라미네이터(100)의 상부 구간에 상기 라미나 부재(L)들이 동축상에 정렬된 상태로 적층되도록, 상기 라미나 부재(L)들의 적층 및 하향 이동을 가이드한다. 상기 스퀴즈 기구(120)는 상하 방향으로 관통된 적어도 하나의 중공형 스퀴즈 부재 즉 스퀴즈 링(Squeeze Ring)을 포함할 수 있다.The squeeze mechanism 120 has a structure through which the lamina members L manufactured by the blanking unit 400 pass through in a forcibly fitted state (press-fitting state) in the vertical direction. More specifically, the squeeze mechanism 120 stacks and lowers the lamina members L so that the lamina members L are stacked in a coaxially aligned state in the upper section of the laminator 100. guide the movement The squeeze mechanism 120 may include at least one hollow squeeze member that penetrates in the vertical direction, that is, a squeeze ring.
그리고, 상기 핀치 기구(130)는, 상기 라미네이터(100)의 하부 구간에서 상기 적층코어(C)를 통과시키는 구성으로서, 상기 스퀴즈 기구(120)의 하측에 구비되며, 상기 적층코어(C)의 둘레를 가압하도록 탄력적으로 확장 가능하며 복원력을 갖는 통형(Tubular Shape)의 기구나 스프링에 의한 탄성력을 이용해서 적층코어의 외주를 가압하는 기구 등이 사용될 수 있다.And, the pinch mechanism 130 is configured to pass the laminated core (C) in the lower section of the laminator 100, and is provided below the squeeze mechanism 120, and the laminated core (C) A tubular mechanism that is elastically expandable to press the circumference and has a restoring force, or a mechanism that presses the outer circumference of the laminated core by using the elastic force of a spring may be used.
상기 스퀴즈 기구(120)와 상기 핀치 기구(130)의 사이에는 상기 라미나 부재(L)들을 안내하는 외부 가이드(140)가 구비될 수도 있다. 본 실시 예에서 상기 히터(110)는 상기 스퀴즈 기구와 핀치 기구(130)의 사이 영역에 구비되며, 상기 외부 가이드(140)는 상하방향으로 관통된 원통형상으로 상기 제1 히터(110)의 내부에 구비될 수 있다.An external guide 140 for guiding the lamina members (L) may be provided between the squeeze mechanism 120 and the pinch mechanism 130. In this embodiment, the heater 110 is provided in a region between the squeeze mechanism and the pinch mechanism 130, and the outer guide 140 has a cylindrical shape penetrating the inside of the first heater 110 in a vertical direction. can be provided in
그리고 상기 제1 히터(110)의 내부를 통과하는 라미나 부재들은 상기 제1 히터(110)에 의해 가열된다. 예를 들면, 상기 제1 히터(110)로는 고주파 유도 가열 장치가 적용될 수 있으나 상기 제1 히터의 종류가 이에 한정되지 않으며 예를 들면 전기저항 발열선 즉 전열선 구조 등 다른 종류의 히터도 당연하다. 상기 외부 가이드(140)는, 고주파 유도 가열에 의한 영향을 받지 않도록 비전도성 재질로 제조될 수 있다.And the lamina members passing through the inside of the first heater 110 are heated by the first heater 110. For example, a high-frequency induction heating device may be applied as the first heater 110, but the type of the first heater is not limited thereto, and other types of heaters such as an electric resistance heating wire, that is, a heating wire structure, are natural. The outer guide 140 may be made of a non-conductive material so as not to be affected by high-frequency induction heating.
상기 핀치 기구(130)는, 상기 제1 히터(110)의 아래측 영역에서 상기 적층코어(C)의 이동 통로를 형성하며, 상기 라미나 부재(L)들 보다 구체적으로 소정 매수씩 라미나 부재(L)들의 층간 결합에 의해 형성되는 적층코어(C)의 둘레를 가압해서 상기 적층코어를 소정의 힘으로 잡는 기구 즉 측압을 가하는 기구이다. 따라서, 상기 핀치 기구(130)는, 상기 라미네이터(100)에서 배출되는 적층코어가 상기 코어 받침(210)에 의해 받쳐지기 이전에 밑으로 떨어지는 것을 방지할 수 있다. The pinch mechanism 130 forms a movement passage for the laminated core C in the lower region of the first heater 110, and more specifically, lamina members by a predetermined number than the lamina members L. It is a mechanism for holding the laminated core with a predetermined force by pressing the circumference of the laminated core (C) formed by interlayer bonding of (L), that is, a mechanism for applying lateral pressure. Therefore, the pinch mechanism 130 can prevent the laminated core discharged from the laminator 100 from falling down before being supported by the core support 210 .
그리고, 상기 블랭킹 유닛(400)은, 승강 가능한 상형(10)이 구비되는 블랭킹 펀치(410)와, 상기 상형(10)의 하측에 구비되는 블랭킹 다이(420)를 포함한다. 상기 블랭킹 다이(420)는 상기 라미네이터(100)의 직상방에 구비된다. 예를 들면, 상기 블랭킹 다이(420)가 상기 스퀴즈 기구(120)의 상측에 상기 스퀴즈 기구와 동축상에 구비될 수 있다.Further, the blanking unit 400 includes a blanking punch 410 provided with an upper mold 10 capable of moving up and down, and a blanking die 420 provided below the upper mold 10 . The blanking die 420 is provided directly above the laminator 100 . For example, the blanking die 420 may be provided on the upper side of the squeeze mechanism 120 coaxially with the squeeze mechanism.
프로그레시브 금형에 적용 가능한 라미네이터의 예는 본 명세서의 선행기술문헌에 기재된 특허문헌1 내지 5를 포함한 다수의 특허문헌에 공개되어 있으며, 상기 제1 히터와 스퀴즈 기구와 핀치 기구 등의 구성요소들도 특허문헌5(등록특허공보 제10-1876292호)를 포함한 여러 특허문헌에 예시되어 있으므로 이들 구성에 대한 부가적인 설명은 생략된다. Examples of laminators applicable to progressive molds are disclosed in a number of patent documents including Patent Documents 1 to 5 described in the prior art documents of this specification, and components such as the first heater, squeeze mechanism, and pinch mechanism are also patented. Since it is exemplified in various patent documents including Document 5 (Patent Registration No. 10-1876292), additional description of these configurations is omitted.
본 실시 예에 따른 코어 제조장치는, 상술한 바와 같이, 상기 라미나 부재(L)들을 소정 매수씩 일체화해서 상술한 적층코어(C)를 형성하기 위해, 상기 라미나 부재(L)들의 층간에 존재하는 접착제를 경화시킨다. 보다 구체적으로, 상기 라미나 부재(L)들의 층간에 존재하는 접착제는 상술한 라미네이터(100) 특히 상기 제1 히터(110)와 제2 히터(310), 더 나아가 상기 코어 받침(210)에 의해 고르게 경화되면서 라미나 부재들의 일체화를 안정적으로 구현할 수 있다.As described above, the core manufacturing apparatus according to the present embodiment, in order to form the above-described laminated core (C) by integrating the lamina members (L) by a predetermined number, between the layers of the lamina members (L) Cures the existing adhesive. More specifically, the adhesive present between the layers of the lamina members (L) is the above-described laminator 100, particularly the first heater 110 and the second heater 310, further by the core support 210 It is possible to stably realize the integration of lamina members while curing evenly.
상기 적층코어 제조장치의 상형(10)과 하형(20) 사이를 통과 중인 소재(S)에 층간 접착을 위한 접착제가 접착제 도포기에 의해 도포될 수도 있고, 이미 접착제가 코팅되어 있는 소재 즉 접착제 코팅층(S1, S2)을 갖는 소재(S)가 상형(10)과 하형(20) 사이로 공급될 수도 있다. 소재 즉 금속 스트립의 표면에 접착제를 도포하고 상기 금속 스트립을 타발해서 접착식 적층코어를 제조하는 기술과, 이미 접착제가 코팅되어 있는 금속 스트립을 공급받아 타발함으로써 접착식 적층코어를 제조하는 기술은 통상의 기술자에게 잘 알려진 기술이므로 그에 부가적인 설명은 생략된다.An adhesive for interlayer adhesion may be applied by an adhesive applicator to the material S passing between the upper mold 10 and the lower mold 20 of the laminated core manufacturing apparatus, or the material already coated with the adhesive, that is, the adhesive coating layer ( The material S having S1 and S2 may be supplied between the upper mold 10 and the lower mold 20. A technology of manufacturing an adhesive laminated core by applying an adhesive to the surface of a material, that is, a metal strip, and punching out the metal strip, and a technology of manufacturing an adhesive laminated core by receiving and punching a metal strip already coated with an adhesive are those skilled in the art. Since it is a well-known technique, additional description thereof is omitted.
상기 하형(20)에는 상기 라미네이터(100)의 냉각 및 그 주변의 냉각을 위한 냉각 시스템이 적용될 수 있으며, 상기 라미네이터(100)을 형성하는 구성요소들의 사이에는 열전도를 차단하기 위한 단열 부재가 적용될 수도 있다.A cooling system for cooling the laminator 100 and its surroundings may be applied to the lower mold 20, and a heat insulating member may be applied between components forming the laminator 100 to block heat conduction. there is.
그리고 상기 상형(10)에는 라미나 부재(L)에 소정의 슬롯이나 홀(예를 들면 상술한 라미나 부재의 중심홀) 등을 형성하기 위한 적어도 하나의 펀치(11)가 더 구비될 수 있으며, 상기 하형(20)의 상측면에는 상술한 펀치(11)와 마주하는 다이 홀(21)이 구비될 수 있다. 적층코어 제조용 프로그레시브 금형장치에서 라미나 부재의 형상 가공을 위해 상형과 하형에 구비되는 성형장치의 예는 다양하게 공지되어 있으므로 부가적인 설명은 생략된다.In addition, the upper mold 10 may further include at least one punch 11 for forming a predetermined slot or hole (for example, the center hole of the lamina member described above) in the lamina member L, , The upper side of the lower mold 20 may be provided with a die hole 21 facing the punch 11 described above. In the progressive mold device for manufacturing laminated cores, examples of molding devices provided to the upper and lower molds for processing the shape of laminar members are variously known, so additional description is omitted.
도 3에서, 상기 라미네이터(100)의 내부에 상하로 적층된 라미나 부재(L)들은 실선을 기준으로 분리되며, 점선으로 표시된 경계면은 층간 접착이 이루어지는 부분(접착 계면)을 예시한 것이다. In FIG. 3, the laminar members (L) stacked up and down inside the laminator 100 are separated based on a solid line, and the boundary surface indicated by the dotted line illustrates a portion (adhesive interface) where interlayer adhesion is made.
상기 라미네이터(100)는, 상술한 인덱스 회전 적층을 위해 상기 라미나 부재들을 소정각도씩 회전시킬 수 있다. 예를 들면, 상기 스퀴즈 기구(120)와 핀치 기구(130)가 동시에 동일 각속도로 회전할 수 있다. The laminator 100 may rotate the lamina members by a predetermined angle for the aforementioned index rotation lamination. For example, the squeeze mechanism 120 and the pinch mechanism 130 may rotate simultaneously at the same angular velocity.
상기 스퀴즈 기구(120)는 제자리 회전 가능한 중공형 회전 다이(150)의 내부에 고정되며, 상기 회전 다이(150)와 일체로 회전한다. 본 실시 예에서는 상기 블랭킹 다이(420) 역시 상기 회전 다이에 구비되어서 상기 스퀴즈 기구(120)와 함께 회전한다. 그리고 상기 핀치 기구(130) 역시 제자리에서 상기 스퀴즈 기구와 동일 각도로 동시에 회전한다.The squeeze mechanism 120 is fixed inside the hollow rotary die 150 capable of rotating in place and rotates integrally with the rotary die 150 . In this embodiment, the blanking die 420 is also provided on the rotating die and rotates together with the squeeze mechanism 120 . And, the pinch mechanism 130 also rotates simultaneously at the same angle as the squeeze mechanism in place.
상기 스퀴즈 기구(120)와 상기 핀치 기구(130)는 회전 구동기에 의해 회전하며, 예를 들면 기어 전동 메카니즘에 의해 회전할 수 있다. 기어 전동을 위하여, 상기 회전 다이(150)는 모터(M)에 의해 회전하는 제1기어(510)에 연결되어 회전력을 전달받을 수 있으며, 상기 핀치 기구(130) 역시 제2기어(520)에 연결되어서 회전할 수 있다. 상기 회전 다이(150)에는 상기 제1기어와 맞물리는 링 기어(Ring Gear; 151)가 설치될 수 있다. The squeeze mechanism 120 and the pinch mechanism 130 are rotated by a rotary actuator, and may rotate by, for example, a gear transmission mechanism. For gear transmission, the rotary die 150 is connected to the first gear 510 rotated by the motor M to receive rotational force, and the pinch mechanism 130 is also connected to the second gear 520. It can be connected and rotated. A ring gear 151 meshing with the first gear may be installed on the rotating die 150 .
물론, 상기 스퀴즈 기구(120)와 핀치 기구(130)의 회전 메카니즘은 기어 전동 방식에 한정되지 않으며, 예를 들면 벨트(Belt) 전동 방식 등 다양하게 변경될 수 있다. 상기 회전 다이(150)와 핀치(130)는 베어링에 의해 상기 하형에 회전 가능하게 설치된다. Of course, the rotation mechanism of the squeeze mechanism 120 and the pinch mechanism 130 is not limited to the gear transmission method, and may be variously changed, such as a belt transmission method, for example. The rotating die 150 and the pinch 130 are rotatably installed on the lower die by bearings.
본 실시 예에서는 상기 외부 가이드(140)가 상기 스퀴즈 기구(120)와 상기 핀치 기구(130)에 종동하여 함께 회전할 수 있고 상기 제1 히터(110)는 회전하지 않는다. 그리고, 상기 스퀴즈 기구(120)와 상기 핀치 기구(130)의 회전력은 상기 라미나 부재(L)들을 통해 상기 코어 가이드(310)에 전달되며, 상기 코어 가이드(310)가 삽입되어 있는 라미나 부재들은 상기 코어 가이드(310)에 회전 방향으로 걸려서 회전 일체성이 확보되므로, 라미나 부재들의 계면 슬립 현상이 방지될 수 있다.In this embodiment, the external guide 140 follows the squeeze mechanism 120 and the pinch mechanism 130 to rotate together, and the first heater 110 does not rotate. And, the rotational force of the squeeze mechanism 120 and the pinch mechanism 130 is transmitted to the core guide 310 through the lamina members L, and the lamina member into which the core guide 310 is inserted. Since they are caught on the core guide 310 in the rotational direction to ensure rotational integrity, the interfacial slip phenomenon of the lamina members can be prevented.
물론, 상기 제1 히터(110)와 스퀴즈 기구(120)와 핀치 기구(130)가 모두 회전 다이의 내부에 설치되어서 상술한 코어 가이드(310)와 동시에 회전할 수도 있다.Of course, the first heater 110, the squeeze mechanism 120, and the pinch mechanism 130 may all be installed inside the rotating die and rotate simultaneously with the core guide 310 described above.
한편, 상기 코어 받침(210)과 상기 핀치 기구(130)의 연결을 위하여, 상기 코어 받침(210)과 상기 핀치 기구(130) 중 어느 하나에는 적어도 하나의 연결 핀(610)이 구비되고, 다른 하나에는 상기 연결 핀(610)이 삽입되는 핀 홀(620)이 형성될 수도 있다.On the other hand, in order to connect the core support 210 and the pinch mechanism 130, at least one connection pin 610 is provided in any one of the core support 210 and the pinch mechanism 130, and the other A pin hole 620 into which the connecting pin 610 is inserted may be formed in one.
본 실시 예는 상기 코어 받침(210)에 상기 연결 핀(610)이 구비되고, 상기 핀치 기구(130)에 상기 핀 홀(620)이 형성되며, 상기 연결 핀(610)이 핀 홀(620에 끼워짐으로써 상기 코어 받침(210)과 핀치 기구(130)의 결합이 이루어진다. 따라서, 상기 연결 핀(610)과 핀 홀(620)에 의해 상기 코어 받침(210)과 핀치 기구(130)의 회전 일체성이 강화될 수 있다.In this embodiment, the connection pin 610 is provided in the core support 210, the pin hole 620 is formed in the pinch mechanism 130, and the connection pin 610 is in the pin hole 620. By being inserted, the core support 210 and the pinch mechanism 130 are coupled. Therefore, the core support 210 and the pinch mechanism 130 are rotated by the connecting pin 610 and the pin hole 620 Integrity can be strengthened.
이하에서는, 도 8 내지 도 10을 참조하여 상술한 코어 제조장치에 의해 적층코어가 제조되는 과정이 설명된다.Hereinafter, a process of manufacturing a laminated core by the above-described core manufacturing apparatus with reference to FIGS. 8 to 10 will be described.
도 8에 도시된 바와 같이, 상기 코어 받침(210)은 상기 제1실린더 몸체(222)에 의해 상승해서 상기 라미네이터(100)의 하단을 통해 취출 예정인 적층코어(C)의 밑면을 받친다. 그리고 상기 제2 히터(310)는, 상기 라미네이터(100)의 하단을 통해 상기 적층홀(100a)의 내부로 진입해서 소정 높이 이하의 라미나 부재(L)들의 구멍 예를 들면 중심홀(H)에 삽입된다. 이때 상기 제2 히터의 코어 걸림부(312)는 상기 라미나 부재들의 중심홀에 형성된 홈 또는 돌기에 끼워져서 맞물림된다.As shown in FIG. 8 , the core support 210 is raised by the first cylinder body 222 and supports the lower surface of the laminated core C to be taken out through the lower end of the laminator 100 . And the second heater 310 enters the inside of the stacking hole 100a through the lower end of the laminator 100 and forms holes of the lamina members L having a predetermined height or less, for example, the center hole H is inserted into At this time, the core hooking part 312 of the second heater is fitted into and engaged with grooves or protrusions formed in the center holes of the lamina members.
본 실시 예에서, 상기 제2 히터(310)는 상기 제1 히터(110)의 입구(상단) 또는 스퀴즈 기구(120)의 하단까지 상승하며, 상기 라미나 부재(L)들에 대한 내부 가열, 더 나아가 상기 라미나 부재(L)들의 일체 거동을 구현한다. 상기 코어 받침(210)과 제2 히터(310)는 함께 상승할 수도 있고, 어느 하나가 먼저 상승한 후에 다른 하나가 상승할 수도 있다.In this embodiment, the second heater 310 rises to the inlet (top) of the first heater 110 or the bottom of the squeeze mechanism 120, internal heating for the lamina members (L), Furthermore, the integral behavior of the laminar members (L) is implemented. The core support 210 and the second heater 310 may rise together, or one may rise first and then the other.
상기 코어 받침(210)과 상기 제2 히터(310)가 정해진 높이(상한)까지 상승한 후에는, 도 9에 도시된 예처럼, 상기 라미나 부재(L)들의 하향 이동에 의해 상기 코어 받침(210)이 1피치 예를 들면 라미나 부재 1장의 두께에 해당되는 높이 만큼씩 단계적으로 하강하면서 상기 코어 받침(210) 위의 적층코어(C)와 함께 회전하며, 상기 제2 히터(310)는 상기 제1 히터에 대한 상대적 높이를 유지한 채로 라미나 부재(L)들의 일체 회전을 유도한다. After the core support 210 and the second heater 310 rise to a predetermined height (upper limit), as shown in the example shown in FIG. 9, the core support 210 by the downward movement of the lamina members (L) ) rotates together with the laminated core (C) on the core support 210 while descending stepwise by a height corresponding to the thickness of one lamina member, for example, 1 pitch, and the second heater 310 The integral rotation of the lamina members (L) is induced while maintaining a relative height to the first heater.
그리고 상기 코어 받침(210) 위의 적층코어(C)의 상단이 상기 라미네이터(100)의 하단(출구) 즉 적층홀의 아래로 빠져나오면, 도 10에 도시된 바와 같이, 상기 코어 받침(210)이 하강하고 상기 제2 히터(310)도 하강한다. 이때 상기 제2 히터(310)는 상단의 높이가 상기 코어 받침(210)의 상측면 이하의 높이까지 하강함으로써, 상기 코어 받침(210) 위의 적층코어(C)를 취출할 때 간섭되지 않도록 한다.And when the upper end of the laminated core (C) on the core support 210 comes out from the lower end (exit) of the laminator 100, that is, under the lamination hole, as shown in FIG. 10, the core support 210 and the second heater 310 also descends. At this time, the height of the upper end of the second heater 310 is lowered to a height lower than the upper side of the core support 210, so that the laminated core C on the core support 210 is not interfered with when taking out .
도시되지는 않았으나, 상기 코어 받침(210) 및 제2 히터(310)의 동작, 보다 구체적으로 상기 제1 리프터와 제2 리프터의 동작은 유선 또는 무선으로 제어유닛에 의해 조절될 수 있다. Although not shown, the operation of the core support 210 and the second heater 310, more specifically, the operation of the first lifter and the second lifter may be controlled by a control unit wired or wirelessly.
이상과 같이 본 발명에 따른 실시 예를 살펴보았으며, 앞서 설명된 실시 예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다.As described above, the embodiments according to the present invention have been reviewed, and the fact that the present invention can be embodied in other specific forms in addition to the above-described embodiments without departing from the spirit or scope is apparent to those skilled in the art. It is self-evident to
그러므로 상술한 실시 예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.Therefore, the foregoing embodiments should be regarded as illustrative rather than restrictive, and thus the present invention is not limited to the foregoing description and may be modified within the scope of the appended claims and their equivalents.
본 발명은 코어 제조장치에 관한 것으로서, 회전자와 고정자용 코어 등 다양한 종류의 코어 제조분야에 이용될 수 있으며, 본 발명에 의하면 코어의 휨과 라미나 부재들간의 접착 불량이 최소화되거나 방지될 수 있다.The present invention relates to a core manufacturing apparatus, and can be used in the field of manufacturing various types of cores, such as cores for rotors and stators. there is.

Claims (8)

  1. 복수장의 라미나 부재들을 가열 접착방식으로 일체화해서 적층코어를 형성하는 코어 제조장치로서:As a core manufacturing device for forming a laminated core by integrating a plurality of laminar members by a heat bonding method:
    상기 라미나 부재들을 적층상태로 통과시키도록 상하방향으로 관통 형성되는 적층홀을 가지며, 상기 라미나 부재들의 계면에 존재하는 접착제에 의해 상기 라미나 부재들이 일체화되도록 상기 적층홀을 통과하는 라미나 부재들을 상기 라미나 부재들의 외부에서 가열하는 제1 히터를 포함하는 라미네이터(Limanator);It has a lamination hole formed in the vertical direction to pass the lamina members in a laminated state, and the lamina member passes through the lamination hole so that the lamina members are integrated by an adhesive present at the interface of the lamina members. A laminator (Limanator) including a first heater for heating the outside of the lamina members;
    상기 적층홀에서 배출되는 상기 적층코어를 받치기 위해, 상기 적층홀의 하측에 승강 가능하게 구비되는 코어 받침; 그리고a core support movably provided at a lower side of the laminated hole to support the laminated core discharged from the laminated hole; and
    상기 라미나 부재들의 내부에서 상기 라미나 부재들을 가열하도록 상기 적층홀의 하단을 통해 상기 적층홀의 내부로 진입 가능하고, 상기 코어 받침을 관통해서 상하방향으로 이동 가능한 제2 히터를 포함하는 코어 제조장치.Core manufacturing apparatus including a second heater capable of entering the inside of the lamination hole through the lower end of the lamination hole and movable in the vertical direction through the core support to heat the lamina members inside the lamina members.
  2. 제1항에 있어서,According to claim 1,
    상기 코어 받침은, 상기 라미나 부재들의 가열을 위해 발열 가능한 것을 특징으로 하는 코어 제조장치.The core support is a core manufacturing apparatus, characterized in that capable of generating heat for heating the laminar members.
  3. 제1항에 있어서,According to claim 1,
    상기 제2 히터는, 상기 라미나 부재들의 내부에 삽입되어서 상기 라미나 부재들을 정렬시키는 내부 가이드인 것을 특징으로 하는 접착식 코어 제조장치. The second heater, adhesive core manufacturing apparatus, characterized in that the inner guide is inserted into the laminar members to align the laminar members.
  4. 제3항 있어서,According to claim 3,
    상기 제2 히터는; 상기 제2 히터가 끼워진 라미나 부재들이 회전할 때, 상기 라미나 부재들의 일체 거동을 유도하기 위해 상기 제2 히터가 끼워진 라미나 부재들과 함께 동일 각도로 회전 가능하며, 상기 적층코어들을 형성하는 라미나 부재들의 접착 계면에서 슬립(Slip) 발생을 방지하는 것을 특징으로 하는 접착식 코어 제조장치. The second heater; When the lamina members into which the second heater is inserted rotate, it is possible to rotate at the same angle together with the lamina members into which the second heater is inserted in order to induce an integral behavior of the lamina members, forming the laminated cores Adhesive core manufacturing apparatus, characterized in that to prevent the occurrence of slip (Slip) at the adhesive interface of the laminar members.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,According to any one of claims 1 to 4,
    상기 제2 히터의 상단은 상기 코어 받침의 상단면 이하로 하강 가능한 것을 특징으로 하는 코어 제조장치.Core manufacturing apparatus, characterized in that the upper end of the second heater is descendable below the upper end surface of the core support.
  6. 제5항에 있어서,According to claim 5,
    상기 제2 히터의 상단은, 상기 히터의 상단 높이 이상까지 상승 가능하고; 상기 제2 히터에는, 상기 라미나 부재들이 회전 방향으로 걸리도록 코어 걸림부가 형성되며; 상기 코어 걸림부는, 상기 라미나 부재들의 내주면에 형성되는 홈 또는 돌기에 맞물림되는 것을 특징으로 하는 코어 제조장치.The upper end of the second heater is capable of rising to a height equal to or higher than the height of the upper end of the heater; In the second heater, a core engaging portion is formed so that the lamina members are caught in a rotational direction; The core engaging portion, core manufacturing apparatus, characterized in that engaged with the grooves or projections formed on the inner circumferential surface of the lamina members.
  7. 제1항에 있어서,According to claim 1,
    상기 제2 히터는; 상기 코어 받침에 대해 독립적인 상하 이동이 가능한 것을 특징으로 하는 접착식 적층코어 제조장치.The second heater; Self-adhesive laminated core manufacturing apparatus, characterized in that independent vertical movement with respect to the core support.
  8. 복수장의 라미나 부재들을 접착방식으로 일체화해서 적층코어를 형성하는 코어 제조방법으로서:As a core manufacturing method for forming a laminated core by integrating a plurality of lamina members by an adhesive method:
    상기 라미나 부재들이 적층상태로 통과하면서 상기 라미나 부재들의 계면에 존재하는 접착제에 의해 일체화되도록, 상기 라미나 부재들의 외부와 내부에서 각각 상기 라미나 부재들을 가열하는 제1 히터와 제2 히터로 상기 라미나 부재를 가열하는 단계; 그리고A first heater and a second heater for heating the lamina members from the outside and inside of the lamina members, respectively, so that the lamina members pass through in a stacked state and are integrated by the adhesive present at the interface of the lamina members. heating the lamina member; and
    상기 적층코어의 취출을 위해, 상기 라미나 부재를 가열하기 위한 제2 히터의 상단을 상기 적층코어의 바닥면을 받치는 코어 받침의 상단면 이하로 하강시키는 단계를 포함하는 코어 제조방법.And lowering an upper end of a second heater for heating the laminar member below an upper end surface of a core support supporting a bottom surface of the laminated core in order to take out the laminated core.
PCT/KR2021/015264 2021-10-27 2021-10-28 Core manufacturing apparatus and core manufacturing method WO2023074938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210144477A KR102575532B1 (en) 2021-10-27 2021-10-27 Apparatus And Method For Manufacturing Core
KR10-2021-0144477 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074938A1 true WO2023074938A1 (en) 2023-05-04

Family

ID=86158131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015264 WO2023074938A1 (en) 2021-10-27 2021-10-28 Core manufacturing apparatus and core manufacturing method

Country Status (2)

Country Link
KR (2) KR102575532B1 (en)
WO (1) WO2023074938A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185433A (en) * 1999-12-27 2001-07-06 Nippon Steel Corp Iron core manufacturing method and apparatus suiting same
KR101735246B1 (en) * 2016-08-22 2017-05-24 (주)항남 Apparatus for Manufacturing Laminated Core with Rotational Lamination and Heating Adhesion
KR20180023471A (en) * 2016-08-26 2018-03-07 (주)항남 Apparatus for Manufacturing Laminated Rotor Core and Stator Core with Rotational Lamination and Heating Adhesion and with Automated Core Separation
KR20190035170A (en) * 2017-09-26 2019-04-03 주식회사 포스코대우 Apparatus And Method For Manufacturing Adhesive Type Laminated Core
KR20190135280A (en) * 2018-05-28 2019-12-06 (주)항남 Apparatus for Manufacturing Half-finished Stacked Core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236929B1 (en) 2011-11-23 2013-02-25 주식회사 포스코티엠씨 Rotation die unit having the function of slopingness prevention and, manufacturing apparatus for laminated core having the same
KR101638294B1 (en) 2015-10-27 2016-07-08 (주)항남 Apparatus for Manufacturing Laminated Core by Heating Adhesion
KR101876292B1 (en) 2016-03-18 2018-07-10 주식회사 포스코대우 Adhesive Type Laminate Core Manufacturing Apparatus And Core Laminator Thereof
KR101990291B1 (en) 2017-11-06 2019-06-20 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core by Spraying
KR101990296B1 (en) 2017-11-06 2019-06-20 (주)항남 Apparatus for Manufacturing Adhesive Lamination Core with Easy Distribution of Laminated Core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185433A (en) * 1999-12-27 2001-07-06 Nippon Steel Corp Iron core manufacturing method and apparatus suiting same
KR101735246B1 (en) * 2016-08-22 2017-05-24 (주)항남 Apparatus for Manufacturing Laminated Core with Rotational Lamination and Heating Adhesion
KR20180023471A (en) * 2016-08-26 2018-03-07 (주)항남 Apparatus for Manufacturing Laminated Rotor Core and Stator Core with Rotational Lamination and Heating Adhesion and with Automated Core Separation
KR20190035170A (en) * 2017-09-26 2019-04-03 주식회사 포스코대우 Apparatus And Method For Manufacturing Adhesive Type Laminated Core
KR20190135280A (en) * 2018-05-28 2019-12-06 (주)항남 Apparatus for Manufacturing Half-finished Stacked Core

Also Published As

Publication number Publication date
KR20230150234A (en) 2023-10-30
KR20230060138A (en) 2023-05-04
KR102575532B1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2016006797A1 (en) Laminate unit for producing bonded-type stacked core member and apparatus having same for producing stacked core member
WO2016006796A1 (en) Apparatus for producing bonded-type stacked core member using high-frequency heat and laminate unit therefor
WO2023003182A1 (en) Method for manufacturing laminated core
CN108781028B (en) Adhesive laminated core manufacturing device and core layer press thereof
WO2018038357A1 (en) Heat sealing-type rotational laminated core manufacturing apparatus enabling automatic separation of laminated core
WO2015199317A1 (en) Device for manufacturing adhesive-type laminated core member, and adhesive application unit
WO2016035959A1 (en) Adhesive-type laminated core member preparation apparatus and temperature controlling method
KR101669513B1 (en) Adhesive Type Laminating Core Manufacturing Apparatus
WO2015182868A1 (en) Adhesive type laminated-core member manufacturing apparatus and adhesive applying unit
KR101861007B1 (en) Apparatus for Manufacturing Laminated Rotor Core and Stator Core with Rotational Lamination and Heating Adhesion and with Automated Core Separation
WO2018038356A1 (en) Laminated core manufacturing apparatus capable of heating inner diameter of laminated core
WO2018038355A1 (en) Heat sealing-type rotational laminated core manufacturing apparatus
WO2022260225A1 (en) Apparatus for manufacturing laminated core with heating adhesion
CN108430774B (en) Adhesive laminated core manufacturing device
WO2021261736A1 (en) Laminated core manufacturing apparatus and adhesive coater for manufacturing laminated core
KR102374258B1 (en) Apparatus and Method for Manufacturing Laminated Rotor Core and Stator Core with Rotational Lamination and Heating Adhesion and with Automated Core Separation
WO2023074938A1 (en) Core manufacturing apparatus and core manufacturing method
WO2016035960A1 (en) Adhesive application method for adhesive-type laminated core member preparation apparatus
WO2015194746A1 (en) Adhesive type laminated core member production apparatus, and adhesive application unit
WO2023063447A1 (en) Apparatus for manufacturing adhesive laminated cores
WO2015199318A1 (en) Device for manufacturing adhesive-type laminated core member, and adhesive application unit
WO2015194745A1 (en) Adhesive type laminated core member production apparatus, and adhesive application unit
KR102327978B1 (en) Apparatus For Manufacturing Adhesive Type Laminated Core
KR101995442B1 (en) Apparatus for manufacturing laminated core
KR102420718B1 (en) Bonding jig for laminated core of electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21962563

Country of ref document: EP

Kind code of ref document: A1