WO2023074901A1 - エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法 - Google Patents

エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法 Download PDF

Info

Publication number
WO2023074901A1
WO2023074901A1 PCT/JP2022/040804 JP2022040804W WO2023074901A1 WO 2023074901 A1 WO2023074901 A1 WO 2023074901A1 JP 2022040804 W JP2022040804 W JP 2022040804W WO 2023074901 A1 WO2023074901 A1 WO 2023074901A1
Authority
WO
WIPO (PCT)
Prior art keywords
erythritol
gene
target substance
promoter
nucleotide sequence
Prior art date
Application number
PCT/JP2022/040804
Other languages
English (en)
French (fr)
Inventor
桜子 一瀬
望 柴田
史員 高橋
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2023074901A1 publication Critical patent/WO2023074901A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/02Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to an erythritol-inducible promoter and a method for producing a target substance using the same.
  • Non-Patent Document 1 The genus Trichoderma can produce large amounts of enzymes such as cellulase and xylanase, and has been attracting attention as a microorganism for producing cellulolytic enzymes (Non-Patent Document 1).
  • Non-Patent Document 2 describes the use of Trichoderma reesei as a microorganism for the production of heterologous proteins derived from humans or other microorganisms, taking advantage of its high protein-producing ability.
  • promoters for inducing the expression of target protein genes in Trichoderma spp. constitutively expressed promoters such as the promoter of the enolase gene eno1 and the promoter of the translation elongation factor tef1 have been reported (Non-Patent Document 3).
  • these promoters do not have a high ability to induce gene expression, and are not sufficient as promoters for expressing target substances.
  • Non-Patent Document 3 the promoters of the cellulase genes cbh1 and cbh2 and the promoter of the xylanase gene xyn3 are used.
  • these promoters are activated under cellulase-producing conditions, when these promoters are activated, multiple cellulase genes in the cells of the genus Trichoderma are simultaneously expressed, resulting in high cellulase production. Therefore, the target protein cannot be produced singly.
  • Cellulase production can be suppressed by deleting the cellulase gene of the genus Trichoderma, but it is very difficult to delete all the multiple cellulase genes on the genome. In addition, deletion of the major cellulase gene significantly deteriorates the growth of Trichoderma spp. under cellulase-producing conditions.
  • Non-Patent Document 1 Chemistry and Biology, 2012, 50(8):592-599, 2012 (Non-Patent Document 2) Appl Biochem Biotechnol, 2011, 165(5-6):1169-77 (Non-Patent Document 3) Front Bioeng Biotechnol, 2018, 11(6):Article 135, doi:10.3389/fbioe.2018.00135
  • the present invention provides an erythritol-inducible promoter consisting of a DNA selected from (a)-(c) below: (a) DNA consisting of the nucleotide sequence of any one of SEQ ID NOS: 1-4; (b) a DNA consisting of a nucleotide sequence having at least 90% identity with the nucleotide sequence of any of SEQ ID NOs: 1-4; and (c) one or a number to any of the nucleotide sequences of SEQ ID NOs: 1-4 A DNA consisting of a nucleotide sequence in which one nucleotide has been deleted, substituted, added, or inserted.
  • the present invention provides an expression vector comprising said erythritol-inducible promoter.
  • the present invention provides an erythritol-inducible gene expression cassette comprising a gene encoding a target substance or an enzyme involved in its synthesis, and the erythritol-inducible promoter.
  • the present invention provides a transformed Trichoderma sp. cell comprising said expression vector or said gene expression cassette.
  • the present invention provides A method for producing a target substance is provided, which comprises culturing the transformed Trichoderma spp. cell in a medium containing erythritol.
  • the present invention provides use of a DN selected from (a) to (c) above as an A erythritol-inducible promoter.
  • amino acid sequences or nucleotide sequences is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, genetic information processing software GENETYX Ver. It is calculated by performing an analysis using 12 homology analysis programs with unit size to compare (ktup) set to 2.
  • amino acid sequence or nucleotide sequence means 90% or more, preferably 95% or more, more preferably 96% or more, even more preferably 97% or more, further preferably 98% or more. % or more, more preferably 99% or more, more preferably 99.5% or more.
  • nucleotide sequence in which one or several nucleotides are deleted, substituted, added, or inserted is preferably 1 to 10, more preferably 1 to 6, even more preferably refers to a nucleotide sequence in which 1 or more and 3 or less, more preferably 1 or 2 nucleotides have been deleted, substituted, added or inserted.
  • addition of nucleotides includes addition of nucleotides to one and both termini of a sequence.
  • upstream and downstream with respect to a gene refer to upstream and downstream in the transcription direction of the gene.
  • upstream sequence and “downstream sequence” of a gene refer to sequences located on the 5' and 3' sides of the gene in the DNA sense strand, respectively.
  • a promoter linked upstream of a gene means that the promoter is present on the 5' side of the gene in the DNA sense strand.
  • operably linked between a gene and a control region such as a promoter means that the gene and the control region are linked so that the gene can be expressed under the control of the control region. It means that there is Procedures for "operably linking" genes and regulatory regions are well known to those of skill in the art.
  • exogenous nucleotides or DNA are nucleotides or DNA that have been exogenously introduced into the cell. Exogenous nucleotides or DNA may be from the same organism as the cell into which it is introduced, or from a heterologous organism (ie, heterologous nucleotides or heterologous DNA).
  • promoter activity means an activity that promotes transcription of DNA (gene) into mRNA. Promoter activity can be confirmed by using a suitable reporter gene. For example, promoter activity can be confirmed by ligating a DNA encoding a detectable protein, ie, a reporter gene, downstream of the promoter and measuring the production amount of the gene product of the reporter gene.
  • reporter genes include ⁇ -galactosidase (LacZ) gene, ⁇ -glucuronidase (GUS) gene, luciferase gene, ⁇ -lactamase gene, gene encoding EtbC (2,3-dihydroxy-ethylbenzene 1,2-dioxygenase) genes of enzymes that act on chromogenic substrates such as GFP, genes of fluorescent proteins such as genes encoding GFP (Green Fluorescent Protein), and the like.
  • promoter activity can also be confirmed by measuring the expression level of mRNA transcribed from the reporter gene by sequencing, quantitative RT-PCR or the like.
  • erythritol-inducible promoter refers to a promoter having promoter activity in the presence of erythritol, preferably in the presence of erythritol, in the absence of erythritol, or in the presence of cellulose, glucose or sorbitol.
  • a promoter that can induce mRNA expression of a target gene that is, a gene operably linked to the promoter
  • the present invention provides an erythritol-inducible promoter, an expression vector containing the promoter, a gene expression cassette, a bacterial cell of the genus Trichoderma, and a method for producing a target substance using the bacterial cell of the genus Trichoderma.
  • the erythritol-inducible promoter provided by the present invention makes it possible to induce the expression of the target substance gene in Trichoderma spp. without promoting the cellulase expression induction process intrinsic to the cell. Therefore, the present invention enables the target substance to be produced with higher purity in Trichoderma.
  • Trichoderma spp. it is desirable to produce the target substance without promoting cellulase production inherent in the cell.
  • the present inventors have identified genes from the genus Trichoderma that are hardly expressed in the absence of erythritol and whose expression is remarkably enhanced in the presence of erythritol.
  • Erythritol is a kind of sugar alcohol contained in fruits, mushrooms, and the like.
  • cellulose and glucose are mainly used as carbon sources, and erythritol is not substantially used.
  • erythritol does not induce the expression of cellulosic biomass-degrading enzymes inherent in cells (see Table 4). Therefore, by using erythritol as an inducer and expressing the genes of the target substances by the promoters of these genes, the target substances can be produced in Trichoderma spp. without promoting the cellulase expression induction process inherent in the cells. can be done. INDUSTRIAL APPLICABILITY The present invention makes it possible to produce a target substance with higher purity in Trichoderma.
  • the erythritol-inducible promoter provided by the present invention is a DNA selected from the following (a) to (c), which has promoter activity in the presence of erythritol DNA having (a) DNA consisting of the nucleotide sequence of any one of SEQ ID NOS: 1-4; (b) a DNA consisting of a nucleotide sequence having at least 90% identity with the nucleotide sequence of any of SEQ ID NOs: 1-4; and (c) one or a number to any of the nucleotide sequences of SEQ ID NOs: 1-4 A DNA consisting of a nucleotide sequence in which one nucleotide has been deleted, substituted, added, or inserted.
  • the promoters of SEQ ID NOs: 1 to 4 are promoters derived from Trichoderma reesei. As mentioned above, erythritol has not been used in the conventional culture of Trichoderma spp., and therefore it was not previously known that the promoters of SEQ ID NOs: 1-4 are erythritol-inducible promoters. The promoters of SEQ ID NOS: 1-4 are erythritol-inducible promoters that were first found in Trichoderma.
  • the method for obtaining the promoter of the present invention is not particularly limited, and it can be obtained by a conventional chemical synthesis method or genetic engineering method.
  • the promoter DNA of the present invention can be artificially synthesized based on the nucleotide sequences of SEQ ID NOs: 1-4.
  • a commercially available DNA synthesis service provided by GenScript, etc. can be used.
  • promoters of the present invention can be cloned from Trichoderma spp. such as Trichoderma reesei.
  • Promoters of the present invention can also be produced by introducing mutations into the DNA of the nucleotide sequences of SEQ ID NOs: 1-4.
  • Techniques for mutagenesis include, for example, ultraviolet irradiation and site-directed mutagenesis.
  • Techniques for site-directed mutagenesis include a method using Splicing overlap extension (SOE) PCR (Gene, 198977:61-68), an ODA method (Gene, 1995, 152:271-276), and a Kunkel method (Proc. Natl.Acad.Sci.USA, 1985, 82(2):488-492).
  • SOE Splicing overlap extension
  • the promoter of the present invention can be obtained by selecting mutagenized DNA that has promoter activity in the presence of erythritol.
  • an erythritol-inducible promoter DNA can be selected by operably linking a reporter gene downstream of the mutagenized DNA and analyzing the expression level of the reporter gene in the presence of erythritol.
  • nucleotide sequences are described, for example, in Dieffenbach et al. (Cold Spring Harbor Laboratory Press, New York, 581-621, 1995).
  • Erythritol-inducible promoters consisting of the nucleotide sequences of SEQ ID NOs: 1-4, or nucleotide sequences having at least 90% identity thereto, or 1 to the sequences of SEQ ID NOs: 1-4, by using the techniques described above.
  • an erythritol-inducible promoter consisting of a nucleotide sequence in which several nucleotides have been deleted, substituted, added or inserted can be obtained.
  • the promoter of the present invention has the function of controlling the expression of genes located downstream thereof.
  • a DNA fragment having an expression control region with excellent transcriptional activity can be obtained.
  • a DNA fragment containing the target gene and the promoter of the present invention operably linked upstream thereof can be constructed.
  • the DNA fragment may contain, in addition to the promoter of the present invention and the target gene, a cis-element or terminator that enhances the transcriptional activity of the promoter.
  • the DNA fragment may contain a selectable marker gene such as a drug resistance gene or an auxotrophic marker gene.
  • a DNA fragment comprising said gene of interest and the promoter of the present invention is an erythritol-inducible gene expression cassette for expressing said gene of interest.
  • the DNA fragment containing the promoter of the present invention described above can be constructed so as to have restriction enzyme recognition sequences at both ends.
  • the promoter of the present invention can be introduced into a vector.
  • the promoter of the present invention can be introduced into a vector by cleaving the vector with a restriction enzyme and adding a DNA fragment containing the promoter of the present invention and having restriction enzyme cleavage sequences at the ends (restriction enzymatic method).
  • a DNA fragment containing the promoter of the present invention may be directly introduced into the host cell genome.
  • a DNA fragment containing the promoter of the present invention may be introduced upstream of the gene of interest in the genome of the host cell.
  • a gene expression cassette containing the aforementioned target gene and the promoter of the present invention may be introduced into the host cell genome.
  • the promoter of the present invention can be operably linked upstream of the DNA encoding the gene of interest.
  • the expression vector having the promoter of the present invention may be a vector for introduction into the host cell genome or a vector maintained outside the genome. Those that are replicable in host cells are preferred.
  • vectors examples include pBluescript II SK(-) (Stratagene), pUC18/19, pUC118/119 and other pUC vectors (Takara Bio), pET vectors (Takara Bio), pGEX vectors (GE Healthcare), pCold-based vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 (Plasmid, 1986, 15(2):93-103), pBR322 (Takara Bio), pRS403 (Stratagene), pMW218/219 (Nippon Gene), pRI909/ 910 and other pRI-based vectors (Takara Bio), pBI-based vectors (Clontech), IN3-based vectors (Inplanta Innovations), pPTR1/2 (Takara Bio), pDJB2 (Gene, 1985, 36: 321-331), pAB4- 1 (Mol Gen Genet, 1987, 206: 71-75),
  • the target gene located downstream of the promoter of the present invention is not particularly limited.
  • the target gene is a gene encoding a target substance or an enzyme involved in the synthesis of the target substance.
  • the target gene may be a heterologous gene encoding a heterologous expression product, a gene derived from the same species introduced from the outside, a gene encoding an expression product inherent in the host cell, or any other gene. It may be a gene encoding a protein, peptide, nucleic acid, or the like.
  • target substances include enzymes, hormones, cytokines, other physiologically active peptides, transporters, non-coding RNAs, and the like.
  • enzymes include oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase or synthetase, and the like.
  • Preferred examples include cellulosic biomass-degrading enzymes such as cellulase and hemicellulase, exoglucanase, endoglucanase, ⁇ -glucosidase, protease, lipase, mannanase, arabinase, galactase, amylase, and more preferably cellulase. or hemicellulase.
  • the hemicellulase include xylanase, ⁇ -xylosidase, ⁇ -arabinofuranosidase and the like, of which xylanase is preferred.
  • An expression vector or DNA fragment containing the promoter of the present invention is subjected to a general transformation method such as electroporation, transformation, transfection, conjugation, protoplast method, particle gun method, Agrobacterium method and the like.
  • the transformant of the present invention can be obtained by introducing into a host cell using
  • the host cell into which the vector or DNA fragment is introduced is not particularly limited as long as the promoter of the present invention can function as a promoter in the host cell, but is preferably a Trichoderma genus cell.
  • Other examples of host cells include Aspergillus genera, Penicillium genera, Neurospora genera, Fusarium genera, Chrysosporium genera, Humicola genera, Emericella ( Emericella, Hypocrea, Acremonium, Chrysosporium, Myceliophthora, Piromyces, Talaromyces, Thermo ascus) , cells of filamentous fungi such as the genus Thielavia.
  • Trichoderma fungi examples include Trichoderma reesei, Trichoderma longibrachiatum, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride viride), etc. , and preferably Trichoderma reesei and mutant strains thereof.
  • Trichoderma reesei strain QM9414 and its mutants preferably Trichoderma reesei strain PC-3-7 (ATCC66589), Trichoderma reesei strain PCD-10 (FERM P-8172), Trichoderma reesei strain E1AB1 (JN13 strain) may be called) or their mutant strains can be preferably used as host cells.
  • the E1AB1 strain is a strain obtained by expressing ⁇ -glucosidase (BGL) derived from Aspergillus aculeatus using the egl1 promoter in the Trichoderma reesei PC-3-7 strain (Enzyme Microb Technol, 2016, 82:89-95, and Examples 1-3 of WO2013/115305).
  • BGL ⁇ -glucosidase
  • the transformant of the present invention can be used for producing the target substance.
  • a transformant containing an expression vector or a DNA fragment having a gene encoding a target substance or an enzyme involved in the synthesis of the target substance and the promoter of the present invention operably linked upstream of the gene is transformed into a transformant containing erythritol.
  • the gene is expressed under the control of the promoter of the present invention to produce the target substance. Examples of target substances are as described above.
  • the culture conditions for the transformant are not particularly limited as long as the cells of the transformant can grow and the target substance can be produced.
  • the medium used for the culture may be either a synthetic medium or a natural medium, as long as it contains components such as carbon sources, nitrogen sources, inorganic salts, vitamins, etc. necessary for normal cell growth and target substance production.
  • the concentration of erythritol in the culture is preferably 0.1-10% (w/v) as the initial concentration in the medium.
  • a cellulase non-inducible carbon source As a carbon source to be added to the medium, it is desirable to use a cellulase non-inducible carbon source in order to avoid stimulation of the cellulase expression induction process inherent in cells.
  • non-cellulase-inducing sugars such as glucose and fructose
  • sugar alcohols such as sorbitol
  • alcohols such as ethanol and glycerol
  • organic acids such as acetic acid
  • erythritol may be used as the carbon source.
  • the medium is preferably free of cellulase-inducible carbon sources such as cellulose.
  • the cells may be cultured while feeding a cellulase-inducing carbon source such as glucose.
  • a cellulase-inducing carbon source such as glucose
  • the cellulase non-inducing carbon source such as glucose
  • the solution is fed and cultured to increase the culture efficiency and culture. It is preferable from the point that foaming inside can be suppressed.
  • Nitrogen sources include ammonia, ammonium salts such as ammonium sulfate, nitrogen compounds such as amines, peptone, and natural nitrogen sources such as soybean hydrolysates.
  • Inorganic salts include potassium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, potassium carbonate, and the like.
  • vitamins include biotin and thiamine. Further, if necessary, substances required for the growth of the transformant can be added.
  • Cultivation is preferably carried out under aerobic conditions such as shaking culture or aeration stirring culture.
  • the culture temperature is preferably 10° C. or higher, more preferably 20° C. or higher, more preferably 25° C. or higher, and preferably 50° C. or lower, more preferably 42° C. or lower, more preferably 35° C. or lower. Also, it is preferably 10 to 50°C, more preferably 20 to 42°C, and more preferably 25 to 35°C.
  • the pH during culture is 3-9, preferably 4-5.
  • the culture time is 10 hours to 10 days, preferably 2 to 7 days.
  • the target substance can be obtained by recovering the target substance from the culture. If necessary, the recovered target substance may be further purified.
  • the method of recovering or purifying the target substance from the culture is not particularly limited, and may be carried out according to known recovery or purification methods. For example, the culture is collected, and if necessary, the cells are disrupted by ultrasonic waves, pressure, etc., and then the cell components are removed by decantation, filtration, centrifugation, etc. You have to collect the minutes.
  • the target substance can be extracellularly secreted and produced by operably linking a secretion signal peptide that functions in the transformant to a gene encoding the target substance.
  • the target substance can be purified by subjecting the collected fraction to dialysis, salting out, ion exchange, distillation, solvent extraction, or a combination thereof.
  • the culture of the transformant and the collection of the target substance may be performed by any of a batch method, a semi-batch method and a continuous method.
  • an erythritol-inducible promoter consisting of a DNA selected from (a) to (c) below: (a) DNA consisting of the nucleotide sequence of any one of SEQ ID NOS: 1-4; (b) a DNA consisting of a nucleotide sequence having at least 90% identity with the nucleotide sequence of any of SEQ ID NOs: 1-4; and (c) one or a number to any of the nucleotide sequences of SEQ ID NOs: 1-4 A DNA consisting of a nucleotide sequence in which one nucleotide has been deleted, substituted, added, or inserted.
  • Expression of target gene mRNA is preferably 40-fold or more, preferably 50-fold or more, more preferably 100-fold or more, in the presence of erythritol, in the absence of erythritol, or in the presence of cellulose, glucose or sorbitol. to induce More preferably, after 8 hours in the presence of 0.2 w/v% erythritol, it is 40 times or more, preferably 50 times or more, more preferably 100 times or more that in the absence of erythritol or in the presence of cellulose, glucose or sorbitol. to induce the expression of the mRNA of the target gene in an amount of The erythritol-inducible promoter of [1].
  • the expression vector of [3] which preferably comprises a gene encoding a target substance or an enzyme involved in its synthesis, and the erythritol-inducible promoter linked upstream of the gene.
  • An erythritol-inducible gene expression cassette comprising a gene encoding a target substance or an enzyme involved in its synthesis, and the erythritol-inducible promoter of [1] or [2] linked upstream of the gene.
  • the target substance is preferably an enzyme, more preferably cellulase, hemicellulase, exoglucanase, endoglucanase, ⁇ -glucosidase, protease, lipase, mannase, arabinase, galactase, or amylase, more preferably cellulase, xylanase, ⁇ -xylosidase, or ⁇ -arabinofuranosidase, more preferably cellulase or xylanase,
  • a transformed Trichoderma genus cell comprising the expression vector of [3] or [4] or the gene expression cassette of [5].
  • the transformed Trichoderma cell of [7] wherein the Trichoderma is Trichoderma reesei or a mutant strain thereof.
  • a method for producing a target substance which comprises culturing the transformed Trichoderma cell of [7] or [8] in a medium containing erythritol.
  • the production method of [9] further comprising recovering the target substance from the culture obtained by the culture.
  • the target substance is preferably an enzyme, more preferably cellulase, hemicellulase, exoglucanase, endoglucanase, ⁇ -glucosidase, protease, lipase, mannase, arabinase, galactase, or amylase, more preferably cellulase, xylanase, ⁇ -xylosidase, or ⁇ -arabinofuranosidase, more preferably cellulase or xylanase, The production method according to [9] or [10].
  • an enzyme more preferably cellulase, hemicellulase, exoglucanase, endoglucanase, ⁇ -glucosidase, protease, lipase, mannase, arabinase, galactase, or amylase, more preferably cellulase, xylanase,
  • a DNA selected from the following (a) to (c) as an erythritol-inducible promoter (a) DNA consisting of the nucleotide sequence of any one of SEQ ID NOS: 1-4; (b) a DNA consisting of a nucleotide sequence having at least 90% identity with the nucleotide sequence of any of SEQ ID NOs: 1-4; and (c) one or a number to any of the nucleotide sequences of SEQ ID NOs: 1-4
  • the erythritol-inducible promoter is Preferably, in the presence of erythritol, in the absence of erythritol, or in the presence of cellulose, glucose or sorbitol, the target gene mRNA expression is induced 40-fold or more, preferably 50-fold or more, more preferably 100-fold or more. , More preferably, after 8 hours in the presence of 0.2 w/v% erythritol, it is 40 times or more, preferably 50 times or more, more preferably 100 times or more that in the absence of erythritol or in the presence of cellulose, glucose or sorbitol.
  • Trichoderma reesei strain PC-3-7 was inoculated into a medium so that the number of spores was 1 ⁇ 10 5 /mL, and shaken at 28° C. and 220 rpm. It was cultured (PRXYg-98R manufactured by Pris).
  • the medium composition was as follows.
  • Trace element 2 3% cellulose , 0.14% ( NH4 ) 2SO4 , 0.2 % KH2PO4 , 0.03 % CaCl2.2H2O, 0.03 % MgSO4.7H2O , 0.1 % Bacto Peptone, 0.05% Bacto Yeast extract, 0.1% Tween 80, 0.1% Trace element 2, 1.28% diammonium hydrogen citrate, 50 mM tartaric acid buffer (pH 4.0) (% is w /v%).
  • the composition of Trace element 2 is as follows.
  • the obtained cDNA library was sequenced by the Miseq system using Miseq Reagent Kit (300 cycles) (Illumina).
  • the obtained sequence information was analyzed using CLC Genomics Workbench with T. cerevisiae obtained from the Ensembl Fungi database (fungi.ensembl.org/Trichoderma_reesei/Info/Index/). reesei QM6a CDS sequence.
  • RPKM Reads Per Kilobase of exon per Million mapped reads
  • Example 2 Expression Analysis of Erythritol-Induced Expression Genes Erythritol-specificity of expression induction of the four genes found in Example 1 was verified by real-time PCR. For verification, T. T. reesei PC-3-7 strain was modified to allow high expression of AaBGL1 with the egl1 promoter. reesei E1AB1 strain (Enzyme Microb Technol, 2016, 82: 89-95) was used. The E1AB1 strain was inoculated so that the number of spores was 1 ⁇ 10 5 /mL, and cultured with shaking at 28° C. and 220 rpm (PRXYg-98R manufactured by PRICE). The medium composition was as follows.
  • Trace element 2 1% glucose , 0.14 % ( NH4 ) 2SO4 , 0.2% KH2PO4 , 0.03% CaCl2.2H2O , 0.03% MgSO4.7H2O , 0.1 % Bacto Peptone, 0.05% Bacto Yeast extract, 0.1% Tween 80, 0.1% Trace element 2, 1.28% diammonium hydrogen citrate, 50 mM tartaric acid buffer (pH 4.0) (% is w /v%).
  • the composition of Trace element 2 was as in Example 1. After culturing for 48 hours under the above conditions, erythritol, glucose or sorbitol was added to the medium to a final concentration of 0.2 w/v%. Cells were harvested immediately (0 h) and 2 hours (2 h) after the addition of erythritol. As a control, cells cultured for a total of 50 hours without adding any carbon source after 48 hours of culture were used.
  • cDNA was synthesized using RNA extracted from the recovered cells (using TaKaRa's PrimeScript TM II 1st strand cDNA Synthesis Kit). Real-time PCR analysis was performed using the synthesized cDNA. (Agilent Technologies, using Brilliant III Ultra-Fast SYBR Green QPCR Master Mixes). Table 2 shows the primers used for real-time PCR. The expression level of each gene was determined by a relative quantification method ( ⁇ Ct method). Phosphoglycerate kinase gene pgk1 (TRIREDRAFT — 21406), which is one of the glycolytic enzymes, was used as the normalization gene.
  • the relative expression level of each gene with respect to the expression level of the pgk1 gene is shown in FIGS.
  • the expression levels of the 4 genes were significantly increased 2 hours after the addition of erythritol (2 hours) compared to immediately after the addition (0 hours).
  • no increase in the expression levels of the 4 genes was observed under the control and glucose or sorbitol addition conditions. This indicated that the four genes 122079, 68466, 68606 and 68585 were specifically induced to be expressed by erythritol.
  • Example 3 Construction of Plasmid DNA for Gene Transfer It was verified that the promoter regions of the four genes for which erythritol-specific expression induction was confirmed in Example 2 functioned as erythritol-inducible promoters. T. The following six DNA fragments were prepared by PCR using the genomic DNA of P. reesei as a template.
  • Fragment 1 promoter region approximately 1.0 kbp upstream of the 122079 gene (SEQ ID NO: 1)
  • Fragment 2 promoter region approximately 0.8 kbp upstream of the 68466 gene (SEQ ID NO: 2)
  • Fragment 3 promoter region approximately 0.8 kbp upstream of the 68606 gene (SEQ ID NO: 3)
  • Fragment 4 promoter region approximately 0.8 kbp upstream of the 68585 gene (SEQ ID NO: 4)
  • Fragment 5 A region from the coding region of the xylanase gene xyn3 (TRIREDRAFT_120229) to 0.5 kbp downstream
  • Fragment 6 A region from about 1.0 kbp upstream to the ORF and about 0.3 kbp downstream of the pyr4 gene (TRIREDRAFT_74020) (about 2.4 kbp )
  • Table 3 shows the primers used for fragment amplification.
  • XYN3-pyr4 was created by ligating fragments 5 and 6. XYN3-pyr4 and each of fragments 1-4 were then ligated. By inserting each of the resulting fragments into the HincII restriction enzyme cleavage point of pUC118 (Takara Bio), four vectors pUC-P122079-XYN3-pyr4, pUC-P68466-XYN3-pyr4, pUC-P68606-XYN3-pyr4 and pUC-P68585-XYN3-pyr4 was constructed. The ligation of DNA fragments was performed according to the protocol of the In-Fusion HD Cloning kit (Takara Bio).
  • the constructed plasmid was transformed into a competent cell E. E. coli DH5 ⁇ Competent Cells (Takara Bio) was transformed, and among the transformants obtained as ampicillin-resistant strains, strains carrying the plasmid into which the gene of interest was inserted were selected by colony PCR. The selected transformants were cultured in ampicillin-added LB medium (37° C., 1 day), and plasmids were recovered and purified from the resulting cells using NucleoSpin Plasmid EasyPure (Machaley Nagel).
  • Example 4 Preparation of Transformed Strains reesei E1AB1 ⁇ pyr4 strain was transformed with the plasmid constructed in Example 3. Introduction was performed by the protoplast PEG method (Biotechnol Bioeng, 2012, 109(1):92-99). The transformant was obtained using the pyr4 gene as a selection marker in a selection medium (2% glucose, 1.1 M sorbitol, 2% agar, 0.5% ( NH4 ) 2SO4 , 0.2 % KH2PO4 (pH5).
  • a selection medium 2% glucose, 1.1 M sorbitol, 2% agar, 0.5% ( NH4 ) 2SO4 , 0.2 % KH2PO4 (pH5).
  • Trace element 1 Selected by The composition of Trace element 1 was as follows. 0.5g FeSO4.7H2O , 0.2g CoCl2 , 0.16g MnSO4.H2O and 0.14g ZnSO4.7H2O were diluted to 100 mL with distilled water. After stabilizing the selected transformants by passaging, strains stably retaining the target gene were further screened by colony PCR.
  • Example 5 Cultivation of Transformed Strain
  • the transformed strain prepared in Example 4 was cultured, and protein production was performed by erythritol induction.
  • 50 mL of medium was charged in a 500 mL flask, spores of the strain prepared in Example 4 were inoculated to 1 ⁇ 10 5 /mL, and cultured with shaking at 28 ° C. and 220 rpm (manufactured by Pris Co., Ltd. PRXYg-98R).
  • the medium composition was as follows.
  • Trace element 2 1% glucose , 0.14 % ( NH4 ) 2SO4 , 0.2% KH2PO4 , 0.03% CaCl2.2H2O , 0.03% MgSO4.7H2O , 0.1 % Bacto Peptone, 0.05% Bacto Yeast extract, 0.1% Tween 80, 0.1% Trace element 2, 50 mM tartaric acid buffer (pH 4.0) (all percentages are w/v%).
  • the composition of Trace element 2 was as in Example 1. After 48 hours of culture, erythritol was added to the medium to a final concentration of 0.2 w/v%, and the culture solution was collected. After further culturing for 4 hours, the culture solution was collected again.
  • Example 6 Measurement of XYN3 Activity
  • the xylanase (XYN3) activity in the culture medium collected in Example 5 was measured by the pNP (p-Nitrophenol) method.
  • An enzyme solution was prepared by diluting the culture supernatant.
  • a 1 mM pNP- ⁇ -Xylobioside solution (50 mM Na-acetate buffer, pH 5.0) was used as a substrate solution.
  • 80 ⁇ L of the substrate solution was added to 20 ⁇ L of the enzyme solution and reacted at 50° C. for 10 minutes, and then 100 ⁇ L of 1M Na 2 Co 3 solution was added to terminate the reaction.
  • Absorbance at 420 nm was then measured.
  • a calibration curve was prepared by performing the same operation using p-nitrophenol. The amount of enzyme that releases 1 ⁇ mol of pNP per minute was defined as 1 U, and the activity of XYN3 in each culture medium was determined.
  • the E1AB1 strain which is the parent strain, did not show XYN3 activity under the condition of adding erythritol, indicating that erythritol does not induce the expression of cellulosic biomass-degrading enzymes inherent in cells. Since erythritol-inducible expression of the 68606 gene was confirmed in Examples 1 and 2, it is clear that the 68606 promoter functions as an erythritol-inducible promoter. On the other hand, the 68606 promoter-expressing strain (P68606) did not exhibit XYN3 activity in the presence of erythritol, presumably because this experimental system was not suitable for the P68606 strain.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

下記(a)~(c)から選択されるDNAからなるエリスリトール誘導性プロモーター:(a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;(b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び、(c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。

Description

エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法
 本発明は、エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法に関する。
 トリコデルマ属菌は、セルラーゼ、キシラナーゼなどの酵素を多量に生産することができ、セルロース分解酵素生産用微生物として以前より注目されてきた(非特許文献1)。また非特許文献2には、トリコデルマ・リーセイを、その高いタンパク質生産能力を活かして、ヒトや他の微生物由来の異種タンパク質の生産のための微生物として利用することが記載されている。
 これまで、トリコデルマ属菌における目的タンパク質の遺伝子の発現誘導のためのプロモーターとしては、エノラーゼ遺伝子eno1のプロモーターや、翻訳伸長因子tef1のプロモーターなどの恒常発現プロモーターなどが報告されている(非特許文献3)。しかし、これらのプロモーターは、遺伝子発現誘導能が高くなく、目的物質の発現用のプロモーターとしては十分とはいえない。
 より遺伝子発現誘導能が高いトリコデルマ属プロモーターとして、セルラーゼ遺伝子であるcbh1、cbh2のプロモーターや、キシラナーゼ遺伝子xyn3のプロモーターなどが使用されている(非特許文献3)。しかし、これらのプロモーターはセルラーゼ生産条件下で活性化されるため、これらのプロモーターを活性化させた場合、同時にトリコデルマ属菌の細胞内にある複数のセルラーゼ遺伝子が発現してセルラーゼが高生産されるので、目的のタンパク質を単一生産することができない。セルラーゼの生産は、トリコデルマ属菌のセルラーゼ遺伝子を欠損させることで抑制できるが、ゲノム上の複数のセルラーゼ遺伝子を全て欠損させることは非常に困難である。また、主要なセルラーゼ遺伝子を欠損させると、セルラーゼ生産条件下でのトリコデルマ属菌の生育が著しく悪化する。
(非特許文献1)化学と生物, 2012, 50(8):592-599, 2012
(非特許文献2)Appl Biochem Biotechnol, 2011, 165(5-6):1169-77
(非特許文献3)Front Bioeng Biotechnol, 2018, 11(6):Article 135, doi:10.3389/fbioe.2018.00135
 一態様において、本発明は、下記(a)~(c)から選択されるDNAからなるエリスリトール誘導性プロモーターを提供する:
(a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;
(b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び
(c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。
 別の一態様において、本発明は、前記エリスリトール誘導性プロモーターを含む、発現ベクターを提供する。
 別の一態様において、本発明は、目的物質又はその合成に関わる酵素をコードする遺伝子と、前記エリスリトール誘導性プロモーターを含む、エリスリトール誘導性遺伝子発現カセットを提供する。
 別の一態様において、本発明は、前記発現ベクター又は前記遺伝子発現カセットを含む、形質転換トリコデルマ属菌細胞を提供する。
 別の一態様において、本発明は、
 前記形質転換トリコデルマ属菌細胞を、エリスリトールを含有する培地で培養することを含む、目的物質の製造方法を提供する。
 別の一態様において、本発明は、前記(a)~(c)から選択されるDNの、Aエリスリトール誘導性プロモーターとしての使用を提供する。
エリスリトール、グルコース又はソルビトール添加後の122079遺伝子の相対発現量。0h:添加直後、2h:添加2時間後。 エリスリトール、グルコース又はソルビトール添加後の68466遺伝子の相対発現量。0h:添加直後、2h:添加2時間後。 エリスリトール、グルコース又はソルビトール添加後の68606遺伝子の相対発現量。0h:添加直後、2h:添加2時間後。 エリスリトール、グルコース又はソルビトール添加後の68585遺伝子の相対発現量。0h:添加直後、2h:添加2時間後。
発明の詳細な説明
 本明細書中で引用された全ての特許文献、非特許文献、及びその他の刊行物は、その全体が本明細書中において参考として援用される。
 本明細書において、アミノ酸配列又はヌクレオチド配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGENETYX Ver.12のホモロジー解析プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 本明細書において、アミノ酸配列又はヌクレオチド配列に関する「少なくとも90%の同一性」とは、90%以上、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは98%以上、さらに好ましくは99%以上、さらに好ましくは99.5%以上の同一性をいう。
 本明細書における「1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列」とは、好ましくは1個以上10個以下、より好ましくは1個以上6個以下、さらに好ましくは1個以上3個以下、さらに好ましくは1個又は2個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列をいう。本明細書において、ヌクレオチドの「付加」には、配列の一末端及び両末端へのヌクレオチドの付加が含まれる。
 本明細書において、遺伝子に関する「上流」及び「下流」とは、該遺伝子の転写方向の上流及び下流をいう。例えば、遺伝子の「上流配列」「下流配列」とは、それぞれDNAセンス鎖において該遺伝子の5'側及び3'側に位置する配列をいう。例えば、「遺伝子の上流に連結されたプロモーター」とは、DNAセンス鎖において遺伝子の5'側にプロモーターが存在することを意味する。
 本明細書において、遺伝子と、プロモーター等の制御領域との「作動可能な連結」とは、遺伝子と制御領域とが、該遺伝子が該制御領域の制御の下で発現し得るように連結されていることをいう。遺伝子と制御領域との「作動可能な連結」の手順は当業者に周知である。
 本明細書において、細胞の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該細胞に元から存在していることを表すために使用される。対照的に、用語「外来」とは、当該細胞に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、「外来」ヌクレオチド又はDNAとは、細胞に外部から導入されたヌクレオチド又はDNAである。外来ヌクレオチド又はDNAは、それが導入された細胞と同種の生物由来であっても、異種の生物由来(すなわち異種ヌクレオチド又は異種DNA)であってもよい。
 本明細書において、「プロモーター活性」とは、DNA(遺伝子)のmRNAへの転写を促進する活性を意味する。プロモーター活性は、適当なレポーター遺伝子を用いることにより確認することができる。例えば、プロモーターの下流に検出可能なタンパク質をコードするDNA、すなわち、レポーター遺伝子を連結し、そのレポーター遺伝子の遺伝子産物の生産量を測定することにより、プロモーター活性を確認可能である。レポーター遺伝子の例としては、β-ガラクトシダーゼ(LacZ)遺伝子、β-グルクロニダーゼ(GUS)遺伝子、ルシフェラーゼ遺伝子、β-ラクタマーゼ遺伝子、EtbC(2,3-dihydroxy-ethylbenzene 1,2-dioxygenase)をコードする遺伝子等の発色基質に対して作用する酵素の遺伝子や、GFP(Green Fluorescent Protein)をコードする遺伝子等の蛍光タンパク質の遺伝子、などが挙げられる。あるいは、プロモーター活性は、レポーター遺伝子から転写されたmRNAの発現量をシークエンシング、定量RT-PCR等で測定することによっても確認することができる。
 本明細書において、「エリスリトール誘導性プロモーター」とは、エリスリトール存在下でプロモーター活性を有するプロモーターをいい、好ましくは、エリスリトール存在下で、エリスリトール非存在下、又はセルロース、グルコースもしくはソルビトール存在下の場合の40倍以上、好ましくは50倍以上、より好ましくは100倍以上、標的遺伝子(すなわち該プロモーターが作動可能に連結した遺伝子)のmRNAの発現を誘導することができるプロモーターをいう。より具体的には、エリスリトール0.2w/v%存在下で8時間後に標的遺伝子のmRNAの発現を上記の量誘導することができるプロモーターをいう。
 本発明は、エリスリトール誘導性プロモーター、該プロモーターを含有する発現ベクター、遺伝子発現カセット及び形質トリコデルマ属菌細胞、ならびに該形質トリコデルマ属菌細胞を用いた目的物質の製造方法を提供する。
 本発明により提供されるエリスリトール誘導性プロモーターは、トリコデルマ属菌において、細胞本来のセルラーゼ発現誘導プロセスを促進することなく、目的物質の遺伝子の発現を誘導することを可能にする。したがって本発明は、トリコデルマ属菌において目的物質をより高純度で生産することを可能にする。
 トリコデルマ属菌において、細胞本来のセルラーゼ生産を促進することなく、目的物質を生産することが望まれる。本発明者らは、トリコデルマ属菌から、エリスリトール非添加条件下ではほとんど発現せず、エリスリトール添加条件下において著しく発現が向上する遺伝子を特定した。エリスリトールは、果実やキノコなどに含まれる糖アルコールの一種である。従来のセルラーゼ生産のためのトリコデルマ属菌の培養では、主にセルロースやグルコースが炭素源として使用されており、エリスリトールは実質的に使用されていない。また後述の実施例で示すとおり、エリスリトールは細胞が本来有するセルロース系バイオマス分解酵素の発現を誘導しない(表4参照)。したがって、エリスリトールを誘導物質として用いて、これらの遺伝子のプロモーターにより目的物質の遺伝子を発現させることで、トリコデルマ属菌において、細胞本来のセルラーゼ発現誘導プロセスを促進することなく、目的物質を生産させることができる。本発明は、トリコデルマ属菌において目的物質をより高純度で生産することを可能にする。
 本発明により提供されるエリスリトール誘導性プロモーター(以下、単に「本発明のプロモーター」ともいう)としては、以下の(a)~(c)から選択されるDNAであって、エリスリトール存在下でプロモーター活性を有するDNAが挙げられる。
(a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;
(b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び
(c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。
 配列番号1~4のプロモーターは、トリコデルマ・リーセイ(Trichoderma reesei)由来のプロモーターである。前述のとおり、従来のトリコデルマ属菌の培養にエリスリトールは使用されておらず、そのため、配列番号1~4のプロモーターがエリスリトール誘導性プロモーターであることはこれまで知られていなかった。配列番号1~4のプロモーターは、トリコデルマ属菌において初めて見出されたエリスリトール誘導性プロモーターである。
 本発明のプロモーターの取得方法としては、特に制限されず、通常の化学合成法又は遺伝子工学的手法により得ることができる。例えば、配列番号1~4のヌクレオチド配列に基づいて、本発明のプロモーターDNAを人工合成することができる。DNAの人工合成には、例えば、GenScript社等から提供される市販のDNA合成サービスを利用することができる。あるいは、本発明のプロモーターは、トリコデルマ・リーセイ等のトリコデルマ属菌からクローニングすることができる。
 本発明のプロモーターはまた、配列番号1~4のヌクレオチド配列のDNAに突然変異を導入することによって製造することができる。突然変異導入の手法としては、例えば、紫外線照射及び部位特異的変異導入法が挙げられる。部位特異的変異導入の手法としては、Splicing overlap extension(SOE)PCR(Gene,198977:61-68)を利用した方法、ODA法(Gene,1995,152:271-276)、Kunkel法(Proc.Natl.Acad.Sci.USA,1985,82(2):488-492)等が挙げられる。あるいは、Site-Directed Mutagenesis System Mutan-SuperExpress Kmキット(タカラバイオ社)、TransformerTM Site-Directed Mutagenesisキット(Clonetech社)、KOD-Plus-Mutagenesis Kit(東洋紡社)等の市販の部位特異的変異導入用キットを利用することもできる。突然変異導入したDNAからエリスリトール存在下でプロモーター活性を有するものを選択することによって、本発明のプロモーターを取得することができる。例えば、変異導入したDNAの下流にレポーター遺伝子を作動可能に連結し、エリスリトール存在下で該レポーター遺伝子の発現量解析を行うことにより、エリスリトール誘導性プロモーターのDNAを選択することができる。
 あるいは、ヌクレオチド配列に対するヌクレオチドの欠失、置換、付加、又は挿入の方法は、例えば、Dieffenbachら(Cold Spring Harbar Laboratory Press,New York,581-621,1995)に記載されている。
 前述の手法を用いることによって、配列番号1~4のヌクレオチド配列、又はそれらと少なくとも90%の同一性を有するヌクレオチド配列からなるエリスリトール誘導性プロモーター、又は、配列番号1~4の配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるエリスリトール誘導性プロモーターを取得することができる。
 本発明のプロモーターは、その下流に配置された遺伝子の発現を制御する機能を有する。本発明のプロモーターを利用することによって、転写活性に優れた発現制御領域を有するDNA断片を得ることができる。例えば、目的遺伝子と、その上流に作動可能に連結された本発明のプロモーターとを含むDNA断片を構築することができる。該DNA断片には、本発明のプロモーター及び目的遺伝子の他に、該プロモーターの転写活性を向上させるようなシスエレメント、又はターミネーターが含まれていてもよい。さらに、該DNA断片は、薬剤耐性遺伝子、栄養要求性マーカー遺伝子などの選択マーカー遺伝子を含んでいてもよい。好ましくは、該目的遺伝子と本発明のプロモーターとを含むDNA断片は、該目的遺伝子を発現するためのエリスリトール誘導性遺伝子発現カセットである。
 前述した本発明のプロモーターを含むDNA断片は、両末端に制限酵素認識配列を有するように構築することができる。該制限酵素認識配列を使用して、本発明のプロモーターをベクターに導入することができる。例えば、ベクターを制限酵素で切断し、そこに、本発明のプロモーターを含み端部に制限酵素切断配列を有するDNA断片を添加することによって、本発明のプロモーターをベクターに導入することができる(制限酵素法)。
 本発明のプロモーターを含むDNA断片は、宿主細胞のゲノムに直接導入してもよい。例えば、本発明のプロモーターを含むDNA断片を、宿主細胞のゲノムにおける目的遺伝子の上流に導入してもよい。また例えば、前述した目的遺伝子と本発明のプロモーターとを含む遺伝子発現カセットを、宿主細胞のゲノムに導入してもよい。
 あるいは、本発明のプロモーターを、目的遺伝子の発現を可能とする発現ベクターに組み込むことで、当該目的遺伝子の発現を転写レベルで向上させることができる発現ベクターが得られる。該発現ベクターにおいては、本発明のプロモーターは、目的遺伝子をコードするDNAの上流に作動可能に連結され得る。本発明のプロモーターを有する発現ベクターは、宿主細胞のゲノムに導入するためのベクターであっても、ゲノム外に保持されるベクターであってもよい。宿主細胞内で複製可能なものが好ましい。
 ベクターの例としては、pBluescript II SK(-)(Stratagene)、pUC18/19、pUC118/119等のpUC系ベクター(タカラバイオ)、pET系ベクター(タカラバイオ)、pGEX系ベクター(GEヘルスケア)、pCold系ベクター(タカラバイオ)、pHY300PLK(タカラバイオ)、pUB110(Plasmid,1986,15(2):93-103)、pBR322(タカラバイオ)、pRS403(Stratagene)、pMW218/219(ニッポンジーン)、pRI909/910等のpRI系ベクター(タカラバイオ)、pBI系ベクター(クロンテック)、IN3系ベクター(インプランタイノベーションズ)、pPTR1/2(タカラバイオ)、pDJB2(Gene,1985,36:321-331)、pAB4-1(Mol Gen Genet,1987,206:71-75)、pLeu4(Gene,1989,84:335-343)、pPyr225(Mol Genet Genomics,2002,268:397-406)、pFG1(Curr Genet,1990,18:447-451)、酵母発現ベクターpNAN8142(Biosci Biotechnol Biochem,1996,60:383-389)、pMA91(Biosci Biotechnol Biochem,1998,62:1615-1618)、などが挙げられる。
 前記発現ベクターやDNA断片において、本発明のプロモーターの下流に配置される目的遺伝子は特に限定されない。例えば、目的遺伝子は、目的物質又は該目的物質の合成に関わる酵素をコードする遺伝子である。目的遺伝子は、異種発現産物をコードする異種遺伝子であっても、外部から導入された同種由来の遺伝子であっても、宿主細胞が本来有する発現産物をコードする遺伝子であっても、その他の任意のタンパク質、ペプチド、核酸などをコードする遺伝子であってもよい。目的物質の例としては、酵素、ホルモン、サイトカイン、その他生理活性ペプチド、トランスポーター、ノンコーディングRNAなどが挙げられる。酵素の例としては、酸化還元酵素(Oxidoreductase)、転移酵素(Transferase)、加水分解酵素(Hydrolase)、脱離酵素(Lyase)、異性化酵素(Isomerase)、合成酵素(Ligase又はSynthetase)、などが挙げられ、好ましい例としては、セルラーゼ、ヘミセルラーゼ等のセルロース系バイオマス分解酵素、エキソグルカナーゼ、エンドグルカナーゼ、β-グルコシダーゼ、プロテアーゼ、リパーゼ、マンナーゼ、アラビナーゼ、ガラクターゼ、アミラーゼなどが挙げられ、より好ましくはセルラーゼ又はヘミセルラーゼである。該ヘミセルラーゼの例としては、キシラナーゼ、β-キシロシダーゼ、α-アラビノフラノシダーゼなどが挙げられ、このうちキシラナーゼが好ましい。
 本発明のプロモーターを含む発現ベクター又はDNA断片を、一般的な形質転換法、例えばエレクトロポレーション法、トランスフォーメーション法、トランスフェクション法、接合法、プロトプラスト法、パーティクル・ガン法、アグロバクテリウム法等を用いて宿主細胞に導入することによって、本発明の形質転換体を得ることができる。
 前記ベクターやDNA断片を導入する宿主細胞は、その細胞内で、本発明のプロモーターがプロモーターとして機能し得るものであれば特に限定されないが、好ましくはトリコデルマ(Trichoderma)属菌細胞である。宿主細胞の他の例としては、アルペルギルス(Aspergillus)属、ペニシリウム(Penicillium)属、ニューロスポラ(Neurospora)属、フサリウム(Fusarium)属、クリソスポリウム(Chrysosporium)属、フミコーラ(Humicola)属、エメリセラ(Emericella)属、ハイポクレア(Hypocrea)属、アクレモニウム(Acremonium)属、クリソスポリウム(Chrysosporium)属、ミセリオフトラ(Myceliophthora)属、ピロマイセス(Piromyces)属、タラロマイセス(Talaromyces)属、サーモアスカス(Thermoascus)属、チエラビア(Thielavia)属等の糸状菌の細胞が挙げられる。
 前記トリコデルマ属菌の例としては、トリコデルマ・リーセイ、トリコデルマ・ロンジブラキアタム(Trichoderma longibrachiatum)、トリコデルマ・ハリジアウム(Trichoderma harzianum)、トリコデルマ・コニンギ(Trichoderma koningii)、トリコデルマ・ヴィリデ(Trichoderma viride)などが挙げられ、好ましくはトリコデルマ・リーセイ及びその変異株が挙げられる。例えば、トリコデルマ・リーセイQM9414株及びその変異株、好ましくは、トリコデルマ・リーセイPC-3-7株(ATCC66589)、トリコデルマ・リーセイPCD-10株(FERM P-8172)、トリコデルマ・リーセイE1AB1株(JN13株という場合もある)又はそれらの変異株などを、宿主細胞として好ましく用いることができる。E1AB1株は、トリコデルマ・リーセイPC-3-7株に対し、egl1プロモーターを用いてアスペルギルス・アキュリータス(Aspergillus aculeatus)由来のβ―グルコシダーゼ(BGL)を発現させた株である(Enzyme Microb Technol,2016,82:89-95、及びWO2013/115305の実施例1~3を参照)。
 前記本発明の形質転換体は、目的物質の製造に利用することができる。例えば、目的物質又は該目的物質の合成に関わる酵素をコードする遺伝子と、該遺伝子の上流に作動可能に連結された本発明のプロモーター、を有する発現ベクター又はDNA断片を含む形質転換体をエリスリトール存在下で培養して、本発明のプロモーターの制御下で該遺伝子を発現させ、目的物質を生産させる。目的物質の例は前述したとおりである。
 形質転換体の培養条件は、該形質転換体の細胞の増殖及び目的物質の生産が可能な条件であれば特に限定されない。該培養に使用される培地は、炭素源、窒素源、無機塩、ビタミンなど、通常の細胞の増殖及び目的物質の生産に必要な成分を含む限り、合成培地、天然培地のいずれでもよい。該培養物中のエリスリトールの濃度は、培地中の初期濃度として、0.1~10%(w/v)が好ましい。
 培地に添加する炭素源としては、細胞本来のセルラーゼ発現誘導プロセスの刺激を避けるため、セルラーゼ非誘導性炭素源を用いることが望ましい。例えば、グルコース、フラクトース等のセルラーゼ非誘導性の糖質、ソルビトールのような糖アルコール、エタノール、グリセロールのようなアルコール類、酢酸のような有機酸類などを炭素源として使用することができる。あるいは、エリスリトールを炭素源として使用してもよい。一方、該培地は、好ましくはセルロース等のセルラーゼ誘導性炭素源を含まない。細胞のカタボライト抑制をより低減しつつ、目的物質を生産するために、グルコース等のセルラーゼ非誘導性炭素源を流加しながら細胞を培養してもよい。このとき、該セルラーゼ非誘導性炭素源、例えばグルコースを、窒素源であるアンモニア水、又はアンモニウム塩を含有する水溶液に溶解させ、該溶解液を流加して培養することが、培養効率や培養中の泡立ちを抑制できる点から好ましい。
 窒素源としては、アンモニア、硫酸アンモニウム等のアンモニウム塩、アミン等の窒素化合物、ペプトン、大豆加水分解物のような天然窒素源などが挙げられる。無機塩としては、リン酸カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、炭酸カリウムなどが挙げられる。ビタミンとしては、ビオチンやチアミンなどが挙げられる。さらに必要に応じて、該形質転換体が生育に要求する物質を添加することができる。
 培養は、好ましくは振とう培養や通気攪拌培養のような好気的条件で行う。培養温度は好ましくは10℃以上、より好ましくは20℃以上、より好ましくは25℃以上であり、且つ好ましくは50℃以下、より好ましくは42℃以下、より好ましくは35℃以下である。また、好ましくは10~50℃、より好ましくは20~42℃、より好ましくは25~35℃である。培養時のpHは3~9、好ましくは4~5である。培養時間は、10時間~10日間、好ましくは2~7日間である。
 培養後、培養物から目的物質を回収することにより、目的物質を取得することができる。必要に応じて、回収した目的物質をさらに精製してもよい。培養物から目的物質を回収又は精製する方法は、特に限定されず、公知の回収又は精製方法に従って行えばよい。例えば、培養物を回収し、必要に応じて超音波や加圧等による菌体破砕処理を行い、次いで傾斜法、ろ過、遠心分離などにより細胞成分を除去した後、残った目的物質を含む画分を回収すればよい。あるいは、目的物質をコードする遺伝子に、形質転換体で機能する分泌シグナルペプチドを作動可能に連結させることによって、該目的物質を細胞外に分泌生産させることができる。
 必要に応じて回収した画分を透析、塩析、イオン交換法、蒸留、溶剤抽出等の方法、又はこれらの組み合わせにかけることで、目的物質を精製することができる。本発明による目的物質の製造方法において、形質転換体の培養及び目的物質の回収は、回分式、半回分式及び連続式のいずれの方法で行ってもよい。
 本発明の例示的実施形態として、以下の物質、製造方法、用途、方法等をさらに本明細書に開示する。但し、本発明はこれらの実施形態に限定されない。
〔1〕下記(a)~(c)から選択されるDNAからなるエリスリトール誘導性プロモーター:
(a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;
(b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び
(c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。
〔2〕好ましくは、エリスリトール存在下で、エリスリトール非存在下、又はセルロース、グルコースもしくはソルビトール存在下の場合の40倍以上、好ましくは50倍以上、より好ましくは100倍以上、標的遺伝子のmRNAの発現を誘導する、
 より好ましくは、エリスリトール0.2w/v%存在下で8時間後に、エリスリトール非存在下、又はセルロース、グルコースもしくはソルビトール存在下の場合の40倍以上、好ましくは50倍以上、より好ましくは100倍以上の量で、標的遺伝子のmRNAの発現を誘導する、
〔1〕記載のエリスリトール誘導性プロモーター。
〔3〕〔1〕又は〔2〕記載のエリスリトール誘導性プロモーターを含む、発現ベクター。
〔4〕好ましくは、目的物質又はその合成に関わる酵素をコードする遺伝子と、該遺伝子の上流に連結された前記エリスリトール誘導性プロモーターとを含む、〔3〕記載の発現ベクター。
〔5〕目的物質又はその合成に関わる酵素をコードする遺伝子と、該遺伝子の上流に連結された〔1〕又は〔2〕記載のエリスリトール誘導性プロモーターとを含む、エリスリトール誘導性遺伝子発現カセット。
〔6〕前記目的物質が、
 好ましくは酵素であり、
 より好ましくは、セルラーゼ、ヘミセルラーゼ、エキソグルカナーゼ、エンドグルカナーゼ、β-グルコシダーゼ、プロテアーゼ、リパーゼ、マンナーゼ、アラビナーゼ、ガラクターゼ、又はアミラーゼであり、
 さらに好ましくは、セルラーゼ、キシラナーゼ、β-キシロシダーゼ、又はα-アラビノフラノシダーゼであり、
 さらに好ましくはセルラーゼ又はキシラナーゼである、
〔3〕又は〔4〕記載の発現ベクター、又は〔5〕記載の遺伝子発現カセット。
〔7〕〔3〕又は〔4〕記載の発現ベクター、又は〔5〕記載の遺伝子発現カセットを含む、形質転換トリコデルマ属菌細胞。
〔8〕好ましくは、前記トリコデルマ属菌がトリコデルマ・リーセイ又はその変異株である、〔7〕記載の形質転換トリコデルマ属菌細胞。
〔9〕〔7〕又は〔8〕記載の形質転換トリコデルマ属細胞を、エリスリトールを含有する培地で培養することを含む、目的物質の製造方法。
〔10〕前記培養で得られた培養物から目的物質を回収することをさらに含む、〔9〕記載の製造方法。
〔11〕前記目的物質が、
 好ましくは酵素であり、
 より好ましくは、セルラーゼ、ヘミセルラーゼ、エキソグルカナーゼ、エンドグルカナーゼ、β-グルコシダーゼ、プロテアーゼ、リパーゼ、マンナーゼ、アラビナーゼ、ガラクターゼ、又はアミラーゼであり、
 さらに好ましくは、セルラーゼ、キシラナーゼ、β-キシロシダーゼ、又はα-アラビノフラノシダーゼであり、
 さらに好ましくはセルラーゼ又はキシラナーゼである、
〔9〕又は〔10〕記載の製造方法。
〔12〕下記(a)~(c)から選択されるDNAの、エリスリトール誘導性プロモーターとしての使用:
(a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;
(b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び
(c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。
〔13〕前記エリスリトール誘導性プロモーターが、
 好ましくは、エリスリトール存在下で、エリスリトール非存在下、又はセルロース、グルコースもしくはソルビトール存在下の場合の40倍以上、好ましくは50倍以上、より好ましくは100倍以上、標的遺伝子のmRNAの発現を誘導する、
 より好ましくは、エリスリトール0.2w/v%存在下で8時間後に、エリスリトール非存在下、又はセルロース、グルコースもしくはソルビトール存在下の場合の40倍以上、好ましくは50倍以上、より好ましくは100倍以上の量で、標的遺伝子のmRNAの発現を誘導する、
〔12〕記載の使用。
〔14〕〔4〕記載の発現ベクター又は〔5〕記載のエリスリトール誘導性遺伝子発現カセットの、目的物質又はその合成に関わる酵素をコードする遺伝子の発現のための使用。
〔15〕〔7〕又は〔8〕記載の形質転換トリコデルマ属菌細胞の目的物質の製造のための使用。
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
実施例1 RNAseq解析による発現解析
 トリコデルマ・リーセイ(T.reesei)PC-3-7株を胞子数1×105個/mLとなるように培地に植菌し、28℃、220rpmにて振とう培養した(プリス社製PRXYg-98R)。培地組成は以下の通りであった。3%セルロース、0.14%(NH42SO4、0.2% KH2PO4、0.03% CaCl2・2H2O、0.03% MgSO4・7H2O、0.1% Bacto Peptone、0.05% Bacto Yeast extract、0.1% Tween80、0.1% Trace element 2、1.28%クエン酸水素二アンモニウム、50mM酒石酸バッファー(pH4.0)(%はいずれもw/v%)。Trace element 2の組成は以下の通りである。6mg H3BO3、26mg(NH46Mo724・4H2O、100mg FeCl3・6H2O、40mg CuSO4・5H2O、8mg MnCl2・4H2O、200mg ZnCl2を蒸留水にて100mLにメスアップ。上記条件で72時間培養した後、培地にエリスリトールを終濃度0.2w/v%となるように添加した。さらに8時間培養した後、菌体を回収した。コントロールとして、エリスリトール非存在下で、上記条件で80時間培養した菌体を用いた。
 回収した菌体から全RNAを抽出し(QIAGEN社RNeasy Plant Mini Kit使用)、抽出した全RNAをTruSeq RNA sample Prep v3キット(イルミナ)に供することで次世代シーケンサーライブラリ(cDNAライブラリ)を構築した。得られたcDNAライブラリをMiseq Reagent Kit(300cycle)(イルミナ)を用いたMiseqシステムによってシーケンシングした。得られたシーケンス情報を、CLC Genomics Workbenchを用いて、Ensembl Fungiデータベース(fungi.ensembl.org/Trichoderma_reesei/Info/Index/)から取得したT.reesei QM6aのCDS配列に対してマッピングした。各遺伝子について、マッピングされたリード数を遺伝子の長さと総リード数で補正した値であるRPKM(Reads Per Kilobase of exon per Million mapped reads)を求めた。得られたRPKMに基づいて各遺伝子の発現量を解析した。その結果、RPKM値がコントロールと比較してエリスリトール添加条件において50倍以上高発現しており、コントロール条件でほとんど発現していない遺伝子として、122079(TRIREDRAFT_122079)、68466(TRIREDRAFT_68466)、68606(TRIREDRAFT_68606)及び68585(TRIREDRAFT_68585)の4遺伝子が見出された(表1)。
Figure JPOXMLDOC01-appb-T000001
実施例2 エリスリトール誘導発現遺伝子の発現解析
 実施例1で見出された4遺伝子の発現誘導のエリスリトール特異性をリアルタイムPCRによって検証した。検証には、T.reesei PC-3-7株をegl1プロモーターでAaBGL1を高発現させるように改変して得られたT.reesei E1AB1株(Enzyme Microb Technol,2016,82:89-95)を用いた。E1AB1株を胞子数1×105個/mLとなるように植菌し、28℃、220rpmにて振とう培養した(プリス社製PRXYg-98R)。培地組成は以下の通りであった。1%グルコース、0.14%(NH42SO4、0.2% KH2PO4、0.03% CaCl2・2H2O、0.03% MgSO4・7H2O、0.1% Bacto Peptone、0.05% Bacto Yeast extract、0.1% Tween80、0.1% Trace element 2、1.28%クエン酸水素二アンモニウム、50mM酒石酸バッファー(pH4.0)(%はいずれもw/v%)。Trace element 2の組成は実施例1のとおりであった。上記条件で48時間培養した後、培地にエリスリトール、グルコース又はソルビトールを終濃度0.2w/v%となるように添加した。エリスリトール添加の直後(0h)及び2時間後(2h)に菌体を回収した。コントロールには培養48時間後に何も炭素源を添加せずに合計50時間培養した菌体を用いた。
 回収した菌体から抽出したRNAを用いてcDNAを合成した(TaKaRa社PrimeScriptTM II 1st strand cDNA Synthesis Kit使用)。合成したcDNAを用いてリアルタイムPCR解析を行った。(アジレント・テクノロジー、Brilliant III Ultra-Fast SYBR Green QPCR Master Mixes使用)。リアルタイムPCRに使用したプライマーを表2に示す。相対定量法(ΔΔCt法)により各遺伝子の発現量を求めた。ノーマライズ遺伝子には解糖系酵素の1つであるホスホグリセリン酸キナーゼ遺伝子pgk1(TRIREDRAFT_21406)を用いた。pgk1遺伝子の発現量に対する各遺伝子の相対的発現量を図1~4に示した。エリスリトールの添加直後(0h)と比較して、添加2時間後(2h)では4遺伝子の発現量が大幅に上昇した。一方、コントロール、及びグルコース又はソルビトール添加条件では、4遺伝子の発現量の上昇は認められなかった。このことから、122079、68466、68606及び68585の4遺伝子がエリスリトール特異的に発現誘導されることが示された。
Figure JPOXMLDOC01-appb-T000002
実施例3 遺伝子導入用プラスミドDNAの構築
 実施例2でエリスリトール特異的発現誘導を確認した4遺伝子のプロモーター領域がエリスリトール誘導性プロモーターとして機能することを検証した。T.reeseiのゲノムDNAを鋳型としたPCRにて、以下の6つのDNA断片を調製した。
 断片1:122079遺伝子の上流約1.0kbpのプロモーター領域(配列番号1)
 断片2:68466遺伝子の上流約0.8kbpのプロモーター領域(配列番号2)
 断片3:68606遺伝子の上流約0.8kbpのプロモーター領域(配列番号3)
 断片4:68585遺伝子の上流約0.8kbpのプロモーター領域(配列番号4)
 断片5:キシラナーゼ遺伝子xyn3(TRIREDRAFT_120229)のコード領域から下流0.5kbpまでの領域
 断片6:pyr4遺伝子(TRIREDRAFT_74020)の上流約1.0kbpからORF及び下流約0.3kbpまでの領域(約2.4kbp)
 断片の増幅に使用したプライマーを表3に示した。
Figure JPOXMLDOC01-appb-T000003
 断片5及び6を結合してXYN3-pyr4を作製した。次いでXYN3-pyr4と断片1~4のそれぞれを結合した。得られた断片をそれぞれpUC118(タカラバイオ)のHincII制限酵素切断点に挿入することで、4つのベクターpUC-P122079-XYN3-pyr4、pUC-P68466-XYN3-pyr4、pUC-P68606-XYN3-pyr4及びpUC-P68585-XYN3-pyr4を構築した。DNA断片の結合はIn-Fusion HD Cloning kit(タカラバイオ)のプロトコルに従って実施した。
 構築したプラスミドをコンピテントセルE.coli DH5α Competent Cells(タカラバイオ)へと形質転換し、アンピシリン耐性株として得られた形質転換体の中から、コロニーPCRにより目的の遺伝子が挿入されたプラスミドを保持する菌株を選別した。選別した形質転換体はアンピシリン添加LB培地を用いて培養し(37℃、1日間)、得られた菌体からプラスミドをNucleoSpin Plasmid EasyPure(マッハライ・ナーゲル)を用いて回収及び精製した。
実施例4 形質転換株の作製
 T.reesei E1AB1Δpyr4株に対して、実施例3で構築したプラスミドの形質転換を行った。導入はプロトプラストPEG法(Biotechnol Bioeng,2012,109(1):92-99)で行った。形質転換体は、pyr4遺伝子を選択マーカーとして、選択培地(2%グルコース、1.1Mソルビトール、2%アガー、0.5%(NH42SO4、0.2% KH2PO4(pH5.5)、0.06% CaCl2・2H2O、0.06% CsCl2、0.06% MgSO4・7H2O、0.1% Trace element 1;%はいずれもw/v%)にて選抜した。Trace element 1の組成は以下のとおりであった。0.5g FeSO4・7H2O、0.2g CoCl2、0.16g MnSO4・H2O、0.14g ZnSO4・7H2Oを蒸留水にて100mLにメスアップ。選抜した形質転換体を植え継ぎにより安定化した後、コロニーPCRにより目的の遺伝子が安定に保持された菌株をさらに選別した。
実施例5 形質転換株の培養
 実施例4で作製した形質転換株を培養し、エリスリトール誘導によるタンパク質生産を行った。培養では、500mLのフラスコに培地を50mL仕込み、実施例4で作製した株の胞子を1×105個/mLとなるよう植菌し、28℃、220rpmにて振とう培養した(プリス社製PRXYg-98R)。培地組成は以下の通りであった。1%グルコース、0.14%(NH42SO4、0.2% KH2PO4、0.03% CaCl2・2H2O、0.03% MgSO4・7H2O、0.1% Bacto Peptone、0.05% Bacto Yeast extract、0.1% Tween80、0.1% Trace element 2、50mM酒石酸バッファー(pH4.0)(%はいずれもw/v%)。Trace element 2の組成は実施例1のとおりであった。培養48時間後に、培地にエリスリトールを終濃度0.2w/v%となるように添加し、培養液を回収した。さらに4時間培養した後、再度培養液を回収した。
実施例6 XYN3活性測定
 実施例5で回収した培養液中のキシラナーゼ(XYN3)活性をpNP(p-Nitrophenol)法にて測定した。培養上清を希釈して酵素溶液を調製した。1mM pNP-β-Xylobioside溶液(50mM Na-acetate buffer,pH5.0)を基質溶液とした。酵素溶液20μLに基質溶液80μLを加えて50℃で10分間反応後、100μLの1M Na2Co3溶液を加えて反応停止させた。その後420nmの吸光度を測定した。p-nitrophenolを用いて同様の操作を行うことで、検量線を作製した。1分間に1μmolのpNPを遊離させる酵素量を1Uと定義し、各培養液中のXYN3の活性を求めた。
 表4に示すとおり、親株であるE1AB1株ではエリスリトール添加後4時間においてXYN3活性がほとんど認められなかったのに対し、122079プロモーター発現株(P122079)、68466プロモーター発現株(P68466)及び68585プロモーター発現株(P68585)では、エリスリトール添加4時間後には、添加後0時間と比較してXYN3の活性が大幅に上昇することが認められた。これらの結果から、これらのプロモーターがエリスリトール誘導性プロモーターとして機能し、エリスリトール存在下で目的物質の誘導生産を可能にすることが示された。また親株であるE1AB1株がエリスリトール添加条件でXYN3活性を示さなかったことから、エリスリトールは細胞が本来有するセルロース系バイオマス分解酵素の発現を誘導しないことが示された。実施例1及び2において68606遺伝子のエリスリトールによる誘導発現が確認されたことから、68606プロモーターがエリスリトール誘導プロモーターとして機能することは明らかである。一方で、68606プロモーター発現株(P68606)は、エリスリトール存在下でXYN3活性を示さなかったが、これはP68606株に本実験系が適さなかったためであると考えられた。
Figure JPOXMLDOC01-appb-T000004

Claims (12)

  1.  下記(a)~(c)から選択されるDNAからなるエリスリトール誘導性プロモーター:
    (a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;
    (b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び
    (c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。
  2.  請求項1記載のエリスリトール誘導性プロモーターを含む、発現ベクター。
  3.  目的物質又はその合成に関わる酵素をコードする遺伝子と、該遺伝子の上流に連結された前記エリスリトール誘導性プロモーターとを含む、請求項2記載の発現ベクター。
  4.  目的物質又はその合成に関わる酵素をコードする遺伝子と、該遺伝子の上流に連結された請求項1記載のエリスリトール誘導性プロモーターとを含む、エリスリトール誘導性遺伝子発現カセット。
  5.  請求項2又は3記載の発現ベクター又は請求項4記載の遺伝子発現カセットを含む、形質転換トリコデルマ属菌細胞。
  6.  前記トリコデルマ属菌がトリコデルマ・リーセイ又はその変異株である、請求項5記載の形質転換トリコデルマ属菌細胞。
  7.  請求項5又は6記載の形質転換トリコデルマ属細胞を、エリスリトールを含有する培地で培養することを含む、目的物質の製造方法。
  8.  前記培養で得られた培養物から目的物質を回収することをさらに含む、請求項7記載の製造方法。
  9.  下記(a)~(c)から選択されるDNAの、エリスリトール誘導性プロモーターとしての使用:
    (a)配列番号1~4のいずれかのヌクレオチド配列からなるDNA;
    (b)配列番号1~4のいずれかのヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなるDNA;及び
    (c)配列番号1~4のいずれかのヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列からなるDNA。
  10.  前記エリスリトール誘導性プロモーターが、エリスリトール存在下で、エリスリトール非存在下、又はセルロース、グルコースもしくはソルビトール存在下の場合の40倍以上、好ましくは50倍以上、より好ましくは100倍以上、標的遺伝子のmRNAの発現を誘導する、請求項9記載の使用。
  11.  請求項3記載の発現ベクター又は請求項4記載のエリスリトール誘導性遺伝子発現カセットの、目的物質又はその合成に関わる酵素をコードする遺伝子の発現のための使用。
  12.  請求項5又は6記載の形質転換トリコデルマ属菌細胞の目的物質の製造のための使用。
PCT/JP2022/040804 2021-11-01 2022-10-31 エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法 WO2023074901A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178778 2021-11-01
JP2021178778 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023074901A1 true WO2023074901A1 (ja) 2023-05-04

Family

ID=86159532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040804 WO2023074901A1 (ja) 2021-11-01 2022-10-31 エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法

Country Status (2)

Country Link
JP (1) JP2023067862A (ja)
WO (1) WO2023074901A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070609A (zh) * 2017-12-27 2018-05-25 福建师范大学 利用里氏木霉作为宿主表达重组蛋白的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070609A (zh) * 2017-12-27 2018-05-25 福建师范大学 利用里氏木霉作为宿主表达重组蛋白的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide NCBI; 30 March 2017 (2017-03-30), ANONYMOUS : "Trichoderma reesei QM6a chromosome II, complete sequence", XP093060457, Database accession no. CP016233.1 *
MARION TRASSAERT, VANDERMIES MARIE, CARLY FRÉDERIC, DENIES OLIVIA, THOMAS STÉPHANE, FICKERS PATRICK, NICAUD JEAN-MARC: "New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica", MICROBIAL CELL FACTORIES, vol. 16, no. 1, pages 141, XP055414468, DOI: 10.1186/s12934-017-0755-0 *
SANGARI FELIX J., AGUERO JESUS, GARCIA-LOBO JUAN M. : "The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus", MICROBIOLOGY, vol. 146, 1 January 2000 (2000-01-01), pages 487 - 495, XP093060463 *

Also Published As

Publication number Publication date
JP2023067862A (ja) 2023-05-16

Similar Documents

Publication Publication Date Title
JP6814141B2 (ja) 真菌ゲノム改変システムおよび使用方法
JP6937740B2 (ja) ゲノム編集システムおよび使用方法
JP6725513B2 (ja) ヘルパー株媒介型真菌ゲノム改変用の組成物および方法
JP7285780B2 (ja) 誘導基質の非存在下における糸状菌細胞内でのタンパク質の産生
JP7376505B2 (ja) 粘性が低下した表現型を含む糸状菌株
AU2005293516B2 (en) Homologous amdS genes as selectable marker
EP4092128A1 (en) Factor regulating protein expression efficiency of trichoderma reesei, and regulation method and use thereof
EP3384002A1 (en) Method of producing proteins in filamentous fungi with decreased clr2 activity
Zhang et al. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans
EP3384003A1 (en) Method of producing proteins in filamentous fungi with decreased clri activity
JP2019122386A (ja) 選択的オートファジー経路の不活性化成分を含む糸状真菌細胞及びその使用方法
WO2021100631A1 (ja) 変異糸状菌、及びそれを用いたタンパク質の製造方法
JP2023523925A (ja) 糸状菌細胞におけるタンパク質産生の増強のための組成物及び方法
WO2023074901A1 (ja) エリスリトール誘導性プロモーター、及びこれを用いた目的物質の製造方法
WO2024004983A1 (ja) エリスリトール資化能欠損変異トリコデルマ属菌、及びこれを用いた目的物質の製造方法
CN112105740A (zh) 真菌宿主中的长链非编码rna表达
WO2024102556A1 (en) Filamentous fungal strains comprising enhanced protein productivity phenotypes and methods thereof
JP2013051893A (ja) 新規プロモーター及びその利用
JP2021532775A (ja) タンパク質生産性が強化された表現型を含む突然変異及び遺伝子改変糸状菌株並びにそれらの方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887226

Country of ref document: EP

Kind code of ref document: A1