WO2023074700A1 - 作業機 - Google Patents

作業機 Download PDF

Info

Publication number
WO2023074700A1
WO2023074700A1 PCT/JP2022/039772 JP2022039772W WO2023074700A1 WO 2023074700 A1 WO2023074700 A1 WO 2023074700A1 JP 2022039772 W JP2022039772 W JP 2022039772W WO 2023074700 A1 WO2023074700 A1 WO 2023074700A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
boom
state
flag
pin
Prior art date
Application number
PCT/JP2022/039772
Other languages
English (en)
French (fr)
Inventor
真人 白井
正英 頭師
司 藤本
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022098410A external-priority patent/JP2023067725A/ja
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Publication of WO2023074700A1 publication Critical patent/WO2023074700A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • B66C23/70Jibs constructed of sections adapted to be assembled to form jibs or various lengths
    • B66C23/701Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic
    • B66C23/705Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic telescoped by hydraulic jacks

Definitions

  • the present invention relates to a working machine equipped with a telescopic boom.
  • a mobile crane equipped with a telescoping boom having a plurality of booms and a hydraulic actuator for extending the telescoping boom is disclosed (see Patent Document 1).
  • Adjacent booms are connected by boom connecting pins.
  • a boom that has been disconnected by the boom connecting pin (hereinafter referred to as a movable boom) becomes movable with respect to other booms.
  • the actuator has a rod member and a cylinder member.
  • the cylinder member is releasably connected to the movable boom by a cylinder connecting pin.
  • the movable boom moves together with the cylinder member. Then the telescopic boom telescopes.
  • An object of the present invention is to provide a work machine that can detect an abnormality in a device that detects the position of a connecting pin.
  • One aspect of the working machine includes: a plurality of booms telescoping by telescopic cylinders; a first pin capable of transitioning between an engaged state in which the boom and the telescopic cylinder are connected and an extracted state in which the connection is released; a second pin capable of transitioning between an engaged state in which adjacent booms are connected and an extracted state in which the connection is released; a main detection device and a sub detection device capable of detecting a combination of states of the first pin and the second pin; a control unit that controls the expansion and contraction of the boom based on the detection result of the main detection device, During the telescoping operation of the boom, the control unit ON/OFF of the first flag indicating whether or not the main detection device has detected the combination of the states of the first pin and the second pin, and the sub detection device detects the combination of the states of the first pin and the second pin Control ON/OFF of the second flag indicating whether or not the Based on the first flag and the second flag, it is detected that an abnormality has occurred in
  • FIG. 1 is a schematic diagram of a mobile crane according to an embodiment.
  • FIG. 2A is a schematic diagram for explaining the structure and telescoping operation of a telescoping boom.
  • FIG. 2B is a schematic diagram for explaining the structure and telescoping operation of the telescoping boom.
  • FIG. 2C is a schematic diagram for explaining the structure and telescoping operation of the telescoping boom.
  • FIG. 2D is a schematic diagram for explaining the structure and telescoping operation of the telescoping boom.
  • FIG. 2E is a schematic diagram for explaining the structure and telescoping operation of the telescoping boom.
  • FIG. 3 is a side view of the pin movement module;
  • FIG. 4 is a view of the pin movement module as seen from arrow Aa in FIG. FIG.
  • FIG. 5 is a view of the pin movement module as seen from arrow Ab in FIG.
  • FIG. 6 is a view of the detection device as viewed from arrow Aa in FIG.
  • FIG. 7 is a cross-sectional view taken along line X 1 -X 1 of FIG. 6 for explaining the first detection device.
  • FIG. 8 is a cross-sectional view taken along line X 2 -X 2 of FIG. 6 for explaining the first detection device.
  • FIG. 9 shows the pin translation module with the boom linkage in an extended state and the cylinder linkage in an extended state.
  • FIG. 10A is a schematic diagram for explaining the operation of the cylinder coupling mechanism.
  • FIG. 10B is a schematic diagram for explaining the operation of the cylinder coupling mechanism.
  • FIG. 10A is a schematic diagram for explaining the operation of the cylinder coupling mechanism.
  • FIG. 10C is a schematic diagram for explaining the operation of the cylinder coupling mechanism.
  • FIG. 11A is a schematic diagram for explaining the operation of the boom coupling mechanism.
  • FIG. 11B is a schematic diagram for explaining the operation of the boom connecting mechanism.
  • FIG. 11C is a schematic diagram for explaining the operation of the boom coupling mechanism.
  • FIG. 12 is a timing chart for explaining the operation of the pin movement module.
  • FIG. 13 is a table for explaining the detection operation of the position information detection device.
  • FIG. 14 is a flow chart showing an example of the process of abnormality detection control.
  • FIG. 15 is a diagram showing the relationship between the state of the boom connecting pin and the cylinder connecting pin and the check flag.
  • Mobile cranes are, for example, rough terrain cranes, all-terrain cranes, truck cranes, or laden truck cranes.
  • the work machine is not limited to a mobile crane, and may be various work machines having a telescopic boom (for example, an aerial work vehicle).
  • the mobile crane 1 has a telescopic boom 14 and an actuator 2.
  • the telescopic boom 14 has a plurality of telescopically combined booms. Adjacent booms are connected by boom connecting pins (boom connecting pins 144a and 144b).
  • the actuator 2 moves the boom in the telescopic direction when telescopic boom 14 is extended and retracted. At this time, the actuator 2 is connected to the boom to be moved via the cylinder connection pins 454A and 454B, and disconnects the boom to be moved and the boom adjacent to the boom to be moved.
  • the cylinder connecting pin and the boom connecting pin are moved by the power of the electric motor 41. Positional information of the cylinder connecting pin and the boom connecting pin is required to control the telescoping operation of the telescopic boom.
  • the position information detection device 5 for detecting the position information of the cylinder connecting pin and the boom connecting pin is provided.
  • the position information detection device 5 has two systems of detection devices (a first detection device 51 and a second detection device 52, which will be described later).
  • Such a position information detection device 5 is configured to be able to detect a combination of states of the cylinder connecting pin and the boom connecting pin.
  • the mobile crane 1 of this embodiment has a function of detecting an abnormality in the position information detection device 5 .
  • the mobile crane 1 of this embodiment has a function of identifying which of the first detection device 51 and the second detection device 52 that constitute the position information detection device 5 has an abnormality.
  • the mobile crane 1 according to this embodiment will be specifically described below.
  • the mobile crane 1 has a traveling body 10, a swivel base 12, a telescopic boom 14, an actuator 2, a wire rope 16, and a hook 17.
  • the swivel base 12 is rotatably provided above the traveling body 10 .
  • the telescopic boom 14 has a base end fixed to the swivel base 12 and is capable of raising and lowering and extending and contracting.
  • the actuator 2 extends and retracts the telescopic boom 14 .
  • the wire rope 16 is supported by the telescopic boom 14 and hangs down from the tip of the telescopic boom 14 .
  • a hook 17 is provided at the tip of the wire rope 16 .
  • the telescopic boom 14 has a plurality of telescopically combined booms, as shown in FIGS. 1 and 2A to 2E.
  • the plurality of booms are a tip boom 141, an intermediate boom 142, and a base end boom 143 in order from the inside.
  • the distal boom 141, the intermediate boom 142, and the proximal boom 143 are also referred to as boom elements.
  • the telescopic boom 14 extends in order from the boom arranged inside, and transitions from the contracted state shown in FIG. 2A to the extended state shown in FIG. A plurality of intermediate booms may be provided.
  • the tip boom 141 is tubular and has an internal space capable of accommodating the actuator 2 .
  • the tip boom 141 has a pair of cylinder pin receiving portions 141a and a pair of boom pin receiving portions 141b at its base end.
  • a pair of cylinder pin receiving portions 141a are provided coaxially with each other at the base end portion of the tip boom 141 .
  • the pair of cylinder pin receiving portions 141a can be engaged with and disengaged from a pair of cylinder connecting pins 454A and 454B provided on the cylinder member 32 of the telescopic cylinder 3, respectively.
  • Each of the cylinder connecting pins 454A and 454B is biased outward (in the direction from the proximal end to the distal end of the cylinder connecting pins 454A and 454B) by a first biasing mechanism 455, which will be described later.
  • the cylinder connecting pins 454A and 454B move inward (in the direction from the distal ends to the proximal ends of the cylinder connecting pins 454A and 454B) based on the operation of the cylinder connecting mechanism 45, which will be described later.
  • the tip boom 141 can move in the telescopic direction together with the cylinder member 32.
  • the pair of boom pin receiving portions 141b are coaxially provided on the base end side of the cylinder pin receiving portion 141a.
  • a pair of boom pin receiving portions 141b respectively support a pair of boom connecting pins 144a.
  • Each of the pair of boom connecting pins 144a is biased outward (in the direction from the proximal end to the distal end of the boom connecting pin 144a) by a second biasing mechanism 463, which will be described later.
  • a pair of boom connecting pins 144a connect the tip boom 141 and the intermediate boom 142, respectively.
  • the pair of boom connecting pins 144a moves inward (in the direction from the distal end to the proximal end of the boom connecting pin 144a) based on the operation of the boom connecting mechanism 46, which will be described later.
  • the boom pin receiving portion 141b of the tip boom 141 and the first boom pin receiving portion 142b or the second boom pin receiving portion 142c of the intermediate boom 142 are connected.
  • the boom connecting pin 144a is inserted so as to span. That is, each of the pair of boom connecting pins 144a can be engaged with and disengaged from the first boom pin receiving portion 142b or the second boom pin receiving portion 142c of the intermediate boom 142, respectively.
  • the tip boom 141 When the tip boom 141 and the intermediate boom 142 are connected, the tip boom 141 is prohibited from moving relative to the intermediate boom 142 . On the other hand, the tip boom 141 is movable with respect to the intermediate boom 142 when the tip boom 141 and the intermediate boom 142 are not connected.
  • the intermediate boom 142 is tubular and has an internal space capable of accommodating the tip boom 141 .
  • the intermediate boom 142 has a pair of cylinder pin receiving portions 142a, a pair of first boom pin receiving portions 142b, and a pair of third boom pin receiving portions 142d at its base end, and a pair of second boom pin receiving portions at its tip end. It has a portion 142c.
  • the pair of cylinder pin receiving portions 142a and the pair of first boom pin receiving portions 142b are substantially the same as the pair of cylinder pin receiving portions 141a and the pair of boom pin receiving portions 141b of the tip boom 141, respectively.
  • the pair of third boom pin receiving portions 142d are coaxially provided on the base end side of the pair of first boom pin receiving portions 142b.
  • a pair of boom connecting pins 144b are inserted through the pair of third boom pin receiving portions 142d, respectively.
  • a pair of boom connecting pins 144 b connect the intermediate boom 142 and the proximal boom 143 .
  • a pair of second boom pin receiving portions 142c are provided coaxially with each other at the distal end portion of the intermediate boom 142.
  • a pair of boom connecting pins 144a are inserted through the pair of second boom pin receiving portions 142c, respectively.
  • the actuator 2 is an actuator that extends and retracts the telescopic boom 14 .
  • the actuator 2 has a telescopic cylinder 3 and a pin moving mechanism 4, as shown in FIGS. 2 to 11C.
  • the actuator 2 is arranged in the internal space of the tip boom 141 when the telescopic boom 14 is in the contracted state (the state shown in FIG. 2).
  • the telescopic cylinder 3 has a rod member 31 and a cylinder member 32 .
  • the telescopic cylinder 3 moves a boom connected to the cylinder member 32 via cylinder connecting pins 454A and 454B, which will be described later.
  • the pin moving mechanism 4 has an electric motor 41 , a brake mechanism 42 , a transmission mechanism 43 , a cylinder coupling mechanism 45 , a boom coupling mechanism 46 , and a position information detection device 5 supported by the trunnions 40 .
  • each member constituting the actuator 2 will be described below based on the state in which each member is incorporated in the actuator 2 .
  • an orthogonal coordinate system (X, Y, Z) is used.
  • the X direction coincides with the telescopic direction of the telescopic boom 14 mounted on the mobile crane 1 .
  • the X direction + side is the stretch direction in the stretching direction.
  • the X-direction-side is the contraction direction in the stretch direction.
  • the Z direction coincides with the vertical direction of the mobile crane 1 when the telescopic boom 14 has a hoisting angle of 0 degrees, for example.
  • the Y direction corresponds to the vehicle width direction (horizontal direction) of the mobile crane 1 when the telescopic boom 14 faces forward.
  • the width direction or the left-right direction means the Y direction in the orthogonal coordinate system (X, Y, Z).
  • the left side is the + side in the Y direction.
  • the right side is the negative side in the Y direction.
  • the upper side is the positive side in the Z direction.
  • the lower side is the negative side in the Z direction.
  • the trunnion 40 will be described with reference to FIGS. 3 to 5.
  • FIG. The trunnion 40 has support holes 401 .
  • the rod member 31 of the telescopic cylinder 3 is inserted through the support hole 401 in the X direction.
  • the trunnion 40 is fixed to the base end portion (the end portion on the negative side in the X direction) of the cylinder member 32 of the telescopic cylinder 3 . Therefore, the trunnion 40 moves together with the cylinder member 32 .
  • the trunnion 40 supports a cylinder coupling mechanism 45 and a boom coupling mechanism 46.
  • the trunnion 40 also supports an electric motor 41, a brake mechanism 42, and a transmission mechanism 43, which will be described later.
  • the trunnion 40 unitizes each of these elements. Such a configuration contributes to miniaturization of the pin moving mechanism 4, improvement of productivity, and improvement of reliability of the system.
  • the trunnion 40 holds the right cylinder connecting pin 454A by a right pin support (not shown) provided on the right side wall.
  • the right cylinder connecting pin 454A is movable in the left-right direction.
  • the trunnion 40 holds the left cylinder connecting pin 454B by a left pin support (not shown) provided on the left side wall.
  • the left cylinder connecting pin 454B is movable in the left-right direction.
  • the electric motor 41 is fixed to a vertical transmission mechanism 432 via a reduction gear 431 . Such an electric motor 41 is covered with a waterproof and dustproof cover 410 .
  • the electric motor 41 is provided above the trunnion 40, as shown in FIG.
  • a reduction gear 431 is connected to the output shaft of the electric motor 41 (see FIGS. 10A to 10C).
  • the electric motor 41 is connected to, for example, a power supply (not shown) provided on the swivel base 12 via a power supply cable. Also, the electric motor 41 is connected to, for example, a control section (not shown) provided on the swivel base 12 via a cable for transmitting control signals.
  • the brake mechanism 42 applies braking force to the electric motor 41 .
  • the brake mechanism 42 prevents rotation of the output shaft of the electric motor 41 when the electric motor 41 is stopped. As a result, the state of the pin moving mechanism 4 is maintained while the electric motor 41 is stopped.
  • the brake mechanism 42 operates in the contracted state of the cylinder connection mechanism 45 or the contracted state of the boom connection mechanism 46 to maintain the states of the cylinder connection mechanism 45 and the boom connection mechanism 46 .
  • the state of the brake mechanism 42 is switched by a control section 530 (see FIGS. 10A to 11C). Also, the state of the brake mechanism 42 may be switched based on the operator's operation.
  • the transmission mechanism 43 transmits the power of the electric motor 41 to the cylinder connection mechanism 45 and the boom connection mechanism 46.
  • the transmission mechanism 43 has a reduction gear 431 and a vertical transmission mechanism 432 .
  • the reduction gear 431 reduces the speed of rotation of the electric motor 41 and transmits it to the vertical transmission mechanism 432 .
  • the vertical transmission mechanism 432 transmits the rotation of the speed reducer 431 to a switch gear 450 (FIGS. 10A to 10C), which will be described later.
  • the electric motor 41 is provided above the switch gear 450 . Therefore, the vertical transmission mechanism 432 is configured to transmit the rotation of the electric motor 41 to the switch gear 450 provided below the electric motor 41 .
  • the vertical transmission mechanism 432 has an upper transmission shaft 432a, a lower transmission shaft 432b, and a transmission gear (not shown).
  • the upper transmission shaft 432 a is provided coaxially with the output shaft of the electric motor 41 .
  • the upper transmission shaft 432 a is connected to the reduction gear 431 .
  • the lower transmission shaft 432b corresponds to an example of a rotating member that rotates based on the power of the motor, and is provided parallel to the upper transmission shaft 432a and below the upper transmission shaft 432a.
  • the lower transmission shaft 432b is arranged coaxially with a switch gear 450, which will be described later, and is connected to the switch gear 450.
  • the rotating member that rotates based on the power of the motor is not limited to the lower transmission shaft 432b.
  • the rotating member that rotates based on the power of the motor may be any member that rotates based on the power of the electric motor 41 .
  • the transmission gear has an upper gear (not shown) provided on the upper transmission shaft 432a and a lower gear (not shown) provided on the lower transmission shaft 432b.
  • the upper and lower gears are external gears and mesh with each other. Rotation of the speed reducer 431 is transmitted to the switch gear 450 via the vertical transmission mechanism 432 .
  • the cylinder coupling mechanism 45 operates based on the power of the electric motor 41, and transitions between an extended state (see FIGS. 9 and 10A) and a contracted state (see FIG. 10C).
  • the movement of the cylinder connection mechanism 45 from the extended state to the contracted state is the withdrawal operation of the cylinder connection mechanism 45 .
  • the movement of the cylinder linking mechanism 45 from the contracted state to the extended state is the closing motion of the cylinder linking mechanism 45 .
  • the cylinder connecting mechanism 45 includes a switch gear 450, a first rack bar 451, a first gear mechanism 452, a second gear mechanism 453, a pair of cylinder connecting pins 454A and 454B, and a first biasing mechanism 455. have.
  • the switch gear 450 has teeth on part of its outer peripheral surface.
  • the switch gear 450 is externally fitted and fixed to the lower transmission shaft 432b of the transmission mechanism 43, and rotates together with the lower transmission shaft 432b.
  • the switch gear 450 selectively transmits the power of the electric motor 41 to either one of the cylinder coupling mechanism 45 and the boom coupling mechanism 46 .
  • the rotational direction of the switch gear 450 (the direction indicated by the arrow A1 in FIG. 10A) when the cylinder coupling mechanism 45 transitions from the extended state to the contracted state is the first direction in the rotational direction of the switch gear 450. is the direction.
  • the rotational direction of the switch gear 450 (the direction indicated by the arrow A2 in FIG. 10A) when the cylinder coupling mechanism 45 transitions from the contracted state to the extended state is the second direction of the rotational direction of the switch gear 450. .
  • the first rack bar 451 moves in its longitudinal direction (Y direction) according to the rotation of the switch gear 450 .
  • the first rack bar 451 is positioned on the Y direction + side most in the expanded state of the cylinder connecting mechanism 45 .
  • the first rack bar 451 is positioned on the Y direction - side most in the contracted state of the cylinder connecting mechanism 45 .
  • the first rack bar 451 has a first rack tooth portion on its upper surface.
  • the first rack teeth mesh with the teeth of the switchgear 450 only during the state transition described above.
  • the first rack bar 451 has a second rack tooth portion and a third rack tooth portion on the lower surface.
  • the second rack tooth portion meshes with a first gear mechanism 452, which will be described later.
  • the third rack tooth portion meshes with a second gear mechanism 453, which will be described later.
  • the first gear mechanism 452 has a plurality of gears (see FIG. 9) each being an external gear.
  • the first gear mechanism 452 meshes with the second rack tooth portion of the first rack bar 451 .
  • the first gear mechanism 452 rotates according to the movement of the first rack bar 451 .
  • the first gear mechanism 452 meshes with a pin-side rack tooth portion of a right cylinder connecting pin 454A, which will be described later.
  • the second gear mechanism 453 has a plurality of gears (see FIG. 9) each being an external gear.
  • the second gear mechanism 453 meshes with the third rack tooth portion of the first rack bar 451 .
  • the second gear mechanism 453 rotates according to the movement of the first rack bar 451 .
  • the second gear mechanism 453 meshes with a pin-side rack tooth portion of a left cylinder connecting pin 454B, which will be described later.
  • the pair of cylinder connecting pins 454A and 454B have central axes aligned in the horizontal direction and coaxial with each other.
  • Each of the pair of cylinder connecting pins 454A and 454B corresponds to an example of the first pin.
  • the right cylinder connecting pin 454A has pin-side rack teeth on its outer peripheral surface.
  • the pin-side rack tooth portion of the right cylinder connecting pin 454A meshes with the first gear mechanism 452 .
  • the left cylinder connecting pin 454B has pin-side rack teeth on its outer peripheral surface.
  • the pin-side rack tooth portion of the left cylinder connecting pin 454B meshes with the second gear mechanism 453 .
  • the right side cylinder connecting pin 454A having the configuration described above is supported by the right side wall portion of the trunnion 40 . Movement of the right cylinder connecting pin 454 ⁇ /b>A in the axial direction (lateral direction) is guided by the right side wall portion of the trunnion 40 .
  • the left cylinder connecting pin 454B is supported by the left side wall of the trunnion 40. Axial movement of the left cylinder connecting pin 454B is guided by the left side wall.
  • the right cylinder connecting pin 454A moves in its own axial direction as the first gear mechanism 452 rotates. Specifically, the right cylinder connecting pin 454A moves rightward (outward) when the cylinder connecting mechanism 45 transitions from the contracted state (see FIG. 10C) to the extended state (see FIG. 10A). On the other hand, the right cylinder connecting pin 454A moves leftward (inward) when transitioning from the extended state (see FIG. 10A) to the contracted state (see FIG. 10C).
  • the left cylinder connecting pin 454B moves in its own axial direction as the second gear mechanism 453 rotates. Specifically, the left cylinder connecting pin 454B moves to the left when the cylinder connecting mechanism 45 transitions from the contracted state (see FIG. 10C) to the extended state (see FIG. 10A). On the other hand, the left cylinder connecting pin 454B moves to the right during the state transition from the expanded state (see FIG. 10A) to the contracted state (see FIG. 10C).
  • the first biasing mechanism 455 restores the cylinder coupling mechanism 45 to the extended state when the electric motor 41 is de-energized while the cylinder coupling mechanism 45 is in the retracted state.
  • the first biasing mechanism 455 is configured to connect the pair of cylinders when the electric motor 41 is in a non-energized state (stopped state) and the brake mechanism 42 is in an OFF state while the cylinder connecting mechanism 45 is contracted.
  • the pins 454A, 454B are returned to their reference positions.
  • the first biasing mechanism 455 corresponds to an example of a first spring and has a pair of coil springs 455a and 455b (see FIGS. 10A to 10C).
  • the right coil spring 455a always biases the right cylinder connecting pin 454A.
  • the direction in which the right coil spring 455a biases the cylinder connecting pin 454A coincides with the direction (right side) from the proximal end toward the distal end of the cylinder connecting pin 454A.
  • the left coil spring 455b always biases the left cylinder connecting pin 454B.
  • the direction in which the left coil spring 455b biases the left cylinder connecting pin 454B coincides with the direction (left side) from the proximal end to the distal end of the cylinder connecting pin 454B.
  • the configuration of the first biasing mechanism 455 as described above contributes to miniaturization of the pin moving mechanism 4 .
  • the arrangement of the coil springs 455a and 455b is not limited to the arrangement of this embodiment. The operation of the cylinder connecting mechanism 45 will be described later.
  • the boom coupling mechanism 46 transitions between an extended state (see FIG. 11A) and a contracted state (see FIG. 11C) based on the rotation of the electric motor 41 .
  • the movement of the boom linking mechanism 46 from the extended state to the contracted state is the withdrawal motion of the boom linking mechanism 46 .
  • the movement of the boom coupling mechanism 46 from the retracted state to the extended state is the entry motion of the boom coupling mechanism 46 .
  • the boom connecting mechanism 46 can take either an engaged state or a disengaged state with respect to the boom connecting pins (for example, the pair of boom connecting pins 144a).
  • the boom connection mechanism 46 disengages the boom connection pin from the boom by transitioning from the extended state to the contracted state while being engaged with the boom connection pin.
  • the boom connecting pin corresponds to an example of the second pin.
  • the boom connecting mechanism 46 engages the boom connecting pin with the boom by transitioning from the retracted state to the expanded state while being engaged with the boom connecting pin.
  • the boom coupling mechanism 46 has a switch gear 450, a pair of second rack bars 461a and 461b, a synchronizing gear 462, and a second biasing mechanism 463, as shown in FIGS. 9 and 11A-11C.
  • the switch gear 450 is a gear shared with the cylinder coupling mechanism 45 .
  • Each of the pair of second rack bars 461a and 461b is, for example, a shaft member elongated in the left-right direction, and arranged in parallel while being spaced apart in the front-rear direction.
  • Each of the pair of second rack bars 461 a and 461 b is arranged above the first rack bar 451 of the cylinder coupling mechanism 45 .
  • Each of the pair of second rack bars 461a and 461b has synchronizing rack teeth on the facing surfaces.
  • Each synchronizing rack tooth meshes with a synchronizing gear 462 (see FIGS. 11A-11C).
  • the synchronization gear 462 rotates, the one (front) second rack bar 461a and the other (rear) second rack bar 461b move in opposite directions in the horizontal direction.
  • a pair of second rack bars 461a and 461b respectively have locking claws 461g and 461h (see FIG. 9) at the tip.
  • the locking claws 461g and 461h are engaged with the pin-side receiving portions 144c (see FIG. 9) provided on the boom connecting pins (for example, the boom connecting pins 144a and 144b) when moving the boom connecting pins.
  • One second rack bar 461a has drive rack teeth 461c (see FIG. 9) on the surface facing the switch gear 450. As shown in FIG. The driving rack tooth portion 461c meshes with the tooth portion of the switch gear 450 when the switch gear 450 rotates by a predetermined amount in the second direction (the direction indicated by the arrow A2 in FIG. 9).
  • the second biasing mechanism 463 restores the boom connecting mechanism 46 to the extended state when the electric motor 41 is in a non-energized state and the brake mechanism 42 is in an OFF state while the boom connecting mechanism 46 is in the retracted state.
  • the second biasing mechanism 463 biases the pair of second rack bars 461a and 461b away from each other.
  • the second biasing mechanism 463 is composed of a pair of coil springs 463a and 463b (see FIGS. 11A to 11C).
  • a pair of coil springs 463a and 463b respectively urge the base ends of the pair of second rack bars 461a and 461b toward the distal end side.
  • the operation of the cylinder connection mechanism 45 includes the operation when the cylinder connection mechanism 45 transitions from the extended state to the contracted state based on the power of the electric motor 41, and the contracted state based on the biasing force of the first biasing mechanism 455. This is the operation when transitioning to the extended state.
  • FIG. 10A is a schematic diagram showing the expanded state of the cylinder connecting mechanism 45 and the engagement state between the pair of cylinder connecting pins 454A and 454B and the pair of cylinder pin receiving portions 141a of the tip boom 141.
  • FIG. 10B is a schematic diagram showing a state in which the cylinder coupling mechanism 45 is in the process of transitioning from the expanded state to the contracted state.
  • FIG. 10C is a schematic diagram showing a contracted state of the cylinder connecting mechanism 45 and a detached state between the pair of cylinder connecting pins 454A and 454B and the pair of cylinder pin receiving portions 141a of the tip boom 141. As shown in FIG.
  • the expanded state of the cylinder connecting mechanism 45 shown in FIG. 10A corresponds to the state of the cylinder connecting mechanism 45 in FIGS. 2A to 2D.
  • the state of the cylinder coupling mechanism 45 shown in FIG. 10B corresponds to a state in the middle of transition from the state of the cylinder coupling mechanism 45 shown in FIG. 2D to the state of the cylinder coupling mechanism 45 shown in FIG. 2E.
  • the contracted state of the cylinder coupling mechanism 45 shown in FIG. 10C corresponds to the state of the cylinder coupling mechanism 45 shown in FIG. 2E.
  • the control unit 530 drives the electric motor 41 when the cylinder coupling mechanism 45 transitions from the expanded state to the contracted state.
  • the power of the electric motor 41 is transmitted to the pair of cylinder connecting pins 454A and 454B through the following first transmission path and second transmission path.
  • the control unit 530 may have a configuration in which a CPU, a ROM, a RAM, an HDD, and the like are connected via a bus, or may be configured from a one-chip LSI or the like.
  • the first transmission path is a path through which the power of the electric motor 41 is transmitted in the following order.
  • the second transmission path is a path through which the power of the electric motor 41 is transmitted in the following order.
  • the switch gear 450 rotates in the first direction (the direction indicated by the arrow A1 in FIG. 10A) based on the power of the electric motor 41 .
  • the lower transmission shaft 432b of the vertical transmission mechanism 432 rotates together with the switch gear 450 in the first direction.
  • the switch gear 450 rotates in the first direction
  • the first rack bar 451 moves rightward in accordance with the rotation.
  • the right cylinder connecting pin 454A moves leftward via the first gear mechanism 452 .
  • the left cylinder connecting pin 454B moves rightward via the second gear mechanism 453 .
  • the pair of cylinder connecting pins 454A and 454B are disengaged from the pair of cylinder pin receiving portions 141a of the tip boom 141 and moved to a predetermined position (for example, the position shown in FIG. 10C). detect that In other words, the position information detection device 5 detects a combination of states of the pair of cylinder connecting pins 454A and 454B and the pair of boom connecting pins (for example, the boom connecting pin 144a). Then, based on the detection result, the control unit 530 (see FIGS. 10A to 11C) turns the brake mechanism 42 ON and the electric motor 41 OFF to stop the operation of the cylinder coupling mechanism 45 .
  • transition from the retracted state to the extended state of the cylinder coupling mechanism 45 is automatically performed based on the biasing force of the first biasing mechanism 455 when the brake mechanism 42 is turned off while the electric motor 41 is not energized. done on purpose.
  • FIG. 11A is a schematic diagram showing the extended state of the boom connecting mechanism 46 and the state of engagement between the pair of boom connecting pins 144a and the pair of first boom pin receiving portions 142b of the intermediate boom 142.
  • FIG. 11B is a schematic diagram showing a state in which the boom coupling mechanism 46 is in the middle of the state transition from the extended state to the contracted state.
  • FIG. 11C is a schematic diagram showing the collapsed state of the boom connecting mechanism 46 and the detached state between the pair of boom connecting pins 144a and the pair of first boom pin receiving portions 142b of the intermediate boom 142.
  • the extended state of the boom coupling mechanism 46 shown in FIG. 11A corresponds to the state of the boom coupling mechanism 46 in FIG. 2A.
  • the state of the boom coupling mechanism 46 shown in FIG. 11B corresponds to a state in the middle of transition from the state of the boom coupling mechanism 46 shown in FIG. 2A to the state of the boom coupling mechanism 46 shown in FIG. 2B.
  • the retracted state of boom coupling mechanism 46 shown in FIG. 11C corresponds to the state of boom coupling mechanism 46 shown in FIG. 2B.
  • the boom connecting mechanism 46 transitions between the extended state and the retracted state based on the power of the electric motor 41.
  • the position of switch gear 450 shown in FIG. 11A is defined as the reference position of switch gear 450 .
  • the control unit 530 drives the electric motor 41 in the direction opposite to the direction in which the cylinder coupling mechanism 45 is operated.
  • the power of the electric motor 41 is transmitted through the following routes.
  • the switch gear 450 rotates in the second direction (the direction indicated by the arrow A2 in FIG. 11A) in the rotational direction of the switch gear 450.
  • the lower transmission shaft 432b of the vertical transmission mechanism 432 rotates together with the switch gear 450 in the second direction.
  • one second rack bar 461a moves to the right in accordance with the rotation.
  • the synchronization gear 462 rotates according to the movement of one second rack bar 461a to the right. Then, according to the rotation of the synchronization gear 462, the other second rack bar 461b moves to the left.
  • the pair of boom connecting pins 144a engages the pair of first boom pins of the intermediate boom 142. Detach from the receiving portion 142b (see FIG. 11C).
  • the position information detection device 5 determines that the pair of boom connecting pins 144a has been separated from the pair of first boom pin receiving portions 142b of the intermediate boom 142 and has moved to a predetermined position (for example, the position shown in FIG. 11C). detect that Based on this detection result, the controller 530 turns the brake mechanism 42 ON and the electric motor 41 OFF to stop the operation of the boom coupling mechanism 46 .
  • the engagement operation of the boom coupling mechanism 46 is automatically performed based on the biasing force of the second biasing mechanism 463 when the brake mechanism 42 is turned off while the electric motor 41 is not energized. During this state transition, the pair of boom connecting pins 144a move away from each other.
  • the pair of boom connecting pins 144a engage with the pair of first boom pin receiving portions 142b of the intermediate boom 142, and move to a predetermined position (for example, the position shown in FIG. 11A). detect that The detection result is used for controlling the next operation of the actuator 2 .
  • the position information detection device 5 detects information regarding the positions of the pair of cylinder connecting pins 454A, 454B and the pair of boom connecting pins 144a, 144b. In other words, the position information detection device 5 detects a combination of states of the pair of cylinder connecting pins 454A and 454B and the pair of boom connecting pins (for example, the boom connecting pin 144a).
  • the position information detection device 5 has a support 50 , a first detection device 51 , a second detection device 52 and a cover member 54 .
  • the first detection device 51 and the second detection device 52 are supported on the trunnion 40 by the support 50.
  • the first detection device 51 and the second detection device 52 detect information about the positions of the pair of cylinder connection pins 454A and 454B and the pair of boom connection pins 144a and 144b by different detection methods.
  • the first detection device 51 and the second detection device 52 detects information regarding the positions of the pair of cylinder connecting pins 454A, 454B and the pair of boom connecting pins 144a, 144b. Then, for example, when the control unit 530 (see FIGS. 10A to 11C) detects a failure (abnormality) in one of the detection devices, the other detection device out of the first detection device 51 and the second detection device 52 detects information regarding the position of the pair of cylinder connecting pins 454A, 454B and the pair of boom connecting pins 144a, 144b.
  • the one detection device is the second detection device 52 and the other detection device is the first detection device 51 .
  • the one detection device may be the first detection device 51 and the other detection device may be the second detection device 52 .
  • the first detection device 51 and the second detection device 52 may detect information regarding the positions of the pair of cylinder connecting pins 454A and 454B and the pair of boom connecting pins 144a and 144b.
  • the first detection device 51 and the second detection device 52 normally detect a combination of states of the pair of cylinder connecting pins 454A, 454B and the pair of boom connecting pins 144a, 144b. Then, the control unit 530 controls the telescopic operation of the telescopic boom 14 based on the detection result of the second detection device 52 .
  • each of the first detection device 51 and the second detection device 52 alone cannot detect its own failure (abnormality). Therefore, when there is a contradiction (for example, a deviation of a predetermined value or more) between the detection value of the first detection device 51 and the detection value of the second detection device 52, the control unit 530 controls the first detection device 51 and the second detection device 52, it may be determined that a failure (abnormality) has occurred in at least one of the detection devices.
  • control unit 530 detects information about the positions of the pair of cylinder connecting pins 454A and 454B and the pair of boom connecting pins 144a and 144b based on the detection value of the second detection device 52. Failure determination of the detection device may be performed based on the detection values of the first detection device 51 and the second detection device 52 . The method of failure determination (abnormality detection control) will be described later.
  • the first detection device 51 may or may not detect information regarding the positions of the pair of cylinder connecting pins 454A, 454B and the pair of boom connecting pins 144a, 144b. Further, when the control unit 530 can specify that a failure (abnormality) has occurred in the second detection device 52 by the failure determination, the control unit 530 detects the pair of cylinder connecting pins 454A and 454A based on the detection value of the first detection device 51. Information regarding the position of 454B and the pair of boom connecting pins 144a, 144b may be detected.
  • the support 50 is a member that supports the first detection device 51 and the second detection device 52 on the trunnion 40 .
  • a support 50 is fixed to the trunnion 40 .
  • the support 50 is fixed to the rear side surface of the trunnion 40 (the side surface on the negative side in the X direction).
  • the support 50 has a right plate 501, a left plate 502, a rear plate 503, a right fixed plate 504, and a left fixed plate 505.
  • the right side plate 501 has a plate shape parallel to the XZ plane.
  • the left side plate 502 has a plate shape parallel to the XZ plane.
  • the right side plate 501 and the left side plate 502 are separated from each other in the left-right direction (Y direction) and face each other.
  • the right side plate 501 and the left side plate 502 each correspond to an example of the first plate portion.
  • the rear side plate 503 corresponds to an example of the second plate portion and has a plate shape parallel to the YZ plane.
  • the rear plate 503 connects the rear end of the right side plate 501 (X direction ⁇ side end) and the rear end of the left side plate 502 (X direction ⁇ side end) in the left-right direction. That is, the support 50 is a U-shaped plate-shaped member that is open vertically and open forward.
  • a space surrounded by the right side plate 501 , the left side plate 502 and the rear side plate 503 of the support 50 is a storage space 506 .
  • the accommodation space 506 may be regarded as the space defined by the support 50 .
  • the right fixing plate 504 has a plate shape parallel to the YZ plane.
  • the right fixed plate 504 is fixed to the front end of the right side plate 501 .
  • the left fixing plate 505 has a plate shape parallel to the YZ plane.
  • the left fixed plate 505 is fixed to the front end of the left side plate 502 .
  • the front end of the support 50 (the front ends of the right side plate and the left side plate) is fixed to the rear side surface of the trunnion 40 via the right fixing plate 504 and the left fixing plate 505 .
  • the right fixing plate 504 and the left fixing plate 505 are positioned with respect to the trunnion 40 by positioning pins 507 inserted through the fixed portion 400 on the trunnion side.
  • Such a configuration contributes to an improvement in assembly work efficiency when the support 50 is assembled to the trunnion 40 .
  • a lower transmission shaft 432 b is arranged between the right side plate 501 and the left side plate 502 of the support 50 . That is, the lower transmission shaft 432b is arranged in the accommodation space 506. As shown in FIG. The right side plate 501 and the left side plate 502 are parallel to the lower transmission shaft 432b.
  • the first detection device 51 has a first detectable body 510 , a second detectable body 511 , a first sensor 512 , a second sensor 513 and a third sensor 514 .
  • the first detection device 51 corresponds to an example of a sub-detection device. Based on the combination of the outputs (detection values) of the first sensor 512, the second sensor 513, and the third sensor 514, the first detection device 51 detects the pair of cylinder connection pins 454A and 454B and the pair of boom connection pins 144a, 144b location information is detected.
  • the first detected body 510 is fixed to the lower transmission shaft 432b with the lower transmission shaft 432b inserted through the center hole. That is, the first detectable body 510 is arranged in the housing space 506 . The first detected body 510 rotates together with the lower transmission shaft 432b.
  • the first detected body 510 has a first cylindrical surface 510a and a first flat surface 510b on its outer peripheral surface.
  • the first cylindrical surface 510a corresponds to an example of the first detected surface of the first detected body.
  • the first cylindrical surface 510a is a cylindrical surface having a predetermined outer diameter and provided on a portion (also referred to as a first portion) of the outer peripheral surface of the first detected body 510.
  • the first flat surface 510b corresponds to an example of the second detection surface of the first detection object.
  • the first flat surface 510 b is a flat surface provided on the remaining portion (also referred to as the second portion) of the outer peripheral surface of the first detected body 510 .
  • the shapes of the first detected surface of the first detected body and the second detected surface of the first detected body are not limited to the shapes of the present embodiment.
  • the shapes of the first detected surface of the first detected object and the second detected surface of the first detected object need only be mutually distinguishable shapes (that is, different shapes).
  • the first detected body 510 has the first cylindrical surface 510a arranged in the lower half and the first flat surface 510b arranged in the upper half in the neutral state.
  • the neutral state of the first detectable body 510 corresponds to the retracted state of the pair of cylinder connecting pins 454A, 454B and the boom connecting pin 144a (see FIGS. 2A-2E).
  • the second detected body 511 is fixed to the lower transmission shaft 432b with the lower transmission shaft 432b inserted through the center hole. That is, the second detectable body 511 is arranged in the housing space 506 . The second detected body 511 rotates together with the lower transmission shaft 432b. Also, the second detectable body 511 is arranged on the front side of the first detectable body 510 . The second detected body 511 has a second cylindrical surface 511a and a second flat surface 511b on its outer peripheral surface.
  • the second cylindrical surface 511a corresponds to an example of the first detected surface of the second detected body.
  • the second cylindrical surface 511a is a cylindrical surface having a predetermined outer diameter provided on a portion (also referred to as a first portion) of the outer peripheral surface of the second detected body 511 .
  • the second flat surface 511b corresponds to an example of the second detected surface of the second detected body.
  • the second flat surface 511 b is a flat surface provided on the remaining portion (also referred to as the second portion) of the outer peripheral surface of the second detected body 511 .
  • the shapes of the first detected surface of the second detected body and the second detected surface of the second detected body are not limited to the shapes of the present embodiment.
  • the shapes of the first detected surface of the second detected body and the second detected surface of the second detected body may be mutually distinguishable shapes (that is, different shapes).
  • the second detected body 511 in the neutral state, has the second cylindrical surface 511a arranged on the left half and the second flat surface 511b arranged on the right half.
  • the neutral state of the second detectable body 511 corresponds to the retracted state of the pair of cylinder connecting pins 454A, 454B and the boom connecting pin 144a (see FIGS. 2A to 2E).
  • the neutral state of the second detected body 511 corresponds to the extended state of the cylinder coupling mechanism 45 and the extended state of the boom coupling mechanism 46, as shown in FIGS. 10A and 11A.
  • the first sensor 512, the second sensor 513, and the third sensor 514 each correspond to an example of the first detection unit and are non-contact proximity sensors.
  • a first sensor 512 , a second sensor 513 and a third sensor 514 are each supported by the support 50 .
  • the first sensor 512 is supported by the right side plate 501 of the support 50 .
  • the tip of the first sensor 512 faces the outer peripheral surface of the first detected body 510 in the left-right direction.
  • the first sensor 512 outputs an electrical signal corresponding to the distance from the outer peripheral surface of the first detected body 510 .
  • the output of the first sensor 512 is turned ON in a state facing the first cylindrical surface 510a of the first detected body 510 .
  • the output of the first sensor 512 is turned OFF in the state facing the first flat surface 510b of the first detected body 510 .
  • the second sensor 513 is supported by the left side plate 502 of the support 50.
  • the tip of the second sensor 513 faces the outer peripheral surface of the first detected body 510 in the left-right direction.
  • the first sensor 512 and the second sensor 513 face each other in the left-right direction.
  • the second sensor 513 outputs an electrical signal corresponding to the distance from the outer peripheral surface of the first detected body 510 .
  • the output of the second sensor 513 is turned ON while facing the first cylindrical surface 510a of the first detected body 510.
  • the output of the first sensor 512 is turned OFF in the state facing the first flat surface 510b of the first detected body 510 .
  • the third sensor 514 is supported by the right side plate 501 of the support 50.
  • the third sensor 514 is arranged in front of the first sensor 512 on the right side plate 501 of the support 50 .
  • the tip of the third sensor 514 faces the outer peripheral surface of the second detected body 511 in the left-right direction.
  • the third sensor 514 outputs an electrical signal according to the distance from the outer peripheral surface of the second detected body 511 .
  • the third sensor 514 may be supported by the left side plate 502 of the support 50 .
  • the position of the third sensor 514 is not limited to the illustrated case.
  • the output of the third sensor 514 is turned ON while facing the second cylindrical surface 511a of the second detected body 511 .
  • the output of the third sensor 514 is turned OFF in the state facing the second flat surface 511b of the second detected body 511 .
  • the second detection device 52 is a non-contact potentiometer and has a detection target 520 and a sensor 521 .
  • the second detection device 52 corresponds to an example of a main detection device.
  • the object to be detected 520 is a magnet, and is fixed to the lower transmission shaft 432b with the rear end portion of the lower transmission shaft 432b inserted through the center hole. Therefore, the detected body 520 rotates together with the lower transmission shaft 432b. Further, the detected body 520 is arranged behind the first detected body 510 of the first detection device 51 .
  • the sensor 521 corresponds to an example of the second detection section, has a Hall element, and is supported by the rear side plate 503 of the support 50 .
  • the first sensor 512, the second sensor 513, and the third sensor 514 of the first detection device 51, and the sensor 521 of the second detection device 52 are supported by the support 50. ing.
  • the support 50 unitizes the first sensor 512 , the second sensor 513 and the third sensor 514 of the first detection device 51 and the sensor 521 of the second detection device 52 . Therefore, by removing the support 50 from the trunnion 40 , the sensors 512 , 513 , 514 and 521 can be removed from the trunnion 40 together.
  • Such a configuration contributes to an improvement in assembly work efficiency and an improvement in maintenance work efficiency.
  • the detection surfaces of the sensors 512 , 513 , 514 , 521 are arranged in the housing space 506 surrounded by the support 50 . Such a configuration can suppress damage to the detection surfaces of the sensors 512 , 513 , 514 , 521 .
  • the sensor 521 faces the detected body 520 in the front-rear direction.
  • the sensor 521 outputs a voltage (see FIG. 15) corresponding to the phase of the object 520 to be detected. That is, the sensor 521 outputs a voltage corresponding to the rotation angle of the lower transmission shaft 432b to which the detected body 520 is fixed.
  • the pin moving mechanism 4 includes two detection mechanisms with different detection methods for detecting information about the positions of the pair of cylinder connecting pins 454A and 454B and the pair of boom connecting pins 144a and 144b.
  • the second detection device may be a contact potentiometer or an encoder.
  • the cover member 54 is, for example, a rectangular plate member parallel to the XY plane.
  • the cover member 54 covers the upper opening of the support 50 from above, as shown in FIGS. 6, the cover member 54 is omitted.
  • the cover member 54 is fixed to the upper end of the support 50 or the trunnion 40 . Such a cover member 54 prevents foreign matter from entering the accommodation space 506 through the upper opening of the support 50 . Further, as shown in FIGS. 7 and 8, the lower opening of the support 50 faces the surface of the telescopic cylinder 3 (specifically, the rod member 31) with a predetermined distance therebetween. . Such a configuration prevents foreign matter from entering the housing space 506 through the lower opening of the support 50 .
  • the sensors 512, 513, and 514 may erroneously detect the detection results. Reliability may decrease.
  • foreign matter is prevented from entering the housing space 506 through the upper and lower openings of the support 50, so the reliability of the detection results of the first detection device 51 and the second detection device 52 is improved. can be secured.
  • the lower opening of the accommodation space 506 faces the surface of the telescopic cylinder 3, if the first detection object 510 and the second detection object 511 of the first detection device 51, or the second detection device Even if the detected body 520 of 52 falls off from the lower transmission shaft 432b, the downward dropping of the detected bodies 510, 511, and 520 can be suppressed.
  • the first detection device 51 and the second detection device 52 normally detect information regarding the positions of the pair of cylinder connection pins 454A and 454B and the boom connection pin 144a. Then, based on the detection result of the second detection device 52, the telescopic operation of the telescopic boom 14 is controlled. Further, when the control unit 530 detects a failure (abnormality) of the second detection device 52 , the control unit 530 controls the telescoping operation of the telescopic boom 14 based on the detection result of the first detection device 51 . In addition, normally, only the second detection device 52 may detect information regarding the positions of the pair of cylinder connection pins 454A and 454B and the boom connection pin 144a.
  • control unit 530 detects a failure (abnormality) of the second detection device 52
  • the control unit 530 detects the positions of the pair of cylinder connection pins 454A and 454B and the boom connection pin 144a detected by the first detection device 51. Information detection may be initiated.
  • FIG. 12 is a timing chart when the tip boom 141 of the telescopic boom 14 is extended.
  • 13 is a diagram showing the relationship between the states of the pair of cylinder connecting pins 454A and 454B and the boom connecting pin 144a and the states of the first detection device 51 and the second detection device 52. As shown in FIG.
  • a control unit (not shown) controls ON/OFF switching of the electric motor 41 and ON/OFF switching of the brake mechanism 42 based on the output of the position information detection device 5 .
  • FIG. 2A shows the retracted state of the telescopic boom 14.
  • FIG. 1 the tip boom 141 is connected to the intermediate boom 142 via the boom connecting pin 144a. Therefore, the tip boom 141 cannot be displaced in the longitudinal direction (horizontal direction in FIG. 2) with respect to the intermediate boom 142 .
  • the tip portions of the pair of cylinder connecting pins 454A and 454B are engaged with the pair of cylinder pin receiving portions 141a of the tip boom 141. As shown in FIG. That is, the tip boom 141 and the cylinder member 32 are in a connected state.
  • the first detection device 51 and the second detection device 52 of the position information detection device 5 are in a neutral state, as shown in FIG.
  • the cylinder connecting pins 454A and 454B are in the closed state and the boom connecting pin 144a is in the closed state.
  • This state combination is the first set of state combinations for the cylinder link pin and the boom link pin.
  • the first sensor 512 and the second sensor 513 face the first cylindrical surface 510 a of the first detected body 510 . Therefore, the outputs of the first sensor 512 and the second sensor 513 are ON.
  • the third sensor 514 faces the second flat surface 511 b of the second detected body 511 . Therefore, the output of the third sensor 514 is OFF.
  • the first detection device 51 detects that the pair of cylinder connecting pins 454A and 454B are in the engaged state. It detects that there is, and that the boom connecting pin 144a is in the retracted state. In the neutral state of the first detection device 51, the switchgear 450 is located at the reference position shown in FIGS. 10A and 11A.
  • the rotation angle of the detected body 520 is 0 degrees.
  • the sensor 521 is configured to output a predetermined voltage (hereinafter referred to as neutral voltage) corresponding to the neutral state.
  • neutral voltage a predetermined voltage
  • the switchgear 450 is in the reference position shown in FIGS. 10A and 11A.
  • the second detection device 52 detects that the pair of cylinder connecting pins 454A and 454B are in the engaged state and the boom connecting pin 144a is in the engaged state.
  • the electric motor 41 is rotated forward (rotated in the direction indicated by the arrow A2 in FIG. 11A), and the boom coupling mechanism 46 of the actuator 2 connects the pair of boom coupling pins 144a.
  • the intermediate boom 142 is displaced in a direction away from the pair of first boom pin receiving portions 142b.
  • the boom coupling mechanism 46 transitions from the extended state to the contracted state.
  • the first sensor 512 faces the first cylindrical surface 510a of the first detected body 510 . Therefore, the output of the first sensor 512 is ON.
  • the second sensor 513 faces the first flat surface 510b of the first detected body 510 . Therefore, the output of the second sensor 513 is OFF.
  • the third sensor 514 faces the second flat surface 511b of the second detection object 511 . Therefore, the output of the third sensor 514 is OFF.
  • the first detection device 51 It is detected that the boom connecting pin 144a is transitioning from the retracted state to the retracted state.
  • the first detection device 51 is in the second state. Conversely, when the first detection device 51 is in the second state, the boom connecting pin 144a is pulled out (the state shown in FIG. 2B).
  • the first sensor 512 faces the first cylindrical surface 510 a of the first detection object 510 . Therefore, the output of the first sensor 512 is ON.
  • the second sensor 513 faces the first flat surface 510 b of the first detected body 510 . Therefore, the output of the second sensor 513 is OFF.
  • the third sensor 514 faces the second cylindrical surface 511 a of the second detection object 511 . Therefore, the output of the third sensor 514 is ON.
  • the first detection device 51 It is detected that the boom connecting pin 144a is pulled out.
  • the output of the sensor 521 changes according to the phase of the detected body 520.
  • the sensor 521 is configured to output a predetermined voltage (hereinafter referred to as a second voltage) corresponding to the second state. Therefore, when the second detection device 52 is transitioning from the neutral state toward the second state, the output of the sensor 521 changes from the neutral voltage toward the second voltage.
  • the second detection device 52 detects that the boom connecting pin 144a is transitioning from the retracted state to the retracted state when the output of the sensor 521 changes from the neutral voltage toward the second voltage.
  • the second detection device 52 is in the second state. Conversely, when the second detection device 52 is in the second state, the boom connecting pin 144a is pulled out. In the second state of second sensing device 52, the output of sensor 521 is at a second voltage. The second detection device 52 detects that the boom connecting pin 144a is pulled out when the output of the sensor 521 becomes the second voltage.
  • the timing of turning off the electric motor 41 and the timing of turning on the brake mechanism 42 are appropriately controlled by the controller. For example, although not shown, the electric motor 41 is turned off after the brake mechanism 42 is turned on.
  • This state combination is the second set of state combinations for the cylinder link pin and the boom link pin.
  • pressurized oil is supplied to the extension-side hydraulic chamber of the telescopic cylinder 3 of the actuator 2 .
  • the cylinder member 32 is displaced in the extension direction (left side in FIG. 2).
  • the tip boom 141 is displaced in the extending direction (see FIG. 2C). At this time, the state of each part is maintained from the state of T2 in FIG. 12 until T3 .
  • the brake mechanism 42 is released. Then, based on the biasing force of the second biasing mechanism 463 , the boom connecting mechanism 46 displaces the pair of boom connecting pins 144 a in the direction of engaging the pair of second boom pin receiving portions 142 c of the intermediate boom 142 . At this time, the boom coupling mechanism 46 undergoes a state transition (that is, automatic return) from the retracted state to the extended state.
  • a state transition that is, automatic return
  • the first sensor 512 faces the first cylindrical surface 510a of the first detected body 510. Therefore, the output of the first sensor 512 is ON.
  • the second sensor 513 faces the first flat surface 510b of the first detected body 510 . Therefore, the output of the second sensor 513 is OFF.
  • the third sensor 514 faces the second flat surface 511b of the second detection object 511 . Therefore, the output of the third sensor 514 is OFF.
  • the first detection device 51 becomes neutral. Conversely, when the first detection device 51 is in the neutral state, the boom connecting pin 144a is in the retracted state (the state shown in FIG. 2D).
  • the states of the first sensor 512, the second sensor 513, and the third sensor 514 in the neutral state of the first detection device 51 are as described above.
  • the first detection device 51 It detects that the boom connecting pin 144a is in a neutral state.
  • the second detection device 52 when the second detection device 52 is in a state transition from the second state toward the neutral state, the output of the sensor 521 changes from the second voltage toward the neutral voltage according to the phase of the detected body 520. do.
  • the second detection device 52 detects that the boom connecting pin 144a is transitioning from the extracted state to the inserted state when the output of the sensor 521 changes from the second voltage toward the neutral voltage.
  • the second detection device 52 becomes neutral.
  • the output of the sensor 521 will be the neutral voltage.
  • the second detection device 52 detects that the boom connecting pin 144a has entered the state when the output of the sensor 521 becomes the neutral voltage.
  • the electric motor 41 is reversed (rotated in the direction indicated by the arrow A1 in FIG. 10A), and the cylinder coupling mechanism 45 causes the pair of cylinder coupling pins 454A and 454B to move toward the tip boom 141. are displaced in a direction away from the pair of cylinder pin receiving portions 141a.
  • the cylinder coupling mechanism 45 transitions from the extended state to the contracted state.
  • the first detection device 51 and the second detection device 52 of the position information detection device 5 detect the lower position as shown in FIG.
  • the state transitions from the neutral state to the first state according to the rotation of the side transmission shaft 432b.
  • the first sensor 512 faces the first flat surface 510b of the first detection object 510 . Therefore, the output of the first sensor 512 is OFF.
  • the second sensor 513 faces the first cylindrical surface 510 a of the first detected body 510 . Therefore, the output of the second sensor 513 is ON.
  • the third sensor 514 faces the second flat surface 511b of the second detection object 511 . Therefore, the output of the third sensor 514 is OFF.
  • the first detection device 51 It is detected that the pair of cylinder connecting pins 454A and 454B are transitioning from the engaged state to the disengaged state.
  • the first detection device 51 is in the first state. Conversely, when the first detection device 51 is in the first state, the pair of cylinder connecting pins 454A and 454B are pulled out (the state shown in FIG. 2E).
  • the first sensor 512 faces the first flat surface 510 b of the first detection object 510 . Therefore, the output of the first sensor 512 is OFF.
  • the second sensor 513 faces the first cylindrical surface 510 a of the first detected body 510 . Therefore, the output of the second sensor 513 is ON.
  • the third sensor 514 faces the second cylindrical surface 511 a of the second detected body 511 . Therefore, the output of the third sensor 514 is ON.
  • the first detection device 51 It is detected that the pair of cylinder connecting pins 454A and 454B are pulled out.
  • the output of the sensor 521 changes according to the phase of the detected body 520.
  • the sensor 521 is configured to output a predetermined voltage (hereinafter referred to as first voltage) corresponding to the first state.
  • the second detection device 52 makes a state transition from the neutral state toward the first state, the output of the sensor 521 changes from the neutral voltage toward the first voltage.
  • the second detection device 52 detects that the pair of cylinder connecting pins 454A and 454B are transitioning from the engaged state to the disengaged state. To detect.
  • the second detection device 52 is in the first state.
  • the output of sensor 521 is at a first voltage.
  • the second detection device 52 detects that the pair of cylinder connecting pins 454A and 454B are pulled out when the output of the sensor 521 becomes the first voltage.
  • the tip portions of the pair of cylinder connecting pins 454A and 454B and the pair of cylinder pin receiving portions 141a of the tip boom 141 are disengaged. be.
  • the control unit turns on the brake mechanism 42 and the electric motor 41 is turned off to stop the operation of the cylinder coupling mechanism 45 .
  • This state combination is the third set of state combinations for the cylinder link pin and the boom link pin.
  • abnormality detection control executed by the computer (control section 530) mounted on the mobile crane 1 of this embodiment will be described.
  • the control of the telescopic movement of the telescopic boom 14 performed by the control unit 530 will be referred to as telescopic movement control.
  • Abnormality detection control is basically implemented in telescopic motion control.
  • Abnormality detection control is performed by the control unit 530 based on the detection results of the main detection device (second detection device 52) and the sub detection device (first detection device 51), the main detection device (second detection device 52) and the sub It includes processing for detecting that an abnormality has occurred in the detection device (first detection device 51). Further, in the abnormality detection control, the control unit 530 detects an abnormal detection device (hereinafter referred to as an abnormality (referred to as a detection device).
  • FIG. 14 is a flowchart showing an example of abnormality detection control. Note that the order of the control processing of the abnormality detection control is not limited to the order shown in the flowchart shown in FIG. 14 . Each control process shown in the flowchart of FIG. 14 may be performed in an appropriate order and at an appropriate timing within a technically consistent range. Unless otherwise specified, the main body of abnormality detection control is the control unit 530 .
  • step S101 of FIG. 14 the control unit 530 starts flag control.
  • flag control the control unit 530 controls ON/OFF of a first flag indicating whether or not the main detection device (second detection device 52) has detected a combination of states of the cylinder connecting pin and the boom connecting pin.
  • control unit 530 controls ON/OFF of a second flag indicating whether or not the sub-detecting device (first detecting device 51) has detected a combination of states of the cylinder connecting pin and the boom connecting pin. do.
  • the combination of the states of the cylinder connecting pin and the boom connecting pin is the first set (corresponding to combination No. 3 in FIG. 15) in which the cylinder connecting pin is in the engaged state and the boom connecting pin is in the engaged state;
  • the second set (corresponding to combination No. 5 in FIG. 15) in which the cylinder connecting pin is in the engaged state and the boom connecting pin is in the removed state, and the third set in which the cylinder connecting pin is in the removed state and the boom connecting pin is in the engaged state. (corresponding to combination No. 1 in FIG. 15).
  • sets that constitute combinations of states of the cylinder connecting pin and the boom connecting pin are simply referred to as the first set, the second set, and the third set.
  • the first flag includes a flag element corresponding to the first set (corresponding to check flag No. 3 in FIG. 15), a flag element corresponding to the second set (corresponding to check flag No. 5 in FIG. 15), and a third It consists of a flag element (corresponding to check flag No. 1 in FIG. 15) corresponding to the set.
  • Each flag element of the first flag corresponds to an example of the first flag element.
  • control unit 530 turns ON the flag element corresponding to the first set in the first flag.
  • the cylinder connecting pin is in the state and the boom connecting pin is in the disengaged state
  • the second detection device 52 detects that the cylinder connecting pin is in the state and the boom connecting pin is in the disengaged state.
  • the control unit 530 turns ON the flag element corresponding to the second set in the first flag.
  • the cylinder connecting pin is pulled out and the boom connecting pin is put in, and the second detection device 52 is in the state where the cylinder connecting pin is pulled out and the boom connecting pin is put in.
  • the control unit 530 turns ON the flag element corresponding to the third set in the first flag.
  • the second flag includes a flag element corresponding to the first set (corresponding to check flag No. 3 in FIG. 15), a flag element corresponding to the second set (corresponding to check flag No. 5 in FIG. 15), and a third It consists of a flag element (corresponding to check flag No. 1 in FIG. 15) corresponding to the set.
  • Each flag element of the second flag corresponds to an example of the second flag element.
  • control unit 530 turns ON the flag element corresponding to the first set in the second flag.
  • the cylinder connecting pin is in the state and the boom connecting pin is in the disengaged state
  • the first detection device 51 detects that the cylinder connecting pin is in the state and the boom connecting pin is in the disengaged state.
  • the control unit 530 turns ON the flag element corresponding to the second set in the second flag.
  • control unit 530 turns ON the flag element corresponding to the third set in the second flag.
  • control unit 530 When all the flag elements of the first flag are turned ON, the control unit 530 resets (turns OFF) all the flag elements of the first flag after executing the flag check control described later. Then, the flag control is repeated.
  • control unit 530 performs flag check control described later, and then resets (turns OFF) all the flag elements of the second flag. ). Then, the flag control is repeated.
  • the ON/OFF control of the first flag and the second flag in the expansion/contraction operation control or the self-check control described later is the flag control.
  • the control unit 530 displays an image showing the state of the cylinder connecting pin and the boom connecting pin (which may be the state of the first flag) corresponding to the detection result of the main detection device (second detection device 52). and an image showing the state of the cylinder connecting pin and the boom connecting pin (may be the state of the second flag) corresponding to the detection result of the sub-detecting device (first detecting device 51). good.
  • step S102 the control unit 530 determines whether the main detection device (second detection device 52) is normal.
  • the control unit 530 determines whether the output (voltage value in this embodiment) of the main detection device (second detection device 52) is within the normal range (see FIG. 15) in the expansion/contraction operation control or the self-check control described later. determine whether or not The output range of the main detection device (second detection device 52) in the normal state corresponds to an example of the first predetermined condition.
  • the control unit 530 determines that the main detection device (second detection device 52) is normal when the output of the main detection device (second detection device 52) is within the normal range. On the other hand, when the output of the main detection device (second detection device 52) is out of the normal range, the control unit 530 determines that the second detection device 52 is not normal.
  • step S102 If it is determined in step S102 that the main detection device (second detection device 52) is normal, the control unit 530 advances the control process to step S103. On the other hand, when it is determined in step S102 that the main detection device (second detection device 52) is not normal, the control section 530 advances the control process to step S104.
  • step S102 the control processing after it is determined that the main detection device (second detection device 52) is not normal in step S102 will be described.
  • step S104 the control unit 530 determines whether or not the sub detection device (first detection device 51) is normal.
  • a first example of a method for determining whether the sub-detection device (first detection device 51) is normal will be described.
  • the method of the first example is performed when the control process transitions from step S102 to step S104.
  • the control unit 530 determines whether or not the combination of the outputs of the sub-detection device (first detection device 51) is a normal combination (see FIG. 15) in the expansion/contraction control or the self-check control described later.
  • the combination corresponds to an example of the second predetermined condition.
  • An appropriate combination is a combination of outputs (ON/OFF) of the first sensor 512, second sensor 513, and third sensor 514 of the sub-detector (first detector 51) in FIG.
  • the control unit 530 determines that the sub-detection device (first detection device 51) is normal when the combination of the outputs of the sub-detection device (first detection device 51) is a normal combination. On the other hand, when the outputs of the sub-detecting device (first detecting device 51) are not a normal combination, the control section 530 determines that the sub-detecting device (first detecting device 51) is not normal.
  • the control unit 530 determines whether or not the sub detection device (first detection device 51) is normal based on the result of the self-check control performed in step S111 described later. It should be noted that, depending on the state of occurrence of an abnormality, there may be cases where the occurrence of an abnormality in the sub-detector (first detector 51) cannot be detected by self-check control. However, the device in which the abnormality has occurred can be specified in flag check control, which will be described later.
  • step S104 If it is determined in step S104 that the sub-detection device (first detection device 51) is normal, the control unit 530 advances the control process to step S105. On the other hand, when it is determined in step S104 in FIG. 14 that the sub-detecting device (first detecting device 51) is not normal, the control section 530 advances the control process to step S106.
  • step S105 the control unit 530 issues a warning.
  • the warning includes information indicating that an abnormality has occurred in the main detection device (second detection device 52).
  • the warning may be given by displaying on the display unit or by generating a warning sound.
  • control unit 530 advances the control process to step S107.
  • step S107 the control unit 530 switches the detection device used for telescopic motion control from the main detection device (second detection device 52) to the sub detection device (first detection device 51). Then, control unit 530 advances the control process to step S108.
  • step S108 the control unit 530 continues the expansion/contraction operation control based on the detection result of the sub detection device (first detection device 51). Note that the control unit 530 may end the expansion/contraction operation control at an appropriate timing.
  • step S104 After determining that the sub-detecting device (first detecting device 51) is not normal in step S104, the control unit 530 stops the telescopic boom 14 in step S106. Then, the control unit 530 terminates the expansion/contraction control and the abnormality detection control.
  • step S102 after determining that the main detection device (second detection device 52) is normal, in step S103, the control unit 530 determines whether the sub detection device (first detection device 51) is normal. determine whether or not The determination method performed by the control unit 530 in step S103 is the same as the first example determination method performed by the control unit 530 in step S104.
  • step S103 if the sub detection device (first detection device 51) is normal, the control unit 530 advances the control process to step S109. On the other hand, if the sub-detecting device (first detecting device 51) is not normal in step S103, the control unit 530 advances the control process to step S110.
  • control unit 530 issues a warning.
  • the warning includes information indicating that an abnormality has occurred in the sub-detector.
  • the warning may be given by displaying on the display unit or by generating a warning sound.
  • control unit 530 advances the control process to step S109.
  • the reason why the control process proceeds to step S109 is that the main detection device (second detection device 52) is normal, so that the control unit 530 performs expansion and contraction operation control based on the detection result of the main detection device (second detection device 52). This is because it can be started or continued.
  • step S109 the control unit 530 starts telescopic motion control based on the detection result of the main detection device (second detection device 52). In addition, if the telescopic motion control based on the detection result of the main detection device (second detection device 52) has already started, the telescopic motion control based on the detection result of the main detection device (second detection device 52) is continued. do. Then, control unit 530 advances the control process to step S111.
  • step S111 of FIG. 14 the control unit 530 performs self-check control.
  • Self-check control is control performed by the control unit 530 when the telescopic boom 14 is in a predetermined condition.
  • the predetermined situation means a no-load situation in which the load of the boom element is not acting on the boom connecting pin.
  • the above-mentioned predetermined situation may mean a fully contracted telescopic cylinder situation in which the telescopic cylinder 3 is in a fully contracted state.
  • the load of the boom element does not act on the cylinder connecting pin and the boom connecting pin, so the cylinder connecting pin and the boom connecting pin can be stably moved.
  • the no-load condition and the fully retracted condition of the cylinder occur both before the telescopic boom starts telescopic motion and after it starts telescopic motion.
  • the predetermined situation is not limited to the above example, and the control unit may perform self-check control at appropriate timing.
  • control unit 530 at least transitions the boom connecting pin from the closed state to the pulled out state or from the pulled out state to the closed state.
  • control unit 530 may cause the cylinder connecting pin to transition from the engaged state to the removed state or from the removed state to the engaged state.
  • the above-described flag control can be implemented without extending or retracting the telescopic boom 14 in the above-described predetermined situation.
  • control unit 530 preferably controls the states of the cylinder connecting pin and the boom connecting pin so that all the flag elements of the first flag and the second flag are ON in the self-check control.
  • the cylinder connecting pin and the boom connecting pin may be controlled so that only some flag elements of the first flag and the second flag are turned ON.
  • the control unit 530 compares the combination of the states of the cylinder connecting pin and the boom connecting pin realized by the self-check control with the states of the first flag and the second flag, thereby detecting the state of the main detection device (the second detection device 52 ) and the sub-detector (first detector 51). In addition, when an abnormality occurs in the main detection device (second detection device 52) and/or the sub-detection device (first detection device 51), the control unit 530, based on the above comparison result, It is possible to identify the detection device in which an abnormality has occurred.
  • FIG. 2A The state of the telescopic boom 14 shown in FIG. 2A is a no-load state in which the load of the boom element does not act on the boom connecting pin, and a telescopic cylinder fully retracted state in which the telescopic cylinder 3 is fully retracted. Accordingly, the state of the telescopic boom 14 shown in FIG. 2A corresponds to the given situation described above.
  • the cylinder connecting pin is in the engaged state and the boom connecting pin (specifically, the boom connecting pin 144a) is in the engaged state.
  • the flag control described above corresponds to the first set of the first flags.
  • the flag element is turned ON, and the flag element corresponding to the first set in the second flag is turned ON.
  • the control unit 530 causes the boom connecting pin (specifically, the boom connecting pin 144a) to transition from the engaged state to the disengaged state through self-check control.
  • the cylinder connecting pin is in the engaged state and the boom connecting pin (specifically, the boom connecting pin 144a) is in the disengaged state. Therefore, if the main detection device (second detection device 52) and the sub-detection device (first detection device 51) are operating normally, the flag element corresponding to the second set in the first flag is controlled by the above-described flag control. is turned ON, and the flag element corresponding to the second set in the second flag is turned ON. After that, the boom connecting pin (specifically, the boom connecting pin 144a) is changed from the removed state to the entered state, and returns to the state shown in FIG. 2A.
  • Flag element corresponding to the first set in the first flag ON Flag element corresponding to the first set in the second flag: ON Flag element corresponding to the second set in the first flag: ON Flag element corresponding to the second set in the second flag: ON
  • the control unit 530 can detect that an abnormality has occurred in the main detection device (second detection device 52) or the sub-detection device (first detection device 51). Further, the control unit 530 can identify a detecting device whose flag state is different from the states of the above-described normal first flag and second flag as a detecting device in which an abnormality has occurred.
  • the states of the flags corresponding to the first group and the second group can be known, but the state of the flag corresponding to the third group (the state where the cylinder connecting pin is removed and the state where the boom connecting pin is inserted) is don't know. Therefore, in some cases, it may not be possible to detect that an abnormality has occurred in the detection device, depending on how the abnormality has occurred.
  • control unit 530 advances the control process to step S112.
  • control unit 530 determines whether or not the main detection device (second detection device 52) is normal based on the result of the self-check described above.
  • step S112 If it is determined in step S112 that the main detection device (second detection device 52) is normal, the control unit 530 advances the control process to step S113. On the other hand, when it is determined in step S112 that the main detection device (second detection device 52) is not normal, the control section 530 advances the control process to step S104. Note that the control process in step S104 when proceeding from step S112 to step S104 is as described above.
  • step S113 the control unit 530 determines whether the sub-detecting device (first detecting device 51) is normal based on the result of the self-check control performed in step S111. As described above, there are cases where it is not possible to detect that an abnormality has occurred in the sub-detecting device (first detecting device 51) depending on the occurrence of the abnormality. However, even in cases where the self-check control cannot detect the occurrence of an abnormality, the occurrence of an abnormality can be detected by the flag check control described later.
  • step S113 If it is determined in step S113 that the sub-detection device (first detection device 51) is normal, the control unit 530 advances the control process to step S114. On the other hand, when it is determined in step S113 that the sub detection device (first detection device 51) is not normal, the control section 530 advances the control process to step S115.
  • step S115 the control unit 530 issues a warning.
  • the warning includes information indicating that an abnormality has occurred in the sub-detector (first detector 51).
  • the warning may be given by displaying on the display unit or by generating a warning sound.
  • control unit 530 advances the control process to step S114.
  • the reason why the control process proceeds to step S114 is that the main detection device (second detection device 52) is normal, so that the control unit 530 performs telescopic motion control based on the detection result of the main detection device (second detection device 52). This is because it can be continued.
  • step S114 the control unit 530 determines whether the detection result of the main detection device (second detection device 52) and the detection result of the sub detection device (first detection device 51) match. judge.
  • control unit 530 detects the main detection device (second detection device 52) and the sub-detector (first detector 51). Then, control device 530 advances the control process to step S117.
  • control unit 530 determines that the main detection device (second Detecting device 52) and the sub-detecting device (first detecting device 51) are determined to be normal. Then, control unit 530 advances the control process to step S116.
  • step S117 the control unit 530 issues a warning.
  • the warning includes information indicating that at least one of the main detection device (second detection device 52) and the sub-detection device (first detection device 51) is abnormal.
  • the warning may be given by displaying on the display unit or by generating a warning sound.
  • control unit 530 advances the control process to step S116.
  • the reason for advancing the control process to step S116 is to identify the detecting device in which an abnormality has occurred by flag check control, which will be described later.
  • step S116 the control unit 530 determines whether or not a situation exists in which flag check control can be performed.
  • control unit 530 determines that the flag check control can be performed when all the flag elements of at least one of the first flag and the second flag are ON. Then, control unit 530 advances the control process to step S118. Note that the control processing after step S116 may be performed at appropriate timing.
  • control unit 530 determines that the flag check control is not applicable when there is no flag with all flag elements ON among the first flag and the second flag. Then, control unit 530 advances the control process to step S108.
  • the operation of control unit 530 in step S108 is as described above.
  • step S118 the control unit 530 performs flag check control.
  • flag check control control unit 530 compares the flag element of the first flag and the flag element of the second flag. Then, control unit 530 advances the control process to step S119.
  • step S119 the control unit 530 determines whether or not the flag element of the first flag and the flag element of the second flag match.
  • step S116 since it is determined that all the flag elements of at least one of the first flag and the second flag are ON, the flag element of the first flag and the flag element of the second flag are matched. Being present means that all the flag elements of the first flag and the second flag are ON.
  • the main detection device (second detection device 52) and the sub-detection device (first detection device 51) can normally detect the combination of states of the cylinder connecting pin and the boom connecting pin.
  • step S116 since it is determined that all the flag elements of at least one of the first flag and the second flag are ON, the flag element of the first flag and the flag element of the second flag match. None means that none of the flag elements of the other flag of the first flag and the second flag are ON (that is, the flag elements of the other flag include OFF). This means that the other detection device described above cannot detect the combination of states of the cylinder connecting pin and the boom connecting pin. In other words, it means that an abnormality has occurred in the other detection device described above.
  • step S120 the control unit 530 identifies the abnormality detection device, which is the detection device in which the abnormality has occurred. Specifically, first, from the first flag and the second flag, flags whose flag elements are not all ON (that is, flags whose flag elements include OFF) are specified. Then, the abnormality detection device is specified based on the specified flag.
  • control unit 530 identifies the main detection device (second detection device 52) as the abnormality detection device.
  • control unit 530 identifies the sub-detecting device (first detecting device 51) as the abnormality detecting device. Then, control unit 530 advances the control process to step S121.
  • step S121 the control unit 530 issues a warning.
  • the alert contains information indicative of the anomaly detection device.
  • the warning may be given by displaying on the display unit or by generating a warning sound. Thereafter, control unit 530 terminates the control process.
  • step S121 when the abnormality detection device is the main detection device (second detection device 52), the control unit 530 selects the detection device used for telescopic motion control as the main detection device (second detection device 52). to the sub-detector (the first detector 51) to continue the expansion/contraction control. In this case, since the abnormality detection device has been identified, the control unit 530 may continue or stop the above-described abnormality detection control. When continuing the abnormality detection control, the control unit 530 repeats the abnormality detection control from step S102.
  • control unit 530 may continue the expansion/contraction operation control when the abnormality detection device is the sub-detection device (first detection device 51). Also in this case, since the abnormality detection device has been identified, the control unit 530 may continue or stop the above-described abnormality detection control. When continuing the abnormality detection control, the control unit 530 repeats the abnormality detection control from step S102.
  • the position information detection device 5 has a first detection device 51 and a second detection device 52 whose detection methods are different from each other.
  • the second detection device 52 detects information about the position
  • the first detection device 51 detects information about the position. Therefore, even if one of the first detection device 51 and the second detection device 52 fails, the positions of the pair of cylinder connecting pins 454A and 454B and the boom connecting pins 144a and 144b can be detected. can be done.
  • control unit 530 detects information about the positions of the pair of cylinder connecting pins 454A and 454B and the pair of boom connecting pins 144a and 144b based on the detection value of the second detection device 52. Based on the detection values of the first detection device 51 and the second detection device 52, failure determination of the detection device can be performed. As a result, the control unit 530 can quickly detect that at least one of the first detection device 51 and the second detection device 52 has failed.
  • the first detection device 51 and the second detection device 52 having detection methods different from each other since the first detection device 51 and the second detection device 52 having detection methods different from each other are provided, it is possible to prevent both detection devices from being affected by noise at the same time. If the detection methods of the first detection device 51 and the second detection device 52 are the same, the first detection device 51 and the second detection device 52 may be affected by noise at the same time. On the other hand, in the case of this embodiment, since the detection method of the first detection device 51 and the detection method of the second detection device 52 are different, even if one detection device is affected by noise, the other detection device Less susceptible to noise.
  • the first detection device 51 and the second detection device 52 cannot simultaneously detect the positions of the pair of cylinder connecting pins 454A and 454B and the boom connecting pins 144a and 144b. state (state with low detection accuracy) can be suppressed.
  • the present invention is applicable not only to cranes, but also to various work machines with telescopic booms (for example, aerial work vehicles).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jib Cranes (AREA)

Abstract

作業機は、伸縮シリンダにより伸縮するブームと、ブームと伸縮シリンダとを連結する入り状態と、連結を解除する抜き状態とを遷移可能な第一ピンと、隣接するブームを連結する入り状態と、連結を解除する抜き状態とを遷移可能な第二ピンと、第一ピン及び第二ピンの状態の組合わせを検出するメイン検出装置及びサブ検出装置と、メイン検出装置の検出結果により、ブームの伸縮動作を制御する制御部と、を備え、制御部は、ブームの伸縮動作中、メイン検出装置が組み合わせを検出できたか否かを示す第一フラグのON/OFF、及び、サブ検出装置が組み合わせを検出できたか否かを示す第二フラグのON/OFFを制御し、第一フラグ及び第二フラグに基づいてメイン検出装置及びサブ検出装置に異常が発生したことを検知する。

Description

作業機
 本発明は、伸縮式ブームを備える作業機に関する。
 複数のブームを有する伸縮式ブーム及び伸縮式ブームを伸長させる油圧式のアクチュエータを備えた移動式クレーンが開示されている(特許文献1参照)。
 隣り合うブーム同士は、ブーム連結ピンにより連結される。ブーム連結ピンによる連結が解除されたブーム(以下、移動可能なブームと称する。)は、他のブームに対して移動可能となる。
 アクチュエータは、ロッド部材とシリンダ部材と、を有する。シリンダ部材は、シリンダ連結ピンにより移動可能なブームに解除可能に連結される。シリンダ部材が上記移動可能なブームに連結された状態で伸縮方向に変位すると、シリンダ部材とともに移動可能なブームが移動する。そして、伸縮式ブームが伸縮する。
 又、上述のようなクレーンにおいて、伸縮式ブームの伸縮動作を精度よく制御するために、ブーム連結ピン及びシリンダ連結ピンの位置を検出する位置検出装置を設ける技術が知られている。このようなクレーンは、位置検出装置の検出結果に基づいて、伸縮式ブームの伸縮動作を制御する。
特開2012-96928号公報
 ところで、上述のような位置検出装置を備えたクレーンの場合、位置検出装置に異常が生じると、正常な伸縮動作を行うことができない。このため、位置検出装置の異常を検知できる技術が求められている。
 本発明の目的は、連結ピンの位置を検出する装置の異常を検知できる作業機を提供することである。
 本発明に係る作業機の一態様は、
 伸縮シリンダにより伸縮する複数のブームと、
 ブームと伸縮シリンダとを連結する入り状態と、当該連結を解除する抜き状態とを遷移可能な第一ピンと、
 隣接するブームを連結する入り状態と、当該連結を解除する抜き状態とを遷移可能な第二ピンと、
 第一ピン及び第二ピンの状態の組合わせを検出可能なメイン検出装置及びサブ検出装置と、
 メイン検出装置の検出結果に基づいて、ブームの伸縮動作を制御する制御部と、を備え、
 制御部は、ブームの伸縮動作中、
  メイン検出装置が、第一ピン及び第二ピンの状態の組み合わせを検出できたか否かを示す第一フラグのON/OFF、及び、サブ検出装置が、第一ピン及び第二ピンの状態の組み合わせを検出できたか否かを示す第二フラグのON/OFFを制御し、
  第一フラグ及び第二フラグに基づいて、メイン検出装置及びサブ検出装置に異常が発生したことを検知する。
 本発明によれば、連結ピンの位置を検出する装置の異常を検知できる作業機を提供できる。
図1は、実施形態に係る移動式クレーンの模式図である。 図2Aは、伸縮式ブームの構造及び伸縮動作を説明するための模式図である。 図2Bは、伸縮式ブームの構造及び伸縮動作を説明するための模式図である。 図2Cは、伸縮式ブームの構造及び伸縮動作を説明するための模式図である。 図2Dは、伸縮式ブームの構造及び伸縮動作を説明するための模式図である。 図2Eは、伸縮式ブームの構造及び伸縮動作を説明するための模式図である。 図3は、ピン移動モジュールの側面図である。 図4は、ピン移動モジュールを図3の矢印Aから見た図である。 図5は、ピン移動モジュールを図3の矢印Aから見た図である。 図6は、検出装置を図3の矢印Aから見た図である。 図7は、第一検出装置を説明するための図6のX-X断面図である。 図8は、第一検出装置を説明するための図6のX-X断面図である。 図9は、ブーム連結機構が拡張状態であり、シリンダ連結機構が拡張状態であるピン移動モジュールを示す図である。 図10Aは、シリンダ連結機構の動作を説明するための模式図である。 図10Bは、シリンダ連結機構の動作を説明するための模式図である。 図10Cは、シリンダ連結機構の動作を説明するための模式図である。 図11Aは、ブーム連結機構の動作を説明するための模式図である。 図11Bは、ブーム連結機構の動作を説明するための模式図である。 図11Cは、ブーム連結機構の動作を説明するための模式図である。 図12は、ピン移動モジュールの動作を説明するためのタイミングチャートである。 図13は、位置情報検出装置の検出動作を説明するための表である。 図14は、異常検出制御の工程の一例を示すフローチャートである。 図15は、ブーム連結ピン及びシリンダ連結ピンの状態と、チェックフラグとの関係を示す図である。
 以下、本発明の実施形態の一例を図面に基づいて詳細に説明する。尚、本発明は後述の実施形態により限定されない。
 [実施形態]
 図1及び図2A~図2Eを参照して、本実施形態に係る移動式クレーン1の概要について説明する。
 移動式クレーンは、例えば、ラフテレーンクレーン、オールテレーンクレーン、トラッククレーン、又は積載形トラッククレーンである。但し、作業機は、移動式クレーンに限定されず、伸縮式のブームを備える種々の作業機(例えば、高所作業車)であってもよい。
 移動式クレーン1は、伸縮式ブーム14及びアクチュエータ2を有する。伸縮式ブーム14は、伸縮可能に組み合わされた複数のブームを有する。隣り合うブーム同士は、ブーム連結ピン(ブーム連結ピン144a、144b)により連結されている。
 アクチュエータ2は、伸縮式ブーム14を伸縮させる際、ブームを伸縮方向に移動させる。この際、アクチュエータ2は、シリンダ連結ピン454A、454Bを介して移動させるブームに連結し、移動させるブームと移動させるブームに隣り合うブームとの連結を解除する。
 伸縮式ブーム14の伸縮動作において、シリンダ連結ピン及びブーム連結ピンは、電動モータ41の動力により移動する。伸縮式ブームの伸縮動作の制御には、シリンダ連結ピン及びブーム連結ピンの位置情報が必要である。
 そこで、本実施形態の場合、シリンダ連結ピン及びブーム連結ピンの位置情報を検出するための位置情報検出装置5を備えている。特に、位置情報検出装置5は、2系統の検出装置(後述の第一検出装置51及び第二検出装置52)を有する。
 このような位置情報検出装置5は、シリンダ連結ピン及びブーム連結ピンの状態の組合わせを検出可能に構成されている。
 又、本実施形態の移動式クレーン1は、位置情報検出装置5の異常を検知する機能を有する。特に、本実施形態の移動式クレーン1は、位置情報検出装置5を構成する第一検出装置51及び第二検出装置52のうちのどちらに異常が発生したかを特定する機能を有する。以下、本実施形態に係る移動式クレーン1について、具体的に説明する。
 図1及び図2A~図2Eに示すように、移動式クレーン1は、走行体10、旋回台12、伸縮式ブーム14、アクチュエータ2、ワイヤロープ16、及びフック17を有する。
 旋回台12は、走行体10の上部に旋回可能に設けられている。伸縮式ブーム14は、基端部が旋回台12に固定されており、起伏可能且つ伸縮可能である。アクチュエータ2は、伸縮式ブーム14を伸縮させる。ワイヤロープ16は、伸縮式ブーム14に支持されており、伸縮式ブーム14の先端部から垂れ下がっている。フック17は、ワイヤロープ16の先端に設けられている。
 次に、伸縮式ブーム14は、図1及び図2A~図2Eに示すように、テレスコピック状に組み合わされた複数のブームを有する。具体的には、複数のブームは、内側から順に、先端ブーム141、中間ブーム142、及び基端ブーム143である。尚、先端ブーム141、中間ブーム142、及び基端ブーム143は、ブーム要素とも称する。
 伸縮式ブーム14は、内側に配置されたブームから順に伸長して、図2Aに示す収縮状態から図1に示す伸長状態に遷移する。中間ブームは、複数でもよい。先端ブーム141は、筒状であって、アクチュエータ2を収容可能な内部空間を有する。先端ブーム141は、基端部に、一対のシリンダピン受部141a及び一対のブームピン受部141bを有する。
 一対のシリンダピン受部141aは、先端ブーム141の基端部に、互いに同軸に設けられている。一対のシリンダピン受部141aはそれぞれ、伸縮シリンダ3のシリンダ部材32に設けられた一対のシリンダ連結ピン454A、454Bと係脱可能である。
 シリンダ連結ピン454A、454Bはそれぞれ、後述の第一付勢機構455により、外側(シリンダ連結ピン454A、454Bの基端部から先端部に向かう方向)に付勢されている。シリンダ連結ピン454A、454Bは、後述のシリンダ連結機構45の作動に基づいて、内側(シリンダ連結ピン454A、454Bの先端部から基端部に向かう方向)に移動する。
 一対のシリンダ連結ピン454A、454Bと一対のシリンダピン受部141aとが係合した状態で、先端ブーム141は、シリンダ部材32とともに伸縮方向に移動可能である。一対のブームピン受部141bは、シリンダピン受部141aよりも基端側に、互いに同軸に設けられている。一対のブームピン受部141bはそれぞれ、一対のブーム連結ピン144aを支持している。
 一対のブーム連結ピン144aはそれぞれ、後述の第二付勢機構463により、外側(ブーム連結ピン144aの基端部から先端部に向かう方向)に付勢されている。一対のブーム連結ピン144aはそれぞれ、先端ブーム141と中間ブーム142とを連結する。一対のブーム連結ピン144aは、後述のブーム連結機構46の作動に基づいて、内側(ブーム連結ピン144aの先端部から基端部に向かう方向)に移動する。
 先端ブーム141と中間ブーム142とが一対のブーム連結ピン144aにより連結された状態で、先端ブーム141のブームピン受部141bと、中間ブーム142の第一ブームピン受部142b又は第二ブームピン受部142cとに、ブーム連結ピン144aが架け渡されるように挿通される。つまり、一対のブーム連結ピン144aはそれぞれ、中間ブーム142の第一ブームピン受部142b又は第二ブームピン受部142cと係脱可能である。
 先端ブーム141と中間ブーム142との連結状態において、先端ブーム141は、中間ブーム142に対する移動が禁止される。一方、先端ブーム141と中間ブーム142との非連結状態において、先端ブーム141は、中間ブーム142に対して移動可能である。
 中間ブーム142は、筒状であって、先端ブーム141を収容可能な内部空間を有する。中間ブーム142は、基端部に、一対のシリンダピン受部142a、一対の第一ブームピン受部142b、及び一対の第三ブームピン受部142dを有し、先端部に、一対の第二ブームピン受部142cを有する。
 一対のシリンダピン受部142a及び一対の第一ブームピン受部142bはそれぞれ、先端ブーム141が有する一対のシリンダピン受部141a及び一対のブームピン受部141bとほぼ同様である。一対の第三ブームピン受部142dは、一対の第一ブームピン受部142bよりも基端側に、互いに同軸に設けられている。一対の第三ブームピン受部142dにはそれぞれ、一対のブーム連結ピン144bが挿通される。一対のブーム連結ピン144bは、中間ブーム142と基端ブーム143とを連結する。
 一対の第二ブームピン受部142cは、中間ブーム142の先端部に、互いに同軸に設けられている。一対の第二ブームピン受部142cにはそれぞれ、一対のブーム連結ピン144aが挿通される。
 アクチュエータ2は、伸縮式ブーム14を伸縮させるアクチュエータである。アクチュエータ2は、図2~図11Cに示すように、伸縮シリンダ3及びピン移動機構4を有する。アクチュエータ2は、伸縮式ブーム14の収縮状態(図2に示す状態)において、先端ブーム141の内部空間に配置されている。
 伸縮シリンダ3は、ロッド部材31及びシリンダ部材32を有する。伸縮シリンダ3は、後述のシリンダ連結ピン454A、454Bを介してシリンダ部材32に連結されたブームを移動させる。
 <ピン移動機構>
 ピン移動機構4は、トラニオン40に支持された、電動モータ41、ブレーキ機構42、伝達機構43、シリンダ連結機構45、ブーム連結機構46、及び位置情報検出装置5を有する。
 以下、アクチュエータ2を構成する各部材については、各部材がアクチュエータ2に組み込まれた状態を基準として説明する。又、アクチュエータ2の説明において、直交座標系(X、Y、Z)を使用する。直交座標系において、X方向は、移動式クレーン1に搭載された状態の伸縮式ブーム14の伸縮方向に一致する。X方向+側は、伸縮方向における伸長方向である。X方向-側は、伸縮方向における収縮方向である。伸縮式ブーム14の旋回角が0度であり且つ伸縮式ブーム14の起伏角が0度(全倒伏の状態)において、X方向+側は移動式クレーン1の前側に一致する。伸縮式ブーム14の旋回角が0度であり且つ伸縮式ブーム14の起伏角が0度の状態において、X方向-側は移動式クレーン1の後側に一致する。
 又、Z方向は、例えば、伸縮式ブーム14の起伏角が0度の状態において、移動式クレーン1の上下方向に一致する。Y方向は、例えば、伸縮式ブーム14が前方を向いた状態において、移動式クレーン1の車幅方向(左右方向)に一致する。以下、特に断ることなく幅方向又は左右方向といった場合には、直交座標系(X、Y、Z)におけるY方向を意味する。
 移動式クレーン1の後方から前方を見た状態で、左側がY方向+側である。又、移動式クレーン1の後方から前方を見た状態で、右側がY方向-側である。移動式クレーン1の後方から前方を見た状態で、上側がZ方向+側である。又、移動式クレーン1の後方から前方を見た状態で、下側がZ方向-側である。
 図3~図5を参照して、トラニオン40について説明する。トラニオン40は、支持孔401を有する。支持孔401には、伸縮シリンダ3のロッド部材31がX方向に挿通されている。トラニオン40は、伸縮シリンダ3のシリンダ部材32の基端部(X方向-側の端部)に固定されている。よって、トラニオン40は、シリンダ部材32とともに移動する。
 トラニオン40は、シリンダ連結機構45及びブーム連結機構46を支持している。又、トラニオン40は、後述の電動モータ41、ブレーキ機構42、及び伝達機構43を支持している。このように、トラニオン40は、これら各エレメントをユニット化している。このような構成は、ピン移動機構4の小型化、生産性の向上、及びシステムの信頼性の向上に寄与する。
 トラニオン40は、右側壁部に設けられた右側ピン支持部(不図示)により右側のシリンダ連結ピン454Aを保持している。右側のシリンダ連結ピン454Aは、左右方向に移動可能である。トラニオン40は、左側壁部壁に設けられた左側ピン支持部(不図示)により左側のシリンダ連結ピン454Bを保持している。左側のシリンダ連結ピン454Bは、左右方向に移動可能である。
 電動モータ41は、減速機431を介して上下伝達機構432に固定されている。このような電動モータ41は、防水及び防塵のためのカバー410により覆われている。電動モータ41は、図3に示すように、トラニオン40の上方に設けられている。電動モータ41の出力軸には、減速機431が接続されている(図10A~図10C参照)。
 電動モータ41は、電力供給用のケーブルを介して、例えば、旋回台12に設けられた電源装置(不図示)と接続されている。又、電動モータ41は、制御信号伝送用のケーブルを介して、例えば、旋回台12に設けられた制御部(不図示)と接続されている。
 ブレーキ機構42は、電動モータ41に対して制動力を付与する。ブレーキ機構42は、電動モータ41の停止状態において、電動モータ41の出力軸の回転を阻止する。これにより電動モータ41の停止状態において、ピン移動機構4の状態が維持される。
 具体的には、ブレーキ機構42は、後述のシリンダ連結機構45の縮小状態又はブーム連結機構46の縮小状態において作動して、シリンダ連結機構45及びブーム連結機構46の状態を維持する。尚、ブレーキ機構42の状態は、制御部530(図10A~図11C参照)により切り換えられる。又、ブレーキ機構42の状態は、作業者の操作に基づいて切り換えられてもよい。
 伝達機構43は、電動モータ41の動力をシリンダ連結機構45及びブーム連結機構46に伝達する。伝達機構43は、減速機431及び上下伝達機構432を有する。減速機431は、電動モータ41の回転を減速して上下伝達機構432に伝達する。上下伝達機構432は、減速機431の回転を後述のスイッチギヤ450(図10A~図10C)に伝達する。本実施形態の場合、電動モータ41が、スイッチギヤ450よりも上方に設けられている。このため、上下伝達機構432は、電動モータ41の回転を、電動モータ41よりも下方に設けられたスイッチギヤ450に伝達するように構成されている。
 具体的には、上下伝達機構432は、上側伝達軸432a、下側伝達軸432b、及び伝達歯車(不図示)を有する。上側伝達軸432aは、電動モータ41の出力軸と同軸上に設けられている。上側伝達軸432aは、減速機431に接続されている。
 下側伝達軸432bは、モータの動力に基づいて回転する回転部材の一例に該当し、上側伝達軸432aと平行且つ上側伝達軸432aよりも下方に設けられている。下側伝達軸432bは、後述のスイッチギヤ450と同軸上に配置され、且つ、スイッチギヤ450に接続されている。尚、モータの動力に基づいて回転する回転部材は、下側伝達軸432bに限定されない。モータの動力に基づいて回転する回転部材は、電動モータ41の動力に基づいて回転する部材であればよい。
 伝達歯車は、上側伝達軸432aに設けられた上側歯車(不図示)と、下側伝達軸432bに設けられた下側歯車(不図示)とを有する。上側歯車及び下側歯車はそれぞれ、外歯車であって、互いに噛み合っている。減速機431の回転は、上下伝達機構432を介して、スイッチギヤ450に伝達される。
 <シリンダ連結機構>
 シリンダ連結機構45は、電動モータ41の動力に基づいて作動し、拡張状態(図9及び図10A参照)と、縮小状態(図10C参照)との間を状態遷移する。シリンダ連結機構45が拡張状態から縮小状態に遷移する動作が、シリンダ連結機構45の抜き動作である。シリンダ連結機構45が縮小状態から拡張状態に遷移する動作が、シリンダ連結機構45の入り動作である。
 シリンダ連結機構45の拡張状態において、後述の一対のシリンダ連結ピン454A、454Bと、ブーム(例えば、先端ブーム141)の一対のシリンダピン受部141aとが、係合状態となる。この係合状態において、ブームとシリンダ部材32とが連結される。
 又、シリンダ連結機構45の縮小状態において、一対のシリンダ連結ピン454A、454Bと、一対のシリンダピン受部141aとが離脱状態となる。この離脱状態において、ブームとシリンダ部材32との係合が解除される。
 具体的には、シリンダ連結機構45は、スイッチギヤ450、第一ラックバー451、第一歯車機構452、第二歯車機構453、一対のシリンダ連結ピン454A、454B、及び第一付勢機構455を有する。
 スイッチギヤ450は、外周面の一部に歯部を有する。スイッチギヤ450は、伝達機構43の下側伝達軸432bに外嵌固定され、下側伝達軸432bとともに回転する。スイッチギヤ450は、電動モータ41の動力を、シリンダ連結機構45とブーム連結機構46とのうちの何れか一方の連結機構に択一的に伝達する。
 以下の説明において、シリンダ連結機構45が拡張状態から縮小状態に状態遷移する際の、スイッチギヤ450の回転方向(図10Aの矢印Aが示す方向)が、スイッチギヤ450の回転方向における第一方向である。一方、シリンダ連結機構45が縮小状態から拡張状態に状態遷移する際の、スイッチギヤ450の回転方向(図10Aの矢印Aが示す方向)が、スイッチギヤ450の回転方向における第二方向である。
 第一ラックバー451は、スイッチギヤ450の回転に応じて自身の長手方向(Y方向)に移動する。第一ラックバー451は、シリンダ連結機構45の拡張状態において、最もY方向+側に位置する。一方、第一ラックバー451は、シリンダ連結機構45の縮小状態において、最もY方向-側に位置する。
 第一ラックバー451は、上面に、第一ラック歯部を有する。第一ラック歯部は、上述の状態遷移の際にのみ、スイッチギヤ450の歯部と噛合する。
 拡張状態において、スイッチギヤ450が第一方向に所定量回転すると、スイッチギヤ450の歯部が、第一ラックバー451の第一ラック歯部と噛合する。この状態からスイッチギヤ450が更に第一方向に回転すると、第一ラックバー451は、スイッチギヤ450の回転に応じて右側に移動する。
 尚、シリンダ連結機構45の拡張状態から、スイッチギヤ450が第二方向に回転した場合には、第一ラックバー451の第一ラック歯部とスイッチギヤ450の歯部とは噛合しない。
 又、第一ラックバー451は、下面に、第二ラック歯部及び第三ラック歯部を有する。第二ラック歯部は、後述の第一歯車機構452と噛合している。第三ラック歯部は、後述の第二歯車機構453と噛合している。
 第一歯車機構452は、それぞれが外歯車である複数の歯車(図9参照)を有する。第一歯車機構452は、第一ラックバー451の第二ラック歯部と噛合している。第一歯車機構452は、第一ラックバー451の移動に応じて回転する。又、第一歯車機構452は、後述の右側のシリンダ連結ピン454Aのピン側ラック歯部と噛合している。
 第二歯車機構453は、それぞれが外歯車である複数の歯車(図9参照)を有する。第二歯車機構453は、第一ラックバー451の第三ラック歯部と噛合している。第二歯車機構453は、第一ラックバー451の移動に応じて回転する。又、第二歯車機構453は、後述の左側のシリンダ連結ピン454Bのピン側ラック歯部と噛合している。
 一対のシリンダ連結ピン454A、454Bは、図9及び図10A~図10Cに示すように、それぞれの中心軸が左右方向に一致し、且つ、互いに同軸である。一対のシリンダ連結ピン454A、454Bはそれぞれ、第一ピンの一例に該当する。
 右側のシリンダ連結ピン454Aは、外周面にピン側ラック歯部を有する。右側のシリンダ連結ピン454Aのピン側ラック歯部は、第一歯車機構452と噛合している。左側のシリンダ連結ピン454Bは、外周面にピン側ラック歯部を有する。左側のシリンダ連結ピン454Bのピン側ラック歯部は、第二歯車機構453と噛合している。
 以上のような構成を有する右側のシリンダ連結ピン454Aは、トラニオン40の右側壁部に支持されている。右側のシリンダ連結ピン454Aの軸方向(左右方向)への移動は、トラニオン40の右側壁部により案内される。
 左側のシリンダ連結ピン454Bは、トラニオン40の左側壁部に支持されている。左側のシリンダ連結ピン454Bの軸方向への移動は、左側壁部により案内される。右側のシリンダ連結ピン454Aは、第一歯車機構452の回転に応じて、自身の軸方向に移動する。具体的には、右側のシリンダ連結ピン454Aは、シリンダ連結機構45が縮小状態(図10C参照)から拡張状態(図10A参照)に遷移する際に右側(外側)に移動する。一方、右側のシリンダ連結ピン454Aは、拡張状態(図10A参照)から縮小状態(図10C参照)に遷移する際に左側(内側)に移動する。
 左側のシリンダ連結ピン454Bは、第二歯車機構453の回転に応じて、自身の軸方向に移動する。具体的には、左側のシリンダ連結ピン454Bは、シリンダ連結機構45が縮小状態(図10C参照)から拡張状態(図10A参照)に遷移する際、左側に移動する。一方、左側のシリンダ連結ピン454Bは、拡張状態(図10A参照)から縮小状態(図10C参照)に状態遷移する際、右側に移動する。
 シリンダ連結ピン454A、454Bの収縮状態から、シリンダ連結ピン454A、454Bが外側に移動すると、シリンダ連結ピン454A、454Bの先端部が、トラニオン40の左右方向における両側面よりも外側に突出する。シリンダ連結ピン454A、454Bが最も外側に移動した状態を、シリンダ連結ピン454A、454Bの拡張状態と称する。シリンダ連結ピン454A、454Bは、拡張状態において、ブームのシリンダピン受部と係合する。
 第一付勢機構455は、シリンダ連結機構45の縮小状態において、電動モータ41が非通電状態となった場合に、シリンダ連結機構45を拡張状態に復帰させる。換言すれば、第一付勢機構455は、シリンダ連結機構45の縮小状態において、電動モータ41が非通電状態(停止状態)となり且つブレーキ機構42がOFF状態になった場合に、一対のシリンダ連結ピン454A、454Bを基準位置に復帰させる。
 具体的には、第一付勢機構455は、第一ばねの一例に該当し、一対のコイルばね455a、455b(図10A~図10C参照)を有する。右側のコイルばね455aは、右側のシリンダ連結ピン454Aを常時付勢している。右側のコイルばね455aがシリンダ連結ピン454Aを付勢する方向は、シリンダ連結ピン454Aの基端部から先端部に向かう方向(右側)に一致する。
 左側のコイルばね455bは、左側のシリンダ連結ピン454Bを常時付勢している。左側のコイルばね455bが左側のシリンダ連結ピン454Bを付勢する方向は、シリンダ連結ピン454Bの基端部から先端部に向かう方向(左側)に一致する。以上のような第一付勢機構455の構成は、ピン移動機構4の小型化に寄与する。尚、コイルばね455a、455bの配置は、本実施形態の配置に限定されない。シリンダ連結機構45の動作については後述する。
 <ブーム連結機構>
 ブーム連結機構46は、電動モータ41の回転に基づいて、拡張状態(図11A参照)と縮小状態(図11C参照)との間を遷移する。ブーム連結機構46が拡張状態から縮小状態に遷移する動作は、ブーム連結機構46の抜き動作である。ブーム連結機構46が縮小状態から拡張状態に遷移する動作は、ブーム連結機構46の入り動作である。
 ブーム連結機構46は、拡張状態において、ブーム連結ピン(例えば、一対のブーム連結ピン144a)に対する係合状態及び離脱状態の何れか一方の状態を取り得る。ブーム連結機構46は、ブーム連結ピンと係合した状態で、拡張状態から縮小状態に遷移することにより、ブーム連結ピンをブームから離脱させる。ブーム連結ピンは、第二ピンの一例に該当する。
 又、ブーム連結機構46は、ブーム連結ピンと係合した状態で、縮小状態から拡張状態に状態遷移することにより、ブーム連結ピンをブームに係合する。ブーム連結機構46は、図9及び図11A~図11Cに示すように、スイッチギヤ450、一対の第二ラックバー461a、461b、同期歯車462、及び、第二付勢機構463を有する。スイッチギヤ450は、シリンダ連結機構45と共通のギヤである。
 一対の第二ラックバー461a、461bはそれぞれ、例えば左右方向に長い軸部材であって、前後方向に離間した状態で平行に配置されている。一対の第二ラックバー461a、461bはそれぞれ、シリンダ連結機構45の第一ラックバー451よりも上側に配置されている。
 一対の第二ラックバー461a、461bはそれぞれ、対向する面に同期用ラック歯部を有する。同期用ラック歯部はそれぞれ、同期歯車462(図11A~図11C参照)に噛合している。同期歯車462が回転すると、一方(前側)の第二ラックバー461aと他方(後側)の第二ラックバー461bとは、左右方向において反対方向に移動する。
 一対の第二ラックバー461a、461bはそれぞれ、先端部に、係止爪部461g、461h(図9参照)を有する。係止爪部461g、461hは、ブーム連結ピン(例えば、ブーム連結ピン144a、144b)を移動させる際、ブーム連結ピンに設けられたピン側受部144c(図9参照)に係合する。
 一方の第二ラックバー461aは、スイッチギヤ450に対向する面に、駆動用ラック歯部461c(図9参照)を有する。駆動用ラック歯部461cは、スイッチギヤ450が第二方向(図9の矢印Aが示す方向)に所定量回転した場合にスイッチギヤ450の歯部と噛合する。
 ブーム連結機構46の拡張状態から、スイッチギヤ450が第二方向に所定量回転すると、駆動用ラック歯部461cとスイッチギヤ450の歯部とが噛合する。スイッチギヤ450が第二方向に更に回転すると、駆動用ラック歯部461cとスイッチギヤ450の歯部との噛合に基づいて、一方の第二ラックバー461aが右側に移動する。又、一方の第二ラックバー461aが右側に移動すると、同期歯車462が回転して、他方の第二ラックバー461bが左側に移動する。
 第二付勢機構463は、ブーム連結機構46の縮小状態において、電動モータ41が非通電状態となり且つブレーキ機構42がOFF状態となった場合に、ブーム連結機構46を拡張状態に復帰させる。第二付勢機構463は、一対の第二ラックバー461a、461bを、互いに離れる方向に付勢している。
 具体的には、第二付勢機構463は、一対のコイルばね463a、463b(図11A~図11C参照)により構成されている。一対のコイルばね463a、463bはそれぞれ、一対の第二ラックバー461a、461bの基端部を、先端側に向けて付勢している。
 <連結機構の動作>
 以下、上述のシリンダ連結機構45及びブーム連結機構46の動作の一例について説明する。
 <シリンダ連結機構の動作>
 図2A~図2E及び図10A~図10Cを参照しつつ、シリンダ連結機構45の動作の一例について説明する。シリンダ連結機構45の動作は、シリンダ連結機構45が電動モータ41の動力に基づいて拡張状態から縮小状態に遷移する際の動作、及び、第一付勢機構455の付勢力に基づいて縮小状態から拡張状態に遷移する際の動作である。
 図10Aは、シリンダ連結機構45の拡張状態、且つ、一対のシリンダ連結ピン454A、454Bと先端ブーム141の一対のシリンダピン受部141aとの係合状態を示す模式図である。図10Bは、シリンダ連結機構45が拡張状態から縮小状態へと遷移する途中の状態を示す模式図である。更に、図10Cは、シリンダ連結機構45の縮小状態、且つ、一対のシリンダ連結ピン454A、454Bと先端ブーム141の一対のシリンダピン受部141aとの離脱状態を示す模式図である。
 図10Aに示すシリンダ連結機構45の拡張状態は、図2A~図2Dにおけるシリンダ連結機構45の状態に対応する。図10Bに示すシリンダ連結機構45の状態は、図2Dに示すシリンダ連結機構45の状態から図2Eに示すシリンダ連結機構45の状態に遷移する途中の状態に対応する。図10Cに示すシリンダ連結機構45の縮小状態は、図2Eに示すシリンダ連結機構45の状態に対応する。
 シリンダ連結機構45が拡張状態から縮小状態へと遷移する際、制御部530(図10A~図11C参照)は、電動モータ41を駆動する。電動モータ41の動力は、以下の第一伝達経路及び第二伝達経路で一対のシリンダ連結ピン454A、454Bに伝達される。尚、制御部530は、実体的には、CPU、ROM、RAM、及びHDD等がバスで接続される構成、又は、ワンチップのLSI等からなる構成であってよい。
 第一伝達経路は、下記の順に電動モータ41の動力が伝達される経路である。
 (第一伝達経路) スイッチギヤ450→第一ラックバー451→第一歯車機構452→右側のシリンダ連結ピン454A
 第二伝達経路は、下記の順に電動モータ41の動力が伝達される経路である。
 (第二伝達経路) スイッチギヤ450→第一ラックバー451→第二歯車機構453→左側のシリンダ連結ピン454B
 具体的には、先ず、第一伝達経路及び第二伝達経路において、電動モータ41の動力に基づいて、スイッチギヤ450が第一方向(図10Aの矢印Aが示す方向)に回転する。この際、上下伝達機構432の下側伝達軸432bは、スイッチギヤ450とともに第一方向に回転する。
 第一伝達経路において、スイッチギヤ450が第一方向に回転すると、当該回転に応じて、第一ラックバー451が右側に移動する。そして、第一伝達経路において、第一ラックバー451が右側に移動すると、第一歯車機構452を介して、右側のシリンダ連結ピン454Aが左側に移動する。一方、第二伝達経路において、第一ラックバー451が右側に移動すると、第二歯車機構453を介して、左側のシリンダ連結ピン454Bが右側に移動する。
 後述の位置情報検出装置5は、一対のシリンダ連結ピン454A、454Bが、先端ブーム141の一対のシリンダピン受部141aから離脱し、且つ、所定の位置(例えば、図10Cに示す位置)まで移動したことを検出する。換言すれば、位置情報検出装置5は、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン(例えば、ブーム連結ピン144a)それぞれの状態の組み合わせを検出する。そして、検出結果に基づいて、制御部530(図10A~図11C参照)は、ブレーキ機構42をONにしつつ電動モータ41をOFF状態にして、シリンダ連結機構45の作動を停止する。
 又、シリンダ連結機構45の縮小状態から拡張状態への遷移は、電動モータ41の非通電状態においてブレーキ機構42がOFF状態となった場合に、第一付勢機構455の付勢力に基づいて自動的に行われる。
 <ブーム連結機構の動作>
 次に、図2A~図2E及び図11A~図11Cを参照しつつ、上述のブーム連結機構46の動作の一例について説明する。
 図11Aは、ブーム連結機構46の拡張状態、且つ、一対のブーム連結ピン144aと中間ブーム142の一対の第一ブームピン受部142bとの係合状態を示す模式図である。図11Bは、ブーム連結機構46が拡張状態から縮小状態へ状態遷移する途中の状態を示す模式図である。更に、図11Cは、ブーム連結機構46の縮小状態、且つ、一対のブーム連結ピン144aと中間ブーム142の一対の第一ブームピン受部142bとの離脱状態を示す模式図である。
 図11Aに示すブーム連結機構46の拡張状態は、図2Aにおけるブーム連結機構46の状態に対応する。図11Bに示すブーム連結機構46の状態は、図2Aに示すブーム連結機構46の状態から図2Bに示すブーム連結機構46の状態に遷移する途中の状態に対応する。図11Cに示すブーム連結機構46の縮小状態は、図2Bに示すブーム連結機構46の状態に対応する。
 ブーム連結機構46は、電動モータ41の動力に基づいて、拡張状態と縮小状態との間を遷移する。ここで、図11Aに示すスイッチギヤ450の位置を、スイッチギヤ450の基準位置と定義する。
 ブーム連結機構46が拡張状態から縮小状態へ遷移する際、制御部530(図10A~図11C参照)は、シリンダ連結機構45を作動させる場合と逆方向に電動モータ41を駆動する。電動モータ41の動力は、以下の経路で伝達される。
 (伝達経路)スイッチギヤ450→一方の第二ラックバー461a→同期歯車462→他方の第二ラックバー461b
 先ず、上記伝達経路において、電動モータ41の動力に基づいて、スイッチギヤ450がスイッチギヤ450の回転方向における第二方向(図11Aの矢印Aが示す方向)に回転する。この際、上下伝達機構432の下側伝達軸432bは、スイッチギヤ450とともに第二方向に回転する。スイッチギヤ450が第二方向に回転すると、当該回転に応じて、一方の第二ラックバー461aが右側に移動する。
 すると、一方の第二ラックバー461aの右側への移動に応じて、同期歯車462が回転する。そして、同期歯車462の回転に応じて、他方の第二ラックバー461bが左側に移動する。
 一対の第二ラックバー461a、461bが一対のブーム連結ピン144aと係合した状態で、拡張状態から縮小状態に状態遷移すると、一対のブーム連結ピン144aは、中間ブーム142の一対の第一ブームピン受部142bから離脱する(図11C参照)。
 後述の位置情報検出装置5は、一対のブーム連結ピン144aが、中間ブーム142の一対の第一ブームピン受部142bから離脱し、且つ、所定の位置(例えば、図11Cに示す位置)まで移動したことを検出する。そして、この検出結果に基づいて、制御部530は、ブレーキ機構42をONにしつつ電動モータ41をOFF状態にして、ブーム連結機構46の作動を停止する。
 尚、ブーム連結機構46の入り動作は、電動モータ41の非通電状態においてブレーキ機構42がOFF状態になると、第二付勢機構463の付勢力に基づいて自動的に行われる。この状態遷移の際、一対のブーム連結ピン144a同士が互いに離れる方向に移動する。
 後述の位置情報検出装置5は、一対のブーム連結ピン144aが、中間ブーム142の一対の第一ブームピン受部142bに係合し、且つ、所定の位置(例えば、図11Aに示す位置)まで移動したことを検出する。検出結果は、アクチュエータ2における次の動作の制御に用いられる。
 位置情報検出装置5は、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出する。換言すれば、位置情報検出装置5は、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン(例えば、ブーム連結ピン144a)それぞれの状態の組み合わせを検出する。
 先ず、位置情報検出装置5の構成について説明する。位置情報検出装置5は、サポート50、第一検出装置51、第二検出装置52、及びカバー部材54を有する。
 第一検出装置51及び第二検出装置52は、サポート50により、トラニオン40に支持されている。第一検出装置51と第二検出装置52とは、互いに異なる検出方法により、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出する。
 通常時において、第一検出装置51と第二検出装置52とのうち一方の検出装置のみが、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出する。そして、例えば、制御部530(図10A~図11C参照)が上記一方の検出装置の故障(異常)を検知した場合に、第一検出装置51と第二検出装置52とのうち他方の検出装置が、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出する。
 上記一方の検出装置が第二検出装置52であり、上記他方の検出装置が第一検出装置51であると好ましい。但し、上記一方の検出装置が第一検出装置51であり、上記他方の検出装置が第二検出装置52であってもよい。又、通常時において、第一検出装置51及び第二検出装置52が、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出してもよい。
 本実施形態の場合、通常時において、第一検出装置51及び第二検出装置52が、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの状態の組み合わせを検出している。そして、制御部530は、第二検出装置52の検出結果に基づいて、伸縮式ブーム14の伸縮動作を制御する。
 尚、第一検出装置51及び第二検出装置52はそれぞれ、単独では自身の故障(異常)を検出することはできない。このため、制御部530は、第一検出装置51の検出値と第二検出装置52の検出値との間に矛盾(例えば、所定値以上のずれ)が存在する場合に、第一検出装置51及び第二検出装置52の少なくとも一方の検出装置に故障(異常)が生じたと判定してもよい。
 又、制御部530は、通常時の制御において、第二検出装置52の検出値に基づいて一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出しつつ、第一検出装置51及び第二検出装置52の検出値に基づいて検出装置の故障判定を行ってもよい。故障判定の方法(異常検出制御)の説明は後述する。
 この際、第一検出装置51は、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出してもよいし、しなくてもよい。又、制御部530は、故障判定により第二検出装置52に故障(異常)が発生したことを特定できた場合には、第一検出装置51の検出値に基づいて一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出してもよい。
 サポート50は、第一検出装置51及び第二検出装置52を、トラニオン40に支持する部材である。サポート50は、トラニオン40に固定されている。具体的には、サポート50は、トラニオン40の後側面(X方向-側の側面)に固定されている。
 サポート50は、右側板501、左側板502、後側板503、右側固定板504、及び左側固定板505を有する。右側板501は、XZ平面に平行な板状である。左側板502は、XZ平面に平行な板状である。右側板501と左側板502とは、左右方向(Y方向)において離間し且つ対向している。右側板501及び左側板502はそれぞれ、第一板部の一例に該当する。
 後側板503は、第二板部の一例に該当し、YZ平面に平行な板状である。後側板503は、右側板501の後端部(X方向-側の端部)と左側板502の後端部(X方向-側の端部)とを、左右方向に接続している。つまり、サポート50は、上下方向に開口し、且つ、前方に開口したU字の板状部材である。サポート50の右側板501、左側板502、及び後側板503により囲まれた空間は、収容空間506である。収容空間506は、サポート50により画定される空間と捉えてもよい。
 右側固定板504は、YZ平面に平行な板状である。右側固定板504は、右側板501の前端部に固定されている。
 左側固定板505は、YZ平面に平行な板状である。左側固定板505は、左側板502の前端部に固定されている。
 サポート50の前端部(右側板及び左側板の前端部)は、右側固定板504及び左側固定板505を介して、トラニオン40の後側面に固定されている。この状態で、右側固定板504及び左側固定板505はそれぞれ、トラニオン側の被固定部400に挿通された位置決めピン507により、トラニオン40に対して位置決めされている。このような構成は、サポート50をトラニオン40に組み付ける際の組み付け作業効率の向上に寄与する。
 又、サポート50の右側板501と左側板502との間に、下側伝達軸432bが配置されている。つまり、下側伝達軸432bは、収容空間506に配置されている。右側板501及び左側板502と下側伝達軸432bとは平行である。
 第一検出装置51は、第一被検出体510、第二被検出体511、第一センサ512、第二センサ513、及び第三センサ514を有する。第一検出装置51は、サブ検出装置の一例に該当する。第一検出装置51は、第一センサ512、第二センサ513、及び第三センサ514の出力(検出値)の組み合わせに基づいて、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出する。
 第一被検出体510は、中心孔に下側伝達軸432bが挿通された状態で、下側伝達軸432bに固定されている。つまり、第一被検出体510は、収容空間506に配置されている。第一被検出体510は、下側伝達軸432bとともに回転する。第一被検出体510は、外周面に、第一円筒面510a及び第一平坦面510bを有する。
 第一円筒面510aは、第一被検出体の第一被検出面の一例に該当する。第一円筒面510aは、第一被検出体510の外周面の一部(第一部分とも称する。)に設けられた、所定の外径を有する円筒面である。又、第一平坦面510bは、第一被検出体の第二被検出面の一例に該当する。第一平坦面510bは、第一被検出体510の外周面の残部(第二部分とも称する。)に設けられた、平坦面である。第一被検出体の第一被検出面及び第一被検出体の第二被検出面の形状は、本実施形態の形状に限定されない。第一被検出体の第一被検出面及び第一被検出体の第二被検出面の形状は、互いに区別可能な形状(つまり、異なる形状)であればよい。
 第一被検出体510は、図13に示すように、中立状態において、第一円筒面510aが下半部に配置され、且つ、第一平坦面510bが上半部に配置される。第一被検出体510の中立状態は、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144a(図2A~図2E参照)の入り状態に対応する。
 第二被検出体511は、中心孔に下側伝達軸432bが挿通された状態で、下側伝達軸432bに固定されている。つまり、第二被検出体511は、収容空間506に配置されている。第二被検出体511は、下側伝達軸432bとともに回転する。又、第二被検出体511は、第一被検出体510よりも前側に配置されている。第二被検出体511は、外周面に、第二円筒面511a及び第二平坦面511bを有する。
 第二円筒面511aは、第二被検出体の第一被検出面の一例に該当する。第二円筒面511a、第二被検出体511の外周面の一部(第一部分とも称する。)に設けられた、所定の外径を有する円筒面である。又、第二平坦面511bは、第二被検出体の第二被検出面の一例に該当する。第二平坦面511bは、第二被検出体511の外周面の残部(第二部分とも称する。)に設けられた、平坦面である。第二被検出体の第一被検出面及び第二被検出体の第二被検出面の形状は、本実施形態の形状に限定されない。第二被検出体の第一被検出面及び第二被検出体の第二被検出面の形状は、互いに区別可能な形状(つまり、異なる形状)であればよい。
 第二被検出体511は、図13に示すように、中立状態において、第二円筒面511aが左半部に配置され、且つ、第二平坦面511bが右半部に配置される。第二被検出体511の中立状態は、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144a(図2A~図2E参照)の入り状態に対応する。第二被検出体511の中立状態は、図10A及び図11Aに示すように、シリンダ連結機構45の拡張状態、且つ、ブーム連結機構46の拡張状態に対応する。
 第一センサ512、第二センサ513、及び第三センサ514はそれぞれ、第一検出部の一例に該当し、非接触式の近接センサである。第一センサ512、第二センサ513、及び第三センサ514はそれぞれ、サポート50に支持されている。
 具体的には、第一センサ512は、サポート50の右側板501に支持されている。第一センサ512の先端部は、左右方向において、第一被検出体510の外周面と対面している。第一センサ512は、第一被検出体510の外周面との距離に応じた電気信号を出力する。
 例えば、第一センサ512の出力は、第一被検出体510の第一円筒面510aと対向する状態で、ONとなる。一方、第一センサ512の出力は、第一被検出体510の第一平坦面510bと対向する状態で、OFFとなる。
 第二センサ513は、サポート50の左側板502に支持されている。第二センサ513の先端部は、左右方向において、第一被検出体510の外周面と対面している。第一センサ512と第二センサ513とは、左右方向に対向している。第二センサ513は、第一被検出体510の外周面との距離に応じた電気信号を出力する。
 例えば、第二センサ513の出力は、第一被検出体510の第一円筒面510aと対向する状態で、ONとなる。一方、第一センサ512の出力は、第一被検出体510の第一平坦面510bと対向する状態で、OFFとなる。
 第三センサ514は、サポート50の右側板501に支持されている。第三センサ514は、サポート50の右側板501において、第一センサ512よりも前側に配置されている。第三センサ514の先端部は、左右方向において、第二被検出体511の外周面と対面している。第三センサ514は、第二被検出体511の外周面との距離に応じて電気信号を出力する。尚、第三センサ514は、サポート50の左側板502に支持されてもよい。第三センサ514の位置は、図示の場合に限定されない。
 例えば、第三センサ514の出力は、第二被検出体511の第二円筒面511aと対向する状態で、ONとなる。一方、第三センサ514の出力は、第二被検出体511の第二平坦面511bと対向する状態で、OFFとなる。
 第二検出装置52は、非接触式のポテンショメータであって、被検出体520及びセンサ521を有する。第二検出装置52は、メイン検出装置の一例に該当する。被検出体520は、磁石であって、中心孔に下側伝達軸432bの後端部が挿通された状態で、下側伝達軸432bに固定されている。よって、被検出体520は、下側伝達軸432bとともに回転する。又、被検出体520は、第一検出装置51の第一被検出体510よりも後側に配置されている。
 センサ521は、第二検出部の一例に該当し、ホール素子を有しており、サポート50の後側板503に支持されている。
 以上のように、本実施形態の場合、第一検出装置51の第一センサ512、第二センサ513、及び第三センサ514、並びに、第二検出装置52のセンサ521が、サポート50に支持されている。換言すれば、サポート50は、第一検出装置51の第一センサ512、第二センサ513、及び第三センサ514、並びに、第二検出装置52のセンサ521を、ユニット化している。よって、サポート50をトラニオン40から取り外すことにより、各センサ512、513、514、521をまとめて、トラニオン40から取り外すことができる。このような構成は、組み立て作業効率の向上、及び、メンテナンス作業効率の向上に寄与する。
 又、各センサ512、513、514、521の検出面は、サポート50により囲まれた収容空間506に配置されている。このような構成は、各センサ512、513、514、521の検出面の損傷を抑制できる。
 センサ521は、前後方向において、被検出体520と対向している。センサ521は、被検出体520の位相に応じた電圧(図15参照)を出力する。つまり、センサ521は、被検出体520が固定された下側伝達軸432bの回転角度に応じた電圧を出力する。
 本実施形態の場合、第一検出装置51が位置に関する情報を検出する方法(検出方式)と、第二検出装置52が位置に関する情報を検出する方法(検出方式)とが異なる。つまり、本実施形態に係るピン移動機構4は、一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出するための、互いに検出方法が異なる2系統の検出機構を有する。尚、第二検出装置は、接触式のポテンショメータであっても良いし、エンコーダであってもよい。
 カバー部材54は、例えば、矩形状であり、XY平面に平行な板部材である。カバー部材54は、図7及び図8に示すように、サポート50の上側の開口部を、上方から覆っている。尚、図6において、カバー部材54は省略されている。
 カバー部材54は、サポート50の上端部、又は、トラニオン40に固定されている。このようなカバー部材54は、サポート50の上側の開口部から収容空間506に、異物が侵入することを抑制している。尚又、図7及び図8に示すように、サポート50の下側の開口部は、伸縮シリンダ3(具体的には、ロッド部材31)の表面と、所定の距離を空けて対向している。このような構成は、サポート50の下側の開口部から収容空間506に、異物が侵入することを抑制している。
 例えば、第一検出装置51の第一センサ512、第二センサ513、及び第三センサ514の検出面に異物が付着すると、各センサ512、513、514に誤検出が発生して、検出結果の信頼性が低下してしまう可能性がある。本実施形態の場合、サポート50の上側及び下側の開口部から収容空間506に異物が侵入することを抑制さているため、第一検出装置51及び第二検出装置52の検出結果の信頼性を確保できる。
 又、収容空間506の下側開口部が伸縮シリンダ3の表面と対向しているため、仮に第一検出装置51の第一被検出体510及び第二被検出体511、又は、第二検出装置52の被検出体520が、下側伝達軸432bから脱落した場合でも、各被検出体510、511、520の下方への脱落を抑制できる。
 以上のような位置情報検出装置5は、通常時において、第一検出装置51及び第二検出装置52が、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144aの位置に関する情報を検出する。そして、第二検出装置52の検出結果に基づいて、伸縮式ブーム14の伸縮動作を制御する。又、制御部530は、第二検出装置52の故障(異常)を検知した場合に、第一検出装置51の検出結果に基づいて伸縮式ブーム14の伸縮動作を制御する。尚、通常時、第二検出装置52のみが、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144aの位置に関する情報を検出してもよい。この場合、制御部530が第二検出装置52の故障(異常)を検知した場合に、制御部530は、第一検出装置51による一対のシリンダ連結ピン454A、454B及びブーム連結ピン144aの位置に関する情報の検出を開始してもよい。
 ここで、図12及び図13を参照しつつ、位置情報検出装置5の動作について説明する。図12は、伸縮式ブーム14における先端ブーム141の伸長動作の際のタイミングチャートである。又、図13は、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144aの状態と、第一検出装置51及び第二検出装置52の状態との関係を示す図である。
 以下、伸縮式ブーム14における先端ブーム141の伸長動作についてのみ説明する。尚、先端ブーム141の収縮動作は、以下の伸縮動作の手順とは逆である。
 以下の説明において、シリンダ連結機構45及びブーム連結機構46の拡張状態と縮小状態との間の状態遷移は、前述の通りである。このため、シリンダ連結機構45及びブーム連結機構46の状態遷移に関する詳しい説明は省略する。
 又、制御部(不図示)は、位置情報検出装置5の出力に基づいて、電動モータ41のON/OFFの切り換え及びブレーキ機構42のON/OFFの切り換えを制御する。
 図2Aは、伸縮式ブーム14の収縮状態を示している。この状態では、先端ブーム141は、中間ブーム142に対してブーム連結ピン144aを介して連結される。従って、先端ブーム141は、中間ブーム142に対して長手方向(図2の左右方向)に変位不能である。
 又、図2Aにおいて、一対のシリンダ連結ピン454A、454Bの先端部が、先端ブーム141の一対のシリンダピン受部141aに係合する。つまり、先端ブーム141とシリンダ部材32は、連結状態である。
 図2Aの状態では、各部材の状態は以下となる(図12のT~T参照)。
 ブレーキ機構42         :OFF
 電動モータ41          :OFF
 シリンダ連結機構45       :拡張状態
 ブーム連結機構46        :拡張状態
 シリンダ連結ピン454A、454B:入り状態
 ブーム連結ピン144a      :入り状態
 図2Aに示す状態で、位置情報検出装置5の第一検出装置51及び第二検出装置52は、図13に示すように、中立状態である。第一検出装置51及び第二検出装置52の中立状態において、シリンダ連結ピン454A、454Bが入り状態、且つ、ブーム連結ピン144aが入り状態となる。この状態の組み合わせは、シリンダ連結ピン及びブーム連結ピンの状態の組み合わせにおける第一組である。
 第一検出装置51の中立状態において、第一センサ512及び第二センサ513は、第一被検出体510の第一円筒面510aと対向している。よって、第一センサ512及び第二センサ513の出力は、ONである。一方、第一検出装置51の中立状態において、第三センサ514は、第二被検出体511の第二平坦面511bと対向している。よって、第三センサ514の出力は、OFFである。
 第一検出装置51は、第一センサ512及び第二センサ513の出力がONであり、且つ、第三センサ514の出力がOFFである場合に、一対のシリンダ連結ピン454A、454Bが入り状態であり、且つ、ブーム連結ピン144aが入り状態であることを検出する。第一検出装置51の中立状態において、スイッチギヤ450は、図10A及び図11Aに示す基準位置に位置している。
 又、第二検出装置52の中立状態において、被検出体520の回転角度は0度である。第二検出装置52の中立状態において、センサ521は、中立状態に対応する所定の電圧(以下、中立電圧と称する。)を出力するように構成されている。第二検出装置52の中立状態において、スイッチギヤ450は、図10A及び11Aに示す基準位置に位置している。
 第二検出装置52は、センサ521の出力が中立電圧である場合、一対のシリンダ連結ピン454A、454Bが入り状態であり、且つ、ブーム連結ピン144aが入り状態であることを検出する。
 次に、図2Aに示す状態において、電動モータ41を正転させて(図11Aの矢印Aが示す方向に回転させて)、アクチュエータ2のブーム連結機構46により、一対のブーム連結ピン144aを中間ブーム142の一対の第一ブームピン受部142bから離脱する方向に変位させる。この際、ブーム連結機構46が、拡張状態から縮小状態へと状態遷移する。
 図2A~図2Bへの状態遷移の際の、各部材の状態は以下となる(図12のT~T参照)。
 ブレーキ機構42         :OFF
 電動モータ41          :ON(正転)
 シリンダ連結機構45       :拡張状態
 ブーム連結機構46        :拡張状態→縮小状態
 シリンダ連結ピン454A、454B:入り状態
 ブーム連結ピン144a      :入り状態→抜き状態
 ブーム連結ピン144aが入り状態から抜き状態へと状態遷移している場合、位置情報検出装置5の第一検出装置51及び第二検出装置52は、図13に示すように、下側伝達軸432bの回転に応じて、中立状態から第二状態に向けて状態遷移する。
 第一検出装置51が中立状態から第二状態に向けて状態遷移している場合、第一センサ512は、第一被検出体510の第一円筒面510aと対向する。よって、第一センサ512の出力は、ONである。一方、第二センサ513は、第一被検出体510の第一平坦面510bと対向する。よって、第二センサ513の出力はOFFである。
 又、第一検出装置51が中立状態から第二状態に向けて状態遷移している場合、第三センサ514は、第二被検出体511の第二平坦面511bと対向する。よって、第三センサ514の出力は、OFFである。
 このように、第一検出装置51は、第一センサ512の出力がONであり、且つ、第二センサ513の出力がOFFであり、且つ、第三センサ514の出力がOFFである場合に、ブーム連結ピン144aが入り状態から抜き状態に遷移していることを検出する。
 そして、ブーム連結ピン144aが抜き状態になると、第一検出装置51は、第二状態となる。逆に言うと、第一検出装置51が第二状態になると、ブーム連結ピン144aが抜き状態(図2Bに示す状態)となる。
 第一検出装置51の第二状態において、第一センサ512は、第一被検出体510の第一円筒面510aと対向している。よって、第一センサ512の出力は、ONである。一方、第一検出装置51の第二状態において、第二センサ513は、第一被検出体510の第一平坦面510bと対向している。よって、第二センサ513の出力はOFFである。
 又、第一検出装置51の第二状態において、第三センサ514は、第二被検出体511の第二円筒面511aと対向している。よって、第三センサ514の出力は、ONである。
 このように、第一検出装置51は、第一センサ512の出力がONであり、且つ、第二センサ513の出力がOFFであり、且つ、第三センサ514の出力がONである場合に、ブーム連結ピン144aが抜き状態になったことを検出する。
 第二検出装置52が中立状態から第二状態に向けて状態遷移している場合、センサ521の出力は、被検出体520の位相に応じて変化する。ここで、センサ521は、第二状態に対応する所定の電圧(以下、第二電圧と称する。)を出力するように構成されている。よって、第二検出装置52が中立状態から第二状態に向けて状態遷移している場合、センサ521の出力は、中立電圧から第二電圧に向けて変化する。第二検出装置52は、センサ521の出力が、中立電圧から第二電圧に向けて変化している場合に、ブーム連結ピン144aが入り状態から抜き状態に遷移していることを検出する。
 そして、ブーム連結ピン144aが抜き状態になると、第二検出装置52は、第二状態となる。逆に言うと、第二検出装置52が第二状態になると、ブーム連結ピン144aが抜き状態になる。第二検出装置52の第二状態において、センサ521の出力は、第二電圧となる。第二検出装置52は、センサ521の出力が第二電圧となった場合に、ブーム連結ピン144aが抜き状態になったことを検出する。
 ブーム連結ピン144aが抜き状態になると、一対のブーム連結ピン144aと、中間ブーム142の一対の第一ブームピン受部142bとの係合が解除される(図2B参照)。制御部は、第一検出装置51及び/又は第二検出装置52が、ブーム連結ピン144aが抜き状態になったことを検出した場合に、ブレーキ機構42をONにしつつ電動モータ41をOFF状態にして、ブーム連結機構46の作動を停止する。
 尚、電動モータ41をOFFにするタイミングと、ブレーキ機構42をONにするタイミングは、制御部により適宜制御される。例えば、図示は省略するが、ブレーキ機構42をONにした後、電動モータ41をOFFにする。
 図2Bの状態では、各部材の状態は以下となる(図12のT参照)。
 ブレーキ機構42         :ON
 電動モータ41          :OFF
 シリンダ連結機構45       :拡張状態
 ブーム連結機構46        :縮小状態
 シリンダ連結ピン454A、454B:入り状態
 ブーム連結ピン144a      :抜き状態
 第一検出装置51及び第二検出装置52の第二状態(図13参照)において、シリンダ連結ピン454A、454Bが入り状態、且つ、ブーム連結ピン144aが抜き状態となる。この状態の組み合わせは、シリンダ連結ピン及びブーム連結ピンの状態の組み合わせにおける第二組である。
 次に、図2Bに示す状態において、アクチュエータ2の伸縮シリンダ3における伸側の油圧室に圧油を供給する。すると、シリンダ部材32が、伸長方向(図2の左側)に変位する。
 上述のようなシリンダ部材32の変位とともに、先端ブーム141が伸長方向に変位する(図2C参照)。この際、各部の状態は、図12のTの状態がTまで維持される。
 次に、図2Cに示す状態において、ブレーキ機構42を解除する。すると、第二付勢機構463の付勢力に基づいて、ブーム連結機構46は、一対のブーム連結ピン144aを中間ブーム142の一対の第二ブームピン受部142cに係合させる方向に変位させる。この際、ブーム連結機構46は、縮小状態から拡張状態へと状態遷移(つまり、自動復帰)する。
 図2C~図2Dへの状態遷移の際の、各部材の状態は以下となる(図12のT~T参照)。
 ブレーキ機構42         :OFF
 電動モータ41          :OFF
 シリンダ連結機構45       :拡張状態
 ブーム連結機構46        :縮小状態→拡張状態
 シリンダ連結ピン454A、454B:入り状態
 ブーム連結ピン144a      :抜き状態→入り状態
 ブーム連結ピン144aが抜き状態から入り状態へと状態遷移している場合、位置情報検出装置5の第一検出装置51及び第二検出装置52は、図13に示すように、下側伝達軸432bの回転に応じて、第二状態から中立状態に向けて状態遷移する。
 第一検出装置51が第二状態から中立状態に向けて状態遷移している場合、第一センサ512は、第一被検出体510の第一円筒面510aと対向している。よって、第一センサ512の出力は、ONである。一方、第二センサ513は、第一被検出体510の第一平坦面510bと対向している。よって、第二センサ513の出力はOFFである。
 又、第一検出装置51が第二状態から中立状態に向けて状態遷移している場合、第三センサ514は、第二被検出体511の第二平坦面511bと対向している。よって、第三センサ514の出力は、OFFである。
 そして、ブーム連結ピン144aが入り状態になると、第一検出装置51は、中立状態となる。逆に言うと、第一検出装置51が中立状態になると、ブーム連結ピン144aが入り状態(図2Dに示す状態)となる。第一検出装置51の中立状態における、第一センサ512、第二センサ513、及び第三センサ514の状態は既述の通りである。
 このように、第一検出装置51は、第一センサ512の出力がONであり、且つ、第二センサ513の出力がONであり、且つ、第三センサ514の出力がOFFである場合に、ブーム連結ピン144aが中立状態になったことを検出する。
 又、第二検出装置52が第二状態から中立状態に向けて状態遷移している場合、センサ521の出力は、被検出体520の位相に応じて、第二電圧から中立電圧に向けて変化する。第二検出装置52は、センサ521の出力が、第二電圧から中立電圧に向けて変化している場合に、ブーム連結ピン144aが抜き状態から入り状態に遷移していることを検出する。
 そして、ブーム連結ピン144aが入り状態になると、第二検出装置52は、中立状態となる。第二検出装置52の中立状態において、センサ521の出力は、中立電圧となる。第二検出装置52は、センサ521の出力が中立電圧となった場合に、ブーム連結ピン144aが入り状態になったことを検出する。
 この状態で、図2Dに示すように、一対のブーム連結ピン144aが、中間ブーム142の一対の第二ブームピン受部142cに係合する。
 図2Dに示す状態における、各部材の状態は以下となる(図12のT参照)。
 ブレーキ機構42         :OFF
 電動モータ41          :OFF
 シリンダ連結機構45       :拡張状態
 ブーム連結機構46        :拡張状態
 シリンダ連結ピン454A、454B:入り状態
 ブーム連結ピン144a      :入り状態
 更に、図2Dに示す状態において、電動モータ41を逆転させて(図10Aにおいて矢印Aが示す方向に回転させて)、シリンダ連結機構45により、一対のシリンダ連結ピン454A、454Bを先端ブーム141の一対のシリンダピン受部141aから離脱する方向に変位させる。この際、シリンダ連結機構45が、拡張状態から縮小状態へと状態遷移する。
 図2D~図2Eへの状態遷移の際の、各部材の状態は以下となる(図12のT~T参照)。
 ブレーキ機構42         :OFF
 電動モータ41          :ON(逆転)
 シリンダ連結機構45       :拡張状態→縮小状態
 ブーム連結機構46        :拡張状態
 シリンダ連結ピン454A、454B:入り状態→抜き状態
 ブーム連結ピン144a      :入り状態
 一対のシリンダ連結ピン454A、454Bが入り状態から抜き状態へと状態遷移している場合、位置情報検出装置5の第一検出装置51及び第二検出装置52は、図13に示すように、下側伝達軸432bの回転に応じて、中立状態から第一状態に向けて状態遷移する。
 第一検出装置51が中立状態から第一状態に向けて状態遷移している場合、第一センサ512は、第一被検出体510の第一平坦面510bと対向する。よって、第一センサ512の出力は、OFFである。一方、第二センサ513は、第一被検出体510の第一円筒面510aと対向する。よって、第二センサ513の出力はONである。
 又、第一検出装置51が中立状態から第一状態に向けて状態遷移している場合、第三センサ514は、第二被検出体511の第二平坦面511bと対向する。よって、第三センサ514の出力は、OFFである。
 このように、第一検出装置51は、第一センサ512の出力がOFFであり、且つ、第二センサ513の出力がONであり、且つ、第三センサ514の出力がOFFである場合に、一対のシリンダ連結ピン454A、454Bが入り状態から抜き状態に遷移していることを検出する。
 そして、一対のシリンダ連結ピン454A、454Bが抜き状態になると、第一検出装置51は、第一状態となる。逆に言うと、第一検出装置51が第一状態になると、一対のシリンダ連結ピン454A、454Bが抜き状態(図2Eに示す状態)となる。
 第一検出装置51の第一状態において、第一センサ512は、第一被検出体510の第一平坦面510bと対向している。よって、第一センサ512の出力は、OFFである。一方、第一検出装置51の第一状態において、第二センサ513は、第一被検出体510の第一円筒面510aと対向している。よって、第二センサ513の出力はONである。
 又、第一検出装置51の第一状態において、第三センサ514は、第二被検出体511の第二円筒面511aと対向している。よって、第三センサ514の出力は、ONである。
 このように、第一検出装置51は、第一センサ512の出力がOFFであり、且つ、第二センサ513の出力がONであり、且つ、第三センサ514の出力がONである場合に、一対のシリンダ連結ピン454A、454Bが抜き状態になったことを検出する。
 第二検出装置52が中立状態から第一状態に向けて状態遷移している場合、センサ521の出力は、被検出体520の位相に応じて変化する。ここで、センサ521は、第一状態に対応する所定の電圧(以下、第一電圧と称する。)を出力するように構成されている。
 よって、第二検出装置52が中立状態から第一状態に向けて状態遷移している場合、センサ521の出力は、中立電圧から第一電圧に向けて変化する。第二検出装置52は、センサ521の出力が、中立電圧から第一電圧に向けて変化している場合に、一対のシリンダ連結ピン454A、454Bが入り状態から抜き状態に遷移していることを検出する。
 そして、一対のシリンダ連結ピン454A、454Bが抜き状態になると、第二検出装置52は、第一状態となる。第二検出装置52の第一状態において、センサ521の出力は、第一電圧となる。第二検出装置52は、センサ521の出力が第一電圧となった場合に、一対のシリンダ連結ピン454A、454Bが抜き状態になったことを検出する。
 シリンダ連結ピン454A、454Bが抜き状態になると、図2Eに示すように、一対のシリンダ連結ピン454A、454Bの先端部と、先端ブーム141の一対のシリンダピン受部141aとの係合が解除される。制御部は、第一検出装置51及び/又は第二検出装置52が、一対のシリンダ連結ピン454A、454Bが抜き状態になったことを検出した場合に、ブレーキ機構42をONにしつつ電動モータ41をOFF状態にして、シリンダ連結機構45の作動を停止する。
 図2Eに示す状態における、各部材の状態は以下となる(図12のT参照)。
 ブレーキ機構42         :ON
 電動モータ41          :OFF
 シリンダ連結機構45       :縮小状態
 ブーム連結機構46        :拡張状態
 シリンダ連結ピン454A、454B:抜き状態
 ブーム連結ピン144a      :入り状態
 第一検出装置51及び第二検出装置52の第一状態(図13参照)において、シリンダ連結ピン454A、454Bが抜き状態、且つ、ブーム連結ピン144aが入り状態となる。この状態の組み合わせは、シリンダ連結ピン及びブーム連結ピンの状態の組み合わせにおける第三組である。
 その後、図示は省略するが、アクチュエータ2の伸縮シリンダ3における縮側の油圧室に圧油を供給すると、シリンダ部材32が収縮方向(図2の右側)に変位する。この際、先端ブーム141とシリンダ部材32とが非連結状態であるため、シリンダ部材32は単独で収縮方向に変位する。中間ブーム142を伸長する場合には、中間ブーム142に対して図2A~図2Eの動作を行う。
 次に、本実施形態の移動式クレーン1に搭載されたコンピュータ(制御部530)により実行される、異常検出制御について説明する。以下、制御部530により実施される伸縮式ブーム14の伸縮動作の制御を、伸縮動作制御と称する。異常検出制御は、基本的には、伸縮動作制御において実施される。
 異常検出制御は、制御部530が、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)の検出結果に基づいて、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)に異常が発生したことを検知する処理を含む。又、異常検出制御は、制御部530が、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)の検出結果に基づいて、異常が発生した検出装置(以下、異常検出装置と称する。)を特定する処理を含む。
 図14は、異常検出制御の一例を示すフローチャートである。尚、異常検出制御の制御処理の順序は、図14に示すフローチャートが示す順序に限定されない。図14のフローチャートに示される各制御処理は、技術的に矛盾しない範囲において、適宜の順序及び適宜のタイミングで実施されてよい。特に断らない限り、異常検出制御の主体は、制御部530である。
 先ず、図14のステップS101において、制御部530は、フラグ制御を開始する。
 ここで、フラグ制御について説明する。制御部530は、フラグ制御において、メイン検出装置(第二検出装置52)がシリンダ連結ピン及びブーム連結ピンの状態の組み合わせを検出できたか否かを示す第一フラグのON/OFFを制御する。
 又、制御部530は、フラグ制御において、サブ検出装置(第一検出装置51)がシリンダ連結ピン及びブーム連結ピンの状態の組み合わせを検出できたか否かを示す第二フラグのON/OFFを制御する。
 シリンダ連結ピン及びブーム連結ピンそれぞれの状態の組み合わせは、シリンダ連結ピンが入り状態であり且つブーム連結ピンが入り状態である第一組(図15における組み合わせNO.3に相当)と、シリンダ連結ピンが入り状態であり且つブーム連結ピンが抜き状態である第二組(図15における組み合わせNO.5に相当)と、シリンダ連結ピンが抜き状態であり且つブーム連結ピンが入り状態である第三組(図15における組み合わせNO.1に相当)と、を含む。以下、シリンダ連結ピン及びブーム連結ピンそれぞれの状態の組み合わせを構成する組を、単に、第一組、第二組、及び第三組と称する。
 第一フラグは、第一組に対応するフラグ要素(図15におけるチェックフラグNO.3に相当)、第二組に対応するフラグ要素(図15におけるチェックフラグNO.5に相当)、及び第三組に対応するフラグ要素(図15におけるチェックフラグNO.1に相当)からなる。第一フラグの各フラグ要素は、第一フラグ要素の一例に該当する。
 伸縮動作制御又は後述のセルフチェック制御において、シリンダ連結ピンが入り状態且つブーム連結ピンが入り状態となり、第二検出装置52が、シリンダ連結ピンが入り状態且つブーム連結ピンが入り状態であることを検出した場合、制御部530は、第一フラグにおける第一組に対応するフラグ要素をONにする。
 又、伸縮動作制御又は後述のセルフチェック制御において、シリンダ連結ピンが入り状態且つブーム連結ピンが抜き状態となり、第二検出装置52が、シリンダ連結ピンが入り状態且つブーム連結ピンが抜き状態であることを検出した場合、制御部530は、第一フラグにおける第二組に対応するフラグ要素をONにする。
 又、伸縮動作制御又は後述のセルフチェック制御において、シリンダ連結ピンが抜き状態且つブーム連結ピンが入り状態となり、第二検出装置52が、シリンダ連結ピンが抜き状態且つブーム連結ピンが入り状態であることを検出した場合、制御部530は、第一フラグにおける第三組に対応するフラグ要素をONにする。
 第二フラグは、第一組に対応するフラグ要素(図15におけるチェックフラグNO.3に相当)、第二組に対応するフラグ要素(図15におけるチェックフラグNO.5に相当)、及び第三組に対応するフラグ要素(図15におけるチェックフラグNO.1に相当)からなる。第二フラグの各フラグ要素は、第二フラグ要素の一例に該当する。
 伸縮動作制御又は後述のセルフチェック制御において、シリンダ連結ピンが入り状態且つブーム連結ピンが入り状態となり、第一検出装置51が、シリンダ連結ピンが入り状態且つブーム連結ピンが入り状態であることを検出した場合、制御部530は、第二フラグにおける第一組に対応するフラグ要素をONにする。
 又、伸縮動作制御又は後述のセルフチェック制御において、シリンダ連結ピンが入り状態且つブーム連結ピンが抜き状態となり、第一検出装置51が、シリンダ連結ピンが入り状態且つブーム連結ピンが抜き状態であることを検出した場合、制御部530は、第二フラグにおける第二組に対応するフラグ要素をONにする。
 伸縮動作制御又は後述のセルフチェック制御において、シリンダ連結ピンが抜き状態且つブーム連結ピンが入り状態となり、第一検出装置51が、シリンダ連結ピンが抜き状態且つブーム連結ピンが入り状態であることを検出した場合、制御部530は、第二フラグにおける第三組に対応するフラグ要素をONにする。
 制御部530は、第一フラグの総てのフラグ要素がONとなった場合に、後述のフラグチェック制御を実施した後、第一フラグの総てのフラグ要素をリセットする(OFFにする)。そして、フラグ制御を繰り返す。
  又、制御部530は、第二フラグの総てのフラグ要素がONとなった場合に、後述のフラグチェック制御を実施した後、第二フラグの総てのフラグ要素をリセットする(OFFにする)。そして、フラグ制御を繰り返す。
 以上のような、伸縮動作制御又は後述のセルフチェック制御における、第一フラグ及び第二フラグのON/OFFの制御が、フラグ制御である。尚、制御部530は、適宜のタイミングで、メイン検出装置(第二検出装置52)の検出結果に対応するシリンダ連結ピン及びブーム連結ピンの状態(第一フラグの状態でもよい。)を示す画像と、サブ検出装置(第一検出装置51)の検出結果に対応するシリンダ連結ピン及びブーム連結ピンの状態(第二フラグの状態でもよい。)を示す画像とを、表示部に表示させてもよい。
 次に、ステップS102において、制御部530は、メイン検出装置(第二検出装置52)が正常であるか否かを判定する。
 制御部530は、伸縮動作制御又は後述のセルフチェック制御において、メイン検出装置(第二検出装置52)の出力(本実施形態の場合、電圧値)が、正常範囲(図15参照)であるか否かを判定する。正常状態におけるメイン検出装置(第二検出装置52)の出力の範囲は、第一所定条件の一例に該当する。
 制御部530は、メイン検出装置(第二検出装置52)の出力が、正常範囲内である場合、メイン検出装置(第二検出装置52)は正常であると判断する。一方、制御部530は、メイン検出装置(第二検出装置52)の出力が、正常範囲外である場合、第二検出装置52は正常でないと判断する。
 ステップS102において、メイン検出装置(第二検出装置52)が正常であると判定した場合、制御部530は、制御処理をステップS103に進める。一方、ステップS102において、メイン検出装置(第二検出装置52)が正常でないと判定した場合、制御部530は、制御処理をステップS104に進める。
 次に、ステップS102において、メイン検出装置(第二検出装置52)が正常でないと判定した後の制御処理について説明する。
 ステップS104において、制御部530は、サブ検出装置(第一検出装置51)が正常であるか否かを判定する。
 サブ検出装置(第一検出装置51)が正常であるか否かを判定する方法の第一例について説明する。当該第一例の方法は、制御処理がステップS102からステップS104に遷移した場合に実施される。
 制御部530は、伸縮動作制御又は後述のセルフチェック制御において、サブ検出装置(第一検出装置51)の出力の組み合わせが、正常な組み合わせ(図15参照)であるか否かを判定する。当該組み合わせは、第二所定条件の一例に該当する。適切な組み合わせとは、図15における、サブ検出装置(第一検出装置51)の第一センサ512、第二センサ513、及び第三センサ514の出力(ON/OFF)の組み合わせである。
 制御部530は、サブ検出装置(第一検出装置51)の出力の組み合わせが、正常な組み合わせである場合、サブ検出装置(第一検出装置51)は正常であると判断する。一方、制御部530は、サブ検出装置(第一検出装置51)の出力が、正常な組み合わせでない場合、サブ検出装置(第一検出装置51)は正常でないと判断する。
 又、サブ検出装置(第一検出装置51)が正常であるか否かを判定する方法の第二例について説明する。当該第二例の方法は、制御処理が後述のステップS112からステップS104に遷移した場合に実施される。
 上記第二例の判定方法において、制御部530は、後述のステップS111において実施したセルフチェック制御の結果に基づいて、サブ検出装置(第一検出装置51)が正常であるか否かを判定する。尚、異常の発生状況によっては、セルフチェック制御によりサブ検出装置(第一検出装置51)の異常の発生を検知できないケースもある。但し、後述のフラグチェック制御において、異常が発生した装置を特定することができる。
 ステップS104において、サブ検出装置(第一検出装置51)が正常であると判定した場合、制御部530は、制御処理をステップS105に進める。一方、図14のステップS104において、サブ検出装置(第一検出装置51)が正常でないと判定した場合、制御部530は、制御処理をステップS106に進める。
 ステップS105において、制御部530は、警告を報知する。警告は、メイン検出装置(第二検出装置52)に異常が発生していることを示す情報を含む。警告は、表示部への表示により行ってもよいし、警告音を発生することにより行ってもよい。その後、制御部530は、制御処理をステップS107に進める。
 ステップS107において、制御部530は、伸縮動作制御に使用する検出装置を、メイン検出装置(第二検出装置52)からサブ検出装置(第一検出装置51)に切り換える。そして、制御部530は、制御処理をステップS108に進める。
 ステップS108において、制御部530は、サブ検出装置(第一検出装置51)の検出結果に基づいて、伸縮動作制御を継続する。尚、制御部530は、伸縮動作制御を、適宜のタイミングで終了してもよい。
 ステップS104において、サブ検出装置(第一検出装置51)が正常でないと判定した後、制御部530は、ステップS106において、伸縮式ブーム14の伸縮動作を停止する。そして、制御部530は、伸縮動作制御及び異常検出制御を終了する。
 次に、ステップS102において、メイン検出装置(第二検出装置52)が正常であると判定した後、ステップS103において、制御部530は、サブ検出装置(第一検出装置51)が正常であるか否かを判定する。ステップS103において制御部530が実施する判定方法は、ステップS104において制御部530が実施する第一例の判定方法と同様である。
 ステップS103において、サブ検出装置(第一検出装置51)が正常である場合、制御部530は、制御処理をステップS109に進める。一方、ステップS103において、サブ検出装置(第一検出装置51)が正常でない場合、制御部530は、制御処理をステップS110に進める。
 ステップS110において、制御部530は、警告を報知する。警告は、サブ検出装置に異常が発生していることを示す情報を含む。警告は、表示部への表示により行ってよいし、警告音を発生することにより行ってもよい。その後、制御部530は、制御処理をステップS109に進める。制御処理をステップS109に進める理由は、メイン検出装置(第二検出装置52)が正常であるため、制御部530が、メイン検出装置(第二検出装置52)の検出結果に基づく伸縮動作制御を開始又は継続できるからである。
 次に、制御部530は、ステップS109において、メイン検出装置(第二検出装置52)の検出結果に基づく、伸縮動作制御を開始する。尚、既にメイン検出装置(第二検出装置52)の検出結果に基づく伸縮動作制御を開始している場合には、メイン検出装置(第二検出装置52)の検出結果に基づく伸縮動作制御を継続する。そして、制御部530は、制御処理をステップS111に進める。
 次に、図14のステップS111において、制御部530は、セルフチェック制御を実施する。
 ここで、セルフチェック制御について説明する。セルフチェック制御は、伸縮式ブーム14が所定の状況に該当する場合に、制御部530により実施される制御である。
 具体的には、上記所定の状況は、ブーム連結ピンにブーム要素の荷重が作用していない無負荷状況を意味する。又、上記所定の状況は、伸縮シリンダ3が全縮状態である伸縮シリンダ全縮状況を意味する場合もある。無負荷状況及びシリンダ全縮状況の場合、シリンダ連結ピン及びブーム連結ピンにブーム要素の荷重が作用していないため、シリンダ連結ピン及びブーム連結ピンを安定して移動させることができる。尚、無負荷状況及びシリンダ全縮状況は、伸縮式ブームが伸縮動作を開始する前においても発生するし、伸縮動作を開始した後においても発生する。上記所定の状況は、上述の例に限定されず、制御部は、適宜のタイミングでセルフチェック制御を実施してもよい。
 制御部530は、セルフチェック制御において、少なくとも、ブーム連結ピンを、入り状態から抜き状態、又は、抜き状態から入り状態に遷移させる。尚、制御部530は、セルフチェック制御において、シリンダ連結ピンを、入り状態から抜き状態、又は、抜き状態から入り状態に遷移させてもよい。
 セルフチェック制御が実施されることにより、上記所定の状況において、伸縮式ブーム14の伸縮を伴わずに、上述のフラグ制御を実施することができる。
 尚、制御部530は、セルフチェック制御において、第一フラグ及び第二フラグの総てのフラグ要素がONとなるように、シリンダ連結ピン及びブーム連結ピンの状態を制御するのが好ましい。但し、伸縮式ブーム14の状態に応じて、第一フラグ及び第二フラグの一部のフラグ要素のみONとなるように、シリンダ連結ピン及びブーム連結ピンを制御してもよい。
 制御部530は、セルフチェック制御により実現されたシリンダ連結ピン及びブーム連結ピンの状態の組み合わせと、第一フラグ及び第二フラグの状態とを比較することにより、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)に異常が発生しているか否かを判定できる。又、制御部530は、メイン検出装置(第二検出装置52)及び/又はサブ検出装置(第一検出装置51)に異常が発生している場合には、上述の比較の結果に基づいて、異常が発生した検出装置を特定できる。
 以下、セルフチェック制御の具体例について、図2A及び図15を参照しつつ説明する。図2Aに示す伸縮式ブーム14の状態は、ブーム連結ピンにブーム要素の荷重が作用していない無負荷状況であり、且つ、伸縮シリンダ3が全縮状態である伸縮シリンダ全縮状況である。よって、図2Aに示す伸縮式ブーム14の状態は、上述の所定の状況に該当する。
 図2Aに示す状態では、シリンダ連結ピンが入り状態、且つ、ブーム連結ピン(具体的には、ブーム連結ピン144a)が入り状態である。この状態で、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)が正常に動作していれば、上述のフラグ制御により、第一フラグにおける第一組に対応するフラグ要素がONとなり、第二フラグにおける第一組に対応するフラグ要素がONとなる。
 次に、制御部530は、セルフチェック制御により、ブーム連結ピン(具体的には、ブーム連結ピン144a)を入り状態から抜き状態に遷移させる。この状態で、シリンダ連結ピンが入り状態、且つ、ブーム連結ピン(具体的には、ブーム連結ピン144a)が抜き状態となる。よって、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)が正常に動作していれば、上述のフラグ制御により、第一フラグにおける第二組に対応するフラグ要素がONとなり、第二フラグにおける第二組に対応するフラグ要素がONとなる。その後、ブーム連結ピン(具体的には、ブーム連結ピン144a)を抜き状態から入り状態に遷移させて、図2Aに示す状態に戻す。
 以上のようなセルフチェック制御により、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)が正常に動作していれば、第一フラグ及び第二フラグの状態は、以下のようになる。
 [正常な第一フラグ及び第二フラグの状態]
 第一フラグにおける第一組に対応するフラグ要素:ON
 第二フラグにおける第一組に対応するフラグ要素:ON
 第一フラグにおける第二組に対応するフラグ要素:ON
 第二フラグにおける第二組に対応するフラグ要素:ON
 ところが、メイン検出装置(第二検出装置52)又はサブ検出装置(第一検出装置51)が正常に動作していない場合(つまり、異常が生じた場合)、第一フラグ及び第二フラグの状態は、上述の正常な第一フラグ及び第二フラグの状態と異なる。この結果、制御部530は、メイン検出装置(第二検出装置52)又はサブ検出装置(第一検出装置51)に異常が発生したことを検知できる。又、制御部530は、フラグの状態が上述の正常な第一フラグ及び第二フラグの状態と異なる検出装置を、異常が発生した検出装置として特定できる。
 尚、上述の例では、第一組及び第二組に対応するフラグの状態は分かるが、第三組(シリンダ連結ピン抜き状態、且つ、ブーム連結ピンが入り状態)に対応するフラグの状態は分からない。よって、異常の発生状況によっては、検出装置に異常が発生したことを検知できないケースもある。
 そこで、上述のセルフチェック制御に加えて、図2Aに示す状態で、シリンダ連結ピンを入り状態から抜き状態に遷移させることで、第一フラグにおける第三組に対応するフラグ要素、及び、第二フラグにおける第三組に対応するフラグ要素の状態を確認することもできる。このような制御を加えることにより、異常の発生状況にかかわらず、検出装置に異常が発生したことを検知できるとともに、異常が発生した検出装置を特定できる。
 以上のようなセルフチェック制御を行うことにより、迅速に且つ安定して、検出装置の異常を検出することができる。セルフチェック制御を実施した後、制御部530は、制御処理を、ステップS112に進める。
 図14のステップS112において、制御部530は、上述のセルフチェックの結果に基づいて、メイン検出装置(第二検出装置52)が正常であるか否かを判定する。
 ステップS112において、メイン検出装置(第二検出装置52)が正常であると判定した場合、制御部530は、制御処理をステップS113に進める。一方、ステップS112において、メイン検出装置(第二検出装置52)が正常でないと判定した場合、制御部530は、制御処理をステップS104に進める。尚、ステップS112からステップS104に進んだ場合の、ステップS104における制御処理は、上述の通りである。
 次に、ステップS113において、制御部530は、ステップS111において実施したセルフチェック制御の結果に基づいて、サブ検出装置(第一検出装置51)が正常であるか否かを判定する。尚、上述のように異常の発生状況によっては、サブ検出装置(第一検出装置51)に異常が発生したことを検知できないケースもある。但し、セルフチェック制御では異常が発生したことを検出できないケースであっても、後述のフラグチェック制御により、異常が発生したことを検出できる。
 ステップS113において、サブ検出装置(第一検出装置51)が正常であると判定した場合、制御部530は、制御処理をステップS114に進める。一方、ステップS113において、サブ検出装置(第一検出装置51)が正常でないと判定した場合、制御部530は、制御処理をステップS115に進める。
 ステップS115において、制御部530は、警告を報知する。警告は、サブ検出装置(第一検出装置51)に異常が発生していることを示す情報を含む。警告は、表示部への表示により行ってよいし、警告音を発生することにより行ってもよい。その後、制御部530は、制御処理をステップS114に進める。制御処理をステップS114に進める理由は、メイン検出装置(第二検出装置52)が正常であるため、制御部530が、メイン検出装置(第二検出装置52)の検出結果に基づく伸縮動作制御を継続できるからである。
 次に、ステップS114において、制御部530は、メイン検出装置(第二検出装置52)の検出結果と、サブ検出装置(第一検出装置51)の検出結果とが、一致しているか否かを判定する。
 制御部530は、メイン検出装置(第二検出装置52)の検出結果と、サブ検出装置(第一検出装置51)の検出結果とが、一致していない場合、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)のうちの少なくとも一方の検出装置に異常が発生していると判断する。そして、制御装置530は、制御処理をステップS117に進める。
 一方、制御部530は、メイン検出装置(第二検出装置52)の検出結果と、サブ検出装置(第一検出装置51)の検出結果とが、一致している場合、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)に異常が発生してない(正常である)と判断する。そして、制御部530は、制御処理をステップS116に進める。
 ステップS117において、制御部530は、警告を報知する。警告は、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)のうちの少なくとも一方の検出装置に異常が発生していることを示す情報を含む。警告は、表示部への表示により行ってもよいし、警告音を発生することにより行ってもよい。そして、制御部530は、制御処理をステップS116に進める。制御処理をステップS116に進める理由は、後述のフラグチェック制御により、異常が発生した検出装置を特定するためである。
 ステップS116において、制御部530は、フラグチェック制御を実施できる状況に該当するか否かを判定する。
 制御部530は、第一フラグ及び第二フラグの少なくとも一方のフラグのフラグ要素が総てONである場合に、フラグチェック制御を実施できる状況に該当すると判定する。そして、制御部530は、制御処理をステップS118に進める。尚、ステップS116以降の制御処理は、適宜のタイミングで実施してよい。
 一方、制御部530は、第一フラグ及び第二フラグにおいて、総てのフラグ要素がONであるフラグが存在しない場合、フラグチェック制御を実施できる状況に該当しないと判定する。そして、制御部530は、制御処理をステップS108に進める。ステップS108における制御部530の動作は、既述の通りである。
 ステップS118において、制御部530は、フラグチェック制御を実施する。フラグチェック制御において、制御部530は、第一フラグのフラグ要素と第二フラグのフラグ要素とを比較する。そして、制御部530は、制御処理をステップS119に進める。
 ステップS119において、制御部530は、第一フラグのフラグ要素と第二フラグのフラグ要素とが一致しているか否かを判定する。
 制御部530は、第一フラグのフラグ要素と第二フラグのフラグ要素とが一致している場合、制御処理を終了した後、異常検出制御をステップS102から繰り返す。ステップS116において、第一フラグ及び第二フラグの少なくとも一方のフラグのフラグ要素が総てONであると判定されているため、第一フラグのフラグ要素と第二フラグのフラグ要素とが一致していることは、第一フラグ及び第二フラグのフラグ要素が総てONであることを意味する。これは、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)が、正常にシリンダ連結ピン及びブーム連結ピンの状態の組み合わせを検出できていることを意味する。
 一方、制御部530は、第一フラグのフラグ要素と第二フラグのフラグ要素とが一致していない場合、制御処理をステップS120に進める。ステップS116において、第一フラグ及び第二フラグの少なくとも一方のフラグのフラグ要素が総てONであると判定されているため、第一フラグのフラグ要素と第二フラグのフラグ要素とが一致していないことは、第一フラグ及び第二フラグのうちの他方のフラグのフラグ要素が総てONでない(つまり、他方のフラグのフラグ要素がOFFを含む)ことを意味する。これは、上述の他方の検出装置が、シリンダ連結ピン及びブーム連結ピンの状態の組み合わせを検出できていないことを意味する。つまり、上述の他方の検出装置に異常が発生していることを意味する。
 ステップS120において、制御部530は、異常が発生した検出装置である異常検出装置を特定する。具体的には、先ず、第一フラグ及び第二フラグから、総てのフラグ要素がONでないフラグ(つまり、フラグ要素がOFFを含むフラグ)を特定する。そして、特定したフラグに基づいて、異常検出装置を特定する。
 例えば、第一フラグのフラグ要素が総てONでない場合、制御部530は、メイン検出装置(第二検出装置52)を異常検出装置として特定する。一方、第二フラグのフラグ要素が総てONでない場合、制御部530は、サブ検出装置(第一検出装置51)を異常検出装置として特定する。そして、制御部530は、制御処理を、ステップS121に進める。
 ステップS121において、制御部530は、警告を報知する。警告は、異常検出装置を示す情報を含む。警告は、表示部への表示により行ってもよいし、警告音を発生することにより行ってもよい。その後、制御部530は、制御処理を終了する。
 制御部530は、ステップS121の後、異常検出装置がメイン検出装置(第二検出装置52)である場合には、伸縮動作制御に使用する検出装置を、メイン検出装置(第二検出装置52)からサブ検出装置(第一検出装置51)に切り換えて、伸縮動作制御を継続してもよい。この場合、異常検出装置を特定できているため、制御部530は、上述の異常検出制御を継続してもよいし、停止してもよい。異常検出制御を継続する場合、制御部530は、異常検出制御をステップS102から繰り返す。
 又、制御部530は、ステップS121の後、異常検出装置がサブ検出装置(第一検出装置51)である場合には、伸縮動作制御を継続してもよい。この場合も、異常検出装置を特定できているため、制御部530は、上述の異常検出制御を継続してもよいし、停止してもよい。異常検出制御を継続する場合、制御部530は、異常検出制御をステップS102から繰り返す。
 <本実施形態の作用・効果>
 以上のような構成を有する本実施形態の移動式クレーン1の場合、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144a、144bの位置検出を、上述の位置情報検出装置5により行う。このため、伸縮式ブーム14の伸縮動作を精度よく制御できる。
 特に、本実施形態の場合、位置情報検出装置5が、互いに検出方法が異なる第一検出装置51及び第二検出装置52を有している。そして、通常時において、第二検出装置52が位置に関する情報を検出し、第二検出装置52が故障した場合に、第一検出装置51が位置に関する情報を検出する。このため、第一検出装置51及び第二検出装置52のうちの何れか一方の検出装置が故障した場合でも、一対のシリンダ連結ピン454A、454B及びブーム連結ピン144a、144bの位置検出を行うことができる。
 又、制御部530は、通常時の制御において、第二検出装置52の検出値に基づいて一対のシリンダ連結ピン454A、454B及び一対のブーム連結ピン144a、144bの位置に関する情報を検出しつつ、第一検出装置51及び第二検出装置52の検出値に基づいて検出装置の故障判定を行うことができる。この結果、制御部530は、第一検出装置51及び第二検出装置52の少なくとも一方の検出装置に故障が生じたことを迅速に検知できる。
 又、本実施形態の場合、互いに検出方法が異なる第一検出装置51及び第二検出装置52を有しているため、両方の検出装置が同時にノイズの影響を受けることを抑制できる。仮に第一検出装置51及び第二検出装置52の検出方法が同じ場合、第一検出装置51及び第二検出装置52が同時にノイズの影響を受ける可能性がある。一方、本実施形態の場合、第一検出装置51の検出方法と第二検出装置52の検出方法とが異なるため、一方の検出装置がノイズの影響を受けた場合でも、他方の検出装置は同じノイズの影響を受けにくい。この結果、本実施形態の場合、ノイズの影響により、第一検出装置51及び第二検出装置52が同時に一対のシリンダ連結ピン454A、454B及びブーム連結ピン144a、144bの位置検出を行うことができない状態(検出精度が低い状態)となることを抑制できる。
 又、本実施形態の場合、上述の異常検出制御により、メイン検出装置(第二検出装置52)及びサブ検出装置(第一検出装置51)に異常が発生したことを検知できる。特に、本実施形態の場合、上述のセルフチェック制御又はフラグチェック制御により、異常が発生した検出装置を特定することもできる。この結果、伸縮動作制御を、より安全に実施することができる。
 <付記>
 明細書及び図面に開示された技術思想は、上述の実施形態において説明された種々の構成を任意に組み合わせることにより得られる発明を含む。特に、明細書及び図面に開示された技術思想は、上記基本的な構成に対して、明細書及び図面に開示された種々の構成を任意の組み合わせで適用することにより得られる発明を含む。
 2021年10月29日出願の特願2021-178083、及び、2022年6月17日出願の特願2022―98410の日本出願に含まれる明細書、図面、及び要約書の開示内容は、すべて本願に援用される。
 本発明は、クレーンに限らず、伸縮式ブームを備える種々の作業機(例えば、高所作業車)に適用できる。
 1 移動式クレーン
 10 走行体
 12 旋回台
 14 伸縮式ブーム
 141 先端ブーム
 141a シリンダピン受部
 141b ブームピン受部
 142 中間ブーム
 142a シリンダピン受部
 142b 第一ブームピン受部
 142c 第二ブームピン受部
 142d 第三ブームピン受部
 143 基端ブーム
 144a、144b ブーム連結ピン
 144c ピン側受部
 16 ワイヤロープ
 17 フック
 2 アクチュエータ
 3 伸縮シリンダ
 31 ロッド部材
 32 シリンダ部材
 4 ピン移動機構
 40 トラニオン
 400 被固定部
 401 支持孔
 41 電動モータ
 410 カバー
 42 ブレーキ機構
 43 伝達機構
 431 減速機
 432 上下伝達機構
 432a 上側伝達軸
 432b 下側伝達軸
 45 シリンダ連結機構
 450 スイッチギヤ
 451 第一ラックバー
 452 第一歯車機構
 453 第二歯車機構
 454A、454B シリンダ連結ピン
 455 第一付勢機構
 455a、455b コイルばね
 46 ブーム連結機構
 461a、461b 第二ラックバー
 461c 駆動用ラック歯部
 461g、461h 係止爪部
 462 同期歯車
 463 第二付勢機構
 463a、463b コイルばね
 5 位置情報検出装置
 50 サポート
 501 右側板
 502 左側板
 503 後側板
 504 右側固定板
 505 左側固定板
 506 収容空間
 507 位置決めピン
 51 第一検出装置
 510 第一被検出体
 510a 第一円筒面
 510b 第一平坦面
 511 第二被検出体
 511a 第二円筒面
 511b 第二平坦面
 512 第一センサ
 513 第二センサ
 514 第三センサ
 52 第二検出装置
 520 被検出体
 521 センサ
 530 制御部
 54 カバー部材

Claims (11)

  1.  伸縮シリンダにより伸縮する複数のブームと、
     前記ブームと前記伸縮シリンダとを連結する入り状態と、当該連結を解除する抜き状態とを遷移可能な第一ピンと、
     隣接する前記ブームを連結する入り状態と、当該連結を解除する抜き状態とを遷移可能な第二ピンと、
     前記第一ピン及び前記第二ピンの状態の組合わせを検出可能なメイン検出装置及びサブ検出装置と、
     前記メイン検出装置の検出結果に基づいて、前記ブームの伸縮動作を制御する制御部と、を備え、
     前記制御部は、前記ブームの伸縮動作中、
      前記メイン検出装置が前記組み合わせを検出できたか否かを示す第一フラグのON/OFF、及び、前記サブ検出装置が前記組み合わせを検出できたか否かを示す第二フラグのON/OFFを制御し、
      前記第一フラグ及び前記第二フラグに基づいて、前記メイン検出装置及び前記サブ検出装置に異常が発生したことを検知する、
     作業機。
  2.  前記制御部は、前記第一フラグと前記第二フラグとを比較して、前記メイン検出装置及び前記サブ検出装置のうち異常が発生した異常検出装置を特定する、請求項1に記載の作業機。
  3.  前記第一ピン及び第二ピンの状態の組み合わせは、
      前記第一ピンが入り状態であり、且つ、前記第二ピンが入り状態である第一組と、
      前記第一ピンが入り状態であり、且つ、前記第二ピンが抜き状態である第二組と、
      前記第一ピンが抜き状態であり、且つ、前記第二ピンが入り状態である第三組と、を含み、
     前記第一フラグは、前記第一組、前記第二組、及び前記第三組に対応する3個の第一フラグ要素により構成され、
     前記第二フラグは、前記第一組、前記第二組、及び前記第三組に対応する3個の第二フラグ要素により構成され、
     前記制御部は、
      前記第一フラグ及び前記第二フラグのうち一方のフラグのフラグ要素が総てONになった場合に、
      前記第一フラグと前記第二フラグとを比較して、前記異常検出装置を特定する、
     請求項2に記載の作業機。
  4.  前記制御部は、
      前記比較において、
      前記第一フラグ及び前記第二フラグのうち他方のフラグも総てONであれば、前記異常は発生していないと判定し、
      前記他方のフラグが総てONでなければ、前記他方のフラグに対応する検出装置に異常が発生していると判定する、
     請求項3に記載の作業機。
  5.  前記制御部は、
      所定の状況において、前記ブームを伸縮させずに前記第一ピン及び/又は前記第二ピンの状態を遷移させるセルフチェック制御を行い、
      前記セルフチェック制御中、前記第一フラグ及び第二フラグのON/OFFを制御し、
      前記第一フラグ及び第二フラグに基づいて、前記異常検出装置を特定する、
     請求項2に記載の作業機。
  6.  前記所定の状況は、前記第二ピンに前記ブームの荷重が作用していない無負荷状況、又は、前記伸縮シリンダが全縮状態である伸縮シリンダ全縮状況を含む、請求項5に記載の作業機。
  7.  前記制御部は、
      前記メイン検出装置の出力が第一所定条件を満たさない場合に、前記メイン検出装置に異常が発生したことを検知し、
      前記サブ検出装置の出力が第二所定条件を満たさない場合に、前記サブ検出装置に異常が発生したことを検知し、
      前記メイン検出装置に異常が発生し、前記サブ検出装置に異常が発生していない場合に、前記サブ検出装置の検出結果に基づいて、前記ブームの伸縮動作を制御し、
      前記メイン検出装置及び前記サブ検出装置に異常が発生している場合に、前記ブームの伸縮動作の制御を停止する、
     請求項1に記載の作業機。
  8.  前記制御部は、前記メイン検出装置の検出結果と、前記サブ検出装置の検出結果とが、一致しない場合に、前記メイン検出装置及び前記サブ検出装置の何れか一方に異常が生じことを検知する、請求項1に記載の作業機。
  9.  前記メイン検出装置と前記サブ検出装置とは、互いに異なる検出方式により前記組み合せを検出する、請求項1に記載の作業機。
  10.  前記メイン検出装置は、ポテンショメータにより構成され、前記ポテンショメータの出力である電圧値に基づいて前記組み合わせを検出し、
     前記サブ検出装置は、複数の近接センサにより構成され、複数の前記近接センサの検出値の組み合わせに基づいて、前記組み合わせを検出する、請求項1に記載の作業機。
  11.  前記制御部は、前記メイン検出装置の検出結果に対応する前記第一ピン及び前記第二ピンの状態を示す画像と、前記サブ検出装置の検出結果に対応する前記第一ピン及び前記第二ピンの状態を示す画像とを表示部に表示させる、請求項1に記載の作業機。
PCT/JP2022/039772 2021-10-29 2022-10-25 作業機 WO2023074700A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021178083 2021-10-29
JP2021-178083 2021-10-29
JP2022098410A JP2023067725A (ja) 2021-10-29 2022-06-17 作業機
JP2022-098410 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023074700A1 true WO2023074700A1 (ja) 2023-05-04

Family

ID=86157990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039772 WO2023074700A1 (ja) 2021-10-29 2022-10-25 作業機

Country Status (1)

Country Link
WO (1) WO2023074700A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096928A (ja) 2011-12-12 2012-05-24 Kato Works Co Ltd クレーンのブーム伸縮装置
JP2013234026A (ja) * 2012-05-08 2013-11-21 Kobelco Cranes Co Ltd ブーム伸縮機構の制御装置
WO2019159993A1 (ja) * 2018-02-16 2019-08-22 株式会社タダノ クレーン
JP2021008361A (ja) * 2019-06-24 2021-01-28 マニタウォック クレイン カンパニーズ, エルエルシーManitowoc Crane Companies, Llc ブームが枢動支持されたクレーンのための電動アセンブリ
JP2021178083A (ja) 2020-05-15 2021-11-18 三菱電機株式会社 自走式掃除機
JP2022098410A (ja) 2020-12-21 2022-07-01 現代自動車株式会社 燃料電池モビリティ統合熱管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096928A (ja) 2011-12-12 2012-05-24 Kato Works Co Ltd クレーンのブーム伸縮装置
JP2013234026A (ja) * 2012-05-08 2013-11-21 Kobelco Cranes Co Ltd ブーム伸縮機構の制御装置
WO2019159993A1 (ja) * 2018-02-16 2019-08-22 株式会社タダノ クレーン
JP2021008361A (ja) * 2019-06-24 2021-01-28 マニタウォック クレイン カンパニーズ, エルエルシーManitowoc Crane Companies, Llc ブームが枢動支持されたクレーンのための電動アセンブリ
JP2021178083A (ja) 2020-05-15 2021-11-18 三菱電機株式会社 自走式掃除機
JP2022098410A (ja) 2020-12-21 2022-07-01 現代自動車株式会社 燃料電池モビリティ統合熱管理システム

Similar Documents

Publication Publication Date Title
US20220169484A1 (en) Work machine
US11629035B2 (en) Crane
US11542131B2 (en) Crane
WO2023074700A1 (ja) 作業機
WO2023074688A1 (ja) 作業機
JP2023067725A (ja) 作業機
WO2023074696A1 (ja) 作業機
JP7275994B2 (ja) 作業機
WO2023058650A1 (ja) 作業機
WO2023243641A1 (ja) 作業機
US11958726B2 (en) Work machine
JP7279579B2 (ja) 作業機
JP7226184B2 (ja) 作業機
JP5205043B2 (ja) 旋回式作業機のブーム旋回位置検出装置
JP2011001163A (ja) 作業機の表示システム及び作業車
JP2005029308A (ja) 移動棚装置
JP2009292584A (ja) 伸縮ブームにおけるワイヤ切断検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887026

Country of ref document: EP

Kind code of ref document: A1