WO2023074623A1 - 立方晶窒化硼素焼結体 - Google Patents

立方晶窒化硼素焼結体 Download PDF

Info

Publication number
WO2023074623A1
WO2023074623A1 PCT/JP2022/039524 JP2022039524W WO2023074623A1 WO 2023074623 A1 WO2023074623 A1 WO 2023074623A1 JP 2022039524 W JP2022039524 W JP 2022039524W WO 2023074623 A1 WO2023074623 A1 WO 2023074623A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
volume
sintered body
cbn
Prior art date
Application number
PCT/JP2022/039524
Other languages
English (en)
French (fr)
Inventor
謙太 佐野
顕人 石井
真人 道内
克己 岡村
慧 平井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202280070913.3A priority Critical patent/CN118139832A/zh
Priority to JP2023534664A priority patent/JPWO2023074623A1/ja
Priority to EP22886950.9A priority patent/EP4424655A1/en
Publication of WO2023074623A1 publication Critical patent/WO2023074623A1/ja
Priority to JP2024065911A priority patent/JP2024105282A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present disclosure relates to a cubic boron nitride sintered body.
  • Cubic boron nitride (hereinafter also referred to as cBN) has hardness and thermal conductivity that are second only to diamond, and is characterized by low reactivity with iron-based metals compared to diamond. For this reason, cubic boron nitride particles (hereinafter also referred to as cBN particles.)
  • a cubic boron nitride sintered body (hereinafter also referred to as a cBN sintered body) containing cBN particles is particularly suitable for cutting iron-based difficult-to-cut materials. It is widely used (for example, Patent Document 1 and Patent Document 2).
  • the cubic boron nitride sintered body of the present disclosure is A cubic boron nitride sintered body containing 35% by volume or more and 100% by volume or less of cubic boron nitride particles and 0% by volume or more and 65% by volume or less of a binder,
  • the cubic boron nitride particles have a lattice constant of 3.6140 ⁇ or more and 3.6161 ⁇ or less
  • the silicon content of the cubic boron nitride particles is 0.02% by mass or less
  • the binder comprises at least one element selected from the group consisting of elements of Group 4, Group 5, Group 6 of the periodic table, aluminum, silicon, iron, cobalt and nickel, and carbon, nitrogen, boron and oxygen.
  • a cubic boron nitride sintered body containing at least one selected from the group consisting of a compound consisting of at least one element selected from the group and a solid solution of the compound.
  • FIG. 1 is an image showing an example of a backscattered electron image obtained by observing a cubic boron nitride polycrystal with an SEM.
  • FIG. 2 is an image obtained by reading the backscattered electron image of FIG. 1 into image processing software.
  • the upper image is a backscattered electron image
  • the lower image is a density cross-sectional graph obtained from the backscattered electron image.
  • FIG. 4 is a diagram for explaining a method of defining black areas and binders.
  • FIG. 5 is a diagram for explaining the boundary between the black region and the binder.
  • FIG. 6 is an image obtained by binarizing the backscattered electron image of FIG.
  • the cubic boron nitride sintered body of the present disclosure is A cubic boron nitride sintered body containing 35% by volume or more and 100% by volume or less of cubic boron nitride particles and 0% by volume or more and 65% by volume or less of a binder,
  • the cubic boron nitride particles have a lattice constant of 3.6140 ⁇ or more and 3.6161 ⁇ or less
  • the silicon content of the cubic boron nitride particles is 0.02% by mass or less
  • the binder comprises at least one element selected from the group consisting of elements of Group 4, Group 5, Group 6 of the periodic table, aluminum, silicon, iron, cobalt and nickel, and carbon, nitrogen, boron and oxygen.
  • the cubic boron nitride sintered body of the present disclosure is used as a tool material, it is possible to extend the life of the tool, especially in high-efficiency machining.
  • the lattice constant of the cubic boron nitride particles is preferably 3.6142 ⁇ or more and 3.6158 ⁇ or less. According to this, the tool life is further improved.
  • the lattice constant of the cubic boron nitride particles is preferably 3.6145 ⁇ or more and 3.6155 ⁇ or less. According to this, the tool life is further improved.
  • the silicon content of the cubic boron nitride particles is preferably 0.01% by mass or less. According to this, the tool life is further improved.
  • the silicon content of the cubic boron nitride particles is preferably 0.001% by mass or less. According to this, the tool life is further improved.
  • the content of the cubic boron nitride particles in the cubic boron nitride sintered body is preferably 40% by volume or more and 95% by volume or less. According to this, the tool life is further improved.
  • a compound or the like when represented by a chemical formula, it shall include any conventionally known atomic ratio unless the atomic ratio is particularly limited, and should not necessarily be limited only to those within the stoichiometric range.
  • the ratio of the number of atoms constituting TiN includes all conventionally known atomic ratios.
  • a cubic boron nitride sintered body according to an embodiment of the present disclosure (hereinafter also referred to as the present embodiment) comprises 35% by volume or more and 100% by volume or less of cubic boron nitride particles and 0% by volume or more and 65% by volume of A cubic boron nitride sintered body containing the following binder,
  • the cubic boron nitride particles have a lattice constant of 3.6140 ⁇ or more and 3.6161 ⁇ or less,
  • the silicon content of the cubic boron nitride particles is 0.02% by mass or less
  • the binder comprises at least one element selected from the group consisting of elements of Group 4, Group 5, Group 6 of the periodic table, aluminum, silicon, iron, cobalt and nickel, and carbon, nitrogen, boron and oxygen.
  • the cubic boron nitride sintered body of the present embodiment contains 35% by volume or more and 100% by volume or less of cBN particles having high hardness, strength and toughness. Therefore, the cubic boron nitride sintered body has excellent wear resistance and chipping resistance, and the tool life using the cubic boron nitride sintered body is extended.
  • the lattice constant of the cubic boron nitride particles is 3.6140 ⁇ or more and 3.6161 ⁇ or less.
  • a lattice constant of a unit cell of a general cubic boron nitride (hereinafter, the lattice constant of the unit cell is simply referred to as a lattice constant) is 3.6162 ⁇ .
  • the lattice constant of the cBN particles used in this embodiment is smaller than that of general cBN particles.
  • the thermal conductivity of the cBN particles is high, and the occurrence of crater wear caused by cutting heat generated during cutting and the occurrence of defects caused by the development of craters are suppressed.
  • the tool life using the cubic boron nitride sintered body is improved.
  • the silicon content of the cubic boron nitride particles is 0.02% by mass or less.
  • Conventional cBN particles contain about 0.1% by mass of silicon as an impurity. Silicon has a lower thermal conductivity than cubic boron nitride.
  • the cBN particles used in the present embodiment have a reduced content of silicon, which has a low thermal conductivity, and thus have a high thermal conductivity. Therefore, in the cBN sintered body having the cBN particles, the occurrence of crater wear due to cutting heat generated during cutting and the occurrence of defects due to the development of craters are suppressed, and the cubic boron nitride sintered body is used. Tool life is improved.
  • the cubic boron nitride sintered body of the present embodiment comprises 35% by volume or more and 100% by volume or less of cubic boron nitride particles and 0% by volume or more and 65% by volume or less of a binder. Note that the cBN sintered body can contain unavoidable impurities resulting from raw materials, manufacturing conditions, etc., as long as the effects of the present disclosure are exhibited.
  • the lower limit of the content of cBN particles in the cBN sintered body is 35% by volume or more, preferably 40% by volume or more, more preferably 45% by volume or more, from the viewpoint of improving hardness.
  • the upper limit of the content of cBN particles in the cBN sintered body is 100% by volume or less.
  • the cBN sintered body of the present embodiment can consist of cBN grains only.
  • the upper limit of the content of cBN particles in the cBN sintered body varies depending on the application, but is preferably 99% by volume or less, preferably less than 98% by volume, preferably 95% by volume or less, and preferably 90% by volume or less. , is preferably 85% by volume or less, more preferably 80% by volume or less.
  • the content of cBN particles in the cBN sintered body is 35% by volume or more and 100% by volume or less, preferably 35% by volume or more and 99% by volume or less, preferably 35% by volume or more and less than 98% by volume, and 40% by volume or more. 95% by volume or less is preferable, 40% by volume or more and 90% by volume or less is preferable, 40% by volume or more and 85% by volume or less is preferable, and 45% by volume or more and 80% by volume or less is more preferable.
  • the lower limit of the binder content in the cBN sintered body is 0% by volume or more.
  • the cBN sintered body of this embodiment may not contain a binder.
  • the lower limit of the binder content in the cBN sintered body is preferably 1% by volume or more, preferably more than 2% by volume, preferably 5% by volume or more, and 10% by volume or more from the viewpoint of ensuring the function as a binder. is preferred, 15% by volume or more is preferred, and 20% by volume or more is more preferred.
  • the upper limit of the binder content in the cBN sintered body is 65% by volume or less, preferably 60% by volume or less, more preferably 55% by volume or less, from the viewpoint of improving hardness.
  • the content of the binder in the cBN sintered body is 0% by volume or more and 65% by volume or less, preferably 1% by volume or more and 65% by volume or less, preferably more than 2% by volume and 65% by volume or less, and 5% by volume or more.
  • 60% by volume or less is preferable, 10% by volume or more and 60% by volume or less is preferable, 15% by volume or more and 60% by volume or less is preferable, and 20% by volume or more and 55% by volume or less is more preferable.
  • the cBN sintered body of the present embodiment preferably contains 35% by volume or more and less than 100% by volume of cubic boron nitride particles and a binder of more than 0% by volume and 65% by volume or less. % of cubic boron nitride particles and more than 2% by volume and 65% by volume or less of a binder, and 40% by volume or more and 95% by volume or less of cubic boron nitride particles and 5% by volume or more and 60% by volume % or less of the binder, more preferably 45 to 80 vol % of the cubic boron nitride particles and 20 to 55 vol % of the binder.
  • the cBN sintered body of the present embodiment is preferably composed of 35% by volume or more and 100% by volume or less of cubic boron nitride particles and 0% by volume or more and 65% by volume or less of a binder.
  • the content rate (% by volume) of the cBN particles and the content rate (% by volume) of the binder in the cBN sintered body were measured using a scanning electron microscope (SEM) ("JSM-7800F” (trade name) manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray spectrometer
  • the cBN sintered body is subjected to structural observation, elemental analysis, etc. can be confirmed by A specific measuring method is as follows.
  • the cBN sintered body First, cut an arbitrary position of the cBN sintered body to prepare a sample including a cross section of the cBN sintered body.
  • a focused ion beam device, a cross-section polisher device, or the like can be used to prepare the cross section.
  • the cross section is observed with an SEM at a magnification of 5000 to obtain a backscattered electron image.
  • the regions where the cBN particles exist become black regions, and the regions where the binder exists become at least one of gray regions and white regions.
  • the entire backscattered electron image is black or dark gray.
  • the backscattered electron image is binarized using image analysis software ("WinROOF” by Mitani Shoji Co., Ltd.).
  • the region where the cBN particles exist black region in the backscattered electron image
  • the region where the binder exists at least one of the gray region and the white region in the backscattered electron image
  • a measurement area (15 ⁇ m ⁇ 20 ⁇ m) is set in the image after binarization.
  • the area ratio of pixels derived from the dark field (pixels derived from cBN particles, pixels derived from the black region in the backscattered electron image) to the total area of the measurement field is calculated.
  • the cBN particle content (volume %) can be obtained by regarding the calculated area ratio as volume %.
  • the area ratio of pixels derived from the bright field (the sum of pixels derived from the binder, pixels derived from the gray area and white area in the backscattered electron image) to the total area of the measurement field is calculated.
  • the content rate (% by volume) of the binder can be obtained.
  • FIGS. 1 to 6 are drawings for the purpose of explaining the binarization method, and do not necessarily show the cubic boron nitride sintered body of the present embodiment.
  • Fig. 1 is an example of a backscattered electron image obtained by observing a cBN sintered body with an SEM.
  • the backscattered electron image is read into image processing software.
  • the read image is shown in FIG.
  • an arbitrary line Q1 is drawn in the read image.
  • a concentration cross-sectional view is measured along the line Q1 to read the GRAY value.
  • a graph (hereinafter also referred to as “concentration cross-sectional graph”) is prepared with the line Q1 as the X coordinate and the GRAY value as the Y coordinate.
  • FIG. 3 showing a backscattered electron image of a cBN sintered body and a concentration cross-sectional graph of the backscattered electron image, the upper image is the backscattered electron image and the lower graph is the concentration cross-sectional graph.
  • the width of the backscattered electron image coincides with the width (23.27 ⁇ m) of the X coordinate of the concentration profile graph. Therefore, the distance from the left end of the line Q1 in the backscattered electron image to a specific position on the line Q1 is indicated by the X-coordinate value of the density cross-sectional graph.
  • the black region is, for example, the part indicated by the ellipse with symbol c in the backscattered electron image of FIG.
  • the gray value of each of the three black regions is read from the density profile graph.
  • the gray value of each of the three black regions is the average value of the gray values of the three portions surrounded by the ellipses of symbol c in the density cross-sectional graph of FIG.
  • An average value of the respective GRAY values at the three locations is calculated.
  • the average value be the gray value of cBN (hereinafter also referred to as G cbn ).
  • the binding material is, for example, the portion indicated by the ellipse d in the backscattered electron image of FIG.
  • the GRAY value of each of the three binders is read from the concentration profile graph.
  • the respective GRAY values of the binders at the three locations are the average values of the GRAY values at the three locations surrounded by the ellipses of symbol d in the concentration cross-sectional graph of FIG.
  • An average value of the respective GRAY values at the three locations is calculated.
  • the average value is defined as the GRAY value of the binder (hereinafter also referred to as G binder ).
  • the GRAY value given by (G cbn +G binder )/2 is defined as the GRAY value of the interface between the black region (cBN particles) and the binder.
  • the gray value G cbn of the black region (cBN particles) is indicated by the line G cbn
  • the gray value G binder of the binder is indicated by the line G binder
  • (G cbn +G binder ) A GRAY value denoted by /2 is denoted by line G1.
  • the values of the X coordinate and the Y coordinate at the interface between the black region (cBN particles) and the binder are read. can be done.
  • the interface can be defined arbitrarily.
  • an example of the region including the interface between the black region (cBN particles) and the binder is the region surrounded by the ellipse with symbol e.
  • the interface between the black region (cBN particles) and the binder within the region surrounded by the ellipse indicated by symbol e is indicated by arrow e.
  • the tip of the arrow e indicates the position of the intersection of the concentration cross-sectional graph of the GRAY value and the line G1 indicating the GRAY value (G cbn +G binder )/2.
  • the X-coordinate and Y-coordinate values of the tip of the arrow e correspond to the X-coordinate and Y-coordinate values of the interface between the black region (cBN particles) and the binder.
  • FIG. 6 shows the image after the binarization process.
  • the area surrounded by the dotted line is the area subjected to the binarization process.
  • the image after the binarization process includes white areas (areas whiter than the bright field, pixels derived from the binder) corresponding to the areas that were white in the backscattered electron image before the binarization process. good too.
  • the area ratio of pixels derived from the dark field (pixels derived from cBN particles, pixels derived from the black region in the backscattered electron image) to the area of the measurement field is calculated.
  • the cBN particle content (volume %) can be obtained by regarding the calculated area ratio as volume %.
  • the dark-field region indicates cBN particles
  • the bright-field region indicates the binder, for the same region photographed in the binarized image.
  • the content (% by volume) of cubic boron nitride particles in the cubic boron nitride sintered body is measured in five different measurement regions.
  • the average of the measured values of the five measurement regions is taken as the content (% by volume) of the cubic boron nitride particles in the cubic boron nitride sintered body of the present embodiment.
  • the binder content (% by volume) of the cubic boron nitride sintered body is measured in five different measurement areas.
  • the average of the measured values of the five measurement regions is taken as the binder content (% by volume) of the cubic boron nitride sintered body of the present embodiment.
  • the cubic boron nitride sintered body of the present embodiment may contain unavoidable impurities as long as the effects of the present disclosure are exhibited.
  • inevitable impurities include metal elements such as alkali metal elements (lithium (Li), sodium (Na), potassium (K), etc.) and alkaline earth metal elements (calcium (Ca), magnesium (Mg), etc.). can be mentioned.
  • the content of the inevitable impurities is preferably 0.1% by mass or less. The content of inevitable impurities can be measured by secondary ion mass spectrometry (SIMS).
  • the lattice constant of the cubic boron nitride particles is 3.6140 ⁇ or more and 3.6161 ⁇ or less. According to this, the thermal conductivity of the cBN particles is increased. Therefore, in the cBN sintered body containing the cBN particles, crater wear due to cutting heat generated during cutting and chipping due to crater development are suppressed, and the tool life is improved.
  • the upper limit of the lattice constant of the cBN particles is 3.6161 ⁇ or less, preferably 3.6158 ⁇ or less, more preferably 3.6155 ⁇ or less, from the viewpoint of improving thermal conductivity.
  • the lower limit of the lattice constant of the cBN particles is 3.6140 ⁇ or more, preferably 3.6142 ⁇ or more, more preferably 3.6145 ⁇ or more.
  • the lattice constant of the cBN particles is 3.6140 ⁇ or more and 3.6161 ⁇ or less, preferably 3.6142 ⁇ or more and 3.6158 ⁇ or less, and more preferably 3.6145 ⁇ or more and 3.6155 ⁇ or less.
  • the lattice constant of cBN particles is measured and calculated by the following procedure.
  • the cubic boron nitride particles are filled into a capillary for X-ray crystallography with a diameter of 0.3 mm manufactured by TOHO (product name: Mark Tube) to obtain a sealed test specimen.
  • a powder made of cerium oxide (manufactured by Kojundo Chemical Laboratory) is prepared as a standard sample for calculating the wavelength ⁇ of synchrotron radiation.
  • the standard sample powder is packed in a capillary for X-ray crystallography with a diameter of 0.3 mm manufactured by TOHO to obtain a sealed standard sample.
  • X-ray diffraction measurement was performed on the sealed test specimen filled with the cubic boron nitride particles under the following conditions, and the main orientations of cubic boron nitride (111), (200), (220), (311 ), (400), and (331), and at least 4 diffraction peaks and 2 diffraction peaks in each of the (422) and (531) orientation planes. Obtain the line profile of the peak.
  • X-ray diffraction measurement conditions X-ray source: synchrotron radiation Equipment conditions: detector MYTHEN Energy: 18.000 keV (wavelength: 0.68881 ⁇ ) Camera length: 573mm Measurement peaks: at least four diffraction peaks among the (111), (200), (220), (311), (400), and (331) orientation planes of cubic boron nitride, and (422) , two diffraction peaks in each of the (531) azimuthal planes, and six or more peaks. However, if it is difficult to obtain a profile due to texture or orientation, the plane index peak is excluded. Measurement conditions: At least 5 measurement points in the half-value width. The basic configuration of this measurement is as described above, and it is necessary to use at least synchrotron radiation because it is necessary to calculate the lattice constant with high accuracy. , the present embodiment is not limited by the above measurement conditions.
  • the lattice constant a of the cubic boron nitride particles enclosed in the sealed test specimen is calculated as follows. At least four diffraction peaks among the (111), (200), (220), (311), (400), and (331) orientation planes of cubic boron nitride, and (422) and (531) 3.) Obtaining a line profile of 6 or more diffraction peaks, including 2 diffraction peaks in each azimuthal plane. The line profile is fitted with the sum of a pseudo-Voigt function and a background consisting of a linear function, and the central value 2 ⁇ 0 of the pseudo-Voigt function is obtained for each azimuth plane.
  • the cubic boron nitride particles contain cubic boron nitride as a main component.
  • the cubic boron nitride particles containing cubic boron nitride as a main component means that the content of cubic boron nitride in the cubic boron nitride particles is 99% by mass or more.
  • the content of components other than cubic boron nitride in the cubic boron nitride sintered body of the present embodiment is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.2% by mass or less.
  • Components other than cubic boron nitride include silicon, oxygen, lithium, magnesium, calcium, and the like.
  • the content of components other than cubic boron nitride (silicon, lithium, magnesium, calcium, etc.) in the cubic boron nitride particles can be measured by high frequency induction plasma emission spectrometry (ICP method). Specifically, it can be measured by the same method as the method for measuring the silicon content, which will be described later.
  • ICP method high frequency induction plasma emission spectrometry
  • the oxygen content of cubic boron nitride particles is measured by gas analysis (measuring device: "EMGA-920" manufactured by Horiba, Ltd.).
  • the silicon content of the cubic boron nitride particles is 0.02% by mass or less. According to this, the thermal conductivity of the cBN particles is increased. Therefore, in the cBN sintered body containing the cBN particles, crater wear due to cutting heat generated during cutting and chipping due to crater development are suppressed, and the tool life is improved.
  • the upper limit of the silicon content of the cBN particles is 0.02% by mass or less, preferably 0.01% by mass or less, and more preferably 0.001% by mass or less. Since the silicon content of cBN particles is preferably as low as possible, the lower limit is not particularly limited.
  • the lower limit of the silicon content of the cBN particles can be, for example, 0% by mass or more.
  • the silicon content of the cBN particles is preferably 0% by mass or more and 0.02% by mass or less, more preferably 0% by mass or more and 0.01% by mass or less, and still more preferably 0% by mass or more and 0.001% by mass or less.
  • the cBN particles can be produced by adding a catalyst (Li, Ca, Mg, and their nitrides, borides, and boronitrides) to hexagonal boron nitride powder, followed by heating and pressurization. At this time, Si is added in addition to the catalyst in order to promote the growth of cBN grains. Therefore, cBN particles may contain silicon as an unavoidable impurity. Considering this point, the lower limit of the silicon content of the cBN grains can be, for example, more than 0% by mass.
  • the silicon content of the cBN particles is preferably more than 0% by mass and 0.02% by mass or less, more preferably more than 0% by mass and 0.01% by mass or less, and even more preferably more than 0% by mass and 0.001% by mass or less.
  • ICP method induction plasma emission spectrometry
  • the median diameter d50 of the circle-equivalent diameter of the cubic boron nitride particles contained in the cubic boron nitride sintered body of the present embodiment (hereinafter also referred to as "median diameter d50") is not particularly limited, but is, for example, 1 nm or more. 15000 nm or less is preferable, 10 nm or more and 12000 nm or less is more preferable, and 100 nm or more and 10000 nm or less is still more preferable. According to this, the tool using the cubic boron nitride sintered body can have a long tool life.
  • the median diameter d50 of the equivalent circle diameters of the cubic boron nitride particles (the equivalent circle diameter at which the cumulative number-based frequency is 50%) is measured by the following method.
  • the backscattered electron image of the cross section of the cubic boron nitride sintered body is binarized, Cubic boron nitride particles are extracted.
  • the observation magnification is 5000 times.
  • a measurement area (15 ⁇ m ⁇ 20 ⁇ m) is set in the image after binarization.
  • the distribution of equivalent circle diameters of the cubic boron nitride particles is calculated using the above image analysis software. From the distribution of the equivalent circle diameters of the cubic boron nitride particles, the median diameter d50 of the equivalent circle diameters of the cubic boron nitride particles in the measurement field is calculated. The median diameter d50 of the equivalent circle diameter is measured in five different measurement regions. The average of the measured values of the five measurement regions is taken as the median diameter d50 of the equivalent circle diameters of the cubic boron nitride particles in the cubic boron nitride sintered body of the present embodiment.
  • the cBN sintered body of this embodiment can contain a binder.
  • the binder plays a role in making it possible to sinter the cBN particles, which are difficult-to-sinter materials, at industrial-level pressure temperatures.
  • the reactivity with iron is lower than that of cBN, it has the function of suppressing chemical wear and thermal wear, especially in cutting hardened steel.
  • the wear resistance and chipping resistance are improved particularly in high-efficiency machining of high-hardness hardened steel.
  • the binder is at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements of the periodic table, aluminum, silicon, iron, cobalt and nickel, At least one selected from the group consisting of a compound consisting of at least one element selected from the group consisting of carbon, nitrogen, boron and oxygen, and a solid solution of the compound. That is, the binder contains at least one selected from the group consisting of the above compounds and solid solutions of the above compounds.
  • the binder has a high bonding strength to cBN particles. Therefore, the cubic boron nitride sintered body has excellent fracture resistance, and the tool life using the cubic boron nitride sintered body is extended.
  • elements of Group 4 of the periodic table include titanium (Ti), zirconium (Zr) and hafnium (Hf).
  • Group 5 elements of the periodic table include vanadium (V), niobium (Nb) and tantalum (Ta).
  • Periodic Table Group 6 elements include chromium (Cr), molybdenum (Mo) and tungsten (W).
  • elements contained in periodic table 4 group elements, 5 group elements, 6 group elements, aluminum, silicon, iron, cobalt and nickel are also referred to as "first elements”.
  • Examples of the compound (carbide) containing the first element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), carbide Mention may be made of tantalum (TaC), chromium carbide (Cr 3 C 2 ), molybdenum carbide (MoC), tungsten carbide (WC), silicon carbide (SiC), tungsten carbide-cobalt (W 2 Co 3 C).
  • Examples of the compound (nitride) containing the first element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), Tantalum nitride (TaN), chromium nitride ( Cr2N ), molybdenum nitride (MoN), tungsten nitride (WN), aluminum nitride (AlN), silicon nitride ( Si3N4 ), cobalt nitride ( CoN ), nickel nitride ( NiN), titanium zirconium nitride (TiZrN), titanium hafnium nitride (TiHfN), titanium vanadium nitride (TiVN), titanium niobium nitride (TiNbN), titanium tant
  • Examples of the compound (boride) containing the first element and boron include titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), hafnium boride (HfB 2 ), vanadium boride (VB 2 ), niobium boride (NbB 2 ), tantalum boride (TaB 2 ), chromium boride (CrB), molybdenum boride (MoB), tungsten boride (WB), aluminum boride (AlB 2 ), cobalt boride (Co 2 B), nickel boride (Ni 2 B).
  • Examples of the compound (oxide) containing the first element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), vanadium oxide (V 2 O 5 ), niobium oxide ( Nb2O5 ), tantalum oxide ( Ta2O5 ), chromium oxide ( Cr2O3 ), molybdenum oxide ( MoO3 ), tungsten oxide ( WO3 ), aluminum oxide ( Al2O3 ), Mention may be made of silicon oxide (SiO 2 ), cobalt oxide (CoO), nickel oxide (NiO).
  • Examples of the compound (carbonitride) containing the first element, carbon, and nitrogen include titanium carbonitride (TiCN), zirconium carbonitride (ZrCN), hafnium carbonitride (HfCN), and titanium niobium carbonitride (TiNbCN). , titanium zirconium carbonitride (TiZrCN), titanium hafnium carbonitride (TiHfCN), titanium tantalum carbonitride (TiTaCN), titanium chromium carbonitride (TiCrCN).
  • Examples of the compound (oxynitride) composed of the first element, oxygen, and nitrogen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), and vanadium oxynitride (VON).
  • TiON titanium oxynitride
  • ZrON zirconium oxynitride
  • HfON hafnium oxynitride
  • VON vanadium oxynitride
  • tantalum oxynitride (TaON) tantalum oxynitride
  • CrON chromium oxynitride
  • MoON molybdenum oxynitride
  • WON aluminum oxynitride
  • AlON aluminum oxynitride
  • SiON silicon oxynitride
  • the solid solution of the above compounds means a state in which two or more kinds of compounds are dissolved in each other's crystal structure, and means an interstitial solid solution or a substitutional solid solution.
  • the above compounds may be used singly or in combination of two or more.
  • the binding material may contain other components in addition to the above compounds.
  • Manganese (Mn) and rhenium (Re) can be given as examples of elements constituting other components.
  • the lower limit of the total content of the compound and the solid solution of the compound in the binder is preferably 50% by volume or more, more preferably 60% by volume or more, and even more preferably 70% by volume or more.
  • the total content of the compound and the solid solution of the compound in the binder is preferably as large as possible, and is not particularly limited, and can be, for example, 100% by volume or less.
  • the total content of the compound and the solid solution of the compound in the binder is preferably 50% by volume or more and 100% by volume or less, more preferably 60% by volume or more and 100% by volume or less, and even more preferably 70% by volume or more and 100% by volume or less. .
  • composition of the binder contained in the cBN sintered body can be specified by XRD (X-ray diffraction).
  • the total content of the above compounds and the solid solution of the above compounds in the binder is measured by the RIR method (Reference Intensity Ratio) by XRD.
  • the cubic boron nitride sintered body of the present embodiment is suitable for use in cutting tools, wear-resistant tools, grinding tools, and the like.
  • the cutting tool, wear-resistant tool, and grinding tool using the cubic boron nitride sintered body of the present disclosure may each be entirely composed of the cubic boron nitride sintered body, or a part thereof (for example, a cutting tool In the case of , at least only the cutting edge portion) may be composed of a cubic boron nitride sintered body. Furthermore, a coating film may be formed on the surface of each tool.
  • Cutting tools include drills, end mills, indexable cutting inserts for drills, indexable cutting inserts for end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, gear cutting tools, reamers. , taps, and cutting tools.
  • Wear-resistant tools include dies, scribers, scribing wheels, and dressers. Grinding tools include grinding wheels.
  • the cubic boron nitride sintered body of the present embodiment can be produced, for example, by the following method.
  • Cubic boron nitride powder (hereinafter also referred to as cBN powder) is a raw material powder of cBN particles contained in a cBN sintered body.
  • the cBN powder may be produced by heating and pressurizing after adding a catalyst (Li, Ca, Mg, and their nitrides, borides, and boronitrides) to hexagonal boron nitride powder.
  • a cBN powder may be provided.
  • the d50 (average particle size) of the cBN powder is not particularly limited, and can be, for example, 0.1 to 12.0 ⁇ m.
  • the above cBN powder is first irradiated with an electron beam.
  • the electron beam irradiation conditions can be, for example, an irradiation energy of 25 to 30 MeV and an irradiation time of 10 to 24 hours.
  • the cBN powder after electron beam irradiation is pressurized and heated.
  • the pressurized heat treatment can be performed using an ultrahigh pressure and high temperature generator.
  • a belt type, a multi-anvil type, a cubic type, or the like can be used as the ultrahigh pressure and high temperature generator depending on the desired generation pressure region.
  • the pressure can be 5 to 15 GPa
  • the temperature can be 1000 to 2000° C.
  • the holding time can be 1 to 60 minutes.
  • the lattice constant of the cBN particles is reduced to 3.6161 ⁇ or less.
  • the cBN powder after the heat and pressure treatment is subjected to heat treatment at an oxygen partial pressure of 1 ⁇ 10 -29 atm or less and at 800 to 1300 ° C. for 10 to 60 minutes (hereinafter referred to as "low oxygen (also referred to as “heat treatment under”).
  • low oxygen also referred to as “heat treatment under”
  • heating/pressurizing treatment and the heat treatment under low oxygen conditions are performed in the above-described order after the electron beam irradiation.
  • heat treatment may be performed under low oxygen conditions, followed by heating and pressurizing treatment.
  • a binder raw material powder is prepared.
  • the binder raw material powder is the raw material powder of the binder contained in the cBN sintered body.
  • the binder raw material powder contains at least one element selected from the group consisting of elements of Group 4, Group 5, Group 6 of the periodic table, aluminum, silicon, iron, cobalt and nickel, and carbon, nitrogen, boron and oxygen. and at least one element selected from the group consisting of
  • the binder raw material powder can be prepared, for example, as follows. TiN and Al are mixed and heat-treated in vacuum at 1200° C. for 30 minutes to obtain a compound. The compound is pulverized to prepare a binding material raw material powder. Peaks of TiN, Ti 2 AlN, TiAl 3 and the like are confirmed in the raw material powder of the binder in X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the method of mixing and pulverizing each powder is not particularly limited, but from the viewpoint of efficient and homogeneous mixing, mixing and pulverization with media such as balls, and jet mill mixing and pulverization are preferable.
  • Each mixing and pulverizing method may be wet or dry.
  • the cBN powder prepared above and the binder raw material powder are mixed by wet ball mill mixing using ethanol, acetone, or the like as a solvent, and the mixed powder is obtained. make.
  • the solvent is removed by air drying after mixing. Thereafter, a heat treatment is performed to volatilize impurities such as moisture adsorbed on the surface of the mixed powder, thereby cleaning the surface of the mixed powder.
  • the cubic boron nitride sintered body of the present disclosure preferably comprises 35% by volume or more and 100% by volume or less of cubic boron nitride particles and 0% by volume or more and 65% by volume or less of a binder.
  • the cubic boron nitride sintered body of the present disclosure preferably comprises 35% by volume or more and less than 100% by volume of cubic boron nitride particles and more than 0% by volume and 65% by volume or less of a binder.
  • the cubic boron nitride sintered body of the present disclosure preferably consists of 35% by volume or more and less than 98% by volume of cubic boron nitride particles and more than 2% by volume and 65% by volume or less of a binder.
  • the cubic boron nitride sintered body of the present disclosure preferably comprises 40% by volume or more and 85% by volume or less of cubic boron nitride particles and 15% by volume or more and 60% by volume or less of a binder.
  • the cubic boron nitride sintered body of the present disclosure preferably comprises 45% by volume or more and 80% by volume or less of cubic boron nitride particles and 20% by volume or more and 55% by volume or less of a binder.
  • the cubic boron nitride sintered body of the present disclosure preferably consists of cubic boron nitride particles.
  • the cubic boron nitride sintered body of the present disclosure is composed of cubic boron nitride particles, a binder, and inevitable impurities, and contains 35% by volume or more and 100% by volume or less of cubic boron nitride particles, and 0% by volume or more and 65 It is preferable to include a binder in an amount of vol % or less.
  • the cubic boron nitride sintered body of the present disclosure is composed of cubic boron nitride particles, a binder, and inevitable impurities, and contains 35% by volume or more and less than 100% by volume of cubic boron nitride particles, and more than 0% by volume of 65 It is preferable to include a binder in an amount of vol % or less.
  • the cubic boron nitride sintered body of the present disclosure is composed of cubic boron nitride particles, a binder, and inevitable impurities, and contains 35% by volume or more and less than 98% by volume of cubic boron nitride particles, and more than 2% by volume of 65% by volume.
  • the cubic boron nitride sintered body of the present disclosure is composed of cubic boron nitride particles, a binder, and inevitable impurities, and contains 40% by volume or more and 85% by volume or less of cubic boron nitride particles, and 15% by volume or more and 60% by volume of cubic boron nitride particles. It is preferable to include a binder in an amount of vol % or less.
  • the cubic boron nitride sintered body of the present disclosure is composed of cubic boron nitride particles, a binder, and inevitable impurities, and contains 45% by volume or more and 80% by volume or less of cubic boron nitride particles, and 20% by volume or more and 55% by volume of cubic boron nitride particles. It is preferable to include a binder in an amount of vol % or less.
  • the cubic boron nitride sintered body of the present disclosure preferably comprises cubic boron nitride particles and inevitable impurities.
  • the silicon content of the cubic boron nitride particles is preferably more than 0% by mass and 0.02% by mass or less.
  • the silicon content of the cubic boron nitride particles is preferably more than 0% by mass and 0.01% by mass or less.
  • the silicon content of the cubic boron nitride particles is preferably more than 0% by mass and 0.001% by mass or less.
  • [Test 1] ⁇ Preparation of cubic boron nitride powder>> A known cubic boron nitride powder (d50 (average particle size) 3.2 ⁇ m) was prepared. The cBN powder was subjected to at least one of electron beam irradiation, pressurized heat treatment, and heat treatment under low oxygen conditions. When two or more of the electron beam irradiation, pressurized heat treatment, and heat treatment under low oxygen conditions were performed, they were performed in the order described above.
  • the electron beam irradiation conditions are as shown in the “Energy (MeV)” and “Time (hr)” columns of "Electron beam irradiation” in Table 1.
  • the cBN powder was irradiated with an electron beam at an irradiation energy of 27 MeV for an irradiation time of 15 hours.
  • the conditions of the pressurized heat treatment are as shown in the "Pressure (GPa)”, “Temperature (°C)” and “Time (minutes)” columns of "Pressured heat treatment” in Table 1.
  • the cBN powder was subjected to pressure heating treatment at a pressure of 6 GPa and a temperature of 1400° C. for 30 minutes.
  • a binder raw material powder was prepared by the following procedure.
  • Samples 1 to 7 Samples 13 to 19, Samples 1-1 to 1-5, Samples 1-7 to 1-9> TiN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • Example 8 TiCN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • Sample 1-6> WC powder, Co powder, and Al powder were mixed at a mass ratio of 3:8:1, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain binder raw material powder. Obtained.
  • TiO2 powder, Nb2O5 powder and C powder were mixed in a mass ratio of 57.19: 16.79 :26.02 and heat-treated at 2100°C for 60 minutes under a nitrogen atmosphere to form a single-phase TiNbCN composition.
  • a compound was synthesized.
  • the single-phase compound was pulverized to a particle size of 0.5 ⁇ m by a wet pulverization method to obtain a TiNbCN powder.
  • TiNbCN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • TiO2 powder, ZrO2 powder and C powder were mixed in a mass ratio of 58.35:15.88:25.77 and heat-treated at 2100 °C for 60 minutes under a nitrogen atmosphere to form a single-phase compound with a TiZrCN composition. Synthesized. The single-phase compound was pulverized to a particle size of 0.5 ⁇ m by a wet pulverization method to obtain a TiZrCN powder. TiZrCN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • TiO2 powder, HfO2 powder and C powder were mixed at a mass ratio of 52.45:24.38:23.17 and heat-treated at 2100 °C for 60 minutes under a nitrogen atmosphere to form a single-phase compound with a TiHfCN composition. Synthesized. The single-phase compound was pulverized to a particle size of 0.5 ⁇ m by a wet pulverization method to obtain TiHfCN powder.
  • TiHfCN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • TiO2 powder, Ta2O5 powder and C powder were mixed at a mass ratio of 51.47:25.12:23.42 and heat-treated at 2100°C for 60 minutes under a nitrogen atmosphere to form a single-phase TiTaCN composition.
  • a compound was synthesized.
  • the single-phase compound was pulverized to a particle size of 0.5 ⁇ m by a wet pulverization method to obtain TiTaCN powder.
  • TiTaCN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • TiO2 powder, Cr2O3 powder and C powder were mixed in a mass ratio of 62.64:10.51:26.84 and heat-treated at 2100° C for 60 minutes under a nitrogen atmosphere to form a single-phase TiCrCN composition.
  • a compound was synthesized.
  • the single-phase compound was pulverized to a particle size of 0.5 ⁇ m by a wet pulverization method to obtain a TiCrCN powder.
  • TiCrCN powder and Al powder were mixed at a mass ratio of 85:15, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • WC powder, Co powder and Al powder were prepared at a mass ratio of 3:8:1.
  • Zr powder was added to WC powder, Co powder, and Al powder so as to be 5% by mass of the whole, and mixed.
  • Example 23 A cBN sintered body was produced in the same manner as for sample 22, except that Ni powder and Nb powder were added instead of Zr powder when producing the binder material powder.
  • ⁇ Sample 24> A cBN sintered body was produced in the same manner as in Sample 22, except that Zr powder was not added when producing the binder raw material powder, and CrN powder was added when mixing the cBN powder and the binder powder. bottom. The CrN powder was added in an amount of 5% by mass with respect to the entire binder. The CrN powder was obtained by treating Cr 2 N (manufactured by Nippon New Metal Co., Ltd.) at 300 kPa and 900° C. for 3 hours in a nitrogen atmosphere.
  • the cBN powder subjected to at least one of the electron beam irradiation, pressurized heat treatment, and heat treatment under low oxygen conditions was mixed with the binder raw material powder, and ethanol was used.
  • a mixed powder was obtained by uniformly mixing them by a wet ball mill method. Thereafter, a degassing process was performed at 900° C. under vacuum to remove impurities such as moisture on the surface.
  • the ratio (% by volume) of the cBN particles and the binder in the cubic boron nitride sintered body The proportions described in the columns of "cBN particles (% by volume)” and “binder (% by volume)" in “Body” were adjusted.
  • the mixed powder was filled in a Ta (tantalum) container while being in contact with a WC-6% Co cemented carbide disc, and vacuum-sealed.
  • the vacuum-sealed mixed powder is pressurized to 7 GPa at a pressurization rate of 0.4 GPa/min using a belt-type ultra-high pressure and high temperature generator, and held for 20 minutes at 7 GPa and 1700 ° C. for sintering.
  • a cBN sintered body of each sample was obtained.
  • Sample 25 which does not use the binder raw material powder, cBN powder was sandwiched between Al plates, filled in a Ta (tantalum) container, and sintered to obtain a cBN sintered body.
  • composition of the binder in the cBN sintered body was measured. Since the specific measuring method is the same as the method described in Embodiment 1, the description thereof will not be repeated. The results are shown in the "binder” column of "cBN sintered body” in Table 2. In all samples, the total content of the compounds listed in the "Binder” column of Table 2 in the binder was 50% by volume or more.
  • ⁇ Particle size of cBN particles> The median diameter d50 of the circle-equivalent diameter of the cBN grains in the cBN sintered body was measured. Since the specific measuring method is the same as the method described in Embodiment 1, the description thereof will not be repeated. In all the samples, the median diameter d50 of the equivalent circle diameter of the cBN particles was in the range of 1 nm or more and 15000 nm or less.
  • a cutting tool (base material shape: CNGA120408) was produced using the cBN sintered body of each sample. Using this, a cutting test was carried out under the following cutting conditions. The following cutting conditions apply to high-speed, high-efficiency machining of hardened steel. Cutting speed: 200m/min. Feeding speed: 0.2 mm/rev. Notch: 0.2mm Coolant: DRY Cutting method: Interrupted cutting Lathe: LB400 (manufactured by Okuma Corporation) Work material: hardened steel (SCM415 V groove, hardness HRC60) Evaluation method: The cutting edge was observed every 0.5 km to confirm the presence or absence of chipping of the cutting edge. The cutting distance at which a defect of 0.2 mm or more occurred was measured, and this cutting distance was defined as the life of the cutting tool. The results are shown in the "tool life (km)" column of Table 1.
  • Samples 1 to 25 correspond to Examples, and Samples 1-1 to 1-9 correspond to Comparative Examples. It was confirmed that Samples 1 to 25 (Examples) had a longer tool life in high efficiency machining than Samples 1-1 to 1-9 (Comparative Examples).
  • [Test 2] ⁇ Preparation of cubic boron nitride powder>> A known cubic boron nitride powder (d50 (average particle size) 3.2 ⁇ m) was prepared. The cBN powder was subjected to at least one of electron beam irradiation, pressurized heat treatment, and heat treatment under low oxygen conditions. When two or more of the electron beam irradiation, pressurized heat treatment, and heat treatment under low oxygen conditions were performed, they were performed in the order described above.
  • the conditions for electron beam irradiation are as shown in the “Energy (MeV)” and “Time (hr)” columns of "Electron beam irradiation” in Table 3.
  • the conditions for the pressurized heat treatment are as shown in the “Pressure (GPa)", “Temperature (°C)” and “Time (minutes)” columns of "Pressured heat treatment” in Table 3.
  • the conditions for heat treatment under low oxygen conditions are as shown in the columns of "oxygen partial pressure", “temperature (°C)” and “time (minutes)” in “heat treatment under low oxygen conditions” in Table 3. In Table 3, "-" indicates that the corresponding step was not performed.
  • a binder raw material powder was prepared by the following procedure.
  • Example 2-1 to Sample 2-7, Sample 2-9 to Sample 2-18, Sample 2-29, Sample 2-30> WC powder, Co powder, and Al powder were mixed at a mass ratio of 3:8:1, heat-treated at 1200° C. for 30 minutes in a vacuum atmosphere, and then mixed and pulverized in a wet ball mill to obtain binder raw material powder. Obtained.
  • WC powder, Co powder, Al powder, and metal element powder were mixed at a mass ratio of 3:5:1:3, and heat-treated at 1200°C for 30 minutes in a vacuum atmosphere. After that, they were mixed and pulverized in a wet ball mill to obtain raw binder powder.
  • the metal element powder is Cr powder for sample 2-19, Mo powder for sample 2-20, V powder for sample 2-21, Nb powder for sample 2-22, Ta powder for sample 2-23, and Ta powder for sample 2-24.
  • Ti powder was used in Sample 2-25, Zr powder was used in Sample 2-26, Hf powder was used in Sample 2-26, and Si powder was used in Sample 2-27.
  • sample 2-28 The binder of sample 2-28 was obtained by placing Al metal plates above and below the cBN particles in the sintering process without using the binder raw material powder, and infiltrating Al into cBN during sintering. AlN and AlB 2 were obtained as products.
  • ⁇ Mixing process The cBN powder that has been subjected to at least one of the electron beam irradiation, pressurized heat treatment, and heat treatment under low oxygen conditions is mixed with the binder raw material powder, and mixed uniformly by a wet ball mill method using ethanol. A powder was obtained. Thereafter, a degassing process was performed at 900° C. under vacuum to remove impurities such as moisture on the surface.
  • the ratio (% by volume) of the cBN particles and the binder in the cubic boron nitride sintered body The proportions described in the columns of "cBN particles (% by volume)” and “binder (% by volume)" in “Body” were adjusted.
  • the mixed powder was filled in a Ta (tantalum) container while being in contact with a WC-6% Co cemented carbide disc, and vacuum-sealed.
  • the temperature of the vacuum seal was 850° C. or higher.
  • the vacuum-sealed mixed powder is pressurized to 6 GPa at a pressurization rate of 0.2 GPa/min using a belt-type ultra-high pressure and high temperature generator, and held for 30 minutes at 6 GPa and 1300 ° C. for sintering.
  • a cBN sintered body of each sample was obtained.
  • sample 2-28 the cBN particles were filled with Al metal plates placed above and below them and sintered to obtain a cBN sintered body.
  • sample 2-31> the cBN powder was filled in a Ta (tantalum) container while being in contact with a WC-6% Co cemented carbide disk, and vacuum-sealed.
  • the temperature of the vacuum seal was 850° C. or higher.
  • the vacuum-sealed mixed powder is pressurized to 12 GPa at a pressurization rate of 0.2 GPa/min using a belt-type ultra-high pressure and high temperature generator, and held for 30 minutes at 12 GPa and 2000 ° C. for sintering.
  • a cBN sintered body of each sample was obtained.
  • composition of the binder in the cBN sintered body was measured. Since the specific measuring method is the same as the method described in Embodiment 1, the description thereof will not be repeated. The results are shown in the "binder" column of "cBN sintered body” in Table 4. In all samples, the total content of the compounds listed in the "Binder” column of Table 4 in the binder was 50% by volume or more.
  • ⁇ Particle size of cBN particles> The median diameter d50 of the circle-equivalent diameter of the cBN grains in the cBN sintered body was measured. Since the specific measuring method is the same as the method described in Embodiment 1, the description thereof will not be repeated. In all the samples, the median diameter d50 of the equivalent circle diameter of the cBN particles was in the range of 1 nm or more and 15000 nm or less.
  • a cutting tool (base material shape: CNGA120408) was produced using the cBN sintered body of each sample. Using this, a cutting test was carried out under the following cutting conditions. The following cutting conditions correspond to high-speed, high-efficiency machining of sintered alloys. Cutting speed: 180m/min. Feeding speed: 0.14 mm/rev.
  • Samples 2-1 to 2-12 and samples 2-18 to 2-28 correspond to examples.
  • Samples 2-13 to 2-17 and samples 2-29 to 2-31 correspond to comparative examples.
  • Samples 2-1 to 2-12 and Samples 2-18 to 2-28 are compared to Samples 2-13 to 2-17 and Samples 2-29 to 2-31 (Comparative Examples). It was confirmed that the tool life is long in high-efficiency machining.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

本開示の立方晶窒化硼素焼結体は、35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材と、を含む立方晶窒化硼素焼結体であって、前記立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下であり、前記立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下であり、前記結合材は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、並びに、前記化合物の固溶体からなる群より選ばれる少なくとも1種を含む。

Description

立方晶窒化硼素焼結体
 本開示は、立方晶窒化硼素焼結体に関する。本出願は、2021年10月25日に出願した国際出願であるPCT/JP2021/039320に基づく優先権を主張する。当該国際出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 立方晶窒化硼素(以下、cBNとも記す。)は、ダイヤモンドに次ぐ硬度及び熱伝導率を有し、更にダイヤモンドと比較して、鉄系金属との反応性が低いという特徴を有する。このため、立方晶窒化硼素粒子(以下cBN粒子とも記す。)cBN粒子を含有する立方晶窒化硼素焼結体(以下、cBN焼結体とも記す。)は、特に鉄系難削材の切削に広く用いられている(例えば、特許文献1及び特許文献2)。
国際公開第2005/066381号 特表2005-514300号公報
 本開示の立方晶窒化硼素焼結体は、
 35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材と、を含む立方晶窒化硼素焼結体であって、
 前記立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下であり、
 前記立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下であり、
 前記結合材は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、並びに、前記化合物の固溶体からなる群より選ばれる少なくとも1種を含む、立方晶窒化硼素焼結体である。
図1は、立方晶窒化硼素多結晶体をSEMで観察して得られた反射電子像の一例を示す画像である。 図2は、図1の反射電子像を画像処理ソフトに読み込んだ画像である。 図3は、上の画像は反射電子像であり、下の画像は該反射電子像から得られた濃度断面グラフである。 図4は、黒色領域及び結合材の規定方法を説明するための図である。 図5は、黒色領域と結合材との境界を説明するための図である。 図6は、図1の反射電子像を二値化処理した画像である。
 [本開示が解決しようとする課題]
 近年、コスト低減の観点から、高能率加工の要求がますます高まっている。従って、工具材料として用いた場合に、高能率加工においても、工具が長い寿命を有することのできる立方晶窒化硼素焼結体が望まれている。
 [本開示の効果]
 本開示の立方晶窒化硼素焼結体は、工具材料として用いた場合に、特に高能率加工においても、工具の長寿命化を可能とすることができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の立方晶窒化硼素焼結体は、
 35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材と、を含む立方晶窒化硼素焼結体であって、
 前記立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下であり、
 前記立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下であり、
 前記結合材は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、並びに、前記化合物の固溶体からなる群より選ばれる少なくとも1種を含む、立方晶窒化硼素焼結体である。
 本開示の立方晶窒化硼素焼結体は、工具材料として用いた場合に、特に高能率加工においても、工具の長寿命化を可能とすることができる。
 (2)上記(1)において、前記立方晶窒化硼素粒子の格子定数は、3.6142Å以上3.6158Å以下であることが好ましい。これによると、工具寿命が更に向上する。
 (3)上記(1)または(2)において、前記立方晶窒化硼素粒子の格子定数は、3.6145Å以上3.6155Å以下であることが好ましい。これによると、工具寿命が更に向上する。
 (4)上記(1)から(3)のいずれかにおいて、前記立方晶窒化硼素粒子の珪素含有率は、0.01質量%以下であることが好ましい。これによると、工具寿命が更に向上する。
 (5)上記(1)から(4)のいずれかにおいて、前記立方晶窒化硼素粒子の珪素含有率は、0.001質量%以下であることが好ましい。これによると、工具寿命が更に向上する。
 (6)上記(1)から(5)のいずれかにおいて、前記立方晶窒化硼素焼結体における前記立方晶窒化硼素粒子の含有率は、40体積%以上95体積%以下であることが好ましい。これによると、工具寿命が更に向上する。
 [本開示の実施形態の詳細]
 本開示の立方晶窒化硼素焼結体を、以下に説明する。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiN」と記載されている場合、TiNを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。
 [実施形態1:立方晶窒化硼素焼結体]
 ≪立方晶窒化硼素焼結体≫
 本開示の一実施形態(以下、本実施形態とも記す。)に係る立方晶窒化硼素焼結体は、35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材と、を含む立方晶窒化硼素焼結体であって、
 該立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下であり、
 該立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下であり、
 該結合材は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、並びに、該化合物の固溶体からなる群より選ばれる少なくとも1種を含む、立方晶窒化硼素焼結体である。
 本実施形態の立方晶窒化硼素焼結体は、工具材料として用いた場合に、特に高能率加工においても、工具の長寿命化を可能とすることができる。この理由は、以下の(i)~(iii)の通りと推察される。
 (i)本実施形態の立方晶窒化硼素焼結体は、硬度、強度及び靱性が高いcBN粒子を35体積%以上100体積%以下含む。このため、立方晶窒化硼素焼結体は優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具の寿命が長くなる。
 (ii)本実施形態の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下である。一般的な立方晶窒化硼素の単位格子の格子定数(以下、単位格子の格子定数を、単に格子定数と記す。)は、3.6162Åである。本実施形態で用いられるcBN粒子の格子定数は、一般的なcBN粒子の格子定数よりも小さい。この格子定数が小さいcBN粒子を用いたcBN焼結体ではcBN粒子の熱伝導率が高く、切削時に生じる切削熱に起因するクレーター摩耗の発生及びクレーターの発達に起因する欠損の発生が抑制され、該立方晶窒化硼素焼結体を用いた工具の寿命が向上する。cBN粒子の熱伝導率が高くなる理由は明確ではないが、格子定数が小さくなることで共有結合がより強固となり、格子振動が伝達しやすくなるためと推察される。
 (iii)本実施形態の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下である。従来のcBN粒子は不純物として珪素を0.1質量%程度含む。珪素は立方晶窒化硼素よりも熱伝導率が低い。本実施形態で用いられるcBN粒子は、熱伝導率の低い珪素の含有率が低減されているため、熱伝導率が高くなる。よって、該cBN粒子を有するcBN焼結体では、切削時に生じる切削熱に起因するクレーター摩耗の発生及びクレーターの発達に起因する欠損の発生が抑制され、該立方晶窒化硼素焼結体を用いた工具の寿命が向上する。
 <立方晶窒化硼素焼結体の組成>
 本実施形態の立方晶窒化硼素焼結体は、35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材と、を備える。なお、cBN焼結体は、本開示の効果を奏する限り、原材料、製造条件等に起因する不可避不純物を含むことができる。
 cBN焼結体中のcBN粒子の含有率の下限は、硬度向上の観点から35体積%以上であり、40体積%以上が好ましく、45体積%以上がより好ましい。cBN焼結体中のcBN粒子の含有率の上限は、100体積%以下である。本実施形態のcBN焼結体は、cBN粒子のみからなることができる。cBN焼結体中のcBN粒子の含有率の上限は、用途によって最適値は異なるが、99体積%以下が好ましく、98体積%未満が好ましく、95体積%以下が好ましく、90体積%以下が好ましく、85体積%以下が好ましく、80体積%以下がより好ましい。cBN焼結体中のcBN粒子の含有率は、35体積%以上100体積%以下であり、35体積%以上99体積%以下が好ましく、35体積%以上98体積%未満が好ましく、40体積%以上95体積%以下が好ましく、40体積%以上90体積%以下が好ましく、40体積%以上85体積%以下が好ましく、45体積%以上80体積%以下がより好ましい。
 cBN焼結体中の結合材の含有率の下限は、0体積%以上である。本実施形態のcBN焼結体は、結合材を含まないことができる。cBN焼結体中の結合材の含有率の下限は、結合材としての機能を確保する観点から1体積%以上が好ましく、2体積%超が好ましく、5体積%以上が好ましく、10体積%以上が好ましく、15体積%以上が好ましく、20体積%以上がより好ましい。cBN焼結体中の結合材の含有率の上限は、硬度向上の観点から65体積%以下であり、60体積%以下が好ましく、55体積%以下がより好ましい。cBN焼結体中の結合材の含有率は、0体積%以上65体積%以下であり、1体積%以上65体積%以下が好ましく、2体積%超65体積%以下が好ましく、5体積%以上60体積%以下が好ましく、10体積%以上60体積%以下が好ましく、15体積%以上60体積%以下が好ましく、20体積%以上55体積%以下がより好ましい。
 本実施形態のcBN焼結体は、35体積%以上100体積%未満の立方晶窒化硼素粒子と、0体積%超65体積%以下の結合材とを含むことが好ましく、35体積%以上98体積%未満の立方晶窒化硼素粒子と、2体積%超65体積%以下の結合材とを含むことが好ましく、40体積%以上95体積%以下の立方晶窒化硼素粒子と、5体積%以上60体積%以下の結合材とを含むことが好ましく、45体積%以上80体積%以下の立方晶窒化硼素粒子と、20体積%以上55体積%以下の結合材とを含むことがより好ましい。
 本実施形態のcBN焼結体は、35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材とからなることが好ましく、35体積%以上100体積%未満の立方晶窒化硼素粒子と、0体積%超65体積%以下の結合材とからなることが好ましく、35体積%以上98体積%未満の立方晶窒化硼素粒子と、2体積%超65体積%以下の結合材とからなることが好ましく、40体積%以上85体積%以下の立方晶窒化硼素粒子と、15体積%以上60体積%以下の結合材とからなることがより好ましく、45体積%以上80体積%以下の立方晶窒化硼素粒子と、20体積%以上55体積%以下の結合材とからなることが更に好ましい。これらの場合においても、cBN焼結体は、本開示の効果を示す限り、原材料、製造条件等に起因する不可避不純物を含むことができる。
 cBN焼結体におけるcBN粒子の含有率(体積%)及び結合材の含有率(体積%)は、走査電子顕微鏡(SEM)(日本電子社製の「JSM-7800F」(商品名))付帯のエネルギー分散型X線分析装置(EDX)(Octane Elect(オクタンエレクト) EDS システム)(以下「SEM-EDX」とも記す。)を用いて、cBN焼結体に対し、組織観察、元素分析等を実施することによって確認することができる。具体的な測定方法は、下記の通りである。
 まず、cBN焼結体の任意の位置を切断し、cBN焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、上記断面をSEMにて5000倍で観察して、反射電子像を得る。反射電子像においては、cBN粒子が存在する領域が黒色領域となり、結合材が存在する領域が灰色領域及び白色領域の少なくともいずれかとなる。cBN焼結体がcBN粒子のみからなる場合は、反射電子像の全体が黒色もしくは濃灰色となる。
 次に、上記反射電子像に対して画像解析ソフト(三谷商事(株)の「WinROOF」)を用いて二値化処理を行う。二値化処理後の画像では、cBN粒子が存在する領域(反射電子像における黒色領域)が暗視野となり、結合材が存在する領域(反射電子像における灰色領域及び白色領域の少なくともいずれか)は明視野となる。二値化処理後の画像中に、測定領域(15μm×20μm)を設定する。該測定視野の全面積に占める暗視野に由来する画素(cBN粒子に由来する画素、反射電子像における黒色領域に由来する画素)の面積比率を算出する。算出された面積比率を体積%とみなすことにより、cBN粒子の含有率(体積%)を求めることができる。
 二値化処理後の画像から、測定視野の全面積に占める明視野に由来する画素(結合材に由来する画素、反射電子像における灰色領域及び白色領域に由来する画素の合計)の面積比率を算出することにより、結合材の含有率(体積%)を求めることができる。
 二値化処理の具体的な方法について、図1~図6を用いて説明する。なお、図1~図6は、二値化処理の方法を説明することを目的として示される図面であり、必ずしも本実施形態の立方晶窒化硼素焼結体を示すものではない。
 図1は、cBN焼結体をSEMで観察して得られた反射電子像の一例である。該反射電子像を画像処理ソフトに読み込む。読み込んだ画像を図2に示す。図2に示されるように、読み込んだ画像において、任意のラインQ1を引く。
 ラインQ1に沿って、濃度断面図の計測を行い、GRAY値を読み取る。ラインQ1をX座標とし、GRAY値をY座標としたグラフ(以下、「濃度断面グラフ」ともいう。)を作製する。cBN焼結体の反射電子像と、該反射電子像の濃度断面グラフを図3に示す図3において、上の画像が反射電子像であり、下のグラフが濃度断面グラフである。図3において、反射電子像の幅と濃度断面グラフのX座標の幅(23.27μm)とは一致している。従って、反射電子像におけるラインQ1の左側端部から、ラインQ1上の特定の位置までの距離は、濃度断面グラフのX座標の値で示される。
 図3の反射電子像においてcBN粒子が存在する黒色領域を任意に3箇所選ぶ。黒色領域は、例えば、図4の反射電子像において、符号cの楕円で示される部分である。
 該3箇所の黒色領域のそれぞれのGRAY値を濃度断面グラフから読み取る。該3箇所の黒色領域のそれぞれのGRAY値は、図4の濃度断面グラフにおいて、符号cの楕円で囲まれる3箇所の各部分におけるGRAY値の平均値とする。該3箇所のそれぞれのGRAY値の平均値を算出する。該平均値をcBNのGRAY値(以下、Gcbnともいう。)とする。
 図3の反射電子像において灰色で示される結合材が存在する領域を任意に3箇所選ぶ。結合材は、例えば、図4の反射電子像において、符号dの楕円で示される部分である。
 該3箇所の結合材のそれぞれのGRAY値を濃度断面グラフから読み取る。該3箇所の結合材のそれぞれのGRAY値は、図4の濃度断面グラフにおいて、符号dの楕円で囲まれる3箇所の各部分におけるGRAY値の平均値とする。該3箇所のそれぞれのGRAY値の平均値を算出する。該平均値を結合材のGRAY値(以下、Gbinderともいう。)とする。
 (Gcbn+Gbinder)/2で示されるGRAY値を、黒色領域(cBN粒子)と結合材との界面のGRAY値と規定する。例えば、図4の濃度断面グラフにおいて、黒色領域(cBN粒子)のGRAY値GcbnはラインGcbnで示され、結合材のGRAY値GbinderはラインGbinderで示され、(Gcbn+Gbinder)/2で示されるGRAY値はラインG1で示される。
 上記の通り、濃度断面グラフにおいて、黒色領域(cBN粒子)と結合材との界面を規定することにより、黒色領域(cBN粒子)と結合材との界面におけるX座標及びY座標の値を読み取ることができる。界面は任意に規定することができる。例えば、図5の上部の反射電子像において、黒色領域(cBN粒子)と結合材との界面を含む領域の一例として、符号eの楕円で囲まれる領域が挙げられる。図5の下部の濃度断面グラフにおいて、上記の符号eの楕円で囲まれる領域内での黒色領域(cBN粒子)と結合材との界面は、矢印eで示される。該矢印eの先端は、GRAY値の濃度断面グラフと、GRAY値(Gcbn+Gbinder)/2を示すラインG1と、の交点の位置を示す。該矢印eの先端のX座標及び矢印eの先端のY座標の値が、黒色領域(cBN粒子)と結合材との界面におけるX座標及びY座標の値に該当する。
 黒色領域(cBN粒子)と結合材との界面におけるX座標及びY座標の値を閾値として二値化処理を行う。二値化処理後の画像を図6に示す。図6において、点線で囲まれる領域が、二値化処理が行われた領域である。なお、二値化処理後の画像は、二値化処理前の反射電子像において白色であった領域に対応する白色領域(明視野よりも白い箇所、結合材に由来する画素)を含んでいてもよい。
 図6において、測定視野の面積に占める暗視野に由来する画素(cBN粒子に由来する画素、反射電子像における黒色領域に由来する画素)の面積比率を算出する。算出された面積比率を体積%とみなすことにより、cBN粒子の含有率(体積%)を求めることができる。
 図6において、測定視野の面積に占める明視野に由来する画素(結合材に由来する画素、反射電子像における灰色領域及び白色領域に由来する画素の合計)の面積比率を算出することにより、結合材の含有率(体積%)を求めることができる。
 二値化処理後の画像において、暗視野の領域がcBN粒子を示し、明視野の領域が結合材を示すことは、二値化処理後の画像で撮影された領域と同一の領域に対して、エネルギー分散型X線分光法(SEM-EDX)を用いて分析を行うことにより、暗視野及び明視野のそれぞれに含まれる元素を特定することにより確認される。
 上記の測定方法に従い、立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率(体積%)の測定を異なる5つの測定領域で行う。5つの測定領域の測定値の平均を、本実施形態の立方晶窒化硼素焼結体の立方晶窒化硼素粒子の含有率(体積%)とする。
 上記の測定方法に従い、立方晶窒化硼素焼結体の結合材の含有率(体積%)の測定を異なる5つの測定領域で行う。5つの測定領域の測定値の平均を、本実施形態の立方晶窒化硼素焼結体の結合材の含有率(体積%)とする。
 出願人が測定した限りでは、同一の試料においてcBN焼結体におけるcBN粒子の含有率(体積%)及び結合材の含有率(体積%)を測定する限り、測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 <不可避不純物>
 本実施形態の立方晶窒化硼素焼結体は、本開示の効果を示す限り不可避不純物を含んでいても構わない。不可避不純物としては、例えば、アルカリ金属元素(リチウム(Li)、ナトリウム(Na)、カリウム(K)等)及びアルカリ土類金属元素(カルシウム(Ca)、マグネシウム(Mg)等)等の金属元素を挙げることができる。立方晶窒化硼素焼結体が不可避不純物を含む場合は、不可避不純物の含有量は0.1質量%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
 ≪立方晶窒化硼素粒子≫
 <格子定数>
 本実施形態の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下である。これによると、cBN粒子の熱伝導率が高くなる。よって、該cBN粒子を含むcBN焼結体では、切削時に生じる切削熱に起因するクレーター摩耗の発生及びクレーターの発達に起因する欠損の発生が抑制され、工具寿命が向上する。
 cBN粒子の格子定数の上限は、熱伝導率向上の観点から、3.6161Å以下であり、3.6158Å以下が好ましく、3.6155Å以下がより好ましい。cBN粒子の格子定数の下限は、欠陥抑制の観点から、3.6140Å以上であり、3.6142Å以上が好ましく、3.6145Å以上がより好ましい。cBN粒子の格子定数は、3.6140Å以上3.6161Å以下であり、3.6142Å以上3.6158Å以下が好ましく、3.6145Å以上3.6155Å以下がより好ましい。
 cBN粒子の格子定数は、以下の手順で測定及び算出される。
 <測定方法>
 立方晶窒化硼素焼結体を密閉容器内で弗硝酸(弗酸(濃度:60質量%):硝酸(濃度:70質量%)=5:5(体積比))に48時間浸漬する。これにより、結合材は全て弗硝酸に溶解し、立方晶窒化硼素粒子のみが残る。
 上記の立方晶窒化硼素粒子を回収する。該立方晶窒化硼素粒子をTOHO製の径0.3mmのX線結晶解析用キャピラリー(製品名:マークチューブ)に充填し、封じ切り試験体とする。
 放射光の波長λ算出用の標準試料として酸化セリウム(高純度化学研究所製)からなる粉末を準備する。標準試料粉末をTOHO製の径0.3mmのX線結晶解析用キャピラリーに充填し、封じ切り標準試料とする。
 上記立方晶窒化硼素粒子を充填した封じ切り試験体について、下記の条件でX線回折測定を行い、立方晶窒化硼素の主要な方位である(111)、(200)、(220)、(311)、(400)、(331)の各方位面のうち少なくとも4本以上の回折ピーク、及び、(422)、(531)の各方位面の2本の回折ピーク、を含む6本以上の回折ピークのラインプロファイルを得る。
 (X線回折測定条件)
 X線源:放射光
 装置条件:検出器MYTHEN
 エネルギー:18.000keV(波長:0.68881Å)
 カメラ長:573mm
 測定ピーク:立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(331)の各方位面のうち少なくとも4本以上の回折ピーク、及び、(422)、(531)の各方位面の2本の回折ピーク、を含む6本以上のピーク。ただし、集合組織、配向によりプロファイルの取得が困難な場合は、その面指数のピークを除く。
 測定条件:半値幅中に、測定点が少なくとも5点以上となるようにする。本測定の基本構成は上記の通りであり、格子定数を高精度に算出する必要から少なくとも放射光を用いる必要はあるが、上記方位面のX線回折プロファイルが得られる構成であれば問題はなく、上記の測定条件により本実施の形態が限定されるものではない。
 <算出方法>
 上記のX線回折測定により得られるラインプロファイルは、用いる放射光の波長λにより、得られる回折角2θの値がシフトする。よって、はじめに、放射光の波長λ算出用の標準試料を測定して、波長λを算出する。手順は以下の通りである。
 上記酸化セリウムを充填した封じ切り標準試料について、上記のX線回折測定条件でX線回折測定を行い、酸化セリウムの(111)、(200)、(220)、(311)、(222)、(400)、(331)の各方位面の7本の回折ピークのラインプロファイルを得る。得られたラインプロファイルを擬Voigt関数と、一次関数からなるバックグラウンドの和でフィッティングを実施し、擬Voigt関数の中心値2θ0を各方位面について求める。それぞれの方位面(hkl)に対し、x軸:h2+k2+l2、y軸:sin2θとして、7点をプロットしたのち1次関数でフィッティングして得られた直線の傾きαを得る。酸化セリウムの格子定数a0=0.541128nmとして、下記式(1)より波長λを算出する。
 λ=2a0√α  (1)
 放射光の波長λを算出したのち、上記封じ切り試験体に封入された立方晶窒化硼素粒子の格子定数aは下記のように算出する。立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(331)の各方位面のうち少なくとも4本以上の回折ピーク、及び、(422)、(531)各方位面の2本の回折ピーク、を含む6本以上の回折ピークのラインプロファイルを得る。該ラインプロファイルを擬Voigt関数と、一次関数からなるバックグラウンドの和でフィッティングを実施し、擬Voigt関数の中心値2θ0を各方位面について求める。それぞれの方位面(hkl)に対し、x軸:h2+k2+l2、y軸:sin2θとして、プロットしたのち1次関数でフィッティングして得られた直線の傾きβを得る。該試験体の格子定数aとして、下記式(2)より該試験体に封入された立方晶窒化硼素粒子の格子定数aを算出する。
 a=λ/(2√β)  (2)
 同一の試料において、上記の測定方法及び算出方法に従い、cBN焼結体におけるcBN粒子の格子定数を複数回測定及び算出しても、得られた格子定数は同一であることが確認された。
 <組成>
 本実施形態の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子は立方晶窒化硼素を主成分として含む。ここで、立方晶窒化硼素粒子が立方晶窒化硼素を主成分として含むとは、立方晶窒化硼素粒子の立方晶窒化硼素の含有率が99質量%以上であることを意味する。本実施形態の立方晶窒化硼素焼結体の立方晶窒化硼素以外の成分の含有率は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.2質量%以下が更に好ましい。立方晶窒化硼素以外の成分としては、珪素、酸素、リチウム、マグネシウム、カルシウム等が挙げられる。
 立方晶窒化硼素粒子の立方晶窒化硼素以外の成分(珪素、リチウム、マグネシウム、カルシウム等)の含有率は、高周波誘導プラズマ発光分析法(ICP法)により測定することができる。具体的には、後述の珪素含有率の測定方法と同一の方法で測定することができる。
 立方晶窒化硼素粒子の酸素含有率は、ガス分析(測定装置:堀場製作所製「EMGA―920」)により測定される。
 ≪珪素含有率≫
 本実施形態の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下である。これによると、cBN粒子の熱伝導率が高くなる。よって、該cBN粒子を含むcBN焼結体では、切削時に生じる切削熱に起因するクレーター摩耗の発生及びクレーターの発達に起因する欠損の発生が抑制され、工具寿命が向上する。
 cBN粒子の珪素含有率の上限は、熱伝導率向上の観点から、0.02質量%以下であり、0.01質量%以下が好ましく、0.001質量%以下がより好ましい。cBN粒子の珪素含有率は小さい程好ましいため、下限は特に限定されない。cBN粒子の珪素含有率の下限は、例えば0質量%以上とすることができる。cBN粒子の珪素含有率は、0質量%以上0.02質量%以下が好ましく、0質量%以上0.01質量%以下がより好ましく、0質量%以上0.001質量%以下が更に好ましい。cBN粒子は、六方晶窒化硼素粉末に触媒(Li、Ca、Mg、及びこれらの窒化物、硼化物、硼窒化物)を添加した後、加熱加圧を行い作製することができる。この際、cBN粒子の成長を促進するため触媒に加えてSiが添加される。よって、cBN粒子には不可避不純物として珪素が含まれる可能性がある。この点を考慮すると、cBN粒子の珪素含有率の下限は、例えば0質量%超とすることができる。cBN粒子の珪素含有率は、0質量%超0.02質量%以下が好ましく、0質量%超0.01質量%以下がより好ましく、0質量%超0.001質量%以下が更に好ましい。
 立方晶窒化硼素粒子の珪素含有率の測定方法は下記の通りである。
 立方晶窒化硼素焼結体を圧力容器内で弗硝酸(弗酸(濃度:60質量%):硝酸(濃度:70質量%)=5:5(体積比))に浸漬する。これにより、結合材は全て弗硝酸に溶解し、cBN粒子のみが残る。このcBN粒子を溶融塩法で溶解したのち、高周波誘導プラズマ発光分析法(ICP法)(測定装置:サーモフィッシャーiCAP6500)を行い、cBN粒子の珪素含有率を定量測定する。
 (メジアン径d50)
 本実施形態の立方晶窒化硼素焼結体に含まれる立方晶窒化硼素粒子の円相当径のメジアン径d50(以下、「メジアン径d50」とも記す。)は、特に限定されないが、例えば、1nm以上15000nm以下が好ましく、10nm以上12000nm以下がより好ましく、100nm以上10000nm以下が更に好ましい。これによると、立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 本明細書において、立方晶窒化硼素粒子の円相当径のメジアン径d50(個数基準の頻度の累積が50%となる円相当径)は、以下の方法で測定される。上記の立方晶窒化硼素焼結体における立方晶窒化硼素粒子の含有率の測定方法と同様の手順で、立方晶窒化硼素焼結体の断面の反射電子像に対して二値化処理を行い、立方晶窒化硼素粒子を抽出する。観察倍率は5000倍とする。二値化処理後の画像中に測定領域(15μm×20μm)を設定する。該測定領域において、上記画像解析ソフトを用いて、各立方晶窒化硼素粒子の円相当径の分布を算出する。立方晶窒化硼素粒子の円相当径の分布から、該測定視野における立方晶窒化硼素粒子の円相当径のメジアン径d50を算出する。該円相当径のメジアン径d50の測定を異なる5つの測定領域で行う。5つの測定領域の測定値の平均を、本実施形態の立方晶窒化硼素焼結体における立方晶窒化硼素粒子の円相当径のメジアン径d50とする。
 出願人が測定した限りでは、同一の試料において立方晶窒化硼素粒子のメジアン径d50を測定する限り、立方晶窒化硼素焼結体における測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 ≪結合材≫
 本実施形態のcBN焼結体は結合材を含むことができる。結合材は、難焼結性材料であるcBN粒子を工業レベルの圧力温度で焼結可能とする役割を果たす。また、鉄との反応性がcBNより低いため、特に高硬度焼入鋼の切削において、化学的摩耗及び熱的摩耗を抑制する働きを付加する。また、cBN焼結体が結合材を含有すると、特に高硬度焼入鋼の高能率加工における耐摩耗性および耐欠損性が向上する。
 本実施形態のcBN焼結体において、結合材は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、並びに、該化合物の固溶体からなる群より選ばれる少なくとも1種を含む。すなわち、結合材は、上記化合物及び上記化合物の固溶体からなる群より選ばれる少なくとも1種を含む。該結合材は、cBN粒子に対する結合力が高い。よって、立方晶窒化硼素焼結体は優れた耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具の寿命が長くなる。
 本明細書において、周期表4族元素はチタン(Ti)、ジルコニウム(Zr)及びハフニウム(Hf)を含む。周期表5族元素は、バナジウム(V)、ニオブ(Nb)及びタンタル(Ta)を含む。周期表6族元素は、クロム(Cr)、モリブデン(Mo)及びタングステン(W)を含む。以下、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルに含まれる元素を「第1元素」とも記す。
 上記の第1元素と炭素とを含む化合物(炭化物)としては、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(Cr)、炭化モリブデン(MoC)、炭化タングステン(WC)、炭化ケイ素(SiC)、炭化タングステン-コバルト(WCoC)を挙げることができる。
 上記の第1元素と窒素とを含む化合物(窒化物)としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(CrN)、窒化モリブデン(MoN)、窒化タングステン(WN)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、窒化コバルト(CoN)、窒化ニッケル(NiN)、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化チタンアルミニウム(TiAlN、TiAlN、TiAlN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、窒化モリブデンクロム(MoCrN)を挙げることができる。
 上記の第1元素と硼素とを含む化合物(硼化物)としては、例えば、硼化チタン(TiB)、硼化ジルコニウム(ZrB)、硼化ハフニウム(HfB)、硼化バナジウム(VB)、硼化ニオブ(NbB)、硼化タンタル(TaB)、硼化クロム(CrB)、硼化モリブデン(MoB)、硼化タングステン(WB)、硼化アルミニウム(AlB)、硼化コバルト(CoB)、硼化ニッケル(NiB)を挙げることができる。
 上記の第1元素と酸素とを含む化合物(酸化物)としては、例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化タングステン(WO)、酸化アルミニウム(Al)、酸化ケイ素(SiO)、酸化コバルト(CoO)、酸化ニッケル(NiO)を挙げることができる。
 上記の第1元素と炭素と窒素とを含む化合物(炭窒化物)としては、例えば、炭窒化チタン(TiCN)、炭窒化ジルコニウム(ZrCN)、炭窒化ハフニウム(HfCN)、炭窒化チタンニオブ(TiNbCN)、炭窒化チタンジルコニウム(TiZrCN)、炭窒化チタンハフニウム(TiHfCN)、炭窒化チタンタンタル(TiTaCN)、炭窒化チタンクロム(TiCrCN)を挙げることができる。
 上記の第1元素と酸素と窒素とからなる化合物(酸窒化物)としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)、酸窒化アルミニウム(AlON)、酸窒化ケイ素(SiON)を挙げることができる。
 上記化合物の固溶体とは、2種類以上の化合物が互いの結晶構造内に溶け込んでいる状態を意味し、侵入型固溶体や置換型固溶体を意味する。
 上記化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
 結合材は、上記化合物の他に、他の成分を含んでいてもよい。他の成分を構成する元素としては、例えば、マンガン(Mn)、レニウム(Re)を挙げることができる。
 結合材中の上記化合物及び上記化合物の固溶体の合計含有率の下限は、50体積%以上が好ましく、60体積%以上がより好ましく、70体積%以上が更に好ましい。結合材中の上記化合物及び上記化合物の固溶体の合計含有率は多い程好ましいため特に限定されず、例えば、100体積%以下とすることができる。結合材中の上記化合物及び上記化合物の固溶体の合計含有率は50体積%以上100体積%以下が好ましく、60体積%以上100体積%以下がより好ましく、70体積%以上100体積%以下が更に好ましい。
 cBN焼結体に含まれる結合材の組成は、XRD(X線回折測定、X-ray Diffraction)により特定することができる。
 結合材中の上記化合物及び上記化合物の固溶体の合計含有率は、XRDによるRIR法(Reference Intensity Ratio)により測定される。
 <用途>
 本実施形態の立方晶窒化硼素焼結体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
 本開示の立方晶窒化硼素焼結体を用いた切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素焼結体で構成されていても良いし、その一部(たとえば切削工具の場合、少なくとも刃先部分)のみが立方晶窒化硼素焼結体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
 切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
 耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
 [実施形態2:立方晶窒化硼素焼結体の製造方法]
 本実施形態の立方晶窒化硼素焼結体は、例えば下記の方法で作製することができる。
 ≪立方晶窒化硼素粉末の準備≫
 立方晶窒化硼素粉末(以下、cBN粉末とも記す。)とは、cBN焼結体に含まれるcBN粒子の原料粉末である。cBN粉末は、六方晶窒化硼素粉末に触媒(Li、Ca、Mg、及びこれらの窒化物、硼化物、硼窒化物)を添加した後、加熱加圧を行い作製してもよいし、市販のcBN粉末を準備してもよい。cBN粉末のd50(平均粒径)は特に限定されず、例えば、0.1~12.0μmとすることができる。
 上記cBN粉末に対して、はじめに電子線照射を行う。電子線照射の条件は、たとえば、照射エネルギー25~30MeVで照射時間10~24時間とすることができる。
 電子線照射後のcBN粉末に対して、加圧加熱処理を行う。加圧加熱処理は、超高圧高温発生装置を用いて行うことができる。超高圧高温発生装置は、所望の発生圧力領域に応じて、ベルト型、マルチアンビル型、キュービック型などを用いることができる。加圧加熱処理における圧力は5~15GPa、温度は1000~2000℃、保持時間は1~60分とすることができる。
 上記の電子線照射及び加圧加熱処理を行うことにより、cBN粒子の格子定数が3.6161Å以下に低減される。
 次に、加熱加圧処理後のcBN粉末に対して、酸素分圧1×10-29atm以下、かつ、800~1300℃で10~60分間加熱処理を行う(以下、該工程を「低酸素下での加熱処理」とも記す。)。これにより、cBN粒子中の珪素含有率を低減することができる。
 上記では、電子線照射後に、加熱加圧処理及び低酸素下での加熱処理を前記の順で行う例を示したが、加熱加圧処理及び低酸素下での加熱処理の順序は前記の順に限定されない。電子線照射後に、低酸素下での加熱処理を行い、その後加熱加圧処理を行ってもよい。
 ≪結合材原料粉末の準備≫
 立方晶窒化硼素焼結体が結合材を含む場合は、結合材原料粉末を準備する。結合材原料粉末とは、cBN焼結体に含まれる結合材の原料粉末である。該結合材原料粉末は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物を含むことができる。
 結合材原料粉末は、例えば、次のようにして調製することができる。TiN及びAlを混合し、真空中で1200℃、30分熱処理をして化合物を得る。該化合物を粉砕し、結合材原料粉末を作製する。該結合材原料粉末は、X線回折測定(XRD:X-ray diffraction)ではTiN、TiAlN、TiAl等のピークが確認される。
 なお、各粉末の混合、粉砕方法は特に制限されないが、効率よく均質に混合する観点から、ボールなどメディアによる混合及び粉砕、およびジェットミル混合、粉砕などが好ましい。各混合、粉砕方法は、湿式でもよく乾式でもよい。
 ≪混合工程≫
 立方晶窒化硼素焼結体が結合材を含む場合は、上記で準備したcBN粉末と結合材原料粉末とを、エタノールやアセトン等を溶媒に用いた湿式ボールミル混合を用いて混合し、混合粉末を作製する。溶媒は、混合後に自然乾燥により除去される。その後、熱処理を行うことにより、混合粉末の表面に吸着した水分などの不純物を揮発させ、混合粉末の表面を清浄化する。
 ≪焼結工程≫
 立方晶窒化硼素焼結体が結合材を含む場合は、上記の混合粉末をWC-6%Coの超硬合金製円盤に接した状態で、Ta(タンタル)製の容器に充填して真空シールする。立方晶窒化硼素焼結体が立方晶窒化硼素粒子のみからなる場合は、上記で準備したcBN粉末をWC-6%Coの超硬合金製円盤に接した状態で、Ta(タンタル)製の容器に充填して真空シールする。真空シールされた混合粉末又はcBN粉末を、ベルト型超高圧高温発生装置を用いて、3~12GPa、1100~2200℃の条件下で5~30分間保持して焼結させる。これにより、本実施形態の立方晶窒化硼素焼結体が作製される。
 [付記1]
 本開示の立方晶窒化硼素焼結体は、35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材とからなることが好ましい。
 本開示の立方晶窒化硼素焼結体は、35体積%以上100体積%未満の立方晶窒化硼素粒子と、0体積%超65体積%以下の結合材とからなることが好ましい。
 本開示の立方晶窒化硼素焼結体は、35体積%以上98体積%未満の立方晶窒化硼素粒子と、2体積%超65体積%以下の結合材とからなることが好ましい。
 本開示の立方晶窒化硼素焼結体は、40体積%以上85体積%以下の立方晶窒化硼素粒子と、15体積%以上60体積%以下の結合材とからなることが好ましい。
 本開示の立方晶窒化硼素焼結体は、45体積%以上80体積%以下の立方晶窒化硼素粒子と、20体積%以上55体積%以下の結合材とからなること好ましい。
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子からなることが好ましい。
 [付記2]
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物とからなり、35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材とを含むことが好ましい。
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物とからなり、35体積%以上100体積%未満の立方晶窒化硼素粒子と、0体積%超65体積%以下の結合材とを含むことが好ましい。
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物とからなり、35体積%以上98体積%未満の立方晶窒化硼素粒子と、2体積%超65体積%以下の結合材とからなることが好ましい。
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物とからなり、40体積%以上85体積%以下の立方晶窒化硼素粒子と、15体積%以上60体積%以下の結合材とを含むことが好ましい。
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物とからなり、45体積%以上80体積%以下の立方晶窒化硼素粒子と、20体積%以上55体積%以下の結合材とを含むことが好ましい。
 本開示の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と不可避不純物とからなることが好ましい。
 [付記3]
 本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の珪素含有率は、0質量%超0.02質量%以下が好ましい。
 本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の珪素含有率は、0質量%超0.01質量%以下が好ましい。
 本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の珪素含有率は、0質量%超0.001質量%以下が好ましい。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [試験1]
 ≪立方晶窒化硼素粉末の準備≫
 公知の立方晶窒化硼素粉末(d50(平均粒径)3.2μm)を準備した。該cBN粉末に対して、電子線照射、加圧加熱処理、および低酸素下での加熱処理のうち、少なくともいずれかを行った。電子線照射、加圧加熱処理、および低酸素下での加熱処理のうち、2つ以上を行う場合は、前記の順で行った。
 電子線照射の条件は、表1の「電子線照射」の「エネルギー(MeV)」及び「時間(hr)」欄に示すとおりである。例えば、試料1では、cBN粉末に対して、照射エネルギー27MeVで照射時間15時間の電子線照射を行った。加圧加熱処理の条件は、表1の「加圧加熱処理」の「圧力(GPa)」、「温度(℃)」及び「時間(分)」欄に示すとおりである。例えば、試料1では、cBN粉末に対して、圧力6GPa及び温度1400℃で30分間の加圧加熱処理を行った。低酸素下での加熱処理の条件は、表1の「低酸素下加熱処理」の「酸素分圧」、「温度(℃)」及び「時間(分)」欄に示すとおりである。例えば、試料1では、cBN粉末に対して、酸素分圧1×10-30atm及び温度1000℃で30分間の加熱処理を行った。なお、表1において「-」との記載は、該当する工程を行わなかったことを示す。
 ≪結合材原料粉末の準備≫
 結合材原料粉末を下記の手順で準備した。
 <試料1~試料7、試料13~試料19、試料1-1~試料1-5、試料1-7~試料1-9>
 TiN粉末とAl粉末を、質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料8>
 TiCN粉末とAl粉末を、質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料9、試料1-6>
 WC粉末とCo粉末とAl粉末とを、質量比3:8:1で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料10>
 TiO粉末とNb粉末とC粉末とを、質量比57.19:16.79:26.02で混合し、窒素雰囲気下で2100℃で60分間熱処理して、TiNbCN組成の単相化合物を合成した。該単相化合物を湿式粉砕法で粒径0.5μmまで粉砕し、TiNbCN粉末を得た。TiNbCN粉末及びAl粉末を質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料11>
 TiO粉末とZrO粉末とC粉末とを、質量比58.35:15.88:25.77で混合し、窒素雰囲気下で2100℃で60分間熱処理して、TiZrCN組成の単相化合物を合成した。該単相化合物を湿式粉砕法で粒径0.5μmまで粉砕し、TiZrCN粉末を得た。TiZrCN粉末及びAl粉末を質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料12>
 TiO粉末とHfO粉末とC粉末とを、質量比52.45:24.38:23.17で混合し、窒素雰囲気下で2100℃で60分間熱処理して、TiHfCN組成の単相化合物を合成した。該単相化合物を湿式粉砕法で粒径0.5μmまで粉砕し、TiHfCN粉末を得た。TiHfCN粉末及びAl粉末を質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料20>
 TiO粉末とTa粉末とC粉末とを、質量比51.47:25.12:23.42で混合し、窒素雰囲気下で2100℃で60分間熱処理して、TiTaCN組成の単相化合物を合成した。該単相化合物を湿式粉砕法で粒径0.5μmまで粉砕し、TiTaCN粉末を得た。TiTaCN粉末及びAl粉末を質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料21>
 TiO粉末とCr粉末とC粉末とを、質量比62.64:10.51:26.84で混合し、窒素雰囲気下で2100℃で60分間熱処理して、TiCrCN組成の単相化合物を合成した。該単相化合物を湿式粉砕法で粒径0.5μmまで粉砕し、TiCrCN粉末を得た。TiCrCN粉末及びAl粉末を質量比85:15で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料22>
 WC粉末、Co粉末及びAl粉末を質量比3:8:1で準備した。WC粉末、Co粉末及びAl粉末に、Zr粉末を全体の5質量%となるように添加して混合し、真空中で1200℃、30分熱処理をした後、湿式のボールミルで混合及び粉砕して、WC、Co、Al及びZrを含む結合材原料粉末を作製した。
 <試料23>
 結合材原料粉末を作製する際に、Zr粉末に代えてNi粉末及びNb粉末を添加した以外は、試料22と同様の方法でcBN焼結体を作製した。なお、Ni粉末とNb粉末との質量比はNi:Nb=1:1とした。
 <試料24>
 結合材原料粉末を作製する際にZr粉末を添加せず、cBN粉末と結合材粉末とを混合する際に、CrN粉末を添加した以外は、試料22と同様の方法でcBN焼結体を作製した。なお、CrN粉末の添加量は、結合材全体に対する含有割合が5質量%となるようにした。CrN粉末は、CrN(日本新金属社製)を窒素雰囲気下、300kPaかつ900℃で3時間処理して得た。
 <試料25>
 結合材原料粉末は使用せず、後述の焼結工程において、Ta(タンタル)製の容器にcBN粉末をAl板でサンドイッチした状態で充填し、焼結した。
 ≪混合工程≫
 結合材原料粉末を用いる試料では、上記の電子線照射、加圧加熱処理及び低酸素下での加熱処理の少なくともいずれかを行ったcBN粉末と結合材原料粉末とを混合し、エタノールを用いた湿式ボールミル法により均一に混合し混合粉末を得た。その後、表面の水分等の不純物除去のために真空下、900℃で脱ガス処理を行った。なお、混合粉末を作製する際のcBN粉末と結合材原料粉末との混合比率は、立方晶窒化硼素焼結体において、cBN粒子及び結合材の比率(体積%)が、表2の「cBN焼結体」の「cBN粒子(体積%)」及び「結合材(体積%)」欄に記載の比率になるように調整した。
 ≪焼結工程≫
 次に、結合材原料粉末を用いる試料では、混合粉末をWC-6%Coの超硬合金製円盤に接した状態で、Ta(タンタル)製の容器に充填して真空シールした。真空シールされた混合粉末を、ベルト型超高圧高温発生装置を用いて、0.4GPa/minの昇圧速度で7GPaまで昇圧し、7GPaかつ1700℃の条件下で20分間保持して焼結させ、各試料のcBN焼結体を得た。結合材原料粉末は使用しない試料25では、Ta(タンタル)製の容器にcBN粉末をAl板でサンドイッチした状態で充填し、焼結してcBN焼結体を得た。
Figure JPOXMLDOC01-appb-T000001
 ≪評価≫
 <cBN焼結体の組成>
 cBN焼結体におけるcBN粒子及び結合材の含有率(体積%)を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。各試料において、cBN焼結体におけるcBN粒子の含有率(体積%)は、表2の「cBN焼結体」の「cBN粒子(体積%)」欄に示され、結合材の含有率(体積%)は、表2の「cBN焼結体」の「結合材(体積%)」欄に示される。
 <結合材の組成>
 cBN焼結体における結合材の組成を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。結果を表2の「cBN焼結体」の「結合材」の欄に示す。全ての試料において、結合材中の表2の「結合材」欄に記載された化合物の含有率の合計は、50体積%以上であった。
 <cBN粒子の格子定数>
 cBN焼結体中のcBN粒子の格子定数を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。結果を表2の「cBN焼結体」の「cBN粒子の格子定数(Å)」欄に示す。
 <cBN粒子の珪素含有率>
 cBN焼結体中のcBN粒子の珪素含有率を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。結果を表2の「cBN焼結体」の「cBN粒子のSi含有率(質量%)」欄に示す。表2において、「<0.001」との表記は、珪素含有率が検出限界以下であることを意味する。
 <cBN粒子の粒径>
 cBN焼結体中のcBN粒子の円相当径のメジアン径d50を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。全ての試料において、cBN粒子の円相当径のメジアン径d50は1nm以上15000nm以下の範囲であった。
 <切削試験>
 各試料のcBN焼結体を用いて、切削工具(基材形状:CNGA120408)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。下記の切削条件は、焼入鋼の高速高能率加工に該当する。
 切削速度:200m/min.
 送り速度:0.2mm/rev.
 切込み:0.2mm
 クーラント:DRY
 切削方法:断続切削
 旋盤:LB400(オークマ株式会社製)
 被削材:焼入鋼(SCM415 V溝、硬度HRC60)
 評価方法:0.5km毎に刃先を観察し、刃先の欠損の有無を確認した。0.2mm以上の欠損が生じる時点の切削距離を測定し、この切削距離を切削工具の寿命とした。その結果を表1の「工具寿命(km)」欄に示す。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 試料1~試料25は実施例に該当し、試料1-1~試料1-9は比較例に該当する。試料1~試料25(実施例)は、試料1-1~試料1-9(比較例)に比べて、高能率加工において、工具寿命が長いことが確認された。
 [試験2]
 ≪立方晶窒化硼素粉末の準備≫
 公知の立方晶窒化硼素粉末(d50(平均粒径)3.2μm)を準備した。該cBN粉末に対して、電子線照射、加圧加熱処理及び低酸素下での加熱処理の少なくともいずれかを行った。電子線照射、加圧加熱処理、および低酸素下での加熱処理のうち、2つ以上を行う場合は、前記の順で行った。
 電子線照射の条件は、表3の「電子線照射」の「エネルギー(MeV)」及び「時間(hr)」欄に示すとおりである。加圧加熱処理の条件は、表3の「加圧加熱処理」の「圧力(GPa)」、「温度(℃)」及び「時間(分)」欄に示すとおりである。低酸素下での加熱処理の条件は、表3の「低酸素下加熱処理」の「酸素分圧」、「温度(℃)」及び「時間(分)」欄に示すとおりである。なお、表3において「-」との記載は、該当する工程を行わなかったことを示す。
 ≪結合材原料粉末の準備≫
 結合材原料粉末を下記の手順で準備した。
 <試料2-1~試料2-7、試料2-9~試料2-18、試料2-29、試料2-30>
 WC粉末とCo粉末とAl粉末とを、質量比3:8:1で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。
 <試料2-19~試料2-27>
 試料2-19~試料2-27では、WC粉末とCo粉末とAl粉末と金属元素粉末とを、質量比3:5:1:3で混合し、真空雰囲気下で1200℃で30分間熱処理をしたのち、湿式のボールミルで混合及び粉砕して結合材原料粉末を得た。該金属元素粉末は、試料2-19ではCr粉末、試料2-20ではMo粉末、試料2-21ではV粉末、試料2-22ではNb粉末、試料2-23ではTa粉末、試料2-24ではTi粉末、試料2-25ではZr粉末、試料2-26ではHf粉末、試料2-27ではSi粉末を用いた。
 <試料2-28>
 試料2-28の結合材は、結合材原料粉末を用いることなく、焼結工程においてcBN粒子の上下にAl金属の板を設置し、焼結中にAlをcBNに溶浸させることで、反応生成物としてAlNおよびAlBを得た。
 ≪混合工程≫
 上記の電子線照射、加圧加熱処理及び低酸素下での加熱処理の少なくともいずれかを行ったcBN粉末と結合材原料粉末とを混合し、エタノールを用いた湿式ボールミル法により均一に混合し混合粉末を得た。その後、表面の水分等の不純物除去のために真空下、900℃で脱ガス処理を行った。なお、混合粉末を作製する際のcBN粉末と結合材原料粉末との混合比率は、立方晶窒化硼素焼結体において、cBN粒子及び結合材の比率(体積%)が、表4の「cBN焼結体」の「cBN粒子(体積%)」及び「結合材(体積%)」欄に記載の比率になるように調整した。
 ≪焼結工程≫
 次に、結合材原料粉末を用いる試料では、混合粉末をWC-6%Coの超硬合金製円盤に接した状態で、Ta(タンタル)製の容器に充填して真空シールした。真空シールの温度は850℃以上とした。真空シールされた混合粉末を、ベルト型超高圧高温発生装置を用いて、0.2GPa/minの昇圧速度で6GPaまで昇圧し、6GPaかつ1300℃の条件下で30分間保持して焼結させ、各試料のcBN焼結体を得た。
 試料2-28では、cBN粒子の上下にAl金属の板を設置した状態で充填し、焼結してcBN焼結体を得た。
 <試料2-8、試料2-31>
 試料2-8及び試料2-31では、cBN粉末をWC-6%Coの超硬合金製円盤に接した状態で、Ta(タンタル)製の容器に充填して真空シールした。真空シールの温度は850℃以上とした。真空シールされた混合粉末を、ベルト型超高圧高温発生装置を用いて、0.2GPa/minの昇圧速度で12GPaまで昇圧し、12GPaかつ2000℃の条件下で30分間保持して焼結させ、各試料のcBN焼結体を得た。
Figure JPOXMLDOC01-appb-T000003
 ≪評価≫
 <cBN焼結体の組成>
 cBN焼結体におけるcBN粒子及び結合材の含有率(体積%)を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。各試料において、cBN焼結体におけるcBN粒子の含有率(体積%)は、表4の「cBN焼結体」の「cBN粒子(体積%)」欄に示され、結合材の含有率(体積%)は、表4の「cBN焼結体」の「結合材(体積%)」欄に示される。
 <結合材の組成>
 cBN焼結体における結合材の組成を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。結果を表4の「cBN焼結体」の「結合材」の欄に示す。全ての試料において、結合材中の表4の「結合材」欄に記載された化合物の含有率の合計は、50体積%以上であった。
 <cBN粒子の格子定数>
 cBN焼結体中のcBN粒子の格子定数を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。結果を表4の「cBN焼結体」の「cBN粒子の格子定数(Å)」欄に示す。
 <cBN粒子の珪素含有率>
 cBN焼結体中のcBN粒子の珪素含有率を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。結果を表4の「cBN焼結体」の「cBN粒子のSi含有率(質量%)」欄に示す。表4において、「<0.001」との表記は、珪素含有率が検出限界以下であることを意味する。
 <cBN粒子の粒径>
 cBN焼結体中のcBN粒子の円相当径のメジアン径d50を測定した。具体的な測定方法は、実施形態1に記載された方法と同一であるため、その説明は繰り返さない。全ての試料において、cBN粒子の円相当径のメジアン径d50は1nm以上15000nm以下の範囲であった。
 <切削試験>
 各試料のcBN焼結体を用いて、切削工具(基材形状:CNGA120408)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。下記の切削条件は、焼結合金の高速高能率加工に該当する。
 切削速度:180m/min.
 送り速度:0.14mm/rev.
 切込み:0.18mm
 クーラント:DRY
 切削方法:端面断続切削
 旋盤:LB4000(オークマ株式会社製)
 被削材:スプロケット形状(住友電工焼結合金社製の焼結合金DM-50(焼入)の端面切削、HV440)
 評価方法:0.5km毎に刃先を観察し、刃先の欠損の有無を確認した。0.2mm以上の欠損が生じる時点の切削距離を測定し、この切削距離を切削工具の寿命とした。その結果を表4の「工具寿命(km)」欄に示す。
Figure JPOXMLDOC01-appb-T000004
 <考察>
 試料2-1~試料2-12、試料2-18~試料2-28は実施例に該当する。試料2-13~試料2-17、試料2-29~試料2-31は比較例に該当する。試料2-1~試料2-12、試料2-18~試料2-28(実施例)は、試料2-13~試料2-17、試料2-29~試料2-31(比較例)に比べて、高能率加工において、工具寿命が長いことが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (6)

  1.  35体積%以上100体積%以下の立方晶窒化硼素粒子と、0体積%以上65体積%以下の結合材と、を含む立方晶窒化硼素焼結体であって、
     前記立方晶窒化硼素粒子の格子定数は、3.6140Å以上3.6161Å以下であり、
     前記立方晶窒化硼素粒子の珪素含有率は、0.02質量%以下であり、
     前記結合材は、周期表4族元素、5族元素、6族元素、アルミニウム、珪素、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、並びに、前記化合物の固溶体からなる群より選ばれる少なくとも1種を含む、立方晶窒化硼素焼結体。
  2.  前記立方晶窒化硼素粒子の格子定数は、3.6142Å以上3.6158Å以下である、請求項1に記載の立方晶窒化硼素焼結体。
  3.  前記立方晶窒化硼素粒子の格子定数は、3.6145Å以上3.6155Å以下である、請求項1又は請求項2に記載の立方晶窒化硼素焼結体。
  4.  前記立方晶窒化硼素粒子の珪素含有率は、0.01質量%以下である、請求項1から請求項3のいずれか1項に記載の立方晶窒化硼素焼結体。
  5.  前記立方晶窒化硼素粒子の珪素含有率は、0.001質量%以下である、請求項1から請求項4のいずれか1項に記載の立方晶窒化硼素焼結体。
  6.  前記立方晶窒化硼素焼結体における前記立方晶窒化硼素粒子の含有率は、40体積%以上95体積%以下である、請求項1から請求項5のいずれか1項に記載の立方晶窒化硼素焼結体。
PCT/JP2022/039524 2021-10-25 2022-10-24 立方晶窒化硼素焼結体 WO2023074623A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280070913.3A CN118139832A (zh) 2021-10-25 2022-10-24 立方晶氮化硼烧结体
JP2023534664A JPWO2023074623A1 (ja) 2021-10-25 2022-10-24
EP22886950.9A EP4424655A1 (en) 2021-10-25 2022-10-24 Cubic boron nitride sintered body
JP2024065911A JP2024105282A (ja) 2021-10-25 2024-04-16 立方晶窒化硼素焼結体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/039320 2021-10-25
PCT/JP2021/039320 WO2023073766A1 (ja) 2021-10-25 2021-10-25 立方晶窒化硼素焼結体

Publications (1)

Publication Number Publication Date
WO2023074623A1 true WO2023074623A1 (ja) 2023-05-04

Family

ID=86157504

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/039320 WO2023073766A1 (ja) 2021-10-25 2021-10-25 立方晶窒化硼素焼結体
PCT/JP2022/039524 WO2023074623A1 (ja) 2021-10-25 2022-10-24 立方晶窒化硼素焼結体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039320 WO2023073766A1 (ja) 2021-10-25 2021-10-25 立方晶窒化硼素焼結体

Country Status (4)

Country Link
EP (1) EP4424655A1 (ja)
JP (2) JPWO2023074623A1 (ja)
CN (1) CN118139832A (ja)
WO (2) WO2023073766A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117856A (ja) * 1984-11-14 1986-06-05 Sumitomo Electric Ind Ltd ヒ−トシンク
JPH01270570A (ja) * 1988-04-19 1989-10-27 Showa Denko Kk 立方晶窒化ほう素焼結体の製造方法
JP2005187260A (ja) * 2003-12-25 2005-07-14 Sumitomo Electric Hardmetal Corp 高強度高熱伝導性立方晶窒化硼素焼結体
WO2005066381A1 (ja) * 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
WO2013150610A1 (ja) * 2012-04-03 2013-10-10 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024809A (ja) * 2004-07-09 2006-01-26 Renesas Technology Corp 半導体装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117856A (ja) * 1984-11-14 1986-06-05 Sumitomo Electric Ind Ltd ヒ−トシンク
JPH01270570A (ja) * 1988-04-19 1989-10-27 Showa Denko Kk 立方晶窒化ほう素焼結体の製造方法
JP2005187260A (ja) * 2003-12-25 2005-07-14 Sumitomo Electric Hardmetal Corp 高強度高熱伝導性立方晶窒化硼素焼結体
WO2005066381A1 (ja) * 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
WO2013150610A1 (ja) * 2012-04-03 2013-10-10 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUKHANOV V. A.; COURAC A.; SOLOZHENKO V. L.: "The Effect of Doping on the Lattice Parameter and Properties of Cubic Boron Nitride", JOURNAL OF SUPERHARD MATERIALS, vol. 42, no. 6, 1 January 1900 (1900-01-01), US , pages 377 - 387, XP037376556, ISSN: 1063-4576, DOI: 10.3103/S1063457620060088 *

Also Published As

Publication number Publication date
JPWO2023074623A1 (ja) 2023-05-04
WO2023073766A1 (ja) 2023-05-04
JP2024105282A (ja) 2024-08-06
CN118139832A (zh) 2024-06-04
EP4424655A1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
CN110573475B (zh) 烧结体以及包含该烧结体的切削工具
US11352298B2 (en) Cubic boron nitride sintered material
CN114867700B (zh) 立方晶氮化硼烧结体
CN114269711B (zh) 立方晶氮化硼烧结体
JP6798648B1 (ja) 立方晶窒化硼素焼結体
WO2023074623A1 (ja) 立方晶窒化硼素焼結体
CN114787104B (zh) 立方晶氮化硼烧结体
US20220204412A1 (en) Cubic boron nitride sintered material
EP4000779A1 (en) Cubic boron nitride sintered compact
CN114845973A (zh) 立方晶氮化硼烧结体及其制造方法
US11542203B2 (en) Cubic boron nitride sintered material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023534664

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18702648

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280070913.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022886950

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022886950

Country of ref document: EP

Effective date: 20240527