WO2023072277A1 - 一种铁电螺旋液晶材料及其实现二次谐波增强的方法 - Google Patents

一种铁电螺旋液晶材料及其实现二次谐波增强的方法 Download PDF

Info

Publication number
WO2023072277A1
WO2023072277A1 PCT/CN2022/128471 CN2022128471W WO2023072277A1 WO 2023072277 A1 WO2023072277 A1 WO 2023072277A1 CN 2022128471 W CN2022128471 W CN 2022128471W WO 2023072277 A1 WO2023072277 A1 WO 2023072277A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric
liquid crystal
helical
crystal material
helical liquid
Prior art date
Application number
PCT/CN2022/128471
Other languages
English (en)
French (fr)
Inventor
谢晓晨
黄明俊
赵秀虎
李金星
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023072277A1 publication Critical patent/WO2023072277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1414Deformed helix ferroelectric [DHL]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation

Definitions

  • the invention belongs to the field of nonlinear optical material preparation and application, and discloses a novel ultra-high polarity fluid material with a periodic helical structure, which can meet quasi-phase matching conditions and achieve second harmonic enhancement. Applications in frequency doubling modulation.
  • P and E are the polarization intensity and the electric field vector, respectively, is the polarizability
  • ⁇ 0 is the vacuum permittivity
  • P (1) ⁇ 0 ⁇
  • E is the linear polarization intensity, which describes various linear optical phenomena
  • the other items are nonlinear items, which are used to Describe the nonlinear interaction of light and matter.
  • the most widely studied is the second-order nonlinear optical effect, especially the three-wave mixing, which is currently the most important method for the study of laser frequency conversion and expansion.
  • I 2 ⁇ and I ⁇ represent the intensity of frequency doubled light and fundamental frequency light respectively
  • L is the thickness of the beam passing through the sample
  • d eff is the effective second-order nonlinear coefficient
  • is the wavelength of the incident light. Due to the dispersion effect of the medium, generally n 2 ⁇ ⁇ n ⁇ , that is, ⁇ k ⁇ 0, which is called a phase mismatch condition.
  • the intensity of frequency-doubled light increases monotonously with the increase of L, and the energy is converted from fundamental frequency light to frequency-doubled light; and when L increases from L c to 2L c , the frequency-doubled light With the increase of L, it decreases monotonously, and the energy is converted from the frequency doubled light to the fundamental frequency light in turn, and this has been going on and on ever since. Therefore, under the condition of phase mismatch, the nonlinear conversion efficiency is extremely low.
  • JA Armstrong and N.B Logembergen et al proposed Quasi-Phase Matching (Quasi-Phase Matching) technology.
  • the signal wavelength can be expressed as the sum of the number of domains present in the nonlinear optical medium.
  • the rate of change of the signal amplitude is:
  • For a periodically poled nonlinear optical crystal, in each domain of coherence length, the crystal axis of the crystal is reversed by 180°, causing the nonlinear susceptibility ⁇ to change sign.
  • For a medium with n domains, ⁇ can be expressed as:
  • the resulting second harmonic intensity can be expressed as:
  • quasi-phase matching uses the periodic distribution of optical properties of nonlinear media to compensate for phase mismatch.
  • a phase compensation of ⁇ is introduced through artificial modulation, so that the energy is continuously converted from the fundamental frequency light to the double frequency light.
  • the quasi-phase-matching technology has no strict restrictions on the wave vector direction and polarization direction of the coupled optical wave in the nonlinear medium, and only needs to artificially introduce an appropriate polarization periodic structure.
  • the key to realize the quasi-phase matching process is to tune the nonlinear medium with a proper periodic structure.
  • the nonlinear optical crystal with antiparallel domain structure is the main nonlinear medium used in the quasi-phase matching technology.
  • Nonlinear optical crystals have spontaneous polarization, and the spontaneous polarization can be changed by an external electric field.
  • processing methods have been used to prepare quasi-phase-matched ferroelectric domain structures, the most commonly used of which are the use of patterned electrodes and high-voltage electric field polarization methods, as well as the early growth stripe method, and the photo-assisted domain structure developed in recent years. Polarization, all-optical polarization and other methods.
  • Ferroelectric helical liquid crystals with periodic helical structure can be obtained by adding chiral molecules to ferroelectric nematic liquid crystals.
  • ) has a periodic domain structure similar to nonlinear optical crystals, and the spontaneous polarization of ferroelectric nematic liquid crystals is aligned along the long axis of the molecules.
  • Half pitch retains the polarization characteristics, so that when the liquid crystal molecules are twisted 360° along the helical axis (a complete pitch), it is equivalent to a polarization period of a nonlinear optical crystal, with two periodic poles in opposite directions chemical domain structure.
  • the polarizability of ferroelectric helical liquid crystals can be expressed similarly to that of nonlinear optical crystals:
  • the simulation results of the length L c are shown in Figure 3.
  • the ferroelectric helical liquid crystal has a fast response to the electric field, and the periodic polarization structure of the liquid crystal can be regulated by applying an in-plane electric field to the ferroelectric helical liquid crystal, and this electric field regulation is reversible.
  • liquid crystals have good fluidity and are easy to prepare into devices, and the periodic polarization structure of ferroelectric helical liquid crystals is very easy to tune.
  • ferroelectric nematic liquid crystals makes ferroelectric helical liquid crystals a potential nonlinear medium with a periodic polarization structure that can satisfy quasi-phase matching conditions, thereby achieving second harmonic enhancement and laser frequency doubling
  • the field has broad application prospects.
  • the invention utilizes ferroelectric nematic phase liquid crystal and chiral molecular coupling to prepare ferroelectric helical liquid crystal material with periodic helical structure.
  • the ferroelectric helical liquid crystal material has a strong second harmonic response characteristic, and can excite photons by itself.
  • the periodic helical structure of the ferroelectric helical liquid crystal is easy to tune, and can be tuned to the required phase matching.
  • Polarization cycle to achieve second harmonic enhancement which is the first application field of quasi-phase matching technology.
  • this ferroelectric helical liquid crystal material does not require complex equipment, the cycle is conveniently adjustable, and the production is simple. It has a wider application prospect in the field of optical frequency doubling.
  • the object of the present invention is to be achieved through the following measures.
  • a ferroelectric helical liquid crystal material uniformly mixes chiral molecules and ferroelectric nematic liquid crystals in a certain mass ratio, and the mass fraction of the chiral molecules in the mixture is 0.4% to 1.5%.
  • the ferroelectric helical liquid crystal material has a macroscopic helical polarity on the basis of a traditional cholesteric periodic helical structure, and the macroscopic polarity is provided by a ferroelectric nematic liquid crystal; the periodicity
  • the helical structure is provided by the coupling of chiral molecules and ferroelectric nematic liquid crystals to form cholesteric liquid crystals.
  • the pitch of the ferroelectric helical liquid crystal material is realized by changing the mass ratio of chiral molecules and ferroelectric nematic liquid crystals (0.4-1.5% mass fraction of chiral molecules).
  • ferroelectric helical liquid crystal material has high dielectric constant and extremely strong second harmonic response characteristics within 128-65°C.
  • the high dielectric constant is ⁇ ⁇ 104.
  • the second harmonic response characteristic of the ferroelectric helical liquid crystal material is 3-10 times that of quartz crystal.
  • ferroelectric helical liquid crystal material has an adjustable helical period with different chiral dopant concentrations, and can be tuned to a polarization period satisfying the quasi-phase matching condition.
  • ferroelectric helical liquid crystal material can uniformly distribute a certain number (0-100 (but not limited to)) of periodic helical structures in liquid crystal cells of different thicknesses, see Figure 2 for details. Switch the arrangement of the liquid crystal molecules in the schematic.
  • a manufacturing method for second harmonic enhancement using quasi-phase matching technology is a manufacturing method for second harmonic enhancement using quasi-phase matching technology
  • the pitch of the ferroelectric helical liquid crystal can be adjusted by the ratio of the concentration of chiral molecules. When the concentration of chiral molecules is within a certain range, the pitch of the ferroelectric helical liquid crystal will also change. By adjusting the pitch to a quasi-phase-matched Polarization cycles enable SHG enhancement.
  • the present invention has the following advantages and beneficial effects:
  • the ferroelectric helical liquid crystal material of the present invention has extremely strong second harmonic response, and its nonlinear optical properties can be compared with quartz in crystals, which is very rare in fluid soft materials.
  • the molecular pitch can be adjusted to achieve quasi-phase matching conditions to achieve second harmonic enhancement.
  • the second harmonic intensity is improved.
  • this technology has a simple preparation process, convenient and adjustable pitch, low requirements on equipment, and low sensitivity to temperature. work within the temperature range.
  • ferroelectric helical liquid crystals can conveniently adjust the molecular pitch through the doping concentration of chiral molecules, and have the characteristics of softness, easy processing and film formation, and can realize many working scenarios where crystals cannot be applied. It has more cost advantages and can be better applied to fields such as laser frequency doubling modulation.
  • Figure 1 is a schematic diagram of second harmonic enhancement
  • Figure 2 is a schematic diagram of the wavelength conversion of ferroelectric helical liquid crystals.
  • the nonlinear optical effect of ferroelectric helical liquid crystals converts incident light with a wavelength of 2 ⁇ into light waves with a wavelength of ⁇ ;
  • Fig. 3 is the relationship diagram between the second harmonic of traditional nonlinear optical medium and ferroelectric helical liquid crystal and period length (expressed as n times of coherence length L c );
  • Fig. 4 is the SHG signal value of different concentration chiral molecules and ferroelectric nematic liquid crystal mixture (y-axis is the ratio with quartz excitation second harmonic intensity);
  • Fig. 5 is 1.1% R811/RM734 sample under the different thicknesses of the SHG signal value at the focal point as a function of temperature (the y-axis is the ratio with the quartz excitation second harmonic intensity);
  • Figure 6 shows the maximum value of the SHG signal at the focal point under different thicknesses of 1.1% R811/RM734 samples
  • Figure 7 shows the variation of the SHG signal value at the parallel optical path with temperature under different thicknesses of the 1.1% R811/RM734 sample (the quartz signal at the parallel optical path is almost 0, and the sample still has a strong signal);
  • Fig. 8 is the maximum value of SHG signal at the parallel optical path under different thicknesses of 1.1% R811/RM734 samples.
  • the preparation method of the ferroelectric helical liquid crystal with chiral molecular doping concentration of 1.1% is as follows:
  • R1 and R2 are -C 6 H 13 .
  • the second harmonic enhancement method is implemented as follows:
  • the SHG signal value is the largest when the chiral molecule concentration is 1.1%;
  • Figure 5 shows the different thicknesses of 1.1% R811/RM734 samples The SHG signal value at the lower focus varies with temperature;
  • Figure 6 shows the maximum value of the SHG signal at the focus at different thicknesses of the 1.1% R811/RM734 sample. The thicker the thickness, the more polarization cycles, and thus the greater the SHG signal value;
  • Figure 7 shows the variation of the SHG signal value at the parallel optical path with different thicknesses of the 1.1% R811/RM734 sample;
  • Figure 8 shows the maximum value of the SHG signal at the parallel optical path at the different thickness of the 1.1% R811/RM734 sample. The more the polarization period is, the larger the SHG signal value is.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开一种铁电螺旋液晶材料及其实现二次谐波增强的方法。该方法通过手性分子掺杂铁电向列相液晶得到具有超高极性螺旋结构的铁电螺旋液晶,其介电常数大于10 4。此类液晶材料具备超强的非线性光学效应,可以激发高强度的二次谐波(比如,与LiNbO 3非线性(NLO)结晶材料的非线性系数相当)。本发明基于铁电螺旋液晶的周期性螺旋结构可调性,通过手性分子浓度调谐铁电螺旋液晶的分子螺距(即调控极化周期),首次实现在高流动性液体材料中的准相位匹配技术,从而实现不亚于商用NLO结晶材料的二次谐波增强。

Description

一种铁电螺旋液晶材料及其实现二次谐波增强的方法 技术领域
本发明属于非线性光学材料制备及应用领域,公开了一类新颖的具有周期性螺旋结构的超高极性流体材料可满足准相位匹配条件,达到二次谐波增强的制作方法及其在激光倍频调制方面的应用。
背景技术
1961年,P.A.Franken等人首次报道了激光的非线性变频现象,开启了非线性光学研究的新领域。对于非线性光学过程,一般采用光在介质总的极化响应来描述:
Figure PCTCN2022128471-appb-000001
式中,P和E分别为极化强度和电场矢量,
Figure PCTCN2022128471-appb-000002
为极化率,ε 0为真空介电常数,P (1)=ε 0χ (1)·E为线性极化强度,描述了各种线性光学现象,其余各项为非线性项,用来描述光与物质的非线性作用。在诸多非线性光学现象中研究最为广泛的是二阶非线性光学效应,特别是三波混频,它是目前激光频率变换与扩展研究的最主要方 法。在三波混频过程中,当两束入射光的频率相等,即ω 1=ω 2=ω时,出射倍频光ω 3=ω 1+ω 2=2ω,即光学倍频效应,又称为二次谐波现象,通常入射光称为基频光,出射光称为倍频光。
对于二次谐波产生的强度,若不考虑走离效应,可简化为以下的关系式:
Figure PCTCN2022128471-appb-000003
式中I 和I ω分别表示倍频光和基频光的强度,L为光束穿过样品的厚度,d eff为有效二阶非线性系数,
Figure PCTCN2022128471-appb-000004
为相位失配因子,其中λ为入射光的波长。由于介质的色散效应,一般地n ≠n ω,即Δk≠0,称为相位不匹配条件。倍频光强度随着晶体长度L的增加成周期性的变化,这里称L c=π/Δk为相干长度。在L从0增加L c的过程中,倍频光强度随着L的增加单调增加,能量从基频光向倍频光转换;而当L从L c增加2L c的过程中,倍频光随之L的增加而单调减小,能量反过来又从倍频光向基频光转换,此后一直这样往复。因此在相位不匹配的条件下,非线性转化效率极低。只有满足相位 匹配条件Δk=0,即基频光和倍频光在介质中的传播速度相等,或折射率相等,倍频光的强度才能不断地增长1962年,J.A.Armstrong与N.BLogembergen等人提出了准相位匹配(Quasi-Phase Matching)的技术。假设泵浦激光振幅恒定,信号波长可以表示为非线性光学介质中存在的畴数量的总和,通常,信号幅度的变化率为:
Figure PCTCN2022128471-appb-000005
对于周期性极化的非线性光学晶体而言,在每一个相干长度的畴内,晶体的晶轴反转180°,导致非线性极化率χ改变符号。对于有n个畴的介质,χ可表示为:
χ=χ 0(-1) n
则当泵浦激光走过n个畴时产生信号的总幅度为:
Figure PCTCN2022128471-appb-000006
产生的二次谐波强度可表示为:
Figure PCTCN2022128471-appb-000007
Figure PCTCN2022128471-appb-000008
与双折射相位匹配相比,准相位匹配是利用非线性介质光学性质的周期性分布补偿相位失配的。每当光在非线性介质中传播经历了一个相干长度L c时,通过人工调制引入一个π的相位补偿,使得能量持续地从基频光向倍频光转换。准相位匹配技术对非线性介质的耦合光波波矢方向和偏振方向没有严格的限制,只需要人工引入一个恰当的极化周期性结构。非线性光学晶体的极化周期可根据Sellmeier方程和波矢的关系来计算,即Λ=2mL c=mλ/2(n ω-n )(m为奇数)。
实现准相位匹配过程的关键在于调谐适当的周期性结构的非线性介质,具有反向平行畴结构的非线性光学晶体是应用于准相位匹配技术的主要非线性介质。非线性光学晶体具有自发的极化,且自发极化可以被外电场改变。目前,已有多种加工方法用于制备准相位匹配的铁电畴结构,其中最常用的是利用图案化电极和高压电场极化法,还有早期的生长条纹法、近年来发展的光辅助极化、全光极化等方法。这些方法制备过程繁琐,对设备要求高,制造具有高质量和可靠的周期性极化晶体具有挑战性,并且只有使用某些晶体材料才有可能。制备的细节和成功率在很大程度上取决于材料——不仅是材料类型,还有缺陷密度、化学计量、表面处理等。周期性极化只能应用于厚度相当有限的晶体,对于不同的过程,需要许多不同的极化周期。另请注意,精确预测所需极化周期需要精确的折射率(Sellmeier)数据。伴生高阶过程可以产生额外波长的光,这可能会以各种方式产生干扰。
2017年,英国约克大学的Mandle博士和Goodby教授合成了一种具有大电偶极子的楔形分子。研究发现,该分子在高温表现为普通向列相,但在低温下(小于133℃)呈现出一种新型的、具有铁电特征的向列相结构,即分子排列产生自 发极化,向列相分子偶极矩在空间分布上变得有序,形成具有特定取向的畴。同年,日本九州大学的Kikuchi Hirotsugu教授也发现了一种具有极高介电常数的极性向列相液晶,该材料还表现出极强的二次谐波响应等特性。目前,这种新型向列相的基础研究尚处于起步阶段,但其极强的介电和非线性光学特征使其具有很高的应用价值。
通过向铁电向列相液晶中加入手性分子可以得到具有周期性螺旋结构的铁电螺旋液晶,与传统的非线性光学晶体相比,铁电螺旋液晶在一个完整周期内(即一个螺距内)具有类似于非线性光学晶体的周期性畴结构,且铁电向列相液晶的自发极化沿着分子长轴方向排列,当液晶分子沿着螺旋轴螺旋排列时,每扭转180°(即半个螺距)时保留了极化特征,这样当液晶分子沿着螺旋轴扭转360°(一个完整的螺距)时相当于非线性光学晶体的一个极化周期,具有两个相反方向的周期性极化畴结构。铁电螺旋液晶的极化率可以用类似于非线性光学晶体的极化率来表示:
Figure PCTCN2022128471-appb-000009
在铁电螺旋液晶体系中,极化周期也可通过Sellmeier方程和波矢的关系来计算,同时和铁电螺旋液晶的周期性螺旋结构(pitch)也有关系,即pitch=Λ=2mL c=mλ/2(n -n ω)(m为奇数),故可通过调谐铁电螺旋液晶的周期性螺旋结构来实现准相位匹配技术,与传统的非线性光学介质的二次谐波强度与相干长度L c模拟结果见附图3。
铁电螺旋液晶对电场有快速的响应,可以通过向铁电螺旋液晶施加面内电场来调控液晶的周期性极化结构,且这种电场调控是可逆的。当向铁电螺旋液晶施加一个正的电场(E>0)时,与正电场方向一致的极化方向不发生改变,与正电场方向相反的极化会向施加电场的方向旋转,破坏了螺旋结构的对称性,从而改变周期性极化结构;撤去电场时,被改变的极化结构又会恢复到初始状态(E=0);同样地,当改变电场的方向时,即向铁电螺旋液晶施加一个负的电场(E<0)时,与负电场方向一致的极化方向不发生改变,与负电场方向相反的 极化会向施加电场的方向旋转,从而可以对周期性极化结构进行调控,撤去电场时,被改变的极化结构又会恢复到初始状态(E=0)(详见附图1)。同时,与传统的非线性光学晶体相比,液晶具有良好的流动性性,容易制备成器件,而且铁电螺旋液晶的周期性极化结构十分容易调谐。铁电向列相液晶的发现,使得铁电螺旋液晶液晶成为一种潜在的具有周期性极化结构的可满足准相位匹配条件的非线性介质,从而实现二次谐波增强,在激光倍频领域具有广泛的应用前景。
发明概述
技术问题
问题的解决方案
技术解决方案
目前,利用准相位匹配技术实现二次谐波增强还集中在调谐具有周期性结构的非线性光学晶体领域,这些方法大多制备过程繁琐,对设备要求高。本发明利用了铁电向列相液晶和手性分子耦合制备出具有周期性螺旋结构的铁电螺旋液晶材料。所述这种铁电螺旋液晶材料具有极强的二次谐波响应特征,自身即可激发光子,同时这种铁电螺旋液晶的周期性螺旋结构方便调谐,可调谐至准相位匹配所需的极化周期从而实现二次谐波增强,这在准相位匹配技术的应用领域尚处首例。而且相比较传统的准相位匹配技术,这种铁电螺旋液晶材料无需复杂的设备、周期方便可调、制作简单等特点,在光学倍频领域有更加广泛的应用前景。
本发明的目的是通过如下措施来达到。
一种铁电螺旋液晶材料,铁电螺旋液晶材料通过将手性分子和铁电向列相液晶以一定的质量比均匀混合,所述手性分子占混合物中的质量分数为0.4%~1.5%,所述铁电螺旋液晶材料在具有传统胆甾相周期性螺旋结构的基础上,具有宏观的螺旋极性,所述的宏观极性是由铁电向列相液晶提供;所述的周期性螺旋结构是由手性分子和铁电向列相液晶耦合形成胆甾相液晶提供的。
进一步地,所述铁电向列相液晶在倍频光和基频光处的折射率n2ω和nω,上述铁电螺旋液晶材料的极化周期根据公式pitch=Λ=2mLc=mλ/2(n2ω-nω)(m为奇数 )来计算。
进一步地,所述铁电螺旋液晶材料的螺距(pitch),通过改变手性分子和铁电向列相液晶的质量配比(0.4~1.5%质量分数的手性分子)来实现。
进一步地,所述的铁电螺旋液晶材料在128~65℃内,具有高介电常数和极强的二次谐波响应特征。
进一步地,所述高介电常数为ε~104。
进一步地,所述铁电螺旋液晶材料的二次谐波响应特征为石英晶体的3-10倍。
进一步地,所述铁电螺旋液晶材料的螺距(pitch)调至准相位匹配所需的极化周期时可实现二次谐波增强。
进一步地,所述的铁电螺旋液晶材料随着不同的手性掺杂剂浓度具有可调的螺旋周期,可调谐至满足准相位匹配条件的极化周期。
进一步地,所述的铁电螺旋液晶材料在不同厚度的液晶盒中能够均匀分布一定数量(0~100(但不限于此))的周期性螺旋结构,详见附图2铁电螺旋液晶波长转换示意图中液晶分子的排布。
进一步地,所述的铁电螺旋液晶材料达到准相位匹配技术的极化周期时,其二次谐波强度随着厚度的增大而增大,详见附图5和7,分别是1.1%R811/RM734样品不同厚度下焦点处和平行光处的SHG信号值随温度的变化。
一种利用准相位匹配技术实现二次谐波增强的制作方法:
两片由聚酰亚胺平行摩擦配向的玻璃基板,制成不同厚度的液晶盒,利用毛细作用将铁电螺旋液晶液晶灌入液晶盒中。在370~440K下退火处理半小时,使胆甾相形成稳定的平面织构。
进一步地,所述铁电螺旋液晶螺距可由手性分子浓度配比调节,当手性分子浓度在一定范围之间时,铁电螺旋液晶的螺距也会发生变化,通过调节螺距至准相位匹配的极化周期可实现SHG增强。
发明的有益效果
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
本发明所述的铁电螺旋液晶材料具有极强的二次谐波响应,其非线性光学特性 能够与晶体中的石英相媲美,这在流体软材料中是十分罕见的。通过改变手性分子掺杂浓度,可以调节分子螺距,达到准相位匹配条件从而实现二次谐波增强,相较于没有掺杂手性分子的极性向列相,其二次谐波强度提高了4倍以上,该技术与现有的调谐合适周期性结构的非线性光学晶体相比,制备工艺简单,螺距方便可调,对设备要求不高,同时对温度敏感性不高,能在较宽的温度范围内工作。与一般的非线性光学晶体相比,铁电螺旋液晶能够通过手性分子掺杂浓度便利的调节分子螺距,而且具有柔软、易加工和成膜特性,能够实现很多晶体无法应用的工作场景,也更具有成本优势,能够较好的应用于激光倍频调制等领域。
对附图的简要说明
附图说明
图1是二次谐波增强的原理图;
图2是铁电螺旋液晶波长转换示意图,铁电螺旋液晶的非线性光学效应,使波长为2λ的入射光转化为波长为λ的光波;
图3是传统非线性光学介质和铁电螺旋液晶的二次谐波与周期长度(表示为相干长度L c的n倍)之间的关系图;
图4是不同浓度手性分子和铁电向列相液晶混合物的SHG信号值(y轴为与石英激发二次谐波强度之比);
图5是1.1%R811/RM734样品不同厚度下焦点处的SHG信号值随温度的变化(y轴为与石英激发二次谐波强度之比);
图6是1.1%R811/RM734样品不同厚度下焦点处的SHG信号最大值;
图7是1.1%R811/RM734样品不同厚度下在平行光路处的SHG信号值随温度的变化(平行光路处石英信号几乎为0,样品依然有很强的信号);
图8是1.1%R811/RM734样品不同厚度下在平行光路处的SHG信号最大值。
发明实施例
本发明的实施方式
下面结合实施例,对本发明作进一步地详细说明,但不用来限制本发明的范围。
实施例1
手性分子掺杂浓度为1.1%的铁电螺旋液晶的制备方法如下:
使用三氯甲烷为溶剂,分别配制0.05%质量分数的手性分子和5%质量分数的铁电向列相液晶溶液,再按手性分子:铁电向列相液晶的质量比为1.1/98.9的配制混合物溶液,真空干燥后得到均匀混合物,标记为1.1%R811/RM734。
Figure PCTCN2022128471-appb-000010
为所述铁电向列相液晶,R1、R2为甲基。
Figure PCTCN2022128471-appb-000011
为所述手性分子,R1、R2为-C 6H 13
实施例2
手性分子掺杂浓度为1.0%的极性胆甾相液晶的制备方法如下:
使用三氯甲烷为溶剂,分别配制0.05%质量分数的手性分子和5%质量分数的铁电向列相液晶溶液,再按手性分子:极性向列相液晶的质量比为1.0/99的配制混合物溶液,真空干燥后得到均匀混合物,标记为1.0%R811/RM734。
实施例3
手性分子掺杂浓度为0.9%的极性胆甾相液晶的制备方法如下:
使用三氯甲烷为溶剂,分别配制0.05%质量分数的手性分子和5%质量分数的铁电向列相液晶溶液,再按手性分子:极性向列相液晶的质量比为0.9/99.1的配制混合物溶液,真空干燥后得到均匀混合物,标记为0.9%R811/RM734。
实施例4
二次谐波增强方法的实现如下:
准备两片涂有聚酰亚胺膜的玻璃基板(1cm2),用天鹅绒布摩擦取向后制备成液晶盒,液晶盒的厚度方便可调。将配制好的铁电螺旋液晶加热至液相,液晶会在毛细作用下进入液晶盒,其结构如附图2所示。在400K下退火处理半小时,使胆甾相形成稳定的平面织构。
若使用1064nm的脉冲激光作为光源,由于极性胆甾相非线性光学特征,会产生532nm的二次谐波,对应的,改变手性分子掺杂浓度至1.1%,调节螺距使其满足准相位匹配技术的极化周期,以达到二次谐波增强的效果。使用光电倍增探测器对出射二次谐波进行探测,与同等条件下石英的二次谐波响应光强进行对比(见附图4、5、6、7、8)。图4是不同浓度手性分子和铁电向列相液晶混合物的SHG信号值,可以看出当手性分子浓度为1.1%时的SHG信号值最大;图5是1.1%R811/RM734样品不同厚度下焦点处的SHG信号值随温度的变化;图6是1.1%R811/RM734样品不同厚度下焦点处的SHG信号最大值,厚度越厚,极化周期越多,从而SHG信号值也越大;图7是1.1%R811/RM734样品不同厚度下在平行光路处的SHG信号值随温度的变化;图8是1.1%R811/RM734样品不同厚度下在平行光路处的SHG信号最大值厚度越厚,极化周期越多,从而SHG信号值也越大。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或者替换,都应当是为属于本发明的保护范围。

Claims (10)

  1. 一种铁电螺旋液晶材料,其特征在于,铁电螺旋液晶材料通过将手性分子和铁电向列相液晶以一定的质量比均匀混合,所述手性分子占混合物中的质量分数为0.4%~1.5%,所述铁电螺旋液晶材料在具有传统胆甾相周期性螺旋结构的基础上,具有宏观的螺旋极性,所述的宏观极性是由铁电向列相液晶提供;所述的周期性螺旋结构是由手性分子和铁电向列相液晶耦合形成胆甾相液晶提供的。
  2. 根据权利要求1所述铁电螺旋液晶材料,其特征在于,所述铁电向列相液晶在倍频光和基频光处的折射率n 和n ω,上述铁电螺旋液晶材料的极化周期根据公式pitch=Λ=2m L c=mλ/2(n -n ω)来计算,m为奇数。
  3. 根据权利要求1所述铁电螺旋液晶材料,其特征在于,所述铁电螺旋液晶材料的螺距pitch,通过改变手性分子和铁电向列相液晶的质量配比,0.4~1.5%质量分数的手性分子实现。
  4. 根据权利要求1所述铁电螺旋液晶材料,其特征在于,所述的铁电螺旋液晶材料在128~65℃内,具有高介电常数和极强的二次谐波响应特征。
  5. 根据权利要求4所述铁电螺旋液晶材料,其特征在于,所述高介电常数为ε~10 4
  6. 根据权利要求4所述铁电螺旋液晶材料,其特征在于,所述铁电螺旋液晶材料的二次谐波响应特征为石英晶体的3-10倍。
  7. 权利要求1~6任一项所述铁电螺旋液晶材料实现二次谐波增强的方法,其特征在于,所述铁电螺旋液晶材料的螺距(pitch)调至准相位匹配所需的极化周期时可实现二次谐波增强。
  8. 根据权利要求7所述铁电螺旋液晶材料实现二次谐波增强的方法,其特征在于,所述的铁电螺旋液晶材料随着不同的手性掺杂剂浓度具有可调的螺旋周期,可调谐至满足准相位匹配条件的极化周 期。
  9. 根据权利要求7所述铁电螺旋液晶材料实现二次谐波增强的方法,其特征在于,所述的铁电螺旋液晶材料在不同厚度的液晶盒中能够均匀分布的周期性螺旋结构。
  10. 根据权利要求7所述铁电螺旋液晶材料实现二次谐波增强的方法,其特征在于,所述的铁电螺旋液晶材料达到准相位匹配技术的极化周期时,其二次谐波强度随着厚度的增大而增大,分别是1.1%R811/RM734样品不同厚度下焦点处和平行光处的SHG信号值随温度的变化。
PCT/CN2022/128471 2021-10-28 2022-10-30 一种铁电螺旋液晶材料及其实现二次谐波增强的方法 WO2023072277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111267015.0A CN113867063B (zh) 2021-10-28 2021-10-28 一种铁电螺旋液晶材料及其实现二次谐波增强的方法
CN202111267015.0 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023072277A1 true WO2023072277A1 (zh) 2023-05-04

Family

ID=78985769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128471 WO2023072277A1 (zh) 2021-10-28 2022-10-30 一种铁电螺旋液晶材料及其实现二次谐波增强的方法

Country Status (2)

Country Link
CN (1) CN113867063B (zh)
WO (1) WO2023072277A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867063B (zh) * 2021-10-28 2022-12-16 华南理工大学 一种铁电螺旋液晶材料及其实现二次谐波增强的方法
CN115626909A (zh) * 2022-10-27 2023-01-20 华南理工大学 一种铁电近晶a相液晶材料及其实现双态极化结构切换保存的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032182A (zh) * 1987-09-18 1989-04-05 霍夫曼-拉罗奇有限公司 铁电液晶单元
US4943387A (en) * 1983-10-05 1990-07-24 Chisso Corporation Chiral smectic liquid crystal composition
JP2002080478A (ja) * 2000-06-27 2002-03-19 Fuji Photo Film Co Ltd 光反応型光学活性化合物、光反応型カイラル剤、液晶組成物、液晶カラーフィルタ、光学フィルム、記録媒体、及び液晶の捻れ構造を変化させる方法
US20110233463A1 (en) * 2008-09-17 2011-09-29 Tetragon Lc Chemie Ag Chiral compounds, cholesteric and ferroelectric liquid crystal compositions comprising these chiral compounds, and liquid crystal displays comprising these liquid crystal compositions
CN112322306A (zh) * 2020-10-28 2021-02-05 华南理工大学 超高极性手性液晶材料、液晶激光器及其制备方法
CN113867063A (zh) * 2021-10-28 2021-12-31 华南理工大学 一种铁电螺旋液晶材料及其实现二次谐波增强的方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2043600T3 (es) * 1985-12-18 1994-01-01 Canon Kk Dispositivo de cristal liquido.
JPH01302226A (ja) * 1988-05-30 1989-12-06 Alps Electric Co Ltd 強誘電液晶素子
JP2741547B2 (ja) * 1988-12-30 1998-04-22 キヤノン株式会社 主鎖型カイラルスメクチック高分子液晶、高分子液晶組成物および高分子液晶素子
JPH02233796A (ja) * 1989-03-08 1990-09-17 Idemitsu Kosan Co Ltd 強誘電性液晶組成物
EP0388141B1 (en) * 1989-03-14 1995-03-08 Sharp Kabushiki Kaisha Ferroelectric liquid crystal device
DE3909354A1 (de) * 1989-03-22 1990-09-27 Hoechst Ag Ferroelektrische fluessigkristallsysteme mit hoher spontaner polarisation und guten orientierungseigenschaften
DE3909355A1 (de) * 1989-03-22 1990-09-27 Hoechst Ag Ferroelektrische fluessigkristalline mischungen
JP2852544B2 (ja) * 1989-11-07 1999-02-03 チッソ株式会社 強誘電性液晶組成物
NL9100336A (nl) * 1991-02-26 1992-09-16 Philips Nv Inrichting voor het verdubbelen van de frequentie van een lichtgolf.
JPH0720502A (ja) * 1993-06-30 1995-01-24 Sony Corp 光学装置
EP0661583B1 (en) * 1993-12-28 2002-05-08 Shimadzu Corporation Light modulator using a liquid crystal thick cell
JPH09323978A (ja) * 1996-06-05 1997-12-16 Japan Energy Corp 液晶のらせんピッチ調整材料および新規なツイン化合物並びにツイン化合物の製造方法
JP4326619B2 (ja) * 1999-02-04 2009-09-09 財団法人石油産業活性化センター 光学活性アルキル置換シクロヘキサン誘導体を含有する強誘電性液晶組成物及び液晶素子
JP2000328064A (ja) * 1999-05-19 2000-11-28 Dainippon Ink & Chem Inc 液晶光学素子及びそのスイッチング方法
RU2234723C2 (ru) * 2001-10-24 2004-08-20 Ковшик Александр Петрович Способ спектрально-селективного преобразования мод оптического излучения в волноводе и устройство для его реализации
SI23567B (sl) * 2010-11-10 2019-07-31 Institut "JoĹľef Stefan" Kroglasti tekočekristalni laser
US8691111B2 (en) * 2011-04-27 2014-04-08 Kent Displays Inc. Tetraoxybiphenyl ester chiral dopants for cholesteric liquid crystal displays
JP6209807B2 (ja) * 2012-03-08 2017-10-11 国立大学法人東京工業大学 液晶表示素子
CN103969877B (zh) * 2014-05-08 2016-08-24 合肥工业大学 一种染料液晶显示器件
WO2017156433A1 (en) * 2016-03-10 2017-09-14 Red Bank Technologies Llc. Bank edge emission enhanced organic light emitting diode utilizing chiral liquid crystalline emitter
WO2019119513A1 (zh) * 2017-12-18 2019-06-27 北京师范大学 一类非线性光学晶体单氟磷酸盐
US11880114B2 (en) * 2019-08-28 2024-01-23 The Hong Kong University Of Science And Technology Ferroelectric liquid crystals Dammann grating for light detection and ranging devices
CN112375168B (zh) * 2020-10-28 2022-03-29 华南理工大学 侧链棒状极性液晶聚合物及其制备方法与在非线性光学领域的应用
CN112342032A (zh) * 2020-10-28 2021-02-09 华南理工大学 一类棒状极性液晶分子及其制备方法与棒状极性向列型液晶
CN112608217B (zh) * 2020-12-28 2022-04-22 华南理工大学 一种组装调控荧光增强聚集诱导发光材料、微纳米球及制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943387A (en) * 1983-10-05 1990-07-24 Chisso Corporation Chiral smectic liquid crystal composition
CN1032182A (zh) * 1987-09-18 1989-04-05 霍夫曼-拉罗奇有限公司 铁电液晶单元
JP2002080478A (ja) * 2000-06-27 2002-03-19 Fuji Photo Film Co Ltd 光反応型光学活性化合物、光反応型カイラル剤、液晶組成物、液晶カラーフィルタ、光学フィルム、記録媒体、及び液晶の捻れ構造を変化させる方法
US20110233463A1 (en) * 2008-09-17 2011-09-29 Tetragon Lc Chemie Ag Chiral compounds, cholesteric and ferroelectric liquid crystal compositions comprising these chiral compounds, and liquid crystal displays comprising these liquid crystal compositions
CN112322306A (zh) * 2020-10-28 2021-02-05 华南理工大学 超高极性手性液晶材料、液晶激光器及其制备方法
CN113867063A (zh) * 2021-10-28 2021-12-31 华南理工大学 一种铁电螺旋液晶材料及其实现二次谐波增强的方法

Also Published As

Publication number Publication date
CN113867063B (zh) 2022-12-16
CN113867063A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023072277A1 (zh) 一种铁电螺旋液晶材料及其实现二次谐波增强的方法
Bosshard et al. Electro-optic effects in molecular crystals
Williams Nonlinear optical properties of guest-host polymer structures
Hunziker et al. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene} malononitrile: linear and nonlinear optical properties
Song et al. Development of emergent ferroelectric nematic liquid crystals with highly fluorinated and rigid mesogens
Shur et al. Periodically poled crystals of KTP family: a review
JPS61296332A (ja) 高性能非線形光学基体
Chinnasami et al. Investigation on the growth rate, crystalline perfection, refractive index, Z-scan and electrical characteristics of Z-cut imidazolium l-tartrate single crystal
Wu et al. Linear optical and thermo-physical properties of polar K3B6O10Cl crystal
Cheng et al. Long‐Term‐Stable Strong Second Harmonic Generation in Flexible DAST− PVDF Composite Films Realized by the Interface Interactions
Knopfle et al. Optical, nonlinear optical, and electrooptical properties of 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline (mnba) crystals
Arakelyan et al. Nonlinear optics of liquid crystals
Wijekoon et al. Second-order nonlinear optical effects in novel side-chain liquid crystalline polymers and monomers under bias of an applied dc electric field
Wang et al. Potassium tantalate niobate crystals: efficient quadratic electro-optic materials and their laser modulation technology
Wang et al. Crystal growth and physical properties of UV nonlinear optical crystal zinc cadmium thiocyanate, ZnCd (SCN) 4
Barnik et al. Optical second harmonic generation in various liquid crystalline phases
Wu et al. Periodically poled nonlinear photonic crystal KTa0. 51Nb0. 49O3 combining wide transparent range and large quadratic coefficient
Horiuchi et al. Quadratic nonlinear optical coefficients of organic–inorganic crystal: 2-amino-5-nitropyridinium chloride
Sidden et al. Direction dependent crystalline perfection, Z-scan studies and fabrication of Type-I and Type-II SHG elements using imidazolium L-tartrate crystals for optical modulator applications
Singer et al. Organic Materials for Second-Order Nonlinear Optical Devices
Chen et al. Type I quasi-phase-matched blue second harmonic generation with different polarizations in periodically poled LiNbO3
CN115268165A (zh) 一种铁电螺旋液晶材料及其实现二次谐波圆二色性的方法
Wang et al. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3
Tao et al. Phase‐matched second‐harmonic generation in poled polymer waveguide based on a main chain polymer
Jazbinsek et al. Organic molecular nonlinear optical materials and devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886152

Country of ref document: EP

Kind code of ref document: A1