WO2023072215A1 - 非小细胞肺癌靶点arid1a及其抑制剂在制备肺癌治疗药物中的用途 - Google Patents

非小细胞肺癌靶点arid1a及其抑制剂在制备肺癌治疗药物中的用途 Download PDF

Info

Publication number
WO2023072215A1
WO2023072215A1 PCT/CN2022/128046 CN2022128046W WO2023072215A1 WO 2023072215 A1 WO2023072215 A1 WO 2023072215A1 CN 2022128046 W CN2022128046 W CN 2022128046W WO 2023072215 A1 WO2023072215 A1 WO 2023072215A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
arid1a
glycolysis
gene
inhibitor
Prior art date
Application number
PCT/CN2022/128046
Other languages
English (en)
French (fr)
Inventor
王效静
刘飞
张琳玲
马超
周航天
许玲玲
吴楠
陈付凉
Original Assignee
蚌埠医学院第一附属医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蚌埠医学院第一附属医院 filed Critical 蚌埠医学院第一附属医院
Publication of WO2023072215A1 publication Critical patent/WO2023072215A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the invention relates to the technical field of biomedicine, in particular to the use of non-small cell lung cancer target ARID1A and its inhibitor in the preparation of drugs for treating lung cancer.
  • Oncogene activation/tumor suppressor gene inactivation is the root cause of cancer, which is regulated by genomic variation on the one hand and affected by epigenetic modifications on the other.
  • Chromatin remodeling is an important mode of epigenetic modification.
  • ARID1A is an important subunit of the chromatin remodeling complex SWI/SNF, which is involved in regulating the expression of various cancer-related genes, and plays an important role in the occurrence and development of various malignant tumors. The role in pathogenesis has not been reported so far.
  • the purpose of the present invention is to provide a new target for the treatment of lung cancer and a corresponding treatment method for the new target.
  • a use of a glycolysis inhibitor is provided for preparing a composition or preparation, and the composition or preparation is used for: (a) preventing and/or treating lung cancer, so said lung cancer is ARID1A-negative lung cancer; and/or (b) inhibiting lung cancer cells, said lung cancer cells are ARID1A-negative lung cancer cells.
  • the lung cancer is mammalian (including human and non-human mammalian) lung cancer.
  • said ARID1A negative means that the expression and/or activity of ARID1A is significantly decreased compared with normal control cells.
  • the significant decrease refers to the ratio of ARID1A expression A1 in lung cancer cells or tissues to ARID1A expression E0 in normal lung cells or tissues (ie E1/E0) ⁇ 1/2, compared with Preferably ⁇ 1/3, more preferably ⁇ 1/5; and/or the ratio of ARID1A activity A1 in lung cancer cells or tissues to ARID1A activity A0 in normal lung cells or tissues (ie A1/A0) ⁇ 1/2 , preferably ⁇ 1/3, more preferably ⁇ 1/5.
  • the expression of BAF250 or its subunits is down-regulated, or its activity is significantly reduced
  • the level of SWI/SNF complex is down-regulated or its activity is significantly reduced.
  • the lung cancer is ARID1A-deficient lung cancer.
  • the lung cancer is selected from the group consisting of adenocarcinoma, squamous cell carcinoma, or a combination thereof.
  • the lung cancer is selected from the group consisting of small cell lung cancer and non-small cell lung cancer.
  • glycolysis inhibitor is selected from the following group:
  • the glycolysis inhibitor inhibits Pgk1, Pgam1 and/or Pkm2.
  • the glycolysis inhibitor is selected from the group consisting of small molecule compounds, antibodies, antisense nucleic acids, gene editing drugs, or combinations thereof.
  • the inhibitor is selected from a small molecule compound antibody, siRNA, shRNA, or an inhibitory complex mediated by CRISPR/Cas editing tools.
  • the inhibitors include antisense nucleic acids that inhibit Pgk1, antisense nucleic acids that inhibit Pgam1, and/or antisense nucleic acids that inhibit Pkm2.
  • the inhibitor of Pgam1 is shown in SEQ ID NO:4: GGATTGCTCTCTTCTGCACAG; in another preference, the inhibitor of Pgam1 is shown in SEQ ID NO:5 Sequence: TTGACCAGATGTGGTTGCCAG.
  • the inhibitor of Pkm2 is shown in SEQ ID NO: 6: GGGGCAGAGTCAATGTCCAGG; in another preferred embodiment, the inhibitor of Pgam1 is shown in SEQ ID NO: 7 Sequence: CCGAAGCCACACAGTGAAGCA.
  • the glycolysis inhibitor is selected from the group consisting of BETi small molecule compounds, 2-DG small molecules (2-deoxy-D-glucose, Figure 1a ), or combinations thereof.
  • the BETi small molecule compound is selected from the group consisting of JQ1 (Fig. 1b), BET762 (Molibresib, Fig. 1c), OXT015 (Birabresib, Fig. 1d), BET726 (Fig. 1e), BET151 (Fig. 1f), or a combination thereof.
  • the gene editing drug is used to inhibit or eliminate the expression of Pgk1, Pgam1 and/or Pkm2 genes.
  • the treatment includes: inhibiting the proliferation rate of lung cancer cells, changing the cycle distribution of lung cancer cells, promoting apoptosis of lung cancer cells, inhibiting the growth of lung cancer tissue, or a combination thereof.
  • the present invention also provides a use of ARID1A gene, mRNA, cDNA, protein, or a detection reagent thereof for preparing a kit, and the kit is used to select one of the following groups: or multiple uses:
  • the kit is also used for
  • the kit is used for typing lung cancer patients based on ARID1A expression and/or activity.
  • the detection reagent includes:
  • the present invention also provides a product combination, the product comprising:
  • the detection reagent is a detection reagent for detecting ARID1A gene, mRNA, cDNA, protein, or a combination thereof;
  • the kit contains a container, which contains detection reagents for detecting ARID1A gene, mRNA, cDNA, protein, or a combination thereof; and a label or instructions, which indicate The kit is used for evaluating whether lung cancer patients are suitable for treatment with glycolysis inhibitors.
  • the kit also contains ARID1A gene, mRNA, cDNA, and/or protein as reference or quality control substance.
  • the present invention also provides a use of the product combination as described in the third aspect of the present invention for preparing a medical product for treating ARID1A-negative lung cancer.
  • the present invention also provides a method for treating lung cancer, comprising the steps of:
  • the step (b) further includes: detecting the expression and/or activity of ARID1A during the treatment.
  • the glycolysis inhibitor is administered to humans.
  • Figure 1 shows the structural diagram of small molecule compounds that interfere with the level of glucose metabolism and key genes of glycolysis.
  • Figure 2 shows that there is a mutation frequency of -10% in the ARID1A gene in the lung cancer patient cohort, and the mutations are mainly missense mutations and truncating mutations.
  • Figure 3 shows that the inactivation of ARID1A gene can significantly promote the tumorigenic ability of mouse lung tissue under the background of KrasG12D overexpression and Tp53 deletion.
  • FIG 4 shows that mutations in the ARID1A gene lead to detailed activation of the glycolysis signaling pathway in tumor cells.
  • the expressions of key genes of glycolysis, Pgam1, Pkm and Pgk1 were significantly up-regulated.
  • Figure 5 shows that ARID1A gene mutations lead to chromatin state remodeling and open the promoter regions of glycolysis-associated genes Pgam1, Pkm and Pgk1.
  • Hif-1 ⁇ a key gene of the hypoxic pathway, can be more tightly bound to the open region of the promoter of the key gene of glycolysis in the absence of ARID1A, and promote its expression level.
  • Figure 6 suggests that the progression of ARID1A-deficient lung cancer can be inhibited by directly inhibiting the glycolysis level of tumor cells or down-regulating the expression level of key glycolysis genes.
  • Figure 7 suggests that inhibiting the SWI/SNF complex by BETi small molecules can reduce the progression of ARID1A-deficient lung cancer, and the inhibitory effect of JQ1 is more prominent.
  • ARID1A can be used as a tumor suppressor gene to regulate tumors, and its mutation can promote the glycolysis level of tumor cells, providing a new target for the treatment of ARID1A-deficient lung cancer.
  • One or more inhibitors can inhibit the proliferation rate of lung cancer cells, change the cycle distribution of lung cancer cells, promote the apoptosis of lung cancer cells, and inhibit the growth of lung cancer tissues, so as to treat lung cancer and open up a new direction for the treatment of lung cancer.
  • administration refers to the physical introduction of a product of the invention into a subject using any of a variety of methods and delivery systems known to those skilled in the art, including intravenous, intratumoral, intramuscular, subcutaneous, intraperitoneal , spinal or other parenteral routes of administration, for example by injection or infusion.
  • p53 used interchangeably with “Tp53”, is a tumor suppressor gene and the protein encoded by this gene is a transcription factor that controls cell cycle initiation.
  • the p53 gene normally slows or monitors cell division.
  • the amino acid sequence of the human ARID1A of the present invention is as described in SEQ ID NO:1
  • the amino acid sequence of the murine ARID1A is as described in SEQ ID NO:2.
  • Inactivation refers to the mutation of the nucleic acid encoding the ARID1A protein, resulting in sequence and structural changes in the encoded amino acid sequence, resulting in the loss of its biological function.
  • the nucleic acid variation refers to a substitution of a base sequence
  • nucleic acid variation refers to base deletion
  • the nucleic acid variation refers to base sequence insertion.
  • nucleic acid variation refers to fusion between bases
  • the nucleic acid variation refers to abnormal amplification of bases.
  • the nucleic acid variation eventually leads to the formation of missense or nonsense mutations.
  • the mutation site exists in its DNA binding domain
  • the mutation site is located in the BAF250 subunit of the SWI/SNF complex, namely BAF250a. or other undefined structural regions.
  • the mutation frequency of ARID1A in non-small cell lung cancer is about -11%, which belongs to a significant high-frequency mutation gene and has great research value.
  • the deletion mutation of the ARID1A sequence can promote the progression of lung adenocarcinoma.
  • the research object of the present invention is KrasLSL-G12D; P53Flox/Flox mouse animal model (KP mouse), which can better simulate the physiological characteristics of human lung cancer.
  • KP mouse P53Flox/Flox mouse animal model
  • the introduction of a gene fragment containing Cre recombinase (SEQ ID NO: 3) through an AAV virus vector can induce mouse lung cells to overexpress the KrasG12D mutant and simultaneously knock out the P53 tumor suppressor gene. This method is well known in the art for establishing a lung adenocarcinoma model.
  • the ARID1A conditional knockout mouse system (KrasLSL-G12D; P53Flox/Flox; ARID1A Flox/Flox, KPA) was constructed.
  • mouse lung cells can be induced to overexpress the KrasG12D mutant and simultaneously knock out the P53/ARID1A tumor suppressor gene.
  • Cre recombinase expression mouse lung cells can be induced to overexpress the KrasG12D mutant and simultaneously knock out the P53/ARID1A tumor suppressor gene. This embodiment can well study the function of the ARID1A gene in lung adenocarcinoma.
  • the present invention suggests that the loss of ARID1A gene function can significantly promote the proliferation and invasion ability of lung adenocarcinoma cells, and significantly reduce the survival period of mice.
  • ARID1A gene deletion promotes disease progression mechanism
  • ARID1A gene deletion promotes the progression of lung adenocarcinoma
  • ARID1A inactivating mutations cause chromatin remodeling in tumor cells and change the open state of chromatin;
  • Chromatin opening includes enhanced opening of promoter regions of genes related to glycolysis pathway, including but not limited to Pgk1, Pgam1 and Pkm2.
  • ARID1A promotes the key gene HIF-1 ⁇ of the hypoxia signaling pathway to more significantly bind to the promoter regions of genes such as Pgk1, Pgam1 and Pkm2, and the combination can significantly promote the expression level of the genes.
  • reducing the level of glycolysis can inhibit the progression of ARID1A mutant lung adenocarcinoma.
  • reducing the level of glycolysis can be implemented by small molecule inhibitors, such as 2-DG drugs well known in the art.
  • reducing the level of glycolysis can be achieved by traditional technical means, such as siRNA, shRNA, antibodies, etc., to inhibit the expression of Pgk1, Pgam1 and Pkm2 genes.
  • reducing the level of glycolysis can be achieved by gene editing, such as CRISPR/Cas related technology to inhibit the expression of Pgk1, Pgam1 and Pkm2 genes.
  • the method of reducing the level of glycolysis as described above can be used for the preparation of drugs for the treatment of lung cancer.
  • the drug can be a single interference method or any combination of the above methods, or a combination of any method and well-known clinical drugs.
  • the form of the drug for treating lung cancer is not particularly limited, and can be in various forms such as solid, liquid, gel, semi-fluid, and aerosol.
  • the drugs for treating lung cancer are mainly targeted at mammals, such as rodents, primates and the like.
  • the drug can inhibit the proliferation rate of ARID1A-deficient non-adenocarcinoma cells, change the cell cycle distribution, and the like.
  • One or more small molecular compounds of Bromodomain and extra terminal protein (BET) inhibitor (BETi) described in the present invention can effectively inhibit the proliferation of ARID1A mutant lung cancer cells, improve the survival cycle, and provide a novel method for inhibiting the progression of ARID1A mutant lung cancer cells. Methods.
  • BETi small molecule compounds include, but are not limited to, JQ1, BET762, OXT015, BET726, and BET151.
  • ARID1A-deficient lung adenocarcinoma cells were more sensitive to JQ1 and BET762.
  • Reported studies have shown that molecules such as JQ1 are also inhibitory to ARID1A mutant ovarian cancer, and the content of the present invention supports and expands the intervention effect of BETi on ARID1A-deficient cancer tissue.
  • the research related to the present invention is completed based on KP and KPA mouse model animals, and also includes organoids constructed based on mouse cells, xenograft tumor models, etc.
  • the present invention suggests that BETi has a strong inhibitory effect on the activity, proliferation ability, and tumor burden formed in vivo of ARID1A-deficient lung cancer cells.
  • An effective amount of a BETi inhibitor and an effective amount of at least one other drug for treating lung cancer can be administered simultaneously or sequentially.
  • the gene BETi is the therapeutic target of ARID1A-deficient lung cancer discovered for the first time in the present invention. When used in combination with other lung cancer therapeutic drugs other than this inhibitor, it can at least have the effect of adding curative effect and further enhance the therapeutic effect on lung cancer.
  • lung cancer treatment drugs include but are not limited to: antibody drugs, chemical drugs or targeted drugs, etc.
  • the BETi small molecule can inhibit the proliferation rate of ARID1A-deficient non-adenocarcinoma cells, change the cell cycle distribution, and the like.
  • Lung cancer occurs in the bronchial mucosal epithelium, also known as bronchial lung cancer, and generally refers to cancer of the lung parenchyma. Lung cancer can grow into the bronchial cavity and/or adjacent lung tissue, and can spread through lymphatic hematogenous or transbronchial metastasis.
  • Lung adenocarcinoma is a type of lung cancer and belongs to non-small cell carcinoma. Unlike squamous cell lung cancer, lung adenocarcinoma is more likely to occur in women and non-smokers. Originates from the bronchial mucosal epithelium, and a few originate from the mucous glands of the large bronchi. The incidence rate is lower than squamous cell carcinoma and undifferentiated carcinoma, the age of onset is younger, and women are relatively more common. Most adenocarcinomas originate from the smaller bronchi and are peripheral lung cancers.
  • Non-small-cell lung cancer accounts for about 80% of all lung cancers, including squamous cell carcinoma (squamous cell carcinoma), adenocarcinoma, large cell carcinoma, and its cancer cells grow and divide more slowly than small cell carcinoma , the diffusion transfer is relatively late. About 75% of patients with non-small cell lung cancer are found in the middle and advanced stages, and the 5-year survival rate is very low.
  • Chromatin remodeling is to adjust the phase of nucleosomes, neutralize the positive charge of basic amino acid residues (lysine K, arginine R, histidine H, etc.) in histone tails, and weaken the nucleosome
  • basic amino acid residues lysine K, arginine R, histidine H, etc.
  • the combination of basic amino acids in the body and DNA reduces the aggregation between adjacent nucleosomes, allowing the nucleosomes to slide and expose elements that were originally shielded, or the dynamic change process that exposes the elements on the surface of the nucleosomes instantaneously.
  • Chromatin remodeling is the main regulatory mode of epigenetic control of gene expression, including: ATP-dependent physical modification of chromatin and covalent chemical modification of chromatin.
  • ATP-dependent physical modification of chromatin that is, ATP hydrolysis, provides energy for nucleosomes to slide along DNA, or nucleosomes to dissociate and reassemble. Since RNA polymerase II is always accompanied by nucleosomes during elongation, and these nucleosomes are in a state of dynamic balance between partial dissociation and partial assembly, this chromatin physical remodeling complex is also important for transcription elongation .
  • remodelers can be divided into at least five categories: SWI/SNF family complex, ISWI family complex, CHD family complex, INO80 family complex, and SWR1.
  • SWI/SNF remodelers mainly disrupt the order of nucleosomes.
  • INO80 and SWI/SNF family complexes are involved in DNA double-strand break (DSB) repair and nucleotide excision repair (NER).
  • DSB DNA double-strand break
  • NER nucleotide excision repair
  • Bromodomain is a common motif, about 110aa, formed by 4 ⁇ -helices connected by variable-length loop regions A hydrophobic pocket can recognize acetylated lysine residues; Chomodomain (CHD) often appears at the N-terminus in two tandem ways, which can bind methylated lysine residues.
  • the glycolysis pathway also known as the EMP pathway, is a series of reactions that degrade glucose and glycogen into pyruvate and is accompanied by the generation of ATP. It is a common glucose degradation pathway in all biological organisms.
  • the glycolytic pathway can be carried out under both anaerobic and aerobic conditions, and is a common metabolic pathway for aerobic or anaerobic decomposition of glucose.
  • Tumor cells are in uncontrolled division and proliferation, and have a particularly strong demand for energy. However, the process of energy generation in tumor cells does not mainly depend on the classical mitochondrial oxidative phosphorylation. On the contrary, cancer cells and other cells that are constantly proliferating, even in the case of sufficient oxygen, often choose the pathway of glycolysis to obtain the energy they need, which is the famous "Warburg Effect".
  • Phosphoglycerate kinase 1 (Phosphoglycerate kinase 1, PGK1) is a key enzyme in the glycolysis process, catalyzing 1,3-bisphosphoglycerate to 3-phosphoglycerate, and at the same time generating ATP, so it plays a role in cellular energy metabolism perform an important function.
  • the severity of liver cancer patients is positively correlated with the expression of PGK1 protein. After knocking down the Pgk1 gene, the glycolytic ability of the liver cancer cell line decreased, the production capacity decreased, the cell proliferation was inhibited, and the tumorigenic ability was weakened.
  • Phosphoglycerate mutase 1 is one of the important functional enzymes in the glycolysis pathway, which catalyzes the conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG). Promotes glucose metabolism and energy production. It affects other metabolic pathways by regulating the transformation balance of 3-PG and 2-PG, participates in the synthesis of intracellular biomacromolecules and maintains redox homeostasis, and promotes the proliferation and metastasis of tumor cells.
  • PGAM1 is generally highly expressed in a variety of malignant tumors, including non-small cell lung cancer, and is positively correlated with poor prognosis.
  • PKM2 M2-type pyruvate kinase M2 isozyme
  • PKM2 is the key enzyme in the last step in the aerobic glycolysis process of tumor cells. It decomposes phosphoenolpyruvate (PEP) into pyruvate, so that various Cancer cells gain energy. Studies have shown that PKM2 not only plays an important role in tumor cell metabolism, but also is an important signaling molecule in tumor cell proliferation, transformation and prognosis.
  • p53/Tp53 is a tumor suppressor gene, and mutations of this gene occur in more than 50% of all malignant tumors.
  • the protein encoded by this gene is a transcription factor that controls initiation of the cell cycle. Many signals about cell health are sent to the p53 protein. Whether to start cell division is determined by this protein. If the cell is damaged and cannot be repaired, the p53 protein will participate in the initiation process, causing the cell to die in apoptosis. Cells deficient in p53 lack this control and continue to divide even under unfavorable conditions. Like all other tumor suppressors, the p53 gene normally slows or monitors cell division.
  • the p53 gene After the p53 gene is mutated, due to the change of its spatial conformation, if it loses its regulatory effect on cell growth, apoptosis and DNA repair, the p53 gene will change from a tumor suppressor gene to an oncogene.
  • Companion diagnostics are a class of in vitro diagnostics that provide information essential for the safe and effective use of the corresponding therapeutic product (drug or biological).
  • companion diagnostic testing is essential to: (1) identify patients who are likely to benefit from the therapeutic product; Patients at risk of serious adverse reactions; (3) Monitor the response of therapeutic products to treatment to adjust treatment (such as treatment plan, dose, drug withdrawal) to better achieve safety and efficacy, etc.
  • Companion diagnostics include reagents for specific tests, quality control samples, and supporting instruments, etc., and are a complete set of testing systems.
  • the present invention describes the role of ARID1A gene deletion or functional inactivation in promoting the progression of lung cancer, and proposes a regulatory pathway that relies on hypoxia and glycolysis signaling pathways.
  • the present invention proposes a targeted treatment method for ARID1A inactivated lung cancer.
  • These methods include, but are not limited to, selected from small molecular compound antibodies, siRNA, shRNA, or CRISPR/Cas editing tool-mediated inhibitory complexes, etc.
  • the invention provides a new effective treatment means for the treatment of lung cancer.
  • Example 2 ARID1A gene deletion promotes the occurrence of KrasG12D-driven lung adenocarcinoma in vivo
  • KrasLSL-G12 C57BL/6-Krasem4(LSL-G12D)Smoc, NM-KI-190003 and Tp53fl/fl (C57BL/6-Tp53tm2Smoc, NM-CKO-18005, denote as Tp53flox/flox mice) mouse strain.
  • the ARID1A (027717-STOCK Arid1atm1.1Zhwa/J, denote as ARID1Aflox/flox mice) mouse strain was obtained from the Jackson Laboratory.
  • the surface tumor area and the number of visible tumor nodules in the KP, KPAfl/+ and KPA fl/f groups were compared at 14 weeks: the tumor number and tumor area of the KPAfl/fl mice were significantly higher than those in the KP or KPAfl/+ group Compared with KP and KPAfl/+ mice, tumor number and tumor area were similar.
  • the above shows that the complete deletion of ARID1A can greatly promote the tumorigenesis of mouse lungs under the background of KrasG12D overexpression and Tp53 deletion, while heterozygous mutation of ARID1A does not affect the tumorigenesis of Kras-driven tumor models (as shown in Figure 3E-F) .
  • Example 3 The pathogenic mechanism of ARID1A deletion promoting the occurrence and development of lung adenocarcinoma in vivo-affecting the level of glycolysis
  • RNA-sequencing identified 2931 genes that were significantly differentially expressed after ARID1A deletion, and these genes were involved in several pathways related to tumor progression, such as glycolysis, hypoxia, EMT, mTORC signaling, and Myc targets.
  • the results also showed that hypoxia and glycolytic signaling were significantly upregulated in KPAfl/fl lung cancer (as shown in Figure 4A-D).
  • the heat map analysis of the key genes in the glycolysis and hypoxia pathways of KP and KPAfl/fl lung cancer tissues showed that Pgam1, Pkm and Pgk1, which encode glycolysis-promoting enzymes, and Hif-1 ⁇ , a key factor in the hypoxia pathway, were significantly affected in KPAfl/fl
  • the expression was upregulated in the tumor (Figure 4E).
  • ARID1 deletion promotes the occurrence and development of lung adenocarcinoma in vivo, and its mechanism is to enhance glycolysis by upregulating Pgam1, Pkm and Pgk1.
  • Example 4 The pathogenic mechanism of ARID1A deletion promoting the occurrence and development of lung adenocarcinoma in vivo-remodeling chromatin state
  • the content of the present invention is also based on the lung cancer model induced by KP and KPAfl/fl.
  • ARID1A deletion (KPAfl/fl group) can significantly promote the binding of Hif-1 ⁇ to the promoter regions of Pgam1 (Figure 5H), Pkm ( Figure 5I) and Pgk1 ( Figure 5J).
  • ARID1A can promote the opening of chromatin in lung cancer cells, making it easier for Hif-1 ⁇ to bind to the promoter regions of Pgam1, Pkm and Pgk1 genes, increase their expression, and form a higher level of glycolysis in tumor cells. lead to increased tumor cell progression.
  • the invention provides the pathogenic mechanism that ARID1A deletion promotes the occurrence and development of lung adenocarcinoma in vivo, and provides a series of new targets for the treatment of ARID1A deletion lung cancer.
  • Example 5 Glycolysis inhibitors can interfere with the progression of ARID1A-deficient lung cancer
  • Example 4 of the present invention describes the biological mechanism that ARID1A deletion promotes the progression of lung cancer by increasing the level of glycolysis.
  • one or more strategies are used to intervene in the level of glycolysis, and it is observed whether this method can inhibit the progression of ARID1A-deficient lung cancer.
  • the present invention uses the clinical drug 2-DG to inhibit the glucose metabolism level of tumor cells, including the level of glycolysis; in another embodiment, the present invention uses lentivirus-mediated CRISPR/Cas9 interference
  • the expression of Pgam1 gene (pSECC-sgPgam1 group), the nucleotide sequence of described sgRNA is as shown in SEQ ID NO:4 and SEQ ID NO:5;
  • the present invention adopts lentivirus mediation The CRISPR/Cas9 interference Pkm gene expression (pSECC-sgPkm group), the nucleotide sequence of the shRNA is shown in SEQ ID NO:6 and SEQ ID NO:7.
  • the 4-week-old KP and KPAfl/fl mouse system was established; secondly, the mice were induced with AAV9-CMV-Cre virus.
  • lentivirus-mediated Cas9 and sgRNA were given for interference, targeting the key genes of glycolysis Pgam1 or Pkm, and 2-DG drug treatment was used as another experimental group.
  • Set sgTom as a negative control group, which does not target any endogenous genes.
  • the experimental treatment scheme is shown in Figure 6A.
  • multiple detection methods were used to evaluate the intervention effect of each treatment group.
  • Ovarian cancer cells are lethal in the presence of both BRD2 suppression and ARID1A mutations.
  • BRD2 inhibition can reduce the expression level of SWI/SWF complex, and BETi small molecule can inhibit BRD2 family protein BET. Therefore, BETi small molecule can specifically inhibit ARID1A-deficient ovarian cancer.
  • the present invention conducts research on BETi small molecules inhibiting ARID1A-deficient lung cancer based on organoid models and in vivo animal models.
  • lung tumor cells from KP and KPAfl/fl mice were cultured and expanded in vitro organoids, and drug sensitivity experiments of five widely used BET inhibitors were performed on tumor-derived organoids (as shown in Figure 7A).
  • drug sensitivity experiments of five widely used BET inhibitors were performed on tumor-derived organoids (as shown in Figure 7A).
  • To test the effect of drugs on the formation of tumor-derived organoids we seeded tumor-derived organoids into media containing different concentrations of JQ1, Bet762, OTX015, Bet726 and Bet151.
  • tumor xenografts were performed in mice, KP and KPAfl/fl tumor organoids were xenografted into C57 mice subcutaneously, and the effects of 2-DG, JQ1 and Bet762 on the growth of lung cancer in vivo were tested (Fig. 7D).
  • the tumor volume was measured every 3 days during the experiment, and by comparing the tumor volume and weight, it was confirmed that the tumor with ARID1A knockout was more sensitive to the treatment of JQ1 (Fig. 7E, 7F).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pulmonology (AREA)
  • Plant Pathology (AREA)

Abstract

本发明提供了非小细胞肺癌靶点ARID1A及其抑制剂在制备肺癌治疗药物中的用途。具体地,本发明提供了糖酵解抑制剂的用途,它被用于制备一组合物或制剂,所述的组合物或制剂用于:(a)预防和/或治疗肺癌,所述的肺癌是ARID1A阴性的肺癌;和/或(b)抑制肺癌细胞,所述的肺癌细胞是ARID1A阴性的肺癌细胞。本发明为肺癌治疗提供了新的有效治疗手段。

Description

非小细胞肺癌靶点ARID1A及其抑制剂在制备肺癌治疗药物中的用途 技术领域
本发明涉及生物医药技术领域,具体地涉及非小细胞肺癌靶点ARID1A及其抑制剂在制备肺癌治疗药物中的用途。
背景技术
肺癌的发病率和死亡率在我国及全球范围内均居恶性肿瘤之首位,对人们的生命和健康造成极大的威胁,但肺癌的发病机制至今尚未完全阐明,严重阻碍了肺癌防治的进展。
通过对肺癌发生、发展中的分子事件的深入研究,寻找新的诊断标志物及其干预靶点,对于提高肺癌的总体生存率显得尤为重要。
癌基因激活/抑癌基因失活是癌症发生的根本原因,其一方面受基因组变异的调控,另一方面受表观遗传修饰的影响。染色质重塑是表观遗传修饰的重要方式。ARID1A是染色质重塑复合物SWI/SNF的一种重要亚基,参与调控多种癌症相关基因的表达,进而在多种恶性肿瘤的发生、发展中扮演重要角色,但其在非小细胞肺癌发病机制中的作用至今尚未见到报道。
鉴于肺癌的发病机理多种多样,因此为了更有效地防治肺癌,本领域迫切需要开发新的肺癌治疗靶点,以及相应的针对新靶点的治疗方法。
发明内容
本发明的目的就是提供新的肺癌治疗靶点,以及相应的针对新靶点的治疗方法。
在本发明的第一方面,提供了一种糖酵解抑制剂的用途,用于制备一组合物或制剂,所述的组合物或制剂用于:(a)预防和/或治疗肺癌,所述的肺癌是ARID1A阴性的肺癌;和/或(b)抑制肺癌细胞,所述的肺癌细胞是ARID1A阴性的肺癌细胞。
在另一优选例中,所述的肺癌为哺乳动物(包括人和非人哺乳动物)的肺癌。
在另一优选例中,所述的ARID1A阴性指,与正常对照细胞,ARID1A表达和/或活性显著下降。
在另一优选例中,所述的显著下降指,在肺癌细胞或组织中ARID1A表达量A1 与正常肺细胞或组织中的ARID1A表达量E0之比(即E1/E0)≤1/2,较佳地≤1/3,更佳地≤1/5;和/或肺癌细胞或组织中ARID1A的活性A1与正常肺细胞或组织中的ARID1A活性A0之比(即A1/A0)≤1/2,较佳地≤1/3,更佳地≤1/5。
在另一优选例中,所述的肺癌或肺癌细胞中,BAF250或其亚基的表达是下调的,或其活性显著降低
在另一优选例中,所述的肺癌或肺癌细胞中,SWI/SNF复合物的水平是下调的或其活性显著降低。
在另一优选例中,所述的肺癌为ARID1A缺失型肺癌。
在另一优选例中,所述的肺癌选自下组:腺癌、鳞癌、或其组合。
在另一优选例中,所述的肺癌选自下组:小细胞肺癌、非小细胞肺癌。
在另一优选例中,所述的糖酵解抑制剂选自下组:
(Z1)Hif-1α抑制剂;
(Z2)Pgk1抑制剂;
(Z3)Pgam1抑制剂;
(Z4)Pkm2抑制剂;
(Z5)上述Z1~Z4的任意组合。
在另一优选例中,所述的糖酵解抑制剂抑制Pgk1、Pgam1和/或Pkm2。
在另一优选例中,所述的糖酵解抑制剂选自下组:小分子化合物、抗体、反义核酸、基因编辑药物、或其组合。
在另一优选例中,所述抑制剂选自小分子化合物抗体、siRNA、shRNA、或CRISPR/Cas编辑工具介导的抑制复合物。
在另一优选例中,所述的抑制剂包括抑制Pgk1的反义核酸、抑制Pgam1的反义核酸、和/或抑制Pkm2的反义核酸。
在另一优选例中,所述抑制Pgam1的抑制剂如SEQ ID NO:4所示的序列:GGATTGCTCTCTTCTGCACAG;在另一优选例中,所述抑制Pgam1的抑制剂如SEQ ID NO:5所示的序列:TTGACCAGATGTGGTTGCCAG。
在另一优选例中,所述抑制Pkm2的抑制剂如SEQ ID NO:6所示的序列:GGGGCAGAGTCAATGTCCAGG;在另一优选例中,所述抑制Pgam1的抑制剂如SEQ ID NO:7所示的序列:CCGAAGCCACACAGTGAAGCA。
在另一优选例中,所述的糖酵解抑制剂选自下组:BETi小分子化合物、2-DG小分子(2-脱氧-D-葡萄糖,图1a)、或其组合。
在另一优选例中,所述的BETi小分子化合物选自下组:JQ1(图1b)、BET762 (Molibresib,图1c)、OXT015(Birabresib,图1d)、BET726(图1e)、BET151(图1f),或其组合。
在另一优选例中,所述的基因编辑药物用于抑制或消除Pgk1、Pgam1和/或Pkm2基因的表达。
在另一优选例中,所述的治疗包括:抑制肺癌细胞的增殖速率、改变肺癌细胞周期分布、促进肺癌细胞凋亡,抑制肺癌组织生长、或其组合。
在本发明的第二方面,本发明还提供了一种ARID1A基因、mRNA、cDNA、蛋白、或其检测试剂的用途,用于制备一试剂盒,所述试剂盒用于选自下组一种或多种用途:
(i)用于评估肺癌患者是否适合用糖酵解抑制剂进行治疗;和/或
(ii)用于评估肺癌患者用糖酵解抑制剂进行治疗的预后。
在另一优选例中,所述的试剂盒还用于
(iii)检测患肺癌或患肺癌风险;
(iv)对肺癌患者的预后评估。
在另一优选例中,所述的试剂盒用于对肺癌患者基于ARID1A表达和/或活性进行分型。
在另一优选例中,所述检测试剂包括:
(a)ARID1A的特异性抗体、ARID1A的特异性结合分子;和/或
(b)特异性扩增ARID1A mRNA或ARID1A cDNA的引物或引物对、探针或芯片。
在本发明的第三方面,本发明还提供了一种产品组合,所述产品包括:
(a)检测试剂或含所述检测试剂的试剂盒,所述检测试剂为检测ARID1A基因、mRNA、cDNA、蛋白、或其组合的检测试剂;和
(b)药物组合物,所述的药组合物含有糖酵解抑制剂作为活性成分和药学上可接受的载体。
在另一优选例中,所述的试剂盒含有一容器,所述容器中含有检测ARID1A基因、mRNA、cDNA、蛋白、或其组合的检测试剂;以及标签或说明书,所述标签或说明书注明所述试剂盒用于评估肺癌患者是否适合用糖酵解抑制剂进行治疗。
在另一优选例中,所述试剂盒还含有ARID1A基因、mRNA、cDNA、和/或蛋白作为对照品或质控品。
在本发明的第四方面,本发明还提供了一种如本发明第三方面所述的产品组合的用途,用于制备治疗ARID1A阴性的肺癌的医疗产品。
在本发明的第五方面,本发明还提供了一种治疗肺癌的方法,包括步骤:
(a)对肺癌患者基于ARID1A表达和/或活性进行分型,从而将所述患者划分为ARID1A阳性的肺癌患者和ARID1A阴性的肺癌患者;和
(b)对所述的ARID1A阴性的肺癌患者施用糖酵解抑制剂。
在另一优选例中,在步骤(b)中,还包括:在治疗过程中,检测ARID1A表达和/或活性。
在另一优选例中,所述的糖酵解抑制剂被施用于人。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示干预糖代谢水平及糖酵解关键基因的小分子化合物结构图。
图2显示ARID1A基因在肺癌患者队列中存在-10%的突变频率,突变以错义突变以及截短突变为主。
图3显示ARID1A基因失活能够显著促进了KrasG12D过表达及Tp53缺失背景下小鼠肺组织成瘤能力。
图4显示ARID1A基因变异导致肿瘤细胞糖酵解信号通路明细激活。糖酵解关键基因Pgam1、Pkm以及Pgk1的表达显著上调。
图5显示ARID1A基因变异导致染色质状态重塑并使得糖酵解关联基因Pgam1、Pkm以及Pgk1的启动子区域开放。其中,乏氧通路关键基因Hif-1α能够在ARID1A缺失情况下更加紧密结合到糖酵解关键基因启动子开放区域,促进其表达水平。
图6提示通过直接抑制肿瘤细胞糖酵解水平或下调糖酵解关键基因的表达水平,能够抑制ARID1A缺失型肺癌的进展。
图7提示通过BETi小分子抑制SWI/SNF复合物能够降低ARID1A缺失型肺癌的进展,其中JQ1的抑制作用比较突出。
具体实施方式
本发明经过广泛而深入的研究发现,ARID1A可作为抑癌基因调控肿瘤,其突变能够促进肿瘤细胞的糖酵解水平,为ARID1A缺失型肺癌治疗提供新的靶点。一种或多种抑制剂可抑制肺癌细胞的增殖速率、改变肺癌细胞周期分布、促进肺癌细胞凋亡,抑制肺癌组织生长,从而治疗肺癌,为肺癌治疗开辟新的方向。
术语
为了可以更容易地理解本公开,首先定义某些术语。如本申请中所使用的,除非本文另有明确规定,否则以下术语中的每一个应具有下面给出的含义。
术语“约”可以是指在本领域普通技术人员确定的特定值或组成的可接受误差范围内的值或组成,其将部分地取决于如何测量或测定值或组成。
术语“给予”是指使用本领域技术人员已知的各种方法和递送系统中的任一种将本发明的产品物理引入受试者,包括静脉内、瘤内、肌内、皮下、腹膜内、脊髓或其它肠胃外给药途径,例如通过注射或输注。
术语“p53”与“Tp53”可互换使用,是一种肿瘤抑制基因,由这种基因编码的蛋白质是一种转录因子,其控制着细胞周期的启动。p53基因在正常情况下对细胞分裂起着减慢或监视的作用。
ARID1A基因
具体地,本发明所述人源ARID1A其氨基酸序列如SEQ ID NO:1所述,鼠源ARID1A其氨基酸序列如SEQ ID NO:2所述。失活指编码ARID1A蛋白的核酸发生变异,导致其编码的氨基酸序列发生序列及结构改变,引起其生物学功能的缺失。
在另一优选例中,所述的核酸变异指碱基序列发生替换;
在另一优选例中,所述的核酸变异指碱基缺失;
在另一优选例中,所述的核酸变异指碱基序列插入。
在另一优选例中,所述的核酸变异指碱基之间发生融合;
在另一优选例中,所述核酸变异指碱基的异常扩增。所述核酸变异最终导致错义突变或无义突变形成。
特别地,ARID1A在肺癌中的变异未发现高频热点突变,其变异位点覆盖整个编码区域。
在另一优选例中,突变位点存在于其DNA结合结构域;
在另一优选例中,其突变位点位于SWI/SNF复合物BAF250亚基即BAF250a。或其它未定义结构区域。
特别地,经过本发明详细的生物数据分析,ARID1A在非小细胞肺癌中的突变频率大概-11%,属于显著高频突变基因,存在重大的研究价值。
具体地,ARID1A序列的缺失突变,能够促进肺腺癌病程的进展。
首先,本发明的研究对象是KrasLSL-G12D;P53Flox/Flox小鼠动物模型(KP小鼠),能较好地模拟人体肺癌生理特征。通过一种AAV病毒载体导入含有Cre重组酶的基因片段(SEQ ID NO:3),能够诱导小鼠肺细胞过表达KrasG12D突变体以及同时敲除P53抑癌基因。此方法为本领域内熟知的一种肺腺癌模型的建立方法。
其次,在KP小鼠模型的基础上,构建ARID1A条件性敲除小鼠体系(KrasLSL-G12D;P53Flox/Flox;ARID1A Flox/Flox,KPA)。在Cre重组酶表达情况下,能够诱导小鼠肺细胞过表达KrasG12D突变体以及同时敲除P53/ARID1A抑癌基因,此实施方案能够很好研究ARID1A基因在肺腺癌中的功能。
最后,本发明提示,ARID1A基因功能的缺失,能够显著促进肺腺癌细胞的增殖、侵袭能力,并显著降低小鼠的生存期。
ARID1A基因缺失促进疾病进展机理
ARID1A基因缺失促进肺腺癌疾病进展的机制,其具体描述如下:
1)ARID1A失活突变,引起肿瘤细胞染色质重塑,改变染色质开放状态;
2)染色质开放包含糖酵解通路相关基因启动子区域开放性增强,相关基因包括但不限于Pgk1、Pgam1以及Pkm2。
3)ARID1A失活突变促使乏氧信号通路关键基因HIF-1α更显著结合与Pgk1、Pgam1以及Pkm2等基因的启动子区域,所述结合能够显著促进所述基因的表达水平。
特别地,糖酵解水平提高能够促进肿瘤细胞进展,与本领域熟知的理论知识接近。在本发明验证过程中,广泛采用了转录组测序、CHIP-SEQ测序、RT-PCR验证以及生物信息学分析等手段进行证实。本发明所采集的数据,基于大量临床样本及相关模式动物研究而来。
在另一优选例中,降低糖酵解水平能够抑制ARID1A突变型肺腺癌的进展。
在另一优选例中,降低糖酵解水平可以通过小分子抑制剂实施,如本领域内熟知的2-DG药物。
在另一优选例中,降低糖酵解水平可以通过传统的技术手段,如siRNA、shRNA、抗体等抑制Pgk1、Pgam1以及Pkm2基因的表达。
在另一优选例中,降低糖酵解水平可以通过基因编辑的方式,如CRISPR/Cas 相关技术抑制Pgk1、Pgam1以及Pkm2基因的表达。
特别地,如上所述降低糖酵解水平的方法可以用于制备肺癌治疗药物。
所述药物可以是单一干扰方法或上述方法的任意组合,亦可以是任一方法与熟知的临床药物的一种组合用药。
所述肺癌治疗药物的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述肺癌治疗药物主要针对的对象为哺乳动物,如啮齿类动物、灵长类动物等。
在另一优选例中,所述药物能够抑制ARID1A缺失型非腺癌的细胞增殖速率、改变细胞周期分布等。
基因BETi
本发明所述一种或多种Bromodomain and extra terminal protein(BET)inhibitor(BETi)小分子化合物,能够有效抑制ARID1A突变型肺癌细胞增殖,提高生存周期,提供了一种新型抑制ARID1A突变型肺癌进展的方法。
BETi小分子化合物包含但不限于JQ1、BET762、OXT015、BET726以及BET151等。其中,ARID1A缺失型肺腺癌细胞对JQ1以及BET762更敏感。报道研究显示,JQ1等分子对ARID1A突变型卵巢癌同样具有抑制性,本发明内容支持并拓展了BETi对ARID1A缺失型癌组织的干预作用。特别地,本发明相关研究是基于KP及KPA小鼠模式动物完成,亦包含基于小鼠细胞构建的类器官,移植瘤模型等。
在另一优选例中,本发明提示BETi对ARID1A缺失的肺癌细胞活性、增殖能力、体内形成的肿瘤负荷均有很强的抑制性。
可以同步地或顺序地给予有效量的BETi抑制剂和至少一种有效量的其他肺癌治疗药物。
基因BETi为本发明首次发现的ARID1A缺失型肺癌的治疗靶点,在与该抑制剂以外的其他肺癌治疗药物联合用药中,至少可以起到疗效相加的效果,进一步增强对于肺癌的治疗作用。
其他的肺癌治疗药物包括但不限于:抗体药物、化学药物或靶向型药物等。
在另一优选例中,所述BETi小分子能够抑制ARID1A缺失型非腺癌的细胞增殖速率、改变细胞周期分布等。
肺癌
肺癌(Lung cancer)发生于支气管粘膜上皮,亦称支气管肺癌,一般指肺实质部的癌症,是发病率和死亡率增长最快,对人群健康和生命威胁最大的恶性肿瘤之一。肺癌可向支气管腔内或/和临近的肺组织生长,并可通过淋巴血行或经支气管转移扩散。
肺腺癌(Lung adenocarcinoma)是肺癌的一种,属于非小细胞癌。不同于鳞状细胞肺癌,肺腺癌较容易发生于女性及不抽烟者。起源于支气管粘膜上皮,少数起源于大支气管的粘液腺。发病率比鳞癌和未分化癌低,发病年龄较小,女性相对多见。多数腺癌起源于较小的支气管,为周围型肺癌。
非小细胞肺癌(Non-small-cell carcinoma)约占所有肺癌的80%,包括鳞状细胞癌(鳞癌)、腺癌、大细胞癌,与小细胞癌相比其癌细胞生长分裂较慢,扩散转移相对较晚。非小细胞肺癌约75%的患者发现时已处于中晚期,5年生存率很低。
染色质重塑
染色质重塑(Chromatin remodeling)是通过调整核小体的相位,中和组蛋白尾巴碱性氨基酸残基(赖氨酸K、精氨酸R、组氨酸H等)带正电荷,减弱核小体中碱性氨基酸与DNA的结合,降低相邻核小体间的聚集使核小体滑动暴露本来被遮蔽的元件,或使核小体表面的元件瞬间暴露的动态变化过程。
染色质重塑是基因表达表观遗传水平上控制的主要调控方式,包括:依赖ATP的染色质物理修饰和染色质的共价化学修饰。其中依赖ATP的染色质物理修饰即ATP水解供能使核小体沿DNA滑动,或使核小体解离并重新装配。由于延伸中RNA聚合酶II的周围总是伴有核小体,这些核小体又是会处于部分解离部分装配的动态平衡状态,此染色质物理重塑复合体对于转录延伸也具有重要意义。
依赖ATP染色质物理修饰是通过依赖ATP的染色质重塑复合体作用实现。这些重塑复合体多数是以ATP水解酶为催化中心的多蛋白亚基复合体。根据其中的ATP水解酶的序列和结构不同,重塑子至少可分为五类:SWI/SNF家族复合体、ISWI家族复合体、CHD家族复合体、INO80家族复合体、SWR1。
不同重塑子的染色体物理修饰方式其中SWI/SNF重塑子主要扰乱核小体的秩序。INO80和SWI/SNF家族复合体参与DNA双链断裂(DSB)修复和核苷酸切除修复(NER)。因而在p53介导的对DNA损伤的反应中发挥中心作用。
依赖ATP的染色质重塑复合体中的的多种结构域在核小体识别中发挥作用:Bromodomain是其中常见的基序,约110aa,由4个α-螺旋有可变长度环区连接 形成一个疏水口袋,可以识别乙酰化的赖氨酸残基;Chomodomain(CHD)常以两个串联的方式出现在N端,能结合甲基化的赖氨酸残基。
糖酵解通路
糖酵解途径又称EMP途径,是将葡萄糖和糖原降解为丙酮酸并伴随着ATP生成的一系列反应,是一切生物有机体中普遍存在的葡萄糖降解的途径。糖酵解途径在无氧及有氧条件下都能进行,是葡萄糖进行有氧或者无氧分解的共同代谢途径。肿瘤细胞处于失控的分裂增殖中,对能量的需求尤为旺盛。但肿瘤细胞产生能量的过程并不主要依赖于经典的线粒体氧化磷酸化。相反,癌症细胞以及其它的一些处于不断增殖的细胞,即使是在氧气充足的情况下也往往选择糖酵解的途径来获得它们所需要的能量,这就是著名的“Warburg Effect”。
磷酸甘油酸激酶1(Phosphoglycerate kinase 1,PGK1)是糖酵解过程中的一个关键酶,催化1,3-二磷酸甘油酸生成3-磷酸甘油酸,并同时生成ATP,因而在细胞能量代谢中发挥着重要功能。肝癌病人的严重程度与其中PGK1蛋白的表达量正相关。敲减Pgk1基因后,肝癌细胞株的糖酵解能力下降,产能减少,细胞的增殖受到抑制,成瘤能力减弱。
磷酸甘油酸变位酶1(Phosphoglycerate mutase 1,PGAM1)是糖酵解通路的重要功能酶之一,催化3-磷酸甘油酸(3-PG)转化生成2-磷酸甘油酸(2-PG),促进葡萄糖代谢和能量生成。它通过调节3-PG与2-PG的转化平衡来影响其他代谢通路,参与细胞内生物大分子合成和维持氧化还原稳态,对肿瘤细胞的增殖及转移具有促进作用。PGAM1在多种恶性肿瘤包括非小细胞肺癌中普遍高表达,且与不良预后呈正相关。
M2型丙酮酸激酶(Pyruvate kinase M2 isozyme,PKM2)是肿瘤细胞有氧糖酵解过程中最后一步的关键酶,是它将磷酸烯醇式丙酮酸(PEP)分解为丙酮酸,从而使各种癌细胞获取能量。研究表明,PKM2不仅在肿瘤细胞代谢中发挥重要作用,而且在肿瘤细胞的增殖、转化以及预后中也是重要的信号分子。
p53/Tp53
p53/Tp53是一种肿瘤抑制基因,在所有恶性肿瘤中,50%以上会出现该基因的突变。由这种基因编码的蛋白质是一种转录因子,其控制着细胞周期的启动。许多有关细胞健康的信号向p53蛋白发送。关于是否开始细胞分裂就由这个蛋白决定。如果这个细胞受损,又不能得到修复,则p53蛋白将参与启动过程,使这 个细胞在细胞凋亡中死去。有p53缺陷的细胞没有这种控制,甚至在不利条件下继续分裂。像所有其它肿瘤抑制因子一样,p53基因在正常情况下对细胞分裂起着减慢或监视的作用。p53基因突变后,由于其空间构象发生改变,若因此失去了对细胞生长、凋亡和DNA修复的调控作用,则p53基因由抑癌基因转变为癌基因。
伴随诊断
伴随诊断是体外诊断中的一类,它提供的信息对于安全有效地使用相应的治疗产品(药品或生物制品)至关重要。为了安全有效地使用相应的治疗产品,伴随诊断检测是必不可少的,其目的包括:(1)识别很可能从治疗产品中获益的患者;(2)识别使用该治疗产品进行治疗可能增加严重不良反应风险的患者;(3)监测治疗产品对治疗的反应,以调整治疗(如治疗计划、剂量、停药),更好的实现安全性和有效性等。伴随诊断包括用于特定检测的试剂、质控样本和配套仪器等,是一个整体成套的检测系统。
本发明的主要优点
(a)本发明阐述了ARID1A基因缺失或功能失活在促进肺癌进展中的作用,并提出了依赖乏氧、糖酵解信号通路的调控路径。
(b)本发明基于乏氧、糖酵解信号通路关键基因,提出了针对ARID1A失活型肺癌的靶向治疗方法。这些方法包含但不限于选自小分子化合物抗体、siRNA、shRNA、或CRISPR/Cas编辑工具介导的抑制复合物等。本发明为肺癌治疗提供了新的有效治疗手段。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
氨基酸序列与核苷酸序列
Figure PCTCN2022128046-appb-000001
Figure PCTCN2022128046-appb-000002
Figure PCTCN2022128046-appb-000003
Figure PCTCN2022128046-appb-000004
实施例1 ARID1A基因在肺癌患者中的突变情况
通过cBioPortal工具分析了来自5个临床队列(包括2,014名肺癌患者)的突变数据;总体而言,2014名患者中有140名(7%)的ARID1A基因发生了突变,突变频率从-3.5%到-10%不等,结果如图2A所示。在分析数据集后,我们在140名患者中发现了160个突变,其中包括67个错义突变和83个其他潜在的失活突变,如图2B所示代表ARID1A基因在临床队列中的突变情况,绿点表示错义突变;黑点表示截短突变;这表明ARID1A的突变在人类肺癌中属于高频变异,提示该突变具有重要的临床研究价值。
实施例2 ARID1A基因缺失促进了体内KrasG12D驱动的肺腺癌的发生
从上海南方模式生物科技股份有限公司获得KrasLSL-G12(C57BL/6-Krasem4(LSL-G12D)Smoc,NM-KI-190003)及Tp53fl/fl(C57BL/6-Tp53tm2Smoc,NM-CKO-18005,denote as Tp53flox/flox mice)小鼠品系。从Jackson Laboratory获得ARID1A(027717-STOCK Arid1atm1.1Zhwa/J,denote as ARID1Aflox/flox mice)小鼠品系。通过互相杂交获得KrasLSL-G12D、Tp53fl/fl(KP);KrasLSL-G12D、Tp53fl/fl、ARID1Afl/+(KPAfl/+)以及KrasLSL-G12D、Tp53fl/fl(KP);KrasLSL-G12D、Tp53fl/fl、ARID1Afl/fl(KPAfl/fl)小鼠模型。将出生后4周的小鼠通过气管内插管递送病毒,使肺部感染能表达Cre重组酶的9型腺相关病毒(AAV9-CMV-Cre)。在10-12周时进行解剖与分析(实验方案如图3A所示)。解剖观察KP小鼠与KPAfl/fl小鼠肺部,提示ARID1A失活显著促进了KrasG12D过表达及Tp53缺失背景下肺组织成瘤能力(如图3B所示)。
在病毒灌肺后14周时,利用microCT监测野生型(WT)、KP、KPAfl/+KPAfl/fl小鼠肺部肿瘤的负荷,并解剖小鼠肺部行HE染色分析。结合MicroCT和HE染色分析结果,可得ARID1A杂合突变并不能诱导肺部肿瘤的发生。然而,ARID1A的完全缺失可以极大地促进了KP小鼠的肿瘤进展(如图3C所示)。
然后将KP和KPAfl/fl小鼠的肺部进行肺肿瘤标志物TTF-1,P63,ARID1A和KI67的免疫组化分析,免疫组化染色证实KPAfl/fl肿瘤中ARID1A蛋白水平降低;同时,细胞核内TTF-1(又称Nkx2.1)阳性,p63阴性,提示KPAfl/fl肿瘤具有明显的肺腺癌特征(如图3D,3G所示)。
将14周时KP,KPAfl/+和KPA fl/fl组小鼠肺部表面肿瘤面积和可见肿瘤结节数量进行比较:KPAfl/fl小鼠的肿瘤数量和肿瘤面积比KP或KPAfl/+组显著增加,而KP和KPAfl/+小鼠比较发现,肿瘤数目和肿瘤面积相似。以上表明ARID1A的完全 缺失可以极大地促进KrasG12D过表达及Tp53缺失背景下小鼠肺部的成瘤,而ARID1A杂合突变并不影响Kras驱动肿瘤模型的成瘤(如图3E-F所示)。根据KP,KPAfl/+和KPAfl/fl组负荷肺肿瘤小鼠的存活时间绘制生存曲线,KPAfl/fl小鼠的总体存活率较低(如图3H),与肺部肿瘤负荷较大的表型一致。
以上实验结果表明,ARID1A的缺失促进了肺肿瘤的发生发展。ARID1A变异的小鼠具有更高恶性肿瘤表型与肿瘤载荷,并且整体存活率受损。
实施例3 ARID1A缺失促进体内肺腺癌发生发展的致病机制-影响糖酵解水平
利用RNA测序鉴定出ARID1A缺失后2931个基因存在显著差异表达,这些基因涉及肿瘤进展相关的几个通路,如糖酵解、缺氧、EMT、mTORC信号和Myc靶点等。结果还表明,缺氧及糖酵解信号在KPAfl/fl肺癌中显著上调(如图4A-D所示)。对KP和KPAfl/fl肺癌组织糖酵解和乏氧途径中的关键基因进行热图分析,可知编码糖酵解促进酶的Pgam1、Pkm和Pgk1以及乏氧通路关键因子Hif-1α在KPAfl/fl肿瘤中表达上调(如图4E)。同时,糖酵解代谢产物乳酸在KPAfl/fl组肿瘤中的浓度也升高(如图4F)。利用q-PCR分析KP(n=9)和KPAfl/fl(n=11)肿瘤中的糖酵解基因表达水平,结果显示KPAfl/fl肿瘤中糖酵解基因的表达显著上调。进一步利用免疫荧光及Western blot显色方法证实,在ARID1A缺失的情况下,肿瘤组织PGAM1、PKM2和PGK1蛋白的表达上调(图4G-J)。乏氧因子Hif-1α的表达水平对ARID1A的缺失不敏感(图4J)。
以上实验结果表明,ARID1缺失促进体内肺腺癌的发生发展,其机制是通过上调Pgam1、Pkm和Pgk1而增强糖酵解。
实施例4 ARID1A缺失促进体内肺腺癌发生发展的致病机制-重塑染色质状态
本发明内容亦基于KP及KPAfl/fl诱导肺癌模型进行。首先,基于CHIP-seq方法分析了ARID1A在KP肿瘤背景下与基因组DNA结合情况,结果发现ARID1A能够与大量基因启动子区域(转录起始位点±3.0kb范围)结合,Pgam1、Pkm以及Pgk1三基因启动子区域也属于ARID1A结合位点(图5A,左)。
其次,采用ATAC-seq方法分析染色体状态,研究结果显示ARID1A缺失(KPAfl/fl组)能够整体上增强染色质开放(图5A,B),而且染色质开放区域大多集中于转录起始位点(图5C,Up指上调的峰,Down指下调的峰);差异结合分析(Diffbind)显示ARID1A缺失(KPAfl/fl组)使Pgam1、Pkm以及Pgk1等基因的转录起始区显著开放(图5D),其开放区与CHIP-seq实验中ARID1A结合位点高度重叠,提示ARID1A缺失促进了肺 癌细胞中Pgam1、Pkm以及Pgk1等基因启动子区域染色质的可触及性。
最后,本研究进一步关联了ARID1A-乏氧-糖酵解在肺癌中的互作。乏氧属于肿瘤典型微环境特征之一,前期转录组测序结果提示ARID1A的缺失能够促进肿瘤乏氧信号通路的激活(图4D,E)。通过分析公共数据库(GSM2257670)分析发现,Hif-1α能够结合到Pgam1、Pkm以及Pgk1三基因启动子区域。
值得注意的是,本发明证实ARID1A缺失(KPAfl/fl组)能够显著促进Hif-1α与Pgam1(图5H)、Pkm(图5I)以及Pgk1(图5J)等基因启动子区域结合。
以上结果提示,ARID1A失活能够促进肺癌细胞染色质开放,使得Hif-1α更易结合到Pgam1、Pkm以及Pgk1三基因启动子区域,提高其表达,在肿瘤细胞内形成更高的糖酵解水平,导致肿瘤细胞进展加剧。
本发明提供了ARID1A缺失促进体内肺腺癌发生发展的致病机制,为ARID1A缺失型肺癌的治疗提供了一系列新的靶点。
实施例5糖酵解抑制剂能够干扰ARID1A缺失型肺癌的进展
本发明实施例4中描述了ARID1A缺失通过提高糖酵解水平促进肺癌进展的生物机制。本实施例中,采用了一种或多种策略干预糖酵解水平,观察此方式能否抑制ARID1A缺失型肺癌的进展。在一种实施方式中,本发明采用了临床药物2-DG抑制肿瘤细胞糖代谢水平,包括糖酵解水平;在另一种实施方式中,本发明采用了慢病毒介导的CRISPR/Cas9干扰Pgam1基因的表达(pSECC-sgPgam1组),所述sgRNA的核苷酸序列如SEQ ID NO:4与SEQ ID NO:5所示;在另一种实施方式中,本发明采用了慢病毒介导的CRISPR/Cas9干扰Pkm基因的表达(pSECC-sgPkm组),所述shRNA的核苷酸序列如SEQ ID NO:6与SEQ ID NO:7所示。
首先,建立4周龄KP以及KPAfl/fl小鼠体系;其次,对小鼠进行AAV9-CMV-Cre病毒诱导。同时,分别给予慢病毒介导的Cas9及sgRNA进行干扰,靶向糖酵解关键基因Pgam1或Pkm,2-DG药物处理作为另一实验组。设置sgTom为阴性对照组,该组非靶向任何内源基因。实验处理方案如图6A所示。最后,采用多重检测方法对各治疗组干预效果进行评估。
研究发现,2-DG,sgPgam1以及sgPkm干预在一定程度上能够抑制ARID1A缺失引起的肿瘤进展。其中,Pkm基因的敲除能有效减少在体成瘤负荷(图6A-E)。因此,干预Pgam1、Pkm、Pgk1以及其它可控方式干预糖酵解,可以作为药靶治疗ARID1A缺失型肺癌。
实施例6
卵巢癌细胞在BRD2抑制以及ARID1A突变同时存在时致死。BRD2抑制后能够降低SWI/SWF复合物的表达水平,BETi小分子能够抑制BRD2家族蛋白BET。因此,BETi小分子具有特异性抑制ARID1A缺失型卵巢癌作用。本发明在此理论基础上,基于类器官模型与在体动物模型,对BETi小分子抑制ARID1A缺失型的肺癌进行研究。
首先,取KP和KPAfl/fl小鼠肺部肿瘤细胞进行体外类器官的培养与扩增,在肿瘤衍生类器官上进行五种广泛使用的BET抑制剂的药敏实验(如图7A)。为了测试药物对肿瘤衍生类器官形成的影响,我们将肿瘤衍生类器官播种到含有不同浓度的JQ1,Bet762,OTX015,Bet726和Bet151的培养基中,在第7天,类器官的数量随着药物浓度的升高而减少,各种药物对类有机物的形成表现出不同的抑制作用;结果提示JQ1和BET762在浓度为10μm和50μm时选择性地损害KPAfl/fl肿瘤衍生类器官的形成;JQ1对ARID1A缺失型肿瘤类器官的生存能力的损害程度大于ARID1A野生型类器官(图7B、7C)。
其次,在小鼠体内进行肿瘤异种移植,将KP和KPAfl/fl肿瘤类器官异种移植至C57小鼠皮下,测试2-DG,JQ1和Bet762对体内肺癌生长的影响(图7D)。在实验期间每3天测肿瘤体积,通过比较肿瘤体积与重量,证实具有ARID1A敲除的肿瘤对JQ1的治疗更敏感(图7E、7F)。
最后,在转基因模型鼠上(KP与KPAfl/fl组)测试BETi小分子对ARID1A缺失型细胞的敏感性(图7D)。研究结果显示,通过比较肿瘤的瘤体数量以及肿瘤面积,证实ARID1A缺失型肺癌细胞对JQ1敏感(图7G、7H)。
本发明的上述实施例的结果表明,本发明提供了BETi小分子抑制剂对ARID1A缺失型肺癌的疗效数据。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种糖酵解抑制剂的用途,其特征在于,用于制备一组合物或制剂,所述的组合物或制剂用于:(a)预防和/或治疗肺癌,所述的肺癌是ARID1A阴性的肺癌;和/或(b)抑制肺癌细胞,所述的肺癌细胞是ARID1A阴性的肺癌细胞。
  2. 如权利要求1所述的用途,其特征在于,所述的ARID1A阴性指,与正常对照细胞,ARID1A表达和/或活性显著下降。
  3. 如权利要求1所述的用途,其特征在于,所述的肺癌为ARID1A缺失型肺癌。
  4. 如权利要求1所述的用途,其特征在于,所述的肺癌选自下组:腺癌、鳞癌、或其组合。
  5. 如权利要求1所述的用途,其特征在于,所述的糖酵解抑制剂选自下组:
    (Z1)Hif-1α抑制剂;
    (Z2)Pgk1抑制剂;
    (Z3)Pgam1抑制剂;
    (Z4)Pkm2抑制剂;
    (Z5)上述Z1~Z4的任意组合。
  6. 如权利要求1所述的用途,其特征在于,所述的糖酵解抑制剂选自下组:小分子化合物、抗体、反义核酸、基因编辑药物、或其组合。
  7. 如权利要求1所述的用途,其特征在于,所述的糖酵解抑制剂选自下组:BETi小分子化合物、2-DG小分子、或其组合。
  8. 一种ARID1A基因、mRNA、cDNA、蛋白、或其检测试剂的用途,其特征在于,用于制备一试剂盒,所述试剂盒用于选自下组一种或多种用途:
    (i)用于评估肺癌患者是否适合用糖酵解抑制剂进行治疗;和/或
    (ii)用于评估肺癌患者用糖酵解抑制剂进行治疗的预后。
  9. 如权利要求8所述的用途,其特征在于,所述检测试剂包括:
    (a)ARID1A的特异性抗体、ARID1A的特异性结合分子;和/或
    (b)特异性扩增ARID1A mRNA或ARID1A cDNA的引物或引物对、探针或芯片。
  10. 一种产品组合,其特征在于,所述产品包括:
    (a)检测试剂或含所述检测试剂的试剂盒,所述检测试剂为检测ARID1A基因、mRNA、cDNA、蛋白、或其组合的检测试剂;和
    (b)药物组合物,所述的药组合物含有糖酵解抑制剂作为活性成分和药学上可接受的载体。
PCT/CN2022/128046 2021-10-27 2022-10-27 非小细胞肺癌靶点arid1a及其抑制剂在制备肺癌治疗药物中的用途 WO2023072215A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111256243.8A CN116019916A (zh) 2021-10-27 2021-10-27 非小细胞肺癌靶点arid1a及其抑制剂在制备肺癌治疗药物中的用途
CN202111256243.8 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023072215A1 true WO2023072215A1 (zh) 2023-05-04

Family

ID=86078707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128046 WO2023072215A1 (zh) 2021-10-27 2022-10-27 非小细胞肺癌靶点arid1a及其抑制剂在制备肺癌治疗药物中的用途

Country Status (2)

Country Link
CN (1) CN116019916A (zh)
WO (1) WO2023072215A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117305452A (zh) * 2023-09-27 2023-12-29 山东大学第二医院 人SNRK mRNA在非小细胞肺癌诊断、靶向治疗和预后评估中的应用及试剂盒

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210900A1 (en) * 2010-09-03 2013-08-15 The Johns Hopkins University ARID1A and PPP2R1A Mutations in Cancer
US20140128393A1 (en) * 2012-10-15 2014-05-08 Epizyme, Inc. Methods of Treating Cancer
US20190192521A1 (en) * 2016-08-15 2019-06-27 The Wistar Institute Of Anatomy And Biology Methods of Treating Arid1A-Mutated Cancers With HDAC6 Inhibitors and EZH2 Inhibitors
WO2020138385A1 (en) * 2018-12-27 2020-07-02 National Cancer Center A method for treating swi/snf complex-deficient cancers comprising glutathione (gsh) metabolic pathway inhibitor
WO2021050937A1 (en) * 2019-09-12 2021-03-18 The Wistar Institute Of Anatomy And Biology Methods for the treatment of arid1a-deficient cancers
US20210154165A1 (en) * 2019-11-27 2021-05-27 Yale University Targeting of arid1a-deficient cancers by inhibiting de novo pyrimidine synthesis pathway
WO2021105224A1 (en) * 2019-11-26 2021-06-03 Fundació Institut De Recerca Contra La Leucèmia Josep Carreras Kdm subfamily 6 protein inhibitor for use in the treatment of cancer
US20210171958A1 (en) * 2018-08-23 2021-06-10 Foghorn Therapeutics Inc. Methods of treating cancer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210900A1 (en) * 2010-09-03 2013-08-15 The Johns Hopkins University ARID1A and PPP2R1A Mutations in Cancer
US20140128393A1 (en) * 2012-10-15 2014-05-08 Epizyme, Inc. Methods of Treating Cancer
US20190192521A1 (en) * 2016-08-15 2019-06-27 The Wistar Institute Of Anatomy And Biology Methods of Treating Arid1A-Mutated Cancers With HDAC6 Inhibitors and EZH2 Inhibitors
US20210171958A1 (en) * 2018-08-23 2021-06-10 Foghorn Therapeutics Inc. Methods of treating cancer
WO2020138385A1 (en) * 2018-12-27 2020-07-02 National Cancer Center A method for treating swi/snf complex-deficient cancers comprising glutathione (gsh) metabolic pathway inhibitor
WO2021050937A1 (en) * 2019-09-12 2021-03-18 The Wistar Institute Of Anatomy And Biology Methods for the treatment of arid1a-deficient cancers
WO2021105224A1 (en) * 2019-11-26 2021-06-03 Fundació Institut De Recerca Contra La Leucèmia Josep Carreras Kdm subfamily 6 protein inhibitor for use in the treatment of cancer
US20210154165A1 (en) * 2019-11-27 2021-05-27 Yale University Targeting of arid1a-deficient cancers by inhibiting de novo pyrimidine synthesis pathway

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BONING LIU, MENG LUO, QINGHUA ZHOU, KE XU TIANJIN : "Advances in the Research of Glycolysis and Lung Cancer", CHINESE JOURNAL OF LUNG CANCER, ZHONGGUO KANGUAN XIEHUI, CN, vol. 15, no. 4, 20 April 2012 (2012-04-20), CN , pages 228 - 233, XP009545178, ISSN: 1009-3419 *
KARACHALIOU NIKI, PAULINA BRACHT JILLIAN WILHELMINA, ROSELL RAFAEL: "ARID1A Gene Driver Mutations in Lung Adenocarcinomas", JOURNAL OF THORACIC ONCOLOGY, ELSEVIER INC., US, vol. 13, no. 12, 1 December 2018 (2018-12-01), US , pages e255 - e257, XP093059984, ISSN: 1556-0864, DOI: 10.1016/j.jtho.2018.07.099 *
WANG XIAOYAN; LI WEIDONG; HUA BAOJIN: "Lung Cancer-Related Genes and Central Carbon Metabolism", ZHONGHUA ZHONGYIYAO XUEKAN - CHINESE ARCHIVES OF TRADITIONAL CHINESE MEDICINE, ZHONGYIYAO XUEKAN, CN, vol. 36, no. 1, 10 January 2018 (2018-01-10), CN , pages 90 - 93, XP009545179, ISSN: 1673-7717 *
WU FANG; ZHANG YONGCHANG; LI KUNYAN; HENG JIANFU; YANG NONG: "Advance in Anti-tumor Mechanism Study of Bromodomain-Containing Protein 4 Inhibitors", ANTI-TUMOR PHARMACY, EDITORIAL DEPARTMENT OF ANTI-TUMOR PHARMACY, CN, vol. 9, no. 2, 28 April 2019 (2019-04-28), CN , pages 177 - 183, XP009545180, ISSN: 2095-1264 *
ZHANG YI, XU XIAOMAN, ZHANG MENG, BAI XUE, LI HUI, KAN LIANG, NIU HUIYAN, HE PING: "ARID1A is downregulated in non-small cell lung cancer and regulates cell proliferation and apoptosis", TUMOR BIOLOGY, KARGER, BASEL, CH, vol. 35, no. 6, 1 June 2014 (2014-06-01), CH , pages 5701 - 5707, XP093059983, ISSN: 1010-4283, DOI: 10.1007/s13277-014-1755-x *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117305452A (zh) * 2023-09-27 2023-12-29 山东大学第二医院 人SNRK mRNA在非小细胞肺癌诊断、靶向治疗和预后评估中的应用及试剂盒
CN117305452B (zh) * 2023-09-27 2024-05-03 山东大学第二医院 人SNRK mRNA在非小细胞肺癌诊断、靶向治疗和预后评估中的应用及试剂盒

Also Published As

Publication number Publication date
CN116019916A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Tavana et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma
Gao et al. LncRNA HOTAIR functions as a competing endogenous RNA to upregulate SIRT1 by sponging miR‐34a in diabetic cardiomyopathy
Zhou et al. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM
Cipriani et al. Change in populations of macrophages promotes development of delayed gastric emptying in mice
Lee et al. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer
Zhou et al. p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild‐type p53
Li et al. Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development
Dakubo Mitochondrial genetics and cancer
Ip et al. Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment
Fang et al. Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma
Yu et al. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T‐cell acute lymphoblastic leukemia
Jin et al. Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth
WO2023072215A1 (zh) 非小细胞肺癌靶点arid1a及其抑制剂在制备肺癌治疗药物中的用途
Feng et al. Low levels of AMPK promote epithelial‐mesenchymal transition in lung cancer primarily through HDAC4‐and HDAC5‐mediated metabolic reprogramming
CN111073979A (zh) 阻断ccl28趋化通路的胃癌治疗方法
WO2018177374A1 (zh) 基因工程菌vnp20009-m在制备预防和治疗肺癌药物中的应用
Yang et al. Histone deacetylase 6 acts upstream of DNA damage response activation to support the survival of glioblastoma cells
Zhang et al. PUS7 promotes the proliferation of colorectal cancer cells by directly stabilizing SIRT1 to activate the Wnt/β‐catenin pathway
Wang et al. SCARB2 drives hepatocellular carcinoma tumor initiating cells via enhanced MYC transcriptional activity
JP5762103B2 (ja) 頭頸部癌及び食道癌用抗癌剤及び増強剤
CN110787296B (zh) 一种用于预防或治疗胰腺癌的药物组合物及检测胰腺癌的试剂盒
Chen et al. Cytoplasmic, but not nuclear Nrf2 expression, is associated with inferior survival and relapse rate and response to platinum‐based chemotherapy in non‐small cell lung cancer
Zhang et al. Phosphorylation of MICAL2 by ARG promotes head and neck cancer tumorigenesis by regulating skeletal rearrangement
Dong et al. EGCG‐LYS Fibrils‐Mediated CircMAP2K2 Silencing Decreases the Proliferation and Metastasis Ability of Gastric Cancer Cells in Vitro and in Vivo
Sistrunk et al. Skp2 is necessary for Myc-induced keratinocyte proliferation but dispensable for Myc oncogenic activity in the oral epithelium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886090

Country of ref document: EP

Kind code of ref document: A1