WO2023071809A1 - 一种发电-储能系统的波动压力发电控制方法及装置 - Google Patents

一种发电-储能系统的波动压力发电控制方法及装置 Download PDF

Info

Publication number
WO2023071809A1
WO2023071809A1 PCT/CN2022/124986 CN2022124986W WO2023071809A1 WO 2023071809 A1 WO2023071809 A1 WO 2023071809A1 CN 2022124986 W CN2022124986 W CN 2022124986W WO 2023071809 A1 WO2023071809 A1 WO 2023071809A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air pressure
power generation
control
liquid
Prior art date
Application number
PCT/CN2022/124986
Other languages
English (en)
French (fr)
Inventor
寇攀高
Original Assignee
国网湖南省电力有限公司
国网湖南省电力有限公司电力科学研究院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网湖南省电力有限公司, 国网湖南省电力有限公司电力科学研究院, 国家电网有限公司 filed Critical 国网湖南省电力有限公司
Publication of WO2023071809A1 publication Critical patent/WO2023071809A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the invention relates to a power generation control technology of a power generation-energy storage system, in particular to a fluctuating pressure power generation control method and device for a power generation-energy storage system.
  • the Chinese patent document with application number 202020451871.6 discloses a power generation-energy storage system including a high-pressure gas system and a gas-liquid mixing system.
  • the high-pressure gas system includes a gas storage container and a gas compression device for supplying gas to the gas storage container.
  • the system includes a gas-liquid mixing container connected with a liquid replenishment circulation system and a hydraulic generator set.
  • the gas storage container and the gas-liquid mixing container are connected through a regulating valve.
  • the power generation-energy storage system can To achieve energy storage and power generation, you can also choose a variety of operating modes. As a new type of power generation system, the power generation-energy storage system has the advantages of clean and pollution-free, flexible layout, and long operating life.
  • the technical problem to be solved by the present invention Aiming at the above-mentioned problems of the prior art, a method and device for fluctuating pressure power generation control of a power generation-energy storage system are provided.
  • the present invention realizes stable control of power generation process power through closed-loop control and control strategy, It can realize the stable control of the power in the power generation process, provides a control method for the power generation-energy storage system to realize the constant power output of the generator set under pressure fluctuations, and provides important theoretical support and practical basis for improving the flexibility of the power system.
  • a method for controlling fluctuating pressure power generation of a power generation-energy storage system comprising:
  • the working state of the air pressure regulating valve between the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system is controlled during the power generation stage.
  • the acquisition of the active power error signal according to the difference between the measured power value N meas and the target power value N ref refers to inputting the difference between the measured power value N meas and the target power value N ref into the active power closed-loop controller to obtain Active power error signal.
  • obtaining the air pressure error signal according to the difference between the actual air pressure P mea and the set air pressure value Pref refers to inputting the difference between the actual air pressure P mea and the set air pressure value Pref into the air pressure closed-loop controller to obtain active power error signal.
  • the active power closed-loop controller is a PID controller.
  • the air pressure closed-loop controller is a PID controller.
  • step 1) also includes the step of parameter designing the active power closed-loop controller and the air pressure closed-loop controller:
  • nonlinear differential equations of the temperature, volume, and pressure dynamic change characteristics of the gas control body and the liquid controller in the power generation stage established in step S1) are:
  • T B,gas , T A,gas are the temperature of gas control body B in the gas-liquid mixing system and gas control body A in the gas-liquid mixing system respectively
  • V B,gas is the temperature of gas control body B in the gas-liquid mixing system Volume
  • m A, gas , m B, gas are the mass of gas control body A in the gas-liquid mixing system and gas control body B in the gas-liquid mixing system respectively
  • T l is the liquid temperature of the gas-liquid mixing container
  • Z l is the liquid
  • T gas, T is the temperature of the gas-liquid mixing container wall
  • T l T is the temperature of the container wall in contact with the liquid control body
  • u 1 , u 2 are the control variables, and there are:
  • step S2) includes:
  • A is the system matrix
  • B is the input matrix
  • C is the output matrix
  • f is the functional relationship between the differential equation and the state variable X and the control vector U;
  • I is the identity matrix
  • A is the system matrix
  • K p , K i , K d are PID control parameters, and T 1v is the actual differential link time constant;
  • the present invention also provides a fluctuating pressure power generation control device used in the fluctuating pressure power generation control method of the power generation-energy storage system, including:
  • the control unit is used to calculate the difference between the measured power value N meas and the target power value N ref , and obtain an active power error signal according to the difference between the measured power value N meas and the target power value N ref ; calculate the actual air pressure P mea , set the air pressure value P ref , and obtain the air pressure error signal according to the difference between the actual air pressure P mea and the set air pressure value P ref , and obtain the multivariable control signal by summing the active power error signal and the air pressure error signal;
  • the valve control module is used to control the working state of the air pressure regulating valve between the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system in the power generation stage according to the multivariable control control signal;
  • the output end of the control unit is connected with the valve control module, and the valve control module is used for connecting with the control end of the air pressure regulating valve between the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system.
  • control unit includes: an active power error calculation unit, used to calculate the difference between the measured power value N meas and the target power value N ref ;
  • the difference between the value N ref is used to obtain the active power error signal;
  • the air pressure error calculation unit is used to calculate the difference between the actual air pressure P mea and the set air pressure value P ref ;
  • the air pressure closed-loop controller is used to set the air pressure value according to the actual air pressure P mea
  • the difference between P ref obtains the air pressure error signal;
  • the summation module is used to sum the active power error signal and the air pressure error signal to obtain a multivariable control control signal;
  • the output terminal of the active power error calculation unit is connected to the active power closed-loop controller
  • the input ends are connected, the output end of the air pressure closed-loop controller is connected with the input end of the air pressure closed-loop controller, the output ends of the active power closed-loop controller and the air pressure closed-loop controller are connected with the input end of the summation module, so
  • the present invention includes calculating the difference between the measured power value N meas and the target power value N ref and obtaining the active power error signal; calculating the actual air pressure P mea , setting the air pressure value P ref difference and obtain the air pressure error signal, the active power error signal and the air pressure error signal are summed to obtain the multivariable control control signal; according to the multivariable control control signal, the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system are controlled. The working state of the air pressure regulating valve in the power generation stage.
  • the present invention aims at the problem that the pressure fluctuation in the gas-liquid mixing system in the joint power generation stage of the high-pressure gas system and the gas-liquid mixing system makes it difficult to stabilize the power of the generator set.
  • the gas, liquid, and container walls are considered
  • the dynamic change characteristics of temperature, the air pressure signal, active power signal, and opening signal in the gas-liquid mixing system are introduced into the controller, and the stable control of the power generation process is realized through closed-loop control and control strategy, and the power generation system without power disturbance is realized.
  • the power generation is stable, and the invention provides a control method for the power generation-energy storage system to realize the constant power output of the generator set under pressure fluctuations, and provides important theoretical support and practical basis for improving the flexibility of the power system.
  • Fig. 1 is a schematic diagram of the basic principle of the method of the embodiment of the present invention.
  • the fluctuating pressure power generation control method of the power generation-energy storage system in this embodiment includes:
  • the working state of the air pressure regulating valve between the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system is controlled during the power generation stage.
  • obtaining the active power error signal according to the difference between the measured power value N meas and the target power value N ref refers to inputting the difference between the measured power value N meas and the target power value N ref into the active power closed-loop controller To obtain the active power error signal.
  • obtaining the air pressure error signal according to the difference between the actual air pressure P mea and the set air pressure value Pref refers to inputting the difference between the actual air pressure P mea and the set air pressure value Pref into the air pressure closed-loop controller to obtain Active power error signal.
  • the active power closed-loop controller is a PID controller.
  • the active power closed-loop controller can also use other types of controllers including fuzzy controllers as required.
  • the air pressure closed-loop controller is a PID controller.
  • the air pressure closed-loop controller can also use other types of controllers including fuzzy controllers as required.
  • the controller parameter setting of the control method in this embodiment takes into account the dynamic change characteristics of the gas, liquid, and container wall temperatures in the high-pressure gas system and the gas-liquid mixing system in the power generation process; the control method of this embodiment is multivariable control, and the gas-liquid mixing system
  • the air pressure signal in the system and the active power signal of the generator set are introduced into the controller to form a closed-loop air pressure controller and an active power closed-loop controller.
  • the mass flow rate of the liquid and the mass flow rate of the gas are input as control input signals, and the air pressure signal in the steam-water mixing container is the output variable.
  • step 1) it also includes the active power Steps for parameter design of power closed-loop controller and air pressure closed-loop controller:
  • the gas-liquid mixing container is connected to drive the hydraulic generator set to generate electricity.
  • the pressure of the gas-liquid mixing container drops from the pressure ps3 to the specified pressure ps1, and the liquid level gradually drops to the initial liquid level; at the same time, the gas storage container and the gas-liquid mixing container part Connected, to control the mass flow rate of high-pressure gas into the gas storage container, so that the pressure of the gas storage container gradually decreases and synchronously drops to the specified initial pressure ps2 when the liquid level of the gas-liquid mixing container drops to the initial liquid level, the initial pressure ps2 is less than the pressure ps1, which is specifically the pressure at the end of the energy storage phase.
  • the valve system between the gas-liquid mixing system and the high-pressure gas system is intermittently switched.
  • the switching control law is to maintain the stability of the gas-liquid mixing system in the set pressure range, and the flow rate of the hydraulic power generation device meets Among them, Q is the volume flow, Q 11 is the unit flow, D 1 is the diameter, H is the head, a is the opening, and n 11 is the unit speed.
  • the high-pressure gas system of the power generation-energy storage system stores gas in a gas storage container to build pressure to achieve energy storage.
  • the gas-liquid mixing system stores gas and liquid in a gas-liquid mixing container to build pressure. Therefore, the high-pressure gas system, the gas in the gas-liquid mixing system, and the liquid in the gas-liquid mixing system are the control objects to realize the fluctuating pressure power generation control of the power generation-energy storage system in this embodiment, so they are recorded as gas control body and liquid controller .
  • the temperature, volume, and pressure dynamic changes of the gas control body (gas in the high-pressure gas system, gas-liquid mixing system) and liquid controller (liquid in the gas-liquid mixing system) of the power generation stage established in step S1) The nonlinear differential equation of the characteristic is:
  • T B,gas , T A,gas are the temperature of gas control body B in the gas-liquid mixing system and gas control body A in the gas-liquid mixing system respectively
  • V B,gas is the temperature of gas control body B in the gas-liquid mixing system Volume
  • m A, gas , m B, gas are the mass of gas control body A in the gas-liquid mixing system and gas control body B in the gas-liquid mixing system respectively
  • T l is the liquid temperature of the gas-liquid mixing container
  • Z l is the liquid
  • T gas, T is the temperature of the gas-liquid mixing container wall
  • T l T is the temperature of the container wall in contact with the liquid control body
  • u 1 , u 2 are the control variables, and there are:
  • step S2) includes:
  • A is the system matrix
  • B is the input matrix
  • C is the output matrix
  • f is the functional relationship between the differential equation and the state variable X and the control vector U;
  • I is the identity matrix
  • A is the system matrix
  • K p , K i , K d are PID control parameters, and T 1v is the actual differential link time constant;
  • this embodiment also provides a fluctuating pressure power generation control device for applying the aforementioned fluctuating pressure power generation control method of a power generation-energy storage system, including:
  • the control unit is used to calculate the difference between the measured power value N meas and the target power value N ref , and obtain an active power error signal according to the difference between the measured power value N meas and the target power value N ref ; calculate the actual air pressure P mea , set the air pressure value P ref , and obtain the air pressure error signal according to the difference between the actual air pressure P mea and the set air pressure value P ref , and obtain the multivariable control signal by summing the active power error signal and the air pressure error signal;
  • the valve control module is used to control the working state of the air pressure regulating valve between the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system in the power generation stage according to the multivariable control control signal;
  • the output end of the control unit is connected with the valve control module, and the valve control module is used for connecting with the control end of the air pressure regulating valve between the high-pressure gas system and the gas-liquid mixing system of the power generation-energy storage system.
  • control unit includes: an active power error calculation unit for calculating the difference between the measured power value N meas and the target power value N ref ; an active power closed-loop controller for calculating the difference between the measured power value N meas and the target The difference between the power value N ref is used to obtain the active power error signal; the air pressure error calculation unit is used to calculate the difference between the actual air pressure P mea and the set air pressure value P ref ; the air pressure closed-loop controller is used to set the air pressure according to the actual air pressure P mea The difference of the value P ref obtains the air pressure error signal; the summation module is used to sum the active power error signal and the air pressure error signal to obtain a multivariable control control signal; the output terminal of the active power error calculation unit is connected with the active power closed-loop controller The input end of the air pressure closed-loop controller is connected to each other, the output end of the air pressure closed-loop controller is connected to the input end of the air pressure closed-loop controller, the output ends of the active power
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-readable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • the present application is described with reference to flowcharts and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application.
  • each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions.
  • These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow diagram procedure or procedures and/or block diagram procedures or blocks.

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

本发明公开了一种发电-储能系统的波动压力发电控制方法及装置,本发明发电-储能系统的波动压力发电控制方法包括计算实测功率值Nmeas、目标功率值Nref之差并获取有功功率误差信号;计算实际气压Pmea、设定气压值Pref之差并获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态。本发明可实现发电过程功率的稳定控制,为发电-储能系统实现压力波动下发电机组功率恒定输出提供了一种控制方法,为提升电力系统灵活性提供了重要的理论支撑与实践依据。

Description

一种发电-储能系统的波动压力发电控制方法及装置
相关申请的交叉引用
本申请以申请日为“2021.10.28”、申请号为“202111266519.0”、发明创造名称为“一种发电-储能系统的波动压力发电控制方法及装置”的中国专利申请为基础,并主张其优先权,该中国专利申请的全文在此引用至本申请中,以作为本申请的一部分。
【技术领域】
本发明涉及发电-储能系统的发电控制技术,具体涉及一种发电-储能系统的波动压力发电控制方法及装置。
【背景技术】
随着新能源发电的超常规发展与电网建设相对滞后的矛盾日益明显,大规模具有随机性、问歇性、反调节性及出力波动大等特点的风电/光伏能源接入电网对系统的电压稳定、暂态稳定和频率稳定都有较大的影响,风电/光伏能源并网难、并网后消纳难等问题严重制约着能源结构的变革。常规水电厂、抽液蓄能电厂在大规模新能源存储、能量转化方面作用有限,不能吸收丰沛的风电、太阳能等大规模可再生新能源电力,且对地势、地质有一定的要求。
申请号为202020451871.6的中国专利文献公开了一种发电-储能系统包括高压气系统和气液混合系统,高压气系统包括储气容器和用于给储气容器供气的气体压缩装置,气液混合系统包括分别连接有补液循环系统和液力发电机组的气液混合容器,储气容器、气液混合容器之间通过调节阀相连,该发电-储能系统可通过储气容器、气液混合容器来实现储能、发电,也可以选择多种运行模式。该发电-储能系统作为一种新型发电系统,具有清洁无污染、布置灵活、运行寿命长等优点,对于大规模新能源消纳及提升电力系统的灵活性具有重要价值。然而,发电过程中气液混合系统内液体体积减小、压力趋向于下降,高压气系统通过压力调节阀对气液混合系统内补气,试图维持气压稳定,然而气压调节阀输出端气压难以维持恒定值,实践表明,气压调节阀输出气压波动幅度与输出气压平均值相比不小于5%。气液混合系统内气压的波动不仅严重影响了发电机组功率的稳定、机组的安全稳定运行,严重情况下会导致电力系统的低频振荡,因此,提出维持气液混合系统气压稳定的控制方法对理论研究及工程实践具有重要的科学意义及实践价值。
【发明内容】
本发明要解决的技术问题:针对现有技术的上述问题,提供一种发电-储能系统的波动压力发电控制方法及装置,本发明通过闭环控制和控制策略实现了发电过程功率的稳定 控制,可实现发电过程功率的稳定控制,为发电-储能系统实现压力波动下发电机组功率恒定输出提供了一种控制方法,为提升电力系统灵活性提供了重要的理论支撑与实践依据。
为了解决上述技术问题,本发明采用的技术方案为:
一种发电-储能系统的波动压力发电控制方法,包括:
1)计算实测功率值N meas、目标功率值N ref之差,并根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差,并根据实际气压P mea、设定气压值P ref之差获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;
2)根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态。
可选地,所述根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号是指通过将实测功率值N meas、目标功率值N ref之差输入有功功率闭环控制器以获取有功功率误差信号。
可选地,所述根据实际气压P mea、设定气压值P ref之差获取气压误差信号是指通过将实际气压P mea、设定气压值P ref之差输入气压闭环控制器以获取有功功率误差信号。
可选地,所述有功功率闭环控制器为PID控制器。
可选地,所述气压闭环控制器为PID控制器。
可选地,步骤1)之前还包括对有功功率闭环控制器和气压闭环控制器进行参数设计的步骤:
S1)建立发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程:
S2)将发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程转化为传递函数,依据传递函数和PID参数的关系求解有功功率闭环控制器和气压闭环控制器的PID控制参数。
可选地,步骤S1)中建立的发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程为:
Figure PCTCN2022124986-appb-000001
其中,
Figure PCTCN2022124986-appb-000002
为状态变量的微分,X为状态变量,U u为控制向量,f(X,U u)为状态变量的微分
Figure PCTCN2022124986-appb-000003
与状态变量X以及控制向量U u两者的函数关系,y为输出,g(X)为输出y与状 态变量X之间的函数关系,且有:
X=[T B,gas,T A,gas,V B,gas,m A,gas,m B,gas,T l,Z l,T gas,T,T l,T] T,U u=[u 1,u 2] T
其中,T B,gas,T A,gas分别为气液混合系统内气体控制体B、气液混合系统内气体控制体A的温度,V B,gas为气液混合系统内气体控制体B的体积,m A,gas,m B,gas分别为气液混合系统内气体控制体A、气液混合系统内气体控制体B的质量,T l为气液混合容器的液体温度,Z l为液体控制体的液位,T gas,T为汽液混合容器器壁的温度,T l,T为与液体控制体接触的容器器壁温度,u 1,u 2为控制变量,且有:
Figure PCTCN2022124986-appb-000004
上式中,
Figure PCTCN2022124986-appb-000005
分别为状态变量x 1~x 8的微分,x 1~x 9分别为状态变量,k为空气比热容的比值,ρ w为液体控制器的密度,ρ l为液体控制体的密度ρ l=ρ w,A l为液体控制体水平面的面积,c l为液体控制体的比热容,
Figure PCTCN2022124986-appb-000006
为液体控制体出口液体温度,y 1、γ 1~γ 4以及γ 8~γ 12均为中间变量,T amb为环境温度;且有:
Figure PCTCN2022124986-appb-000007
m gas,Tc T=γ 8
Figure PCTCN2022124986-appb-000008
ρ lA l=γ 5,h gas,TA gas,T=γ 9,h oA o,gas=γ 10,h l,TA l,T=γ 11,h gas,lA l=γ 12
Figure PCTCN2022124986-appb-000009
上式中,
Figure PCTCN2022124986-appb-000010
为高压气系统内空气控制体A、气液混合系统内空气控制体B之间的交换速率,
Figure PCTCN2022124986-appb-000011
为汽液混合容器内液体控制器的质量流出流率,m gas,T为与空气接触的容器器壁控制体质量,c T为气液混合容器器壁的比热容,
Figure PCTCN2022124986-appb-000012
表示气液混合系统内空气控制体B的空气定容比热容,U为与环境接触器壁的换热系数,A G为气液混合系统内空气控制体 B与气体接触的器壁面积,
Figure PCTCN2022124986-appb-000013
表示气液混合系统内空气控制体A的空气定容比热容,R g为空气气体常数,ρ w为汽液混合容器内液体控制体的密度,h gas,T为气体控制体与容壁之间的换热系数,A gas,T为气体控制体与汽液混合容器器壁接触的面积,h o为气液混合容器器壁与外部环境之间换热系数,A o,gas为与气液混合容器内部空气接触的器壁暴露在外部环境的面积,h l,T为液体与汽液混合容器器壁之间的换热系数,A l,T为液体控制体与汽液混合容器器壁接触的面积,p B,gas为气液混合系统内空气控制体B的压力。
可选地,步骤S2)包括:
S2.1)根据当前状态变量值,发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程线性化,得到线性化方程:
Figure PCTCN2022124986-appb-000014
上式中,A为系统矩阵,B为输入矩阵,C为输出矩阵,且有:
Figure PCTCN2022124986-appb-000015
其中,f为微分方程与状态变量X以及控制向量U之间的函数关系;
S2.2)将线性化方程转化为下式所示的当前时刻t的状态变量点X e的传递函数G(s)的状态空间方程:
G(s)=C(X e)(sI-A) -1B(X e)
上式中,I为单位矩阵,A为系统矩阵;
S2.3)根据下式所示的PID控制规律传递函数G c(s)和当前时刻t的状态变量点X e的传递函数G(s)获得当前时刻t的控制系统
Figure PCTCN2022124986-appb-000016
的闭环特征方程根;
Figure PCTCN2022124986-appb-000017
上式中,K p,K i,K d为PID控制参数,T 1v为实际微分环节时间常数;
S2.4)以能确保控制系统
Figure PCTCN2022124986-appb-000018
稳定的闭环特征方程根进行极点配置,建立闭环系统极点与PID参数的关系,从而求得PID控制参数K p,K i,K d
此外,本发明还提供一种用于所述的发电-储能系统的波动压力发电控制方法的波动压力发电控制装置,包括:
控制单元,用于计算实测功率值N meas、目标功率值N ref之差,并根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差,并根据实际气压P mea、设定气压值P ref之差获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;
阀门控制模块,用于根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态;
所述控制单元的输出端与阀门控制模块相连,所述阀门控制模块用于与发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀的控制端相连。
可选地,所述控制单元包括:有功功率误差计算单元,用于计算实测功率值N meas、目标功率值N ref之差;有功功率闭环控制器,用于根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;气压误差计算单元,用于计算实际气压P mea、设定气压值P ref之差;气压闭环控制器,用于根据实际气压P mea、设定气压值P ref之差获取气压误差信号;求和模块,用于将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;所述有功功率误差计算单元的输出端与有功功率闭环控制器的输入端相连,所述气压闭环控制器的输出端与气压闭环控制器的输入端相连,所述有功功率闭环控制器、气压闭环控制器两者的输出端与求和模块的输入端相连,所述求和模块的输出端与阀门控制模块相连;所述有功功率闭环控制器、气压闭环控制器为PID控制器。
和现有技术相比,本发明具有下述优点:本发明包括计算实测功率值N meas、目标功率值N ref之差并获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差并获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态,本发明针对高压气系统和气液混合系统共同发电阶段气液混合系统内气压波动导致发电机组功率难以稳定的问题,考虑了气体、液体、容器器壁温度的动态变化特性,将气液混合系统内气压信号、有功功率信号、开度信号引入到控制器中,通过闭环控制和控制策略实现了发电过程功率的稳定控制,实现无功率扰动下发电系统发电功率稳定,本发明为该发电-储能系统实现压力波动下发电机组功率恒定输出提供了一种控制方法,为提升电力系统灵活性提供了重要的理论支撑与实践依据。
【附图说明】
图1为本发明实施例方法的基本原理示意图。
【具体实施方式】
如图1所示,本实施例发电-储能系统的波动压力发电控制方法包括:
1)计算实测功率值N meas、目标功率值N ref之差,并根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差,并根据实际气压P mea、设定气压值P ref之差获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;
2)根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态。
参见图1,本实施例中根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号是指通过将实测功率值N meas、目标功率值N ref之差输入有功功率闭环控制器以获取有功功率误差信号。
参见图1,本实施例中根据实际气压P mea、设定气压值P ref之差获取气压误差信号是指通过将实际气压P mea、设定气压值P ref之差输入气压闭环控制器以获取有功功率误差信号。
本实施例中,有功功率闭环控制器为PID控制器。此外,有功功率闭环控制器也可以根据需要采用包括模糊控制器在内的其他各类控制器。
本实施例中,气压闭环控制器为PID控制器。此外,气压闭环控制器也可以根据需要采用包括模糊控制器在内的其他各类控制器。
本实施例控制方法控制器参数整定考虑了发电过程中高压气系统、气液混合系统中气体、液体、容器器壁温度的动态变化特性;本实施例控制方法为多变量控制,将气液混合系统内气压信号、发电机组有功功率信号引入到控制器中形成了气压闭环控制器、有功功率闭环控制器。本实施例控制方法将液体质量流量、气体质量流量作为控制输入信号输入,汽水混合容器内气压信号为输出变量。
进一步地,为了更好地实现对有功功率闭环控制器和气压闭环控制器进行参数设计,以提升发电-储能系统的波动压力发电控制效果,本实施例中,步骤1)之前还包括对有功功率闭环控制器和气压闭环控制器进行参数设计的步骤:
S1)建立发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程:
S2)将发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程转化为传递函数,依据传递函数和PID参数的关系求解有功功率闭环控制器和气压闭环控制器的PID控制参数。
发电阶段中通过气液混合容器连通驱动液力发电机组发电,气液混合容器的压力从压力ps3下降到指定的压力ps1、液位逐步下降到初始液位;同时储气容器和气液混合容器部分连通,控制往储气容器通入高压气体的质量流量,使储气容器的压力逐步下降且在气 液混合容器的液位下降到初始液位时同步下降到指定的初始压力ps2,初始压力ps2比压力ps1小,其具体为储能阶段结束时的压力。发电阶段内,气液混合系统、高压气系统间阀门系统为间断性开关,其开关控制规律最终是维持气液混合系统在设定的压力范围稳定,液力发电装置的流量满足
Figure PCTCN2022124986-appb-000019
其中Q为体积流量、Q 11为单位流量、D 1为直径、H为扬程、a为开度、n 11为单位转速。
发电-储能系统的高压气系统通过储气容器储存气体建压以实现储能,气液混合系统通过气液混合容器储存气体和液体建压,液体同时通过液位提升以实现储能。因此,高压气系统、气液混合系统中的气体、气液混合系统中的液体是实现本实施例发电-储能系统的波动压力发电控制的控制对象,因此记为气体控制体和液体控制器。
本实施例中,步骤S1)中建立的发电阶段气体控制体(高压气系统、气液混合系统中的气体)和液体控制器(气液混合系统中的液体)的温度、体积、压力动态变化特性的非线性微分方程为:
Figure PCTCN2022124986-appb-000020
其中,
Figure PCTCN2022124986-appb-000021
为状态变量的微分,X为状态变量,U u为控制向量,f(X,U u)为状态变量的微分
Figure PCTCN2022124986-appb-000022
与状态变量X以及控制向量U u两者的函数关系,y为输出,g(X)为输出y与状态变量X之间的函数关系,且有:
X=[T B,gas,T A,gas,V B,gas,m A,gas,m B,gas,T l,Z l,T gas,T,T l,T] T,U u=[u 1,u 2] T
其中,T B,gas,T A,gas分别为气液混合系统内气体控制体B、气液混合系统内气体控制体A的温度,V B,gas为气液混合系统内气体控制体B的体积,m A,gas,m B,gas分别为气液混合系统内气体控制体A、气液混合系统内气体控制体B的质量,T l为气液混合容器的液体温度,Z l为液体控制体的液位,T gas,T为汽液混合容器器壁的温度,T l,T为与液体控制体接触的容器器壁温度,u 1,u 2为控制变量,且有:
Figure PCTCN2022124986-appb-000023
上式中,
Figure PCTCN2022124986-appb-000024
分别为状态变量x 1~x 8的微分,x 1~x 9分别为状态变量,k为空气比热容的比值,ρ w为液体控制器的密度,ρ l为液体控制体的密度ρ l=ρ w,A l为液体控制体水平面的面积,c l为液体控制体的比热容,
Figure PCTCN2022124986-appb-000025
为液体控制体出口液体温度,y 1、γ 1~γ 4以及γ 8~γ 12均为中间变量,T amb为环境温度;且有:
Figure PCTCN2022124986-appb-000026
m gas,Tc T=γ 8
Figure PCTCN2022124986-appb-000027
ρ lA l=γ 5,h gas,TA gas,T=γ 9,h oA o,gas=γ 10,h l,TA l,T=γ 11,h gas,lA l=γ 12
Figure PCTCN2022124986-appb-000028
上式中,
Figure PCTCN2022124986-appb-000029
为高压气系统内空气控制体A、气液混合系统内空气控制体B之间的交换速率,
Figure PCTCN2022124986-appb-000030
为汽液混合容器内液体控制器的质量流出流率,m gas,T为与空气接触的容器器壁控制体质量,c T为气液混合容器器壁的比热容,
Figure PCTCN2022124986-appb-000031
表示气液混合系统内空气控制体B的空气定容比热容,U为与环境接触器壁的换热系数,A G为气液混合系统内空气控制体B与气体接触的器壁面积,
Figure PCTCN2022124986-appb-000032
表示气液混合系统内空气控制体A的空气定容比热容,R g为空气气体常数,ρ w为汽液混合容器内液体控制体的密度,h gas,T为气体控制体与容壁之间的换热系数,A gas,T为气体控制体与汽液混合容器器壁接触的面积,h o为气液混合容器器壁与外部环境之间换热系数,A o,gas为与气液混合容器内部空气接触的器壁暴露在外部环境的面积,h l,T为液体与汽液混合容器器壁之间的换热系数,A l,T为液体控制体与汽液混合容器器壁接触的面积,p B,gas为气液混合系统内空气控制体B的压力。
本实施例中,步骤S2)包括:
S2.1)根据当前状态变量值,发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程线性化,得到线性化方程:
Figure PCTCN2022124986-appb-000033
上式中,A为系统矩阵,B为输入矩阵,C为输出矩阵,且有:
Figure PCTCN2022124986-appb-000034
其中,f为微分方程与状态变量X以及控制向量U之间的函数关系;
S2.2)将线性化方程转化为下式所示的当前时刻t的状态变量点X e的传递函数G(s)的状态空间方程:
G(s)=C(X e)(sI-A) -1B(X e)
上式中,I为单位矩阵,A为系统矩阵;
S2.3)根据下式所示的PID控制规律传递函数G c(s)和当前时刻t的状态变量点X e的传递函数G(s)获得当前时刻t的控制系统
Figure PCTCN2022124986-appb-000035
的闭环特征方程根;
Figure PCTCN2022124986-appb-000036
上式中,K p,K i,K d为PID控制参数,T 1v为实际微分环节时间常数;
S2.4)以能确保控制系统
Figure PCTCN2022124986-appb-000037
稳定的闭环特征方程根进行极点配置,建立闭环系统极点与PID参数的关系,从而求得PID控制参数K p,K i,K d
此外,本实施例还提供一种用于应用前述的发电-储能系统的波动压力发电控制方法的波动压力发电控制装置,包括:
控制单元,用于计算实测功率值N meas、目标功率值N ref之差,并根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差,并根据实际气压P mea、设定气压值P ref之差获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;
阀门控制模块,用于根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态;
所述控制单元的输出端与阀门控制模块相连,所述阀门控制模块用于与发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀的控制端相连。
本实施例中,所述控制单元包括:有功功率误差计算单元,用于计算实测功率值N meas、目标功率值N ref之差;有功功率闭环控制器,用于根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;气压误差计算单元,用于计算实际气压P mea、设定气压值P ref之差;气压闭环控制器,用于根据实际气压P mea、设定气压值P ref之差获取气压误差信号;求和模块,用于将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;所述有功功率误差计算单元的输出端与有功功率闭环控制器的输入端相连,所述气压闭环控制器的输出端与气压闭环控制器的输入端相连,所述有功功率闭环控制器、气压闭环控制器两者的输出端与求和模块的输入端相连,所述求和模块的输出端与阀门控制模块相连;所述有功功率闭环控制器、气压闭环控制器为PID控制器。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种发电-储能系统的波动压力发电控制方法,其特征在于,包括:
    1)计算实测功率值N meas、目标功率值N ref之差,并根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差,并根据实际气压P mea、设定气压值P ref之差获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;
    2)根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态。
  2. 根据权利要求1所述的发电-储能系统的波动压力发电控制方法,其特征在于,所述根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号是指通过将实测功率值N meas、目标功率值N ref之差输入有功功率闭环控制器以获取有功功率误差信号。
  3. 根据权利要求2所述的发电-储能系统的波动压力发电控制方法,其特征在于,所述根据实际气压P mea、设定气压值P ref之差获取气压误差信号是指通过将实际气压P mea、设定气压值P ref之差输入气压闭环控制器以获取有功功率误差信号。
  4. 根据权利要求3所述的发电-储能系统的波动压力发电控制方法,其特征在于,所述有功功率闭环控制器为PID控制器。
  5. 根据权利要求4所述的发电-储能系统的波动压力发电控制方法,其特征在于,所述气压闭环控制器为PID控制器。
  6. 根据权利要求4或5所述的发电-储能系统的波动压力发电控制方法,其特征在于,步骤1)之前还包括对有功功率闭环控制器和气压闭环控制器进行参数设计的步骤:
    S1)建立发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程:
    S2)将发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程转化为传递函数,依据传递函数和PID参数的关系求解有功功率闭环控制器和气压闭环控制器的PID控制参数。
  7. 根据权利要求6所述的发电-储能系统的波动压力发电控制方法,其特征在于,步骤S1)中建立的发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程为:
    Figure PCTCN2022124986-appb-100001
    其中,
    Figure PCTCN2022124986-appb-100002
    为状态变量的微分,X为状态变量,U u为控制向量,f(X,U u)为状态变量 的微分
    Figure PCTCN2022124986-appb-100003
    与状态变量X以及控制向量U u两者的函数关系,y为输出,g(X)为输出y与状态变量X之间的函数关系,且有:
    X=[T B,gas,T A,gas,V B,gas,m A,gas,m B,gas,T l,Z l,T gas,T,T l,T] T,U u=[u 1,u 2] T
    其中,T B,gas,T A,gas分别为气液混合系统内气体控制体B、气液混合系统内气体控制体A的温度,V B,gas为气液混合系统内气体控制体B的体积,m A,gas,m B,gas分别为气液混合系统内气体控制体A、气液混合系统内气体控制体B的质量,T l为气液混合容器的液体温度,Z l为液体控制体的液位,T gas,T为汽液混合容器器壁的温度,T l,T为与液体控制体接触的容器器壁温度,u 1,u 2为控制变量,且有:
    Figure PCTCN2022124986-appb-100004
    上式中,
    Figure PCTCN2022124986-appb-100005
    分别为状态变量x 1~x 8的微分,x 1~x 9分别为状态变量,k为空气比热容的比值,ρ w为液体控制器的密度,ρ l为液体控制体的密度ρ l=ρ w,A l为液体控制体水平面的面积,c l为液体控制体的比热容,
    Figure PCTCN2022124986-appb-100006
    为液体控制体出口液体温度,y 1、γ 1~γ 4以及γ 8~γ 12均为中间变量,T amb为环境温度;且有:
    Figure PCTCN2022124986-appb-100007
    m gas,Tc T=γ 8
    Figure PCTCN2022124986-appb-100008
    ρ lA l=γ 5,h gas,TA gas,T=γ 9,h oA o,gas=γ 10,h l,TA l,T=γ 11,h gas,lA l=γ 12
    Figure PCTCN2022124986-appb-100009
    上式中,
    Figure PCTCN2022124986-appb-100010
    为高压气系统内空气控制体A、气液混合系统内空气控制体B之间的交换速率,
    Figure PCTCN2022124986-appb-100011
    为汽液混合容器内液体控制器的质量流出流率,m gas,T为与空气接触的容器器壁控制体质量,c T为气液混合容器器壁的比热容,
    Figure PCTCN2022124986-appb-100012
    表示气液混合系统内空气控制体 B的空气定容比热容,U为与环境接触器壁的换热系数,A G为气液混合系统内空气控制体B与气体接触的器壁面积,
    Figure PCTCN2022124986-appb-100013
    表示气液混合系统内空气控制体A的空气定容比热容,R g为空气气体常数,ρ w为汽液混合容器内液体控制体的密度,h gas,T为气体控制体与容壁之间的换热系数,A gas,T为气体控制体与汽液混合容器器壁接触的面积,h o为气液混合容器器壁与外部环境之间换热系数,A o,gas为与气液混合容器内部空气接触的器壁暴露在外部环境的面积,h l,T为液体与汽液混合容器器壁之间的换热系数,A l,T为液体控制体与汽液混合容器器壁接触的面积,p B,gas为气液混合系统内空气控制体B的压力。
  8. 根据权利要求7所述的发电-储能系统的波动压力发电控制方法,其特征在于,步骤S2)包括:
    S2.1)根据当前状态变量值,发电阶段气体控制体和液体控制器的温度、体积、压力动态变化特性的非线性微分方程线性化,得到线性化方程:
    Figure PCTCN2022124986-appb-100014
    上式中,A为系统矩阵,B为输入矩阵,C为输出矩阵,且有:
    Figure PCTCN2022124986-appb-100015
    其中,f为微分方程与状态变量X以及控制向量U之间的函数关系;
    S2.2)将线性化方程转化为下式所示的当前时刻t的状态变量点X e的传递函数G(s)的状态空间方程:
    G(s)=C(X e)(sI-A) -1B(X e)
    上式中,I为单位矩阵,A为系统矩阵;
    S2.3)根据下式所示的PID控制规律传递函数G c(s)和当前时刻t的状态变量点X e的传递函数G(s)获得当前时刻t的控制系统
    Figure PCTCN2022124986-appb-100016
    的闭环特征方程根;
    Figure PCTCN2022124986-appb-100017
    上式中,K p,K i,K d为PID控制参数,T 1v为实际微分环节时间常数;
    S2.4)以能确保控制系统
    Figure PCTCN2022124986-appb-100018
    稳定的闭环特征方程根进行极点配置,建立闭环系统极点与PID参数的关系,从而求得PID控制参数K p,K i,K d
  9. 一种用于应用权利要求1~8中任意一项所述的发电-储能系统的波动压力发电控制方法的波动压力发电控制装置,其特征在于,包括:
    控制单元,用于计算实测功率值N meas、目标功率值N ref之差,并根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;计算实际气压P mea、设定气压值P ref之差,并根据实际气压P mea、设定气压值P ref之差获取气压误差信号,将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;
    阀门控制模块,用于根据多变量控制控制信号控制发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀在发电阶段的工作状态;
    所述控制单元的输出端与阀门控制模块相连,所述阀门控制模块用于与发电-储能系统的高压气系统、气液混合系统两者之间的气压调节阀的控制端相连。
  10. 根据权利要求9所述的波动压力发电控制装置,其特征在于,所述控制单元包括:有功功率误差计算单元,用于计算实测功率值N meas、目标功率值N ref之差;有功功率闭环控制器,用于根据实测功率值N meas、目标功率值N ref之差获取有功功率误差信号;气压误差计算单元,用于计算实际气压P mea、设定气压值P ref之差;气压闭环控制器,用于根据实际气压P mea、设定气压值P ref之差获取气压误差信号;求和模块,用于将有功功率误差信号、气压误差信号求和得到多变量控制控制信号;所述有功功率误差计算单元的输出端与有功功率闭环控制器的输入端相连,所述气压闭环控制器的输出端与气压闭环控制器的输入端相连,所述有功功率闭环控制器、气压闭环控制器两者的输出端与求和模块的输入端相连,所述求和模块的输出端与阀门控制模块相连;所述有功功率闭环控制器、气压闭环控制器为PID控制器。
PCT/CN2022/124986 2021-10-28 2022-10-13 一种发电-储能系统的波动压力发电控制方法及装置 WO2023071809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266519.0A CN113904588B (zh) 2021-10-28 2021-10-28 一种发电-储能系统的波动压力发电控制方法及装置
CN202111266519.0 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071809A1 true WO2023071809A1 (zh) 2023-05-04

Family

ID=79027648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124986 WO2023071809A1 (zh) 2021-10-28 2022-10-13 一种发电-储能系统的波动压力发电控制方法及装置

Country Status (2)

Country Link
CN (1) CN113904588B (zh)
WO (1) WO2023071809A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904588B (zh) * 2021-10-28 2023-03-21 国网湖南省电力有限公司 一种发电-储能系统的波动压力发电控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160069599A1 (en) * 2013-05-02 2016-03-10 Danfoss A/S Method for controlling a vapour compression system connected to a smart grid
CN107923258A (zh) * 2015-08-14 2018-04-17 三菱重工业株式会社 发电系统的控制装置、发电系统及发电方法
CN211975319U (zh) * 2020-03-31 2020-11-20 国网湖南省电力有限公司 一种发电系统
CN112596394A (zh) * 2020-12-28 2021-04-02 华电郑州机械设计研究院有限公司 热电联产机组电、热负荷调节的协调控制方法及系统
CN113904588A (zh) * 2021-10-28 2022-01-07 国网湖南省电力有限公司 一种发电-储能系统的波动压力发电控制方法及装置
CN114094568A (zh) * 2021-10-28 2022-02-25 国网湖南省电力有限公司 一种发电-储能系统的波动压力发电控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160069599A1 (en) * 2013-05-02 2016-03-10 Danfoss A/S Method for controlling a vapour compression system connected to a smart grid
CN107923258A (zh) * 2015-08-14 2018-04-17 三菱重工业株式会社 发电系统的控制装置、发电系统及发电方法
CN211975319U (zh) * 2020-03-31 2020-11-20 国网湖南省电力有限公司 一种发电系统
CN112596394A (zh) * 2020-12-28 2021-04-02 华电郑州机械设计研究院有限公司 热电联产机组电、热负荷调节的协调控制方法及系统
CN113904588A (zh) * 2021-10-28 2022-01-07 国网湖南省电力有限公司 一种发电-储能系统的波动压力发电控制方法及装置
CN114094568A (zh) * 2021-10-28 2022-02-25 国网湖南省电力有限公司 一种发电-储能系统的波动压力发电控制方法及系统

Also Published As

Publication number Publication date
CN113904588B (zh) 2023-03-21
CN113904588A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Xu et al. Adaptive condition predictive-fuzzy PID optimal control of start-up process for pumped storage unit at low head area
Oshnoei et al. Novel load frequency control scheme for an interconnected two-area power system including wind turbine generation and redox flow battery
Kong et al. Modeling, control and simulation of a photovoltaic/hydrogen/supercapacitor hybrid power generation system for grid-connected applications
CN106532744B (zh) 一种基于自抗扰控制的光伏电站抑制电网低频振荡的方法
WO2023071809A1 (zh) 一种发电-储能系统的波动压力发电控制方法及装置
CN102543232B (zh) 压水堆核电站稳压器水位和压力复合控制方法
CN110011364B (zh) 一种降低有功功率载荷波动对系统稳定影响的控制方法
CN111092441B (zh) 抽水蓄能电站区域负荷频率控制方法和系统
WO2024021206A1 (zh) 一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备
CN106374498B (zh) 一种考虑二次电压频率控制的微电网潮流计算方法
CN106300386B (zh) 基于svg动态抑制电网次同步振荡的频率闭环控制方法
CN110649596B (zh) 一种考虑系统初始状态的频率全响应解析模型
CN115313380A (zh) 自适应氢负荷波动的新能源制氢系统协调控制方法
CN112072677A (zh) 一种基于分数阶pid的抽水蓄能与电化学储能联合参与电网负荷频率控制方法
CN112383087B (zh) 一种光伏欠功率输出控制方法
CN112636366B (zh) 一种基于控制过程数据拟合的风电场动态频率控制方法
CN114094568B (zh) 一种发电-储能系统的波动压力发电控制方法及系统
Yao et al. Principle and control strategy of a novel wave-to-wire system embedded ocean energy storage optimization
CN117458534A (zh) 一种新型液流储能调峰调频方法及装置
CN101854064B (zh) 双馈感应风力发电系统基于能量的机网侧联合控制算法
CN113013930B (zh) 一种虚拟电厂经柔性直流外送的二次调频控制方法及系统
Fu et al. Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit
You et al. Power Regulation Strategy of Virtual Pumped Storage Power Station Based on Compressed Air Energy Storage
CN112632757A (zh) 一种基于混合模糊控制的质子交换膜燃料电池的过氧量实时切换控制装置设计方法
Patel et al. Designing of load frequency controller for two-area interconnected power system using grey wolf optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885688

Country of ref document: EP

Kind code of ref document: A1