WO2024021206A1 - 一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备 - Google Patents

一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备 Download PDF

Info

Publication number
WO2024021206A1
WO2024021206A1 PCT/CN2022/113890 CN2022113890W WO2024021206A1 WO 2024021206 A1 WO2024021206 A1 WO 2024021206A1 CN 2022113890 W CN2022113890 W CN 2022113890W WO 2024021206 A1 WO2024021206 A1 WO 2024021206A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
output
axis
energy storage
frequency
Prior art date
Application number
PCT/CN2022/113890
Other languages
English (en)
French (fr)
Inventor
孙华东
李文锋
郭强
张健
艾东平
郑超
魏巍
赵旭峰
苏志达
孙航宇
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2024021206A1 publication Critical patent/WO2024021206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This application relates to the technical field of new energy grid-connected control, and in particular to an energy storage system control method, system, storage medium and equipment based on a grid-type converter.
  • the energy storage converter is the core part of the energy storage system.
  • traditional control strategies for energy storage converters mainly include: constant power control, constant voltage and constant frequency control and droop control.
  • Constant power control takes the output power of the converter as the control target, controls according to a given power reference value, relies on a phase-locked loop, and is used in grid-connected operating conditions.
  • Constant voltage and constant frequency control takes the converter terminal voltage amplitude and frequency as the control targets, and controls according to the reference values of the terminal voltage amplitude and phase, and is used in island operation conditions.
  • the droop control simulates the P-f and Q-U droop characteristics of the synchronous generator. It has the ability of independent adjustment and can operate in various working conditions of grid connection and islanding.
  • the droop control uses the voltage amplitude and frequency output by the energy storage system as the reference object, measures and calculates the P and Q output by the energy storage system, and uses Q-U and P-f decoupling.
  • the droop characteristics of the system are used to adjust the voltage U and frequency f to maintain the voltage and frequency balance of the system.
  • Typical control is shown in Figure 1.
  • the droop control relationship can be expressed as the following formula (0):
  • f is the inverter output frequency
  • U is the inverter output voltage
  • P and Q are the actual output power of the inverter
  • f 0 is the rated output frequency
  • U 0 is the rated output voltage
  • P ref and Q ref are the output Power reference value
  • K p be the Pf droop control coefficient
  • K q be the QU droop control coefficient.
  • droop control imitates the external characteristics of voltage regulation and frequency regulation of synchronous machines P-f and Q-U, but does not reflect the internal characteristics of the synchronous generator's contribution to system inertia and damping.
  • the inertia characteristics and damping characteristics of the grid-connected system are poor, the frequency stability effect is average, and the ability to resist load disturbance is weak.
  • Embodiments of this application propose an energy storage system control method, system, storage medium and equipment based on a network-type converter to solve the problem of how to control an energy storage system based on a network-type converter.
  • Embodiments of the present application provide an energy storage system control method based on a network-type converter.
  • the method includes:
  • the internal potential virtual phase angle of the energy storage converter output is obtained based on the additional reference power
  • the internal potential amplitude output by the energy storage converter is obtained based on the output voltage and output current of the energy storage converter
  • the current inner loop reference value is calculated based on the internal potential amplitude
  • the reference voltage in the three-phase stationary coordinate system is determined based on the current inner loop reference value and the internal potential virtual phase angle;
  • the reference voltage is input to the pulse width modulation PWM generator to output a trigger pulse, and the energy storage system is controlled according to the trigger pulse.
  • obtaining additional reference power based on the actual frequency of the power grid includes:
  • the actual frequency of the power grid is compared with the preset reference frequency to obtain the absolute value of the frequency deviation
  • the additional reference power is determined using the following formula (1),
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • f deadzone is the preset frequency dead zone width threshold
  • K p is the droop coefficient.
  • the method further includes:
  • the additional reference power is determined to be 0.
  • obtaining the internal potential virtual phase angle of the energy storage converter output based on the additional reference power includes:
  • is the virtual phase angle of the internal potential output by the energy storage converter
  • J is the virtual moment of inertia
  • is the virtual angular velocity of the internal potential output by the converter
  • P m is the input mechanical power corresponding to the traditional synchronous machine
  • P is the variable The actual output active power of the current converter
  • D Equ is the equivalent virtual damping coefficient
  • ⁇ 0 is the system rated angular velocity
  • P ref is the active reference command
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • K p is the droop coefficient
  • D is the virtual damping coefficient
  • T w is the time constant of the DC isolation link
  • T 3 and T 4 are the time constant of the first phase-shifting link and the time constant of the second phase-shifting link respectively
  • K D is the speed deviation
  • s is the Laplacian operator
  • t is the time.
  • obtaining the internal potential amplitude output by the energy storage converter based on the output voltage and output current of the energy storage converter includes:
  • E m is the internal potential amplitude; K is the regulator gain; K v is the proportional integral selection factor; T 1 and T 2 are the first voltage regulator time constant and the second voltage regulator time constant respectively; V * is The reference voltage threshold of the excitation voltage regulator is preset; V is the actual voltage signal of the virtual excitation voltage regulator; is the current inner loop reference value of the d-axis; T R is the filter time constant; U is the voltage at the end of the energy storage converter; I g is the current at the output end of the converter; R C is the adjustment resistor, and X C is the adjustment resistance Reactance; j represents a complex number; T′ d0 is the excitation winding time constant; E′ q is the transient electromotive force; E qe is the forced no-load electromotive force that is linearly related to the excitation voltage; X d is the synchronous reactance; X′ d is the d axis Transient reactance; s is the Laplacian operator.
  • calculating the current inner loop reference value based on the internal potential amplitude includes:
  • the current inner loop control link determines the reference voltage in the three-phase stationary coordinate system based on the current inner loop reference value and the internal potential virtual phase angle, including:
  • the internal potential control output signal is determined based on the current inner loop reference value, including:
  • ed and e q are the internal potential control output signals under the d-axis and q-axis respectively;
  • u d and u q are the converter terminal voltages under the d-axis and q-axis respectively;
  • i gd and i gq respectively It is the actual value of the current injected into the grid by the converter under the d-axis and q-axis; and are the reference values of the current inner loop under the d-axis and q-axis respectively;
  • is the virtual angular velocity of the electric potential inside the converter output;
  • L is the inductance on the output line;
  • ⁇ Li gq and ⁇ Li gd are respectively formed under the q-axis and d-axis.
  • the current state feedback quantity; K Pin and K Iin are both PI control parameters;
  • s is the Laplacian operator;
  • the internal potential control output signal is subjected to Parker's inverse transformation based on the internal potential virtual phase angle to obtain the reference voltage in a three-phase stationary coordinate system.
  • the embodiment of the present application provides an energy storage system control system based on a network-type converter.
  • the system includes:
  • the virtual frequency regulation control module is configured to obtain additional reference power based on the actual frequency of the power grid during the virtual frequency regulation control link;
  • the virtual inertia and damping control module is configured to obtain the internal potential virtual phase angle of the energy storage converter output based on the additional reference power in the virtual inertia and damping control link;
  • a virtual excitation control module configured to obtain the internal potential amplitude output by the energy storage converter based on the output voltage and output current of the energy storage converter during the virtual excitation control link;
  • the voltage outer loop virtual circuit control module is configured to calculate the current inner loop reference value based on the internal potential amplitude in the voltage outer loop virtual circuit control link;
  • the current inner loop control module is configured to determine the reference voltage in the three-phase stationary coordinate system based on the current inner loop reference value and the internal potential virtual phase angle in the current inner loop control link;
  • the pulse control module is configured to input the reference voltage to the pulse width modulation PWM generator to output a trigger pulse, and control the energy storage system according to the trigger pulse.
  • the virtual frequency regulation control module is configured to compare the actual frequency of the power grid with a preset reference frequency in the virtual frequency regulation control link to obtain the absolute value of the frequency deviation;
  • the following formula (1) is used to determine the additional reference power, including:
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • f deadzone is the preset frequency dead zone width threshold
  • K p is the droop coefficient.
  • the virtual frequency modulation control module is also configured to:
  • the additional reference power is determined to be 0.
  • the virtual inertia and damping control module is also configured to obtain the internal potential virtual phase angle of the energy storage converter output according to the following formulas (2) and (3):
  • is the virtual phase angle of the internal potential output by the energy storage converter
  • J is the virtual moment of inertia
  • is the virtual angular velocity of the internal potential output by the converter
  • P m is the input mechanical power corresponding to the traditional synchronous machine
  • P is the variable The actual output active power of the current converter
  • D Equ is the equivalent virtual damping coefficient
  • ⁇ 0 is the system rated angular velocity
  • P ref is the active reference command
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • K p is the droop coefficient
  • D is the virtual damping coefficient
  • T w is the time constant of the DC isolation link
  • T 3 and T 4 are the time constant of the first phase-shifting link and the time constant of the second phase-shifting link respectively
  • K D is the speed deviation
  • s is the Laplacian operator
  • t is the time.
  • the virtual excitation control module is also configured to obtain the internal potential amplitude output by the energy storage converter according to the following formulas (4) and (5):
  • E m is the internal potential amplitude
  • K is the regulator gain
  • K v is the proportional integral selection factor
  • T 1 is the time constant of the first voltage regulator
  • T 2 is the time constant of the second voltage regulator
  • V * is the preset voltage regulator time constant.
  • the voltage outer loop virtual circuit control module is also configured to calculate the current inner loop reference value according to the following formula (6), including:
  • the current inner loop control module is also configured to:
  • the internal potential control output signal is determined based on the current inner loop reference value:
  • ed and e q are the internal potential control output signals under the d-axis and q-axis respectively;
  • u d and u q are the converter terminal voltages under the d-axis and q-axis respectively;
  • i gd and i gq respectively It is the actual value of the current injected into the grid by the converter under the d-axis and q-axis; and are the reference values of the current inner loop under the d-axis and q-axis respectively;
  • is the virtual angular velocity of the electric potential inside the converter output;
  • L is the inductance on the output line;
  • ⁇ Li gq and ⁇ Li gd are respectively formed under the q-axis and d-axis.
  • the current state feedback quantity; K Pin and K Iin are both PI control parameters;
  • s is the Laplacian operator;
  • the internal potential control output signal is subjected to Parker's inverse transformation based on the internal potential virtual phase angle to obtain the reference voltage in a three-phase stationary coordinate system.
  • Embodiments of the present application provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the energy storage system control methods based on a network-type converter are implemented. .
  • An embodiment of the present application provides an electronic device, including:
  • One or more processors configured to execute a computer program stored in the computer-readable storage medium.
  • Embodiments of the present application provide an energy storage system control method, system, storage medium and equipment based on a network-type converter.
  • the method includes: in the virtual frequency modulation control link, obtaining additional reference power based on the actual frequency of the power grid; In the inertia and damping control link, the internal potential virtual phase angle of the energy storage converter output is obtained based on the additional reference power; in the virtual excitation control link, the energy storage converter is obtained based on the output terminal voltage and output current of the energy storage converter.
  • the virtual phase angle determines the reference voltage in the three-phase stationary coordinate system; the reference voltage is input to the pulse width modulation PWM generator to output a trigger pulse, and the energy storage system is controlled according to the trigger pulse.
  • the embodiment of the present application equates the energy storage converter to a controllable voltage source with synchronous generator output characteristics.
  • the loop control obtains the reference voltage and inputs the reference voltage to the PWM generator to control the energy storage system according to the trigger pulse output by the PWM generator. This can better utilize the power throughput flexibility advantage of the energy storage system and help stabilize wind power. , photovoltaic and other new energy power generation output power fluctuations, provide voltage regulation, frequency regulation, and inertia support services for new energy grid integration, improve the grid's ability to accommodate new energy power generation, and promote the development and utilization of new energy.
  • Figure 1 is a droop control block diagram provided in related technologies
  • Figure 2 is an implementation flow chart of an energy storage system control method based on a network-type converter provided by an embodiment of the present application
  • Figure 3 is a control block diagram of an energy storage system based on a network-type converter provided by an embodiment of the present application
  • Figure 4 is a virtual frequency modulation control block diagram provided by an embodiment of the present application.
  • Figure 5 is a block diagram of virtual inertia and damping control provided by the embodiment of the present application.
  • Figure 6 is a virtual excitation control block diagram provided by the embodiment of the present application.
  • Figure 7 is a virtual circuit control block diagram provided by an embodiment of the present application.
  • Figure 8 is a current inner loop control block diagram provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an energy storage system control system based on a network-type converter provided by an embodiment of the present application.
  • embodiments of this application provide an energy storage system control method based on a grid-type converter, which simulates the reactive voltage regulation, active frequency regulation and other characteristics of the synchronous generator, so that the energy storage system can provide the needs of the power grid.
  • the voltage, frequency and independent inertia support are more conducive to smoothing the fluctuation of new energy output and improving the safe and stable operation of the system.
  • FIG 2 is an implementation flow chart of an energy storage system control method based on a network-type converter provided by an embodiment of the present application.
  • the energy storage system control method based on the grid-type converter provided by the embodiment of the present application equates the energy storage converter into a controllable voltage source with synchronous generator output characteristics, and uses virtual frequency modulation control, virtual inertia and damping control, virtual excitation control, voltage outer loop virtual circuit control and current inner loop control to obtain the reference voltage, and input the reference voltage to the PWM generator to store energy according to the trigger pulse output by the PWM generator System control can better leverage the power throughput flexibility advantage of the energy storage system, which is beneficial to smoothing the fluctuations in the output power of new energy sources such as wind power and photovoltaics, providing voltage regulation, frequency regulation, and inertia support services for new energy grid integration, and improving the power grid.
  • step 201 in the virtual frequency modulation control link, additional reference power is obtained based on the actual frequency of the power grid.
  • additional reference power is obtained based on the actual frequency of the power grid, including:
  • the actual frequency of the power grid is compared with the preset reference frequency to obtain the absolute value of the frequency deviation
  • the following formula (1) is used to determine the additional reference power, including:
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • f deadzone is the preset frequency dead zone width threshold
  • K p is the droop coefficient.
  • the method provided by the embodiments of this application further includes:
  • the additional reference power is determined to be 0.
  • the strategies adopted by the energy storage system control method based on the network-type converter are: virtual frequency modulation control, virtual inertia and damping control, virtual excitation control link, outer loop virtual Circuit control, current inner loop control and pulse control.
  • the speed regulator characteristics of the prime mover of the synchronous generator set are simulated, and its active power-frequency characteristics are simplified and considered.
  • the converter detects the actual frequency of the power grid and compares it with the preset reference frequency, and then goes through dead zone control. During the dead zone control, if the frequency deviation exceeds the preset frequency dead zone width threshold, the actual frequency is Deviation output; otherwise the output is 0. Then multiply the output frequency deviation by the droop coefficient to get the additional reference power. In this way, the energy storage converter realizes primary frequency regulation that responds autonomously to frequency changes in the power system.
  • the virtual frequency modulation control model is represented by the following formulas (1) and (8):
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency calculated from the voltage signal collected from the network side
  • f deadzone is the preset frequency dead zone width threshold
  • K p is the droop coefficient, which is the adaptive
  • the energy storage operating conditions are flexibly selected. For example, when the SOC level of the energy storage battery is too high or too low, this coefficient is adjusted to change the battery's ability to participate in primary frequency regulation to achieve optimal system operation.
  • the frequency deviation output is 0, and accordingly, the additional reference power can be obtained as 0.
  • step 202 in the virtual inertia and damping control link, the internal potential virtual phase angle of the energy storage converter output is obtained based on the additional reference power.
  • the internal potential virtual phase angle of the energy storage converter output is obtained based on the additional reference power, including:
  • is the virtual phase angle of the internal potential output by the energy storage converter
  • J is the virtual moment of inertia
  • is the virtual angular velocity of the internal potential output by the converter
  • P m is the input mechanical power corresponding to the traditional synchronous machine
  • P is the variable The actual output active power of the current converter
  • D Equ is the equivalent virtual damping coefficient
  • ⁇ 0 is the system rated angular velocity
  • P ref is the active reference command
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • K p is the droop coefficient
  • D is the virtual damping coefficient
  • T w is the time constant of the DC isolation link
  • T 3 and T 4 are the time constant of the first phase-shifting link and the time constant of the second phase-shifting link respectively
  • K D is the speed deviation
  • s is the Laplacian operator
  • t is the time.
  • the motion equation of the synchronous generator rotor is simulated, and the inertia and damping link are introduced in the control to enhance the flexible grid connection characteristics of the converter.
  • the sum of the additional reference power and the active reference command obtained in the virtual frequency modulation control link is used as the virtual mechanical power of the converter, and the actual output active power of the converter is used as the virtual electromagnetic power.
  • the difference between the two is stored after passing through the inertia and damping control links.
  • the virtual speed of the energy converter can be integrated to obtain the virtual phase angle of the virtual internal potential.
  • the control model is expressed as follows (2):
  • J is the virtual moment of inertia, which can be selected flexibly to adapt to the energy storage operating conditions. For example, when the SOC level of the energy storage battery is too low, J should be reduced to avoid excessive discharge; ⁇ is the virtual angular velocity of the internal potential of the converter output; P m is Corresponds to the input mechanical power of the traditional synchronous machine; P is the actual output active power of the converter; D Equ is the equivalent virtual damping coefficient; ⁇ 0 is the rated angular speed of the system; ⁇ is the internal potential virtual phase angle output by the energy storage converter ; P ref is the active reference command; ⁇ P ref is the additional reference power; K p is the droop coefficient; f * is the preset reference frequency; f is the actual frequency of the power grid; s is the Laplacian operator.
  • Equation (3) D Equation (3)
  • D is the virtual damping coefficient
  • T w is the time constant of the DC isolation link
  • T 3 and T 4 are the time constant of the first phase shift link and the time constant of the second phase shift link respectively
  • K D is the speed deviation amplification factor
  • step 203 in the virtual excitation control link, the internal potential amplitude output by the energy storage converter is obtained based on the output voltage and output current of the energy storage converter.
  • the internal potential amplitude of the converter output is obtained based on the output voltage and output current of the energy storage converter, including :
  • E m is the internal potential amplitude
  • K is the regulator gain
  • K v is the proportional integral selection factor
  • T 1 is the time constant of the first voltage regulator
  • T 2 is the time constant of the second voltage regulator
  • V * is the preset voltage regulator time constant.
  • T′ d0 is the excitation winding time constant
  • E′ q is the transient electromotive force
  • E qe is the forced no-load electromotive force that is linearly related to the excitation voltage
  • X d is the synchronous reactance
  • X′ d is the d-axis transient reactance.
  • Equation (5) the voltage and current at the output terminal of the energy storage converter are collected, and after the difference adjustment link, the actual voltage signal of the virtual excitation voltage regulator is obtained, as shown in Equation (5):
  • V is the calculated actual voltage signal of the virtual excitation voltage regulator
  • T R is the filter time constant
  • U is the terminal voltage of the energy storage converter
  • I g is the current at the output terminal of the converter
  • R C is the adjustment resistor
  • X C is the regulation reactance, which can make the virtual regulation control system have appropriate regulation characteristics.
  • the introduction of this differential adjustment link can prevent oscillation caused by parallel-operated power generation equipment adjusting a bus voltage at the same time.
  • control model is expressed as follows (4):
  • Em is the internal electric potential amplitude, corresponding to the transient electric potential E′ q ; K is the regulator gain; K v is the proportional integral selection factor; T 1 and T 2 are the voltage regulator time constants; V * is the excitation voltage regulation The reference voltage of the excitation regulator; V is the calculated actual voltage signal of the excitation regulator; is the current inner loop reference value of the d-axis, corresponding to id .
  • step 204 in the voltage outer loop virtual circuit control link, the current inner loop reference value is calculated based on the internal potential amplitude.
  • the current inner loop reference value is calculated based on the internal potential amplitude, including:
  • the current inner loop reference value is generated from the virtual inner potential Em . It is specified that the reference values of the internal potential on the d-axis and q-axis are respectively And the terminal voltage U is decomposed by the virtual phase angle to obtain the terminal voltage d-axis and q-axis components U d and U q . Calculate the reference current according to the following formula (6):
  • the current limiting method is the equal-proportional virtual impedance method, that is, the angle between the virtual impedance and the real impedance is set to be the same, but the amplitude is different.
  • the calculation is as follows (10):
  • I dq is the actual total current value
  • I dqlim is the total current limit value, which is determined according to the low-voltage current limit curve of the system side AC voltage.
  • step 205 in the current inner loop control link, the reference voltage in the three-phase stationary coordinate system is determined based on the current inner loop reference value and the internal potential virtual phase angle.
  • the reference voltage in the three-phase stationary coordinate system is determined based on the current inner loop reference value and the internal potential virtual phase angle, including:
  • the internal potential control output signal is determined based on the current inner loop reference value, including:
  • ed and e q are the internal potential control output signals under the d-axis and q-axis respectively;
  • u d and u q are the converter terminal voltages under the d-axis and q-axis respectively;
  • i gd and i gq respectively It is the actual value of the current injected into the grid by the converter under the d-axis and q-axis; and are the reference values of the current inner loop under the d-axis and q-axis respectively;
  • is the virtual angular velocity of the electric potential inside the converter output;
  • L is the inductance on the output line;
  • ⁇ Li gq and ⁇ Li gd are respectively formed under the q-axis and d-axis.
  • the current state feedback quantity; K Pin and K Iin are both PI control parameters;
  • s is the Laplacian operator;
  • the internal potential control output signal is subjected to Parker's inverse transformation based on the internal potential virtual phase angle to obtain the reference voltage in the three-phase stationary coordinate system.
  • step 206 the reference voltage is input to the pulse width modulation PWM generator to output a trigger pulse, and the energy storage system is controlled according to the trigger pulse.
  • the current inner loop control is used to achieve fast and error-free tracking of the current reference value.
  • the actual value of the output current of the converter is collected, and after the difference with the current reference value, the output signal is obtained through PI control and feedforward control of the cross-coupling term.
  • the control equation is shown in the following equation (7):
  • ed and e q are the internal potential control output signals under the d-axis and q-axis respectively;
  • u d and u q are the converter terminal voltages under the d-axis and q-axis respectively;
  • i gd , i gq and are the actual value and reference value of the grid current injected into the converter under the d-axis and q-axis respectively;
  • ⁇ Li gq and ⁇ Li gd are the current state feedback quantities;
  • K Pin and K Iin are the PI control parameters.
  • the internal potential control output signals ed and e q are subjected to Parker's inverse transformation to obtain the voltage reference wave in the three-phase stationary coordinate system.
  • the voltage reference wave is sent to the PWM generator to generate a trigger pulse that meets the control needs, thereby completing the overall output control.
  • the energy storage system control method based on the grid-type converter provided by the embodiment of the present application introduces the mechanical equations and electromagnetic equations based on the third-order synchronous generator model into the energy storage system converter control to realize active power-frequency modulation and wireless
  • the power-voltage regulation network control makes the energy storage converter externally equivalent to a controllable voltage source, effectively suppressing the fluctuation of new energy power generation, and providing voltage, frequency and frequency for new power systems with low inertia and weak damping characteristics. Inertial active support.
  • the research and development of energy storage systems is of great significance to the development and utilization of renewable energy.
  • the energy storage system Based on the flexibility of the energy storage system's own power throughput and long-term energy storage characteristics, combined with the converter control strategy with active support capabilities, the energy storage system can smooth out fluctuations in new energy power generation output and actively support system frequency and voltage. It has a positive impact on the safe and stable operation of the power grid.
  • Energy storage systems with active support capabilities have more independent and flexible control means and a wider control range, and have extremely high research value and engineering application prospects.
  • FIG 9 is a schematic structural diagram of an energy storage system control system based on a network-type converter provided by an embodiment of the present application.
  • the energy storage system control system 400 based on the network-type converter provided by the embodiment of the present application includes: a virtual frequency modulation control module 401, a virtual inertia and damping control module 402, a virtual excitation control module 403, and a voltage control module 403.
  • the virtual frequency regulation control module 401 is configured to obtain additional reference power based on the actual frequency of the power grid during the virtual frequency regulation control link.
  • the virtual frequency regulation control module 401 is also configured to compare the actual frequency of the power grid with the preset reference frequency in the virtual frequency regulation control link to obtain the absolute value of the frequency deviation;
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • f deadzone is the preset frequency dead zone width threshold
  • K p is the droop coefficient.
  • the virtual frequency modulation control module 401 is also configured to:
  • the additional reference power is determined to be 0.
  • the virtual inertia and damping control module 402 is configured to obtain the internal potential virtual phase angle of the energy storage converter output based on the additional reference power in the virtual inertia and damping control link.
  • the virtual inertia and damping control module 402 is also configured to obtain the internal potential virtual phase angle of the energy storage converter output according to the following formulas (2) and (3):
  • is the virtual phase angle of the internal potential output by the energy storage converter
  • J is the virtual moment of inertia
  • is the virtual angular velocity of the internal potential output by the converter
  • P m is the input mechanical power corresponding to the traditional synchronous machine
  • P is the variable The actual output active power of the current converter
  • D Equ is the equivalent virtual damping coefficient
  • ⁇ 0 is the system rated angular velocity
  • P ref is the active reference command
  • ⁇ P ref is the additional reference power
  • f * is the preset reference frequency
  • f is the actual frequency of the power grid
  • K p is the droop coefficient
  • D is the virtual damping coefficient
  • T w is the time constant of the DC isolation link
  • T 3 and T 4 are the time constant of the first phase-shifting link and the time constant of the second phase-shifting link respectively
  • K D is the speed deviation
  • s is the Laplacian operator
  • t is the time.
  • the virtual excitation control module 403 is configured to obtain the internal potential output by the energy storage converter based on the output voltage and output current of the energy storage converter during the virtual excitation control link. amplitude.
  • the virtual excitation control module 403 is also configured to obtain the output terminal voltage and output current of the energy storage converter in the virtual excitation control link according to the following formulas (4) and (5).
  • E m is the internal potential amplitude
  • K is the regulator gain
  • K v is the proportional integral selection factor
  • T 1 is the time constant of the first voltage regulator
  • T 2 is the time constant of the second voltage regulator
  • V * is the preset voltage regulator time constant.
  • the voltage outer loop virtual circuit control module 404 is configured to calculate the current inner loop reference value based on the inner potential amplitude in the voltage outer loop virtual circuit control link.
  • the voltage outer loop virtual circuit control module 404 is also configured to calculate the current inner loop reference value based on the internal potential amplitude in the voltage outer loop virtual circuit control link according to the following formula (6). :
  • the current inner loop control module 405 is configured to determine the reference voltage in the three-phase stationary coordinate system based on the current inner loop reference value and the internal potential virtual phase angle during the current inner loop control link.
  • the current inner loop control module 405 is also configured to determine the internal potential control output signal based on the current inner loop reference value in the current inner loop control link according to the following formula (7), including:
  • ed and e q are the internal potential control output signals under the d-axis and q-axis respectively;
  • u d and u q are the converter terminal voltages under the d-axis and q-axis respectively;
  • i gd and i gq respectively It is the actual value of the current injected into the grid by the converter under the d-axis and q-axis; and are the reference values of the current inner loop under the d-axis and q-axis respectively;
  • is the virtual angular velocity of the electric potential inside the converter output;
  • L is the inductance on the output line;
  • ⁇ Li gq and ⁇ Li gd are respectively formed under the q-axis and d-axis.
  • the current state feedback quantity; K Pin and K Iin are both PI control parameters;
  • s is the Laplacian operator;
  • the internal potential control output signal is subjected to Parker's inverse transformation based on the internal potential virtual phase angle to obtain the reference voltage in a three-phase stationary coordinate system.
  • the pulse control module 406 is configured to input the reference voltage to a pulse width modulation PWM generator to output a trigger pulse, and control the energy storage system according to the trigger pulse.
  • the energy storage system control system based on the grid-type converter provided by the embodiment of the present application corresponds to the energy storage system control method based on the grid-type converter provided by the embodiment of the application.
  • the implementation method please refer to the grid-type converter-based energy storage system control system provided by the embodiment of the present application. Detailed description of the energy storage system control method of the converter.
  • Embodiments of the present application provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the energy storage system control methods based on a network-type converter are implemented. .
  • An embodiment of the present application provides an electronic device, including:
  • One or more processors configured to execute the program in the computer-readable storage medium.
  • embodiments of the present application may be provided as methods, systems, devices, storage media or computer program products. Therefore, embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for implementing the functions specified in one process or processes of the flowchart and/or one block or blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • This application discloses an energy storage system control method, system, storage medium and equipment based on a network-type converter.
  • the method includes: in the virtual frequency modulation control link, obtaining additional reference power based on the actual frequency of the power grid; and damping control link, based on the additional reference power to obtain the internal potential virtual phase angle of the energy storage converter output; in the virtual excitation control link, obtain the internal potential amplitude of the energy storage converter output; in the voltage outer loop virtual circuit control link , calculate the current inner loop reference value based on the internal potential amplitude; in the current inner loop control link, determine the reference voltage in the three-phase static coordinate system based on the current inner loop reference value and the internal potential virtual phase angle; input the reference voltage to the pulse width
  • the modulated PWM generator outputs a trigger pulse, and the energy storage system is controlled based on the trigger pulse.
  • This application equates the energy storage converter to a controllable voltage source with synchronous generator output characteristics, which can better leverage the power throughput flexibility advantage of the energy storage system and improve the

Abstract

本申请涉及一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备,所述方法包括:在虚拟调频控制环节,基于电网实际频率获取附加参考功率;在虚拟惯量和阻尼控制环节,基于附加参考功率获取储能变流器输出的内电势虚拟相位角;在虚拟励磁控制环节,获取储能变流器输出的内电势幅值;在电压外环虚拟电路控制环节,基于内电势幅值计算电流内环参考值;在电流内环控制环节,基于电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;将参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据触发脉冲对储能系统进行控制。

Description

一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备
相关申请的交叉引用
本申请基于申请号为202210880722.5、申请日为2022年07月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及新能源并网控制技术领域,尤其涉及一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备。
背景技术
“碳达峰、碳中和”目标对于构建新型电力系统提出了新的要求,以光伏、风电为代表的新能源发电建设发展迅速。然而大规模新能源并网的出力间歇波动性与低阻尼低惯量问题给电力系统安全稳定运行带来了新的挑战。储能技术以其本身具有的灵活吞吐功率,长期储存能量等优点得到广泛应用。常见的储能技术包括机械储能、电磁储能和电化学储能等。
储能变流器是储能系统的核心部分。对应于不同应用场景,储能变流器传统控制策略主要包括:恒功率控制、恒压恒频控制以及下垂控制。恒功率控制以变流器输出功率为控制目标,根据给定功率参考值进行控制,依赖锁相环,用于并网运行工况。恒压恒频控制以变流器端电压幅值与频率为控制目标,根据端电压幅值和相位的参考值进行控制,用于孤岛运行工况。下垂控制模拟同步发电机P-f、Q-U下垂特性,具有自主调节能力,可运行于并网与孤岛多种工况。
传统的变流器控制策略,或依赖于锁相环并网,呈现电流源特性;或控制手段单一,使得系统呈现低惯量与欠阻尼状态。相关技术中的方案为:如图1所示,下垂控制以储能系统输出的电压幅值和频率作为参考对象,对储能系统输出的P和Q进行测量计算,借助Q-U和P-f解耦下的下垂特性进行电压U和频率f的调节,以维持系统的电压、频率平衡,典型控制如图1所示。下垂控制关系可表示为下式(0):
Figure PCTCN2022113890-appb-000001
其中,f为逆变器输出频率,U为逆变器输出电压,P、Q为逆变器实际输出功率,f 0为额定输出频率,U 0为额定输出电压,P ref、Q ref为输出功率参考值,设K p为P-f下垂控制系数,K q为Q-U下垂控制系数。
相关技术的缺点为:下垂控制模仿了同步机P-f、Q-U的调压调频外特性,但没有体现同步发电机对系统惯量和阻尼贡献的内特性。使得并网系统惯量特性和阻尼特性较差,频率稳定效果一般,抗负载扰动能力较弱。
发明内容
本申请实施例提出一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备,以解决如何基于构网型变流器进行储能系统控制的问题。
本申请实施例提供一种基于构网型变流器的储能系统控制方法,所述方法包括:
在虚拟调频控制环节,基于电网实际频率获取附加参考功率;
在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角;
在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值;
在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值;
在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;
将所述参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据所述触发脉冲对储能系统进行控制。
在一些实施例中,所述在虚拟调频控制环节,基于电网实际频率获取附加参考功率,包括:
在虚拟调频控制环节,将所述电网实际频率与预设参考频率进行比较,获取频率偏差绝对值;
当所述频率偏差绝对值大于或等于预设频率死区宽度阈值时,利用如下公式(1)确定所述附加参考功率,
ΔP ref=K p(f *-f)       (1),
其中,ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;f deadzone为预设频率死区宽度阈值;K p为下垂系数。
在一些实施例中,所述方法还包括:
当所述频率偏差绝对值小于预设频率死区宽度阈值时,确定所述附加参考功率为0。
在一些实施例中,所述在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角,包括:
Figure PCTCN2022113890-appb-000002
Figure PCTCN2022113890-appb-000003
其中,θ为储能变流器输出的内电势虚拟相位角;J为虚拟转动惯量;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;P ref为有功参考指令;ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数;D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数;s为拉普拉斯算子;t为时间。
在一些实施例中,所述在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值,包括:
Figure PCTCN2022113890-appb-000004
Figure PCTCN2022113890-appb-000005
其中,E m为内电势幅值;K为调节器增益;K v为比例积分选择因子;T 1和T 2分别为第一电压调节器时间常数和第二电压调节器时间常数;V *为预设励磁调压器参考电压阈值;V为虚拟励磁调压器实际电压信号;
Figure PCTCN2022113890-appb-000006
为d轴的电流内环参考值;T R为滤波器时间常数;U为储能变流器端电压;I g为变流器输出端电流;R C为调差电阻,X C为调差电抗;j表示复数;T′ d0为励磁绕组时间常数;E′ q为暂态电势;E qe为与励磁电压呈线性关系的强制空载电动势;X d为同步电抗;X′ d为d轴暂态电抗;s为拉普拉斯算子。
在一些实施例中,所述在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值,包括:
Figure PCTCN2022113890-appb-000007
其中,
Figure PCTCN2022113890-appb-000008
Figure PCTCN2022113890-appb-000009
分别为在d轴和q轴下的电流内环参考值;
Figure PCTCN2022113890-appb-000010
Figure PCTCN2022113890-appb-000011
分别为风机在d轴和q轴的虚拟内电势,
Figure PCTCN2022113890-appb-000012
E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
在一些实施例中,所述在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压,包括:
在电流内环控制环节,基于所述电流内环参考值确定内电势控制输出信号,包括:
Figure PCTCN2022113890-appb-000013
其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd和i gq分别为在d轴和q轴下变流器注入电网的电流实际值;
Figure PCTCN2022113890-appb-000014
Figure PCTCN2022113890-appb-000015
分别为在d轴和q轴下的电流内环参考值;ω为变流器输出内电势虚拟角速度;L为输出线路上的电感;ωLi gq和ωLi gd分别构成为在q轴和d轴下的电流状态反馈量;K Pin和K Iin均为PI控制参数;s为拉普拉斯算子;
基于所述内电势虚拟相位角对所述内电势控制输出信号进行派克反变换,以获取三相静止坐标系下的参考电压。
本申请实施例提供一种基于构网型变流器的储能系统控制系统,所述系统包括:
虚拟调频控制模块,配置为在虚拟调频控制环节,基于电网实际频率获取附加参考功率;
虚拟惯量和阻尼控制模块,配置为在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角;
虚拟励磁控制模块,配置为在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值;
电压外环虚拟电路控制模块,配置为在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值;
电流内环控制模块,配置为在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;
脉冲控制模块,配置为将所述参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据所述触发脉冲对储能系统进行控制。
在一些实施例中,所述虚拟调频控制模块,配置为在虚拟调频控制环节,将所述电网实际频率与预设参考频率进行比较,获取频率偏差绝对值;
当所述频率偏差绝对值大于或等于预设频率死区宽度阈值时,利用如下公式(1)确定所述附加参考功率,包括:
ΔP ref=K p(f *-f)       (1),
其中,ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;f deadzone为预设频率死区宽度阈值;K p为下垂系数。
在一些实施例中,所述虚拟调频控制模块,还配置为:
当所述频率偏差绝对值小于预设频率死区宽度阈值时,确定所述附加参考功率为0。
在一些实施例中,所述虚拟惯量和阻尼控制模块,还配置为按照下述公式(2)和(3)获取储能变流器输出的内电势虚拟相位角:
Figure PCTCN2022113890-appb-000016
Figure PCTCN2022113890-appb-000017
其中,θ为储能变流器输出的内电势虚拟相位角;J为虚拟转动惯量;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;P ref为有功参考指令;ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数;D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数;s为拉普拉斯算子;t为时间。
在一些实施例中,所述虚拟励磁控制模块,还配置为按照下述公式(4)和(5)获取所述储能变流器输出的内电势幅值:
Figure PCTCN2022113890-appb-000018
Figure PCTCN2022113890-appb-000019
其中,E m为内电势幅值;K为调节器增益;K v为比例积分选择因子;T 1为第一电压调节器时间常数,T 2为第二电压调节器时间常数;V *为预设励磁调压器参考电压阈值;V为虚拟励磁调压器实际电压信号;
Figure PCTCN2022113890-appb-000020
为d轴的电流内环参考值;T R为滤波器时间常数;U为储能变流器输出端电压;I g为储能变流器输出端电流;R C为调差电阻,X C为调差电抗;j表示复数;T′ d0为励磁绕组时间常数;E′ q为暂态电势;E qe为与励磁电压呈线性关系的强制空载电动势;X d为同步电抗;X′ d为d轴暂态电抗;s为拉普拉斯算子。
在一些实施例中,所述电压外环虚拟电路控制模块,还配置为按照下述公式(6)计算电流内环参考值,包括:
Figure PCTCN2022113890-appb-000021
其中,
Figure PCTCN2022113890-appb-000022
Figure PCTCN2022113890-appb-000023
分别为在d轴和q轴下的电流内环参考值;
Figure PCTCN2022113890-appb-000024
Figure PCTCN2022113890-appb-000025
分别为风机在d轴和q轴的虚拟内电势,
Figure PCTCN2022113890-appb-000026
E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
在一些实施例中,所述电流内环控制模块,还配置为:
按照下述公式(7),在电流内环控制环节,基于所述电流内环参考值确定内电势控制输出信号:
Figure PCTCN2022113890-appb-000027
其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd和i gq分别为在d轴和q轴下变流器注入电网的电流实际值;
Figure PCTCN2022113890-appb-000028
Figure PCTCN2022113890-appb-000029
分别为在d轴和q轴下的电流内环参考值;ω为变流器输出内电势虚拟角速度;L为输出线路上的电感;ωLi gq和ωLi gd分别构成为在q轴和d轴下的电流状态反馈量;K Pin和K Iin均为PI控制参数;s为拉普拉斯算子;
基于所述内电势虚拟相位角对所述内电势控制输出信号进行派克反变换,以获取三相静止坐标系下的参考电压。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现一种基于构网型变流器的储能系统控制方法中任一项的步骤。
本申请实施例提供一种电子设备,包括:
上述的计算机可读存储介质;以及
一个或多个处理器,配置为执行所述计算机可读存储介质中存储的计算机程序。
本申请实施例提供一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备,所述方法包括:在虚拟调频控制环节,基于电网实际频率获取附加参考功率;在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角;在虚拟励磁控制环节,基于储能变流器的输出端电压和输出端电流获取储能变流 器输出的内电势幅值;在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值;在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;将所述参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据所述触发脉冲对储能系统进行控制。本申请实施例将储能变流器等效成具有同步发电机输出特性的可控电压源,通过虚拟调频控制、虚拟惯量和阻尼控制、在虚拟励磁控制、电压外环虚拟电路控制和电流内环控制获取参考电压,并将参考电压输入至PWM发生器,以根据PWM发生器输出的触发脉冲对储能系统进行控制,能够更好地发挥储能系统功率吞吐灵活性优势,有利于平抑风电、光伏等新能源发电输出功率的波动,提供新能源并网的调压、调频、惯量支撑服务,提升电网对于新能源发电的消纳水平,促进新能源的开发与利用。
附图说明
通过参考下面的附图,可以更为完整地理解本申请的示例性实施方式:
图1为相关技术中提供的下垂控制框图;
图2为本申请实施例提供的基于构网型变流器的储能系统控制方法的一种实现流程图;
图3为本申请实施例提供的基于构网型变流器的储能系统控制框图;
图4为本申请实施例提供的虚拟调频控制框图;
图5为本申请实施例提供的虚拟惯量和阻尼控制框图;
图6为本申请实施例提供的虚拟励磁控制框图;
图7为本申请实施例提供的虚拟电路控制框图;
图8为本申请实施例提供的电流内环控制框图;
图9为本申请实施例提供的基于构网型变流器的储能系统控制系统的一种结构示意图。
具体实施方式
现在参考附图介绍本申请的示例性实施方式,然而,本申请可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本申请,并且向所属技术领域的技术人员充分传达本申请的范围。对于表示在附图中的示例性实施方式中的术语并不是对本申请的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
传统的变流器控制策略,或依赖于锁相环并网,呈现电流源特性;或控制手段单一,使得系统呈现低惯量与欠阻尼状态。因此,借鉴同步发电机的机械方程和电磁方程,使储能系统模拟同步机的优良特性,把电网构造型并网变换技术应用到储能变流器控制中,实现对系统的自主化调压调频和功率控制具有重要意义。
针对现有技术的不足,本申请实施例提供一种基于构网型变流器的储能系统控制方法,模拟同步发电机的无功调压、有功调频等特性,使储能系统提供电网需要的电压、频率和自主惯量支撑,更有利于平抑新能源出力波动,能够改善系统安全稳定运行问题。
图2为本申请实施例提供的基于构网型变流器的储能系统控制方法的一种实现流程 图。如图2所示,本申请实施例提供的基于构网型变流器的储能系统控制方法,将储能变流器等效成具有同步发电机输出特性的可控电压源,通过虚拟调频控制、虚拟惯量和阻尼控制、在虚拟励磁控制、电压外环虚拟电路控制和电流内环控制获取参考电压,并将参考电压输入至PWM发生器,以根据PWM发生器输出的触发脉冲对储能系统进行控制,能够更好地发挥储能系统功率吞吐灵活性优势,有利于平抑风电、光伏等新能源发电输出功率的波动,提供新能源并网的调压、调频、惯量支撑服务,提升电网对于新能源发电的消纳水平,促进新能源的开发与利用。本申请实施例提供的基于构网型变流器的储能系统控制方法,从步骤201处开始,在步骤201,在虚拟调频控制环节,基于电网实际频率获取附加参考功率。
在一些实施例中,在虚拟调频控制环节,基于电网实际频率获取附加参考功率,包括:
在虚拟调频控制环节,将电网实际频率与预设参考频率进行比较,获取频率偏差绝对值;
当频率偏差绝对值大于或等于预设频率死区宽度阈值时,利用如下公式(1)确定附加参考功率,包括:
ΔP ref=K p(f *-f)       (1),
其中,ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;f deadzone为预设频率死区宽度阈值;K p为下垂系数。
在一些实施例中,本申请实施例提供的方法还包括:
当频率偏差绝对值小于预设频率死区宽度阈值时,确定附加参考功率为0。
如图3所示,在本申请实施例中,基于构网型变流器的储能系统控制方法采用的策略依次为:虚拟调频控制、虚拟惯量和阻尼控制、虚拟励磁控制环节、外环虚拟电路控制、电流内环控制和脉冲控制。
结合图3和图4所示,在本申请实施例中,在虚拟调频控制环节,模拟同步发电机组原动机的调速器特性,简化考虑其有功功率-频率特性。在一些实施例中,变流器检测电网实际频率,并与预设参考频率进行对比后,经过死区控制,在死区控制中,若频率偏差超过预设频率死区宽度阈值,则按实际偏差输出;否则输出为0。再将输出的频率偏差量乘以下垂系数,即可得到附加参考功率。储能变流器以此实现自主响应电力系统频率变化的一次调频。
在本申请实施例中,虚拟调频控制模型表示如下式(1)和(8):
ΔP ref=K p(f *-f)       (1),
|f *-f|≥f deadzone        (8),
其中,ΔP ref为附加参考功率;f *为预设参考频率;f为从网侧采集电压信号计算出的实际频率;f deadzone为预设频率死区宽度阈值;K p为下垂系数,为适应储能运行条件灵活选取,如储能电池荷电状态SOC水平过高或过低时调节此系数,改变电池参加一次调频的能力,实现系统优化运行。
若频率偏差绝对值小于预设频率死区宽度阈值,则频率偏差量输出0,相应地,可以得到附加参考功率为0。
在步骤202,在虚拟惯量和阻尼控制环节,基于附加参考功率获取储能变流器输出的内电势虚拟相位角。
在一些实施例中,按照下述公式(2)和(3),在虚拟惯量和阻尼控制环节,基于附加参考功率获取储能变流器输出的内电势虚拟相位角,包括:
Figure PCTCN2022113890-appb-000030
Figure PCTCN2022113890-appb-000031
其中,θ为储能变流器输出的内电势虚拟相位角;J为虚拟转动惯量;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;P ref为有功参考指令;ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数;D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数;s为拉普拉斯算子;t为时间。
结合图3和图5所示,在本申请实施例中,在虚拟惯量和阻尼控制环节,模拟同步发电机转子运动方程,在控制中引入惯量与阻尼环节,增强变流器柔性并网特性。将虚拟调频控制环节得到的附加参考功率与有功参考指令之和作为变流器虚拟机械功率,将变流器实际输出有功功率作为虚拟电磁功率,二者之差经过惯量和阻尼控制环节后得到储能变流器虚拟转速,积分可得虚拟内电势虚拟相位角。控制模型表示如下式(2):
Figure PCTCN2022113890-appb-000032
其中,J为虚拟转动惯量,为适应储能运行条件灵活选取,如储能电池SOC水平过低时,应当减小J,避免过度放电;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;θ为储能变流器输出的内电势虚拟相位角;P ref为有功参考指令;ΔP ref为附加参考功率;K p为下垂系数;f *为预设参考频率;f为电网实际频率;s为拉普拉斯算子。
为增强虚拟阻尼控制能力,D Equ由并联的两部分组成,如式(3):
Figure PCTCN2022113890-appb-000033
其中,D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数。
在步骤203,在虚拟励磁控制环节,基于储能变流器的输出端电压和输出端电流获取储能变流器输出的内电势幅值。
在一些实施例中,按照下述公式(4)和(5),在虚拟励磁控制环节,基于储能变流器的输出端电压和输出端电流获取变流器输出的内电势幅值,包括:
Figure PCTCN2022113890-appb-000034
Figure PCTCN2022113890-appb-000035
其中,E m为内电势幅值;K为调节器增益;K v为比例积分选择因子;T 1为第一电压调节器时间常数,T 2为第二电压调节器时间常数;V *为预设励磁调压器参考电压阈值;V为虚拟励磁调压器实际电压信号;
Figure PCTCN2022113890-appb-000036
为d轴的电流内环参考值;T R为滤波器时间常数;U为储能变流器端电压;I g为变流器输出端电流;R C为调差电阻,X C为调差电抗;j表示复数;T′ d0为励磁绕组时间常数;E′ q为暂态电势;E qe为与励磁电压呈线性关系的强制空载电动势;X d为同步电抗;X′ d为d轴暂态电抗;s为拉普拉斯算子。
结合图3和图6所示,在本申请实施例中,在虚拟励磁控制环节,模拟同步发电机励磁系统特性,并引入同步发电机三阶实用模型中的电磁方程,如下式(9),以准确模拟励磁动态特性:
Figure PCTCN2022113890-appb-000037
其中,T′ d0为励磁绕组时间常数;E′ q为暂态电势;E qe为与励磁电压呈线性关系的强制空载电动势;X d为同步电抗;X′ d为d轴暂态电抗。
首先采集储能变流器输出端电压与电流,经过调差环节后得到虚拟励磁调压器实际电压信号,如式(5)所示:
Figure PCTCN2022113890-appb-000038
其中,V为计算得到的虚拟励磁调压器实际电压信号;T R为滤波器时间常数;U为储能变流器端电压;I g为变流器输出端电流;R C为调差电阻,X C为调差电抗,可使虚拟调节控制系统具有适当的调差特性。该调差环节的引入可以防止并联运行的发电设备同时调一个母线电压时引起振荡。
之后将该电压信号实际值与参考值进行比较,采用串联PID控制方法调节虚拟励磁控制环节的增益及动态特性,控制模型表示如下式(4):
Figure PCTCN2022113890-appb-000039
其中,E m为内电势幅值,对应暂态电势E′ q;K为调节器增益;K v为比例积分选择因子;T 1、T 2为电压调节器时间常数;V *为励磁调压器参考电压;V为计算得励磁调压器实际电压信号;
Figure PCTCN2022113890-appb-000040
为d轴的电流内环参考值,对应于i d
在步骤204,在电压外环虚拟电路控制环节,基于内电势幅值计算电流内环参考值。
在一些实施例中,按照下述公式(6),在电压外环虚拟电路控制环节,基于内电势幅值计算电流内环参考值,包括:
Figure PCTCN2022113890-appb-000041
其中,
Figure PCTCN2022113890-appb-000042
Figure PCTCN2022113890-appb-000043
分别为在d轴和q轴下的电流内环参考值;
Figure PCTCN2022113890-appb-000044
Figure PCTCN2022113890-appb-000045
分别为风机在d轴和q轴的虚拟内电势,
Figure PCTCN2022113890-appb-000046
E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
结合图3和图7所示,在本申请实施例中,在电压外环虚拟电路控制环节,由虚拟内电势E m生成电流内环参考值。规定内电势在d轴和q轴参考值分别为
Figure PCTCN2022113890-appb-000047
Figure PCTCN2022113890-appb-000048
并以虚拟相位角分解端电压U得到端电压d轴、q轴分量U d、U q。按照下述公式(6)计算参考电流得:
Figure PCTCN2022113890-appb-000049
其中,
Figure PCTCN2022113890-appb-000050
Figure PCTCN2022113890-appb-000051
分别为在d轴和q轴下的电流内环参考值;
Figure PCTCN2022113890-appb-000052
Figure PCTCN2022113890-appb-000053
分别为风机在d轴和q轴的虚拟内电势,
Figure PCTCN2022113890-appb-000054
E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
其中,电流限幅方法为等比例虚拟阻抗法,即设定虚拟阻抗与真实阻抗的夹角相同,幅值不同。计算如下式(10):
Figure PCTCN2022113890-appb-000055
其中,I dq为实际总电流值;I dqlim为总电流限幅值,根据系统侧交流电压的低压限流曲线确定。
在步骤205,在电流内环控制环节,基于电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压。
在一些实施例中,在电流内环控制环节,基于电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压,包括:
按照下述公式(7),在电流内环控制环节,基于电流内环参考值确定内电势控制输出信号,包括:
Figure PCTCN2022113890-appb-000056
其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd和i gq分别为在d轴和q轴下变流器注入电网的电流实际值;
Figure PCTCN2022113890-appb-000057
Figure PCTCN2022113890-appb-000058
分别为在d轴和q轴下的电流内环参考值;ω为变流器输出内电势虚拟角速度;L为输出线路上的电感;ωLi gq和ωLi gd分别构成为在q轴和d轴下的电流状态反馈量;K Pin和K Iin均为PI控制参数;s为拉普拉斯算子;
基于内电势虚拟相位角对内电势控制输出信号进行派克反变换,以获取三相静止坐标系下的参考电压。
在步骤206,将参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据触发脉冲对储能系统进行控制。
结合图3和图8所示,在本申请实施例中,在电流内环控制环节,采用电流内环控制实现对电流参考值快速无差跟踪。采集变流器输出电流实际值,与电流参考值作差后经过PI控制及交叉耦合项的前馈控制得到输出信号,控制方程如下式(7)所示:
Figure PCTCN2022113890-appb-000059
其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd、i gq
Figure PCTCN2022113890-appb-000060
分别为在d轴和q轴下的变流器注入电网电流实际值和参考值;ωLi gq、ωLi gd为电流状态反馈量;K Pin、K Iin为PI控制参数。
之后依据虚拟相位角θ对内电势控制输出信号e d、e q进行派克反变换得到三相静止坐标系下的电压参考波。
然后,再将电压参考波送至PWM发生器,以生成满足控制需要的触发脉冲,从而完成整体输出控制。
本申请实施例提供的基于构网型变流器的储能系统控制方法,在储能系统变流器控制中引入基于三阶同步发电机模型的机械方程与电磁方程,实现有功-调频、无功-调压的构网型控制,使得储能变流器对外等效成可控电压源,有效平抑新能源发电功率波动,为具有低惯量、弱阻尼特点的新型电力系统提供电压、频率和惯量主动支撑。
储能系统的研究与发展对于可再生能源开发与利用具有重要意义。基于储能系统自身功率吞吐的灵活性和可长期存储能量的特点,配合具有主动支撑能力的变流器控制策略,储能系统能够平抑新能源发电出力波动,对于系统频率与电压起到主动支撑作用,对电网的安全稳定运行产生积极影响。具有主动支撑能力的储能系统具有更独立灵活的控制手段和更宽广的控制范围,拥有极高的研究价值及工程应用前景。
图9为本申请实施例提供的基于构网型变流器的储能系统控制系统的一种结构示意图。如图9所示,本申请实施例提供的基于构网型变流器的储能系统控制系统400,包括:虚拟调频控制模块401、虚拟惯量和阻尼控制模块402、虚拟励磁控制模块403、电压外环虚拟电路控制模块404、电流内环控制模块405和脉冲控制模块406。
在一些实施例中,所述虚拟调频控制模块401,配置为在虚拟调频控制环节,基于电网实际频率获取附加参考功率。
在一些实施例中,所述虚拟调频控制模块401,还配置为在虚拟调频控制环节,将所述电网实际频率与预设参考频率进行比较,获取频率偏差绝对值;
当所述频率偏差绝对值大于或等于预设频率死区宽度阈值时,利用如下公式(1)确定所述附加参考功率:
ΔP ref=K p(f *-f)      (1),
其中,ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;f deadzone为预设频率死区宽度阈值;K p为下垂系数。
在一些实施例中,所述虚拟调频控制模块401,还配置为:
当所述频率偏差绝对值小于预设频率死区宽度阈值时,确定所述附加参考功率为0。
在一些实施例中,所述虚拟惯量和阻尼控制模块402,配置为在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角。
在一些实施例中,所述虚拟惯量和阻尼控制模块402,还配置为按照下述公式(2)和(3)获取储能变流器输出的内电势虚拟相位角:
Figure PCTCN2022113890-appb-000061
Figure PCTCN2022113890-appb-000062
其中,θ为储能变流器输出的内电势虚拟相位角;J为虚拟转动惯量;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;P ref为有功参考指令;ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数;D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数;s为拉普拉斯算子;t为时间。
在一些实施例中,所述虚拟励磁控制模块403,配置为在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值。
在一些实施例中,所述虚拟励磁控制模块403,还配置为按照下述公式(4)和(5),在虚拟励磁控制环节,基于储能变流器的输出端电压和输出端电流获取储能变流器输出的内电势幅值:
Figure PCTCN2022113890-appb-000063
Figure PCTCN2022113890-appb-000064
其中,E m为内电势幅值;K为调节器增益;K v为比例积分选择因子;T 1为第一电压调节器时间常数,T 2为第二电压调节器时间常数;V *为预设励磁调压器参考电压阈值;V为虚拟励磁调压器实际电压信号;
Figure PCTCN2022113890-appb-000065
为d轴的电流内环参考值;T R为滤波器时间常数;U为储能变流器端电压;I g为变流器输出端电流;R C为调差电阻,X C为调差电抗;j表示复数;T′ d0为励磁绕组时间常数;E′ q为暂态电势;E qe为与励磁电压呈线性关系的强制空载电动势;X d为同步电抗;X′ d为d轴暂态电抗;s为拉普拉斯算子。
在一些实施例中,所述电压外环虚拟电路控制模块404,配置为在电压外环虚拟电 路控制环节,基于所述内电势幅值计算电流内环参考值。
在一些实施例中,所述电压外环虚拟电路控制模块404,还配置为按照下述公式(6),在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值:
Figure PCTCN2022113890-appb-000066
其中,
Figure PCTCN2022113890-appb-000067
Figure PCTCN2022113890-appb-000068
分别为在d轴和q轴下的电流内环参考值;
Figure PCTCN2022113890-appb-000069
Figure PCTCN2022113890-appb-000070
分别为风机在d轴和q轴的虚拟内电势,
Figure PCTCN2022113890-appb-000071
E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
在一些实施例中,所述电流内环控制模块405,配置为在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压。
在一些实施例中,所述电流内环控制模块405,还配置为按照下述公式(7),在电流内环控制环节,基于所述电流内环参考值确定内电势控制输出信号,包括:
Figure PCTCN2022113890-appb-000072
其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd和i gq分别为在d轴和q轴下变流器注入电网的电流实际值;
Figure PCTCN2022113890-appb-000073
Figure PCTCN2022113890-appb-000074
分别为在d轴和q轴下的电流内环参考值;ω为变流器输出内电势虚拟角速度;L为输出线路上的电感;ωLi gq和ωLi gd分别构成为在q轴和d轴下的电流状态反馈量;K Pin和K Iin均为PI控制参数;s为拉普拉斯算子;
基于所述内电势虚拟相位角对所述内电势控制输出信号进行派克反变换,以获取三相静止坐标系下的参考电压。
在一些实施例中,所述脉冲控制模块406,配置为将所述参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据所述触发脉冲对储能系统进行控制。
本申请实施例提供的基于构网型变流器的储能系统控制系统与本申请实施例提供的基于构网型变流器的储能系统控制方法相对应,实现方式可以参见基于构网型变流器的储能系统控制方法的详细描述。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现一种基于构网型变流器的储能系统控制方法中任一项的步骤。
本申请实施例提供一种电子设备,包括:
上述的计算机可读存储介质;以及
一个或多个处理器,配置为执行所述计算机可读存储介质中的程序。
已经通过参考少量实施方式描述了本申请。然而,本领域技术人员所公知的,正如附带的专利权利要求所限定的,除了本申请以上公开的其他的实施例等同地落在本申请的范围内。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地 解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、设备、存储介质或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本申请实施例的技术方案而非对其限制,尽管参照上述实施例对本申请实施例进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者等同替换,而未脱离本申请实施例精神和范围的任何修改或者等同替换,其均应涵盖在本申请的权利要求保护范围之内。
工业实用性
本申请公开了一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备,所述方法包括:在虚拟调频控制环节,基于电网实际频率获取附加参考功率;在虚拟惯量和阻尼控制环节,基于附加参考功率获取储能变流器输出的内电势虚拟相位角;在虚拟励磁控制环节,获取储能变流器输出的内电势幅值;在电压外环虚拟电路控制环节,基于内电势幅值计算电流内环参考值;在电流内环控制环节,基于电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;将参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据触发脉冲对储能系统进行控制。本申请将储能变流器等效成具有同步发电机输出特性的可控电压源,能够更好地发挥储能系统功率吞吐灵活性优势,提升电网对于新能源发电的消纳水平。

Claims (16)

  1. 一种基于构网型变流器的储能系统控制方法,所述方法包括:
    在虚拟调频控制环节,基于电网实际频率获取附加参考功率;
    在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角;
    在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值;
    在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值;
    在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;
    将所述参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据所述触发脉冲对储能系统进行控制。
  2. 根据权利要求1所述的方法,所述在虚拟调频控制环节,基于电网实际频率获取附加参考功率,包括:
    在虚拟调频控制环节,将所述电网实际频率与预设参考频率进行比较,获取频率偏差绝对值;
    当所述频率偏差绝对值大于或等于预设频率死区宽度阈值时,利用如下公式(1)确定所述附加参考功率,
    ΔP ref=K p(f *-f)  (1),
    其中,ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数。
  3. 根据权利要求2所述的方法,所述方法还包括:
    当所述频率偏差绝对值小于预设频率死区宽度阈值时,确定所述附加参考功率为0。
  4. 根据权利要求1所述的方法,所述在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角,包括:
    Figure PCTCN2022113890-appb-100001
    Figure PCTCN2022113890-appb-100002
    其中,θ为储能变流器输出的内电势虚拟相位角;J为虚拟转动惯量;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;P ref为有功参考指令;ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数;D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数;s为拉普拉斯算子;t为时间。
  5. 根据权利要求1所述的方法,所述在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值,包括:
    Figure PCTCN2022113890-appb-100003
    Figure PCTCN2022113890-appb-100004
    其中,E m为内电势幅值;K为调节器增益;K v为比例积分选择因子;T 1为第一电压调节器时间常数,T 2为第二电压调节器时间常数;V *为预设励磁调压器参考电压阈值;V为虚拟励磁调压器实际电压信号;
    Figure PCTCN2022113890-appb-100005
    为d轴的电流内环参考值;T R为滤波器时间常数;U为储能变流器输出端电压;I g为储能变流器输出端电流;R C为调差电阻,X C为调差电抗;j表示复数;T′ d0为励磁绕组时间常数;X d为d轴同步电抗;X′ d为d轴暂态电抗;s为拉普拉斯算子。
  6. 根据权利要求1所述的方法,所述在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值,包括:
    Figure PCTCN2022113890-appb-100006
    其中,
    Figure PCTCN2022113890-appb-100007
    Figure PCTCN2022113890-appb-100008
    分别为在d轴和q轴下的电流内环参考值;
    Figure PCTCN2022113890-appb-100009
    Figure PCTCN2022113890-appb-100010
    分别为风机在d轴和q轴的虚拟内电势,
    Figure PCTCN2022113890-appb-100011
    E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
  7. 根据权利要求1所述的方法,所述在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压,包括:
    在电流内环控制环节,基于所述电流内环参考值确定内电势控制输出信号,包括:
    Figure PCTCN2022113890-appb-100012
    其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd和i gq分别为在d轴和q轴下变流器注入电网的电流实际值;
    Figure PCTCN2022113890-appb-100013
    Figure PCTCN2022113890-appb-100014
    分别为在d轴和q轴下的电流内环参考值;ω为变流器输出内电势虚拟角速度;L为输出线路上的电感;ωLi gq和ωLi gd分别构成为在q轴和d轴下的电流状态反馈量;K Pin和K Iin均为PI控制参数;s为拉普拉斯算子;
    基于所述内电势虚拟相位角对所述内电势控制输出信号进行派克反变换,以获取三相静止坐标系下的参考电压。
  8. 一种基于构网型变流器的储能系统控制系统,所述系统包括:
    虚拟调频控制模块,配置为在虚拟调频控制环节,基于电网实际频率获取附加参考功率;
    虚拟惯量和阻尼控制模块,配置为在虚拟惯量和阻尼控制环节,基于所述附加参考功率获取储能变流器输出的内电势虚拟相位角;
    虚拟励磁控制模块,配置为在虚拟励磁控制环节,基于所述储能变流器的输出端电压和输出端电流获取所述储能变流器输出的内电势幅值;
    电压外环虚拟电路控制模块,配置为在电压外环虚拟电路控制环节,基于所述内电势幅值计算电流内环参考值;
    电流内环控制模块,配置为在电流内环控制环节,基于所述电流内环参考值和内电势虚拟相位角确定三相静止坐标系下的参考电压;
    脉冲控制模块,配置为将所述参考电压输入至脉冲宽度调制PWM发生器输出触发脉冲,根据所述触发脉冲对储能系统进行控制。
  9. 根据权利要求8所述的系统,所述虚拟调频控制模块,还配置为在虚拟调频控制环节,将所述电网实际频率与预设参考频率进行比较,获取频率偏差绝对值;当所述频率偏差绝对值大于或等于预设频率死区宽度阈值时,利用如下公式(1)确定所述附加参考功率,
    ΔP ref=K p(f *-f)  (1),
    其中,ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数。
  10. 根据权利要求9所述的系统,所述虚拟调频控制模块,还配置为当所述频率偏差绝对值小于预设频率死区宽度阈值时,确定所述附加参考功率为0。
  11. 根据权利要求8所述的系统,所述虚拟惯量和阻尼控制模块,还配置为按照下述公式(2)和(3)获取储能变流器输出的内电势虚拟相位角:
    Figure PCTCN2022113890-appb-100015
    Figure PCTCN2022113890-appb-100016
    其中,θ为储能变流器输出的内电势虚拟相位角;J为虚拟转动惯量;ω为变流器输出内电势虚拟角速度;P m为对应于传统同步机的输入机械功率;P为变流器实际输出有功功率;D Equ为等效虚拟阻尼系数;ω 0为系统额定角速度;P ref为有功参考指令;ΔP ref为附加参考功率;f *为预设参考频率;f为电网实际频率;K p为下垂系数;D为虚拟阻尼系数;T w为隔直环节时间常数;T 3和T 4分别为第一移相环节时间常数和第二移相环节时间常数;K D为转速偏差放大倍数;s为拉普拉斯算子;t为时间。
  12. 根据权利要求8所述的系统,所述虚拟励磁控制模块,还配置为按照下述公式(4)和(5)获取所述储能变流器输出的内电势幅值:
    Figure PCTCN2022113890-appb-100017
    Figure PCTCN2022113890-appb-100018
    其中,E m为内电势幅值;K为调节器增益;K v为比例积分选择因子;T 1为第一电压调节器时间常数,T 2为第二电压调节器时间常数;V *为预设励磁调压器参考电压阈值; V为虚拟励磁调压器实际电压信号;
    Figure PCTCN2022113890-appb-100019
    为d轴的电流内环参考值;T R为滤波器时间常数;U为储能变流器输出端电压;I g为储能变流器输出端电流;R C为调差电阻,X C为调差电抗;j表示复数;T′ d0为励磁绕组时间常数;X d为d轴同步电抗;X′ d为d轴暂态电抗;s为拉普拉斯算子。
  13. 根据权利要求8所述的系统,所述电压外环虚拟电路控制模块,还配置为按照下述公式(6)计算电流内环参考值:
    Figure PCTCN2022113890-appb-100020
    其中,
    Figure PCTCN2022113890-appb-100021
    Figure PCTCN2022113890-appb-100022
    分别为在d轴和q轴下的电流内环参考值;
    Figure PCTCN2022113890-appb-100023
    Figure PCTCN2022113890-appb-100024
    分别为风机在d轴和q轴的虚拟内电势,
    Figure PCTCN2022113890-appb-100025
    E m为内电势幅值;U d和U q分别为风机在d轴和q轴的实测端电压;(R+R v)+j(X+X v)为支路总阻抗,R和X均为真实阻抗参数,R v和X v均为虚拟阻抗参数;j表示复数。
  14. 根据权利要求8所述的系统,所述电流内环控制模块,还配置为:
    按照下述公式(7),在电流内环控制环节,基于所述电流内环参考值确定内电势控制输出信号:
    Figure PCTCN2022113890-appb-100026
    其中,e d和e q分别为在d轴和q轴下的内电势控制输出信号;u d和u q分别为在d轴和q轴下的变流器端电压;i gd和i gq分别为在d轴和q轴下变流器注入电网的电流实际值;
    Figure PCTCN2022113890-appb-100027
    Figure PCTCN2022113890-appb-100028
    分别为在d轴和q轴下的电流内环参考值;ω为变流器输出内电势虚拟角速度;L为输出线路上的电感;ωLi gq和ωLi gd分别构成为在q轴和d轴下的电流状态反馈量;K Pin和K Iin均为PI控制参数;s为拉普拉斯算子;
    基于所述内电势虚拟相位角对所述内电势控制输出信号进行派克反变换,以获取三相静止坐标系下的参考电压。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述方法的步骤。
  16. 一种电子设备,包括:
    权利要求15中所述的计算机可读存储介质;以及
    一个或多个处理器,配置为执行所述计算机可读存储介质中存储的计算机程序。
PCT/CN2022/113890 2022-07-26 2022-08-22 一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备 WO2024021206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210880722.5A CN114944663B (zh) 2022-07-26 2022-07-26 一种基于构网型变流器的储能系统控制方法及系统
CN202210880722.5 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024021206A1 true WO2024021206A1 (zh) 2024-02-01

Family

ID=82911275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113890 WO2024021206A1 (zh) 2022-07-26 2022-08-22 一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备

Country Status (2)

Country Link
CN (1) CN114944663B (zh)
WO (1) WO2024021206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728506A (zh) * 2024-02-08 2024-03-19 国网浙江省电力有限公司经济技术研究院 一种构网型储能自适应平滑并网方法、系统、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313432B (zh) * 2022-09-29 2023-01-20 北京金风科创风电设备有限公司 控制方法、装置、介质、控制器和风力发电机组
CN115882514B (zh) * 2023-02-16 2023-05-09 中国科学院电工研究所 新能源电力系统跟网构网一体化变流器集群聚合控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196318A (zh) * 2017-04-17 2017-09-22 华北电力大学 一种基于v2g技术的电动汽车参与电网调频控制方法
US20180191281A1 (en) * 2016-10-17 2018-07-05 Qingchang ZHONG Operating Doubly-Fed Induction Generators as Virtual Synchronous Generators
CN110277803A (zh) * 2019-07-30 2019-09-24 西安西电电气研究院有限责任公司 一种储能变流器的虚拟同步发电机控制方法及控制装置
CN110571871A (zh) * 2019-09-06 2019-12-13 东北电力大学 储能电站参与电网一次调频深度控制及贡献力分析方法
CN112217239A (zh) * 2020-09-30 2021-01-12 郑州轻工业大学 一种基于虚拟同步发电机技术的储能机电暂态建模方法
CN114256867A (zh) * 2021-11-04 2022-03-29 国网浙江省电力有限公司台州供电公司 基于惯量自适应调节的永磁直驱风电构网型控制方法
CN114465265A (zh) * 2021-12-27 2022-05-10 国网辽宁省电力有限公司电力科学研究院 基于三阶模型的主动支撑型永磁风电机组小干扰分析方法
CN114614494A (zh) * 2022-03-22 2022-06-10 华中科技大学 一种提升构网型变流器虚拟惯量的控制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505623B (zh) * 2016-12-06 2019-01-08 河海大学 一种基于转差率反馈的双馈风电机组惯量控制方法
DE102017106213A1 (de) * 2017-03-22 2018-09-27 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz
CN112290603A (zh) * 2019-07-22 2021-01-29 华北电力大学(保定) 一种虚拟稳态同步负阻抗的vsg功率解耦控制方法
CN110429655B (zh) * 2019-09-06 2023-06-27 国网辽宁省电力有限公司 基于同步机三阶模型的储能单元主动支撑控制方法及系统
CN114123245A (zh) * 2021-11-26 2022-03-01 国网四川省电力公司经济技术研究院 逆变器控制器、逆变器并网结构和电网低频振荡抑制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180191281A1 (en) * 2016-10-17 2018-07-05 Qingchang ZHONG Operating Doubly-Fed Induction Generators as Virtual Synchronous Generators
CN107196318A (zh) * 2017-04-17 2017-09-22 华北电力大学 一种基于v2g技术的电动汽车参与电网调频控制方法
CN110277803A (zh) * 2019-07-30 2019-09-24 西安西电电气研究院有限责任公司 一种储能变流器的虚拟同步发电机控制方法及控制装置
CN110571871A (zh) * 2019-09-06 2019-12-13 东北电力大学 储能电站参与电网一次调频深度控制及贡献力分析方法
CN112217239A (zh) * 2020-09-30 2021-01-12 郑州轻工业大学 一种基于虚拟同步发电机技术的储能机电暂态建模方法
CN114256867A (zh) * 2021-11-04 2022-03-29 国网浙江省电力有限公司台州供电公司 基于惯量自适应调节的永磁直驱风电构网型控制方法
CN114465265A (zh) * 2021-12-27 2022-05-10 国网辽宁省电力有限公司电力科学研究院 基于三阶模型的主动支撑型永磁风电机组小干扰分析方法
CN114614494A (zh) * 2022-03-22 2022-06-10 华中科技大学 一种提升构网型变流器虚拟惯量的控制方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728506A (zh) * 2024-02-08 2024-03-19 国网浙江省电力有限公司经济技术研究院 一种构网型储能自适应平滑并网方法、系统、设备及介质

Also Published As

Publication number Publication date
CN114944663A (zh) 2022-08-26
CN114944663B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2024021206A1 (zh) 一种基于构网型变流器的储能系统控制方法、系统、存储介质及设备
US9124140B2 (en) Intelligent power converter control for grid integration of renewable energies
CN102223100A (zh) 基于修正比例谐振调节器的三相并网逆变器控制方法
CN108964040B (zh) 电网不平衡下虚拟同步发电机功率-电流协调控制方法
Khemiri et al. An adaptive nonlinear backstepping control of DFIG driven by wind turbine
Jabal Laafou et al. Dynamic modeling and improved control of a grid-connected DFIG used in wind energy conversion systems
CN114825395A (zh) 一种电网不对称故障下飞轮储能网侧变流器的控制策略
CN109039180B (zh) 双馈感应发电机并网过程的分数阶控制方法
CN117134406A (zh) 基于虚拟同步机的构网型柔性直流系统控制方法和系统
CN114069697B (zh) 一种基于虚拟同步发电机原理控制逆变器并网的方法
Chen et al. Terminal sliding-mode control scheme for grid-side PWM converter of DFIG-based wind power system
CN109004680B (zh) 基于储能逆变器的风电场功率控制方法与系统
CN109378847B (zh) 一种微电网储能pcs控制系统和方法
CN113193605A (zh) 电压控制型新能源变流器的有功功率直接控制方法
CN116613784B (zh) 一种基于pid-dhdp风光发电系统次同步振荡协调控制方法
Xie et al. Improved active power dynamic response of voltage‐controlled doubly fed induction generator
CN117526428B (zh) 基于朗道-斯图尔特振子的逆变器构网控制方法
CN115021277B (zh) 提升新能源经柔性直流送出阻尼特性的控制方法及系统
CN115882468B (zh) 一种基于端口能量重塑的虚拟同步控制方法
CN113595066B (zh) 基于附加控制器的抑制水光互补系统超低频振荡的方法
Li et al. Research on hybrid microgrid control system based on improved dynamic virtual synchronous machine
Du et al. A virtual synchronous generator adopting dynamic damping without frequency detection
Zhang et al. Adaptive Direct Output Voltage Control of STATCOM for Dynamic Voltage Support
CN114142539B (zh) 一种新能源发电装备快速频率响应控制方法
Wu et al. Optimal Control Strategy of Back-to-Back Converter Based on AC/DC Voltage Source Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952648

Country of ref document: EP

Kind code of ref document: A1