WO2023071647A1 - 光学镜头、摄像头模组及电子设备 - Google Patents
光学镜头、摄像头模组及电子设备 Download PDFInfo
- Publication number
- WO2023071647A1 WO2023071647A1 PCT/CN2022/120873 CN2022120873W WO2023071647A1 WO 2023071647 A1 WO2023071647 A1 WO 2023071647A1 CN 2022120873 W CN2022120873 W CN 2022120873W WO 2023071647 A1 WO2023071647 A1 WO 2023071647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- mirror
- secondary mirror
- shading
- primary
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 130
- 230000008033 biological extinction Effects 0.000 claims description 92
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 21
- 230000000903 blocking effect Effects 0.000 abstract description 11
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 34
- 238000010586 diagram Methods 0.000 description 13
- 239000011521 glass Substances 0.000 description 8
- 238000012538 light obscuration Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B11/00—Filters or other obturators specially adapted for photographic purposes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/06—Bodies with exposure meters or other indicators built into body but not connected to other camera members
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/17—Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Definitions
- the present application relates to the field of imaging technology, in particular to an optical lens, a camera module and electronic equipment.
- the Cassegrain-style optical lens reflects the incident light to the image sensor for imaging by designing the primary mirror and the secondary mirror, which can achieve long focal length shooting and shorten the length of the optical lens.
- the incident light is reflected between the primary mirror and the secondary mirror, stray light will be formed, resulting in a decrease in image quality. Therefore, how to design optical lenses to improve imaging quality has become a technical problem to be solved.
- the present application provides an optical lens capable of improving imaging quality, a camera module and electronic equipment.
- an optical lens comprising:
- the primary mirror is provided with a light-transmitting part and a primary mirror reflecting surface surrounding the periphery of the light-transmitting part, and the primary mirror reflecting surface faces the object side;
- a secondary mirror, the secondary mirror and the primary mirror are arranged sequentially from the object side to the image side, the secondary mirror is coaxial with the primary mirror and arranged at intervals, the secondary mirror has a secondary mirror facing the image side a mirror reflective surface, the diameter of the secondary mirror reflective surface is smaller than the diameter of the primary mirror reflective surface;
- the first extinction element is arranged on the reflection surface of the secondary mirror and coaxial with the secondary mirror, and the diameter of the first extinction element is smaller than the diameter of the reflection surface of the secondary mirror;
- the primary mirror reflective surface is used to reflect the first light incident from the object side and form a first sub-ray directed to the secondary mirror reflective surface and a second sub-ray directed to the first extinction member
- the secondary mirror reflective surface is used to reflect the first sub-ray and form a target ray directed toward the light-transmitting part
- the first extinction member is used to block the second sub-ray from entering the light-transmitting part .
- the present application also provides a camera module, including an image sensor and the optical lens, the image sensor is arranged on the side of the primary mirror away from the secondary mirror and connected to the transparent part Oppositely, the image sensor is configured to receive at least part of the target light and convert the received target light into electrical signals.
- the present application also provides an electronic device, including a display screen and the camera module, the display screen is electrically connected to the camera module, and the display screen is used to display the camera module captured image.
- FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
- Fig. 2 is an exploded schematic diagram of the electronic device shown in Fig. 1;
- FIG. 3 is a schematic plan view of the camera module in the electronic device shown in FIG. 2, wherein the camera module includes an optical lens and an image sensor;
- Fig. 4 is a schematic plan view of the optical lens in the camera module shown in Fig. 3, wherein the optical lens includes a primary mirror and a secondary mirror;
- Fig. 5 is the cross-sectional view of the optical lens shown in Fig. 4 along the line A-A, wherein the optical lens also includes a first light extinction member, the primary mirror is provided with a light-transmitting portion and a primary mirror reflective surface, and the secondary mirror is provided with a secondary mirror reflective surface;
- Fig. 6 is a schematic diagram of reflecting the first ray on the reflective surface of the primary mirror shown in Fig. 5 and forming a first sub-ray directed to the reflective surface of the secondary mirror and a second sub-ray directed to the first extinction member;
- Fig. 7 is another schematic diagram of reflecting the first ray on the primary mirror reflective surface shown in Fig. 5 and forming a first sub-ray directed to the secondary mirror reflective surface and a second sub-ray directed to the first extinction member;
- Fig. 8 is a schematic diagram showing that the first light sub-ray is reflected by the reflective surface of the secondary mirror shown in Fig. 6 to form a target light beam directed to the light-transmitting part, and the first extinction member blocks the second sub-ray from going to the light-transmitting part;
- Fig. 9 is a schematic diagram of the coaxial arrangement of the optical lens and the image sensor of the camera module shown in Fig. 3;
- Fig. 10 is a cross-sectional view of the camera module shown in Fig. 9 along the line B-B, wherein the target light passes through the light-transmitting part and hits the image sensor;
- Fig. 11 is a schematic diagram showing that the reflective surface of the primary mirror shown in Fig. 5 is in a concave arc shape, and the reflective surface of the secondary mirror is in a convex arc shape;
- Fig. 12 is a schematic plan view of the optical lens shown in Fig. 4 also including a secondary mirror shading tube;
- Fig. 13 is a sectional view of the optical lens shown in Fig. 12 along the C-C line;
- Fig. 14 is a schematic diagram showing that the first ray of the optical lens shown in Fig. 13 is incident on the reflective surface of the primary mirror, and the second ray is blocked by the secondary mirror shading tube;
- Fig. 15 is a schematic plan view of the optical lens shown in Fig. 13 also including a lens barrel and a light-transmitting cover;
- Fig. 16 is a schematic plan view that the optical lens shown in Fig. 4 also includes a main mirror shading tube;
- Fig. 17 is a cross-sectional view of the optical lens shown in Fig. 16 along the D-D line, wherein the main mirror shading tube is used to block the third sub-ray and the third ray;
- Fig. 18 is the schematic diagram that the main mirror shading tube is also used to pass through the target light in the optical lens shown in Fig. 17;
- Fig. 19 is a schematic diagram showing that the optical lens shown in Fig. 18 also includes a lens, and the lens is used to refract the first sub-target ray of the target ray;
- Fig. 20 is a schematic diagram that the optical lens shown in Fig. 19 also includes a light-shielding ring, and the light-shielding ring is used to block the second sub-target light of the target light;
- Fig. 21 is a schematic diagram showing that the optical lens shown in Fig. 20 further includes a second extinction element, and the second extinction element is used to block the third sub-target light of the target light;
- Fig. 22 is a schematic plan view of the optical lens shown in Fig. 21 also including a lens barrel and a light-transmitting cover;
- Fig. 23 is a schematic plan view that the optical lens shown in Fig. 4 also includes a primary mirror shading tube and a secondary mirror shading tube;
- Figure 24 is a sectional view of the optical lens shown in Figure 23 along the E-E line;
- Fig. 25 is a schematic cross-sectional view of the optical lens shown in Fig. 24 also including a lens barrel and a light-transmitting cover;
- Fig. 26 is a schematic cross-sectional view of the optical lens, image sensor, and circuit board shown in Fig. 25;
- FIG. 27 is a schematic cross-sectional view of the optical lens, image sensor, circuit board and filter shown in FIG. 25 .
- the application provides an optical lens, including:
- the primary mirror is provided with a light-transmitting part and a primary mirror reflecting surface surrounding the periphery of the light-transmitting part, and the primary mirror reflecting surface faces the object side;
- a secondary mirror, the secondary mirror and the primary mirror are arranged sequentially from the object side to the image side, the secondary mirror is coaxial with the primary mirror and arranged at intervals, the secondary mirror has a secondary mirror facing the image side a mirror reflective surface, the diameter of the secondary mirror reflective surface is smaller than the diameter of the primary mirror reflective surface;
- the first extinction element is arranged on the reflection surface of the secondary mirror and coaxial with the secondary mirror, and the diameter of the first extinction element is smaller than the diameter of the reflection surface of the secondary mirror;
- the primary mirror reflective surface is used to reflect the first light incident from the object side and form a first sub-ray directed to the secondary mirror reflective surface and a second sub-ray directed to the first extinction member
- the secondary mirror reflective surface is used to reflect the first sub-ray and form a target ray directed toward the light-transmitting part
- the first extinction member is used to block the second sub-ray from entering the light-transmitting part .
- the reflective surface of the primary mirror is in a concave arc shape
- the reflective surface of the secondary mirror is in a convex arc shape
- the first extinction member is in a concave arc shape
- the optical lens also includes a plurality of secondary mirror light-shielding tubes, a plurality of secondary mirror light-shielding tubes surround the outer peripheral side of the secondary mirror in turn and are arranged coaxially with the secondary mirror, and a plurality of secondary mirror light-shielding tubes are arranged coaxially with the secondary mirror.
- the diameters of the tubes are all smaller than the diameter of the reflecting surface of the primary mirror, and the adjacent two secondary mirror shading tubes are spaced apart, and the first light-transmitting area between the adjacent two secondary mirror shading tubes is used for transmission.
- the secondary mirror light-shielding tube is used to block the second light incident from the object side, so as to prevent the second light from entering the light-transmitting part, and the incident of the second light The angle is greater than the incident angle of the first light.
- the optical lens also includes a lens barrel and a light-transmitting cover plate, and the light-transmitting cover plate is sealed at an end of the lens barrel close to the object side, and the primary mirror, the secondary mirror, and the secondary mirror Both the light-shielding tube and the first light-shielding member are arranged in the lens barrel, the primary mirror is fixedly connected to the lens barrel, and the secondary mirror and the secondary mirror light-shielding tube are fixed on the transparent cover plate superior.
- the lens barrel and the outermost secondary mirror light-shielding cylinder are spaced apart, and the second light-transmitting area between the lens barrel and the outermost secondary mirror light-shielding cylinder is used for transmitting through the first light.
- the distance between two adjacent secondary mirror light shielding tubes is equal.
- the distance between two adjacent secondary mirror light-shielding cylinders increases sequentially along the direction that the secondary mirrors point to the secondary mirror light-shielding cylinder.
- the lengths of the plurality of secondary mirror light-shielding tubes along the axial direction are different.
- the optical lens further includes a primary mirror shading tube, the primary mirror shading tube is at least partly located between the light-transmitting part and the secondary mirror, and the primary mirror shading tube is coaxially arranged with the primary mirror,
- the diameter of the primary mirror shading cylinder is smaller than the diameter of the secondary mirror reflective surface and the diameter of the primary mirror shading cylinder is greater than the diameter of the first extinction member;
- the primary mirror reflective surface is also used to reflect light from the object
- the first light emitted from the side forms a third sub-ray directed to the primary mirror shading cylinder, and the primary mirror shading cylinder is used to block the third sub-ray from entering the secondary mirror reflective surface, and to block
- the third ray incident from the object side is used to prevent the third ray from entering the light-transmitting portion, and the incident angle of the third ray is larger than the incident angle of the first ray.
- one end of the primary mirror shading tube is located between the primary mirror and the secondary mirror, and the other end of the primary mirror shading tube passes through the light-transmitting part and is fixedly connected with the primary mirror.
- the mirror shading tube is also used to transmit at least part of the target light.
- the optical lens further includes at least one lens, the lens is arranged in the main mirror shading tube, and the lens is used to refract the first sub-target light of the target light on the image side.
- the optical lens also includes at least one light-shielding ring, and the light-shielding ring is arranged between the edges of two adjacent lenses, or, the light-shielding ring is arranged on the edge of the lens toward the image side
- the light shielding ring is used to block the second sub-target light of the target light, so as to prevent the second sub-target light from being emitted to the image side, and the second sub-target light does not pass through the lens refraction.
- the inner surface of the main mirror shading cylinder is provided with a second extinction member, and the second extinction member is used to block the third sub-target ray of the target ray, so as to prevent the third sub-target ray from shooting at the target ray.
- the angle at which the third sub-target ray is reflected by the secondary reflective surface is greater than the angle at which the first sub-target ray is reflected by the secondary reflective surface.
- the optical lens also includes a lens barrel and a light-transmitting cover plate, the light-transmitting cover plate is sealed on the end of the lens barrel close to the object side, the main mirror, the main mirror shading tube, the Both the secondary mirror and the first extinction element are arranged in the lens barrel, the primary mirror is fixedly connected to the lens barrel, the primary mirror shading tube is fixedly connected to the primary mirror, and the secondary mirror is fixed to the on the transparent cover.
- the optical lens also includes at least one secondary mirror shading cylinder and a primary mirror shading cylinder, the secondary mirror shading cylinder surrounds the outer peripheral side of the secondary mirror and is coaxially arranged with the secondary mirror, and the secondary mirror shading
- the diameter of the tube is smaller than the diameter of the reflecting surface of the primary mirror, and the secondary mirror light-shielding tube is used to block the second light incident from the object side;
- the primary mirror light-shielding tube is at least partially located between the light-transmitting part and the Between the secondary mirrors and the primary mirror shading tube is coaxially arranged with the primary mirror, the diameter of the primary mirror shading tube is smaller than the diameter of the secondary mirror reflection surface and the diameter of the primary mirror shading tube is larger than the The diameter of the first extinction member;
- the reflective surface of the primary mirror is also used to reflect the first light emitted from the object side and form the third sub-ray directed to the primary mirror shading tube, and the primary mirror shading tube is used For blocking the third sub-ray and for blocking the third ray incident from the
- the optical lens also includes a lens barrel and a light-transmitting cover plate, the light-transmitting cover plate is sealed on the end of the lens barrel close to the object side, the main mirror, the main mirror shading tube, the The secondary mirror, the secondary mirror shading tube and the first extinction member are all arranged in the lens barrel, the primary mirror is fixedly connected to the lens barrel, and the primary mirror shading tube is fixedly connected to the primary mirror , the secondary mirror and the secondary mirror light-shielding cylinder are fixed on the light-transmitting cover plate, the number of the secondary mirror light-shielding cylinder is multiple, and the first two adjacent secondary mirror light-shielding cylinders The transparent area is used for passing the first light and the third light.
- the present application also provides a camera module, including an image sensor and the optical lens, the image sensor is arranged on the side of the primary mirror away from the secondary mirror and opposite to the light-transmitting part, the The image sensor is used for receiving at least part of the target light and converting the received target light into electrical signals.
- the camera module further includes a circuit board, the circuit board is sealed on the end of the lens barrel of the optical lens close to the image side, and the image sensor is carried on the side of the circuit board facing the lens barrel. side, and the circuit board is electrically connected to the image sensor, and the circuit board is used to transmit the electrical signal.
- the camera module further includes at least one filter, the filter is arranged between the image sensor and the light-transmitting part, and the filter is used to filter part of the The target ray transmitted through.
- the present application also provides an electronic device, including a display screen and the camera module, the display screen is electrically connected to the camera module, and the display screen is used to display images captured by the camera module.
- FIG. 1 is a schematic structural diagram of an electronic device 100 provided in an embodiment of the present application.
- the electronic device 100 may be a mobile phone, a tablet computer, a notebook computer, a personal computer, a watch, a car, a drone, a robot, and other devices with a camera function.
- a mobile phone is taken as an example.
- an electronic device 100 includes a display screen 2 and a camera module 1 .
- the display screen 2 is electrically connected with the camera module 1 .
- the display screen 2 is used to display images captured by the camera module 1 .
- the display screen 2 is electrically connected to the camera module 1 through one or more of a printed circuit board (Printed Circuit Board, PCB), a flexible circuit board (Flexible Printed Circuit, FPC) and the like.
- the camera module 1 can transmit the captured image to the display screen 2 through one or more of PCB, FPC and the like.
- the electronic device 100 further includes a main board 3 and a battery 4 .
- Both the display screen 2 and the camera module 1 are electrically connected to the main board 3 .
- the main board 3 can transmit the images captured by the camera module 1 to the display screen 2 .
- processors, memory, etc. can be set on the main board 3 to process and store the images captured by the camera module 1 .
- the battery 4 is used to supply power for the main board 3 , the display screen 2 and the camera module 1 .
- the electronic device 100 further includes a housing 5 .
- the housing 5 includes a middle frame 51 and a back plate 52 .
- the middle frame 51 and the back plate 52 can be integrally formed or connected as one.
- the display screen 2 is connected to the side of the middle frame 51 away from the back plate 52 .
- a receiving space is formed among the display screen 2 , the middle frame 51 and the back plate 52 .
- the camera module 1 is at least partially accommodated in the accommodation space.
- the camera module 1 provided in the embodiment of the present application may be a front camera module of a mobile phone or a rear camera module of a mobile phone. In the following embodiments, the rear camera module of a mobile phone is taken as an example.
- the camera module 1 can be partly accommodated in the accommodation space, or can be entirely accommodated in the accommodation space. In one embodiment, one end of the camera module 1 is accommodated in the accommodating space, and the other end of the camera module 1 passes through the back plate 52 and protrudes out of the back plate 52 . In this embodiment, the camera module 1 can directly obtain light from the outside of the electronic device 100 and perform imaging. Of course, in other embodiments, when the camera module 1 is completely accommodated in the storage space, the back plate 52 needs to be transparent, and the camera module 1 can obtain light through the back plate 52 . Wherein, when the backplane 52 is light-transmitting, the material of the backplane 52 can be plastic, glass and other light-transmitting materials.
- the camera module 1 includes an image sensor 20 and an optical lens 10 .
- the camera module 1 can be a retractable camera module or a fixed camera module.
- the image sensor 20 of the retractable camera module that is, the camera module 1 is fixed, and the optical lens 10 of the camera module 1 can be extended or retracted relative to the image sensor 20; or, the optical lens 10 of the camera module 1 is fixed, and the camera module 1
- the image sensor 20 of group 1 can extend or retract relative to the optical lens 10; or, the optical lens 10 of the camera module 1 can extend or retract relative to the image sensor 20, and the image sensor 20 of the camera module 1 Can be extended or retracted relative to the optical lens 10 .
- the retractable camera module 1 is beneficial for zooming.
- the fixed camera module that is, the optical lens 10 and the image sensor 20 remain relatively stationary.
- the image sensor 20 may be a solid-state image sensor 20 .
- the image sensor 20 includes a photoelectric device such as a charge coupled device (Charge Coupled Device, CCD) and a metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor, CMOS).
- CCD Charge Coupled Device
- CMOS Complementary Metal-Oxide Semiconductor
- the image sensor 20 is used for receiving light incident from the optical lens 10 and forming an image.
- the photoelectric device of the image sensor 20 has a photoelectric conversion function, which can convert the light on the photosensitive surface into an electrical signal proportional to the light.
- the optical lens 10 includes a primary mirror 101 , a secondary mirror 102 and a first extinction element 103 .
- the secondary mirror 102 and the primary mirror 101 are arranged sequentially from the object side to the image side.
- the secondary mirror 102 is arranged coaxially with the primary mirror 101 .
- the first extinction element 103 is arranged coaxially with the secondary mirror 102 . It can be understood that the primary mirror 101 , the secondary mirror 102 and the first extinction element 103 are arranged coaxially.
- the common axis of the primary mirror 101, the secondary mirror 102, and the first extinction element 103 can refer to the M line in the figure.
- the M line can also be understood as the optical axis of the optical lens 10 .
- the secondary mirror 102 and the primary mirror 101 are arranged sequentially from the object side to the image side along the optical axis of the optical lens 10 .
- the object side is the side where the photographed object is located;
- the image side is the side where the image sensor 20 is located.
- the primary mirror 101 may be a metal reflector, a specular reflector (for example, a glass silver-coated reflector) and the like.
- the main mirror 101 is an example of a silvered glass mirror.
- the main mirror 101 is provided with a light-transmitting portion 110 and a main mirror reflection surface 112 .
- the light-transmitting portion 110 may be a light-transmitting area on the main mirror 101 (for example, a light-transmitting area in the main mirror 101 made of plastic, glass, etc.), or may be a light-transmitting through hole.
- the light-transmitting portion 110 is an example of a light-transmitting through hole.
- the optical axis of the optical lens 10 passes through the center of the light-transmitting portion 110 .
- the light-transmitting part 110 is located in the central area of the main mirror 101 , and the central axis of the light-transmitting part 110 can refer to the M line in the figure.
- the transparent part 110 may be one of circular, square, rectangular and the like. In the embodiment of the present application, the transparent portion 110 is circular.
- the primary mirror reflective surface 112 surrounds the light-transmitting portion 110 .
- the reflective surface 112 of the primary mirror can be one of a flat surface, a convex surface, a concave surface, a convex arc surface, and a concave arc surface.
- the primary mirror reflection surface 112 When the primary mirror reflection surface 112 is a convex arc surface or an inward concave arc surface, the primary mirror reflection surface 112 may be a spherical surface or an aspherical surface. In one embodiment, the optical axis of the optical lens 10 also runs through the center of the main mirror reflective surface 112 . In other words, the light-transmitting portion 110 is disposed coaxially with the main mirror reflective surface 112 . The central axis of the primary mirror reflection surface 112 is the M line in the figure. The main mirror reflective surface 112 faces the object side.
- the secondary mirror 102 may be a metal reflector, a specular reflector (for example, a glass silver-coated reflector) and the like.
- the secondary mirror 102 is an example of a silvered glass mirror.
- the materials of the secondary mirror 102 and the primary mirror 101 may be different.
- the secondary mirror 102 is spaced apart from the primary mirror 101 . The distance between the secondary mirror 102 and the primary mirror 101 can be set based on the focal length of the optical lens 10 .
- the secondary mirror 102 has a secondary mirror reflective surface 120 facing the image side.
- the secondary mirror reflection surface 120 may be one of a plane, a convex plane, a concave plane, a convex arc surface, and a concave arc surface.
- the secondary mirror reflection surface 120 may be a spherical surface or an aspherical surface.
- the central axis of the secondary mirror reflection surface 120 is the M line in the figure. It can be understood that the secondary reflective surface 120 is opposite to the primary reflective surface 112 , and the secondary reflective surface 120 is coaxial with the primary reflective surface 112 .
- the first matting member 103 can be matting paint, matting powder, light-absorbing coating, etc., or a microstructure with uneven surface, etc.
- the essence of the first matting member 103 is that it can increase the scattering of light and reduce the reflection of light , and/or, capable of absorbing at least part of the light to be converted into other forms of energy (eg heat).
- the first matting element 103 is disposed on the secondary reflective surface 120 . It can be understood that, since the first extinction element 103 is disposed coaxially with the secondary mirror 102 , the first extinction element 103 is disposed at the center of the reflection surface 120 of the secondary mirror.
- the first extinction element 103 disposed on the secondary mirror reflection surface 120 may be directly formed on the secondary mirror reflection surface 120 , or the first extinction element 103 may be fixed on the secondary mirror reflection surface 120 .
- the first matting member 103 can be formed on the secondary reflective surface 120 by printing, coating, spraying and other processes, and can also be fixed on the secondary reflective surface 120 by bonding, clipping and the like.
- the first matting member 103 is formed by forming a black silk screen at the center of the secondary reflective surface 120 .
- the diameter of the secondary reflective surface 120 is smaller than the diameter of the primary reflective surface 112 .
- the diameter of the secondary reflective surface 120 is D1
- the diameter of the primary reflective surface 112 is D2
- D1 can be 0.5 times, 0.3 times, 0.25 times, 0.7 times D2, etc.
- the diameter of the first matting member 103 is smaller than the diameter of the secondary reflective surface 120 .
- the diameter of the first extinction member 103 can be understood as the outer diameter of the first extinction member 103 .
- the diameter of the first extinction member 103 is D3, and D3 may be 0.1 times, 0.2 times, 0.25 times, 0.3 times, 0.6 times of D2 and so on.
- part of the light reflected by the primary mirror reflection surface 112 is incident on the secondary mirror reflection surface 120 , and the other part is incident on the first light-extinction member 103 .
- the primary mirror reflective surface 112 is used to reflect the first light A1 incident from the object side and form the first sub-ray A1 directed to the secondary mirror reflective surface 120 and the second sub-ray A1 directed to the first extinction element 103.
- the same area of the primary mirror reflection surface 112 respectively reflects the first ray A with a smaller incident angle to form the first sub-ray A1, and reflects the first ray A with a larger incident angle to form the second sub-ray A2.
- the sub-ray A1 is directed toward the secondary mirror reflection surface 120
- the second sub-ray A2 is directed toward the first matting member 103 .
- the area of the main mirror reflection surface 112 away from the optical axis reflects the first light A to form the first sub-ray A1
- the area of the main mirror reflection surface 112 close to the optical axis reflects the first light A to form
- the second sub-ray A2 the first sub-ray A1 is directed toward the secondary mirror reflection surface 120
- the second sub-ray A2 is directed toward the first extinction member 103 .
- the light reflected multiple times between the primary mirror 101 and the secondary mirror 102 may also be reflected by the primary mirror reflective surface 112 to form the second sub-light A2 toward the first extinction element 103 .
- the second sub-ray A2 emitted from the primary mirror reflection surface 112 to the first extinction element 103 is usually reflected by the primary mirror reflection surface 112 at a relatively small incident angle.
- the large first ray A, or the first ray A reflected by the primary mirror reflective surface 112 close to the optical axis area, and the multiple reflected rays between the primary mirror 101 and the secondary mirror 102, and the optical path of the first sub-ray A1
- the imaging quality will be degraded due to disorder of the imaging light.
- the second sub-ray A2 can be understood as a stray ray formed when the first ray A is reflected by the reflective surface 112 of the main mirror.
- the secondary reflective surface 120 is used to reflect the first sub-ray A1 and form the target ray a1 passing through the light-transmitting portion 110 .
- the first extinction element 103 is used to block the second sub-ray A2 from entering the light-transmitting portion 110 . It can be understood that the extinction surface of the first extinction member 103 faces the image side.
- the principle that the first extinction element 103 blocks the second sub-ray A2 can increase the scattering of the second sub-ray A2 and reduce the reflection of the second sub-ray A2 for the first extinction element 103, thereby reducing or avoiding
- the second sub-ray A2 is incident on the light-transmitting portion 110 , and/or, the first extinction member 103 absorbs at least part of the second sub-ray A2 , thereby reducing or preventing the second sub-ray A2 from incident on the light-transmitting portion 110 .
- the image sensor 20 is disposed on a side of the primary mirror 101 away from the secondary mirror 102 and opposite to the light-transmitting portion 110 .
- the image sensor 20 is coaxially arranged with the main mirror 101 .
- the geometric center of the image sensor 20 and the geometric center of the transparent portion 110 are located on the same straight line (ie, the optical axis).
- the image sensor 20 and the light-transmitting portion 110 may also be arranged obliquely and oppositely, that is, the image sensor 20 and the main mirror 101 are not arranged coaxially.
- the image sensor 20 is used to receive at least part of the target light a1 and perform imaging.
- the first sub-ray A1 is reflected by the secondary mirror reflection surface 120 to form the target ray a1 and then passes through the light-transmitting portion 110 and then goes toward the image sensor 20 .
- the second sub-ray A2 is blocked by the first extinction member 103 , so it cannot be emitted to the image sensor 20 . Since the stray light received by the image sensor 20 is reduced, the imaging quality can be improved, so that the clarity of the captured image is improved.
- the main mirror 101 and the secondary mirror 102 are arranged sequentially from the object side to the image side, and the main mirror reflection surface 112 faces the object side, and the secondary mirror reflection surface 120 faces the image side, the light incident on the object side requires Only after being reflected by the primary mirror 101 and the secondary mirror 102 can it be incident on the image side, forming a reentrant optical path, so that shooting with a long focal length can be achieved and the length of the optical lens 10 can be shortened.
- the first sub-ray A1 is directed toward the secondary mirror 102, and is reflected by the reflecting surface 120 of the secondary mirror to form the target ray a1 to pass through the light-transmitting portion 110 for imaging, while the second sub-ray A2
- the first extinction element 103 is blocked by the first extinction element 103, because the first extinction element 103 is arranged on the secondary mirror reflection surface 120 and coaxially arranged with the secondary mirror 102, and the diameter of the first extinction element 103 is smaller than the secondary mirror 102 Therefore, the second sub-ray A2 directed to the first extinction element 103 is usually close to the optical axis, has a relatively large reflection angle, and is a stray ray formed by multiple reflections, etc., and is blocked by the first extinction element 103.
- the camera module 1 and the electronic device 100 provided in
- the reflective surface 112 of the primary mirror is in a concave arc shape.
- the secondary reflective surface 120 is in a convex arc shape.
- the first extinction member 103 is in a concave arc shape.
- the reflective surface of the primary mirror 112 is concave arc shape means that the reflective surface of the primary mirror 112 is concave relative to the object side.
- the convex arc shape of the secondary reflective surface 120 means that the secondary reflective surface 120 protrudes toward the image side.
- the concave arc shape of the first light extinction element 103 means that the first light extinction element 103 is concave relative to the image side.
- the reflective surface 112 of the primary mirror into a concave arc shape
- the first light A received by the reflective surface 112 of the primary mirror can be increased, which is beneficial to improve the brightness of the image.
- the secondary reflective surface 120 is designed in a convex arc shape, which is beneficial to converge the target light a1 and make the target light a1 pass through the light-transmitting portion 110 with a smaller diameter.
- the first extinction element 103 is designed as a concave arc shape, which can increase the area and scattering rate of the extinction surface of the first extinction element 103, so that the first extinction element 103 can absorb and scatter more stray light, thereby improving the A light-extinction element 103 blocks the efficiency of the second sub-ray A2 incident on the light-transmitting portion 110 .
- the optical lens 10 further includes a plurality of secondary mirror light-shielding tubes 104 .
- the secondary mirror light-shielding cylinder 104 can be a plastic cylinder, a metal cylinder, an alloy cylinder, and the like.
- the secondary mirror light-shielding tube 104 is light-tight. When the light is incident on the secondary mirror light-shielding tube 104, the secondary mirror light-shielding tube 104 can absorb the light, or make the light scattered, or make the light diffusely reflect and so on.
- the present application does not specifically limit the number of secondary mirror light shielding tubes 104 .
- the number of secondary mirror light shielding cylinders 104 can be two, three, four, five, six, etc.
- the five secondary mirror light-shielding cylinders 104 are respectively recorded as the first mirror light-shielding cylinder 141, the second mirror light-shielding cylinder 142, the third mirror light-shielding cylinder 143, The fourth mirror light shielding cylinder 144 and the fifth mirror light shielding cylinder 145 .
- a plurality of secondary mirror light-shielding cylinders 104 surround the outer peripheral side of the secondary mirror 102 in sequence and are arranged coaxially with the secondary mirror 102 .
- the first mirror shading tube 141, the second mirror shading tube 142, the third mirror shading tube 143, the fourth mirror shading tube 144, and the fifth mirror shading tube 145 surround the secondary mirror in sequence. 102 on the outer peripheral side.
- the primary mirror light shielding cylinder 141 is the light shielding cylinder closest to the outer peripheral side of the secondary mirror 102 .
- the fifth secondary mirror light shielding cylinder 145 is the light shielding cylinder farthest from the outer peripheral side of the secondary mirror 102 .
- each secondary mirror shading cylinder 104 may be a square cylinder, a circular cylinder, other polygonal cylinders and the like.
- the plurality of secondary mirror light shielding cylinders 104 are circular cylinders.
- the diameters of a plurality of secondary mirror light-shielding tubes 104 are all smaller than the diameter of the primary mirror 101. It can be understood that the diameter of the first mirror shading tube 141 ⁇ the diameter of the second mirror shading tube 142 ⁇ the diameter of the third mirror shading tube 143 ⁇ the diameter of the fourth mirror shading tube 144 ⁇ the fifth mirror shading tube 145 in diameter.
- Two adjacent secondary mirror light shielding tubes 104 are spaced apart.
- first mirror shading cylinder 141 is spaced from the second mirror 102 cylinder
- second mirror shading cylinder 142 is spaced from the third mirror shading cylinder 143
- third mirror shading cylinder 143 is spaced from the third mirror shading cylinder 143.
- the fourth mirror light shielding cylinder 144 is spaced apart from each other, and the fourth mirror light shielding cylinder 144 is spaced apart from the fifth mirror light shielding cylinder 145 .
- the distance between two adjacent secondary mirror light shielding cylinders 104 is equal, that is, the distance between the first mirror light shielding cylinder 141 and the second secondary mirror light shielding cylinder 142, The distance between the second mirror shading tube 142 and the third mirror shading tube 143, the distance between the third mirror shading tube 143 and the fourth mirror shading tube 144, and the distance between the fourth mirror shading tube 144 and the fifth mirror shading tube 144.
- the distances between the secondary mirror light shielding tubes 145 are the same.
- the length of the first mirror shading tube 141, the length of the second mirror shading tube 142, the length of the third mirror shading tube 143, the length of the fourth mirror shading tube 144 and the fifth mirror shading tube 145 is the same length.
- the length of the secondary mirror light-shielding tube 104 can refer to the Y-axis direction in the figure.
- the length of the first mirror shading tube 141, the length of the second mirror shading tube 142, the length of the third mirror shading tube 143, the length of the fourth mirror shading tube 144 and the fifth The length of the secondary mirror light shielding cylinder 145 may vary.
- the equal distance between two adjacent secondary mirror light-shielding cylinders 104 is beneficial to the assembly of multiple secondary mirror light-shielding cylinders 104 and facilitates the improvement of the production efficiency of the optical lens 10 .
- the distance between two adjacent secondary mirror light shielding cylinders 104 increases sequentially along the direction from the secondary mirror 102 to the secondary mirror light shielding cylinder 104 .
- the direction in which the secondary mirror 102 points to the secondary mirror light-shielding tube 104 can refer to the X-axis direction in the figure.
- the distance between the first mirror light shielding cylinder 141 and the second mirror light shielding cylinder 142 is smaller than the distance between the second mirror light shielding cylinder 142 and the third mirror light shielding cylinder 143;
- the distance between the secondary mirror light-shielding tube 142 and the third mirror light-shielding tube 143 is less than the distance between the third mirror light-shielding tube 143 and the fourth mirror light-shielding tube 144;
- the distance between the mirror light shielding cylinders 144 is smaller than the distance between the fourth mirror light shielding cylinder 144 and the fifth mirror light shielding cylinder 145 .
- the length of the first mirror shading tube 141, the length of the second mirror shading tube 142, the length of the third mirror shading tube 143 and the length of the fourth mirror shading tube 144 are successively increased, and the fifth mirror
- the length of the light shielding cylinder 145 is smaller than the length of the fourth mirror light shielding cylinder 144 .
- the length of the secondary mirror light-shielding tube 104 can refer to the Y-axis direction in the figure.
- the lengths of the secondary mirror light-shielding cylinders 145 may be the same, or may increase sequentially, decrease sequentially, and the like.
- the distance between two adjacent secondary mirror shading cylinders 104 is gradually increased, which is conducive to converging the stray light rays between multiple secondary mirror shading cylinders 104 at one point, thereby facilitating the design of other shading elements to block the object side.
- the stray light passing through the multiple secondary mirror light-shielding tubes 104 are examples of the distance between two adjacent secondary mirror shading cylinders 104 .
- each secondary mirror light shielding cylinder 104 is a hollow structure.
- a first light-transmitting region 140 is formed between two adjacent secondary mirror light shielding cylinders 104 .
- the first light-transmitting area 140 between two adjacent secondary mirror light-shielding cylinders 104 is used to transmit the first light A.
- the secondary mirror light-shielding tube 104 is used to block the second light B incident from the object side, so as to prevent the second light B from entering the light-transmitting portion 110 .
- the incident angle ⁇ of the second ray B is greater than the incident angle ⁇ of the first ray A.
- the first light rays A with a smaller incident angle ⁇ and the first light rays A with a larger incident angle can pass through the first light-transmitting regions 140 between the plurality of secondary mirror light-shielding tubes 104 , and shoots on the primary mirror reflective surface 112;
- the second light beam B with a larger incident angle among the light rays entering the optical lens 10 from the object side is shot on the secondary mirror light-shielding tube 104, and is reflected and scattered by the secondary mirror light-shielding tube 104 Or absorbed, but unable to shoot to the primary mirror 101.
- the incident angle ⁇ of the second ray B is relatively large, if the second ray B hits the primary mirror 101, multiple reflections between the primary mirror 101 and the secondary mirror 102 are likely to occur to form stray rays.
- the secondary mirror light-shielding cylinder 104 blocks the second light B, which can reduce the stray light incident between the primary mirror 101 and the secondary mirror 102 , thereby improving the imaging quality.
- the second light B can be understood as a kind of stray light that strikes the optical lens 10 from the object side.
- the optical lens 10 further includes a lens barrel 105 and a transparent cover 106 .
- the lens barrel 105 may be a plastic lens barrel, a metal lens barrel, an alloy lens barrel, or the like.
- the lens barrel 105 cannot transmit light.
- the transparent cover 106 may be a plastic cover, a glass cover, or the like.
- the transparent cover 106 can transmit light.
- the light-transmitting cover plate 106 is sealed on the end of the lens barrel 105 near the object side.
- the primary mirror 101 , the secondary mirror 102 , the secondary mirror light-shielding tube 104 and the first extinction element 103 are all disposed in the lens barrel 105 .
- the primary mirror 101, the secondary mirror 102, the secondary mirror shading cylinder 104, and the first extinction element 103 are all arranged in the lens barrel 105 by sealing the light-transmitting cover plate 106 on the end of the lens barrel 105 near the object side. , can protect the main mirror 101, the secondary mirror 102, the secondary mirror shading tube 104 and the first extinction piece 103, reduce dust, water stains, etc.
- the stray rays of the light impinge on the interior of the lens barrel 105 and affect imaging.
- the main mirror 101 is fixedly connected with the lens barrel 105 .
- the main mirror 101 and the lens barrel 105 are bonded and snapped together.
- the main mirror 101 is pressed against the inner surface of the lens barrel 105 by a pressure ring, and the pressure ring and the lens barrel 105 are connected by one or more methods of bonding, buckle connection, welding, bolt connection, etc. connected together.
- Both the secondary mirror 102 and the secondary mirror light-shielding tube 104 are fixed on the light-transmitting cover plate 106 .
- both the secondary mirror 102 and the secondary mirror light-shielding tube 104 are bonded to the inner surface of the light-transmitting cover plate 106 .
- the secondary mirror 102 and the secondary mirror light-shielding tube 104 are fixed by bonding to the light-transmitting cover plate 106, which is convenient to operate and is conducive to adjusting the positions of the secondary mirror 102 and the secondary mirror light-shielding tube 104 relative to the primary mirror 101, thereby calibrating the optical system. imaging performance.
- the lens barrel 105 and the outermost secondary mirror shading barrel 104 are spaced apart, and the second light-transmitting region 150 between the lens barrel 105 and the outermost secondary mirror shading barrel 104 is used to transmit The first ray A.
- a part of the first light A incident from the object side passes through the first light-transmitting regions 140 between the multiple secondary mirror light-shielding tubes 104 and strikes the reflecting surface 112 of the primary mirror, and another part of the first light A passes through the fifth
- the second light-transmitting area 150 between the secondary mirror light-shielding tube 145 and the lens barrel 105 is incident on the main mirror reflective surface 112, and the second light B incident from the object side is incident on a plurality of secondary mirror light-shielding tubes 104, so that the maximum Make the first light A enter into the optical lens 10 as much as possible, and prevent the second light B from entering the optical lens, thereby ensuring the amount of light entering the optical lens 10 and reducing stray light, and taking into account the clarity and clarity of the captured image.
- the first light A incident from the object side can all pass through the light-transmitting area 140 between the multiple secondary mirror light-shielding cylinders 104 and be incident on the primary mirror reflective surface 112, that is, the fifth secondary mirror light-shielding cylinder. 145 is in contact with the inner surface of the lens barrel 105, or the light-transmitting cover plate 106 corresponding to the area between the fifth mirror light-shielding barrel 145 and the lens barrel 105 is provided with a light-shielding layer to prevent light from passing through.
- the optical lens 10 further includes a primary mirror shading tube 108 .
- the main mirror shading cylinder 108 can be a plastic cylinder, a metal cylinder, an alloy cylinder, and the like.
- the main mirror light-shielding tube 108 is light-tight. When the light is incident on the main mirror shading tube 108 , the main mirror shading tube 108 can absorb the light, or make the light scatter, or make the light diffusely reflect and so on.
- the primary mirror light-shielding cylinder 108 is at least partially located between the light-transmitting portion 110 and the secondary mirror 102 , and the primary mirror light-shielding cylinder 108 is coaxially disposed with the primary mirror 101 .
- the central axis of the main mirror light shielding tube 108 coincides with the central axis of the main mirror 101 .
- the central axis of the primary mirror shading tube 108 and the central axis of the primary mirror 101 can refer to the M line in the figure.
- the diameter of the primary mirror light-shielding tube 108 is smaller than the diameter of the secondary mirror 102 and the diameter of the primary mirror light-shielding tube 108 is larger than the diameter of the first extinction member 103 .
- the reflective surface 112 of the primary mirror is also used to reflect the first light A emitted from the object side and form a third sub-ray A3 directed to the light shielding cylinder 108 of the primary mirror.
- the primary mirror light-shielding tube 108 is used to block the third sub-light A3 from incident on the secondary mirror reflective surface 120 .
- the main mirror shading tube 108 is also used to block the third light C entering from the object side, so as to prevent the third light C from entering the light-transmitting part 110, and the incident angle ⁇ of the third light C is greater than the incident angle ⁇ of the first light A .
- the primary mirror shading cylinder 108 blocks the third sub-ray A3 from entering the secondary mirror reflective surface 120, that is, the primary mirror shading cylinder 108 prevents the third sub-ray A3 from being reflected by the secondary mirror reflective surface 120 and entering the light-transmitting portion 110 .
- the third sub-ray A3 can be understood as another stray ray formed when the first ray A is reflected from the reflective surface 112 of the main mirror.
- the third ray C can be understood as another stray ray that strikes the optical lens 10 from the object side.
- the combination of the main mirror shading cylinder 108 and the first extinction member 103 can block the stray light rays (including the second sub-ray A2 and the third sub-ray A3) reflected by the main mirror reflective surface 112, and the main mirror shading cylinder 108 can also block the stray light (the third light C) entering from the object side, which can further improve the imaging quality and the clarity of the captured image.
- the length of the main mirror light shielding cylinder 108 and the diameter of the first light extinction member 103 can be designed according to actual needs.
- the combination of the main mirror light shielding cylinder 108 and the first extinction member 103 has a further superimposed effect on the blocking effects of the second sub-ray A2 and the third sub-ray A3.
- the main mirror light shielding tube 108 can also block part of the second sub-light A2
- the first extinction member 103 can also block part of the third sub-light A3.
- the main mirror shading cylinder 108 overlaps with the shielding part of the stray light reflected by the main mirror reflective surface 112 by the first extinction member 103 .
- one end of the primary mirror shading tube 108 is located between the primary mirror 101 and the secondary mirror 102 , and the other end of the primary mirror shading tube 108 passes through the light-transmitting portion 110 and is fixedly connected to the primary mirror 101 .
- the main mirror light-shielding cylinder 108 is a hollow structure.
- the main mirror light-shielding cylinder 108 is also used to transmit the target light a1.
- the main mirror light-shielding cylinder 108 can be directly fixed on the main mirror 101 , and no additional supporting structure is needed to support the main mirror light-shielding cylinder 108 , which can reduce the components in the optical lens 10 .
- the main mirror light-shielding cylinder 108 is entirely located between the light-transmitting portion 110 and the secondary mirror 102 .
- the primary mirror light-shielding tube 108 is located between the light-transmitting portion 110 and the secondary mirror 102 and is close to the light-transmitting portion 110 .
- the main mirror light-shielding cylinder 108 is a hollow structure.
- the main mirror light-shielding cylinder 108 is also used to transmit the target light a1.
- the main mirror light-shielding tube 108 can be supported between the light-transmitting portion 110 and the secondary mirror 102 through a supporting structure.
- This embodiment is beneficial to shorten the length of the primary mirror light-shielding tube 108 , thereby avoiding the collision between the primary mirror light-shielding tube 108 , the secondary mirror 102 , and the first light-shielding member 103 during assembly.
- the optical lens 10 further includes at least one lens 109 .
- the present application does not specifically limit the number of lenses 109 .
- the number of lenses 109 may be one, two, three, etc. In the embodiment of the present application, two lenses 109 are taken as an example.
- the lens 109 may be a convex lens, a concave lens, or the like.
- the optical surface of the lens 109 can be one of a plane, a spherical surface, an aspheric surface (for example: a quadric surface) and the like. Wherein, the optical surface of the lens 109 is the surface of the lens 109 facing the image side, or the surface of the lens 109 facing the object side.
- the lens 109 is disposed in the main mirror light-shielding tube 108 .
- the overall length of the optical lens 10 can be shortened by disposing the lens 109 in the light-shielding cylinder.
- the lens 109 is used to refract the first sub-target ray a11 of the target ray a1 on the image side.
- the optical lens 10 further includes at least one light shielding ring 107 .
- the light-shielding ring 107 is disposed between the edges of two adjacent lenses 109 , or the light-shielding ring 107 is disposed on the side of the edge of the lens 109 facing the image side.
- the light-shielding ring 107 is used to block the second sub-target light a12 of the target light a1, so as to prevent the second sub-target light a12 from being emitted to the image side.
- the second sub-target ray a12 is not refracted by the lens 109 .
- the second light that has not been refracted by the optical surface of the lens 109 can be avoided.
- the sub-target ray a12 is incident on the image side, affecting the imaging picture.
- the shading ring 107 is opaque.
- the light-shielding ring 107 can absorb light, or scatter light, or diffusely reflect light. It can be understood that the blocking principle of the light shielding ring 107 is the same as that of the first light extinction member 103 , the secondary mirror light shielding cylinder 104 and the primary mirror light shielding cylinder 108 in the above embodiment.
- the inner surface of the main mirror light-shielding tube 108 is provided with a second light-extinction member 181 .
- the second extinction element 181 may be a screw thread, a concave-convex microstructure, etc. provided on the inner surface of the main mirror light-shielding cylinder 108 .
- the second extinction element 181 is used to block the third sub-target light a13 of the target light a1 to prevent the third sub-target light a13 from passing through the main mirror light-shielding tube 108 .
- the angle of the third sub-target light a13 reflected by the secondary mirror reflection surface 120 is greater than the angle of the first sub-target light a1 reflected by the secondary mirror reflection surface 120 .
- the second extinction member 181 is opaque.
- the second light extinguishing member 181 can absorb light, or cause light to scatter, or make light diffusely reflect and so on. It can be understood that the light blocking principle of the second extinction member 181 is the same as the light blocking principle of the first extinction member 103 , the secondary mirror light shielding cylinder 104 and the primary mirror light shielding cylinder 108 in the above embodiment.
- the stray light in the target light a1 formed by the secondary mirror reflection surface 120 can be prevented from entering the light-transmitting part. 110.
- the third sub-target ray a13 can be understood as a stray ray formed when the secondary mirror reflective surface 112 reflects the first sub-ray A1.
- the optical lens 10 further includes a lens barrel 105 and a transparent cover 106 .
- the lens barrel 105 may be a plastic lens barrel, a metal lens barrel, an alloy lens barrel, or the like.
- the lens barrel 105 cannot transmit light.
- the transparent cover 106 may be a plastic cover, a glass cover, or the like.
- the transparent cover plate 106 can transmit light.
- the light-transmitting cover plate 106 is sealed on the end of the lens barrel 105 near the object side.
- the primary mirror 101 , the secondary mirror 102 , the secondary mirror light-shielding tube 104 and the first extinction element 103 are all disposed in the lens barrel 105 .
- the main mirror 101, the main mirror light-shielding cylinder 108, the secondary mirror 102 and the first extinction element 103 are all arranged in the lens barrel 105 , can protect the main mirror 101, the main mirror shading tube 108, the secondary mirror 102 and the first extinction piece 103, reduce dust, water stains, etc.
- the light irradiates inside the lens barrel 105 and affects imaging.
- the main mirror 101 is fixedly connected with the lens barrel 105 .
- the main mirror 101 and the lens barrel 105 are bonded and snapped together.
- the main mirror 101 is pressed against the inner surface of the lens barrel 105 by a pressure ring, and the pressure ring and the lens barrel 105 are connected by one or more methods of bonding, buckle connection, welding, bolt connection, etc. connected together.
- the main mirror shading cylinder 108 is fixedly connected with the main mirror 101 .
- the main mirror shading tube 108 is bonded to the main mirror 101 . Fixing the main mirror light-shielding tube 108 and the main mirror 101 by bonding is convenient to operate and is beneficial to adjust the positions of the main mirror light-shielding tube 108 and the main mirror 101 , thereby calibrating the imaging performance of the optical system.
- the secondary mirror 102 is fixed on the transparent cover 106 .
- the secondary mirror 102 is bonded to the inner surface of the transparent cover plate 106 .
- Fixing the secondary mirror 102 by bonding to the light-transmitting cover plate 106 is convenient for operation and facilitates adjustment of the position of the secondary mirror 102 relative to the primary mirror 101 , thereby calibrating the imaging performance of the optical system.
- the optical lens 10 further includes at least one secondary mirror light shielding cylinder 104 and a primary mirror light shielding cylinder 108 .
- Secondary mirror light-shielding tube 104 surrounds the outer peripheral side of secondary mirror 102 and is coaxially arranged with secondary mirror 102. The diameters of secondary mirror light-shielding tube 104 are all smaller than the diameter of primary mirror 101. Secondary mirror light-shielding tube 104 is used to block the incoming of the second ray.
- the number, structure, position of the secondary mirror shading tube 104, its relationship with the primary mirror 101 and the secondary mirror 102, and its blocking effect on the second light can refer to the secondary mirror shading tube in the above-mentioned embodiment.
- the primary mirror shading cylinder 108 is at least partly located between the light-transmitting portion 110 and the secondary mirror 102 and the primary mirror shading cylinder 108 is coaxially arranged with the primary mirror 101, the diameter of the primary mirror shading cylinder 108 is smaller than the diameter of the secondary mirror 102 and the primary mirror shading cylinder The diameter of 108 is larger than the diameter of the first matting member 103 .
- the reflective surface 112 of the primary mirror is also used to reflect the first light emitted from the object side and form a third sub-ray directed to the light shielding cylinder 108 of the primary mirror.
- the main mirror light-shielding tube 108 is used to block the third sub-ray and the third light incident from the object side.
- the incident angle of the third light is larger than the incident angle of the first light and smaller than the incident angle of the second light.
- Both the third ray and the second ray are stray light entering from the object side.
- the structure and position of the main mirror shading cylinder 108, its relationship with the main mirror 101, its blocking effect on the third light and the third sub-ray, its combination with the first extinction member 103 on the second sub-ray For the blocking function of the third sub-ray, reference may be made to the primary mirror light-shielding tube 108 in the above-mentioned embodiment, and details are not repeated here.
- the length and quantity of the secondary mirror shading cylinder 104, the length of the primary mirror shading cylinder 108, and the diameter of the first extinction member 103 can be designed according to actual needs.
- the combination of the secondary mirror shading cylinder 104, the primary mirror shading cylinder 108, and the first extinction member 103 has a great
- the blocking of the stray rays (the second sub-rays and the third sub-rays) formed by the reflection of the specular reflection surface 112 has a further superimposed effect.
- the main mirror shading tube 108 can also block part of the second light
- the secondary mirror shading tube 104 can also block part of the third light
- the primary mirror shading tube 108 can also block part of the second sub-ray
- the first extinction element 103 can also block Part of the third sub-ray. It can be understood that the secondary mirror shading tube 104 overlaps with the primary mirror shading tube 108 for the shading part of the stray light incident from the object side; The occlusion of stray rays partially overlaps.
- the optical lens 10 further includes a lens barrel 105 and a transparent cover 106 .
- the light-transmitting cover plate 106 is sealed on the end of the lens barrel 105 near the object side.
- the main mirror 101 , the main mirror light-shielding tube 108 , the secondary mirror 102 , the secondary mirror light-shielding tube 104 and the first light-shielding element 103 are all disposed in the lens barrel 105 .
- the main mirror 101 is fixedly connected with the lens barrel 105 .
- the main mirror shading cylinder 108 is fixedly connected with the main mirror 101 .
- Both the secondary mirror 102 and the secondary mirror light-shielding tube 104 are fixed on the light-transmitting cover plate 106 .
- the first light-transmitting area 140 between two adjacent secondary mirror light-shielding cylinders 104 is used to transmit the first light and the third light.
- the structures of the lens barrel 105 and the light-transmitting cover 106 can refer to the lens barrel 105 and the light-transmitting cover 106 of the above-mentioned embodiments.
- the relationship between primary mirror 101, primary mirror shading tube 108, secondary mirror 102, secondary mirror shading tube 104, the first extinction piece 103, lens barrel 105 and light-transmitting cover plate 106 is all the same as the above-mentioned embodiment, and is not repeated here. repeat.
- the second light-transmitting region 140 between the fifth mirror light shielding tube 145 and the lens barrel 105 can transmit the first light and the third light.
- the camera module 1 provided by the present application further includes a circuit board 30 .
- the circuit board 30 is sealed on the end of the lens barrel 105 of the optical lens 10 near the image side.
- the image sensor 20 is mounted on a side of the circuit board 30 facing the lens barrel 105 .
- the circuit board 30 is electrically connected to the image sensor 20 , and the circuit board 30 is used to transmit the electrical signal converted by the image sensor 20 .
- the internal main mirror 101, the main mirror shading tube 108, and the secondary mirror can be realized through the lens barrel 105, the light-transmitting cover plate 106 and the circuit board 30. 102 .
- the sealing of the secondary mirror shading cylinder 104 and the first extinction member 103 improves the reliability of the camera module 1 .
- the camera module 1 further includes at least one filter 40 .
- the present application does not specifically limit the number of optical filters 40 .
- the camera module 1 may include one, two, three and other optical filters 40 .
- the filter 40 is disposed between the image sensor 20 and the light-transmitting portion 110 .
- the filter 40 is used for filtering the target light a1 transmitted by the partially transparent part 110 .
- the filter 40 is disposed between the image sensor 20 and the lens 109 .
- the filter 40 may include one or more of an infrared cut filter 40 , an ultraviolet cut filter 40 , any monochromatic visible light cut filter 40 and the like. Setting the filter 40 can block the transmission of invisible light or part of monochromatic visible light, so as to improve the resolution of the image and be suitable for shooting in special scenes (for example, a certain monochromatic light is strong).
- optical lens 10 The features mentioned above in the description, claims and drawings can be combined with one another in any way as long as they are meaningful within the scope of the present application.
- the advantages and features described for the optical lens 10 apply in a corresponding manner to the camera module 1 and the electronic device 100 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学镜头(10)、摄像头模组(1)及电子设备(100)。光学镜头(10)包括主镜(101)、次镜(102)及第一消光件(103)。主镜(101)设有透光部(110)及主镜反射面(112),主镜反射面(112)朝向物侧。次镜(102)与主镜(101)从物侧至像侧依次排列,次镜(102)具有朝向像侧的次镜反射面(120)。第一消光件(103)设于次镜反射面(120)且与次镜(102)同轴设置。主镜反射面(112)用于反射物侧射入的第一光线(A)并形成第一子光线(A1)和第二子光线(A2),次镜反射面(120)用于反射第一子光线(A1)并形成射向透光部(110)的目标光线(a1),第一消光件(103)用于阻挡第二子光线(A2)射向透光部(110)。摄像头模组(1)包括图像传感器(20)及光学镜头(10)。电子设备(100)包括显示屏(2)及摄像头模组(1)。这种光学镜头(10)、摄像头模组(1)及电子设备(100)具有较好的成像质量。
Description
本申请要求于2021年10月28日提交至中国专利局,申请号为202111267201.4,申请名称为“光学镜头、摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及成像技术领域,具体涉及一种光学镜头、摄像头模组及电子设备。
卡塞格林式的光学镜头通过设计主镜、次镜将入射光线反射至图像传感器上进行成像,可实现长焦距拍摄同时能够缩短光学镜头的长度。然而,相关技术中,入射光线于主镜与次镜之间反射时会形成杂散光线,导致成像质量降低。因此,如何设计光学镜头以提高成像质量成为需要解决的技术问题。
发明内容
本申请提供了一种能够提高成像质量的光学镜头、摄像头模组及电子设备。
一方面,本申请提供了一种光学镜头,包括:
主镜,所述主镜设有透光部及环绕于所述透光部周侧的主镜反射面,所述主镜反射面朝向物侧;
次镜,所述次镜与所述主镜从所述物侧至像侧依次排列,所述次镜与所述主镜同轴并间隔设置,所述次镜具有朝向所述像侧的次镜反射面,所述次镜反射面的直径小于所述主镜反射面的直径;及
第一消光件,所述第一消光件设于所述次镜反射面且与所述次镜同轴设置,所述第一消光件的直径小于所述次镜反射面的直径;
所述主镜反射面用于反射从所述物侧射入的第一光线并形成射向所述次镜反射面的第一子光线和射向所述第一消光件的第二子光线,所述次镜反射面用于反射所述第一子光线并形成射向所述透光部的目标光线,所述第一消光件用于阻挡所述第二子光线射向所述透光部。
另一方面,本申请还提供了一种摄像头模组,包括图像传感器及所述的光学镜头,所述图像传感器设于所述主镜背离所述次镜的一侧并与所述透光部相对设置,所述图像传感器用于接收至少部分所述目标光线并将接收到的所述目标光线转换为电信号。
再一方面,本申请还提供了一种电子设备,包括显示屏及所述的摄像头模组,所述显示屏与所述摄像头模组电连接,所述显示屏用于显示所述摄像头模组拍摄的图像。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示电子设备的分解示意图;
图3是图2所示电子设备中摄像头模组的平面示意图,其中,摄像头模组包括光学镜头和图像传感器;
图4是图3所示摄像头模组中光学镜头的平面示意图,其中,光学镜头包括主镜和次镜;
图5是图4所示光学镜头沿A-A线的剖视图,其中,光学镜头还包括第一消光件,主镜设有透光部和主镜反射面,次镜设有次镜反射面;
图6是图5所示主镜反射面反射第一光线并形成射向次镜反射面的第一子光线和射向第一消光件的第二子光线的一种示意图;
图7是图5所示主镜反射面反射第一光线并形成射向次镜反射面的第一子光线和射向第一消光件的第二子光线的另一种示意图;
图8是图6所示次镜反射面反射第一子光线并形成射向透光部的目标光线,第一消光件阻挡第二子光线射向透光部的示意图;
图9是图3所示摄像头模组的光学镜头与图像传感器同轴设置的示意图;
图10是图9所示摄像头模组沿B-B线的剖视图,其中,目标光线透过透光部并射于图像传感器;
图11是图5所示主镜反射面呈内凹圆弧形、次镜反射面呈外凸圆弧形的示意图;
图12是图4所示的光学镜头还包括次镜遮光筒的平面示意图;
图13是图12所示的光学镜头沿C-C线的剖视图;
图14是图13所示的光学镜头第一光线射于主镜反射面,而第二光线被次镜遮光筒遮挡的示意图;
图15是图13所示的光学镜头还包括镜筒和透光盖板的平面示意图;
图16是图4所示的光学镜头还包括主镜遮光筒的平面示意图;
图17是图16所示的光学镜头沿D-D线的剖视图,其中,主镜遮光筒用于遮挡第三子光线和第三光线;
图18是图17所示的光学镜头中主镜遮光筒还用于透过目标光线的示意图;
图19是图18所示的光学镜头还包括透镜,透镜用于使目标光线的第一子目标光线发生折射的示意图;
图20是图19所示的光学镜头还包括遮光环,遮光环用于阻挡目标光线的第二子目标光线的示意图;
图21是图20所示的光学镜头还包括第二消光件,第二消光件用于阻挡目标光线的第三子目标光线的示意图;
图22是图21所示的光学镜头还包括镜筒和透光盖板的平面示意图;
图23是图4所示的光学镜头还包括主镜遮光筒和次镜遮光筒的平面示意图;
图24是图23所示的光学镜头沿E-E线的剖视图;
图25是图24所示的光学镜头还包括镜筒和透光盖板的截面示意图;
图26是图25所示的光学镜头与图像传感器、电路板的截面示意图;
图27是图25所示的光学镜头与图像传感器、电路板及滤光片的截面示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请的说明书、权利要求书以及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排它的包含。例如:电子设备、摄像头模组及光学镜头没有限定于仅包括列出的部件,而是可选地还包括没有列出但基于其功能而应该具有的其他部件。
本申请提供一种光学镜头,包括:
主镜,所述主镜设有透光部及环绕于所述透光部周侧的主镜反射面,所述主镜反射面朝向物侧;
次镜,所述次镜与所述主镜从所述物侧至像侧依次排列,所述次镜与所述主镜同轴并间隔设置,所述次镜具有朝向所述像侧的次镜反射面,所述次镜反射面的直径小于所述主镜反射面的直径;及
第一消光件,所述第一消光件设于所述次镜反射面且与所述次镜同轴设置,所述第一消光件的直径小于所述次镜反射面的直径;
所述主镜反射面用于反射从所述物侧射入的第一光线并形成射向所述次镜反射面的第一子光线和射向所述第一消光件的第二子光线,所述次镜反射面用于反射所述第一子光线并形成射向所述透光部的目标光线,所述第一消光件用于阻挡所述第二子光线射向所述透光部。
其中,所述主镜反射面呈内凹圆弧形,所述次镜反射面呈外凸圆弧形,所述第一消光件呈内凹圆弧形。
其中,所述光学镜头还包括多个次镜遮光筒,多个所述次镜遮光筒依次环绕于所述次镜的外周侧并与所述次镜同轴设置,多个所述次镜遮光筒的直径皆小于所述主镜反射面的直径,相邻的两个次镜遮光筒之间相间隔,相邻的两个所述次镜遮光筒之间的第一透光区域用于透过所述第一光线,所述次镜遮光筒用于阻挡从所述物侧射入的第二光线,以防止所述第二光线射向所述透光部,所述第二光线的入射角度大于所述第一光线的入射角度。
其中,所述光学镜头还包括镜筒和透光盖板,所述透光盖板密封于所述镜筒靠近所述物侧的一端,所述主镜、所述次镜、所述次镜遮光筒及所述第一消光件皆设于所述镜筒内,所述主镜与所述镜筒固定连接,所述次镜、所述次镜遮光筒皆固定于所述透光盖板上。
其中,所述镜筒与最外层的所述次镜遮光筒之间间隔设置,所述镜筒与所述最外层的所述次镜遮光筒之间的第二透光区域用于透过所述第一光线。
其中,相邻的两个所述次镜遮光筒之间的间距相等。
其中,相邻的两个所述次镜遮光筒之间的间距沿所述次镜指向所述次镜遮光筒的方向依次递增。
其中,多个所述次镜遮光筒沿轴线方向的长度不同。
其中,所述光学镜头还包括主镜遮光筒,所述主镜遮光筒至少部分位于所述透光部与所述次镜之间且所述主镜遮光筒与所述主镜同轴设置,所述主镜遮光筒的直径小于所述次镜反射面的直径且所述主镜遮光筒的直径大于所述第一消光件的直径;所述主镜反射面还用于反射从所述物侧射出的第一光线并形成射向所述主镜遮光筒的第三子光线,所述主镜遮光筒用于阻挡所述第三子光线射向所述次镜反射面,以及用于阻挡从所述物侧射入的第三光线,以防止所述第三光线射向所述透光部,所述第三光线的入射角度大于所述第一光线的入射角度。
其中,所述主镜遮光筒的一端位于所述主镜与所述次镜之间,所述主镜遮光筒的另一端贯穿所述透光部并与所述主镜固定连接,所述主镜遮光筒还用于透过至少部分所述目标光线。
其中,所述光学镜头还包括至少一个透镜,所述透镜设于所述主镜遮光筒内,所述透镜用于使所述目标光线的第一子目标光线折射于所述像侧。
其中,所述光学镜头还包括至少一个遮光环,所述遮光环设于相邻的两个所述透镜的边缘之间,或者,所述遮光环设于所述透镜的边缘朝向所述像侧的一侧,所述遮光环用于阻挡所述目标光线的第二子目标光线,以防止所述第二子目标光线射向所述像侧,所述第二子目标光线未经过所述透镜折射。
其中,所述主镜遮光筒的内表面设有第二消光件,所述第二消光件用于阻挡所述目标光线的第三子目标光线,以防止所述第三子目标光线射向所述透光部,所述第三子目标光线经所述次镜反射面反射时的角度大于所述第一子目标光线经所述次镜反射面反射时的角度。
其中,所述光学镜头还包括镜筒和透光盖板,所述透光盖板密封于所述镜筒靠近所述物侧的一端,所述主镜、所述主镜遮光筒、所述次镜及所述第一消光件皆设于所述镜筒内,所述主镜与所述镜筒固定连接,所述主镜遮光筒与所述主镜固定连接,所述次镜固定于所述透光盖板上。
其中,所述光学镜头还包括至少一个次镜遮光筒和主镜遮光筒,所述次镜遮光筒环绕于所述次镜的外周侧并与所述次镜同轴设置,所述次镜遮光筒的直径小于所述主镜反射面的直径,所述次镜遮光筒用于阻挡从所述物侧射入的第二光线;所述主镜遮光筒至少部分位于所述透光部与所述次镜之间且所述主镜遮光筒与所述主镜同轴设置,所述主镜遮光筒的直径小于所述次镜反射面的直径且所述主镜遮光筒的直径大于所述第一消光件的直径;所述主镜反射面还用于反射从所述物侧射出的第一光线并形成射向所述主镜遮光筒的第三子光线,所述主镜遮光筒用于阻挡所述第三子光线,以及用于阻挡从所述物侧射入的第三光线,所述第三光线的入射角度大于所述第一光线的入射角度且小于所述第二光线的入射角。
其中,所述光学镜头还包括镜筒和透光盖板,所述透光盖板密封于所述镜筒靠近所述物侧的一端,所述主镜、所述主镜遮光筒、所述次镜、所述次镜遮光筒及所述第一消光件皆设于所述镜筒内,所述主镜与所述镜筒固定连接,所述主镜遮光筒与所述主镜固定连接,所述次镜、所述次镜遮光筒皆固定于所述透光盖板上,所述次镜遮光筒的数量为多个,相邻的两 个次镜遮光筒的之间的第一透光区域用于透过所述第一光线及所述第三光线。
本申请还提供一种摄像头模组,包括图像传感器及所述的光学镜头,所述图像传感器设于所述主镜背离所述次镜的一侧并与所述透光部相对设置,所述图像传感器用于接收至少部分所述目标光线并将接收到的所述目标光线转换为电信号。
其中,所述摄像头模组还包括电路板,所述电路板密封于所述光学镜头的镜筒靠近所述像侧的一端,所述图像传感器承载于所述电路板朝向所述镜筒的一侧,且所述电路板电连接所述图像传感器,所述电路板用于传输所述电信号。
其中,所述摄像头模组还包括至少一个滤光片,所述滤光片设于所述图像传感器与所述透光部之间,所述滤光片用于过滤部分所述透光部所透过的目标光线。
本申请还提供一种电子设备,包括显示屏及所述的摄像头模组,所述显示屏与所述摄像头模组电连接,所述显示屏用于显示所述摄像头模组拍摄的图像。
如图1所示,图1为本申请实施例提供的一种电子设备100的结构示意图。电子设备100可以是手机、平板电脑、笔记本电脑、个人计算机、手表、汽车、无人机、机器人等具有拍摄功能的设备。本申请实施例以手机为例。
如图2所示,电子设备100包括显示屏2和摄像头模组1。显示屏2与摄像头模组1电连接。显示屏2用于显示摄像头模组1拍摄的图像。
一实施例中,显示屏2与摄像头模组1通过印刷电路板(Printed Circuit Board,PCB)、柔性电路板(Flexible Printed Circuit,FPC)等中的一个或多个电连接。摄像头模组1可将拍摄的图像通过PCB、FPC等中的一个或多个传输至显示屏2。
另一实施例中,电子设备100还包括主板3和电池4。显示屏2与摄像头模组1皆电连接于主板3上。主板3可将摄像头模组1拍摄的图像传输至显示屏2。当然,主板3上可设置处理器、存储器等对摄像头模组1拍摄的图像进行处理、存储等。电池4用于为主板3、显示屏2及摄像头模组1供电。
其中,电子设备100还包括外壳5。具体的,外壳5包括中框51和背板52。中框51与背板52可以一体成型也可以连接为一体。显示屏2连接于中框51背离背板52的一侧。显示屏2、中框51及背板52之间形成收容空间。摄像头模组1至少部分收容于收容空间内。本申请实施例提供的摄像头模组1可以为手机的前置摄像头模组也可以为手机的后置摄像头模组。以下实施例中以手机的后置摄像头模组为例。
摄像头模组1可以部分收容于收容空间内,也可以全部收容于收容空间内。一实施例中,摄像头模组1的一端收容于收容空间内,摄像头模组1的另一端贯穿背板52,并凸出于背板52之外。本实施例中,摄像头模组1可直接从电子设备100的外部获取光线并进行成像。当然,在其他实施例中,当摄像头模组1全部收容于收容空间内时,背板52需要透光,摄像头模组1可透过背板52获取光线。其中,当背板52透光时,背板52的材质可以为塑胶、玻璃等透光材质。
如图3所示,摄像头模组1包括图像传感器20和光学镜头10。摄像头模组1可以为伸缩式摄像头模组,也可以是固定式摄像头模组。伸缩式摄像头模组即摄像头模组1的图像传感器20固定,摄像头模组1的光学镜头10可相对于图像传感器20伸出或缩回;或者,摄像头模组1的光学镜头10固定,摄像头模组1的图像传感器20可相对于光学镜头10伸出或缩回;又或者,摄像头模组1的光学镜头10可相对于图像传感器20伸出或缩回,且摄像头模组1的图像传感器20可相对于光学镜头10伸出或缩回。伸缩式摄像头模组1有利于实现变焦。固定式摄像头模组即光学镜头10与图像传感器20保持相对静止。
其中,图像传感器20可以是固态图像传感器20。图像传感器20包括电荷耦合元件(Charge Coupled Device,CCD)、金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)等一种光电器件。图像传感器20用于接收光学镜头10射入的光线并进行成像。图像传感器20的光电器件具有光电转换功能,能够将感光面上的光线转换为与光线成相应比例关系的电信号。
请参照图3至图5,光学镜头10包括主镜101、次镜102及第一消光件103。次镜102与主镜101从物侧至像侧依次排列。次镜102与主镜101同轴设置。第一消光件103与次镜102同轴设置。可以理解的,主镜101、次镜102及第一消光件103同轴设置。本申请实施例 中,主镜101、次镜102及第一消光件103的共同轴线可参照图中的M线。M线也可以理解为光学镜头10的光轴。换言之,次镜102、主镜101沿光学镜头10的光轴从物侧至像侧依次排列。其中,物侧即所拍摄的物体的所在侧;像侧即图像传感器20的所在侧。
主镜101可以为金属反射镜、镜面反射镜(例如:玻璃镀银反射镜)等。本申请实施例中主镜101以玻璃镀银反射镜为例。主镜101设有透光部110和主镜反射面112。透光部110可以是主镜101上的透光区域(例如:主镜101中材质为塑胶、玻璃等的透光区域),也可以是透光通孔。本申请实施例中,透光部110以透光通孔为例。一实施例中,光学镜头10的光轴贯穿透光部110的中心。换言之,透光部110位于主镜101的中心区域,透光部110的中轴线可参照图中的M线。透光部110可以呈圆形、方形、矩形等中的一种。本申请实施例中,透光部110呈圆形。主镜反射面112环绕于透光部110周侧。主镜反射面112可以为平面、外凸平面、内凹平面、外凸弧形面、内凹弧形面等中的一种。当主镜反射面112为外凸弧形面或者内凹弧形面时,主镜反射面112可以为球面也可以为非球曲面。一实施例中,光学镜头10的光轴还贯穿主镜反射面112的中心。换言之,透光部110与主镜反射面112同轴设置。主镜反射面112的中轴线即图中的M线。主镜反射面112朝向物侧。
次镜102可以为金属反射镜、镜面反射镜(例如:玻璃镀银反射镜)等。本申请实施例中次镜102以玻璃镀银反射镜为例。当然,在其他实施例中,次镜102与主镜101的材质可以不同。次镜102与主镜101间隔设置。次镜102与主镜101之间的距离可基于光学镜头10的焦距进行设定。次镜102具有朝向像侧的次镜反射面120。次镜反射面120可以为平面、外凸平面、内凹平面、外凸弧形面、内凹弧形面等中的一种。当次镜反射面120为外凸弧形面或者内凹弧形面时,次镜反射面120可以为球面也可以为非球曲面。本申请实施例中,次镜反射面120的中轴线即图中的M线。可以理解的,次镜反射面120与主镜反射面112相对,且次镜反射面120与主镜反射面112同轴。
第一消光件103可以是消光漆、消光粉、吸光涂层等,也可以是表面凹凸不平的微结构等,其本质在于第一消光件103能够增大对光线的散射而减少对光线的反射,和/或,能够吸收至少部分光线以转换为其他能量形式散发(例如:热能)。第一消光件103设于次镜反射面120。可以理解的,由于第一消光件103与次镜102同轴设置,因此第一消光件103设于次镜反射面120的中心。其中,第一消光件103设于次镜反射面120可以是第一消光件103直接成型于次镜反射面120,也可以是第一消光件103固定于次镜反射面120。例如:第一消光件103可通过印刷、涂布、喷涂等工艺方法成型于次镜反射面120,也可以通过粘接、卡接等方式固定于次镜反射面120。一实施例中,通过在次镜反射面120的中心成型黑色丝印形成第一消光件103。
其中,次镜反射面120的直径小于主镜反射面112的直径。例如:次镜反射面120的直径为D1,主镜反射面112的直径为D2,D1可以为0.5倍、0.3倍、0.25倍、0.7倍的D2等。第一消光件103的直径小于次镜反射面120的直径。第一消光件103的直径可以理解为第一消光件103的外径。例如:第一消光件103的直径为D3,D3可以为0.1倍、0.2倍、0.25倍、0.3倍、0.6倍的D2等。可以理解的,本申请实施例中,D2﹥D1﹥D2。由此,可使主镜反射面112反射的光线部分射于次镜反射面120,另一部分射于第一消光件103。
如图6所示,主镜反射面112用于反射从物侧射入的第一光线A并形成射向次镜反射面120的第一子光线A1和射向第一消光件103的第二子光线A2。一实施方式中,主镜反射面112的同一区域分别反射入射角度较小的第一光线A形成第一子光线A1,反射入射角度较大的第一光线A形成第二子光线A2,第一子光线A1射向次镜反射面120,第二子光线A2射向第一消光件103。
另一实施方式中,如图7所示,主镜反射面112远离光轴的区域反射第一光线A形成第一子光线A1,主镜反射面112靠近光轴的区域反射第一光线A形成第二子光线A2,第一子光线A1射向次镜反射面120,第二子光线A2射向第一消光件103。当然,在其他实施方式中,主镜101与次镜102之间多次反射的光线也可经主镜反射面112的反射形成朝向第一消光件103的第二子光线A2。
可以看出,由于第一消光件103设于次镜反射面120的中心,因此主镜反射面112射向第一消光件103的第二子光线A2通常为主镜反射面112反射入射角度较大的第一光线A,或 者,主镜反射面112靠近光轴区域反射的第一光线A,以及主镜101与次镜102之间多次反射的光线,其与第一子光线A1的光路不同,若第一子光线A1与第二子光线A2皆经透光部110射向像侧,则由于成像光线杂乱将导致成像质量降低。其中,第二子光线A2可以理解为主镜反射面112反射第一光线A时形成的一种杂散光线。
如图8所示,次镜反射面120用于反射第一子光线A1并形成穿过透光部110的目标光线a1。第一消光件103用于阻挡第二子光线A2射于透光部110。可以理解的,第一消光件103的消光面朝向像侧。其中,第一消光件103阻挡第二子光线A2的原理可以为第一消光件103增大了对第二子光线A2的散射并减少了对第二子光线A2的反射,从而可减少或避免第二子光线A2射于透光部110,和/或,第一消光件103吸收了至少部分第二子光线A2,从而减少或避免第二子光线A2射于透光部110。
请参照图9和图10,图像传感器20设于主镜101背离次镜102的一侧并与透光部110相对设置。可选的,图像传感器20与主镜101同轴设置。换言之,图像传感器20的几何中心与透光部110的几何中心位于同一直线(即光轴)上。当然,在其他实施方式中,图像传感器20与透光部110也可以倾斜相对设置,即图像传感器20与主镜101未同轴设置。图像传感器20用于接收至少部分目标光线a1并进行成像。可以理解的,第一子光线A1经次镜反射面120的反射形成目标光线a1并穿过透光部110后射向图像传感器20。而第二子光线A2被第一消光件103阻挡,因此无法射于图像传感器20。由于图像传感器20所接收的杂散光线减少,因此可提高成像质量,使得拍摄的图像的清晰度提升。
本申请提供的光学镜头10由于主镜101与次镜102从物侧至像侧依次排列,而主镜反射面112朝向物侧,次镜反射面120朝向像侧,物侧射入的光线需要经主镜101与次镜102的反射后才能射于像侧,形成了折返光路,因此可实现长焦距拍摄同时能够缩短光学镜头10的长度。此外,主镜反射面112反射的光线中第一子光线A1射向次镜102,并经次镜反射面120反射形成目标光线a1以穿过透光部110进行成像,而第二子光线A2则射向第一消光件103被第一消光件103阻挡,由于第一消光件103设于次镜反射面120并与次镜102同轴设置,且第一消光件103的直径小于次镜102的直径,因此射向第一消光件103的第二子光线A2通常是靠近光轴,反射角度较大,多次反射等而形成的杂散光线,通过第一消光件103阻挡杂散光线射入透光部110,有利于提高成像质量,提升所拍摄的图像的清晰度。本申请提供的摄像头模组1与电子设备100包括上述光学镜头10,因此具有较高的成像质量。
一实施例中,请参照图10和图11,主镜反射面112呈内凹圆弧形。次镜反射面120呈外凸圆弧形。第一消光件103呈内凹圆弧形。其中,主镜反射面112呈内凹圆弧形是指主镜反射面112相对于物侧内凹。次镜反射面120呈外凸圆弧形是指次镜反射面120朝向像侧凸出。第一消光件103呈内凹圆弧形是指第一消光件103相对于像侧内凹。本实施例中,通过将主镜反射面112设计为内凹圆弧形,可增加主镜反射面112所接收的第一光线A,有利于提高图像的亮度。次镜反射面120设计为外凸圆弧形,有利于汇聚目标光线a1,使目标光线a1穿过直径较小的透光部110。第一消光件103设计为内凹圆弧形,可增大第一消光件103的消光面的面积以及散射率,使得第一消光件103能够吸收、散射较多的杂散光线,从而提高第一消光件103阻挡第二子光线A2射于透光部110的效率。
进一步地,请参照图12和图13,光学镜头10还包括多个次镜遮光筒104。次镜遮光筒104可以是塑胶筒、金属筒、合金筒等。次镜遮光筒104不透光。当光线射于次镜遮光筒104时,次镜遮光筒104可吸收光线,或者使光线发生散射,或者,使光线发生漫反射等。本申请对于次镜遮光筒104的数量不作具体的限定。例如:次镜遮光筒104的数量可以为两个、三个、四个、五个、六个等。本申请实施例中以五个次镜遮光筒104为例,五个次镜遮光筒104分别记为第一次镜遮光筒141、第二次镜遮光筒142、第三次镜遮光筒143、第四次镜遮光筒144及第五次镜遮光筒145。多个次镜遮光筒104依次环绕于次镜102的外周侧并与次镜102同轴设置。本申请实施例中,第一次镜遮光筒141、第二次镜遮光筒142、第三次镜遮光筒143、第四次镜遮光筒144及第五次镜遮光筒145依次环绕于次镜102的外周侧。第一次镜遮光筒141为最靠近次镜102的外周侧的遮光筒。第五次镜遮光筒145为最远离次镜102的外周侧的遮光筒。其中,每个次镜遮光筒104可以为方形筒、圆形筒、其他多边形筒等。本申请实施例中以多个次镜遮光筒104皆为圆形筒为例。多个次镜遮光筒104的直径皆小于 主镜101的直径。可以理解的,第一次镜遮光筒141的直径﹤第二次镜遮光筒142的直径﹤第三次镜遮光筒143的直径﹤第四次镜遮光筒144的直径﹤第五次镜遮光筒145的直径。相邻的两个次镜遮光筒104之间相间隔。可以理解的,第一次镜遮光筒141与第二次镜102筒之间相间隔,第二次镜遮光筒142与第三次镜遮光筒143相间隔,第三次镜遮光筒143与第四次镜遮光筒144相间隔,第四次镜遮光筒144与第五次镜遮光筒145相间隔。
一实施例中,请参照图12和图13,相邻的两个次镜遮光筒104之间的间距相等,即第一次镜遮光筒141与第二次镜遮光筒142之间的间距、第二次镜遮光筒142与第三次镜遮光筒143之间的间距、第三次镜遮光筒143与第四次镜遮光筒144之间的间距及第四次镜遮光筒144与第五次镜遮光筒145之间的间距皆相同。可选的,第一次镜遮光筒141的长度、第二次镜遮光筒142的长度、第三次镜遮光筒143的长度、第四次镜遮光筒144的长度及第五次镜遮光筒145的长度相同。其中,次镜遮光筒104的长度可参照图中的Y轴方向。当然,在其他实施例中,第一次镜遮光筒141的长度、第二次镜遮光筒142的长度、第三次镜遮光筒143的长度、第四次镜遮光筒144的长度及第五次镜遮光筒145的长度可以不同。本实施例中,相邻的两个次镜遮光筒104之间的间距相等有利于多个次镜遮光筒104的组装,便于提高光学镜头10的生产效率。
另一实施例中,请参照图12和图14,相邻的两个次镜遮光筒104之间的间距沿次镜102指向次镜遮光筒104的方向依次递增。其中,次镜102指向次镜遮光筒104的方向可参照图中的X轴方向。可以理解的,本实施例中,第一次镜遮光筒141与第二次镜遮光筒142之间的间距小于第二次镜遮光筒142与第三次镜遮光筒143之间的间距;第二次镜遮光筒142与第三次镜遮光筒143之间的间距小于第三次镜遮光筒143与第四次镜遮光筒144之间的间距;第三次镜遮光筒143与第四次镜遮光筒144之间的间距小于第四次镜遮光筒144与第五次镜遮光筒145之间的间距。可选的,第一次镜遮光筒141的长度、第二次镜遮光筒142的长度、第三次镜遮光筒143的长度及第四次镜遮光筒144的长度依次递增,第五次镜遮光筒145的长度小于第四次镜遮光筒144的长度。其中,次镜遮光筒104的长度可参照图中的Y轴方向。当然,在其他实施例中,第一次镜遮光筒141的长度、第二次镜遮光筒142的长度、第三次镜遮光筒143的长度、第四次镜遮光筒144的长度及第五次镜遮光筒145的长度可以相同,或者依次递增、依次递减等。本实施例中,相邻的两个次镜遮光筒104之间的间距依次递增有利于使多个次镜遮光筒104之间的杂散光线汇聚于一点,从而便于设计其他遮光件阻挡物侧经多个次镜遮光筒104之间透过的杂散光线。
可以理解的,每个次镜遮光筒104皆为中空结构。相邻的两个次镜遮光筒104之间形成第一透光区域140。相邻的两个次镜遮光筒104之间的第一透光区域140用于透过第一光线A。次镜遮光筒104用于阻挡从物侧射入的第二光线B,以防止第二光线B射入透光部110。其中,第二光线B的入射角度β大于第一光线A的入射角度α。从物侧射入光学镜头10的光线中入射角度β较小的第一光线A和入射角度较大的第一光线A可以透过多个次镜遮光筒104之间的第一透光区域140,而射于主镜反射面112上;从物侧射入光学镜头10的光线中入射角度更大的第二光线B则射于次镜遮光筒104上,被次镜遮光筒104反射、散射或吸收,而无法射向主镜101。需要说明的是,由于第二光线B的入射角度β较大,若第二光线B射向主镜101,容易在主镜101与次镜102之间发生多次反射形成杂散光线,因此通过次镜遮光筒104阻挡第二光线B,可减少射入主镜101与次镜102之间的杂散光线,从而提高成像质量。其中,第二光线B可以理解从物侧射向光学镜头10的一种杂散光线。
进一步地,如图15所示,光学镜头10还包括镜筒105和透光盖板106。其中,镜筒105可以是塑胶镜筒、金属镜筒、合金镜筒等。镜筒105不能透过光线。透光盖板106可以是塑胶盖板、玻璃盖板等。透光盖板106能够透过光线。透光盖板106密封于镜筒105靠近物侧的一端。主镜101、次镜102、次镜遮光筒104及第一消光件103皆设于镜筒105内。本实施例中,通过将透光盖板106密封于镜筒105靠近物侧的一端,使主镜101、次镜102、次镜遮光筒104及第一消光件103皆设于镜筒105内,可保护主镜101、次镜102、次镜遮光筒104及第一消光件103,减少灰尘、水渍等进入镜筒105内,同时镜筒105还可以进一步地遮光,以减少或避免外部的杂散光线射于镜筒105内部影响成像。主镜101与镜筒105固定连接。可选的,主镜101与镜筒105粘接、卡扣连接于一起。一实施方式中,主镜101通过压圈压 紧于镜筒105的内表面,压圈和镜筒105之间通过粘接、卡扣连接、焊接、螺栓连接等中的一种或多种方式连接于一起。次镜102、次镜遮光筒104皆固定于透光盖板106上。可选的,次镜102、次镜遮光筒104皆粘接于透光盖板106的内表面。通过粘接于透光盖板106的方式固定次镜102与次镜遮光筒104,操作方便且有利于调整次镜102、次镜遮光筒104相对于主镜101的位置,从而校准光学系统的成像性能。
如图15所示,镜筒105与最外层的次镜遮光筒104之间间隔设置,镜筒105与最外层的次镜遮光筒104之间的第二透光区域150用于透过第一光线A。本实施例中,从物侧射入的一部分第一光线A经多个次镜遮光筒104之间的第一透光区域140射于主镜反射面112,另一部分第一光线A经第五次镜遮光筒145与镜筒105之间的第二透光区域150射入主镜反射面112,从物侧射入的第二光线B射于多个次镜遮光筒104上,如此可最大限度的使第一光线A射入光学镜头10内部,而使第二光线B无法射入光线镜头内部,从而保证光学镜头10的进光量并减少杂散光,能够兼顾所拍摄的图像的清晰度和亮度。当然,在其他实施方式中,从物侧射入的第一光线A可全部经多个次镜遮光筒104之间的透光区域140射于主镜反射面112,即第五次镜遮光筒145与镜筒105的内表面接触,或者,第五次镜遮光筒145与镜筒105之间的区域所对应的透光盖板106设有遮光层,无法透过光线等。
进一步地,请参照图16和图17,光学镜头10还包括主镜遮光筒108。主镜遮光筒108可以是塑胶筒、金属筒、合金筒等。主镜遮光筒108不透光。当光线射于主镜遮光筒108时,主镜遮光筒108可吸收光线,或者使光线发生散射,或者,使光线发生漫反射等。主镜遮光筒108至少部分位于透光部110与次镜102之间且主镜遮光筒108与主镜101同轴设置。可以理解的,主镜遮光筒108的中轴线与主镜101的中轴线重合。本申请实施例中,主镜遮光筒108的中轴线、主镜101的中轴线可参照图中的M线。主镜遮光筒108的直径小于次镜102的直径且主镜遮光筒108的直径大于第一消光件103的直径。主镜反射面112还用于反射从物侧射出的第一光线A并形成射向主镜遮光筒108的第三子光线A3。主镜遮光筒108用于阻挡第三子光线A3射于次镜反射面120。主镜遮光筒108还用于阻挡从物侧射入的第三光线C,以防止第三光线C射入透光部110,第三光线C的入射角度γ大于第一光线A的入射角度α。可以理解的,主镜遮光筒108阻挡第三子光线A3射于次镜反射面120,即主镜遮光筒108阻挡第三子光线A3经次镜反射面120的反射而射向透光部110。其中,第三子光线A3可以理解为主镜反射面112反射第一光线A时形成的另一种杂散光线。第三光线C可以理解从物侧射向光学镜头10的另一种杂散光线。
本实施例中,主镜遮光筒108与第一消光件103组合可阻挡主镜反射面112所反射的杂散光线(包括第二子光线A2和第三子光线A3),而主镜遮光筒108还可以阻挡物侧射入的杂散光线(第三光线C),可进一步地提高成像质量,提升所拍摄的图像的清晰度。其中,主镜遮光筒108的长度与第一消光件103的直径可根据实际需要进行设计。需要说明的是,主镜遮光筒108与第一消光件103的组合对于第二子光线A2、第三子光线A3的阻挡效果具有进一步的叠加效果。换言之,主镜遮光筒108也可以阻挡部分第二子光线A2,第一消光件103也可以阻挡部分第三子光线A3。可以理解的,主镜遮光筒108与第一消光件103对于主镜反射面112所反射的杂散光线的遮挡部分重叠。
一实施方式中,如图17所示,主镜遮光筒108的一端位于主镜101与次镜102之间,主镜遮光筒108的另一端贯穿透光部110并与主镜101固定连接。主镜遮光筒108为中空结构。主镜遮光筒108还用于透过目标光线a1。本实施方式中,主镜遮光筒108可直接固定于主镜101上,无需设置另外的支撑结构支撑主镜遮光筒108,可减少光学镜头10中的零部件。
另一实施方式中,如图18所示,主镜遮光筒108全部位于透光部110与次镜102之间。可选的,主镜遮光筒108位于透光部110与次镜102之间,并靠近透光部110。主镜遮光筒108为中空结构。主镜遮光筒108还用于透过目标光线a1。其中,主镜遮光筒108可通过支撑结构支撑于透光部110与次镜102之间。本实施方式有利于缩短主镜遮光筒108的长度,从而避免组装时主镜遮光筒108与次镜102、第一消光件103的碰撞。
进一步地,如图19所示,光学镜头10还包括至少一个透镜109。本申请对于透镜109的数量不做具体的限定。透镜109的数量可以为一个、两个、三个等。本申请实施例中以两个透镜109为例。透镜109可以为凸透镜、凹透镜等。透镜109的光学表面可以为平面、球 面、非球曲面(例如:二次曲面)等中的一种。其中,透镜109的光学表面即透镜109朝向像侧的表面,或者,透镜109朝向物侧的表面。透镜109设于主镜遮光筒108内。通过将透镜109设于遮光筒内可缩短光学镜头10的整体长度。透镜109用于使目标光线a1的第一子目标光线a11折射于像侧。
可选的,如图20所示,光学镜头10还包括至少一个遮光环107。遮光环107设于相邻的两个透镜109的边缘之间,或者,遮光环107设于透镜109的边缘朝向像侧的一侧。遮光环107用于阻挡目标光线a1的第二子目标光线a12,以防止第二子目标光线a12射于像侧。第二子目标光线a12未经过透镜109折射。本实施例中,通过在相邻的两个透镜109之间设置遮光环107,或者,在透镜109朝向像侧的一侧设置遮光环107,可避免未经过透镜109的光学表面折射的第二子目标光线a12射于像侧,影响成像画面。其中,遮光环107不透光。遮光环107可吸收光线,或者使光线发生散射,或者,使光线发生漫反射等。可以理解的,遮光环107对光线的阻挡原理与上述实施例中第一消光件103、次镜遮光筒104及主镜遮光筒108对光线的阻挡原理相同。
进一步地,如图21所示,主镜遮光筒108的内表面设有第二消光件181。第二消光件181可以是设于主镜遮光筒108的内表面的螺纹、凹凸微结构等。第二消光件181用于阻挡目标光线a1的第三子目标光线a13,以防止第三子目标光线a13透过主镜遮光筒108。其中,第三子目标光线a13经次镜反射面120反射时的角度大于第一子目标光线a1经次镜反射面120反射时的角度。第二消光件181不透光。第二消光件181可吸收光线,或者使光线发生散射,或者,使光线发生漫反射等。可以理解的,第二消光件181对光线的阻挡原理与上述实施例中第一消光件103、次镜遮光筒104及主镜遮光筒108对光线的阻挡原理相同。本实施例中,通过在主镜遮光筒108的内表面设置第二消光件181阻挡第三子目标光线a13,可避免次镜反射面120形成的目标光线a1中的杂散光射于透光部110。第三子目标光线a13可以理解为次镜反射面112反射第一子光线A1时形成的杂散光线。
进一步地,如图22所示,光学镜头10还包括镜筒105和透光盖板106。其中,镜筒105可以是塑胶镜筒、金属镜筒、合金镜筒等。镜筒105不能透过光线。透光盖板106可以是塑胶盖板、玻璃盖板等。透光盖板106可以透过光线。透光盖板106密封于镜筒105靠近物侧的一端。主镜101、次镜102、次镜遮光筒104及第一消光件103皆设于镜筒105内。本实施例中,通过将透光盖板106密封于镜筒105靠近物侧的一端,使主镜101、主镜遮光筒108、次镜102及第一消光件103皆设于镜筒105内,可保护主镜101、主镜遮光筒108、次镜102及第一消光件103,减少灰尘、水渍等进入镜筒105内,同时镜筒105还可以进行遮光,以避免外部的杂散光线射于镜筒105内部,影响成像。主镜101与镜筒105固定连接。可选的,主镜101与镜筒105粘接、卡扣连接于一起。一实施方式中,主镜101通过压圈压紧于镜筒105的内表面,压圈和镜筒105之间通过粘接、卡扣连接、焊接、螺栓连接等中的一种或多种方式连接于一起。主镜遮光筒108与所述主镜101固定连接。可选的,主镜遮光筒108与主镜101粘接于一起。通过粘接的方式固定主镜遮光筒108与主镜101,操作方便且有利于调整主镜遮光筒108与主镜101的位置,从而校准光学系统的成像性能。次镜102固定于透光盖板106上。可选的,次镜102粘接于透光盖板106的内表面。通过粘接于透光盖板106的方式固定次镜102,操作方便且有利于调整次镜102相对于主镜101的位置,从而校准光学系统的成像性能。
进一步地,请参照图23和图24,光学镜头10还包括至少一个次镜遮光筒104和主镜遮光筒108。次镜遮光筒104环绕于次镜102的外周侧并与次镜102同轴设置,次镜遮光筒104的直径皆小于主镜101的直径,次镜遮光筒104用于阻挡从物侧射入的第二光线。本实施例中,次镜遮光筒104的数量、结构、位置、其与主镜101、次镜102之间的关系以及其对第二光线的阻挡作用可参照上述实施例中的次镜遮光筒104,此处不再赘述。主镜遮光筒108至少部分位于透光部110与次镜102之间且主镜遮光筒108与主镜101同轴设置,主镜遮光筒108的直径小于次镜102的直径且主镜遮光筒108的直径大于第一消光件103的直径。主镜反射面112还用于反射从物侧射出的第一光线并形成射向主镜遮光筒108的第三子光线。主镜遮光筒108用于阻挡第三子光线,以及用于阻挡从物侧射入的第三光线,第三光线的入射角度大于第一光线的入射角度且小于第二光线的入射角。第三光线与第二光线皆为物侧射 入的杂散光。其中,主镜遮光筒108的结构、位置、其与主镜101之间的关系、其对第三光线、第三子光线的阻挡作用、其与第一消光件103的组合对第二子光线、第三子光线的阻挡作用可参照上述实施例中的主镜遮光筒108,此处不再赘述。
其中,次镜遮光筒104的长度、数量,主镜遮光筒108的长度,第一消光件103的直径可根据实际需要进行设计。对于本实施例,需要说明的是,次镜遮光筒104、主镜遮光筒108与第一消光件103的组合对于物侧射入的杂散光线(即第二光线、第三光线)以及主镜反射面112反射所形成的杂散光线(第二子光线与第三子光线)的阻挡具有进一步的叠加效果。换言之,主镜遮光筒108也可以阻挡部分第二光线,次镜遮光筒104也可以阻挡部分第三光线,主镜遮光筒108也可以阻挡部分第二子光线,第一消光件103也可以阻挡部分第三子光线。可以理解的,次镜遮光筒104与主镜遮光筒108对于从物侧射入的杂散光线的遮挡部分重叠;主镜遮光筒108与第一消光件103对于主镜反射面112所反射的杂散光线的遮挡部分重叠。
可选的,如图25所示,光学镜头10还包括镜筒105和透光盖板106。透光盖板106密封于镜筒105靠近物侧的一端。主镜101、主镜遮光筒108、次镜102、次镜遮光筒104及第一消光件103皆设于镜筒105内。主镜101与镜筒105固定连接。主镜遮光筒108与主镜101固定连接。次镜102、次镜遮光筒104皆固定于透光盖板106上。次镜遮光筒104的数量为多个。相邻的两个次镜遮光筒104的之间的第一透光区域140用于透过第一光线及第三光线。其中,镜筒105、透光盖板106的结构可参照上述实施例的镜筒105和透光盖板106。主镜101、主镜遮光筒108、次镜102、次镜遮光筒104、第一消光件103、镜筒105和透光盖板106之间的关系皆与上述实施例相同,此处不再赘述。第五次镜遮光筒145与镜筒105之间的第二透光区域140可以透过第一光线和第三光线。
此外,如图26所示,本申请提供的摄像头模组1还包括电路板30。电路板30密封于光学镜头10的镜筒105靠近像侧的一端。图像传感器20承载于电路板30朝向镜筒105的一侧。电路板30电连接图像传感器20,电路板30用于传输图像传感器20所转换的电信号。本实施例中,通过将电路板30密封于镜筒105靠近像侧的一端,可通过镜筒105、透光盖板106及电路板30实现内部主镜101、主镜遮光筒108、次镜102、次镜遮光筒104及第一消光件103的密封,提高摄像头模组1的可靠性。
进一步地,如图27所示,摄像头模组1还包括至少一个滤光片40。本申请对于滤光片40的数量不做具体的限定。例如:摄像头模组1可包括一个、两个、三个等数量的滤光片40。滤光片40设于图像传感器20与透光部110之间。滤光片40用于过滤部分透光部110所透过的目标光线a1。本申请实施例中,滤光片40设于图像传感器20与透镜109之间。其中,滤光片40可以包括红外光截止滤光片40、紫外光截止滤光片40、任一单色可见光截止滤光片40等中的一种或多种。通过设置滤光片40可阻挡不可见光或部分单色可见光透过,从而便于提高图像的分辨率以及适用于特殊场景下(例如:某一单色光较强)的拍摄。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
上述在说明书、权利要求书以及附图中提及的特征,只要在本申请的范围内是有意义的,均可以任意相互组合。针对光学镜头10所说明的优点和特征以相应的方式适用于摄像头模组1和电子设备100。
Claims (20)
- 一种光学镜头,包括:主镜,所述主镜设有透光部及环绕于所述透光部周侧的主镜反射面,所述主镜反射面朝向物侧;次镜,所述次镜与所述主镜从所述物侧至像侧依次排列,所述次镜与所述主镜同轴并间隔设置,所述次镜具有朝向所述像侧的次镜反射面,所述次镜反射面的直径小于所述主镜反射面的直径;及第一消光件,所述第一消光件设于所述次镜反射面且与所述次镜同轴设置,所述第一消光件的直径小于所述次镜反射面的直径;所述主镜反射面用于反射从所述物侧射入的第一光线并形成射向所述次镜反射面的第一子光线和射向所述第一消光件的第二子光线,所述次镜反射面用于反射所述第一子光线并形成射向所述透光部的目标光线,所述第一消光件用于阻挡所述第二子光线射向所述透光部。
- 根据权利要求1所述的光学镜头,所述主镜反射面呈内凹圆弧形,所述次镜反射面呈外凸圆弧形,所述第一消光件呈内凹圆弧形。
- 根据权利要求1或2所述的光学镜头,所述光学镜头还包括多个次镜遮光筒,多个所述次镜遮光筒依次环绕于所述次镜的外周侧并与所述次镜同轴设置,多个所述次镜遮光筒的直径皆小于所述主镜反射面的直径,相邻的两个次镜遮光筒之间相间隔,相邻的两个所述次镜遮光筒之间的第一透光区域用于透过所述第一光线,所述次镜遮光筒用于阻挡从所述物侧射入的第二光线,以防止所述第二光线射向所述透光部,所述第二光线的入射角度大于所述第一光线的入射角度。
- 根据权利要求3所述的光学镜头,所述光学镜头还包括镜筒和透光盖板,所述透光盖板密封于所述镜筒靠近所述物侧的一端,所述主镜、所述次镜、所述次镜遮光筒及所述第一消光件皆设于所述镜筒内,所述主镜与所述镜筒固定连接,所述次镜、所述次镜遮光筒皆固定于所述透光盖板上。
- 根据权利要求4所述的光学镜头,所述镜筒与最外层的所述次镜遮光筒之间间隔设置,所述镜筒与所述最外层的所述次镜遮光筒之间的第二透光区域用于透过所述第一光线。
- 根据权利要求3所述的光学镜头,相邻的两个所述次镜遮光筒之间的间距相等。
- 根据权利要求3所述的光学镜头,相邻的两个所述次镜遮光筒之间的间距沿所述次镜指向所述次镜遮光筒的方向依次递增。
- 根据权利要求3所述的光学镜头,多个所述次镜遮光筒沿轴线方向的长度不同。
- 根据权利要求1或2所述的光学镜头,所述光学镜头还包括主镜遮光筒,所述主镜遮光筒至少部分位于所述透光部与所述次镜之间且所述主镜遮光筒与所述主镜同轴设置,所述主镜遮光筒的直径小于所述次镜反射面的直径且所述主镜遮光筒的直径大于所述第一消光件的直径;所述主镜反射面还用于反射从所述物侧射出的第一光线并形成射向所述主镜遮光筒的第三子光线,所述主镜遮光筒用于阻挡所述第三子光线射向所述次镜反射面,以及用于阻挡从所述物侧射入的第三光线,以防止所述第三光线射向所述透光部,所述第三光线的入射角度大于所述第一光线的入射角度。
- 根据权利要求9所述的光学镜头,所述主镜遮光筒的一端位于所述主镜与所述次镜之间,所述主镜遮光筒的另一端贯穿所述透光部并与所述主镜固定连接,所述主镜遮光筒还用于透过至少部分所述目标光线。
- 根据权利要求9所述的光学镜头,所述光学镜头还包括至少一个透镜,所述透镜设于所述主镜遮光筒内,所述透镜用于使所述目标光线的第一子目标光线折射于所述像侧。
- 根据权利要求11所述的光学镜头,所述光学镜头还包括至少一个遮光环,所述遮光环设于相邻的两个所述透镜的边缘之间,或者,所述遮光环设于所述透镜的边缘朝向所述像侧的一侧,所述遮光环用于阻挡所述目标光线的第二子目标光线,以防止所述第二子目标光线射向所述像侧,所述第二子目标光线未经过所述透镜折射。
- 根据权利要求9所述的光学镜头,所述主镜遮光筒的内表面设有第二消光件,所述第二消光件用于阻挡所述目标光线的第三子目标光线,以防止所述第三子目标光线射向所述 透光部,所述第三子目标光线经所述次镜反射面反射时的角度大于所述第一子目标光线经所述次镜反射面反射时的角度。
- 根据权利要求9所述的光学镜头,所述光学镜头还包括镜筒和透光盖板,所述透光盖板密封于所述镜筒靠近所述物侧的一端,所述主镜、所述主镜遮光筒、所述次镜及所述第一消光件皆设于所述镜筒内,所述主镜与所述镜筒固定连接,所述主镜遮光筒与所述主镜固定连接,所述次镜固定于所述透光盖板上。
- 根据权利要求1或2所述的光学镜头,所述光学镜头还包括至少一个次镜遮光筒和主镜遮光筒,所述次镜遮光筒环绕于所述次镜的外周侧并与所述次镜同轴设置,所述次镜遮光筒的直径小于所述主镜反射面的直径,所述次镜遮光筒用于阻挡从所述物侧射入的第二光线;所述主镜遮光筒至少部分位于所述透光部与所述次镜之间且所述主镜遮光筒与所述主镜同轴设置,所述主镜遮光筒的直径小于所述次镜反射面的直径且所述主镜遮光筒的直径大于所述第一消光件的直径;所述主镜反射面还用于反射从所述物侧射出的第一光线并形成射向所述主镜遮光筒的第三子光线,所述主镜遮光筒用于阻挡所述第三子光线,以及用于阻挡从所述物侧射入的第三光线,所述第三光线的入射角度大于所述第一光线的入射角度且小于所述第二光线的入射角。
- 根据权利要求15所述的光学镜头,所述光学镜头还包括镜筒和透光盖板,所述透光盖板密封于所述镜筒靠近所述物侧的一端,所述主镜、所述主镜遮光筒、所述次镜、所述次镜遮光筒及所述第一消光件皆设于所述镜筒内,所述主镜与所述镜筒固定连接,所述主镜遮光筒与所述主镜固定连接,所述次镜、所述次镜遮光筒皆固定于所述透光盖板上,所述次镜遮光筒的数量为多个,相邻的两个次镜遮光筒的之间的第一透光区域用于透过所述第一光线及所述第三光线。
- 一种摄像头模组,包括图像传感器及如权利要求1至16任意一项所述的光学镜头,所述图像传感器设于所述主镜背离所述次镜的一侧并与所述透光部相对设置,所述图像传感器用于接收至少部分所述目标光线并将接收到的所述目标光线转换为电信号。
- 根据权利要求17所述的摄像头模组,所述摄像头模组还包括电路板,所述电路板密封于所述光学镜头的镜筒靠近所述像侧的一端,所述图像传感器承载于所述电路板朝向所述镜筒的一侧,且所述电路板电连接所述图像传感器,所述电路板用于传输所述电信号。
- 根据权利要求17所述的摄像头模组,所述摄像头模组还包括至少一个滤光片,所述滤光片设于所述图像传感器与所述透光部之间,所述滤光片用于过滤部分所述透光部所透过的目标光线。
- 一种电子设备,包括显示屏及如权利要求17至19任意一项所述的摄像头模组,所述显示屏与所述摄像头模组电连接,所述显示屏用于显示所述摄像头模组拍摄的图像。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111267201.4 | 2021-10-28 | ||
CN202111267201.4A CN116047710A (zh) | 2021-10-28 | 2021-10-28 | 光学镜头、摄像头模组及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023071647A1 true WO2023071647A1 (zh) | 2023-05-04 |
Family
ID=86130072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/120873 WO2023071647A1 (zh) | 2021-10-28 | 2022-09-23 | 光学镜头、摄像头模组及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116047710A (zh) |
WO (1) | WO2023071647A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203502675U (zh) * | 2013-08-30 | 2014-03-26 | 中国科学院西安光学精密机械研究所 | 一种全天时小型化恒星跟踪光学系统 |
CN104280850A (zh) * | 2014-09-26 | 2015-01-14 | 中国科学院西安光学精密机械研究所 | 次镜支撑结构 |
CN104656251A (zh) * | 2015-02-04 | 2015-05-27 | 中国科学院西安光学精密机械研究所 | 暗弱点状目标探测用亚角秒级大口径紧凑型光学结构 |
CN206002781U (zh) * | 2016-08-22 | 2017-03-08 | 中国电子科技集团公司第十一研究所 | 一种准直光学系统 |
CN109283771A (zh) * | 2018-11-01 | 2019-01-29 | 北京航天计量测试技术研究所 | 一种全天时星敏感器r-c光学系统消杂光装置 |
JP2019090890A (ja) * | 2017-11-14 | 2019-06-13 | 株式会社nittoh | 撮像光学系および撮像装置 |
CN114089582A (zh) * | 2021-11-16 | 2022-02-25 | Oppo广东移动通信有限公司 | 遮光组件及其制备方法、光学镜头、摄像头、电子设备 |
-
2021
- 2021-10-28 CN CN202111267201.4A patent/CN116047710A/zh active Pending
-
2022
- 2022-09-23 WO PCT/CN2022/120873 patent/WO2023071647A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203502675U (zh) * | 2013-08-30 | 2014-03-26 | 中国科学院西安光学精密机械研究所 | 一种全天时小型化恒星跟踪光学系统 |
CN104280850A (zh) * | 2014-09-26 | 2015-01-14 | 中国科学院西安光学精密机械研究所 | 次镜支撑结构 |
CN104656251A (zh) * | 2015-02-04 | 2015-05-27 | 中国科学院西安光学精密机械研究所 | 暗弱点状目标探测用亚角秒级大口径紧凑型光学结构 |
CN206002781U (zh) * | 2016-08-22 | 2017-03-08 | 中国电子科技集团公司第十一研究所 | 一种准直光学系统 |
JP2019090890A (ja) * | 2017-11-14 | 2019-06-13 | 株式会社nittoh | 撮像光学系および撮像装置 |
CN109283771A (zh) * | 2018-11-01 | 2019-01-29 | 北京航天计量测试技术研究所 | 一种全天时星敏感器r-c光学系统消杂光装置 |
CN114089582A (zh) * | 2021-11-16 | 2022-02-25 | Oppo广东移动通信有限公司 | 遮光组件及其制备方法、光学镜头、摄像头、电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN116047710A (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI707188B (zh) | 相機模組與電子裝置 | |
TWI721543B (zh) | 光學鏡頭、應用該光學鏡頭的鏡頭模組及電子裝置 | |
WO2023087920A1 (zh) | 遮光组件及其制备方法、光学镜头、摄像头、电子设备 | |
CN111447313A (zh) | 移动终端 | |
TWI714247B (zh) | 相機模組及電子裝置 | |
KR20130037883A (ko) | 단일렌즈로 전방위를 촬영하는 동기식 카메라 렌즈모듈 | |
JP2024504436A (ja) | カメラモジュール及び電子機器 | |
CN111756958B (zh) | 广角镜头、广角摄像模组及其制造方法和电子设备 | |
CN209821470U (zh) | 前壳装置和移动终端 | |
CN213780493U (zh) | 成像镜头、取像装置及电子装置 | |
JP2006235509A (ja) | 全方位撮像装置 | |
WO2023071647A1 (zh) | 光学镜头、摄像头模组及电子设备 | |
CN212343814U (zh) | 移动终端 | |
CN113296336A (zh) | 摄像头模组及电子设备 | |
CN210958420U (zh) | 移动终端 | |
KR101051169B1 (ko) | 광각 렌즈시스템 | |
JP2017146527A (ja) | 撮像モジュール、撮像装置 | |
JP6696228B2 (ja) | 撮像モジュール、撮像装置 | |
CN213072823U (zh) | 间隔环、摄像头模组及电子设备 | |
JP6607585B2 (ja) | レンズモジュール | |
TWI460472B (zh) | 攜帶型電子裝置 | |
CN211348844U (zh) | 一种长波红外全景潜望镜装置 | |
CN108710261A (zh) | 一种摄像模组 | |
TWI810735B (zh) | 具消除像差功能的輕型高倍攝像鏡頭 | |
TW201404130A (zh) | 成像單元及成像裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22885534 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22885534 Country of ref document: EP Kind code of ref document: A1 |