WO2023071628A1 - 一种超级电容器 - Google Patents

一种超级电容器 Download PDF

Info

Publication number
WO2023071628A1
WO2023071628A1 PCT/CN2022/120106 CN2022120106W WO2023071628A1 WO 2023071628 A1 WO2023071628 A1 WO 2023071628A1 CN 2022120106 W CN2022120106 W CN 2022120106W WO 2023071628 A1 WO2023071628 A1 WO 2023071628A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrafluoroborate
porous carbon
carbon material
surface area
specific surface
Prior art date
Application number
PCT/CN2022/120106
Other languages
English (en)
French (fr)
Inventor
向晓霞
张正生
钱韫娴
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2023071628A1 publication Critical patent/WO2023071628A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the technical field of energy storage electronic components, and in particular relates to a supercapacitor.
  • Supercapacitor is one of the most promising energy storage devices in the field of new energy, and is considered to be the most promising new green energy in the 21st century.
  • Electric double-layer supercapacitors store energy by means of electrostatically polarized electrolytes. Its energy storage mechanism does not involve chemical reactions and is highly reversible.
  • Supercapacitors have the advantages of fast charging speed, long cycle life, and high power density up to 300W/kg-500W/kg.
  • Electrolyte and electrode materials are the two core components of supercapacitors.
  • the electrolyte is the heart of "double electricity", which is used for ion conduction between positive and negative carbon materials, and for electric double layer capacitors. Operating voltage, leakage current, internal resistance, capacity, and temperature characteristics play a crucial role.
  • AN acetonitrile
  • PC propylene carbonate
  • GBL ⁇ -butyrolactone
  • SL sulfolane
  • the invention provides a supercapacitor.
  • the present invention provides a kind of supercapacitor, comprise positive pole, negative pole and organic electrolytic solution, described organic electrolytic solution comprises organic electrolyte, aprotic solvent and additive, and described additive comprises the compound shown in structural formula 1:
  • R 1 to R 6 are each independently selected from a hydrocarbon group containing 1 to 5 carbons, substituted or unsubstituted siloxy or hydrogen by a hydrocarbon group containing 1 to 3 carbons;
  • Both the positive electrode and the negative electrode are porous carbon materials, and the porous carbon material and the compound shown in Structural Formula 1 meet the following conditions:
  • BET is the specific surface area of the porous carbon material, the unit is m 2 /g; Vt is the ratio of the mesopore specific surface area of the porous carbon material/micropore specific surface area of the porous carbon material; The mass percentage in the electrolyte, in %.
  • each of R 1 to R 6 is independently selected from an alkyl group containing 1 to 5 carbons, dimethylsilyloxy, trimethylsilyloxy or hydrogen.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the amount Mt of the compound represented by the structural formula 1 is 0.1%-5%.
  • the specific surface area BET of the porous carbon material is 1200-2000m 2 /g.
  • the ratio Vt of the mesopore specific surface area of the porous carbon material/micropore specific surface area of the porous carbon material is 0.9-3.5.
  • the mesopore specific surface area of the porous carbon material is 800-1400m 2 /g, and the micropore specific surface area of the porous carbon material is 400-900m 2 /g.
  • the porous carbon material is selected from activated carbon.
  • the concentration of the organic electrolyte is 0.5-3.0 mol/L.
  • the organic electrolyte is selected from tetraethylammonium tetrafluoroborate, tetramethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, methyltriethylammonium tetrafluoroborate Ammonium, diethyldimethylammonium tetrafluoroborate, trimethylethylammonium tetrafluoroborate, N,N-dimethylpyrrolidine ammonium tetrafluoroborate, N-ethyl-N-methylpyrrolidine tetrafluoroborate Amine borate, N-propyl-N-methylpyrrolidine ammonium tetrafluoroborate, N-N-tetramethylenepyrrolidine ammonium tetrafluoroborate, spiro-(1,1')-di
  • the inventor has found through a large number of tests that by adding the compound shown in structural formula 1 as an additive in the organic electrolyte, while reasonably controlling the specific surface area BET of the porous carbon material, the mesopore specific surface area/micropore
  • the relationship between the ratio Vt of the specific surface area and the compound addition amount Mt shown in structural formula 1 makes it meet the conditions , can give full play to the improvement effect of the compound shown in structural formula 1 on the electrochemical performance of the supercapacitor under low temperature conditions, can ensure that the organic electrolyte does not solidify under ultra-low temperature conditions, and at the same time improve the compatibility between the organic electrolyte and the positive and negative electrode materials properties, optimize the transmission of anions and cations in the organic electrolyte and positive and negative electrode materials, increase the conductivity, and then significantly improve the ESR (equivalent series resistance) and high and low temperature performance of the supercapacitor.
  • ESR Equivalent series resistance
  • the term “mesoporous” refers to pores with a diameter of 2-50 nm; the term “micropore” refers to pores with a diameter of less than 2 nm.
  • An embodiment of the present invention provides a supercapacitor, including a positive electrode, a negative electrode and an organic electrolyte, the organic electrolyte includes an organic electrolyte, an aprotic solvent and an additive, and the additive includes a compound shown in structural formula 1:
  • R 1 to R 6 are each independently selected from a hydrocarbon group containing 1 to 5 carbons, substituted or unsubstituted siloxy or hydrogen by a hydrocarbon group containing 1 to 3 carbons;
  • Both the positive electrode and the negative electrode are porous carbon materials, and the porous carbon material and the compound shown in Structural Formula 1 meet the following conditions:
  • BET is the specific surface area of the porous carbon material, the unit is m 2 /g; Vt is the ratio of the mesopore specific surface area of the porous carbon material/micropore specific surface area of the porous carbon material; The mass percentage in the electrolyte, in %.
  • the compound shown in structural formula 1 acts on some oxygen-containing groups on the surface of the positive and negative electrode materials (microporous surface, mesoporous surface), and eliminates the oxygen-containing groups on the electrolyte.
  • negative impact strengthen the compatibility between the organic electrolyte and the positive and negative electrode materials, and at the same time build a conductive bridge between the compound shown in structural formula 1 and the positive and negative electrode materials and the organic electrolyte, and the anions and cations can be quickly absorbed and desorbed on the positive and negative electrodes through the conductive bridge.
  • the surface of the negative electrode material enables the rapid adsorption and desorption of anions and cations at ultra-low temperature (-55°C), which strengthens the conductivity of the electrolyte.
  • the inventors control the intrinsic parameters of the positive and negative poles (the specific surface area BET of the porous carbon material by controlling the porous carbon material
  • the specific surface area BET, the ratio of mesopore specific surface area/micropore specific surface area Vt) and the mass percentage Mt of the compound shown in structural formula 1 in the organic electrolyte are designed comprehensively, and the correlation of the above parameters is reasonably quantified, in Under these conditions, it can synergistically improve the high and low temperature performance of the supercapacitor at ultra-low temperature and the conductivity of the electrolyte, and at the same time, it will not adversely affect the high temperature and high pressure performance of the supercapacitor.
  • R 1 to R 6 are each independently selected from an alkyl group containing 1 to 5 carbons, dimethylsilyloxy, trimethylsilyloxy or hydrogen.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the amount Mt of the compound represented by the structural formula 1 is 0.1%-5%.
  • the amount Mt of the compound represented by the structural formula 1 is 0.1%-3%.
  • the addition of the compound shown in structural formula 1 is beneficial to improve the ionic conductivity of the organic electrolyte, so that the supercapacitor can be used at a higher operating voltage (above 2.7V), and has a high power density at -55 ° C, Energy density and good cycle life, and can improve the high and low temperature performance of supercapacitors.
  • the specific surface area BET of the porous carbon material is 1200-2000 m 2 /g.
  • the specific surface area BET of the porous carbon material is 1400-1800 m 2 /g.
  • the deintercalation reaction of the organic electrolyte is mainly concentrated on the electrode/electrolyte interface.
  • the specific surface area BET of the positive and negative electrodes also directly affects the modification effect of the compound shown in structural formula 1 per unit mass on the surface of the positive and negative electrodes, thereby affecting the performance of the supercapacitor.
  • the ratio Vt of the mesopore specific surface area of the porous carbon material/micropore specific surface area of the porous carbon material is 0.9-3.5.
  • the mesopore specific surface area of the porous carbon material is 800-1400 m 2 /g, and the micropore specific surface area of the porous carbon material is 400-900 m 2 /g.
  • the specific surface area BET, mesopore specific surface area and micropore specific surface area of the porous carbon material can be obtained by testing in the following manner respectively:
  • the weight of the sample adopts the decrement method: 1. Put the bracket into the balance, remove the tare and return to zero. 2 Put the sample tube on the sealing filter plug or put the stopper on the stand, and record the reading m1. 3 Put the sample into the sample tube through the funnel, plug the sealing plug or stopper, weigh and record the reading m2. 4 Put the sample Tubes are loaded into a degassing station for degassing. 5 Put the cooled sample tube after degassing on the rack after the zeroing operation, weigh and record the reading m3. 6 Subtract the count m1 from the reading m3 to obtain the sample mass.
  • the above analysis is only based on the influence of each parameter on the supercapacitor when it exists alone, but in the actual supercapacitor application process, the above parameters are interrelated and inseparable.
  • the relational formula that the present invention provides correlates the above-mentioned parameters, and the three affect the high-temperature and low-temperature electrochemical performance of the supercapacitor together, satisfying
  • the supercapacitor can take into account the performance of high temperature resistance, high voltage resistance, high power density and cycle life at ultra-low temperature. like When the temperature is too high or too low, the dynamics of the supercapacitor will deteriorate, and the high and low temperature performance will deteriorate.
  • the porous carbon material is selected from activated carbon.
  • the positive electrode further includes a positive electrode collector, and the porous carbon material covers the positive electrode collector to form the positive electrode;
  • the negative electrode also includes a negative electrode collector, and the porous carbon material covers the positive electrode. on the negative electrode collector to form the negative electrode.
  • the organic electrolyte is added at a concentration of 0.5-3.0 mol/L in the organic electrolyte.
  • the concentration of the organic electrolyte is 0.8-2.0 mol/L.
  • the organic electrolyte is selected from tetraethylammonium tetrafluoroborate, tetramethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, methyltriethylammoniumtetrafluoroborate, Ammonium fluoroborate, diethyldimethylammonium tetrafluoroborate, trimethylethylammonium tetrafluoroborate, N,N-dimethylpyrrolidine ammonium tetrafluoroborate, N-ethyl-N-methylpyrrolidine Ammonium tetrafluoroborate, N-propyl-N-methylpyrrolidine ammonium tetrafluoroborate, N-N-tetramethylenepyrrolidine ammonium tetrafluoroborate, spiro-(1,1
  • the aprotic solvent is selected from acetonitrile, propionitrile, methoxypropionitrile, ⁇ -butyrolactone, ⁇ -valerolactone, ethylene carbonate, propylene carbonate, N,N-dimethyl Methyl formamide, dimethylacetamide, 1-methyl-2-pyrrolidone, dimethoxyethane, 2-methoxyethyl ether, tetrahydrofuran, dioxolane, dimethyl carbonate, diethyl carbonate, Ethyl methyl carbonate, sulfolane, dimethyl sulfoxide, dimethyl sulfone, methyl ethyl sulfone, methyl isopropyl sulfone, ethyl isopropyl sulfone, ethyl isobutyl sulfone, isopropyl isobutyl One or more of sulfone, isopropyl-
  • the supercapacitor further includes a diaphragm, and the diaphragm is located between the positive electrode and the negative electrode.
  • This embodiment is used to illustrate the supercapacitor disclosed by the present invention and its preparation method, comprising the following steps:
  • organic electrolyte Take tetraethylammonium tetrafluoroborate as organic electrolyte, acetonitrile (AN) as solvent, prepare 1.0mol/L electrolyte, then add the compound shown in the structural formula 1 of mass content as shown in Table 1, An organic electrolyte is obtained.
  • a supercapacitor model was assembled in a glove box: the cell includes two collector electrodes made of aluminum foil, two working electrodes made of activated carbon with specific surface area and mesoporous/microporous specific surface area shown in Table 1, and a fiber cloth separator inserted between them , Immerse the cell in the organic electrolyte, and seal it with an aluminum shell and colloidal particles.
  • Embodiments 2 to 16 are used to illustrate the supercapacitor disclosed in the present invention and its preparation method, including most of the operation steps in Embodiment 1, the difference being:
  • Activated carbon as shown in Table 1 was used as the positive and negative electrode materials.
  • Comparative Examples 1 to 9 are used to compare and illustrate the supercapacitor disclosed in the present invention and its preparation method, including most of the operating steps in Example 1, the difference being:
  • Activated carbon as shown in Table 1 was used as the positive and negative electrode materials.
  • the specific surface area BET of the porous carbon material the relationship between the ratio Vt of the mesopore specific surface area/micropore specific surface area and the compound addition Mt shown in structural formula 1 meets the conditions , it can effectively improve the energy density of supercapacitors at ultra-low temperatures without deteriorating the electrochemical performance of supercapacitors at high and normal temperatures. Too high or too low will lead to deterioration of supercapacitor performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

为克服现有超级电容器存在低温下电化学性能劣化严重的问题,本发明提供了一种超级电容器,包括正极、负极和有机电解液,所述有机电解液包括有机电解质、质子惰性溶剂和添加剂,所述添加剂包括结构式(1)所示的化合物:其中,R1~R6各自独立地选自含碳数1~5的烃基、经含碳数1~3的烃基取代或非取代的硅氧基或氢;所述正极和所述负极均为多孔碳材料,所述多孔碳材料和结构式1所示的化合物满足式 2 的条件。本发明提供的超级电容器具有较低的ESR(等效串联电阻)和较好的高低温性能。

Description

一种超级电容器 技术领域
本发明属于储能电子元器件技术领域,具体涉及一种超级电容器。
背景技术
超级电容器是新能源领域中最具有前景的储能装置之一,并被认为是二十一世纪最有希望的一种新型绿色能源。双电层超级电容器是利用静电极化电解液的方式储存能量,它的储能机制不涉及化学反应,而且是高度可逆的。超级电容器有着充电速度快、循环寿命长、功率密度高可达300W/kg-500W/kg等优点。电解液和电极材料为超级电容器的两大核心部件,而对于双电层电容器来说,电解液为“双电”的心脏,用于离子导通正负极碳材料,对双电层电容器的工作电压、漏电流、内阻、容量及温度特性等发挥着至关重要的作用。
对于目前商用的超级电容器来说,主要有AN(乙腈)体系、PC(碳酸丙烯酯)体系、GBL(γ-丁内酯)体系、SL(环丁砜)体系以及活性炭-离子液体体系的双电层电容器。而目前商用的AN体系中其工作电压窗口已开拓至3.0V,工作温度范围-40℃~65℃,在超容市场有占着广阔的份额和竞争力,随着超容市场的发展,对超级电容器环境使用温度提出了更高的要求,特别时在军工、等一些极寒地区,一些电子设备需在-40℃以下工作,常规电解液在此温度下电解液会凝固,离子传输通道受阻,电导率极低,电解液与正负极材料兼容性差等问题,无法满足对超级电容器的耐低温又需保持高压的要求。人们尝试着寻求低熔点的溶剂用于辅助溶剂加入AN体系用于改善其低温下电解液易凝固问题,但是,辅助溶剂在解决了电解液不凝固等问题的同时,由于辅助溶剂的加入进一步加剧了溶剂与正负极材料间的兼容性问题及影响阴阳离子传输能力。
发明内容
针对现有超级电容器存在低温下电化学性能劣化严重的问题,本发明提供了一种超级电容器。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种超级电容器,包括正极、负极和有机电解液,所述有机电解液包括有机电解质、质子惰性溶剂和添加剂,所述添加剂包括结构式1所示的化合物:
Figure PCTCN2022120106-appb-000001
结构式1
其中,R 1~R 6各自独立地选自含碳数1~5的烃基、经含碳数1~3的烃基取代或非取代的硅氧基或氢;
所述正极和所述负极均为多孔碳材料,所述多孔碳材料和结构式1所示的化合物满足以下条件:
Figure PCTCN2022120106-appb-000002
其中,BET为多孔碳材料的比表面积,单位为m 2/g;Vt为多孔碳材料的介孔比表面积/多孔碳材料的微孔比表面积的比值;Mt为结构式1所示的化合物在有机电解液中的质量百分比,单位为%。
可选的,R 1~R 6各自独立地选自含碳数1~5的烷基、二甲基硅氧基、三甲基硅氧基或氢。
可选的,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022120106-appb-000003
Figure PCTCN2022120106-appb-000004
可选的,以所述有机电解液的总质量为100%计,所述结构式1所示的化合物的添加量Mt为0.1%-5%。
可选的,所述多孔碳材料的比表面积BET为1200-2000m 2/g。
可选的,所述多孔碳材料的介孔比表面积/多孔碳材料的微孔比表面积的比值Vt为0.9-3.5。
可选的,所述多孔碳材料的介孔比表面积为800-1400m 2/g,所述多孔碳材料的微孔比表面积为400-900m 2/g。
可选的,所述多孔碳材料选自活性炭。
可选的,所述有机电解液中,所述有机电解质的添加浓度为0.5-3.0mol/L。
可选的,所述有机电解质选自四氟硼酸四乙基铵、四甲基四氟硼酸铵、四丙基四氟硼酸铵、四丁基四氟硼酸铵、甲基三乙基四氟硼酸铵、二乙基二甲基四氟硼酸铵、三甲基乙基四氟硼酸铵、N,N-二甲基吡咯烷四氟硼酸胺、N-乙基-N-甲基吡咯烷四氟硼酸胺、N-丙基-N-甲基吡咯烷四氟硼酸胺、N-N-四亚甲基吡咯烷四氟硼酸胺、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基哌啶四氟硼酸胺、N,N-二乙基哌啶四氟硼酸胺、N,N-二甲基吗啉四氟硼酸胺、1-乙基-3-甲基咪唑四氟硼酸胺、双(三氟甲基磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(三氟甲基磺酰)亚胺盐、四丙基双(三氟甲基磺酰)亚胺盐、四丁基双(三氟甲基磺酰)亚胺盐、甲基三乙基双(三氟甲基磺酰)亚胺盐、二乙基二甲基双(三氟甲基磺酰)亚胺盐、三甲基乙基双(三氟甲基磺酰)亚胺盐、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐、双(氟磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(氟磺酰)亚胺盐、四丙基双(氟磺酰)亚胺盐、四丁基双(氟磺酰)亚胺盐、甲基三乙基双(氟磺酰)亚胺 盐、二乙基二甲基双(氟磺酰)亚胺盐、三甲基乙基双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、六氟磷酸铵类如四乙基六氟磷酸铵、四甲基六氟磷酸铵、四丙基六氟磷酸铵、四丁基六氟磷酸铵、甲基三乙基六氟磷酸铵、三乙基甲基六氟磷酸铵或二乙基二甲基六氟磷酸铵中的一种或多种。
根据本发明提供的超级电容器,发明人通过大量的试验发现,通过在有机电解液中添加结构式1所示的化合物作为添加剂,同时合理控制多孔碳材料的比表面积BET,介孔比表面积/微孔比表面积的比值Vt与结构式1所示的化合物添加量Mt之间的关系,使其符合条件
Figure PCTCN2022120106-appb-000005
时,能够充分发挥结构式1所示的化合物对于超级电容器在低温条件下电化学性能的改善作用,能在保证有机电解液在超低温条件下不凝固,同时改善有机电解液与正负极材料的兼容性,优化阴阳离子在有机电解液及正负极材料的传递,提升电导率,进而显著的改善超级电容器的ESR(等效串联电阻)和高低温性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“介孔”指代孔径为2~50nm的孔;术语“微孔”指代孔径小于2nm的孔。
本发明实施例提供了一种超级电容器,包括正极、负极和有机电解液,所述有机电解液包括有机电解质、质子惰性溶剂和添加剂,所述添加剂包括结构式1所示的化合物:
Figure PCTCN2022120106-appb-000006
结构式1
其中,R 1~R 6各自独立地选自含碳数1~5的烃基、经含碳数1~3的烃基取代或非取代的硅氧基或氢;
所述正极和所述负极均为多孔碳材料,所述多孔碳材料和结构式1所示的化合物满足以下条件:
Figure PCTCN2022120106-appb-000007
其中,BET为多孔碳材料的比表面积,单位为m 2/g;Vt为多孔碳材料的介孔比表面积/多孔碳材料的微孔比表面积的比值;Mt为结构式1所示的化合物在有机电解液中的质量百分比,单位为%。
发明人通过大量试验发现,超级电容器工作时,结构式1所示的化合物通过与正负极材料表面(微孔表面、介孔表面)的一些含氧基团作用,消除含氧基团对电解液的负面影响,强化有机电解液与正负极材料的兼容性,同时结构式1所示的化合物与正负极材料及有机电解液间构筑导电桥,阴阳离子通过导电桥快速的吸脱附于正负极材料表面,使得阴阳离子在超低温下(-55℃)快速的吸脱附,强化了电解液的电导率。
同时,由于结构式1所示的化合物对于正负极材料的微孔和介孔表面的改性作用,消除强孔内表面基团的影响,使得正负极材料的表面性质发生改变,而正负极材料的微孔和介孔比例影响结构式1所示化合物对于正负极材料的改性效果,因此,发明人将正负极的本征参数(多孔碳材料的比表面积BET通过控制多孔碳材料的比表面积BET、介孔比表面积/微孔比表面积的比值Vt)与结构式1所示的化合物在有机电解液中的质量百分比Mt进行综合设计,并将上述参数的关联性进行合理量化,处于
Figure PCTCN2022120106-appb-000008
条件下时,能够协同改善超低温下超级电容器的高低温性能和电解液的电导率,同时也不会对超级电容器的耐高温和高压性能产生不利影响。
在优选的实施例中,R 1~R 6各自独立地选自含碳数1~5的烷基、二甲基硅氧基、三甲基硅氧基或氢。
在一些实施例中,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022120106-appb-000009
Figure PCTCN2022120106-appb-000010
需要说明的是,上述化合物仅是基于本发明实施例方案的优选化合物,并不代表对于本发明的限制。
在一些实施例中,以所述有机电解液的总质量为100%计,所述结构式1所示的化合物的添加量Mt为0.1%-5%。
在优选的实施例中,以所述有机电解液的总质量为100%计,所述结构式1所示的化合物的添加量Mt为0.1%-3%。
结构式1所示化合物的添加有利于改善有机电解液的离子电导性能,从而使得超级电容器能在较高的工作电压(2.7V以上)下使用,且在-55℃下有着有高的功率密度、能量密度和良好的循环寿命,且能改善超级电容器的高低温性能。
在一些实施例中,所述多孔碳材料的比表面积BET为1200-2000m 2/g。
在优选的实施中,所述多孔碳材料的比表面积BET为1400-1800m 2/g。
有机电解质的脱嵌反应主要集中在电极/电解液界面上进行,多孔碳材料的比表面积越大,在相同的表观体积和有机电解液能够充分润湿的前提下,电极/电解液界面也就越大,有机电解质离子的脱嵌速度也就越快,电极的性能也就越好,但是比表面积增大也容易导致正负极的结构强度不足,导致材料脱落和有机电解液分解的问题,同时,所述正负极的比表面积BET也直接影响单位质量的结构式1所示化合物对于正负极表面的改性作用,从而影响超级电容器的性能。
在一些实施例中,所述多孔碳材料的介孔比表面积/多孔碳材料的微孔比表面积的比值Vt为0.9-3.5。
在一些实施例中,所述多孔碳材料的介孔比表面积为800-1400m 2/g,所述多孔碳材料的微孔比表面积为400-900m 2/g。
具体的,所述多孔碳材料的比表面积BET、介孔比表面积和微孔比表面积可分别通过以下方式测试得到:
(1)将待测样品(30-500mg,根据样品比表面积不同而异)装入样品管内。
(2)将样品管装到脱气站,安装样品管时必须将样品管对准端口,拧紧螺丝,确保密封安全。然后将加热包套在样品管上,并将文件信息和脱气温度等参数设置好,打开真空泵,开始对样品进行加热、真空脱气处理,以便除去材料表面吸附的气体。
(3)脱气结束后,关闭加热电源,待样品冷却至室温后,回填氦气。待充入氦气到常压后,缷下样品管并立即盖上橡皮塞,称重至0.1mg,并记录该氦气填充的样品管、塞子和填弃棒的重量,记录为样品管的毛重。用同样的样品管、塞子和填充棒进行以下工作。
样品称重采用减量法:1将支架放入天平,去皮归零。2将样品管塞上密封滤塞或者将塞子放在支架上,记下读数m1。3将样品通过漏斗装入样品管,塞上密封塞或塞子,称量并记下读数m2。4将样品管装入脱气站脱气。5将脱气后冷却好的样品管放入归零操作后的支架上,称量并记下读数m3。6将读数m3减去计数m1,即得到样品质量。
(4)将称重后的样品管装到分析站。在杜瓦瓶中加入液氮,并将样品质量输入到分析文件中。设置测试参数,开始进行吸附和脱附测试过程。
(5)测试结束后,将样品管中样品取出。洗涤样品管烘干备用,然后通过计算机处理数据,从吸附等温线计算比表面积、孔容、平均孔径和孔径分布等。
以上分析仅基于每个参数单独存在时对超级电容器的影响,但实际超级电容器应用过程中,以上参数是相互关联,密不可分的。本发明给出的关系式将上述参数关联,三者共同影响超级电容器的高温和低温电化学性能,满足
Figure PCTCN2022120106-appb-000011
的超级电容器能够兼顾耐高温性能、耐高压性能以及在超低温下具有较高的功率密度和循环寿命。若
Figure PCTCN2022120106-appb-000012
过高或过低时,超级 电容器将会出现动力学恶化,高低温性能变差。
在优选的实施例中,所述多孔碳材料选自活性炭。
在一些实施例中,所述正极还包括正极集电极,所述多孔碳材料覆盖于所述正极集电极上以形成所述正极;所述负极还包括负极集电极,所述多孔碳材料覆盖于所述负极集电极上以形成所述负极。
在一些实施例中,所述有机电解液中,所述有机电解质的添加浓度为0.5-3.0mol/L。
在优选的实施例中,所述有机电解液中,所述有机电解质的添加浓度为0.8-2.0mol/L。
在一些实施例中,所述有机电解质选自四氟硼酸四乙基铵、四甲基四氟硼酸铵、四丙基四氟硼酸铵、四丁基四氟硼酸铵、甲基三乙基四氟硼酸铵、二乙基二甲基四氟硼酸铵、三甲基乙基四氟硼酸铵、N,N-二甲基吡咯烷四氟硼酸胺、N-乙基-N-甲基吡咯烷四氟硼酸胺、N-丙基-N-甲基吡咯烷四氟硼酸胺、N-N-四亚甲基吡咯烷四氟硼酸胺、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基哌啶四氟硼酸胺、N,N-二乙基哌啶四氟硼酸胺、N,N-二甲基吗啉四氟硼酸胺、1-乙基-3-甲基咪唑四氟硼酸胺、双(三氟甲基磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(三氟甲基磺酰)亚胺盐、四丙基双(三氟甲基磺酰)亚胺盐、四丁基双(三氟甲基磺酰)亚胺盐、甲基三乙基双(三氟甲基磺酰)亚胺盐、二乙基二甲基双(三氟甲基磺酰)亚胺盐、三甲基乙基双(三氟甲基磺酰)亚胺盐、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐、双(氟磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(氟磺酰)亚胺盐、四丙基双(氟磺酰)亚胺盐、四丁基双(氟磺酰)亚胺盐、甲基三乙基双(氟磺酰)亚胺盐、二乙基二甲基双(氟磺酰)亚胺盐、三甲基乙基双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、六氟磷酸铵类如四乙基六氟磷酸铵、四甲基六氟磷酸铵、四丙基六氟磷酸铵、四丁基六氟磷酸铵、甲基三乙基六氟磷酸铵、三乙基甲基六氟磷酸铵或二乙基二甲基六氟磷酸铵中的一种或多种。
在一些实施例中,所述质子惰性溶剂选自乙腈、丙腈、甲氧基丙腈、γ-丁内酯、γ-戊内酯、碳酸乙烯酯、碳酸丙烯酯、N,N-二甲基甲酰胺、二甲基乙酰胺、1-甲基-2-吡咯烷酮、二甲氧基乙烷、2-甲氧基乙醚、四氢呋喃、二氧戊环、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、环丁砜、二甲基亚砜、二甲基砜、甲基乙基砜、甲基异丙基砜、乙基异丙基砜、乙基异丁基砜、异丙基异丁基砜、异丙基-s-丁基砜、丁基异丁基砜中的一种或多种。
在一些实施例中,所述超级电容器还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
以下通过实施例对本发明进行进一步的说明。
表1实施例1-16及对比例1-9中电容器的组成
Figure PCTCN2022120106-appb-000013
实施例1
本实施例用于说明本发明公开的超级电容器及其制备方法,包括以下操作 步骤:
制备有机电解液:以四氟硼酸四乙基铵为有机电解质,乙腈(AN)为溶剂,配制1.0mol/L电解液,再加入如表1所示的质量含量的结构式1所示的化合物,得到有机电解液。
在手套箱中组立超级电容器模型:电芯包括铝箔制作的两集电极、由表1所示比表面积、介孔/微孔比表面积的活性炭制作的两工作电极和在其间插入的纤维布隔膜,将电芯浸入有机电解液中,采用铝壳和胶粒组立封口。
实施例2~16
实施例2~16用于说明本发明公开的超级电容器及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
在有机电解液中加入如表1所示的质量含量的结构式1所示的化合物。
采用如表1所示的活性炭作为正负极材料。
对比例1~9
对比例1~9用于对比说明本发明公开的超级电容器及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
在有机电解液中加入如表1所示的质量含量的结构式1所示的化合物。
采用如表1所示的活性炭作为正负极材料。
性能测试
对上述制备得到的有机电解液和超级电容器进行如下性能测试:
电解液电导率测试:
采用雷磁电导率测试仪对不同配方的电解液进行电导率测试,温度统一控制好在25℃,记录每次稳定后的读数(测试三次取平均值)。
超级电容器测试:
(1)预循环(10次):25℃,充电截止电压U、恒定电流10mA/F进行充电;然后按下限电压U/2,恒定电流10mA/F进行放电;
(2)55℃~65℃高温箱中,恒定电流10mA/F充电至上限电压U,恒压(U)一定时间;取出超级电容器并冷却至25℃,再进行充放电测试,测试条件同预循环,并计算超级电容器的容量保持率、ESR增长率。
(3)以容量保持率≤60%,和(或)ESR增长率≥100%时,作为超容寿命的判断标准。
(4)高低温箱中,在工作温度范围-55℃~20℃下,每间隔10℃恒温一定时间后,进行充放电测试,测试条件同预循环,并计算超级电容器的容量和ESR。
一、将实施例1~12和对比例1~9的测试结果填入表2中。
表2
Figure PCTCN2022120106-appb-000014
由表2的测试结果可知,在本发明中,多孔碳材料的比表面积BET,介孔比表面积/微孔比表面积的比值Vt与结构式1所示的化合物添加量Mt之间的关系符合条件
Figure PCTCN2022120106-appb-000015
时,能够有效改善超级电容器在超低温下的能量密度,同时也不会劣化超级电容器在高温和常温下的电化学性能,而
Figure PCTCN2022120106-appb-000016
过高或过低均会导致超级电容器性能的劣化。
二、将实施例13~16的测试结果填入表3中。
表3
Figure PCTCN2022120106-appb-000017
由表3的测试结果可知,采用不同的结构式1所示的化合物,其与多孔碳材料的比表面积BET,介孔比表面积/微孔比表面积的比值Vt之间仍存在相似的规律,说明不同的结构式所示的化合物在满足关系式
Figure PCTCN2022120106-appb-000018
的前提下,对超级电容器的高低温性能具有普适性的提升。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超级电容器,其特征在于,包括正极、负极和有机电解液,所述有机电解液包括有机电解质、质子惰性溶剂和添加剂,所述添加剂包括结构式1所示的化合物:
    Figure PCTCN2022120106-appb-100001
    其中,R 1~R 6各自独立地选自含碳数1~5的烃基、经含碳数1~3的烃基取代或非取代的硅氧基或氢;所述正极和所述负极均为多孔碳材料,所述多孔碳材料和结构式1所示的化合物满足以下条件:
    Figure PCTCN2022120106-appb-100002
    其中,BET为多孔碳材料的比表面积,单位为m 2/g;Vt为多孔碳材料的介孔比表面积/多孔碳材料的微孔比表面积的比值;Mt为结构式1所示的化合物在有机电解液中的质量百分比,单位为%。
  2. 根据权利要求1所述的超级电容器,其特征在于,R 1~R 6各自独立地选自含碳数1~5的烷基、二甲基硅氧基、三甲基硅氧基或氢。
  3. 根据权利要求1所述的超级电容器,其特征在于,所述结构式1所示的化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022120106-appb-100003
    Figure PCTCN2022120106-appb-100004
  4. 根据权利要求1所述的超级电容器,其特征在于,以所述有机电解液的总质量为100%计,所述结构式1所示的化合物的添加量Mt为0.1%-5%。
  5. 根据权利要求1所述的超级电容器,其特征在于,所述多孔碳材料的比表面积BET为1200-2000m 2/g。
  6. 根据权利要求1所述的超级电容器,其特征在于,所述多孔碳材料的介孔比表面积/多孔碳材料的微孔比表面积的比值Vt为0.9-3.5。
  7. 根据权利要求6所述的超级电容器,其特征在于,所述多孔碳材料的介孔比表面积为800-1400m 2/g,所述多孔碳材料的微孔比表面积为400-900m 2/g。
  8. 根据权利要求1所述的超级电容器,其特征在于,所述多孔碳材料选自活性炭。
  9. 根据权利要求1所述的超级电容器,其特征在于,所述有机电解液中,所述有机电解质的添加浓度为0.5-3.0mol/L。
  10. 根据权利要求1所述的超级电容器,其特征在于,所述有机电解质选自四氟硼酸四乙基铵、四甲基四氟硼酸铵、四丙基四氟硼酸铵、四丁基四氟硼 酸铵、甲基三乙基四氟硼酸铵、二乙基二甲基四氟硼酸铵、三甲基乙基四氟硼酸铵、N,N-二甲基吡咯烷四氟硼酸胺、N-乙基-N-甲基吡咯烷四氟硼酸胺、N-丙基-N-甲基吡咯烷四氟硼酸胺、N-N-四亚甲基吡咯烷四氟硼酸胺、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基哌啶四氟硼酸胺、N,N-二乙基哌啶四氟硼酸胺、N,N-二甲基吗啉四氟硼酸胺、1-乙基-3-甲基咪唑四氟硼酸胺、双(三氟甲基磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(三氟甲基磺酰)亚胺盐、四丙基双(三氟甲基磺酰)亚胺盐、四丁基双(三氟甲基磺酰)亚胺盐、甲基三乙基双(三氟甲基磺酰)亚胺盐、二乙基二甲基双(三氟甲基磺酰)亚胺盐、三甲基乙基双(三氟甲基磺酰)亚胺盐、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐、双(氟磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(氟磺酰)亚胺盐、四丙基双(氟磺酰)亚胺盐、四丁基双(氟磺酰)亚胺盐、甲基三乙基双(氟磺酰)亚胺盐、二乙基二甲基双(氟磺酰)亚胺盐、三甲基乙基双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、六氟磷酸铵类如四乙基六氟磷酸铵、四甲基六氟磷酸铵、四丙基六氟磷酸铵、四丁基六氟磷酸铵、甲基三乙基六氟磷酸铵、三乙基甲基六氟磷酸铵或二乙基二甲基六氟磷酸铵中的一种或多种。
PCT/CN2022/120106 2021-10-28 2022-09-21 一种超级电容器 WO2023071628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111262960.1 2021-10-28
CN202111262960.1A CN114156091B (zh) 2021-10-28 2021-10-28 一种超级电容器

Publications (1)

Publication Number Publication Date
WO2023071628A1 true WO2023071628A1 (zh) 2023-05-04

Family

ID=80458875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120106 WO2023071628A1 (zh) 2021-10-28 2022-09-21 一种超级电容器

Country Status (2)

Country Link
CN (1) CN114156091B (zh)
WO (1) WO2023071628A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156091B (zh) * 2021-10-28 2022-12-13 诺莱特电池材料(苏州)有限公司 一种超级电容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800191A (zh) * 2004-10-15 2006-07-12 信越化学工业株式会社 环状碳酸酯改性的有机硅化合物、无水电解溶液、二次电池和电容器
JP2009065074A (ja) * 2007-09-10 2009-03-26 Japan Carlit Co Ltd:The シュードキャパシタ用電解液及びシュードキャパシタ
CN114156091A (zh) * 2021-10-28 2022-03-08 诺莱特电池材料(苏州)有限公司 一种超级电容器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178126A (ja) * 2015-03-18 2016-10-06 旭化成株式会社 非水系リチウム型蓄電素子
US11258101B2 (en) * 2017-06-26 2022-02-22 Global Graphene Group, Inc. Non-flammable electrolyte containing liquefied gas and lithium secondary batteries containing same
JP2020088119A (ja) * 2018-11-22 2020-06-04 国立大学法人群馬大学 電気二重層キャパシタ用炭素材料の製造方法
CN110854341B (zh) * 2019-11-15 2022-11-08 上海化工研究院有限公司 一种高性能锂电池隔膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800191A (zh) * 2004-10-15 2006-07-12 信越化学工业株式会社 环状碳酸酯改性的有机硅化合物、无水电解溶液、二次电池和电容器
JP2009065074A (ja) * 2007-09-10 2009-03-26 Japan Carlit Co Ltd:The シュードキャパシタ用電解液及びシュードキャパシタ
CN114156091A (zh) * 2021-10-28 2022-03-08 诺莱特电池材料(苏州)有限公司 一种超级电容器

Also Published As

Publication number Publication date
CN114156091B (zh) 2022-12-13
CN114156091A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN108172816B (zh) 钠基双离子电池及其制备方法
CN105229765B (zh) 电容器以及充电和放电电容器的方法
US8911510B2 (en) Electrical double layer capacitor with enhanced working voltage
US20090303658A1 (en) Electrode for Electric Double Layer Capacitor and Electric Double Layer Capacitor
US20160111228A1 (en) Lithium ion capacitor and method for charging and discharging same
CN112086683A (zh) 一种锂离子电池电解液及其制备方法、高压锂离子电池和电池模组
WO2023071628A1 (zh) 一种超级电容器
JP6260209B2 (ja) アルカリ金属イオンキャパシタ、その製造方法および充放電方法
CN107204485A (zh) 一种电池电容用低温多元电解液
CN110783114B (zh) 一种耐高压水系电解液及其在高电压超级电容器中的应用
CN109192536A (zh) 一种超低温条件下性能更优异的超级电容器及其制备方法
CN111261426B (zh) 一种超级电容器电解液及超级电容器
CN109961957B (zh) 钙离子双电层电容器及其制备方法
JP2008283161A (ja) 電気化学キャパシタ用電解液および電気化学キャパシタ
Zhu et al. Water-in-salt electrolytes achieve high energy densities at an ultralow-temperature for aqueous symmetrical supercapacitors
CN114121500A (zh) 一种超级电容器用电解液及超级电容器
CN114824206A (zh) 一种长寿命高首效硬碳复合材料及其制备方法
CN112490015A (zh) 一种非对称的高电压超级电容器
WO2015093289A1 (ja) リチウムイオンキャパシタ
CN107887176A (zh) 一种用于超级电容器的有机电解液及超级电容器
EP3109877A1 (en) Capacitor and method for charging and discharging same
JP4116657B2 (ja) 粗密構造を有する電気二重層キャパシタ用セパレータ及びそれを用いた電気二重層キャパシタ
CN104779075A (zh) 一种超级电容器高电压非水电解液
CN113593933B (zh) 一种MOFs离子液体超级电容器及其制备方法
CN110349759B (zh) 一种超级电容器电解液及超级电容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885515

Country of ref document: EP

Kind code of ref document: A1