WO2023071374A1 - 货物的数据处理方法及装置 - Google Patents

货物的数据处理方法及装置 Download PDF

Info

Publication number
WO2023071374A1
WO2023071374A1 PCT/CN2022/110337 CN2022110337W WO2023071374A1 WO 2023071374 A1 WO2023071374 A1 WO 2023071374A1 CN 2022110337 W CN2022110337 W CN 2022110337W WO 2023071374 A1 WO2023071374 A1 WO 2023071374A1
Authority
WO
WIPO (PCT)
Prior art keywords
goods
expression
optimization
variables
constraint
Prior art date
Application number
PCT/CN2022/110337
Other languages
English (en)
French (fr)
Inventor
于全刚
孙能林
Original Assignee
青岛海尔科技有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔科技有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔科技有限公司
Publication of WO2023071374A1 publication Critical patent/WO2023071374A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • the present disclosure relates to the field of logistics planning, in particular, to a data processing method and device for goods.
  • a data processing method for goods including: determining multiple constants and multiple variables in the data of goods; A constraint expression, wherein the constraint relationship is a constraint relationship between constants and variables; according to a plurality of optimization conditions of the circulation of goods, an optimization expression of the final optimization goal is determined, wherein the optimization conditions are optimization conditions of the circulation of goods ; Solve according to the variable and the constant, the constraint expression and the optimization expression, and determine the circulation plan of the goods.
  • a cargo data processing device including: a first determining module configured to determine multiple constants and multiple variables in the data of the cargo; a second determining module configured to is a constraint relationship based on the circulation of goods and a constraint expression of multiple constants and multiple variables, wherein the constraint relationship is a constraint relationship between constants and variables; the third determination module is set to multiple optimizations based on the circulation of goods conditions, determine the optimization expression of the final optimization goal, wherein the optimization condition is the optimization condition of the circulation of goods; the fourth determination module is set to be based on the variable and the constant, the constraint expression and the optimization expression Solve the formula to determine the circulation plan of the goods.
  • processor configured to run a program, wherein, when the program is running, it executes the data processing method for goods described in any one of the above .
  • a computer storage medium wherein the computer storage medium includes a stored program, wherein when the program is running, the device where the computer storage medium is located is controlled to execute the above-mentioned The data processing method of any one of the goods mentioned above.
  • multiple constants and multiple variables in the data for determining the goods are used; according to the constraint relationship of the circulation of goods and the constraint expressions of multiple constants and multiple variables, the constraint relationship is the relationship between the constant and the variable The constraint relationship among them; according to multiple optimization conditions of goods circulation, determine the optimization expression of the final optimization goal, where the optimization condition is the optimization condition of goods circulation; solve according to variables and constants, constraint expressions and optimization expressions, and determine The method of goods circulation planning, by determining the constants and variables in the goods data, determining multiple variables according to the constraint relationship and target conditions, and then generating the goods circulation plan according to the multiple variables, has achieved the goal of automatically generating the goods circulation plan based on the goods data The purpose is to solve the technical problems of low efficiency and high cost in the related technology by manually formulating the goods circulation plan.
  • FIG. 1 is a schematic diagram of a manual formulation process according to a circulation plan of goods in the prior art
  • Fig. 3 is a flow chart of another data processing method for goods according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a schematic diagram of a storage network for goods according to Embodiment 2 of the present disclosure.
  • Fig. 5 is a schematic diagram of a data processing device for goods according to Embodiment 3 of the present disclosure.
  • Fig. 6 is a structural block diagram of an optional electronic device according to an embodiment of the present disclosure.
  • each factory usually needs to deliver the products to the corresponding industry and trade according to the order requirements within the specified date, and the industry and trade warehouses are distributed all over the country, and comprehensively consider factors such as inventory, production plan, and vehicle resources to formulate a plan that meets the development requirements of the park. cargo plan.
  • the process of manual planning includes data export (order data, inventory data, production plan, vehicle resources, etc.), plan formulation, and result uploading, a total of 3 processes.
  • Figure 1 is the manual formulation process based on the circulation plan of goods in the prior art As shown in Figure 1, making plans is the most cumbersome, sorting out customer types, destinations, products, shipments, delivery dates and other dimensions among thousands of orders, and matching them with inventory and production schedules , and the delivery time of single industry and trade is concentrated as much as possible, the number of pick-up points is as small as possible, and the load capacity of a single vehicle is the largest, etc. In the end, only a feasible delivery plan that meets the requirements of a single factory can be formulated.
  • a method embodiment of a data processing method for goods is provided. It should be noted that the steps shown in the flow charts of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that shown or described herein.
  • Fig. 2 is a flowchart of a data processing method for goods according to Embodiment 1 of the present disclosure. As shown in Fig. 2, the method includes the following steps:
  • Step S206 according to multiple optimization conditions of goods circulation, determine the optimization expression of the final optimization goal, wherein, the optimization conditions are the optimization conditions of goods circulation;
  • the execution subject of the above steps can be a computer terminal, a server terminal and other terminal equipment with computing capabilities, and the terminal equipment can be set in the cargo dispatch center, or the cloud that remotely communicates with the cargo dispatch center.
  • the above-mentioned solver may be a mixed integer solver MIP.
  • the following constants are set for the delivery plan of goods circulation: factory code F ⁇ [0,1,...]; calendar code T ⁇ [0,1,...,Delay]; warehouse code W ⁇ [0,1,...]; product code Z ⁇ [0,1,...]; order code I ⁇ [0,1,...]; industry and trade code G ⁇ [0,1,...]; model V ⁇ [0 , 1,...]; order details N f, i, z, g , where f ⁇ F, i ⁇ I, z ⁇ Z, indicates that the i order of f factory is the quantity of z model sent to g industry and trade; warehouse balance Inventory M f, t, z, w means the amount that can be shipped up to day t-1; the discharge capacity Naps f, t, z means the number of model z rolled off the assembly line of factory f on day t and entering the factory warehouse; vehicle carrying capacity A v , where v ⁇ V represents the effective carrying volume and load of vehicle type v; the number
  • the transfer amount Nd f, t, z, w represents the transfer amount of the z model of the w warehouse, where the transferred out is a negative value, and the transferred in is a positive value;
  • the optimization condition may also be: the total amount of allocation is as small as possible. Since the allocation will generate corresponding costs, the maximum allocation amount can be added to the constraint relationship, or the weight can be set in the target to ensure that the allocation is flexible and controllable.
  • cost02 ⁇ f,t,z,w Nd f,t,z,w ⁇ K 3 .
  • the optimization condition can be: the total number of pick-up points of Shangongmao is as small as possible.
  • the optimization condition can be: the total number of deliverable dates of the single industry and trade is as small as possible.
  • the optimization expression of the final optimization goal can be determined through the expressions corresponding to the above multiple optimization conditions.
  • the final optimization goal in this embodiment can be the minimum overall cost
  • cost01-05 are expressions of the above optimization conditions respectively.
  • the expression corresponding to the optimization condition may be weighted according to the influence degree of different optimization conditions on the final optimization goal.
  • other calculations can be added to the expression of the optimization condition.
  • the expression is the total number of vehicles in a single day, which corresponds to the cost. The expression can be multiplied by each vehicle transportation costs.
  • Fig. 3 is a flow chart of another cargo data processing method according to Embodiment 1 of the present disclosure.
  • step S202 determining multiple constants and multiple variables in the cargo data includes: Step S2022 determines constants and variables of different data contents according to the data contents of the goods, wherein the different data contents include goods production planning data, goods storage data, and goods circulation equipment data.
  • the data of the above-mentioned goods may be multi-dimensional data, such as the production data of the above-mentioned manufacturers, the storage data of the storage warehouse of the goods, the data of the circulation tools of the goods, and the data of the circulation destination of the goods.
  • its constants and variables can be determined separately. It should be noted that when the constants and variables are determined, they can be determined according to the needs. Not all the data items involved are set as constants or variables. Of course, the more constants and variables are set, the more accurate and reasonable the logistics plan obtained , but the solution speed is slower.
  • step S204 according to the constraint relationship of the circulation of goods and the constraint expressions of multiple constants and multiple variables, it also includes: receiving the input constraint relationship and storing the constraint relationship. It can also be called directly, and the previously written constraints can be stored for subsequent direct calling.
  • step S206 determining the optimization expression of the final optimization target according to multiple optimization conditions of goods circulation includes: step S2062, obtaining constants and variables related to the optimization conditions according to the optimization conditions; step S2064, creating an optimized expression based on the constants and variables The expression of the condition; step S2066, determine multiple expressions by traversing the optimization conditions; step S2068, determine the optimal expression of the final optimization target according to the physical quantity corresponding to the final optimization target and the weights corresponding to multiple expressions.
  • the optimization condition is similar to the above constraints.
  • the optimization condition is to set the value direction that the variable is more inclined to take according to the demand.
  • the value will be taken according to the optimization condition, which can meet the various needs of various orders, including Lowest cost, fastest speed, most reliability, etc.
  • the optimization conditions can also be set manually, or the previously written optimization conditions can be directly called.
  • step S2068 before determining the optimization expression of the final optimization goal according to the physical quantity corresponding to the final optimization goal and according to the weights corresponding to multiple expressions, further includes: step S2060, according to the extreme value of the physical quantity corresponding to the final optimization goal , to determine the weights of multiple expressions; among them, when the extreme value is the maximum value, the expression is positively correlated with the physical quantity, the weight of the expression is positive, and negatively correlated with the physical quantity, the weight of the expression is negative; the extreme value is In the case of a minimum value, the expression is positively correlated with the physical quantity, and the weight of the expression is negative, and negatively correlated with the physical quantity, the weight of the expression is positive.
  • the weights of multiple expressions are determined according to the extreme value of the physical quantity corresponding to the final optimization goal; in the case of the extreme value, if the expression of the optimization condition is positively correlated with the physical quantity, then the expression The weight is positive. If the expression of the optimization condition is negatively correlated with the physical quantity, the weight of the expression is negative; in the case of a minimum value, if the expression of the optimization condition is positively correlated with the physical quantity, the weight of the expression is negative, if the expression of the optimization condition is negatively correlated with the physical quantity, the weight of the expression is positive, so as to reflect the influence of the expression on the physical quantity of the final optimization target.
  • step S208 solving according to variables and constants, constraint expressions and optimization expressions, determining the circulation plan of goods includes: step S2082, generating solver inputs according to variables and constants, constraint expressions and optimization expressions
  • the above-mentioned input file may be a file in a predetermined format input by the hybrid solver.
  • step S2084 input the input file into the mixed integer solver, and the mixed integer solver outputs the optimal solution of the variable of the optimization expression; step S2086, determine the circulation plan of the goods according to the optimal solution of the variable.
  • Step S2086 according to the optimal solution of the variables, determining the circulation plan of the goods includes: Step S20862, according to the goods production plan data of the goods The optimal solution of the variable of the goods, determine the delivery plan of the goods; step S20864, according to the optimal solution of the variables of the goods storage data of the goods, determine the allocation plan of the goods; step S20866, according to the optimal solution of the variables of the goods circulation equipment data of the goods Optimal solution, determine the distribution plan of the goods circulation equipment.
  • the Yibaozhen goods circulation plan can run according to the plan. Further guarantee the accuracy and stability of the goods circulation plan.
  • Embodiment 2 provides a calculation method for MIP-based park delivery coordination. Under the premise of ensuring the delivery date of each factory, it can also cooperate with other factories to complete the delivery, and centralize the pick-up point and delivery date as a whole to reduce logistics costs.
  • the derivation of fruit relationship is prone to NP-hard problems, resulting in failure to optimize or extremely difficult modeling, resulting in inability to solve.
  • This disclosure adopts the theory of operational optimization to sort out the constraint relationship, optimize the target, and then solve the existing problems. The difficulty of modeling is greatly reduced, the configuration is flexible, and the global optimal solution can be obtained.
  • Fig. 4 is a schematic diagram of a storage network for goods according to Embodiment 2 of the present disclosure.
  • the park contains multiple factories, and the off-line products of the factories are stored in warehouses, and the warehouses are divided into factory warehouses and external warehouses.
  • the factory warehouse only stores the products of the factory, and the external warehouse can store the products of multiple factories.
  • the orders sent to the same industry and trade should be picked up in a single warehouse as much as possible, and the single warehouse should be combined as much as possible. If the whole vehicle must be picked up at multiple warehouses, the delivery date should be concentrated as much as possible, so as to improve delivery efficiency, reduce vehicle resource investment and vehicle waiting time.
  • the system can "take into account the overall situation", not only meet the delivery plan of each factory, but also improve the delivery efficiency of the entire park.
  • the main process includes four parts: constant and variable factors of park delivery coordination, constraint relationship, sorting out optimization goals, and optimization solution.
  • Vehicle type V [0, 1, ...];
  • Order details N f, i, z, g where f ⁇ F, i ⁇ I, z ⁇ Z, indicates that the i order of f factory is the quantity of z model sent to g industry and trade;
  • Discharge output Naps f, t, z indicating the number of factory f factory t day z model off-line into the factory warehouse;
  • Vehicle carrying capacity A v where v ⁇ V represents the effective carrying volume and load of vehicle type v;
  • the number of vehicles NV v,t indicates the available number of v models on day t;
  • Transfer amount Nd f, t, z, w represents the transfer amount of w warehouse z model, where the transferred out is a negative value, and the transferred in is a positive value;
  • Vehicle usage state S v, t, k [0, 1], where k ⁇ Vid_(v, t);
  • the pick-up status of industry and trade on a certain day is St g, t ⁇ [0, 1], that is, whether the order sent to g industry and trade is picked up on day t;
  • the constraint relationship refers to the established delivery criteria and objective limiting factors in the collaborative delivery process.
  • the key (and not limited to) constraints are as follows:
  • the daily delivery volume of the factory does not exceed the actual available volume.
  • the available quantity is the sum of the number of scheduled products, inventory and transfer amount of the day, where the transfer amount includes the balance transfer amount transferred into and transferred to other warehouses by other warehouses; for the external warehouse, the available amount is the current day's inventory and the sum of the allocated amount.
  • the total pick-up volume of the order sent to a certain industry and trade does not exceed its maximum carrying capacity, assuming that the bicycle is only sent to a single industry and trade.
  • the carrying capacity refers to the effective carrying volume and load of the vehicle.
  • the delivery quantity can be converted from product quantity, size and weight.
  • the total number of trains in a single day shall not exceed the number of available trains in a single day.
  • a single order can only be shipped in a single warehouse on a single day.
  • the optimization objective refers to an expression designed under the premise of satisfying the constraint conditions, and then the extreme value is taken on the expression.
  • the expressions are designed based on business goals, and the key (and not limited) expressions are as follows:
  • the total amount of allocation should be kept as small as possible. Since the allocation will generate corresponding costs, the maximum allocation amount can be added to the constraint relationship, or the weight can be set in the target to ensure that the allocation is flexible and controllable.
  • cost02 ⁇ f, t, z, w Nd f, t, z, w ⁇ K 3 ;
  • cost04 ⁇ g, w Ss g, w ⁇ K 5 ;
  • cost05 ⁇ g, t St g, t ⁇ K 6 ;
  • cost all cost01+cost02+cost03+cost04+cost05;
  • the delivery plan, allocation plan, and vehicle allocation plan of each factory can be directly obtained, as shown in Table 1-3 respectively.
  • the key to this embodiment is to use the MIP algorithm to integrate the production plan, inventory, and vehicle resources of each factory in the park, and collaboratively plan the optimal combination of resources to reduce the total number of "vehicles-warehouses" and "industry-trade-delivery dates", effectively reducing the Reduce transportation costs and improve warehouse stocking efficiency.
  • the modeling method described in this disclosure can also be used to solve it, so it is also within the scope of protection of this disclosure.
  • the solution in this embodiment is time-efficient: manual labor is replaced by the system, effectively avoiding the tediousness of offline communication and manual planning, and the delivery plan, allocation plan, and vehicle allocation plan can be directly calculated through the modeling method, which greatly improves the work efficiency.
  • Efficiency also has economic benefits: it solves the problem that the delivery staff of each factory can only focus on themselves, and it is difficult to coordinate macro resources. Only when the overall consideration is taken can the best combination of stocking and vehicle distribution be obtained, improve the accuracy of stocking, reduce the waiting time of vehicles, and extremely Greatly reduced logistics costs.
  • Fig. 5 is a schematic diagram of a data processing device for goods according to Embodiment 3 of the present disclosure. As shown in Fig. 5, according to another aspect of the embodiment of the present disclosure, a data processing device for goods is also provided, including: A determination module 52 , a second determination module 54 , a third determination module 56 and a fourth determination module 58 , the apparatus will be described in detail below.
  • the first determination module 52 is configured to determine multiple constants and multiple variables in the data of the goods;
  • the second determination module 54 is connected to the above-mentioned first determination module 52, and is configured to determine according to the constraint relationship of the circulation of goods and the multiple constants and variables Constraint expressions of multiple variables, wherein the constraint relationship is the constraint relationship between constants and variables;
  • the third determination module 56 is connected to the above-mentioned second determination module 54, and is set to determine the final The optimization expression of the optimization target, wherein the optimization condition is the optimization condition of the circulation of goods;
  • the fourth determination module 58 is connected to the above-mentioned third determination module 56, and is set to solve according to variables and constants, constraint expressions and optimization expressions, Determine the distribution plan for the goods.
  • the first determination module includes: a first determination unit, configured to determine constants and variables of different data contents according to the data content of the goods, wherein the different data contents include goods production plan data, goods Warehousing data, goods circulation equipment data.
  • the third determining module includes: a second obtaining unit configured to obtain constants and variables related to the optimization condition according to the optimization condition; a creation unit configured to create an expression of the optimization condition according to the constant and the variable; The second traversal unit is set to determine multiple expressions by traversing the optimization conditions; the weighting unit is set to determine the optimization expression of the final optimization target according to the weights corresponding to the multiple expressions according to the physical quantity corresponding to the final optimization target.
  • the third determination module further includes: a weight unit, configured to determine the weights of multiple expressions according to the extreme value of the physical quantity corresponding to the final optimization goal; wherein, the extreme value is the maximum value When the expression is positively correlated with the physical quantity, the weight of the expression is positive; if it is negatively correlated with the physical quantity, the weight of the expression is negative; when the extreme value is a minimum value, the expression is positively correlated with the physical quantity, and the weight of the expression is Negative, negatively correlated with the physical quantity, the weight of the expression is positive.
  • the fourth determination module includes: a generation unit, configured to generate an input file of the solver according to variables and constants, constraint expressions and optimization expressions; an input unit, configured to input the input file into the mixed
  • the integer solver is used to output the optimal solution of the variable of the optimization expression by the mixed integer solver; the determination unit is set to determine the circulation plan of the goods according to the optimal solution of the variable.
  • the physical quantity corresponding to the final optimization goal is the overall cost
  • the extreme value is the minimum value of the overall cost.
  • the determination unit includes: a first determination subunit, which is set as a variable according to the goods production planning data of the goods The optimal solution of the goods is to determine the delivery plan of the goods; the second determination subunit is set to determine the allocation plan of the goods according to the optimal solution of the variables of the goods storage data of the goods; the third determination subunit is set to The optimal solution of the variables of the goods circulation equipment data determines the allocation plan of the goods circulation equipment.
  • a processor configured to run a program, wherein the following steps are executed when the program runs.
  • the target condition determines the extreme values of multiple variables within the scope of the variable, wherein the target condition is the target condition for the value of the variable; according to the extreme values of multiple variables, the circulation plan of the goods is determined.
  • determining multiple constants and multiple variables in the data of the goods includes: respectively determining constants and variables with different data contents according to the data content of the goods, wherein the different data contents include goods production planning data , goods storage data, goods circulation equipment data.
  • constraints of the circulation of goods and the constraint expressions of multiple constants and variables it also includes: receiving the input constraints and storing the constraints; according to the constraints of the circulation of goods Constraint expressions with multiple constants and multiple variables include; obtain constants and variables related to constraint relationships according to constraint relationships; establish constraint expressions corresponding to constraint relationships based on constants and variables; determine multiple constraint expressions by traversing constraint relationships .
  • solving according to variables and constants, constraint expressions and optimization expressions, and determining the circulation plan of goods includes: generating an input file for the solver according to variables and constants, constraint expressions and optimization expressions ; Input the input file into the mixed integer solver, and the mixed integer solver outputs the optimal solution of the variable of the optimization expression; according to the optimal solution of the variable, determine the circulation plan of the goods.
  • a computer storage medium includes a stored program, wherein when the program is running, the device where the computer storage medium is located is controlled to perform the following steps.
  • determining multiple constants and multiple variables in the data of the goods includes: respectively determining constants and variables with different data contents according to the data content of the goods, wherein the different data contents include goods production planning data , goods storage data, goods circulation equipment data.
  • the optimization expression of the final optimization goal before determining the optimization expression of the final optimization goal according to the physical quantity corresponding to the final optimization goal and according to the weights corresponding to multiple expressions, it also includes: according to the extreme value of the physical quantity corresponding to the final optimization goal, Determine the weight of multiple expressions; among them, when the extreme value is the maximum value, the expression is positively correlated with the physical quantity, the weight of the expression is positive, and negatively correlated with the physical quantity, the weight of the expression is negative; the extreme value is extremely In the case of small values, the expression is positively correlated with the physical quantity, and the weight of the expression is negative, and negatively correlated with the physical quantity, the weight of the expression is positive.
  • determining the circulation plan of the goods includes: according to the goods production planning data of the goods According to the optimal solution of the variables of the goods, determine the delivery plan of the goods; according to the optimal solution of the variables of the goods storage data of the goods, determine the allocation plan of the goods; according to the optimal solution of the variables of the goods circulation equipment data, determine the delivery plan of the goods Distribution plan for goods circulation equipment.
  • an electronic device for implementing the above-mentioned data processing method for goods.
  • the electronic device includes a memory 702 and a processor 704, and the memory 702 stores There is a computer program, and the processor 704 is configured to execute the steps in any one of the above method embodiments through the computer program.
  • the foregoing electronic device may be located in at least one network device among multiple network devices of the computer network.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • the structure shown in FIG. 6 is only schematic, and the electronic device can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a palmtop computer, and a mobile Internet device (Mobile Internet Devices, MID), PAD and other terminal equipment.
  • FIG. 6 does not limit the structure of the above-mentioned electronic device.
  • the electronic device may also include more or less components than those shown in FIG. 6 (such as a network interface, etc.), or have a different configuration from that shown in FIG. 6 .
  • the memory 702 can be used to store software programs and modules, such as the program instructions/modules corresponding to the data processing method and device of the goods in the embodiment of the present disclosure, and the processor 704 runs the software programs and modules stored in the memory 702, thereby Execute various functional applications and data processing, that is, realize the data processing method of the above-mentioned goods.
  • the memory 702 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 702 may further include a memory that is remotely located relative to the processor 704, and these remote memories may be connected to the terminal through a network.
  • the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 702 may include, but is not limited to, the first determination module 52, the second determination module 54, the third determination module 56 and the fourth determination module in the data processing device of the above-mentioned goods. 58. In addition, it may also include but not limited to other modular units in the data processing device for the above-mentioned goods, which will not be repeated in this example.
  • the above-mentioned transmission device 706 is configured to receive or send data via a network.
  • the specific examples of the above-mentioned network may include a wired network and a wireless network.
  • the transmission device 706 includes a network adapter (Network Interface Controller, NIC), which can be connected with other network devices and a router through a network cable so as to communicate with the Internet or a local area network.
  • the transmission device 706 is a radio frequency (Radio Frequency, RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the disclosed technical content can be realized in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or data processing of goods may be through some interfaces, and indirect coupling of units or modules or data processing of goods may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disc, etc., which can store program codes. .

Abstract

一种货物的数据处理方法及装置。其中,该方法包括:确定货物的数据中的多个常量和多个变量;根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,约束关系为常量与变量之间的约束关系;根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,优化条件为货物流通的优化条件;根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划。

Description

货物的数据处理方法及装置
本公开要求于2021年10月29日提交中国专利局、申请号为202111276204.4、发明名称“货物的数据处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及物流规划领域,具体而言,涉及一种货物的数据处理方法及装置。
背景技术
园区内工厂发货协同需要在各工厂提报计划前沟通到位,但是各工厂无法从整体上、全面上制定发货计划,既要不影响自身发货,还能兼顾其他工厂的提货,整体上降低提货点,集中日期发货,进而降低发货成本。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种货物的数据处理方法及装置,以至少解决相关技术中通过人工制定货物流通计划,效率低,成本高的技术问题。
根据本公开实施例的一个方面,提供了一种货物的数据处理方法,包括:确定货物的数据中的多个常量和多个变量;根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,所述约束关系为常量与变量之间的约束关系;根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,所述优化条件为货物流通的优化条件;根据所述变量和所述常量,所述约束表达式和所述优化表达式进行求解,确定所述货物的流通计划。
根据本公开实施例的另一方面,还提供了一种货物的数据处理装置,包括:第一确定模块,设置为确定货物的数据中的多个常量和多个变量;第二确定模块,设置为根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,所述约束关系为常量与变量之间的约束关系;第三确定模块,设置为根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,所述优化条件为货物流通的优化条件;第四确定模块,设置为根据所述变量和所述常量,所述约束表达式和所述优化表达式进行求解,确定所述货物的流通计划。
根据本公开实施例的另一方面,还提供了一种处理器,其中,所述处理器设置为运行程序,其中,所述程序运行时执行上述中任意一项所述的货物的数据处理方法。
根据本公开实施例的另一方面,还提供了一种计算机存储介质,其中,所述计算机存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机存储介质所在设备执行上述中任意一项所述的货物的数据处理方法。
在本公开实施例中,采用确定货物的数据中的多个常量和多个变量;根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,约束关系为常量与变量之间的约束关系;根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,优化条件为货物流通的优化条件;根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划的方式,通过确定货物数据中的常量和变量,根据约束关系和目标条件确定多个变量,进而根据多个变量生成货物流通计划,达到了自动根据货物的数据生成货物流通计划的目的,进而解决了相关技术中通过人工制定货物流通计划,效率低,成本高的技术问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明设置为解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据现有技术中的货物的流通计划的人工制定流程的示意图;
图2是根据本公开实施例1的一种货物的数据处理方法的流程图;
图3是根据本公开实施例1的另一种货物的数据处理方法的流程图;
图4是根据本公开实施例2的货物的仓储网络的示意图;
图5是根据本公开实施例3的一种货物的数据处理装置的示意图;
图6是根据本公开实施例的一种可选的电子装置的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于 本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是设置为区别类似的对象,而不必设置为描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在相关技术中,往常各工厂需要在规定日期内按照订单要求将产品配送到相应的工贸,且工贸仓分布全国,并综合考虑库存、生产计划、车辆资源等因素来制定符合本园区发货计划。人工制定计划的过程包括数据导出(订单数据、库存数据、生产计划、车辆资源等),计划制定,结果上传共3个流程,图1是根据现有技术中的货物的流通计划的人工制定流程的示意图,如图1所示,其中制定计划最为繁琐,在成千上万条订单中梳理客户类型、目的地、产品、发货量、发货日期等维度,并匹配上库存与排产计划,且单工贸发货时间尽量集中,提货点尽量少,单车次承载量最大等,最终仅能制定出符合单工厂的、可行的发货计划。
实施例1
根据本公开实施例,提供了一种货物的数据处理方法的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图2是根据本公开实施例1的一种货物的数据处理方法的流程图,如图2所示,该方法包括如下步骤:
步骤S202,确定货物的数据中的多个常量和多个变量;
步骤S204,根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,约束关系为常量与变量之间的约束关系;
步骤S206,根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,优化条件为货物流通的优化条件;
步骤S208,根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划。
通过上述步骤,采用确定货物的数据中的多个常量和多个变量;根据货物流通的约束关系和多个常量,确定多个变量的范围,其中,约束关系为常量与变量之间的约束关系;根据货物流通的目标条件,在变量的范围确定多个变量的极值,其中,目标条件为变量取值的目标条件;根据多个变量的极值,确定货物的流通计划的方式,通过确定货物数据中的常量和变量,根据约束关系和目标条件确定多个变量,进而根据多个变量生成货物流通计划,达到了自动根据货物的数据生成货物流通计划的目的,从而实现了提高了货物流通计划的生成效率,降低了货物流通计划的生成成本,避免了人工制定计划效率较低的技术效果,进而解决了相关技术中通过人工制定货物流通计划,效率低,成本高的技术问题。
上述步骤的执行主体可以为计算机终端,服务器终端等具有运算能力的终端设备,该终端设备可以设置在货物调度中心,或者与货物调度中心远程通信的云端。设置为搭载求解器对货物数据进行求解。上述求解器可以为混合整数求解器MIP。
上述货物的数据可以为货物在流通过程中,所涉及到多个方面的数据,例如,可以包括货物的生产厂家的生产数据,包括工厂编码,产品编码,生产量等,货物的存储仓库的存储数据,包括仓库位置,仓库存储量,结余量等,货物的流通工具的数据,包括流通工具的可用时间,流通工具的可用数量,流通工具的载量,流通工具的编码,以及流通工具的流通时间等,以及货物的流通目的地的数据,包括流通订单,订单编码等。
上述货物的数据都是在货物流通中可能用到的数据,另外为了方便运算可以对一些参量进行编码,例如流通工具的编码,工厂编码,仓库编码等,以示区别,方便在后续运算过程中进行处理。对于不由调度人员控制和改变的量为常量,例如上述各种编码,流通工具的型号,载量,可用数量等,以及工厂的生产量,仓库的位置,存储量,结余量等,都是无法人为修改,需要依据上述常量,来制定具体的货物流通计划。对于可以改变的量为变量,例如流通工具的数量,流通工具的使用时间,仓库的调拨量等。
在一种实施例中,对于货物流通的发货计划,设置了以下常量:工厂编码F∈[0,1,…];日历编码T∈[0,1,…,Delay];仓库编码W∈[0,1,…];产品编码Z∈[0,1,…];订单编码I∈[0,1,…];工贸编码G∈[0,1,…];车型V∈[0,1,…];订单明细N f,i,z,g,其中f∈F,i∈I,z∈Z,表示f工厂的i订单为发往g工贸的z型号的数量;仓库结余库存量M f,t,z,w,表示截至到t-1日的可发量;排产量Naps f,t,z,表示f工厂t日z型号下线入工厂库的数量;车辆承载力A v,其中v∈V,表示v车型的有效承载体积及载 重;车辆数量NV v,t,表示v车型在t日的可用数量;车辆编码Vid v,t∈[0,1,…,NV v,t]。以及以下变量:订单状态S f,i,t,z,w∈[0,1],其中f∈F,i∈I,t∈T,z∈Z,w∈W,表示i订单在t天w仓库提货;调拨量Nd f,t,z,w表示w仓库z型号调拨量,其中调拨出为负值,调拨入的为正值;车辆使用状态S v,t,k∈[0,1],其中k∈Vid_(v,t);工贸在仓库提货状态Ss g,w∈[0,1],即发往g工贸的订单是否在w仓库提货;工贸在某日提货状态St g,t∈[0,1],即发往g工贸的订单是否在t日提货。
针对变量和常量之间的约束关系,确定约束表达式,该约束关系可以理解为货物流通必须满足的客观条件下的变量和常量的关系,例如,工厂单日可发货量不超过实际可用量。对于工厂库,可用量为当日排产计划产品数、库存及调拨量之和,其中所述调拨量包括其他仓库调拨入及调拨到其他仓库的结余调拨量;对于外库,可用量为当日库存与调拨量之和。其约束表达式可以用下式来表示:
Figure PCTCN2022110337-appb-000001
Figure PCTCN2022110337-appb-000002
再例如,发往某工贸的订单在单车上总提货量不超过其最大承载力,假设单车只发往单工贸。承载力指该车型的有效承载体积及载重。提货量可由产品数量、尺寸及重量换算得到。其约束表达式可以用下式来表示:Σ t(S f,i,t,z,w×N f,i,z,g)≤A v,t×S v,t,k。约束关系为:工厂产品仅可调拨到规定的部分仓库。假设存在f工厂不会调拨到w仓库。其约束表达式可以用下式来表示:Σ zNd f,t,z,w==0。约束关系为:单日总车次不超过单日可用车次。其约束表达式可以用下式来表示:Σ kS v,t,k×Vid v,t≤NV v,t。约束关系为:单个订单只能在单日单仓库发货。其约束关系可以用下式来表示:Σ i(S f,i,t,z,w)==1。
上述优化条件可以理解为变量在取值时更优化的条件。例如,优化条件可以为:订单尽量早发货。根据计划日期t与订单最晚发货日期的差得到Δt,其中Δt≥0表示提前发货,K 0<0;Δt<0表示晚点发货,K 1>0;当t=Delay时表示订单延期,K 2>>K 1。其表达式可以通过下式表示:
Figure PCTCN2022110337-appb-000003
优化条件还可以为:调拨总量尽量少。由于调拨会产生相应的成本,可通过在约束关系里 添加最大调拨量,也可以在该目标中设置权重的方式,可保证调拨灵活可控。可以通过下式表示:cost02=∑ f,t,z,wNd f,t,z,w×K 3。优化条件可以为:单日车辆总数尽量少。其表达式可以通过下式表示:cost03=∑ v,t,kS v,t,k×Vid v,t×K 4。优化条件可以为:单工贸的提货点总数尽量少。其中Ss g,w通过S f,i,t,z,w结合大M法约束得到,此处不在赘述;其表达式可以通过下式表示:cost04=∑ g,wSs g,w×K 5。优化条件可以为:单工贸的可发货日期总数尽量少。其中St g,t通过S f,i,t,z,w结合大M法约束得到,此处不在赘述;其表达式可以通过下式表示:cost05=∑ g,tSt g,t×K 6
最终优化目标的优化表达式可以通过上述多个优化条件对应的表达式进行确定,例如,本实施例中最终优化目标可以为整体成本最小,可以通过下式来涉及最终的优化表达式:cost all=cost01+cost02+cost03+cost04+cost05,cost01-05分别为上述优化条件的表达式。在一种实施例中可以根据不同的优化条件对最终优化目标的影响程度为优化条件对应的表达式进行加权。除此之外,为了实现目标最终优化目标,对优化条件的表达式还可以添加其他量的运算,例如表达式为单日车辆总数,其对应到成本上,可以给表达式乘以每辆车的运输成本。
得到上述货物的数据的常量和变量,以及常量和变量之间的约束关系,变量的优化条件,将其输入求解器进行求解,就可以得到最终的变量的最优解,也即是变量的值,根据变量的值生成具体的货物流通计划。
图3是根据本公开实施例1的另一种货物的数据处理方法的流程图,如图3所示,可选的,步骤S202,确定货物的数据中的多个常量和多个变量包括:步骤S2022根据货物的数据内容,分别确定不同数据内容的常量和变量,其中,不同数据内容包括货物生产计划数据,货物仓储数据,货物流通设备数据。
上述货物的数据可能是多个维度的数据,例如上述生产厂家的生产数据,货物的存储仓库的存储数据,货物的流通工具的数据,以及货物的流通目的地的数据。对于不同维度的数据,可以分别确定其常量和变量。需要说明的是,在常量和变量确定时,可以根据需求确定,并不是将所涉及到的所有数据项都设置为常量或变量,当然设置的常量和变量越多,得到的物流计划越准确合理,但是求解速度就越慢。反之,设置的常量和变量越少,得到的物流计划准确度越低,但是求解速度越快,在使用时可以根据需求确定,但是约束条件涉及到的常量和变量需要进行设置。这样可以由不同的 数据提供方,自己进行设定,将设定的常量和变量传输给进行运算和执行的终端,无需将各方人员进行汇集确定,也无需设置一个对各方数据都很了解的人员,有效降低数据变量和常量定义的成本,并提高效率。
可选的,步骤S204,根据货物流通的约束关系和多个常量与多个变量的约束表达式包括;步骤S2042,根据约束关系获取约束关系相关的常量和变量;步骤S2044,根据常量和变量建立约束关系对应的约束表达式;步骤S2046,通过遍历约束关系,确定多个约束表达式。
上述约束关系可以为人为设定,在货物运输过程中,存在一些不可违背的客观规律,满足该规律的情况下,才能保证货物流通计划的正常运行。约束条件可以由人为设定,具体的,步骤S204,根据货物流通的约束关系和多个常量与多个变量的约束表达式之前,还包括:接收输入的约束关系,将约束关系进行存储。也可以直接进行调取,可以将之前编写好的约束条件进行存储,以便后续直接进行调取。
可选的,步骤S206,根据货物流通的多个优化条件,确定最终优化目标的优化表达式包括:步骤S2062,根据优化条件获取优化条件相关的常量和变量;步骤S2064,根据常量和变量创建优化条件的表达式;步骤S2066,通过遍历优化条件,确定多个表达式;步骤S2068,根据最终优化目标对应的物理量,根据多个表达式对应的权重,确定最终优化目标的优化表达式。
优化条件与上述约束条件类似,优化条件是为了根据需求设定变量更倾向于的取值方向,在求解时,就会按照该优化条件进行取值,可以满足各种订单的各种需求,包括最低成本,最快速度,最可靠性等。优化条件也可以由人为设定,也可以直接将之前编写好的优化条件进行调取。
可选的,步骤S2068,根据最终优化目标对应的物理量,根据多个表达式对应的权重,确定最终优化目标的优化表达式之前,还包括:步骤S2060,根据最终优化目标对应的物理量的极值,确定多个表达式的权重;其中,极值为极大值的情况下,表达式与物理量正相关,表达式的权重为正,与物理量负相关,表达式的权重为负;极值为极小值的情况下,表达式与物理量正相关,表达式的权重为负,与物理量负相关,表达式的权重为正。
在设置权重时,根据最终优化目标对应的物理量的极值,确定多个表达式的权重;在极值为极大值的情况下,若优化条件的表达式与物理量正相关,则表达式的权重为正,若优化条件的表达式与物理量负相关,则表达式的权重为负;在极值为极小值的情况下,若优化条件的表达式与物理量正相关,则表达式的权重为负,若优化条件的 表达式与物理量负相关,则表达式的权重为正,以便体现表达式对最终优化目标的物理量的影响方式。
可选的,步骤S208,根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划包括:步骤S2082,根据变量和常量,约束表达式和优化表达式,生成求解器的输入文件,上述输入文件可以为混合求解器输入的预定格式的文件。步骤S2084,将输入文件输入混合整数求解器,由混合整数求解器输出优化表达式的变量的最优解;步骤S2086,根据变量的最优解,确定货物的流通计划。
具体的,最终优化目标对应的物理量为整体成本,极值为整体成本的极小值,步骤S2086,根据变量的最优解,确定货物的流通计划包括:步骤S20862,根据货物的货物生产计划数据的变量的最优解,确定货物的发货计划;步骤S20864,根据货物的货物仓储数据的变量的最优解,确定货物的调拨计划;步骤S20866,根据货物的货物流通设备数据的变量的最优解,确定货物的货物流通设备的分配计划。
在货物流通中需要多方协作,多方的管理互不相同,所以需要根据不同的维度的数据,进行不同维度的计划确定,易宝珍货物流通计划可以按照计划运行。进一步保证了货物流通计划的准确性和稳定性。
实施例2
本实施例2提供了一种基于MIP的园区发货协同的计算方法。保证各个工厂交货期前提下,还能够协同其他工厂的发货完成,整体上集中提货点、集中发货日期进而降低物流成本。相关技术中,在货物的数据规模大、影响因素多的情况下,果关系推导很容易出现NP-hard问题,导致无法优化或者建模难度极大,导致无法求解。本公开采用运筹优化理论,对现有问题梳理出约束关系、优化目标,进而求解,建模难度大幅降低,配置灵活且能获取全局最优解。
图4是根据本公开实施例2的货物的仓储网络的示意图,如图4所示,园区包含多个工厂,工厂下线产品存储在仓库中,仓库分为工厂库与外库2种,其中工厂库只存放本厂产品,外库可存放多厂的产品。为了有效提升园区配车与发货效率,不仅要考虑各工厂的库存、生产计划、订单以及园区车辆资源有效协同,还要满足发往同工贸的订单尽量在单个仓库提货、单仓库尽量凑整车、必须到多个仓库提货的,发货日期尽量集中等,以便于达到提升发货效率、降低车辆资源投入及车辆等待时间。
基于MIP(混合整数求解)算法原理来优化协同园区发货计划,使得系统能够“顾全大局”,不仅满足各工厂发货计划,同时提升整个园区的发货效率。主要过程包括园区发货协同的常量及变量因素、约束关系、优化目标的梳理,以及优化求解4个部分。
1.关键的影响因素如下:
1.1关键常量如下:
工厂编码F∈[0,1,…];
日历编码T∈[0,1,…,Delay];
仓库编码W∈[0,1,…];
产品编码Z∈[0,1,…];
订单编码I∈[0,1,…];
工贸编码G∈[0,1,…];
车型V∈[0,1,…];
订单明细N f,i,z,g,其中f∈F,i∈I,z∈Z,表示f工厂的i订单为发往g工贸的z型号的数量;
仓库结余库存量M f,t,z,w,表示截至到t-1日的可发量;
排产量Naps f,t,z,表示f工厂t日z型号下线入工厂库的数量;
车辆承载力A v,其中v∈V,表示v车型的有效承载体积及载重;
车辆数量NV v,t,表示v车型在t日的可用数量;
车辆编码Vid v,t∈[0,1,…,NV v,t];
1.2关键变量如下:
订单状态S f,i,t,z,w∈[0,1],其中f∈F,i∈I,t∈T,z∈Z,w∈W,表示i订单在t天w仓库提货;
调拨量Nd f,t,z,w表示w仓库z型号调拨量,其中调拨出为负值,调拨入的为正值;
车辆使用状态S v,t,k∈[0,1],其中k∈Vid_(v,t);
工贸在仓库提货状态Ss g,w∈[0,1],即发往g工贸的订单是否在w仓库提货;
工贸在某日提货状态St g,t∈[0,1],即发往g工贸的订单是否在t日提货;
2.所述约束关系指协同发货过程中既定发货准则以及客观限制因素,关键的(且不限于)约束关系如下:
2.1工厂单日可发货量不超过实际可用量。对于工厂库,可用量为当日排产计划产品数、库存及调拨量之和,其中所述调拨量包括其他仓库调拨入及调拨到其他仓库的结余调拨量;对于外库,可用量为当日库存与调拨量之和。
Figure PCTCN2022110337-appb-000004
2.2发往某工贸的订单在单车上总提货量不超过其最大承载力,假设单车只发往单工贸。所述承载力指该车型的有效承载体积及载重。所述提货量可由产品数量、尺寸及重量换算得到。
t(S f,i,t,z,w×N f,i,z,g)≤A v,t×S v,t,k
2.3工厂产品仅可调拨到规定的部分仓库。假设存在f工厂不会调拨到w仓库。
zNd f,t,z,w==0;
2.4单日总车次不超过单日可用车次。
kS v,t,k×Vid v,t≤NV v,t
2.5单个订单只能在单日单仓库发货。
i(S f,i,t,z,w)==1;
3.所述优化目标指在满足约束条件的前提下设计的表达式,再在表达式上取极值。所述表达式基于业务目标设计,关键的(且不限于)表达式如下:
3.1订单尽量早发货。根据计划日期t与订单最晚发货日期的差得到Δt,其中Δt≥表示提前发货,K 0<0;Δt<0表示晚点发货,K 1>0;当t=Delay时表示订单延期, K 2>>K 1
Figure PCTCN2022110337-appb-000005
cost01是不是该表达式的极值
3.2调拨总量尽量少。由于调拨会产生相应的成本,可通过在约束关系里添加最大调拨量,也可以在该目标中设置权重的方式,可保证调拨灵活可控。
cost02=∑ f,t,z,wNd f,t,z,w×K 3
3.3单日车辆总数尽量少。
cost03=∑ v,t,kS v,t,k×Vid v,t×K 4
3.4单工贸的提货点总数尽量少。其中Ss g,w通过S f,i,t,z,w结合大M法约束得到,此处不在赘述;
cost04=∑ g,wSs g,w×K 5
3.5单工贸的可发货日期总数尽量少。其中St g,t通过S f,i,t,z,w结合大M法约束得到,此处不在赘述;
cost05=∑ g,tSt g,t×K 6
4.优化求解,汇总各个优化目标为整体成本,取cost all最小值即可。此外,在每个单一优化目标可以归一化,权重也可以根据因变量设计成表达式,此处不在赘述。
cost all=cost01+cost02+cost03+cost04+cost05;
优化计算后可直接得到各工厂发货计划、调拨计划、车辆分配计划,分别如表1ˉ3所示。
表1工厂发货结果示例
Figure PCTCN2022110337-appb-000006
Figure PCTCN2022110337-appb-000007
表2工厂调拨结果示例
Figure PCTCN2022110337-appb-000008
表3车辆分配结果示例
Figure PCTCN2022110337-appb-000009
本实施例的关键在于利用MIP算法综合园区各工厂的生产计划、库存、车辆资源,协同规划出资源最佳组合,降低总“车辆-仓库”数与“工贸-提货日期”数,有效降低运输成本,提高仓库备货效率。此外,不论是否涉及调拨等上述约束、优化目标的园区发货协同场景中,亦可通过本公开阐述的建模方法求解,因此也在本公开的保护范围内。
本实施例的方案具有时间效益:由系统替代人工,有效避免线下沟通以及人工制定计划的繁琐程度,可通过建模方法直接计算得到发货计划、调拨计划以及配车计划,大大提高了工作效率;还具有经济效益:解决了各工厂发货员只能专注自身,难以宏观资源协同的难题,只有整体考虑才会得到最佳备货及配车组合,提高备货精度,降低车辆等待时间,极大降低了物流成本。
实施例3
图5是根据本公开实施例3的一种货物的数据处理装置的示意图,如图5所示,根据本公开实施例的另一方面,还提供了一种货物的数据处理装置,包括:第一确定模块52,第二确定模块54,第三确定模块56和第四确定模块58,下面对该装置进行详细说明。
第一确定模块52,设置为确定货物的数据中的多个常量和多个变量;第二确定模 块54,与上述第一确定模块52相连,设置为根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,约束关系为常量与变量之间的约束关系;第三确定模块56,与上述第二确定模块54相连,设置为根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,优化条件为货物流通的优化条件;第四确定模块58,与上述第三确定模块56相连,设置为根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划。
通过上述装置,采用第一确定模块52确定货物的数据中的多个常量和多个变量;第二确定模块54根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,约束关系为常量与变量之间的约束关系;第三确定模块56根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,优化条件为货物流通的优化条件;第四确定模块58根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划的方式,通过确定货物数据中的常量和变量,根据约束关系和目标条件确定多个变量,进而根据多个变量生成货物流通计划,达到了自动根据货物的数据生成货物流通计划的目的,从而实现了提高了货物流通计划的生成效率,降低了货物流通计划的生成成本,避免了人工制定计划效率较低的技术效果,进而解决了相关技术中通过人工制定货物流通计划,效率低,成本高的技术问题。
作为一种可选的实施方式,第一确定模块包括:第一确定单元,设置为根据货物的数据内容,分别确定不同数据内容的常量和变量,其中,不同数据内容包括货物生产计划数据,货物仓储数据,货物流通设备数据。
作为一种可选的实施方式,还包括:接收模块,设置为接收输入的约束关系,将约束关系进行存储;第二确定模块包括;第一获取单元,设置为根据约束关系获取约束关系相关的常量和变量;建立单元,设置为根据常量和变量建立约束关系对应的约束表达式;第一遍历单元,设置为通过遍历约束关系,确定多个约束表达式。
作为一种可选的实施方式,第三确定模块包括:第二获取单元,设置为根据优化条件获取优化条件相关的常量和变量;创建单元,设置为根据常量和变量创建优化条件的表达式;第二遍历单元,设置为通过遍历优化条件,确定多个表达式;加权单元,设置为根据最终优化目标对应的物理量,根据多个表达式对应的权重,确定最终优化目标的优化表达式。
作为一种可选的实施方式,第三确定模块还包括:权重单元,设置为根据最终优化目标对应的物理量的极值,确定多个表达式的权重;其中,极值为极大值的情况下,表达式与物理量正相关,表达式的权重为正,与物理量负相关,表达式的权重为负;极值为极小值的情况下,表达式与物理量正相关,表达式的权重为负,与物理量负相 关,表达式的权重为正。
作为一种可选的实施方式,第四确定模块包括:生成单元,设置为根据变量和常量,约束表达式和优化表达式,生成求解器的输入文件;输入单元,设置为将输入文件输入混合整数求解器,由混合整数求解器输出优化表达式的变量的最优解;确定单元,设置为根据变量的最优解,确定货物的流通计划。
作为一种可选的实施方式,最终优化目标对应的物理量为整体成本,极值为整体成本的极小值,确定单元包括:第一确定子单元,设置为根据货物的货物生产计划数据的变量的最优解,确定货物的发货计划;第二确定子单元,设置为根据货物的货物仓储数据的变量的最优解,确定货物的调拨计划;第三确定子单元,设置为根据货物的货物流通设备数据的变量的最优解,确定货物的货物流通设备的分配计划。
实施例4
根据本公开实施例的另一方面,还提供了一种处理器,处理器设置为运行程序,其中,程序运行时执行以下步骤。
确定货物的数据中的多个常量和多个变量;根据货物流通的约束关系和多个常量,确定多个变量的范围,其中,约束关系为常量与变量之间的约束关系;根据货物流通的目标条件,在变量的范围确定多个变量的极值,其中,目标条件为变量取值的目标条件;根据多个变量的极值,确定货物的流通计划。
作为一种可选的实施方式,确定货物的数据中的多个常量和多个变量包括:根据货物的数据内容,分别确定不同数据内容的常量和变量,其中,不同数据内容包括货物生产计划数据,货物仓储数据,货物流通设备数据。
作为一种可选的实施方式,根据货物流通的约束关系和多个常量与多个变量的约束表达式之前,还包括:接收输入的约束关系,将约束关系进行存储;根据货物流通的约束关系和多个常量与多个变量的约束表达式包括;根据约束关系获取约束关系相关的常量和变量;根据常量和变量建立约束关系对应的约束表达式;通过遍历约束关系,确定多个约束表达式。
作为一种可选的实施方式,根据货物流通的多个优化条件,确定最终优化目标的优化表达式包括:根据优化条件获取优化条件相关的常量和变量;根据常量和变量创建优化条件的表达式;通过遍历优化条件,确定多个表达式;根据最终优化目标对应的物理量,根据多个表达式对应的权重,确定最终优化目标的优化表达式。
作为一种可选的实施方式,根据最终优化目标对应的物理量,根据多个表达式对 应的权重,确定最终优化目标的优化表达式之前,还包括:根据最终优化目标对应的物理量的极值,确定多个表达式的权重;其中,极值为极大值的情况下,表达式与物理量正相关,表达式的权重为正,与物理量负相关,表达式的权重为负;极值为极小值的情况下,表达式与物理量正相关,表达式的权重为负,与物理量负相关,表达式的权重为正。
作为一种可选的实施方式,根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划包括:根据变量和常量,约束表达式和优化表达式,生成求解器的输入文件;将输入文件输入混合整数求解器,由混合整数求解器输出优化表达式的变量的最优解;根据变量的最优解,确定货物的流通计划。
作为一种可选的实施方式,最终优化目标对应的物理量为整体成本,极值为整体成本的极小值,根据变量的最优解,确定货物的流通计划包括:根据货物的货物生产计划数据的变量的最优解,确定货物的发货计划;根据货物的货物仓储数据的变量的最优解,确定货物的调拨计划;根据货物的货物流通设备数据的变量的最优解,确定货物的货物流通设备的分配计划。
实施例5
根据本公开实施例的另一方面,还提供了一种计算机存储介质,计算机存储介质包括存储的程序,其中,在程序运行时控制计算机存储介质所在设备执行以下步骤。
确定货物的数据中的多个常量和多个变量;根据货物流通的约束关系和多个常量,确定多个变量的范围,其中,约束关系为常量与变量之间的约束关系;根据货物流通的目标条件,在变量的范围确定多个变量的极值,其中,目标条件为变量取值的目标条件;根据多个变量的极值,确定货物的流通计划。
作为一种可选的实施方式,确定货物的数据中的多个常量和多个变量包括:根据货物的数据内容,分别确定不同数据内容的常量和变量,其中,不同数据内容包括货物生产计划数据,货物仓储数据,货物流通设备数据。
作为一种可选的实施方式,根据货物流通的约束关系和多个常量与多个变量的约束表达式之前,还包括:接收输入的约束关系,将约束关系进行存储;根据货物流通的约束关系和多个常量与多个变量的约束表达式包括;根据约束关系获取约束关系相关的常量和变量;根据常量和变量建立约束关系对应的约束表达式;通过遍历约束关系,确定多个约束表达式。
作为一种可选的实施方式,根据货物流通的多个优化条件,确定最终优化目标的优化表达式包括:根据优化条件获取优化条件相关的常量和变量;根据常量和变量创 建优化条件的表达式;通过遍历优化条件,确定多个表达式;根据最终优化目标对应的物理量,根据多个表达式对应的权重,确定最终优化目标的优化表达式。
作为一种可选的实施方式,根据最终优化目标对应的物理量,根据多个表达式对应的权重,确定最终优化目标的优化表达式之前,还包括:根据最终优化目标对应的物理量的极值,确定多个表达式的权重;其中,极值为极大值的情况下,表达式与物理量正相关,表达式的权重为正,与物理量负相关,表达式的权重为负;极值为极小值的情况下,表达式与物理量正相关,表达式的权重为负,与物理量负相关,表达式的权重为正。
作为一种可选的实施方式,根据变量和常量,约束表达式和优化表达式进行求解,确定货物的流通计划包括:根据变量和常量,约束表达式和优化表达式,生成求解器的输入文件;将输入文件输入混合整数求解器,由混合整数求解器输出优化表达式的变量的最优解;根据变量的最优解,确定货物的流通计划。
作为一种可选的实施方式,最终优化目标对应的物理量为整体成本,极值为整体成本的极小值,根据变量的最优解,确定货物的流通计划包括:根据货物的货物生产计划数据的变量的最优解,确定货物的发货计划;根据货物的货物仓储数据的变量的最优解,确定货物的调拨计划;根据货物的货物流通设备数据的变量的最优解,确定货物的货物流通设备的分配计划。
根据本公开实施例的又一个方面,还提供了一种用于实施上述货物的数据处理方法的电子装置,如图6所示,该电子装置包括存储器702和处理器704,该存储器702中存储有计算机程序,该处理器704被设置为通过计算机程序执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述电子装置可以位于计算机网络的多个网络设备中的至少一个网络设备。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,确定货物的数据中的多个常量和多个变量;
S2,根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,所述约束关系为常量与变量之间的约束关系;
S3,根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,所述优化条件为货物流通的优化条件;
S4,根据所述变量和所述常量,所述约束表达式和所述优化表达式进行求解,确 定所述货物的流通计划。接收应用程序发起的连接请求;
可选地,本领域普通技术人员可以理解,图6所示的结构仅为示意,电子装置也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。图6其并不对上述电子装置的结构造成限定。例如,电子装置还可包括比图6中所示更多或者更少的组件(如网络接口等),或者具有与图6所示不同的配置。
其中,存储器702可用于存储软件程序以及模块,如本公开实施例中的货物的数据处理方法和装置对应的程序指令/模块,处理器704通过运行存储在存储器702内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的货物的数据处理方法。存储器702可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器702可进一步包括相对于处理器704远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。作为一种示例,如图6所示,上述存储器702中可以但不限于包括上述货物的数据处理装置中的第一确定模块52,第二确定模块54,第三确定模块56和第四确定模块58。此外,还可以包括但不限于上述货物的数据处理装置中的其他模块单元,本示例中不再赘述。
可选地,上述的传输装置706用于经由一个网络接收或者发送数据。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置706包括一个网络适配器(Network Interface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置706为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
此外,上述电子装置还包括:显示器708,用于显示上述货物的数据处理;和连接总线710,用于连接上述电子装置中的各个模块部件。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
在本公开的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所 显示或讨论的相互之间的耦合或直接耦合或货物的数据处理可以是通过一些接口,单元或模块的间接耦合或货物的数据处理,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (16)

  1. 一种货物的数据处理方法,包括:
    确定货物的数据中的多个常量和多个变量;
    根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,所述约束关系为常量与变量之间的约束关系;
    根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,所述优化条件为货物流通的优化条件;
    根据所述变量和所述常量,所述约束表达式和所述优化表达式进行求解,确定所述货物的流通计划。
  2. 根据权利要求1所述的方法,其中,确定货物的数据中的多个常量和多个变量包括:
    根据所述货物的数据内容,分别确定不同数据内容的常量和变量,其中,所述不同数据内容包括货物生产计划数据,货物仓储数据,货物流通设备数据。
  3. 根据权利要求1所述的方法,其中,根据货物流通的约束关系和多个常量与多个变量的约束表达式包括;
    根据所述约束关系获取所述约束关系相关的常量和变量;
    根据所述常量和所述变量建立所述约束关系对应的约束表达式;
    通过遍历所述约束关系,确定多个约束表达式。
  4. 根据权利要求3所述的方法,其中,根据货物流通的多个优化条件,确定最终优化目标的优化表达式包括:
    根据所述优化条件获取所述优化条件相关的常量和变量;
    根据所述常量和变量创建所述优化条件的表达式;
    通过遍历所述优化条件,确定多个表达式;
    根据所述最终优化目标对应的物理量,根据多个所述表达式对应的权重,确定最终优化目标的所述优化表达式。
  5. 根据权利要求4所述的方法,其中,根据所述最终优化目标对应的物理量,根据 多个所述表达式对应的权重,确定最终优化目标的所述优化表达式之前,还包括:
    根据所述最终优化目标对应的物理量的极值,确定多个所述表达式的权重;
    其中,所述极值为极大值的情况下,所述表达式与所述物理量正相关,所述表达式的权重为正,所述与所述物理量负相关,所述表达式的权重为负;
    所述极值为极小值的情况下,所述表达式与所述物理量正相关,所述表达式的权重为负,所述与所述物理量负相关,所述表达式的权重为正。
  6. 根据权利要求5所述的方法,其中,根据所述变量和所述常量,所述约束表达式和所述优化表达式进行求解,确定所述货物的流通计划包括:
    根据所述变量和所述常量,所述约束表达式和所述优化表达式,生成求解器的输入文件;
    将所述输入文件输入混合整数求解器,由所述混合整数求解器输出所述优化表达式的变量的最优解;
    根据所述变量的最优解,确定所述货物的流通计划。
  7. 根据权利要求6所述的方法,其中,所述最终优化目标对应的物理量为整体成本,所述极值为所述整体成本的极小值,根据所述变量的最优解,确定所述货物的流通计划包括:
    根据所述货物的货物生产计划数据的变量的最优解,确定所述货物的发货计划;
    根据所述货物的货物仓储数据的变量的最优解,确定所述货物的调拨计划;
    根据所述货物的货物流通设备数据的变量的最优解,确定所述货物的货物流通设备的分配计划。
  8. 一种货物的数据处理装置,包括:
    第一确定模块,设置为确定货物的数据中的多个常量和多个变量;
    第二确定模块,设置为根据货物流通的约束关系和多个常量与多个变量的约束表达式,其中,所述约束关系为常量与变量之间的约束关系;
    第三确定模块,设置为根据货物流通的多个优化条件,确定最终优化目标的优化表达式,其中,所述优化条件为货物流通的优化条件;
    第四确定模块,设置为根据所述变量和所述常量,所述约束表达式和所述优 化表达式进行求解,确定所述货物的流通计划。
  9. 根据权利要求8所述的装置,其中,所述第一确定模块包括:
    第一确定单元,设置为根据所述货物的数据内容,分别确定不同数据内容的常量和变量,其中,所述不同数据内容包括货物生产计划数据,货物仓储数据,货物流通设备数据。
  10. 根据权利要求8所述的装置,其中,所述第二确定模块包括;
    第一获取单元,设置为根据约束关系获取约束关系相关的常量和变量;
    建立单元,设置为根据所述常量和所述变量建立所述约束关系对应的约束表达式;
    第一遍历单元,设置为通过遍历约束关系,确定多个约束表达式。
  11. 根据权利要求10所述的装置,其中,所述第三确定模块包括:
    第二获取单元,设置为根据所述优化条件获取所述优化条件相关的常量和变量;
    创建单元,设置为根据所述常量和变量创建所述优化条件的表达式;
    建立单元,设置为通过遍历优化条件,确定多个表达式;
    加权单元,设置为根据所述最终优化目标对应的物理量,根据多个所述表达式对应的权重,确定最终优化目标的所述优化表达式。
  12. 根据权利要求11所述的装置,其中,所述第三确定模块还包括:
    权重单元,设置为根据所述最终优化目标对应的物理量的极值,确定多个所述表达式的权重;其中,所述极值为极大值的情况下,所述表达式与所述物理量正相关,所述表达式的权重为正,所述与所述物理量负相关,所述表达式的权重为负;所述极值为极小值的情况下,所述表达式与所述物理量正相关,所述表达式的权重为负,所述与所述物理量负相关,所述表达式的权重为正。
  13. 根据权利要求12所述的装置,其中,所述第四确定模块包括:
    生成单元,设置为根据所述变量和所述常量,所述约束表达式和所述优化表达式,生成求解器的输入文件;
    输入单元,设置为将所述输入文件输入混合整数求解器,由所述混合整数求解器输出所述优化表达式的变量的最优解;
    确定单元,设置为根据所述变量的最优解,确定所述货物的流通计划。
  14. 根据权利要求13所述的装置,其中,所述确定单元包括:
    第一确定子单元,设置为根据所述货物的货物生产计划数据的变量的最优解,确定所述货物的发货计划;
    第二确定子单元,设置为根据所述货物的货物仓储数据的变量的最优解,确定所述货物的调拨计划;
    第三确定子单元,设置为根据所述货物的货物流通设备数据的变量的最优解,确定所述货物的货物流通设备的分配计划。
  15. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行所述权利要求1至7任一项中所述的方法。
  16. 一种计算机存储介质,其中,所述计算机存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机存储介质所在设备执行权利要求1至7中任意一项所述的货物的数据处理方法。
PCT/CN2022/110337 2021-10-29 2022-08-04 货物的数据处理方法及装置 WO2023071374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276204.4A CN114091994A (zh) 2021-10-29 2021-10-29 货物的数据处理方法及装置
CN202111276204.4 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071374A1 true WO2023071374A1 (zh) 2023-05-04

Family

ID=80298320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110337 WO2023071374A1 (zh) 2021-10-29 2022-08-04 货物的数据处理方法及装置

Country Status (2)

Country Link
CN (1) CN114091994A (zh)
WO (1) WO2023071374A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114091994A (zh) * 2021-10-29 2022-02-25 青岛海尔科技有限公司 货物的数据处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109447355A (zh) * 2018-10-31 2019-03-08 网易无尾熊(杭州)科技有限公司 仓库货物的配送优化方法、装置、介质和计算设备
CN109726863A (zh) * 2018-12-26 2019-05-07 深圳市北斗智能科技有限公司 一种多目标优化的物流方法和系统
CN111382894A (zh) * 2018-12-29 2020-07-07 顺丰科技有限公司 一种订舱规划方法、装置、设备和存储设备
JP2020184094A (ja) * 2019-04-26 2020-11-12 株式会社Hacobu 車両割当装置、車両割当方法およびプログラム
CN113592146A (zh) * 2021-06-30 2021-11-02 青岛海尔科技有限公司 目标产品的发货方法及发货系统、电子设备
CN114091994A (zh) * 2021-10-29 2022-02-25 青岛海尔科技有限公司 货物的数据处理方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111004A (zh) * 2019-05-09 2019-08-09 上汽安吉物流股份有限公司 整车物流调度方法及装置、计算机可读介质以及物流系统
CN112116134A (zh) * 2020-09-04 2020-12-22 上海汽车集团股份有限公司 一种物流计划的制定方法及相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109447355A (zh) * 2018-10-31 2019-03-08 网易无尾熊(杭州)科技有限公司 仓库货物的配送优化方法、装置、介质和计算设备
CN109726863A (zh) * 2018-12-26 2019-05-07 深圳市北斗智能科技有限公司 一种多目标优化的物流方法和系统
CN111382894A (zh) * 2018-12-29 2020-07-07 顺丰科技有限公司 一种订舱规划方法、装置、设备和存储设备
JP2020184094A (ja) * 2019-04-26 2020-11-12 株式会社Hacobu 車両割当装置、車両割当方法およびプログラム
CN113592146A (zh) * 2021-06-30 2021-11-02 青岛海尔科技有限公司 目标产品的发货方法及发货系统、电子设备
CN114091994A (zh) * 2021-10-29 2022-02-25 青岛海尔科技有限公司 货物的数据处理方法及装置

Also Published As

Publication number Publication date
CN114091994A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN104766188B (zh) 一种物流配送的方法及系统
CN109658027A (zh) 一种订单任务的处理方法、装置、服务器和介质
CN110046865B (zh) 分布式库存调度方法
CN111353840B (zh) 订单信息处理方法、装置及电子设备
WO2021147353A1 (zh) 订单调度
CN109034575A (zh) 一种骑手智能调度方法
CN107274014A (zh) 一种基于标准箱的配送任务的处理方法、系统及终端
CN110861104B (zh) 一种辅助机器人运送物品的方法、介质、终端和装置
WO2023071374A1 (zh) 货物的数据处理方法及装置
CN105719221A (zh) 针对多任务的路径协同规划方法和装置
CN110505165A (zh) 一种基于双向拍卖机制的边缘计算任务卸载方法及装置
CN105446810A (zh) 基于成本代价的多农场云渲染任务分发系统与方法
CN109117366A (zh) 快速交付的软件测试方法及系统
CN110109800A (zh) 一种服务器集群系统的管理方法及装置
CN107066322A (zh) 一种面向自组织群智感知系统的在线任务分派方法
CN114118629A (zh) 车间布局的优化管理方法、装置、计算机介质和电子设备
CN115829451A (zh) 物流路径规划方法、装置、计算机设备和存储介质
CN107274135A (zh) 基于协同信息共享的烟叶原料统筹方法及系统
CN116579570A (zh) 产品生产排产方法、装置、设备及介质
CN110659816A (zh) 一种共享移动电源的调度方法、运维系统前端及后端
EP4318346A1 (en) Warehouse order task processing method and apparatus, storage medium, and electronic device
US20210279831A1 (en) Managing optimization of a network flow
CN107203633A (zh) 数据表推数处理方法、装置及电子设备
CN112801323A (zh) 分拣设备调度方法、装置、电子设备及存储介质
CN111652552A (zh) 一种用于物流订单运输规划方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885274

Country of ref document: EP

Kind code of ref document: A1