WO2023071330A1 - 一种热泵系统的出水温度调控方法及装置、热泵系统 - Google Patents

一种热泵系统的出水温度调控方法及装置、热泵系统 Download PDF

Info

Publication number
WO2023071330A1
WO2023071330A1 PCT/CN2022/108158 CN2022108158W WO2023071330A1 WO 2023071330 A1 WO2023071330 A1 WO 2023071330A1 CN 2022108158 W CN2022108158 W CN 2022108158W WO 2023071330 A1 WO2023071330 A1 WO 2023071330A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat pump
temperature
preset
temperature difference
Prior art date
Application number
PCT/CN2022/108158
Other languages
English (en)
French (fr)
Inventor
李宏波
冯金玲
张锐
黎小梅
杜振雷
叶长鲙
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023071330A1 publication Critical patent/WO2023071330A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of heat pump systems, and in particular, to a method and device for controlling outlet water temperature, and a heat pump system.
  • the air source heat pump heating system is more and more widely used, but the defect of the air source heat pump unit itself: as the outdoor temperature decreases, the capacity of the unit decays, and the energy efficiency is low, which limits the further development of the air source heat pump heating system.
  • the coefficient of performance (coefficient of performance, COP) of the unit will increase by 2% to 3%, which can improve the energy efficiency of the air source heat pump heating system.
  • COP coefficient of performance
  • the embodiments of the present application provide a method and device for controlling the outlet water temperature, a heat pump system, and heating equipment to solve the problems in the prior art that the air source heat pump heating system has low energy efficiency and cannot realize on-demand heat supply.
  • the present application provides a method for controlling the outlet water temperature of a heat pump system, wherein the method includes: monitoring the operating frequency of the variable frequency water pump, and monitoring the temperature difference between the supply and return water of the refrigeration main pipe; judging the frequency of the variable frequency water pump The relationship between the operating frequency and the preset frequency range, and the relationship between the supply and return water temperature difference and the preset temperature difference range are judged; according to the judgment result, a corresponding control strategy is adopted to adjust the outlet water temperature of the heat pump unit.
  • monitoring the temperature difference between the supply and return water of the chilled main pipe includes: obtaining the temperature data of the water supply pipe of the water separator and the temperature data of the return water pipe of the water collector respectively; according to the temperature of the water supply pipe of the water separator data and the temperature data of the return pipe of the water collector to obtain the temperature difference between the supply and return water of the freezing main pipe; wherein, the water supply pipe of the water separator is connected to the heat pump unit, and the heat pump unit and the water collector The frequency conversion water pump is arranged on the return water pipe between them.
  • a corresponding control strategy is adopted to adjust the outlet water temperature of the heat pump unit according to the judgment result, including:
  • the corresponding control strategy To: increase the outlet water temperature of the heat pump unit;
  • the corresponding control strategy To: reduce the outlet water temperature of the heat pump unit;
  • the corresponding control strategy is: keep the outlet water temperature of the heat pump unit unchanged.
  • adopting a corresponding control strategy to adjust the outlet water temperature of the heat pump unit according to the judgment result including: if the judgment result is the first result and the duration exceeds a preset period of time, increasing the outlet water temperature of the heat pump unit , wherein, the first result is that the operating frequency of the variable frequency water pump is greater than the maximum value of the preset frequency range, and the temperature difference between supply and return water is greater than the maximum value of the preset temperature difference range; if the judgment result is the The second result and the duration exceeds the preset time, then reduce the outlet water temperature of the heat pump unit, wherein the second result is that the operating frequency of the frequency conversion water pump is less than the minimum value of the preset frequency range, and the The supply and return water temperature difference is less than the minimum value of the preset temperature difference range; if the judgment result is neither the first result and the duration exceeds the preset duration, nor the second result and the duration exceeds the preset If the duration is set to , then the outlet water temperature of the heat pump unit is kept
  • the method before monitoring the operating frequency of the variable-frequency water pump and monitoring the temperature difference between the supply and return water of the refrigeration main pipe, the method further includes: determining the operating number of heat pump units in the heat pump system; if the operating number is greater than or equal to one, then Trigger and monitor the operating frequency of the frequency conversion water pump and monitor the temperature difference between the supply and return water of the chilled main pipe.
  • the method further includes: after a preset interval, return to monitor the operating frequency of the variable frequency water pump, and monitor the supply and return of the refrigeration main pipe The steps of the water temperature difference. .
  • the present application also provides a water outlet temperature control device, wherein the device includes: a monitoring module, used to monitor the operating frequency of the variable frequency water pump, and to monitor the temperature difference between the supply and return water of the refrigeration main pipe; the first processing module, used to judge The relationship between the operating frequency of the variable frequency water pump and the preset frequency range, and judging the relationship between the temperature difference between the supply and return water and the preset temperature difference range; the second processing module is used to adopt a corresponding control strategy to adjust the water outlet of the unit according to the judgment result temperature.
  • a monitoring module used to monitor the operating frequency of the variable frequency water pump, and to monitor the temperature difference between the supply and return water of the refrigeration main pipe
  • the first processing module used to judge The relationship between the operating frequency of the variable frequency water pump and the preset frequency range, and judging the relationship between the temperature difference between the supply and return water and the preset temperature difference range
  • the second processing module is used to adopt a corresponding control strategy to adjust the water outlet of the unit according to the judgment result temperature.
  • the device further includes: a loop execution module, configured to return to trigger the operation of the monitoring module, the first processing module, and the second processing module after a preset interval.
  • a loop execution module configured to return to trigger the operation of the monitoring module, the first processing module, and the second processing module after a preset interval.
  • the present application also provides a heat pump system, wherein the heat pump system includes: a connected water separator, a heat pump unit, and a water collector; the pipeline between the heat pump unit and the water collector is provided with a frequency conversion water pump; the heat pump system also includes: a first temperature sensor, set on the water supply pipe of the water distributor; a second temperature sensor, set on the return water pipe of the water collector; a controller, used to monitor the Describe the operating frequency of the variable frequency water pump, and monitor the temperature difference between the supply and return water of the refrigeration main pipe; judge the relationship between the operating frequency of the variable frequency water pump and the preset frequency range, and judge the relationship between the temperature difference between the supply and return water and the preset temperature difference range ; According to the judgment result, a corresponding control strategy is adopted to adjust the outlet water temperature of the heat pump unit.
  • the present application also provides a computer device, including a memory and a processor, wherein a computer program is stored in the memory, and when the processor executes the computer program, the method for controlling the outlet water temperature of any one of the above heat pump systems is implemented.
  • the present application also provides a non-volatile computer-readable storage medium on which a computer program is stored, wherein the above-mentioned method is implemented when the program is executed by a processor.
  • This application aims at air source heat pump heating system, and provides a control scheme to adjust the outlet water temperature of the unit according to the end load demand.
  • the outlet water temperature of the unit is controlled and adjusted.
  • Fig. 1 is a schematic structural diagram of a heat pump system according to an embodiment of the present application
  • Fig. 2 is a flowchart of a method for controlling outlet water temperature of a heat pump system according to an embodiment of the present application
  • Fig. 3 is a flow chart of outlet water temperature control of a heat pump system according to another embodiment of the present application.
  • Fig. 4 is a structural block diagram of an outlet water temperature regulating device of a heat pump system according to an embodiment of the present application.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” could be interpreted as “when determined” or “in response to the determination” or “when detected (the stated condition or event) )” or “in response to detection of (a stated condition or event)”.
  • Fig. 1 is a schematic structural diagram of a heat pump system according to an embodiment of the present application, as shown in Fig. 1 .
  • Heat pump system namely air source heat pump heating system.
  • the heating host of the heat pump system adopts a frequency conversion air source heat pump unit
  • the water pump adopts a frequency conversion water pump
  • the heating terminal adopts a fan coil unit.
  • the heat pump system includes: connected water separators, multiple heat pump units, and water collectors; multiple frequency conversion water pumps are arranged on the pipeline between multiple heat pump units (such as frequency conversion air source heat pump units) and the water collector; the heat pump system It also includes: a first temperature sensor set on the water supply pipe of the water separator; a second temperature sensor set on the water return pipe of the water collector.
  • the controller is used to adjust the outlet water temperature of the heat pump unit according to the operating frequency of the variable frequency water pump and the temperature data collected by the first temperature sensor and the second temperature sensor.
  • the water supply pipe of the water separator and the return pipe of the water collector are also provided with pressure sensors to monitor the pipeline pressure to ensure that the pressure value in the pipeline is within the normal working range.
  • the heat exchange capacity of the fan coil unit is greater than the indoor load demand.
  • the heat supply of the air source heat pump heating system can be realized by adjusting the water flow first. Therefore, a flow sensor is also provided on the water supply pipe of the water separator to monitor the water flow in the pipeline.
  • the adjustment scheme of the outlet water temperature is executed, that is, according to the operating frequency of the variable frequency water pump and the temperature data collected by the first temperature sensor and the second temperature sensor, the outlet water temperature of the heat pump unit is adjusted to meet the indoor load. demand, so as to ensure the relationship between supply and demand and realize energy saving of the system.
  • the building heat load is affected by the outdoor working conditions.
  • the building heat load decreases.
  • the building heat load increases.
  • the heat transfer capacity of the fan coil unit has nothing to do with the outdoor working conditions. It is affected by the water flow rate and the water supply temperature.
  • the indoor temperature that is, the return air temperature of the fan coil and the water flow rate are kept constant, the heat transfer capacity of the fan coil unit varies with the temperature.
  • the water supply temperature increases and increases, and decreases and decreases.
  • the building heat load decreases from Q1 to Q2.
  • the water flow can be adjusted first, and the outlet water temperature can be adjusted when the water flow is adjusted to the limit.
  • the water flow adjustment scheme is relatively conventional, so the following is an introduction to the control logic of the unit’s outlet water temperature.
  • Fig. 2 is a flow chart of a method for controlling outlet water temperature of a heat pump system according to an embodiment of the present application. As shown in Fig. 2 , in an embodiment of the present application, the method includes the following steps S201 to S203.
  • Step S201 monitoring the running frequency of the variable frequency water pump, and monitoring the temperature difference between the supply and return water of the refrigeration main pipe.
  • the operating frequency of the frequency-variable water pump can be determined by reading data from the host computer.
  • Multiple variable frequency water pumps in the heat pump system operate at the same frequency.
  • the temperature difference between the supply and return water of the refrigeration main pipe the temperature of the water supply pipe of the water separator - the temperature of the return water pipe of the water collector.
  • the water supply pipe of the water separator is connected to the heat pump unit, and the return pipe between the heat pump unit and the water collector is set There is a frequency conversion water pump.
  • the temperature data of the water supply pipe of the water separator and the temperature data of the water return pipe of the water collector are respectively obtained. According to the temperature data of the water supply pipe of the water separator and the temperature of the return water pipe of the water collector Data to obtain the temperature difference between the supply and return water of the chilled main pipe.
  • Step S202 judging the relationship between the operating frequency of the variable frequency water pump and the preset frequency range, and judging the relationship between the temperature difference between the supply and return water and the preset temperature difference range;
  • Step S203 adopting a corresponding control strategy to adjust the outlet water temperature of the heat pump unit according to the judgment result.
  • the corresponding control strategy is : Increase the outlet water temperature of the heat pump unit. If the judgment result is the second result: the operating frequency of the variable frequency water pump is less than the minimum value of the preset frequency range, and the temperature difference between the supply and return water is less than the minimum value of the preset temperature difference range, then the corresponding control strategy is: reduce the outlet water temperature of the heat pump unit .
  • the corresponding control strategy is: keep the outlet water temperature of the heat pump unit constant. Based on this, the heat supply of the air source heat pump heating system can be supplied on demand, reducing heating waste, improving the overall energy consumption of the system, achieving high efficiency and energy saving, and greatly meeting the heating comfort requirements of users.
  • an embodiment of the present application sets the parameter of duration on the basis of setting the above two conditions of the first result and the second result. Specifically, if the judgment result is the first result and the duration exceeds the preset duration, then increase the outlet water temperature of the heat pump unit; if the judgment result is the second result and the duration exceeds the preset duration, then reduce the outlet water temperature of the heat pump unit; If the judgment result is neither the first result and the duration exceeds the preset duration, nor the second result and the duration exceeds the preset duration, then keep the outlet water temperature of the heat pump unit unchanged. Based on this, frequent adjustments to the outlet water temperature can be avoided. It should be noted that the adjustment of the outlet water temperature of the heat pump unit is the adjustment of the preset outlet water temperature of the heat pump unit. After raising, lowering or maintaining the outlet water temperature, the adjusted outlet water temperature will be used as the preset outlet water temperature. .
  • the adjustment of the outlet water temperature needs to be within a reasonable range, that is, the adjusted outlet water temperature cannot be lower than the set lower limit of the outlet water temperature (for example, 35°C), and cannot be higher than the set upper limit of the outlet water temperature. Limits (eg 50°C). So as to ensure the normal operation of the system.
  • the outlet water temperature control scheme introduced in this embodiment it is necessary to determine whether the heat pump unit is in operation, that is, to determine the operating number of the heat pump unit in the heat pump system; if the operating number is greater than or equal to one, trigger Monitor the operating frequency of the variable frequency water pump and monitor the temperature difference between the supply and return water of the refrigeration main pipe. If the number of operations is zero, the outlet water temperature control plan cannot be implemented.
  • the water outlet temperature control scheme introduced in this embodiment can be set to be executed periodically, that is, after a preset interval, re-monitor the operating frequency of the variable frequency water pump, and monitor the temperature difference between the supply and return water of the refrigeration main pipe; determine the operating frequency of the variable frequency water pump The relationship with the preset frequency range, and the relationship between the supply and return water temperature difference and the preset temperature difference range are judged; according to the judgment result, a corresponding control strategy is adopted to adjust the outlet water temperature of the heat pump unit.
  • the above is an outlet water temperature control cycle.
  • the adjustment (increase or decrease) of the outlet water temperature can be performed according to the preset reset gradient, that is, in a outlet water temperature control cycle, the adjustment of the outlet water temperature Raise a preset reset gradient or lower a preset reset gradient. In this way, the long-term stable regulation of the air source heat pump heating system can be realized.
  • Fig. 3 is a flow chart of a method for controlling the outlet water temperature of a heat pump system according to another embodiment of the present application. As shown in Fig. 3 , the method for regulating the outlet water temperature of a heat pump system according to another embodiment of the present application includes the following steps:
  • Step S301 judging whether the operating number of heat pump units in the system is greater than 1, if yes, execute step S303, otherwise execute step S302;
  • Step S302 the process ends
  • Step S303 monitoring the operating frequency of the variable frequency water pump (hereinafter referred to as the water pump frequency), and monitoring the temperature difference between the supply and return water of the refrigeration main pipe;
  • Step S304 judging whether the frequency of the water pump is greater than the maximum frequency of the variable frequency water pump (ie, the maximum value of the preset frequency range), if yes, execute step S305, and if not, execute step S310;
  • the maximum value of the preset frequency range that can be set is the difference between the maximum frequency of the variable frequency water pump (for example, 50Hz) and the adjusted value of the water pump frequency reset by the outlet water temperature of the unit;
  • Step S305 judging whether the temperature difference between the supply and return water of the refrigerated main pipe is greater than the sum of the temperature difference set value and the deviation set value;
  • the sum of the temperature difference value and the deviation set value is taken as the maximum value of the preset temperature difference range, and the difference between the temperature difference set value and the deviation set value is taken as the minimum value of the preset temperature difference range; value and the return water temperature setting value of the operating unit; if yes, execute step S306, otherwise execute step S308;
  • Step S306 judging whether the duration is greater than the preset duration (for example, 30s), if yes, then execute step S307, if otherwise, execute step S309;
  • Step S307 increasing the outlet water temperature of the heat pump unit, for example, increasing the outlet water temperature of the unit by a preset reset gradient; after a preset interval (for example, 1800s), return to step S303 again;
  • a preset interval for example, 1800s
  • step S308 the outlet water temperature of the heat pump unit remains unchanged; after a preset interval (for example, 1800s), return to and re-execute step S303;
  • step S309 the outlet water temperature of the heat pump unit remains unchanged; after a preset interval (for example, 1800s), return to step S303 again;
  • Step S310 judging whether the frequency of the water pump is less than the minimum frequency of the variable frequency water pump (that is, the minimum value of the preset frequency range), if yes, execute step S312, and if not, execute step S311;
  • the minimum value that can be set to the preset frequency range is the sum of the minimum frequency of the frequency conversion water pump (for example, 35Hz) and the adjustment value of the water pump frequency reset by the outlet water temperature of the unit;
  • step S311 the outlet water temperature of the heat pump unit remains unchanged; after a preset interval (for example, 1800s), return to and re-execute step S303;
  • a preset interval for example, 1800s
  • Step S312 judging whether the temperature difference between the supply and return water of the refrigerated main pipe is less than the difference between the temperature difference set value and the deviation set value; if yes, execute step S314; otherwise, execute step S313;
  • step S313 the outlet water temperature of the heat pump unit remains unchanged; after a preset interval (for example, 1800s), return to step S303 again;
  • Step S314 judging whether the duration is greater than the preset duration (for example, 30s), if yes, then execute step S316, if otherwise, execute step S315;
  • step S315 the outlet water temperature of the heat pump unit remains unchanged; after a preset interval (for example, 1800s), return to and re-execute step S303;
  • a preset interval for example, 1800s
  • Step S316 lowering the outlet water temperature of the heat pump unit, for example, lowering the outlet water temperature of the unit by a preset reset gradient; after a preset interval (for example, 1800s), return to step S303 again.
  • a preset interval for example, 1800s
  • step S304 the execution order of the determination of the water pump frequency (step S304) and the determination of the temperature difference between the supply and return water of the chiller main pipe (step S305) can be reversed, and FIG. 3 is only an exemplary illustration without limitation.
  • This embodiment can be applied to the air source heat pump heating system using fan coil units, which solves the problem of low energy efficiency of the system and the problem of surplus heat supply at the end, realizes the supply of heat supply in the system on demand, reduces heat supply waste, and improves The overall energy consumption of the system achieves high efficiency and energy saving.
  • an embodiment of the present application provides a heat pump system outlet water temperature control device, as shown in Figure 4, the structural block diagram of the outlet water temperature control device, the device includes: monitoring module 10 , a first processing module 20 , and a second processing module 30 .
  • the monitoring module 10 is used to monitor the operating frequency of the variable frequency water pump, and monitor the temperature difference between the supply and return water of the refrigeration main pipe;
  • the first processing module 20 is connected to the monitoring module 10, and is used for judging the relationship between the operating frequency of the variable frequency water pump and the preset frequency range, and judging the relationship between the temperature difference between the supply and return water and the preset temperature difference range;
  • the second processing module 30 is connected to the first processing module 20, and is used for adopting a corresponding control strategy to adjust the outlet water temperature of the unit according to the judgment result.
  • the heat pump system outlet water temperature control scheme introduced in an embodiment of the present application can be set to be executed periodically, that is, the above-mentioned device also includes: a cycle execution module, which is used to return to the trigger monitoring module 10 after a preset interval, the first processing The operation of the module 20 and the second processing module 30.
  • This embodiment can realize the control scheme of adjusting the outlet water temperature of the heat pump unit according to the demand of the terminal load.
  • the outlet water temperature of the heat pump unit can be controlled and adjusted to adapt to winter heating.
  • the air source heat pump heating system realizes heat supply on demand, reduces heating waste, improves the overall energy consumption of the heat pump system, achieves high efficiency and energy saving, and greatly meets the heating comfort requirements of users.
  • the specific control scheme it has been introduced above, and will not be repeated here.
  • An embodiment of the present application also provides a heat pump system, including the heat pump system outlet water temperature control device described above.
  • An embodiment of the present application provides a computer device, including a memory and a processor, where a computer program is stored in the memory, and the processor implements the steps in the foregoing method embodiments when executing the computer program.
  • An embodiment of the present application provides a non-volatile computer storage medium, the computer storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the temperature control of the outlet water of the heat pump system in any of the above-mentioned method embodiments is realized. method.
  • the above-mentioned software is stored in the above-mentioned storage medium, and the storage medium includes but is not limited to: optical discs, floppy disks, hard disks, rewritable memories, and the like.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开一种热泵系统的出水温度调控方法及装置、热泵系统。其中,该方法包括:监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;判断所述变频水泵的运行频率与预设频率范围的关系,以及,判断所述供回水温差与预设温差范围的关系;根据判断结果采取对应的调控策略调整热泵机组的出水温度。

Description

一种热泵系统的出水温度调控方法及装置、热泵系统
相关申请的交叉引用
本申请要求于2021年10月26日提交中国专利局,申请号为202111250509.8,申请名称为“一种出水温度调控方法及装置、热泵系统、制热设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及热泵系统技术领域,具体而言,涉及一种出水温度调控方法及装置、热泵系统。
背景技术
空气源热泵采暖系统应用越来越广泛,但空气源热泵机组本身的缺陷:随室外温度降低,机组能力衰减,进而能效较低,限制了空气源热泵采暖系统的进一步发展。
对于机组来说,降低1℃的出水温度,机组性能系数(coefficient of performance,COP)将提升2%~3%,可以从而提升空气源热泵采暖系统的能效。但是目前并没有通过调整出水温度提升系统能效的方案。
针对现有技术中空气源热泵采暖系统的能效较低、无法实现供热量按需供应的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例中提供一种出水温度调控方法及装置、热泵系统、制热设备,以解决现有技术中空气源热泵采暖系统的能效较低、无法实现供热量按需供应的问题。
为解决上述技术问题,本申请提供了一种热泵系统的出水温度调控方法,其中,所述方法包括:监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;判断所述变频水泵的运行频率与预设频率范围的关系,以及,判断所述供回水温差与预设温差范围的关系;根据判断结果采取对应的调控策略调整热泵机组的出水温度。
在一些实施例中,监测冷冻总管的供回水温差,包括:分别获取分水器的供水管的温度数据和集水器的回水管的温度数据;根据所述分水器的供水管的温度数据和所述集水器的回水管的温度数据,得到所述冷冻总管的供回水温差;其中,所述分水器的供水管连接至热泵机组,所述热泵机组与所述集水器之间的回水管上设置有所述变频水泵。
在一些实施例中,根据判断结果采取对应的调控策略调整热泵机组的出水温度,包括:
如果判断结果为第一结果:所述变频水泵的运行频率大于所述预设频率范围的最大值,以及,所述供回水温差大于所述预设温差范围的最大值,则对应的调控策略为:升高所述热泵机组的出水温度;
如果判断结果为第二结果:所述变频水泵的运行频率小于所述预设频率范围的最小值,以及,所述供回水温差小于所述预设温差范围的最小值,则对应的调控策略为:降低所述热泵机组的出水温度;
如果判断结果是除所述第一结果和所述第二结果之外的判断结果,所对应的调控策略为:保持所述热泵机组的出水温度不变。
在一些实施例中,根据判断结果采取对应的调控策略调整热泵机组的出水温度,包括:如果判断结果为所述第一结果且持续时间超过预设时长,则升高所述热泵机组的出水温度,其中,所述第一结果为所述变频水泵的运行频率大于所述预设频率范围的最大值,以及所述供回水温差大于所述预设温差范围的最大值;如果判断结果为所述第二结果且持续时间超过预设时长,则降低所述热泵机组的出水温度,其中,所述第二结果为所述变频水泵的运行频率小于所述预设频率范围的最小值,以及所述供回水温差小于所述预设温差范围的最小值;如果判断结果既不是所述第一结果且持续时间超过所述预设时长,又不是所述第二结果且持续时间超过所述预设时长,,则保持所述热泵机组的出水温度不变。
在一些实施例中,在监测变频水泵的运行频率以及监测冷冻总管的供回水温差之前,所述方法还包括:确定热泵系统的热泵机组的运行数量;如果运行数量大于或等于一台,则触发监测变频水泵的运行频率以及监测冷冻总管的供回水温差。
在一些实施例中,在根据判断结果采取对应的调控策略调整热泵机组出水温度之后,所述方法还包括:在预设间隔时长后,返回监测变频水泵的运行频率,以及监测冷 冻总管的供回水温差的步骤。。
本申请还提供了一种出水温度调控装置,其中,所述装置包括:监测模块,用于监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;第一处理模块,用于判断所述变频水泵的运行频率与预设频率范围的关系,以及,判断所述供回水温差与预设温差范围的关系;第二处理模块,用于根据判断结果采取对应的调控策略调整机组出水温度。
在一些实施例中,所述装置还包括:循环执行模块,用于在预设间隔时长后,返回触发所述监测模块、所述第一处理模块以及所述第二处理模块的运行。
本申请还提供了一种热泵系统,其中,所述热泵系统包括:相连接的分水器、热泵机组和集水器;所述热泵机组与所述集水器之间的管路上设置有变频水泵;所述热泵系统还包括:第一温度传感器,设置在所述分水器的供水管上;第二温度传感器,设置在所述集水器的回水管上;控制器,用于监测所述变频水泵的运行频率,以及,监测冷冻总管的供回水温差;判断所述变频水泵的运行频率与预设频率范围的关系,以及,判断所述供回水温差与预设温差范围的关系;根据判断结果采取对应的调控策略调整所述热泵机组的出水温度。
本申请还提供了一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一热泵系统的出水温度调控方法。本申请还提供了一种非易失计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如上述的方法。
本申请针对空气源热泵采暖系统,提供了一种按末端负荷需求实现调节机组出水温度的控制方案,通过监测变频水泵的运行频率以及冷冻总管的供回水温差,对机组的出水温度进行控制调节,以适应冬季供热的负荷调节需求,空气源热泵采暖系统实现供热量按需供应,减少供热浪费,提升系统整体能耗,实现高效节能,极大满足用户的采暖舒适要求。
附图说明
图1是根据本申请实施例的热泵系统的结构示意图;
图2是根据本申请一实施例的热泵系统出水温度调控方法的流程图;
图3是根据本申请另一实施例的热泵系统的出水温度调控流程图;
图4是根据本申请一实施例的热泵系统的出水温度调控装置的结构框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本申请的可选实施例。
图1是根据本申请一实施例的热泵系统的结构示意图,如图1所示。热泵系统,即空气源热泵采暖系统。在本申请的一实施例中,热泵系统的制热主机采用变频空气源 热泵机组,水泵采用变频水泵,采暖末端采用风机盘管。热泵系统包括:相连接的分水器、多个热泵机组、集水器;多个热泵机组(例如变频空气源热泵机组)与集水器之间的管路上设置有多个变频水泵;热泵系统还包括:第一温度传感器,设置在分水器的供水管上;第二温度传感器,设置在集水器的回水管上。控制器,用于根据变频水泵的运行频率,以及第一温度传感器和第二温度传感器采集的温度数据,调整热泵机组的出水温度。分水器的供水管和集水器的回水管上还设置有压力传感器,以监测管路压力,保证管路内压力值处于正常工作范围。
当室内建筑热负荷随室外温度的上升而下降时,风机盘管的换热能力即大于室内的负荷需求,针对变频系统可以通过优先调节水流量的方式实现空气源热泵采暖系统的供热量按需供应,因此在分水器的供水管上还设置有流量传感器,用于监测管路水流量。当水流量调节至极限后再执行出水温度的调节方案,即根据变频水泵的运行频率,以及第一温度传感器和第二温度传感器采集的温度数据,调整热泵机组的出水温度,以满足室内的负荷需求,从而保证供需关系,实现系统节能。
建筑热负荷受室外工况影响,当室外温度增大时,建筑热负荷减少,反之室外温度减小时,建筑热负荷增大。而风机盘管换热能力与室外工况无关,受水流量、供水温度等影响,在保持室内温度即风盘回风温度不变及水流量不变的情况下,风机盘管换热能力随供水温度升高而增大,降低而减小。当室外温度从T1升高到T2时,建筑热负荷从Q1减少到Q2,若供水温度仍然保持不变,会造成风机盘管换热能力大于建筑负荷需求,导致室内过热,反映到系统上是冷冻水总供回水温差减小,反之亦然。针对变频系统可以通过优先调节水流量,当水流量调节至极限再进行出水温度的调节。水流量的调节方案较为常规,因此下面对机组出水温度的调控逻辑进行介绍。
图2是根据本申请实施例的热泵系统的出水温度调控方法的流程图,如图2所示,在本申请的一实施例中,该方法包括以下步骤S201至S203。
步骤S201,监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差。
具体地,变频水泵的运行频率可以通过主机读取数据的方式来确定。热泵系统中的多个变频水泵是同频运行。冷冻总管的供回水温差=分水器的供水管的温度-集水器的回水管的温度,分水器的供水管连接至热泵机组,热泵机组与集水器之间的回水管上设置有变频水泵,在具体实现时,分别获取分水器的供水管的温度数据和集水器的回水管的温度数据,根据分水器的供水管的温度数据、集水器的回水管的温度数据,得到冷 冻总管的供回水温差。
步骤S202,判断变频水泵的运行频率与预设频率范围的关系,以及,判断供回水温差与预设温差范围的关系;
步骤S203,根据判断结果采取对应的调控策略调整热泵机组的出水温度。
具体地,如果判断结果为第一结果:变频水泵的运行频率大于或等于预设频率范围的最大值,以及,供回水温差大于或等于预设温差范围的最大值,则对应的调控策略为:升高热泵机组的出水温度。如果判断结果为第二结果:变频水泵的运行频率小于预设频率范围的最小值,以及,供回水温差小于预设温差范围的最小值,则对应的调控策略为:降低热泵机组的出水温度。如果判断结果是除第一结果和第二结果之外的判断结果,所对应的调控策略为:保持热泵机组的出水温度不变。基于此,可以实现空气源热泵采暖系统的供热量按需供应,减少供热浪费,提升系统整体能耗,实现高效节能,极大满足用户的采暖舒适要求。
为了避免对热泵机组的出水温度的频繁调节或无效调节,本申请的一实施例在设置了上述第一结果和第二结果这两个条件的基础上,还设置了持续时间这一参数。具体地,如果判断结果为第一结果且持续时间超过预设时长,则升高热泵机组的出水温度;如果判断结果为第二结果且持续时间超过预设时长,则降低热泵机组的出水温度;如果判断结果既不是所述第一结果且持续时间超过预设时长,又不是所述第二结果且持续时间超过预设时长,则保持热泵机组的出水温度不变。基于此,能够避免对出水温度的频繁调节。需要说明的是,对于热泵机组的出水温度的调节,即是对热泵机组的预设出水温度的调节,在升高、降低或保持出水温度之后,则将调整后的出水温度作为预设出水温度。
需要说明的是,出水温度的调整需要保证其在一个合理范围内,即调整后的出水温度不能低于出水温度的设定下限值(例如35℃),不能高于出水温度的设定上限值(例如50℃)。从而保证系统的正常运行。
需要说明的是,在执行本实施例介绍的出水温度调控方案之前,需要确定热泵机组是否在运行中,即,确定热泵系统的热泵机组的运行数量;如果运行数量大于或等于一台,则触发监测变频水泵的运行频率以及监测冷冻总管的供回水温差,如果运行数量为零,则无法执行出水温度调控方案。
本实施例介绍的出水温度调控方案可以设置为周期性执行,即,在预设间隔时长 后,重新监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;判断变频水泵的运行频率与预设频率范围的关系,以及,判断供回水温差与预设温差范围的关系;根据判断结果采取对应的调控策略调整热泵机组的出水温度。以上作为一个出水温度调控周期,在每个出水温度调控周期内,对于出水温度的调整(升高或降低)都可以按照预设重设梯度执行,即在一个出水温度调控周期内,对出水温度升高一个预设重设梯度或降低一个预设重设梯度。从而实现对空气源热泵采暖系统的长期稳定的调控。
图3是根据本申请另一实施例的热泵系统的出水温度调控方法流程图,如图3所示,本申请的另一实施例的热泵系统的出水温度调控方法包括以下步骤:
步骤S301,判断系统内热泵机组的运行台数是否大于1台,如果是则执行步骤S303,如果否则执行步骤S302;
步骤S302,该流程结束;
步骤S303,监测变频水泵的运行频率(以下简称水泵频率),监测冷冻总管的供回水温差;
步骤S304,判断水泵频率是否大于变频水泵最大频率(即预设频率范围的最大值),如果是则执行步骤S305,如果否则执行步骤S310;
考虑到频率的浮动范围,可以设置预设频率范围的最大值是变频水泵最大频率(例如50Hz)与机组出水温度重设水泵频率调节值之差;
步骤S305,判断冷冻总管的供回水温差是否大于温差设定值和偏差设定值之和;例如,预先设置一个温差设定值(例如5℃)和一个偏差设定值,将温差设定值和偏差设定值之和作为预设温差范围的最大值,将温差设定值与偏差设定值之差作为预设温差范围的最小值;上述温差设定值等于冷冻总管出水温度设定值与运行机组回水温度设定值之差;如果是则执行步骤S306,如果否则执行步骤S308;
步骤S306,判断持续时间是否大于预设时长(例如30s),如果是则执行步骤S307,如果否则执行步骤S309;
步骤S307,升高热泵机组的出水温度,例如将机组的出水温度升高一个预设重设梯度;在预设间隔时长(例如1800s)后,返回重新执行步骤S303;
步骤S308,热泵机组的出水温度保持不变;在预设间隔时长(例如1800s)后,返回重新执行步骤S303;
步骤S309,热泵机组的出水温度保持不变;在预设间隔时长(例如1800s)后,返 回重新执行步骤S303;
步骤S310,判断水泵频率是否小于变频水泵最小频率(即预设频率范围的最小值),如果是则执行步骤S312,如果否则执行步骤S311;
考虑到频率的浮动范围,可以设置预设频率范围的最小值是变频水泵最小频率(例如35Hz)与机组出水温度重设水泵频率调节值之和;
步骤S311,热泵机组的出水温度保持不变;在预设间隔时长(例如1800s)后,返回重新执行步骤S303;
步骤S312,判断冷冻总管的供回水温差是否小于温差设定值与偏差设定值之差;如果是则执行步骤S314,如果否则执行步骤S313;
步骤S313,热泵机组的出水温度保持不变;在预设间隔时长(例如1800s)后,返回重新执行步骤S303;
步骤S314,判断持续时间是否大于预设时长(例如30s),如果是则执行步骤S316,如果否则执行步骤S315;
步骤S315,热泵机组的出水温度保持不变;在预设间隔时长(例如1800s)后,返回重新执行步骤S303;
步骤S316,降低热泵机组的出水温度,例如将机组的出水温度降低一个预设重设梯度;在预设间隔时长(例如1800s)后,返回重新执行步骤S303。
需要说明的是,上述流程中,对于水泵频率的判断(步骤S304)和对于冷冻总管的供回水温差的判断(步骤S305)的执行顺序可以调换,图3只是示例性说明,不作限制。
本实施例可以应用于采用风机盘管的空气源热泵采暖系统,解决了系统能效低的问题、末端供热量富余的问题,实现了系统的供热量按需供应,减少供热浪费,提升系统整体能耗,实现高效节能。
对应于图2所示热泵系统的出水温度调控方法,本申请的一实施例提供了一种热泵系统出水温度调控装置,如图4所示的出水温度调控装置的结构框图,该装置包括:监测模块10,第一处理模块20,和第二处理模块30。
监测模块10,用于监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;
第一处理模块20,连接至监测模块10,用于判断变频水泵的运行频率与预设频率范围的关系,以及,判断供回水温差与预设温差范围的关系;
第二处理模块30,连接至第一处理模块20,用于根据判断结果采取对应的调控策略调整机组出水温度。
本申请的一实施例介绍的热泵系统出水温度调控方案可以设置为周期性执行,即,上述装置还包括:循环执行模块,用于在预设间隔时长后,返回触发监测模块10、第一处理模块20以及第二处理模块30的运行。
本实施例能够实现按末端负荷需求实现调节热泵机组出水温度的控制方案,通过监测变频水泵的运行频率以及冷冻总管的供回水温差,对热泵机组的出水温度进行控制调节,以适应冬季供热的负荷调节需求,空气源热泵采暖系统实现供热量按需供应,减少供热浪费,提升热泵系统整体能耗,实现高效节能,极大满足用户的采暖舒适要求。对于具体的控制方案,前面已经进行了介绍,在此不再赘述。
本申请的一实施例还提供了一种热泵系统,包括前面描述的热泵系统出水温度调控装置。
本申请的一实施例提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
本申请实施例提供了一种非易失计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述任意方法实施例中的热泵系统出水温度调控方法。
上述存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘 等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种热泵系统的出水温度调控方法,其特征在于,包括:
    监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;
    判断所述变频水泵的运行频率与预设频率范围的关系,以及,判断所述供回水温差与预设温差范围的关系;
    根据判断结果采取对应的调控策略调整热泵机组的出水温度。
  2. 根据权利要求1所述的方法,其特征在于,监测冷冻总管的供回水温差,包括:
    分别获取分水器的供水管的温度数据和集水器的回水管的温度数据;
    根据所述分水器的供水管的温度数据和所述集水器的回水管的温度数据,得到所述冷冻总管的供回水温差;
    其中,所述分水器的所述供水管连接至所述热泵机组,所述热泵机组与所述集水器之间的回水管上设置有所述变频水泵。
  3. 根据权利要求1所述的方法,其特征在于,根据判断结果采取对应的调控策略调整所述热泵机组的所述出水温度,包括:
    如果判断结果为第一结果:所述变频水泵的运行频率大于所述预设频率范围的最大值,以及,所述供回水温差大于所述预设温差范围的最大值,则对应的调控策略为:升高所述热泵机组的出水温度;
    如果判断结果为第二结果:所述变频水泵的运行频率小于所述预设频率范围的最小值,以及,所述供回水温差小于所述预设温差范围的最小值,则所述对应的调控策略为降低所述热泵机组的出水温度;
    如果判断结果是除所述第一结果和所述第二结果之外的判断结果,所对应的调控策略为:保持所述热泵机组的出水温度不变。
  4. 根据权利要求1所述的方法,其特征在于,根据判断结果采取对应的调控策略调整热泵机组的出水温度,包括:
    如果判断结果为所述第一结果且持续时间超过预设时长,则升高所述热泵机组的 出水温度;其中,所述第一结果为所述变频水泵的运行频率大于所述预设频率范围的最大值,以及所述供回水温差大于所述预设温差范围的最大值;
    如果判断结果为所述第二结果且持续时间超过所述预设时长,则降低所述热泵机组的出水温度,其中,所述第二结果为所述变频水泵的运行频率小于所述预设频率范围的最小值,以及所述供回水温差小于所述预设温差范围的最小值;
    如果判断结果既不是所述第一结果且持续时间超过所述预设时长,又不是所述第二结果且持续时间超过所述预设时长,则保持所述热泵机组的出水温度不变。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述监测变频水泵的运行频率以及监测冷冻总管的供回水温差之前,所述方法还包括:
    确定热泵系统的热泵机组的运行数量;
    如果运行数量大于或等于一台,则触发监测变频水泵的运行频率以及监测冷冻总管的供回水温差。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述根据判断结果采取对应的调控策略调整热泵机组出水温度之后,所述方法还包括:
    在预设间隔时长后,返回所述监测变频水泵的运行频率,以及监测冷冻总管的供回水温差的步骤。
  7. 根据权利要求6所述的方法,其特征在于,所述预设间隔时长为1800秒。
  8. 根据权利要求4所述的方法,其特征在于,所述预设时长为30秒。
  9. 一种热泵系统的出水温度调控装置,其特征在于,包括:
    监测模块,用于监测变频水泵的运行频率,以及,监测冷冻总管的供回水温差;
    第一处理模块,用于判断所述变频水泵的运行频率与预设频率范围的关系,以及,判断所述供回水温差与预设温差范围的关系;
    第二处理模块,用于根据判断结果采取对应的调控策略调整机组出水温度。
  10. 根据权利要求9所述的装置,其特征在于,还包括:
    循环执行模块,用于在预设间隔时长后,返回触发所述监测模块、所述第一处理模块以及所述第二处理模块的运行。
  11. 一种热泵系统,其特征在于,所述热泵系统包括:相连接的分水器、热泵机组和集水器;所述热泵机组与所述集水器之间的管路上设置有变频水泵;所述热泵系统还包括:
    第一温度传感器,设置在所述分水器的供水管上;
    第二温度传感器,设置在所述集水器的回水管上;
    控制器,用于采用权利要求1-4任意所述的方法控制所述热泵系统。
  12. 一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1至4中任一项所述的方法。
  13. 一种非易失计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1至4中任一项所述的方法。
PCT/CN2022/108158 2021-10-26 2022-07-27 一种热泵系统的出水温度调控方法及装置、热泵系统 WO2023071330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111250509.8A CN113970125A (zh) 2021-10-26 2021-10-26 一种出水温度调控方法及装置、热泵系统、制热设备
CN202111250509.8 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023071330A1 true WO2023071330A1 (zh) 2023-05-04

Family

ID=79588443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108158 WO2023071330A1 (zh) 2021-10-26 2022-07-27 一种热泵系统的出水温度调控方法及装置、热泵系统

Country Status (2)

Country Link
CN (1) CN113970125A (zh)
WO (1) WO2023071330A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970125A (zh) * 2021-10-26 2022-01-25 珠海格力电器股份有限公司 一种出水温度调控方法及装置、热泵系统、制热设备
CN115264555A (zh) * 2022-07-15 2022-11-01 珠海格力电器股份有限公司 供暖控制方法、装置及供暖系统
CN117091241B (zh) * 2023-08-21 2024-04-16 中瑞恒(北京)科技有限公司 一种冷温水温差控制寻优节能方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089503A (zh) * 2007-07-06 2007-12-19 北京时代嘉华环境控制科技有限公司 中央空调冷冻站质量并调控制方法及系统
JP2010190472A (ja) * 2009-02-17 2010-09-02 Hitachi Cable Ltd 冷水循環システム
CN104457073A (zh) * 2014-11-21 2015-03-25 广东芬尼克兹节能设备有限公司 一种变频控制方法
CN110425747A (zh) * 2019-08-01 2019-11-08 广东志高暖通设备股份有限公司 一种适用于变频热泵热水器的变频水泵控制方法
CN110762673A (zh) * 2019-11-06 2020-02-07 珠海格力电器股份有限公司 冷水空调系统及其防冻控制方法、存储介质和计算机设备
CN113970125A (zh) * 2021-10-26 2022-01-25 珠海格力电器股份有限公司 一种出水温度调控方法及装置、热泵系统、制热设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243274A (ja) * 2001-02-21 2002-08-28 Sanyo Electric Co Ltd ヒートポンプ式給湯装置
CN101435643B (zh) * 2008-12-12 2011-05-04 华南理工大学 冷水机组运行能效比监测方法
CN105674489B (zh) * 2016-01-27 2019-02-05 深圳市奥宇节能技术股份有限公司 一种中央空调水泵的优化控制方法及系统
CN112665121B (zh) * 2020-12-10 2022-02-08 珠海格力电器股份有限公司 空调冷冻水泵的控制方法、装置、控制器和一种空调系统
CN113883663A (zh) * 2021-09-30 2022-01-04 珠海格力电器股份有限公司 一种冷机出水温度的控制方法、装置及空调设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089503A (zh) * 2007-07-06 2007-12-19 北京时代嘉华环境控制科技有限公司 中央空调冷冻站质量并调控制方法及系统
JP2010190472A (ja) * 2009-02-17 2010-09-02 Hitachi Cable Ltd 冷水循環システム
CN104457073A (zh) * 2014-11-21 2015-03-25 广东芬尼克兹节能设备有限公司 一种变频控制方法
CN110425747A (zh) * 2019-08-01 2019-11-08 广东志高暖通设备股份有限公司 一种适用于变频热泵热水器的变频水泵控制方法
CN110762673A (zh) * 2019-11-06 2020-02-07 珠海格力电器股份有限公司 冷水空调系统及其防冻控制方法、存储介质和计算机设备
CN113970125A (zh) * 2021-10-26 2022-01-25 珠海格力电器股份有限公司 一种出水温度调控方法及装置、热泵系统、制热设备

Also Published As

Publication number Publication date
CN113970125A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2023071330A1 (zh) 一种热泵系统的出水温度调控方法及装置、热泵系统
CN109631282B (zh) 一种中央空调系统控制方法及其系统、设备、存储介质
CN105674489B (zh) 一种中央空调水泵的优化控制方法及系统
CN102410680B (zh) 一种冷水机组热负荷响应的控制方法
WO2023071331A1 (zh) 空气源热泵机组系统的控制方法和空气源热泵机组系统
CN111207481A (zh) 一种水多联系统压缩机升降频控制方法、存储介质及空调
WO2022227606A1 (zh) 用于控制空调的方法、装置和智能空调
CN107401806A (zh) 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法
CN111407123A (zh) 降低温度波动的控制方法、控温装置及陈列柜
CN107631424B (zh) 自动调温空调器控制方法及空调器
CN114727570B (zh) 一种基于温度变化关系的制冷机组水温调节方法
CN113701321B (zh) 一种中央空调水泵节能变频控制方法
CN110332649A (zh) 一种空调器的制热防过载控制方法、装置及空调器
CN110986276A (zh) 一种水多联系统防冻控制方法、计算机可读存储介质及空调
CN107917563A (zh) 热泵机组的控制方法和装置
CN112556098A (zh) 一种动态水力平衡控制方法
CN114576806A (zh) 一种基于变频控制的中央空调冷却水系统节能优化方法
CN110953649B (zh) 一种采暖温控阀分阶段温度设置的预期控制方法
CN103335407A (zh) 风冷热泵冷\热水机系统及其能力输出控制方法
CN111473491A (zh) 可连续调节的换热量调节方法、装置及半导体空调
WO2022155940A1 (zh) 泳池热泵系统的水温控制方法、装置、设备及存储介质
CN101694340A (zh) 化霜起始点的判断方法及智能化霜的制冷系统
CN110440406B (zh) 一种风机控制方法、装置及机组设备
CN114576821A (zh) 阀门控制方法及其系统、计算机可读存储介质及空调系统
CN202902549U (zh) 温变速度型水温控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885231

Country of ref document: EP

Kind code of ref document: A1