WO2023071288A1 - 放肩断线检测方法、装置、存储介质及电子设备 - Google Patents

放肩断线检测方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2023071288A1
WO2023071288A1 PCT/CN2022/104445 CN2022104445W WO2023071288A1 WO 2023071288 A1 WO2023071288 A1 WO 2023071288A1 CN 2022104445 W CN2022104445 W CN 2022104445W WO 2023071288 A1 WO2023071288 A1 WO 2023071288A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon rod
single crystal
image
crystal silicon
generated
Prior art date
Application number
PCT/CN2022/104445
Other languages
English (en)
French (fr)
Inventor
郭力
张伟建
刘永生
武高峰
杨正华
赵阳
王正远
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2023071288A1 publication Critical patent/WO2023071288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Definitions

  • the present disclosure relates to the field of single crystal silicon rod generation, and in particular, relates to a method, device, storage medium and electronic equipment for detecting shoulder breakage.
  • shouldering is a crucial link, which directly affects the subsequent process.
  • the shoulder setting process may cause the shoulder breaking line due to various reasons.
  • the disconnection of shoulders is manually inspected by on-site employees. Due to the large number of on-site employees taking care of the stoves and the difference in judgment skills, the time to identify shoulder disconnections will be longer and the accuracy rate will be lower. , the discrimination effect can never meet the needs of the scene.
  • the present disclosure provides a method, a device, a storage medium and an electronic device for detecting broken shoulders.
  • the first aspect of the present disclosure provides a method for detecting broken shoulders, the method comprising:
  • the determining whether the crystal line of the single crystal silicon rod is broken according to the generated image of the single crystal silicon rod and the crystal transformation law of the single crystal silicon rod includes:
  • performing image enhancement processing on the image generated by the single crystal silicon rod to obtain an aperture image corresponding to the generated image of the single crystal silicon rod includes:
  • the determining whether the crystal line of the single crystal silicon rod is broken according to the aperture image and the crystal rotation law includes:
  • the aperture image determine whether the crystal line is captured in the image generated by the single crystal silicon rod acquired during the shooting period corresponding to the aperture image;
  • the count value of the counter is increased by one
  • the determining, according to the aperture image, whether the crystal line is captured in the image generated by the single crystal silicon rod acquired during the shooting period corresponding to the aperture image includes:
  • the method includes:
  • the preset measurement area is determined according to the overall generated image.
  • the method includes:
  • the crystal rotation rule is determined according to the rotation speed of the single crystal silicon rod and the preset period.
  • the second aspect of the present disclosure provides a shoulder breakage detection device, the device comprising:
  • the acquisition module is used to acquire the generated image of the single crystal silicon rod in the preset measurement area in the shoulder stage according to the preset shooting cycle during the process of generating the single crystal silicon rod by the single crystal silicon Czochralski method;
  • the determining module is configured to determine whether the crystal line of the single crystal silicon rod is broken according to the generated image of the single crystal silicon rod and the crystal rotation law of the single crystal silicon rod.
  • a second aspect of the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of any one of the methods described in the first aspect of the present disclosure are implemented.
  • a third aspect of the present disclosure provides an electronic device, including:
  • a processor configured to execute the computer program in the memory to implement the steps of any one of the methods in the first aspect of the present disclosure.
  • the single crystal silicon rod can be accurately judged Whether the crystal line of the rod is broken does not need to be inspected manually, which reduces the labor cost.
  • Fig. 1 is a flow chart of a method for detecting broken shoulders according to an exemplary embodiment
  • Fig. 2 is another flow chart of a method for detecting shoulder breakage according to an exemplary embodiment
  • Fig. 3 is a schematic diagram of image processing according to an exemplary embodiment
  • Fig. 4 is a block diagram of a shoulder breakage detection device according to an exemplary embodiment
  • Fig. 5 is a block diagram of an electronic device according to an exemplary embodiment.
  • the Czochralski method is also called the Czochralski method (CZ method), and the generation of monocrystalline silicon rods by the monocrystalline silicon Czochralski method includes multiple stages, including a charging stage, a melting stage, During the seeding stage, seeding stage, shouldering stage, equal diameter stage, finishing stage and other stages, the single crystal silicon rod will start to increase the diameter of the drawn single crystal at the shouldering stage, which is a crucial link.
  • CZ method Czochralski method
  • the single crystal silicon rod will generate multiple crystal lines (also called ridge lines) based on the seed crystal placed in the seed crystal stage. Impurities in the final melt may cause the crystal line to break. At this time, the internal atomic arrangement of the resulting single crystal silicon rod does not meet the quality requirements of the single crystal silicon rod.
  • the broken wires of the shoulders need to be manually inspected by on-site employees. Due to the large number of on-site employees guarding the furnace and the difference in judgment skills, the time for identifying the broken wires of the shoulders will be longer and the accuracy rate will be lower. Unable to meet the needs of the site.
  • FIG. 1 is a flow chart of a shoulder broken line detection method according to an exemplary embodiment.
  • the method can be applied For electronic devices with information processing capabilities such as computers, messaging devices, and central control platforms, as shown in Figure 1, the method includes steps:
  • the camera used to capture the image generated by the single crystal silicon rod can be installed inside the furnace platform, or an observation hole is set at a certain position of the furnace platform, and the camera can take pictures of the single crystal silicon rod inside the furnace platform when it is generated through the observation hole.
  • the image of the crystalline silicon rod, the image generated by the single crystalline silicon rod may be a grayscale image or an RGB image, which is not limited in the present disclosure.
  • the preset measurement area can be the position where one quarter or one eighth of the outer edge of the single crystal silicon rod is located. This disclosure does not limit the size of the preset measurement area. The number of crystal lines of the silicon rod and the law of crystal rotation are determined.
  • the single crystal silicon rods and the crucible for containing the silicon melt will rotate at a certain speed, so the crystal lines will regularly rotate. Appear or disappear in the captured image, this law is the law of crystal rotation. Since the generated image of the single crystal silicon rod only has a preset area of the single crystal silicon rod, it can be determined whether the crystal line of the single crystal silicon rod is broken according to the law of crystal rotation and the information in the captured image.
  • the single crystal silicon rod can be accurately determined. Whether the crystal line of the silicon rod is broken does not require manual inspection, which reduces labor costs.
  • the determining whether the crystal line of the single crystal silicon rod is broken according to the generated image of the single crystal silicon rod and the crystal transformation law of the single crystal silicon rod includes:
  • the image of the single crystal silicon rod in the image has high brightness and low definition, it is difficult to identify the single crystal silicon rod, and the image is difficult to process directly.
  • image enhancement processing through image enhancement processing, The aperture image of the single crystal silicon rod can be obtained, and it can be understood that the aperture image can be understood as the peripheral edge image of the single crystal silicon rod.
  • the image of the single crystal silicon rod can be recognized with a higher degree of recognition while reducing the amount of image data.
  • the algorithm processes the image, it reduces the difficulty of the algorithm's judgment and improves the accuracy of the judgment.
  • performing image enhancement processing on the image generated by the single crystal silicon rod to obtain an aperture image corresponding to the generated image of the single crystal silicon rod includes:
  • the gamma transformation is mainly used for image correction, correcting images with too high gray or too low gray to enhance contrast.
  • the transformation formula is to perform a product operation on each pixel value on the original image.
  • the gamma transformation has an obvious effect on image enhancement when the image contrast is low and the overall brightness value is high.
  • the image generated by the single crystal silicon rod is processed through gamma transformation.
  • the algorithm of gamma change is simple and the processing efficiency is high. Aiming at the high-brightness implementation scenario of this solution, a single crystal with high contrast can be obtained quickly and accurately. Aperture image of a silicon rod.
  • the determining whether the crystal line of the single crystal silicon rod is broken according to the aperture image and the crystal rotation law includes:
  • the aperture image determine whether the crystal line is captured in the image generated by the single crystal silicon rod acquired during the shooting period corresponding to the aperture image;
  • the count value of the counter is increased by one
  • the counting threshold can be calibrated to three.
  • the value recorded by the counter is three. If the crystal line image is captured in the fourth shooting cycle, the value recorded by the counter is If the value returns to zero and is less than three, it can be determined that the crystal line of the single crystal silicon rod is not broken. If the crystal line image is not captured in the fourth shooting cycle, the counter value plus one equals four, and if it is greater than three, it can be determined that the single crystal silicon rod is not broken. The crystal line of the rod is broken.
  • the counter can be specifically expressed as an integer variable in the program, or the counter can also be a logic circuit, and the effect of the counter can be realized by sending a pulse signal to the logic circuit.
  • the count value of the counter can be displayed through the display module, so that the staff can monitor the count value of the counter through the counter, so that the staff can judge the counter more intuitively and accurately through the counter.
  • the crystal line maintains the state when the single crystal silicon rod is produced.
  • the crystal rotation rule indicates that the single crystal silicon ingot is photographed in the current shooting cycle when the crystal line is not broken, and no After the crystal line, there will be three consecutive shooting cycles to capture the crystal line, and then four consecutive shooting cycles will not be able to capture the crystal line.
  • the counting threshold can be calibrated to four.
  • the recorded value of the counter is zero at this time, which is less than the counting threshold, and it is judged that the crystal wire is not broken. However, in fact, the crystal line at this time may have been broken and displaced, and the crystal line appeared at the position where the crystal line should not be photographed.
  • two counters may also be set, and the first counting threshold and the second counting threshold are determined according to the law of crystal rotation;
  • the count value of the first counter is increased by one, and the count value of the second counter is reset to zero; when it is determined that the crystal line is photographed, the count value of the first counter is reset zero, the count value of the second counter is increased by one; when the count value of the first counter is greater than the first count threshold or the count value of the second counter is greater than the second count threshold, it is determined that the crystal line of the single crystal silicon rod is broken .
  • the determining whether the crystal line is captured in the image generated by the single crystal silicon rod acquired during the shooting period corresponding to the aperture image according to the aperture image includes:
  • the fitting ring can be a ring with a pixel width of one fitted by the outer edge of the aperture image, and the outermost pixel of the aperture image indicates that it is based on the center of the fitting ring and is far away from the center of the ring. The furthest pixel.
  • determining that the crystal line is captured in the image generated by the single crystal silicon rod includes:
  • the generated single crystal silicon rod is an approximate cylinder
  • the resulting image of the single crystal silicon rod that is captured is an image that is approximately circular
  • the crystal line on the single crystal silicon rod is compared to the The cylinder is the protruding part.
  • the outer edge of the single crystal silicon rod can be fitted to a ring or arc through the aperture image of the single crystal silicon rod.
  • the corresponding position of the crystal line will highlight the Therefore, it can be determined whether there is a crystal line in the aperture image through the outermost pixel points of the aperture image and the ring obtained by fitting.
  • the method includes:
  • the preset measurement area is determined according to the overall generated image.
  • the shooting point is fixed compared with the position of the single crystal silicon rod, the clarity of the single crystal silicon rod at different shooting positions is quite different.
  • the In this solution through the overall generated image of the single crystal silicon rod, the clearer image area of the single crystal silicon rod that can be captured by the camera is determined, and the preset measurement area taken by the camera is calibrated according to the overall generated image, which can be more accurate Accurately determine whether there is a crystal line in the image based on the captured image, so that the judgment of whether the crystal line is broken is more accurate.
  • the method includes:
  • the crystal rotation rule is determined according to the rotation speed of the single crystal silicon rod and the preset period.
  • the staff may adjust the rotation speed and crystal line of single crystal silicon rods in real time.
  • the law of crystal rotation will also change.
  • the rotation speed of the silicon rod and the shooting cycle are adjusted to the law of the crystal rotation, so as to avoid the waste of manpower and material resources caused by mistakes in the production process due to misjudgment.
  • an embodiment of the present disclosure provides another flow chart of a method for detecting shoulder breakage as shown in FIG. 2 .
  • the method includes steps :
  • the overall generated image may be an image as shown in image 3A in FIG. 3 .
  • the overall aperture image may be an image as shown in the image 3B in FIG. 3 . It can be seen from images 3A and 3B that the contrast of the image after image gamma transformation is significantly increased, so that the computer can more clearly distinguish the boundary when processing the image and improve the image processing effect.
  • the preset measurement area may be the right one-eighth arc of the overall aperture image 3B, and the clarity of the image at the right one-eighth arc may be higher than that of other parts of the overall aperture image, In order to facilitate further processing in subsequent steps and reduce the difficulty of image processing.
  • the 3C image in FIG. 3 it can be clearly seen in the 3C image that there is a protruding part in the aperture image, and the protruding part is the image of the crystal line.
  • steps S201 to S203 may be performed in advance, and the steps S201 to S203 may not be performed when the method in this embodiment is actually applied.
  • step S208 to S209 the fitting circle is obtained through fitting the aperture image, so that the computer can, based on the aperture image, Accurately judge whether there are crystal lines in the image.
  • step S210 and step S212 If it is determined that the crystal line is not photographed, execute step S210 and step S212; if the crystal line is photographed, execute step S211 and step S212.
  • step S213 If it is determined that the count value is greater than the count threshold, perform step S213; if it is determined that the count value is less than the count threshold, perform step S214.
  • step S212 when it is determined that the step S212 is not executed when it is determined that the step S212 is completed, the execution of the method may be stopped.
  • Fig. 4 is a block diagram of a shoulder breakage detection device 40 according to an exemplary embodiment. As shown in Fig. 4, the device 40 includes:
  • the acquisition module 41 is used to acquire the generated image of the single crystal silicon rod in the preset measurement area in the shoulder stage according to the preset shooting cycle during the process of generating the single crystal silicon rod by the single crystal silicon Czochralski method;
  • the determination module 42 is configured to determine whether the crystal line of the single crystal silicon rod is broken according to the generated image of the single crystal silicon rod and the crystal rotation law of the single crystal silicon rod.
  • the determination module 42 includes:
  • An image enhancement module configured to perform image enhancement processing on the image generated by the single crystal silicon rod to obtain an aperture image corresponding to the image generated by the single crystal silicon rod;
  • the first determination sub-module is configured to determine whether the crystal line of the single crystal silicon rod is broken according to the aperture image and the crystal rotation rule.
  • the image enhancement module is specifically used for:
  • the first determining submodule is specifically configured to:
  • the aperture image determine whether the crystal line is captured in the image generated by the single crystal silicon rod acquired during the shooting period corresponding to the aperture image;
  • the count value of the counter is increased by one
  • the first determining submodule is further specifically configured to:
  • the device 40 includes:
  • the second acquisition module is used to acquire the overall generated image of the single crystal silicon rod in the shouldering stage
  • the second determination module is configured to determine the preset measurement area according to the overall generated image.
  • the device 40 includes:
  • the third determining module is configured to determine the crystal rotation law according to the rotation speed of the single crystal silicon rod and the preset period.
  • Fig. 5 is a block diagram of an electronic device 500 according to an exemplary embodiment.
  • the electronic device 500 may include: a processor 501 and a memory 502 .
  • the electronic device 500 may also include one or more of a multimedia component 503 , an input/output (I/O) interface 504 , and a communication component 505 .
  • I/O input/output
  • the processor 501 is used to control the overall operation of the electronic device 500, so as to complete all or part of the steps in the above-mentioned method for detecting broken wires in the shoulder.
  • the memory 502 is used to store various types of data to support the operation of the electronic device 500, for example, these data may include instructions for any application or method operating on the electronic device 500, and application-related data, For example, the image generated as a whole, the image generated by a single crystal silicon rod, the count value, the preset cycle, the law of crystal rotation, etc.
  • the memory 502 can be realized by any type of volatile or non-volatile storage device or their combination, such as Static Random Access Memory (Static Random Access Memory, referred to as SRAM), Electrically Erasable Programmable Read-Only Memory (EPROM) Electrically Erasable Programmable Read-Only Memory, referred to as EEPROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory, referred to as EPROM), Programmable Read-Only Memory (Programmable Read-Only Memory, referred to as PROM), read-only Memory (Read-Only Memory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 503 may include screen and audio components.
  • the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • an audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in the memory 502 or sent through the communication component 505 .
  • the audio component also includes at least one speaker for outputting audio signals.
  • the I/O interface 504 provides an interface between the processor 501 and other interface modules, which may be a keyboard, a mouse, buttons, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 505 is used for wired or wireless communication between the electronic device 500 and other devices.
  • the communication component 505 may include: a Wi-Fi module, a Bluetooth module, an NFC module and the like.
  • the electronic device 500 may be implemented by one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processors (Digital Signal Processor, DSP for short), digital signal processing equipment (Digital Signal Processing Device, referred to as DSPD), programmable logic device (Programmable Logic Device, referred to as PLD), field programmable gate array (Field Programmable Gate Array, referred to as FPGA), controller, microcontroller, microprocessor or other electronic components Implementation, used to implement the above method for detecting broken shoulders.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • controller microcontroller
  • microprocessor or other electronic components Implementation used to implement the above method for detecting broken shoulders.
  • a computer-readable storage medium including program instructions, and when the program instructions are executed by a processor, the steps of the above-mentioned method for detecting broken wires on shoulders are implemented.
  • the computer-readable storage medium may be the above-mentioned memory 502 including program instructions, and the above-mentioned program instructions can be executed by the processor 501 of the electronic device 500 to implement the above-mentioned method for detecting broken wires in the shoulder.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above-mentioned The code section of the shoulder break detection method.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • the various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the computing processing device according to the embodiments of the present invention.
  • the present invention can also be implemented as an apparatus or an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.
  • Figure 5 shows a computing processing device that can implement the method according to the invention.
  • the computing processing device conventionally comprises a processor 501 and a computer program product in the form of a memory 502 or a computer readable medium.
  • Memory 502 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 502 has a storage space for program codes for executing any method steps in the methods described above.
  • the storage space for program codes may include respective program codes for respectively implementing various steps in the above methods.
  • These program codes can be read from or written into one or more computer program products.
  • These computer program products comprise program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such computer program products are typically portable or fixed storage units.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 502 in the computing processing device of FIG. 5 .
  • the program code can eg be compressed in a suitable form.
  • the storage unit includes computer readable code, i.e. code readable by, for example, a processor such as 501, which when executed by a computing processing device causes the computing processing device to perform each of the methods described above. step.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Additionally, please note that examples of the word “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本公开涉及一种放肩断线检测方法、装置、存储介质及电子设备,属于单晶硅生成领域,所述方法包括:在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像;根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。通过设置相机并按照预设的拍摄周期拍摄该单晶硅棒在放肩阶段的图像,并根据该图像以及单晶硅棒的旋转的规律,能够准确的判定该单晶硅棒的晶线是否断裂,无需人工进行勘验,降低了人力成本。

Description

放肩断线检测方法、装置、存储介质及电子设备
本申请要求在2021年10月29日提交中国专利局、申请号为202111273039.7、发明名称为“放肩断线检测方法、装置、存储介质及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及单晶硅棒生成领域,具体地,涉及一种放肩断线检测方法、装置、存储介质及电子设备。
背景技术
在单晶硅棒通过直拉法的生产中,放肩是至关重要的环节,直接影响后续的流程进行。正常生产过程中,放肩过程可能会因为各种原因导致放肩断线。然而,在相关技术中放肩断线都是通过现场员工进行人工巡检,由于现场员工看护炉台数量较多加之判断技能的差异,会导致识别放肩断线的时间变长且准确率较低,判别效果始终无法满足现场需求。
发明内容
为了解决相关技术中存在的问题,本公开提供一种放肩断线检测方法、装置、存储介质及电子设备。
为了实现上述目的,本公开第一方面提供一种放肩断线检测方法,所述方法包括:
在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像;
根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。
可选地,所述根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂包括:
对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像;
根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断 裂。
可选地,所述对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像包括:
对所述单晶硅棒生成图像执行图像伽马变换,得到所述光圈图像。
可选地,所述根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断裂包括:
根据所述晶转规律,确定计数阈值;
根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线;
在确定未拍摄到所述晶线的情况下,计数器的计数数值加一;
在确定拍摄到所述晶线的情况下,所述计数器的计数值归零;
在确定所述计数器的计数数值大于所述计数阈值的情况下,确定所述单晶硅棒的晶线断裂。
可选地,所述根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线包括:
根据所述光圈图像,拟合得到对应所述光圈图像的拟合圆环;
确定所述光圈图像最外侧的像素点所在的位置;
在所述像素点处于所述拟合圆环的内侧,或者所述像素点与所述拟合圆环相重叠的情况下,确定所述单晶硅棒生成图像未拍摄到所述晶线;
在所述像素点处于所述拟合圆环的外侧的情况下,确定所述单晶硅棒生成图像拍摄到所述晶线。
可选地,所述方法包括:
获取放肩阶段的所述单晶硅棒的整体生成图像;
根据所述整体生成图像,确定所述预设测量区域。
可选地,所述方法包括:
根据所述单晶硅棒的转速以及所述预设周期,确定所述晶转规律。
本公开第二方面提供一种放肩断线检测装置,所述装置包括:
获取模块,用于在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像;
确定模块,用于根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。
本公开第二方面提供一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开第一方面中任一项所述方法的步骤。
本公开第三方面提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现本公开第一方面中任一项所述方法的步骤。
通过上述技术方案,通过设置相机并按照预设的拍摄周期拍摄该单晶硅棒在放肩阶段的图像,并根据该图像以及单晶硅棒的旋转的规律,能够准确的判定该单晶硅棒的晶线是否断裂,无需人工进行勘验,降低了人力成本。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种放肩断线检测方法的流程图;
图2是根据一示例性实施例示出的一种放肩断线检测方法的另一流程图;
图3是根据一示例性实施例示出的一种图像处理的示意图;
图4是根据一示例性实施例示出的一种放肩断线检测装置的框图;
图5是根据一示例性实施例示出的一种电子设备的框图。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本领域技术人员应理解,直拉法又称为切克劳斯基法(CZ法),通过单晶硅直拉法生成单晶硅棒包括多个阶段,包括装料阶段、融料阶段、种晶阶段、引晶阶段、放肩阶段、等径阶段、收尾阶段等阶段,单晶硅棒会在放肩阶段开始增大拉制单晶的直径,是至关重要的环节。
在放肩阶段,单晶硅棒会基于种晶阶段放置的籽晶生成多条晶线(也称为棱线),若单晶硅棒在生成过程中,由于温度的设置有误或者融料后的融液中存在杂质,则可能会导致晶线断裂,此时,生成的单晶硅棒的内部原子排列不符合单晶硅棒的质量要求。
在相关技术中放肩断线需要通过现场员工进行人工巡检,由于现场员工看护炉台数量较多加之判断技能的差异,会导致识别放肩断线的时间变长且准确率较低,判别效果无法满足现场需求。
为了解决相关技术中存在的问题,本公开实施例提供一种放肩断线检测方法,图1是根据一示例性实施例示出的一种放肩断线检测方法的流程图,该方法可以应用于例如计算机、消息收发设备、中控平台等具备信息处理能力的电子设备,如图1所示,所述方法包括步骤:
S101、在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像。
其中,用于拍摄该单晶硅棒生成图像的相机可以设置在炉台的内部,或者在炉台的某位置设置观察孔,该相机能够通过该观察孔拍摄炉台内部 的单晶硅棒生成时的单晶硅棒的图像,该单晶硅棒生成图像可以是灰度图也可以是RGB图像,本公开对此不做限定。预设测量区域可以是单晶硅棒的四分之一或者八分之一的外沿所在的位置,本公开对该预设测量区域的大小不做限定,在具体实施时,可以根据单晶硅棒的晶线数量以及晶转规律确定的。
S102、根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。
可以理解的是,直拉法生成单晶硅棒的放肩过程中,单晶硅棒以及用于盛放硅融液的坩炉均会按照一定的转速旋转,因此,晶线会规律性地出现或消失在拍摄得到的图像中,该规律即为晶转规律。由于该单晶硅棒生成图像只有该单晶硅棒的预设区域,则能够根据晶转规律以及拍摄图像中的信息,确定该单晶硅棒的晶线是否断裂。
在本公开实施例中,通过设置相机按照预设的拍摄周期拍摄该单晶硅棒在放肩阶段的图像,并根据该图像以及单晶硅棒的旋转的规律,能够准确的判定该单晶硅棒的晶线是否断裂,无需人工进行勘验,降低了人力成本。
在一些可选地实施例中,所述根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂包括:
对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像;
根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断裂。
其中,由于炉台内的亮度较高,图像中的单晶硅棒的图像亮度高、清晰度较低,难以辨识单晶硅棒,图像难以直接进行处理,在本方案中,通过图像增强处理,能够得到该单晶硅棒的光圈图像,可以理解的是,该光圈图像可以理解为该单晶硅棒的外围边缘图像。
采用本方案,通过对单晶硅棒生成图像进行图像增强处理,并基于处理后的光圈图像进行判定,能够使得单晶硅棒的图像的辨识度更高的同时降低图像的数据量,在通过算法对该图像进行处理时,降低算法的判定难 度,提高判定的准确性。
在一些可能的实施方式中,所述对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像包括:
对所述单晶硅棒生成图像执行图像伽马变换,得到所述光圈图像。
应理解的是,伽马变换主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。变换公式就是对原图像上每一个像素值做乘积运算。相较于其他的图像增强算法,伽马变换对于图像对比度偏低,并且整体亮度值偏高情况下的图像增强效果明显。
采用本方案,通过伽马变换对单晶硅棒生成图像进行处理,伽马变化的算法简单,处理效率高,能够针对本方案的高亮度的实施场景,快速、准确地得到对比度高的单晶硅棒的光圈图像。
在一些实施例中,所述根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断裂包括:
根据所述晶转规律,确定计数阈值;
根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线;
在确定未拍摄到所述晶线的情况下,计数器的计数数值加一;
在确定拍摄到所述晶线的情况下,所述计数器的计数值归零;
在确定所述计数器的计数数值大于所述计数阈值的情况下,确定所述单晶硅棒的晶线断裂。
示例地,根据晶转规律,确定每连续的四个拍摄周期中,若前三个拍摄周期未拍摄到晶线图像,则第四个拍摄周期将拍摄到晶线图像。如果不符合该规律,则表征晶线断裂,此时,该计数阈值则可以标定为三。
在设置前文所述的计数器后,在第一拍摄周期至第三拍摄周期均未拍摄到晶线图像,此时计数器记录的数值为三,若第四拍摄周期拍摄到晶线图像,计数器记录的数值归零小于三,则可以确定该单晶硅棒的晶线未断裂,若第四拍摄周期仍未拍摄到晶线图像,计数器数值加一等于四,大于三,则可以确定该单晶硅棒的晶线断裂。
采用本方案,通过设置计数器来统计各个周期拍摄到的图像中是否存 在晶线,能够简单、准确地记录在放肩过程中拍摄所得的图像中是否存在晶线,并根据计数器记录的数值准确地判断该单晶硅棒的晶线是否断裂,实现了放肩断线检测的自动化。
可以理解的,该计数器在程序中具体的可以表示为一个整型变量,或者,该计数器还可以是一个逻辑电路,可以通过向该逻辑电路发送脉冲信号以实现计数器的效果。在一些可选地实施方式中,可以通过显示模块显示该计数器的计数值,以使得工作人员能够通过该计数器监控该计数器的计数数值,使得工作人员能够更直观、更准确地通过该计数器判断该单晶硅棒生成时的晶线保持状态。
本领域技术人员可以理解的是,在晶线未断裂的情况下,由于拍摄周期的设置,可能存在连续N个拍摄周期拍摄到晶线图像后,连续M个周期无法拍摄到晶线图像的情况,若只设置一个计数器,则可能出现判断出错的情况下,例如,若晶转规律表征在晶线未断裂的情况下以当前拍摄周期拍摄单晶硅棒,在连续四个拍摄周期未拍摄到晶线后,会有连续三个拍摄周期将拍摄到晶线,之后再连续四个拍摄周期无法拍摄到晶线,此时计数阈值可以标定为四。若连续五个拍摄周期拍摄到晶线,此时计数器的记录数值为零,小于计数阈值,判断为晶线未断裂。然而,实际上此时的晶线可能已经断裂产生位移,在不应拍摄到晶线的位置出现了晶线。
因此,为了避免出现以上问题,在一些可能的实施方式中,还可以设置两个计数器,并根据所述晶转规律,确定第一计数阈值以及第二计数阈值;
在确定未拍摄到所述晶线的情况下,第一计数器的计数数值加一,第二计数器的计数值归零;在确定拍摄到所述晶线的情况下,第一计数器的计数值归零,第二计数器的计数值加一;在第一计数器的计数值大于第一计数阈值或第二计数器的计数值大于第二计数阈值的情况下,确定所述单晶硅棒的晶线断裂。
采用本方案,通过设置两个计数器,分别记录统计连续拍摄到晶线的图像次数、以及连续未拍摄到晶线的图像次数,能够适应各种不同的晶转规律、拍摄周期,使得对晶线是否断裂的判断更加准确。
在又一些实施例中,所述根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线包括:
根据所述光圈图像,拟合得到对应所述光圈图像的拟合圆环;
确定所述光圈图像最外侧的像素点所在的位置;
在所述像素点处于所述拟合圆环的内侧,或者所述像素点与所述拟合圆环相重叠的情况下,确定所述单晶硅棒生成图像未拍摄到所述晶线;
在所述像素点处于所述拟合圆环的外侧的情况下,确定所述单晶硅棒生成图像拍摄到所述晶线。
其中,拟合圆环可以是以光圈图像的外沿拟合而成的像素宽度为一的圆环,光圈图像最外侧的像素点表示以该拟合圆环的圆心为基础,远离该圆心所在位置最远处的像素点。
为了避免误判,在一些可能的实施方式中,在所述像素点处于所述拟合圆环的外侧的情况下,确定所述单晶硅棒生成图像拍摄到所述晶线包括:
在所述像素点处于所述拟合圆环的外侧的情况下,计算所述像素点到所述拟合圆环的最近距离,在该距离大于预设阈值的情况下,确定所述单晶硅棒生成图像拍摄到所述晶线。
本领域技术人员应理解,由于生成的单晶硅棒为近似的圆柱体,拍摄得到的该单晶硅棒生成图像为近似于圆形的图像,单晶硅棒上的晶线相较于该圆柱体为突出的部分。
采用本方案,能够通过该单晶硅棒的光圈图像,将该单晶硅棒的外沿拟合为一个圆环或圆弧,当图像中存在晶线时,晶线对应的位置会突出该拟合得到的圆环,因此,能够通过该光圈图像最外侧的像素点以及拟合得到的圆环确定该光圈图像中是否存在晶线。
可选地,所述方法包括:
获取放肩阶段的所述单晶硅棒的整体生成图像;
根据所述整体生成图像,确定所述预设测量区域。
由于拍摄点位相较于单晶硅棒所在的位置是固定的,不同拍摄位置的单晶硅棒的清晰程度有较大的区别,为了获取得到更容易进行处理的单晶 硅棒生成图像,采用本方案,通过单晶硅棒的整体生成图像,确定该相机能够拍摄到的更为清晰的单晶硅棒的图像的区域,并根据该整体生成图像标定相机拍摄的预设测量区域,能够更准确的基于拍摄到的图像确定该图像中是否存在晶线,使得晶线是否断裂的判断更加准确。
可选地,所述方法包括:
根据所述单晶硅棒的转速以及所述预设周期,确定所述晶转规律。
其中,由于在单晶硅棒的生成过程中,工作人员可能会实时地对单晶硅棒的转速晶线调节,此时,晶转规律也会改变,采用本方案,能够及时地根据单晶硅棒的转速以及拍摄周期对该晶转规律进行调节,避免判断失误导致生产流程出错浪费人力物力。
为了使得本领域技术人员更理解本公开提供的技术方案,本公开实施例提供如图2所示的一种放肩断线检测方法的另一流程图,如图2所示,该方法包括步骤:
S201、获取单晶硅棒的整体生成图像。
该整体生成图像可以是如图3中3A图像所示的图像。
S202、根据该整体生成图像执行图像伽马变换,得到整体光圈图像。
该整体光圈图像可以是如图3中的3B图像所示的图像。可以通过图像3A以及3B看出,执行图像伽马变换后的图像的对比度存在明显的增加,使得计算机对图像处理时更明确的区分边界,提高图像处理效果。
S203、根据该整体光圈图像,确定预设测量区域。
该预设测量区域可以是整体光圈图像3B的右侧八份之一圆弧,在该右侧八份之一圆弧处的图像的清晰程度相较于整体光圈图像的其他部分可以更高,以便于之后步骤的进一步处理,降低图像处理难度。如图3中的3C图像所示,该3C图像中可以清晰的看出光圈图像中存在突出的部分,该突出的部分即为晶线的图像。
本领域技术人员应理解,步骤S201至步骤S203可以是预先执行的,在实际应用本实施例中的方法时,可以不执行该步骤S201至步骤S203。
S204、按照预设周期拍摄单晶硅棒的预设测量区域的单晶硅棒生成图像。
S205、根据单晶硅棒的当前转速以及该预设周期确定晶转规律。
S206、根据晶转规律确定计数阈值。
S207、根据单晶硅棒生成图像执行图像伽马变换,得到当前周期的光圈图像。
S208、根据该光圈图像得到拟合圆环。
S209、根据该光圈图像以及拟合圆环,判断当前周期是否拍摄到晶线。
可以理解的是,计算机无法如同人眼一样直接对图像中的突出部分进行观测,因此,在步骤S208至步骤S209中,通过光圈图像拟合得到拟合圆环,使得计算机能够基于该光圈图像,准确的判断图像中是否存在晶线的图像。
在确定未拍摄到晶线的情况下,执行步骤S210以及步骤S212;在拍摄到晶线的情况下,执行步骤S211以及步骤S212。
S210、计数器的计数值加一。
S211、计数器的计数值归零。
S212、判断计数器的计数值是否大于计数阈值。
在确定计数值大于计数阈值的情况下,执行步骤S213;在确定计数值小于计数阈值的情况下,执行步骤S214。
S213、确定该单晶硅棒的晶线断裂,发送提示信息。
S214、确定该单晶硅棒的晶线还未断裂。并,返回步骤S204。
可以理解的是,在确定单晶硅棒生成的放肩过程完成时,该步骤S212仍未被执行的情况下,则可以停止该方法的执行。
基于相同的发明构思,图4是根据一示例性实施例示出的一种放肩断线检测装置40的框图,如图4所示,该装置40包括:
获取模块41,用于在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像;
确定模块42,用于根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。
可选地,所述确定模块42包括:
图像增强模块,用于对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像;
第一确定子模块,用于根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断裂。
可选地,所述图像增强模块具体用于:
对所述单晶硅棒生成图像执行图像伽马变换,得到所述光圈图像。
可选地,所述第一确定子模块具体用于:
根据所述晶转规律,确定计数阈值;
根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线;
在确定未拍摄到所述晶线的情况下,计数器的计数数值加一;
在确定拍摄到所述晶线的情况下,所述计数器的计数值归零;
在确定所述计数器的计数数值大于所述计数阈值的情况下,确定所述单晶硅棒的晶线断裂。
可选地,所述第一确定子模块还具体用于:
根据所述光圈图像,拟合得到对应所述光圈图像的拟合圆环;
确定所述光圈图像最外侧的像素点所在的位置;
在所述像素点处于所述拟合圆环的内侧,或者所述像素点与所述拟合圆环相重叠的情况下,确定所述单晶硅棒生成图像未拍摄到所述晶线;
在所述像素点处于所述拟合圆环的外侧的情况下,确定所述单晶硅棒生成图像拍摄到所述晶线。
可选地,所述装置40包括:
第二获取模块,用于获取放肩阶段的所述单晶硅棒的整体生成图像;
第二确定模块,用于根据所述整体生成图像,确定所述预设测量区域。
可选地,所述装置40包括:
第三确定模块,用于根据所述单晶硅棒的转速以及所述预设周期,确定所述晶转规律。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在 有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图5是根据一示例性实施例示出的一种电子设备500的框图。如图5所示,该电子设备500可以包括:处理器501,存储器502。该电子设备500还可以包括多媒体组件503,输入/输出(I/O)接口504,以及通信组件505中的一者或多者。
其中,处理器501用于控制该电子设备500的整体操作,以完成上述的放肩断线检测方法中的全部或部分步骤。存储器502用于存储各种类型的数据以支持在该电子设备500的操作,这些数据例如可以包括用于在该电子设备500上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如整体生成图像、单晶硅棒生成图像、计数值、预设周期、晶转规律等等。该存储器502可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件503可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器502或通过通信组件505发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口504为处理器501和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件505用于该电子设备500与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件505可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备500可以被一个或多个应用专用集成电 路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的放肩断线检测方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的放肩断线检测方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器502,上述程序指令可由电子设备500的处理器501执行以完成上述的放肩断线检测方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的放肩断线检测方法的代码部分。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括处理器501和以存储器502形式的计算机程序产品或者计算机可读介质。存储器502可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器502具有用于执行上述方法中的任何方法步骤的程序代码的存储空间。例如,用于程序代码的存储空间可以包括分别用于实现上面的方法中的各种步骤的各个程序代码。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为便携式或者固定存储单元。该存储单元可以具有与图5的计算处理设备中的存储器502类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码,即可以由例如诸如501之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并 未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种放肩断线检测方法,其特征在于,所述方法包括:
    在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像;
    根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂包括:
    对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像;
    根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断裂。
  3. 根据权利要求2所述的方法,其特征在于,所述对所述单晶硅棒生成图像进行图像增强处理,得到对应所述单晶硅棒生成图像的光圈图像包括:
    对所述单晶硅棒生成图像执行图像伽马变换,得到所述光圈图像。
  4. 根据权利要求2述的方法,其特征在于,所述根据所述光圈图像以及所述晶转规律,确定所述单晶硅棒的晶线是否断裂包括:
    根据所述晶转规律,确定计数阈值;
    根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线;
    在确定未拍摄到所述晶线的情况下,计数器的计数数值加一;
    在确定拍摄到所述晶线的情况下,所述计数器的计数值归零;
    在确定所述计数器的计数数值大于所述计数阈值的情况下,确定所述单晶硅棒的晶线断裂。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述光圈图像,确定在对应所述光圈图像的拍摄周期获取到的所述单晶硅棒生成图像是否拍摄到所述晶线包括:
    根据所述光圈图像,拟合得到对应所述光圈图像的拟合圆环;
    确定所述光圈图像最外侧的像素点所在的位置;
    在所述像素点处于所述拟合圆环的内侧,或者所述像素点与所述拟合圆环相重叠的情况下,确定所述单晶硅棒生成图像未拍摄到所述晶线;
    在所述像素点处于所述拟合圆环的外侧的情况下,确定所述单晶硅棒生成图像拍摄到所述晶线。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法包括:
    获取放肩阶段的所述单晶硅棒的整体生成图像;
    根据所述整体生成图像,确定所述预设测量区域。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法包括:
    根据所述单晶硅棒的转速以及所述预设周期,确定所述晶转规律。
  8. 一种放肩断线检测装置,其特征在于,所述装置包括:
    获取模块,用于在通过单晶硅直拉法生成单晶硅棒的过程中,按照预设的拍摄周期获取放肩阶段在预设测量区域内的单晶硅棒生成图像;
    确定模块,用于根据所述单晶硅棒生成图像以及所述单晶硅棒的晶转规律,确定所述单晶硅棒的晶线是否断裂。
  9. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-7中任一项所述方法的步骤。
  10. 一种电子设备,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-7中任一项所述方法的步骤。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-7中的任一个所述的放肩断线检测方法。
PCT/CN2022/104445 2021-10-29 2022-07-07 放肩断线检测方法、装置、存储介质及电子设备 WO2023071288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111273039.7 2021-10-29
CN202111273039.7A CN116071285A (zh) 2021-10-29 2021-10-29 放肩断线检测方法、装置、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2023071288A1 true WO2023071288A1 (zh) 2023-05-04

Family

ID=86158970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104445 WO2023071288A1 (zh) 2021-10-29 2022-07-07 放肩断线检测方法、装置、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN116071285A (zh)
WO (1) WO2023071288A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117350984A (zh) * 2023-10-23 2024-01-05 保定景欣电气有限公司 一种单晶硅放肩开叉的检测方法及装置
CN117372377A (zh) * 2023-10-23 2024-01-09 保定景欣电气有限公司 一种单晶硅棱线的断线检测方法、装置及电子设备
CN117372377B (zh) * 2023-10-23 2024-05-31 保定景欣电气有限公司 一种单晶硅棱线的断线检测方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787353A (zh) * 2012-08-15 2012-11-21 北京七星华创电子股份有限公司 单晶炉非接触式硅棒晶线测量方法
JP2017039628A (ja) * 2015-08-21 2017-02-23 株式会社Sumco 単結晶の製造方法および製造装置
CN108691045A (zh) * 2018-08-29 2018-10-23 山英智能科技(桐乡)有限公司 一种基于视觉检测的细纱断纱检测装置及其方法
CN111218714A (zh) * 2018-11-26 2020-06-02 隆基绿能科技股份有限公司 一种断线测量方法、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787353A (zh) * 2012-08-15 2012-11-21 北京七星华创电子股份有限公司 单晶炉非接触式硅棒晶线测量方法
JP2017039628A (ja) * 2015-08-21 2017-02-23 株式会社Sumco 単結晶の製造方法および製造装置
CN108691045A (zh) * 2018-08-29 2018-10-23 山英智能科技(桐乡)有限公司 一种基于视觉检测的细纱断纱检测装置及其方法
CN111218714A (zh) * 2018-11-26 2020-06-02 隆基绿能科技股份有限公司 一种断线测量方法、设备及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117350984A (zh) * 2023-10-23 2024-01-05 保定景欣电气有限公司 一种单晶硅放肩开叉的检测方法及装置
CN117372377A (zh) * 2023-10-23 2024-01-09 保定景欣电气有限公司 一种单晶硅棱线的断线检测方法、装置及电子设备
CN117350984B (zh) * 2023-10-23 2024-05-28 保定景欣电气有限公司 一种单晶硅放肩开叉的检测方法及装置
CN117372377B (zh) * 2023-10-23 2024-05-31 保定景欣电气有限公司 一种单晶硅棱线的断线检测方法、装置及电子设备

Also Published As

Publication number Publication date
CN116071285A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
JP6156163B2 (ja) 画像処理装置及び画像処理方法
CA2845950C (en) System and method of audio information display on video playback timeline
WO2017076026A1 (zh) 一种更换应用图标的方法和装置
US10158798B2 (en) Imaging apparatus and method of controlling the same
WO2023071288A1 (zh) 放肩断线检测方法、装置、存储介质及电子设备
WO2018223394A1 (zh) 一种图像拍摄方法及装置
WO2021042638A1 (zh) 投影仪振镜测试目标图的提取方法、装置及电子设备
JP2015141333A (ja) 画像処理装置、画像処理方法、表示装置、表示装置の制御方法、及び、プログラム
CN108833781B (zh) 图像预览方法、装置、终端及计算机可读存储介质
WO2019080543A1 (zh) 高动态范围视频拍摄方法及拍摄装置
CN111523384A (zh) 一种基于视觉的会议防偷拍方法、装置、存储介质及终端
TW201013205A (en) Defective pixel detection and correction devices, systems, and methods for detecting and correcting defective pixel
JP2016178406A (ja) 撮像装置、録画装置および映像出力制御装置
CN109951635A (zh) 拍照处理方法、装置、移动终端以及存储介质
US20150109408A1 (en) System and method for capturing and rendering a landscape image or video
WO2021135683A1 (zh) 一种显示终端调整方法及显示终端
JP2021505086A (ja) 画像処理方法および画像処理装置、コンピュータ可読記憶媒体ならびにコンピュータ機器
JP2011019177A (ja) 被写体位置特定用プログラム、およびカメラ
JP2014042160A (ja) 表示端末、動体検知の対象領域の設定方法及びプログラム
WO2018133101A1 (zh) 图像前景检测装置及方法、电子设备
CN108174173B (zh) 拍摄方法及装置、计算机可读存储介质和计算机设备
JP6230386B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2013020602A (ja) 動き画像領域判定装置またはその方法
US10440260B2 (en) Display control apparatus to enable a user to check a captured image after image processing
CN113112495A (zh) 一种异常图像处理方法、装置、热成像设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885193

Country of ref document: EP

Kind code of ref document: A1