WO2023071287A1 - 通过多角度打光拍摄生成材质贴图的方法及电子装置 - Google Patents

通过多角度打光拍摄生成材质贴图的方法及电子装置 Download PDF

Info

Publication number
WO2023071287A1
WO2023071287A1 PCT/CN2022/104361 CN2022104361W WO2023071287A1 WO 2023071287 A1 WO2023071287 A1 WO 2023071287A1 CN 2022104361 W CN2022104361 W CN 2022104361W WO 2023071287 A1 WO2023071287 A1 WO 2023071287A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
pixel
light source
picture
color
Prior art date
Application number
PCT/CN2022/104361
Other languages
English (en)
French (fr)
Inventor
骆立康
田唐昊
刘郴
Original Assignee
浙江凌迪数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江凌迪数字科技有限公司 filed Critical 浙江凌迪数字科技有限公司
Priority to EP22885192.9A priority Critical patent/EP4290460A1/en
Publication of WO2023071287A1 publication Critical patent/WO2023071287A1/zh
Priority to US18/371,271 priority patent/US20240015408A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/841Camera processing pipelines; Components thereof for processing colour signals to modify gamut
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/04Combinations of cameras with non-electronic flash apparatus; Non-electronic flash units
    • G03B15/041Separatable flash apparatus; Means for mounting the flash apparatus on the photographic apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/06Special arrangements of screening, diffusing, or reflecting devices, e.g. in studio
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/86Camera processing pipelines; Components thereof for processing colour signals for controlling the colour saturation of colour signals, e.g. automatic chroma control circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the invention relates to the field of computer graphics, in particular to a method, a storage medium and an electronic device for generating texture maps through multi-angle lighting and photography.
  • the patent specification with the notification number CN 105262927 B discloses a FSM3D fabric high-definition scanner, which consists of a chassis top cover, a SLR camera, a chassis frame, chassis side panels, a push-pull drawer for placing scanned fabrics, and a plug-in scanner control host.
  • the frame of the chassis is equipped with six groups of LED light sources and cold light source.
  • the 3D material map combination file generated and output by this patented technology includes diffuse reflection map, normal map, displacement map, specular map and transparency map.
  • the patent specification with the notification number CN 107146264 B discloses a method for extracting the geometric and physical properties of the material surface, including the following steps: Step 1, build a shooting environment; Step 2, take pictures for light compensation; Step 3, take pictures Material picture; step 4, calculate the geometric surface shape of the material surface; step 5, calculate the diffuse reflection coefficient of the material surface; step 6, calculate the specular reflection coefficient of the material surface; step 7, calculate the displacement information of the material surface; step 8, calculate The transparency value of the material.
  • the required maps mainly include basic color maps, normal maps, metallic maps, roughness maps, and transparency maps.
  • the existing material scanning technology mainly uses image processing methods to obtain its material texture by superimposing, subtracting, inverting, blurring and filtering the photos of the material under different lighting conditions.
  • the present invention provides a method for generating texture maps through multi-angle lighting shooting, which can generate high-quality basic color maps, normal maps, metallic maps, and roughness maps. Maps and transparency maps, especially useful for PBR rendering.
  • a method for generating texture maps through multi-angle lighting shooting comprising steps:
  • the multi-angle lighting shooting environment includes a box body, a test platform, a shooting device and a detachable multi-angle light source are arranged inside the box body, the shooting device is arranged directly above the test platform, and the multi-angle light source is located below the shooting device, for
  • the test platform is irradiated at different angles, including a top light source, an upper light source, a lower light source and a bottom light source as a backlight arranged in sequence from top to bottom, and the top light source, the upper light source and the lower light source are located above the test platform; the top light source, The upper light source, the lower light source and the bottom light source are respectively independently composed of at least one set of lamps;
  • the correction matrix generates the image of the object to be scanned after color correction, and compares the R (red), G (green), and B (blue) values of each pixel in the image of the object to be scanned after color correction with the light generated by the corresponding pixel in the same lighting direction.
  • the strong correction coefficients are multiplied together to generate the final correction picture for the lighting direction;
  • the detachable multi-angle light source can be quickly repaired and replaced when the light source is abnormal.
  • the top light source is a light source plate, on which a through hole and/or a transparent area (transparent material such as glass can be used) is provided for the shooting light path of the shooting device to pass through and/or pass through.
  • the top light source directly facing or equivalently facing the test platform can be composed of one or more LED lights.
  • the present invention uses a whole light source board as the top plate, so that the light source is more uniform, and the simulation effect can be effectively improved.
  • the upper light source includes a plurality of sets of upper lamps that are circumferentially arranged on the inner wall of the box close to the top and can be tilted toward the test platform.
  • the lower light source includes multiple sets of lower lights circumferentially arranged on the inner wall of the box near the bottom.
  • the invention divides the side light source into upper and lower groups of lamps, can provide more illumination angles, increase simulation samples, and improve simulation accuracy.
  • said lower light is perpendicular to the test platform or obliquely downwards towards the test platform.
  • the installation method of the bottom light source is embedded in the test platform, or arranged under the test platform, or a combination of the above methods.
  • the top light source, the upper light source and the lower light source are all equipped with uniform light sheets, which can make the light distribution more uniform, and the effect is better when shooting smooth objects.
  • the top light source and the bottom light source are respectively composed of one set of lamps, and the upper light source and the lower light source are respectively composed of at least four sets of lamps.
  • the rich design of the multi-angle light source of the present invention can provide more simulation samples and improve the simulation accuracy.
  • step 3 the R, G, and B values of each pixel of the white paper image after color correction are divided by 225 to obtain light intensity correction coefficients corresponding to the R, G, and B values of each pixel in the lighting direction.
  • step 6) specifically includes:
  • step 5 the R, G, B value summation of the same position pixel of each corrected picture, get the pixel of this position on the corrected picture corresponding to the second smallest number of R, G, B value summation as described basic color map The base color of the corresponding position;
  • step 7) specifically includes:
  • step 8 for any position pixel on the metalness map, the metalness calculation is performed as follows:
  • condition I the sum of R, G, and B values is less than 390, the metalness of the pixel at this position on the metalness map is 0;
  • step 5 the R, G, B value of the pixel at the same position on each corrected picture is subtracted from the R, G, B value of the pixel at the position on the basic color map to obtain R, G ,
  • the maximum difference r, g, b of the respective channels of B, calculate the degree of deviation deviation:
  • the metalness of the pixel at this position on the metalness map is still 0;
  • step 9) specifically includes the steps of:
  • Pixel P xy brightness Lumin R xy *0.299+G xy *0.587+B xy *0.114, R xy , G xy , B xy represent R, G, B values of pixel P xy respectively;
  • the transparency alpha is calculated as follows:
  • C d represents the color of this position pixel on the picture ImageAlpha0
  • C e represents the color of this position pixel on the picture ImageAlpha1
  • C 0 represents the color of this position pixel on the picture ImageBlend0
  • C 1 represents the color of this position pixel on the picture ImageBlend1;
  • the present invention also provides a storage medium, wherein a computer program is stored in the storage medium, wherein the computer program is configured to execute the method for generating a texture map by multi-angle lighting and shooting when running.
  • the present invention also provides an electronic device, including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to execute the method of generating texture maps through multi-angle lighting photography. Methods.
  • the present invention has main advantages including:
  • the present invention performs calculations based on the principle of PBR (Physical-Based Rendering), and has a complete range of map generation, which is applicable to most of the current popular rendering systems, and the calculation is simple, and the map generation speed is fast.
  • PBR Physical-Based Rendering
  • the present invention uses the method of making a difference between the image color and the basic color, which maximizes the elimination of the influence of the object's own color on the calculation of the texture properties, the calculation of roughness and metallicity is more accurate, and the quality of the generated texture is higher.
  • Fig. 1 is a schematic diagram of the overall structure of the multi-angle lighting shooting environment of the embodiment
  • FIG. 2 is a schematic diagram of the internal structure of the multi-angle lighting shooting environment of the embodiment
  • FIG. 3 is a correction picture generated by shooting objects to be scanned in the method for generating texture maps by shooting from multiple angles according to an embodiment
  • FIG. 4 is a difference image between a correction image generated by an object to be scanned and a basic color map in the method for generating a texture map through multi-angle lighting shooting according to an embodiment
  • 5 is a basic color map, a roughness map, a metalness map, a normal map and a transparency map generated by the method for generating a texture map through multi-angle lighting shooting according to an embodiment
  • the multi-angle lighting shooting environment includes a cabinet 10 .
  • the light-absorbing material inside the cabinet 10 reduces the reflection of light.
  • the length and width of the cabinet 10 are about 60 cm, and the height is about 45 cm.
  • a main control board 7 , a test platform 5 , a photographing device 6 and a detachable multi-angle light source 14 are arranged inside the box body 10 .
  • the shooting device 6 is located directly above the test platform 5 and is located at the center of the top of the box body 10 to shoot directly below. It can be composed of one or more single-lens reflex cameras or cameras, and is used to shoot objects on the test platform 5 illuminated by lights at different angles. photos below.
  • the multi-angle light source 14 is located below the photographing device 6, and is used to irradiate the test platform 5 from different angles, including a top light source, an upper light source, a lower light source and a bottom light source as a backlight arranged sequentially from top to bottom, the top light source, the upper light source and the lower light source are located above the test platform 5 .
  • the top light source is a square light source board 3
  • the light source board 3 is an LED lamp that emits light as a whole, and a through hole is provided on it for the shooting light path of the shooting device 6 to pass through and/or pass through.
  • top to represent the picture obtained by illuminating light from the light source board 3 .
  • the upper light source includes four groups of rectangular upper LED lamps 1-2 that are circumferentially arranged on the four inner side walls of the box body 10 near the top and can be tilted toward the test platform 5 to illuminate.
  • the angle of inclination of the upper LED lamp 1-2 is adjustable, such as 45 ° of inclination toward the test platform 5 lighting.
  • the pictures taken by the 4 groups of upper LED lights 1-2 are respectively named upfront (the picture taken by the light at the upper front position as the light source), upback (the picture taken by the light at the upper and rear position as the light source) , upleft (the picture taken by the light at the upper left position as the light source), upright (the picture taken by the light at the upper right position as the light source).
  • the lower light source includes four groups of rectangular lower LED lamps 1-1 arranged circumferentially around the four inner side walls of the box body 10 near the bottom and perpendicular to the test platform 5.
  • the four groups of lower LED lamps 1-1 are respectively turned on.
  • the pictures taken by light are respectively named downfront (the picture taken by the light at the lower front position as the light source), downback (the picture taken by the light at the lower back position as the light source), downleft (the light at the lower left position is the light source).
  • the picture obtained by shooting), downright (the light at the lower right position is the picture taken by the light source).
  • the bottom light source is a luminescent sheet light source, specifically a group of bottom LED lights 4, which are installed in the way of being embedded in the test platform 5 to illuminate the object to be photographed placed on the test platform 5 upwards.
  • the EL film has stronger penetrability and is suitable for calculating transparency maps.
  • the top light source, the upper light source and the lower light source are all equipped with uniform light sheets.
  • the main control board 7 can control all LED lamps in the multi-angle light source 14 to independently adjust brightness and switch.
  • One side of the box body 10 is a door 11 that can be opened and closed, and a sensor 13 is provided on the side corresponding to the door 11 for feedbacking the opening and closing state of the door 11 .
  • the whole side is set as the door 11.
  • the test platform 5 is completely exposed in front of the operator, fully providing a spacious operating space for placing and organizing the objects to be photographed; when the door 11 is closed, a complete test can be provided environment. If the operator has a misoperation of not closing the door 11 or closing the door 11 completely during the operation, the sensor 13 will remind the operator to perform the door closing operation after detection.
  • the top surface of the box body 10 is an openable upper cover 12 .
  • the upper cover 12 When the upper cover 12 is closed, it provides physical protection for the photographing device 6 to prevent damage; when the upper cover 12 is opened, it provides convenience for the replacement and maintenance of the photographing device 6 .
  • the multi-angle lighting shooting environment of this embodiment has an open test platform 5 with a large operating space, which ensures that the placement state of the object to be photographed is consistent with the final shooting state, and improves the authenticity of the collected data.
  • the multi-angle light source 14 includes 8-directional side LED lights + bottom LED lights + top LED lights layout, which can take a total of 10 sets of sample photos and provide 10 sets of simulation samples to improve simulation accuracy.
  • a color comparison card is placed on the test platform 5, and the color comparison card is always photographed with only one group of lights turned on, and all lower light sources, upper light sources and top light sources are traversed, and the pictures obtained are all generated using a standard color calibration program The color correction matrix corresponding to the lighting direction.
  • Steps 2) and 3) only need to be performed when the device is used for the first time.
  • the color correction matrix and light intensity correction coefficient can be reused. Color correction can obtain more accurate color expression, and light intensity correction can offset the distance and angle of the light source The effect on the reflection strength of the object.
  • the correction matrix generates the image of the object to be scanned after color correction, and multiplies the R, G, and B values of each pixel in the image of the object to be scanned after color correction by the light intensity correction coefficient generated by the corresponding pixel in the same lighting direction to generate the lighting
  • the final corrected picture of the direction; the final corrected picture of the nine lighting directions is shown in Figure 3, the picture after color correction + light intensity correction, the diffuse reflection is evenly distributed, and the color is more restored.
  • step 5 the R, G, B value summation of the same position pixel of each corrected picture, get the pixel of this position on the corrected picture corresponding to the second smallest number of R, G, B value summation as described basic color map
  • Respectively step 5 R, G, B value of the pixel at the same position on each corrected picture are subtracted from the R, G, B value of the pixel at the position on the basic color map (9 difference maps can be obtained, as shown in Figure 4 As shown, the data after the difference is visualized and the highlight information is captured), the obtained difference value ⁇ 0 is recorded as 10, and the rest remain unchanged, and then the variance and range are calculated for all the differences, and the roughness map is in The roughness of the corresponding position is calculated as follows:
  • the metalness calculation is performed as follows:
  • condition I the sum of R, G, and B values is less than 390, the metalness of the pixel at this position on the metalness map is 0;
  • step 5 the R, G, B value of the pixel at the same position on each corrected picture is subtracted from the R, G, B value of the pixel at the position on the basic color map (9 can be obtained)
  • the difference map as shown in Figure 4, visualizes the data after the difference, captures the highlight information), and obtains the maximum difference r, g, and b of the respective channels of R, G, and B, and calculates the degree of deviation:
  • the metalness of the pixel at this position on the metalness map is still 0;
  • Pixel P xy brightness Lumin R xy *0.299+G xy *0.587+B xy *0.114, R xy , G xy , B xy represent R, G, B values of pixel P xy respectively;
  • the transparency alpha is calculated as follows:
  • C d represents the color of this position pixel on the picture ImageAlpha0
  • C e represents the color of this position pixel on the picture ImageAlpha1
  • C 0 represents the color of this position pixel on the picture ImageBlend0
  • C 1 represents the color of this position pixel on the picture ImageBlend1;
  • the high-quality basic color map, normal map, metalness map, roughness map and transparency map generated by the method of generating texture maps by multi-angle lighting shooting in this embodiment are shown in FIG. 5 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Image Processing (AREA)

Abstract

一种通过多角度打光拍摄生成材质贴图的方法、存储介质及电子装置,涉及计算机图形学领域。所述方法包括:构建多角度光照拍摄环境;拍摄比色卡生成颜色校正矩阵;拍摄白纸生成光强校正系数;拍摄用于透明度计算的校正图片;拍摄待扫描物进行颜色校正、光强校正,拍摄待扫描物的无背光图片、有背光图片;生成基础颜色贴图、法线贴图、金属度贴图、粗糙度贴图和透明度贴图。所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行上述方法。所述电子装置包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述方法。

Description

通过多角度打光拍摄生成材质贴图的方法及电子装置 技术领域
本发明涉及计算机图形学领域,具体涉及一种通过多角度打光拍摄生成材质贴图的方法、存储介质及电子装置。
背景技术
公告号为CN 105262927 B的专利说明书公开了一种FSM3D面料高清扫描仪,其由机箱上盖、单反相机、机箱骨架、机箱侧板、放置扫描面料推拉式抽屉和拔插式扫描仪控制主机组成,机箱骨架设有六组LED光源和冷光片光源。该专利技术生成输出的3D材质贴图组合文件包含的是漫反射贴图、法线贴图、置换贴图,高光贴图、透明度贴图。
公告号为CN 107146264 B的专利说明书公开了一种提取材质表面几何和光照物理属性的方法,包括以下步骤:步骤1,搭建拍摄环境;步骤2,拍摄用于光线补偿的图片;步骤3,拍摄材质图片;步骤4,计算材质表面的几何曲面形状;步骤5,计算材质表面的漫反射系数;步骤6,计算材质表面的镜面反射系数;步骤7,计算材质表面的置换信息;步骤8,计算材质的透明度值。
随着渲染技术的发展和高质量建模需求的增长,越来越多的3D应用开始支持基于物理渲染(Physically Based Rendering,PBR)的技术,而真实的渲染结果需要高质量材质贴图的支持。对于典型的PBR渲染系统,其所需的贴图主要包括基础颜色贴图、法线贴图、金属度贴图、粗糙度贴图和透明度贴图。现有材质扫描技术主要使用图像处理方法,通过对材质在不同光照条件下的照片进行叠加、相减、反色、模糊和滤波等操作获得其材质贴图,现有方法的主要不足之处在于:
1、受材质本身颜色的干扰,生成的贴图有按颜色划分的倾向;
2、对高光的分析不足,表现为金属度和粗糙度不够准确;
3、生成的贴图种类不全或不对,无法适配高质量的PBR渲染系统。
发明内容
针对上述技术问题以及本领域存在的不足之处,本发明提供了一种通过多角度打光拍摄生成材质贴图的方法,可生成高质量的基础颜色贴图、法线贴图、金属度贴图、粗糙度贴图和透明度贴图,特别适用于PBR渲染。
一种通过多角度打光拍摄生成材质贴图的方法,包括步骤:
1)构建多角度光照拍摄环境;
所述多角度光照拍摄环境包括箱体,箱体内部设有测试平台、拍摄设备和可拆卸的多角度光源,拍摄设备设于测试平台的正上方,多角度光源位于拍摄设备下方,用于从不同角度照射测试平台,包括自上而下依次布置的顶部光源、上部光源、下部光源和作为背光的底部光源,所述顶部光源、上部光源和下部光源位于测试平台的上方;所述顶部光源、上部光源、下部光源和底部光源分别独立由至少一组灯组成;
2)测试平台上放置比色卡,始终保持在仅打开一组灯的情况下拍摄所述比色卡,遍历所有下部光源、上部光源和顶部光源,拍摄所得图片都使用标准校色程序生成对应打光方向的颜色校正矩阵;
3)测试平台上放置平整的白纸,始终保持在仅打开一组灯的情况下拍摄所述白纸,遍历所有下部光源、上部光源和顶部光源;对于任一打光方向拍摄得到的白纸图片,应用相同打光方向的颜色校正矩阵生成校色后的白纸图片,进一步处理生成对应打光方向的光强校正系数;
4)测试平台上不放置任何物品,拍摄用于透明度计算的校正图片:打开所有下部光源,拍摄得到无背光图片ImageAlpha0;打开所有底部光源和下部光源,拍摄得到有背光图片ImageAlpha1;
5)测试平台上放置待扫描物;
始终保持在仅打开一组灯的情况下拍摄所述待扫描物,遍历所有下部光源、上部光源和顶部光源;对于任一打光方向拍摄得到的待扫描物图片,应用相同打光方向的颜色校正矩阵生成校色后的待扫描物图片,将校色后的待扫描物图片各个像素的R(红色)、G(绿色)、B(蓝色)值与对应像素在相同打光方向生成的光强校正系数相乘,生成该打光方向最终的校正图片;
打开所有下部光源,拍摄所述待扫描物得到无背光图片ImageBlend0;
打开所有底部光源和下部光源,拍摄所述待扫描物得到有背光图片ImageBlend1;
6)生成基础颜色贴图;
7)生成粗糙度贴图;
8)生成金属度贴图;
9)生成法线贴图;
10)生成透明度贴图。
所述多角度光照拍摄环境中,可拆卸的多角度光源可在光源出现异常时,进行快速维修和更换。
本发明所述的通过多角度打光拍摄生成材质贴图的方法,具体可采用以下优选技术方案:
步骤1)中:
所述顶部光源为光源板,其上设有通孔和/或透明区域(可采用玻璃等透明材质)以供拍摄设备的拍摄光路穿过和/或透过。所述顶部光源正对或等效正对测试平台,可以由一个或多个LED灯组成。相比于多条灯带或多组灯组合布置,本发明将一整块光源板作为顶板,光源更均匀,可以有效提升仿真效果。
所述上部光源包括周向环绕布置在箱体内侧壁靠近顶部处、可倾斜朝测试平台打光的多组上部灯。
所述下部光源包括周向环绕布置在箱体内侧壁靠近底部处的多组下部灯。
本发明将侧向光源分成上下两组灯,可以提供更多光照角度,增加仿真样本,提高仿真精度。
优选地,所述下部灯垂直于测试平台或斜向下朝向测试平台。
所述底部光源的安装方式为嵌入测试平台内,或设于测试平台的下方,或上述几种方式的组合。
所述顶部光源、上部光源和下部光源均安装有匀光片,可以使光线分布更均匀,在拍摄光滑物体时效果更好。
进一步优选,所述顶部光源、底部光源分别由一组灯组成,所述上部光源、下部光源分别由至少四组灯组成。本发明多角度光源的丰富设计,可提供更多的仿真样本,提高仿真精度。
作为优选,步骤3)中,将校色后的白纸图片每个像素的R、G、B值除以225,获得对应打光方向下每个像素R、G、B值的光强校正系数。
在一优选例中,步骤6)具体包括:
分别对步骤5)各校正图片同一位置像素的R、G、B值求和,取R、G、B值总和第二小的数所对应的校正图片上该位置的像素作为所述基础颜色贴图相应位置的基础颜色;
遍历计算所有位置像素,生成所述基础颜色贴图。
在一优选例中,步骤7)具体包括:
分别将步骤5)各校正图片上同一位置像素的R、G、B值与所述基础颜色贴图上该位置像素的R、G、B值相减,所得差值≤0的记为10,其余不变,然后对所有差值进行方差variance和极差range的计算,所述粗糙度贴图在相应位置的粗糙度roughness按下式计算:
roughness=6.5*variance–0.3*range;
遍历计算所有位置像素,生成所述粗糙度贴图。
在一优选例中,步骤8)中,对于所述金属度贴图上任一位置像素,按以下方法进行金属度计算:
首先对所述基础颜色贴图上该位置像素的R、G、B值求和;
若满足条件I:R、G、B值总和小于390,则所述金属度贴图上该位置像素的金属度为0;
若不满足条件I,则分别将步骤5)各校正图片上同一位置像素的R、G、B值与所述基础颜色贴图上该位置像素的R、G、B值相减,得到R、G、B各自通道的最大差值r、g、b,计算偏离程度deviation:
deviation=|r-g|+|g-b|;
此时若满足条件II:r、g、b之和小于300且偏离程度deviation小于30,则所述金属度贴图上该位置像素的金属度仍为0;
若既不满足条件I,也不满足条件II,则将r、g、b之和除以2作为所述金属度贴图上该位置像素的金属度;
遍历计算所有位置像素,生成所述金属度贴图。
在一优选例中,步骤9)具体包括步骤:
9-1)将步骤5)中对应下部光源打光的所有校正图片转换为灰度图,施加D 0=20、n=2的Butterworth高通滤波以去除光场不均衡、阴影和基 础颜色的影响,并将所有像素的R、G、B值线性映射为0至255,做对比度增强;
9-2)以测试平台中心为原点建立三维坐标系,对于经过步骤9-1)处理的任一校正图片及其上的任一位置像素P xy,x、y代表该图片所在平面的二维坐标,该图片的中心位置设为O,该图片对应打光方向的光源中心位置设为P i,则灯光入射方向V=(O-P i)+0.2*(P xy-P i);
像素P xy亮度Lumin=R xy*0.299+G xy*0.587+B xy*0.114,R xy、G xy、B xy分别代表像素P xy的R、G、B值;
分别将经过步骤9-1)处理的校正图片的同一位置像素亮度Lumin和对应的灯光入射方向V相乘然后求和,得到该位置像素的法线值;
遍历计算所有位置像素,生成法线贴图。
在一优选例中,步骤10)中,对于所述透明度贴图上任一位置像素,按以下方法进行透明度alpha计算:
Figure PCTCN2022104361-appb-000001
其中,C d代表图片ImageAlpha0上该位置像素的颜色,C e代表图片ImageAlpha1上该位置像素的颜色,C 0代表图片ImageBlend0上该位置像素的颜色,C 1代表图片ImageBlend1上该位置像素的颜色;
遍历计算所有位置像素,生成所述透明度贴图。
本发明还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述通过多角度打光拍摄生成材质贴图的方法。
本发明还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述通过多角度打光拍摄生成材质贴图的方法。
本发明与现有技术相比,主要优点包括:
1、本发明基于PBR(基于物理的渲染)原理进行计算,贴图生成种类齐全,适用于绝大部分当前流行的渲染系统,并且计算简单,贴图生成速度快。
2、本发明使用图像颜色与基础颜色做差的方法,最大化的消除了物体本身颜色对于贴图属性计算的影响,粗糙度和金属度计算更加准确,生 成的贴图质量更高。
附图说明
图1为实施例的多角度光照拍摄环境的整体结构示意图;
图2为实施例的多角度光照拍摄环境的内部结构示意图;
图3为实施例的通过多角度打光拍摄生成材质贴图的方法中拍摄待扫描物生成的校正图片;
图4为实施例的通过多角度打光拍摄生成材质贴图的方法中拍摄待扫描物生成的校正图片与基础颜色贴图的差值图片;
图5为实施例的通过多角度打光拍摄生成材质贴图的方法生成的基础颜色贴图、粗糙度贴图、金属度贴图、法线贴图和透明度贴图;
图中:
1-1、下部LED灯        1-2、上部LED灯         3、光源板
4、底部LED灯          5、测试平台            6、拍摄设备
7、主控板             10、箱体               11、门
12、上盖              13、感应器             14、多角度光源。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
本实施例的通过多角度打光拍摄生成材质贴图的方法,包括步骤:
1)构建多角度光照拍摄环境。
如图1、2所示,所述多角度光照拍摄环境包括箱体10。箱体10内部用吸光材质减少光线的反射,箱体10长、宽均为60cm左右,高度为45cm左右。
箱体10内部设有主控板7、测试平台5、拍摄设备6和可拆卸的多角度光源14。
拍摄设备6设于测试平台5的正上方且位于箱体10顶部中心位置朝正下方拍摄,可由1台或多台单反相机或摄像头组成,用于拍摄测试平台 5上的物品在不同角度灯光照射下的照片。
多角度光源14位于拍摄设备6下方,用于从不同角度照射测试平台5,包括自上而下依次布置的顶部光源、上部光源、下部光源和作为背光的底部光源,所述顶部光源、上部光源和下部光源位于测试平台5的上方。
所述顶部光源为正方形的光源板3,光源板3为整体发光的LED灯,其上设有通孔以供拍摄设备6的拍摄光路穿过和/或透过。定义top代表光源板3打光拍摄得到的图片。
所述上部光源包括周向环绕布置在箱体10的4个内侧壁靠近顶部处、可倾斜朝测试平台5打光的4组长方形的上部LED灯1-2。上部LED灯1-2的倾斜角度可调节,如可45°倾斜朝测试平台5打光。4组上部LED灯1-2各自分别打光拍摄得到的图片分别命名为upfront(位于上前位置的灯为光源拍摄得到的图片)、upback(位于上后位置的灯为光源拍摄得到的图片)、upleft(位于上左位置的灯为光源拍摄得到的图片)、upright(位于上右位置的灯为光源拍摄得到的图片)。
所述下部光源包括周向环绕布置在箱体10的4个内侧壁靠近底部处、垂直于测试平台5的4组长方形的下部LED灯1-1。4组下部LED灯1-1各自分别打光拍摄得到的图片分别命名为downfront(位于下前位置的灯为光源拍摄得到的图片)、downback(位于下后位置的灯为光源拍摄得到的图片)、downleft(位于下左位置的灯为光源拍摄得到的图片)、downright(位于下右位置的灯为光源拍摄得到的图片)。
所述底部光源为冷光片光源,具体为一组底部LED灯4,安装方式为嵌入测试平台5内可朝上照亮放置在测试平台5上的待拍摄物。冷光片的穿透性更强,适合计算透明图贴图。
所述顶部光源、上部光源和下部光源均安装有匀光片。
主控板7可控制多角度光源14中的所有LED灯分别独立进行亮度调节和开关。
箱体10的一个侧面为可开关的门11,且对应门11的侧面上设有感应器13,用于反馈门11的开关状态。将一整个侧面设置为门11,门11打开时,测试平台5完全暴露在操作人员面前,充分提供宽敞的用于待拍摄物放置和整理的操作空间;门11关闭时,可提供完整的测试环境。如操作人员在操作过程中存在未关门11或未将门11完全关死的误操作,感应 器13在检测到之后将提醒操作人员进行关门操作。
箱体10顶面为可开启的上盖12。上盖12关闭时,为拍摄设备6提供物理保护,防止损坏;上盖12打开时,为拍摄设备6更换和维护提供便利。
本实施例的多角度光照拍摄环境具有敞开式的测试平台5,操作空间大,保证待拍摄物的放置状态与最终拍摄状态一致,提升采集数据的真实性。多角度光源14包括8方向侧LED灯+底部LED灯+顶部LED灯布局,总共可拍摄10组样本照片,提供10组仿真样本,提升仿真精度。
2)测试平台5上放置比色卡,始终保持在仅打开一组灯的情况下拍摄所述比色卡,遍历所有下部光源、上部光源和顶部光源,拍摄所得图片都使用标准校色程序生成对应打光方向的颜色校正矩阵。
3)测试平台5上放置平整的白纸,始终保持在仅打开一组灯的情况下拍摄所述白纸,遍历所有下部光源、上部光源和顶部光源;对于任一打光方向拍摄得到的白纸图片,应用相同打光方向的颜色校正矩阵生成校色后的白纸图片,将校色后的白纸图片每个像素的R、G、B值除以225,获得对应打光方向下每个像素R、G、B值的光强校正系数。
步骤2)、3)只需在设备首次使用时执行,颜色校正矩阵和光强校正系数可以重复使用,进行颜色校正可以获得更加准确的颜色表达,进行光强校正则可以抵消光源的距离和角度对于物体反射强度的影响。
4)测试平台5上不放置任何物品,拍摄用于透明度计算的校正图片:打开所有下部光源,拍摄得到无背光图片ImageAlpha0;打开所有底部光源和下部光源,拍摄得到有背光图片ImageAlpha1。
5)测试平台5上放置待扫描物。
始终保持在仅打开一组灯的情况下拍摄所述待扫描物,遍历所有下部光源、上部光源和顶部光源;对于任一打光方向拍摄得到的待扫描物图片,应用相同打光方向的颜色校正矩阵生成校色后的待扫描物图片,将校色后的待扫描物图片各个像素的R、G、B值与对应像素在相同打光方向生成的光强校正系数相乘,生成该打光方向最终的校正图片;最终生成的9个打光方向的校正图片如图3所示,颜色校正+光强校正后的图片,漫反射分布均匀,颜色更加还原。
打开所有下部光源,拍摄所述待扫描物得到无背光图片ImageBlend0。
打开所有底部光源和下部光源,拍摄所述待扫描物得到有背光图片ImageBlend1。
6)生成基础颜色贴图,具体包括:
分别对步骤5)各校正图片同一位置像素的R、G、B值求和,取R、G、B值总和第二小的数所对应的校正图片上该位置的像素作为所述基础颜色贴图相应位置的基础颜色;取第二小的数的好处在于可以减轻阴影和高光对基础颜色的影响。
遍历计算所有位置像素,生成所述基础颜色贴图。
7)生成粗糙度贴图,具体包括:
分别将步骤5)各校正图片上同一位置像素的R、G、B值与所述基础颜色贴图上该位置像素的R、G、B值相减(可得到9个差值图,如图4所示,做差后的数据可视化,捕获高光信息),所得差值≤0的记为10,其余不变,然后对所有差值进行方差variance和极差range的计算,所述粗糙度贴图在相应位置的粗糙度roughness按下式计算:
roughness=6.5*variance–0.3*range;
遍历计算所有位置像素,生成所述粗糙度贴图。
8)生成金属度贴图。
对于所述金属度贴图上任一位置像素,按以下方法进行金属度计算:
首先对所述基础颜色贴图上该位置像素的R、G、B值求和;
若满足条件I:R、G、B值总和小于390,则所述金属度贴图上该位置像素的金属度为0;
若不满足条件I,则分别将步骤5)各校正图片上同一位置像素的R、G、B值与所述基础颜色贴图上该位置像素的R、G、B值相减(可得到9个差值图,如图4所示,做差后的数据可视化,捕获高光信息),得到R、G、B各自通道的最大差值r、g、b,计算偏离程度deviation:
deviation=|r-g|+|g-b|;
此时若满足条件II:r、g、b之和小于300且偏离程度deviation小于30,则所述金属度贴图上该位置像素的金属度仍为0;
若既不满足条件I,也不满足条件II,则将r、g、b之和除以2作为所述金属度贴图上该位置像素的金属度;
遍历计算所有位置像素,生成所述金属度贴图。
9)生成法线贴图,具体包括步骤:
9-1)将步骤5)中对应下部光源打光的所有校正图片转换为灰度图,施加D 0=20、n=2的Butterworth高通滤波以去除光场不均衡、阴影和基础颜色的影响,并将所有像素的R、G、B值线性映射为0至255,做对比度增强;
9-2)以测试平台5中心为原点建立三维坐标系,对于经过步骤9-1)处理的任一校正图片及其上的任一位置像素P xy,x、y代表该图片所在平面的二维坐标,该图片的中心位置设为O,该图片对应打光方向的光源中心位置设为P i,则灯光入射方向V=(O-P i)+0.2*(P xy-P i);
像素P xy亮度Lumin=R xy*0.299+G xy*0.587+B xy*0.114,R xy、G xy、B xy分别代表像素P xy的R、G、B值;
分别将经过步骤9-1)处理的校正图片的同一位置像素亮度Lumin和对应的灯光入射方向V相乘然后求和,得到该位置像素的法线值;
遍历计算所有位置像素,生成法线贴图。
10)生成透明度贴图。
对于所述透明度贴图上任一位置像素,按以下方法进行透明度alpha计算:
Figure PCTCN2022104361-appb-000002
其中,C d代表图片ImageAlpha0上该位置像素的颜色,C e代表图片ImageAlpha1上该位置像素的颜色,C 0代表图片ImageBlend0上该位置像素的颜色,C 1代表图片ImageBlend1上该位置像素的颜色;
遍历计算所有位置像素,生成所述透明度贴图。
经过本实施例的通过多角度打光拍摄生成材质贴图的方法生成的高质量的基础颜色贴图、法线贴图、金属度贴图、粗糙度贴图和透明度贴图如图5所示。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种通过多角度打光拍摄生成材质贴图的方法,其特征在于,包括步骤:
    1)构建多角度光照拍摄环境;
    所述多角度光照拍摄环境包括箱体(10),箱体(10)内部设有测试平台(5)、拍摄设备(6)和可拆卸的多角度光源(14),拍摄设备(6)设于测试平台(5)的正上方,多角度光源(14)位于拍摄设备(6)下方,用于从不同角度照射测试平台(5),包括自上而下依次布置的顶部光源、上部光源、下部光源和作为背光的底部光源,所述顶部光源、上部光源和下部光源位于测试平台(5)的上方;所述顶部光源、上部光源、下部光源和底部光源分别独立由至少一组灯组成;
    2)测试平台(5)上放置比色卡,始终保持在仅打开一组灯的情况下拍摄所述比色卡,遍历所有下部光源、上部光源和顶部光源,拍摄所得图片都使用标准校色程序生成对应打光方向的颜色校正矩阵;
    3)测试平台(5)上放置平整的白纸,始终保持在仅打开一组灯的情况下拍摄所述白纸,遍历所有下部光源、上部光源和顶部光源;对于任一打光方向拍摄得到的白纸图片,应用相同打光方向的颜色校正矩阵生成校色后的白纸图片,进一步处理生成对应打光方向的光强校正系数;
    4)测试平台(5)上不放置任何物品,拍摄用于透明度计算的校正图片:打开所有下部光源,拍摄得到无背光图片ImageAlpha0;打开所有底部光源和下部光源,拍摄得到有背光图片ImageAlpha1;
    5)测试平台(5)上放置待扫描物;
    始终保持在仅打开一组灯的情况下拍摄所述待扫描物,遍历所有下部光源、上部光源和顶部光源;对于任一打光方向拍摄得到的待扫描物图片,应用相同打光方向的颜色校正矩阵生成校色后的待扫描物图片,将校色后的待扫描物图片各个像素的R、G、B值与对应像素在相同打光方向生成的光强校正系数相乘,生成该打光方向最终的校正图片;
    打开所有下部光源,拍摄所述待扫描物得到无背光图片ImageBlend0;
    打开所有底部光源和下部光源,拍摄所述待扫描物得到有背光图片ImageBlend1;
    6)生成基础颜色贴图;
    7)生成粗糙度贴图;
    8)生成金属度贴图;
    9)生成法线贴图;
    10)生成透明度贴图。
  2. 根据权利要求1所述的方法,其特征在于,步骤1)中:
    所述顶部光源为光源板(3),其上设有通孔和/或透明区域以供拍摄设备(6)的拍摄光路穿过和/或透过;
    所述上部光源包括周向环绕布置在箱体(10)内侧壁靠近顶部处、可倾斜朝测试平台(5)打光的多组上部灯;
    所述下部光源包括周向环绕布置在箱体(10)内侧壁靠近底部处的多组下部灯,所述下部灯垂直于测试平台(5)或斜向下朝向测试平台(5);
    所述底部光源的安装方式为嵌入测试平台(5)内,或设于测试平台(5)的下方,或上述几种方式的组合;
    所述顶部光源、上部光源和下部光源均安装有匀光片。
  3. 根据权利要求1所述的方法,其特征在于,步骤3)中,将校色后的白纸图片每个像素的R、G、B值除以225,获得对应打光方向下每个像素R、G、B值的光强校正系数。
  4. 根据权利要求1所述的方法,其特征在于,步骤6)具体包括:
    分别对步骤5)各校正图片同一位置像素的R、G、B值求和,取R、G、B值总和第二小的数所对应的校正图片上该位置的像素作为所述基础颜色贴图相应位置的基础颜色;
    遍历计算所有位置像素,生成所述基础颜色贴图。
  5. 根据权利要求1或4所述的方法,其特征在于,步骤7)具体包括:
    分别将步骤5)各校正图片上同一位置像素的R、G、B值与所述基础颜色贴图上该位置像素的R、G、B值相减,所得差值≤0的记为10,其余不变,然后对所有差值进行方差variance和极差range的计算,所述粗糙度贴图在相应位置的粗糙度roughness按下式计算:
    roughness=6.5*variance–0.3*range;
    遍历计算所有位置像素,生成所述粗糙度贴图。
  6. 根据权利要求1或4所述的方法,其特征在于,步骤8)中,对于 所述金属度贴图上任一位置像素,按以下方法进行金属度计算:
    首先对所述基础颜色贴图上该位置像素的R、G、B值求和;
    若满足条件I:R、G、B值总和小于390,则所述金属度贴图上该位置像素的金属度为0;
    若不满足条件I,则分别将步骤5)各校正图片上同一位置像素的R、G、B值与所述基础颜色贴图上该位置像素的R、G、B值相减,得到R、G、B各自通道的最大差值r、g、b,计算偏离程度deviation:
    deviation=|r-g|+|g-b|;
    此时若满足条件II:r、g、b之和小于300且偏离程度deviation小于30,则所述金属度贴图上该位置像素的金属度仍为0;
    若既不满足条件I,也不满足条件II,则将r、g、b之和除以2作为所述金属度贴图上该位置像素的金属度;
    遍历计算所有位置像素,生成所述金属度贴图。
  7. 根据权利要求1所述的方法,其特征在于,步骤9)具体包括步骤:
    9-1)将步骤5)中对应下部光源打光的所有校正图片转换为灰度图,施加D 0=20、n=2的Butterworth高通滤波以去除光场不均衡、阴影和基础颜色的影响,并将所有像素的R、G、B值线性映射为0至255,做对比度增强;
    9-2)以测试平台(5)中心为原点建立三维坐标系,对于经过步骤9-1)处理的任一校正图片及其上的任一位置像素P xy,x、y代表该图片所在平面的二维坐标,该图片的中心位置设为O,该图片对应打光方向的光源中心位置设为P i,则灯光入射方向V=(O-P i)+0.2*(P xy-P i);
    像素P xy亮度Lumin=R xy*0.299+G xy*0.587+B xy*0.114,R xy、G xy、B xy分别代表像素P xy的R、G、B值;
    分别将经过步骤9-1)处理的校正图片的同一位置像素亮度Lumin和对应的灯光入射方向V相乘然后求和,得到该位置像素的法线值;
    遍历计算所有位置像素,生成法线贴图。
  8. 根据权利要求1所述的方法,其特征在于,步骤10)中,对于所述透明度贴图上任一位置像素,按以下方法进行透明度alpha计算:
    Figure PCTCN2022104361-appb-100001
    其中,C d代表图片ImageAlpha0上该位置像素的颜色,C e代表图片ImageAlpha1上该位置像素的颜色,C 0代表图片ImageBlend0上该位置像素的颜色,C 1代表图片ImageBlend1上该位置像素的颜色;
    遍历计算所有位置像素,生成所述透明度贴图。
  9. 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至8任一项中所述的方法。
  10. 一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
PCT/CN2022/104361 2021-10-29 2022-07-07 通过多角度打光拍摄生成材质贴图的方法及电子装置 WO2023071287A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22885192.9A EP4290460A1 (en) 2021-10-29 2022-07-07 Method for generating material map by means of multi-angle lighting photography, and electronic device
US18/371,271 US20240015408A1 (en) 2021-10-29 2023-09-21 Method and Electronic Device for Generating Texture Maps through Multi-angle Lighting Capture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111271818.3A CN114119779A (zh) 2021-10-29 2021-10-29 通过多角度打光拍摄生成材质贴图的方法及电子装置
CN202111271818.3 2021-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/371,271 Continuation US20240015408A1 (en) 2021-10-29 2023-09-21 Method and Electronic Device for Generating Texture Maps through Multi-angle Lighting Capture

Publications (1)

Publication Number Publication Date
WO2023071287A1 true WO2023071287A1 (zh) 2023-05-04

Family

ID=80379458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104361 WO2023071287A1 (zh) 2021-10-29 2022-07-07 通过多角度打光拍摄生成材质贴图的方法及电子装置

Country Status (4)

Country Link
US (1) US20240015408A1 (zh)
EP (1) EP4290460A1 (zh)
CN (1) CN114119779A (zh)
WO (1) WO2023071287A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114119779A (zh) * 2021-10-29 2022-03-01 浙江凌迪数字科技有限公司 通过多角度打光拍摄生成材质贴图的方法及电子装置
CN115655104A (zh) * 2022-10-14 2023-01-31 佛山市顺德区宁睿自动化科技有限公司 一种多向取像的内凹形物体尺寸测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125537A (ja) * 2013-12-26 2015-07-06 三星電子株式会社Samsung Electronics Co.,Ltd. シェーディング補正係数算出方法およびシェーディング補正係数算出装置
CN105262927A (zh) 2015-11-11 2016-01-20 厦门启尚科技有限公司 一种fsm3d面料高清扫描仪及其自动化控制系统
CN107146264A (zh) 2017-04-28 2017-09-08 南京大学 一种提取材质表面几何和光照物理属性的方法
CN109523619A (zh) * 2018-11-12 2019-03-26 厦门启尚科技有限公司 一种通过多角度打光的图片生成3d材质贴图的方法
JP2020197774A (ja) * 2019-05-31 2020-12-10 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
CN114119779A (zh) * 2021-10-29 2022-03-01 浙江凌迪数字科技有限公司 通过多角度打光拍摄生成材质贴图的方法及电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125537A (ja) * 2013-12-26 2015-07-06 三星電子株式会社Samsung Electronics Co.,Ltd. シェーディング補正係数算出方法およびシェーディング補正係数算出装置
CN105262927A (zh) 2015-11-11 2016-01-20 厦门启尚科技有限公司 一种fsm3d面料高清扫描仪及其自动化控制系统
CN107146264A (zh) 2017-04-28 2017-09-08 南京大学 一种提取材质表面几何和光照物理属性的方法
CN109523619A (zh) * 2018-11-12 2019-03-26 厦门启尚科技有限公司 一种通过多角度打光的图片生成3d材质贴图的方法
JP2020197774A (ja) * 2019-05-31 2020-12-10 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
CN114119779A (zh) * 2021-10-29 2022-03-01 浙江凌迪数字科技有限公司 通过多角度打光拍摄生成材质贴图的方法及电子装置

Also Published As

Publication number Publication date
EP4290460A1 (en) 2023-12-13
US20240015408A1 (en) 2024-01-11
CN114119779A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023071287A1 (zh) 通过多角度打光拍摄生成材质贴图的方法及电子装置
JP6867712B2 (ja) Oledスタック膜の品質査定のためのシステム、デバイス、および方法
TWI484161B (zh) 缺陷檢查系統及使用於該缺陷檢查系統之缺陷檢查用攝影裝置、缺陷檢查用畫像處理裝置、缺陷檢查用畫像處理程式、記錄媒體及缺陷檢查用畫像處理方法
CN105185314B (zh) Led显示屏均匀性补偿方法
EP1433139B1 (en) Device and method for digitizing an object
US20060171566A1 (en) Determining scene distance in digital camera images
JPS62189456A (ja) 主要画像検出方法及びこれを用いた写真焼付露光量決定方法
TWI447836B (zh) Device and method for inspection of wafer cassette
CN105372259A (zh) 测量装置、基板检查装置以及其控制方法
TW200408269A (en) Apparatus and method for inspecting pattern defect
CN112634156A (zh) 基于便携式设备采集图像估计材质反射参数的方法
CN110261408B (zh) 显示模组缺陷检测装置及方法
KR102216999B1 (ko) 라인 스캔용 논-램버시안 표면 검사 시스템
CN117274257A (zh) 基于机器视觉的图书品相自动分级系统
CN207764847U (zh) 多目摄像机模组快速立体标定装置
JP2021092439A (ja) 照明最適化方法、制御装置、及びプログラム
JP6874140B2 (ja) 原稿検出装置、原稿検出方法
CN115801942A (zh) 一种手机自动化检测系统
WO2020027647A1 (en) Apparatus and method for imaging
JP2022013913A (ja) 基板用の配線計測システム及びその方法
Pintus et al. Practical free-form RTI acquisition with local spot lights
EP2646769B1 (en) System and method for creating a three-dimensional image file
JP2012195875A (ja) 画像出力装置
JP2021004748A (ja) 外観検査管理システム、外観検査管理装置、外観検査管理方法及びプログラム
CN106324976B (zh) 测试系统及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885192

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885192

Country of ref document: EP

Effective date: 20230905

NENP Non-entry into the national phase

Ref country code: DE