WO2023071135A1 - 一种用于无线通信的节点中的方法和装置 - Google Patents

一种用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023071135A1
WO2023071135A1 PCT/CN2022/091354 CN2022091354W WO2023071135A1 WO 2023071135 A1 WO2023071135 A1 WO 2023071135A1 CN 2022091354 W CN2022091354 W CN 2022091354W WO 2023071135 A1 WO2023071135 A1 WO 2023071135A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
harq
bit block
block
value
Prior art date
Application number
PCT/CN2022/091354
Other languages
English (en)
French (fr)
Inventor
刘铮
杨中志
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Publication of WO2023071135A1 publication Critical patent/WO2023071135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for uplink control information with high and low priorities in wireless communication.
  • the application scenarios of future wireless communication systems are becoming more and more diversified, and different application scenarios put forward different performance requirements for the system.
  • the new air interface technology (NR , New Radio) (or 5G) research passed the WI (Work Item, work item) of the new air interface technology (NR, New Radio) at the 3GPP RAN#75 plenary meeting, and started to standardize NR.
  • the 3GPP RAN#86 plenary meeting it was decided to start the work of SI (Study Item, research item) and WI (Work Item, work item) of NR Rel-17.
  • enhanced mobile broadband eMBB, enhanced Mobile BroadBand
  • ultra-reliable and low-latency communications URLLC, Ultra-reliable and Low Latency Communications
  • mMTC massive Machine Type Communications
  • This application discloses a solution to the problem of multiplexing UCIs associated with different priority levels onto the same PUSCH.
  • URLLC is used as a typical application scenario or example; this application is also applicable to other scenarios facing similar problems (such as scenarios where multiple services coexist, or other scenarios with different Similar technical effects can also be achieved in scenarios of multiplexing of priority information, or multiplexing of services with different QoS requirements, or for different application scenarios, such as multiplexing of Internet of Vehicles and eMBB, etc.).
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the present application discloses a method in a first node for wireless communication, including:
  • the first information block being used to determine a first beta value, the first beta value being a non-negative number
  • the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit
  • the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit
  • the high-level HARQ bit block is For generating a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the target When PUSCH is only used to carry HARQ-ACK, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes the high-level HARQ bit block bits; when the target PUSCH is also used to carry information bits other than HARQ-ACK, the high-level reference bit block is the same as the high-level HARQ bit block.
  • the target PUSCH is only used to carry HARQ-ACK, it is used as the judgment condition of whether to fill bits in the high-priority HARQ-ACK, thereby supporting the multiplexing of the high-low priority HARQ-ACK to
  • a method of occupying reserved REs is designed to avoid the waste of reserved REs and ensure the resource utilization when the control is multiplexed on the PUSCH.
  • the above method includes: when the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is less than 2, the high-level The HARQ bit block is filled with "0" bits to generate the high-level reference bit block; when the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is not When it is less than 2, the high-level reference bit block is the same as the high-level HARQ bit block.
  • the above method includes: the time-frequency resource occupied by the target PUSCH includes a first time-frequency resource block, the first time-frequency resource block is reserved for HARQ-ACK, and the first time-frequency resource block is reserved for HARQ-ACK.
  • the resource block includes at least one RE; the first ⁇ value and the high-level reference quantity value are used together to determine the number of REs included in the first time-frequency resource block, and the bits included in the high-level reference bit block The quantity is equal to the value of the high-level reference quantity; when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, any modulation symbol mapped to the low-level HARQ bit block One RE is orthogonal to the first time-frequency resource block.
  • the existing channel coder is reused as much as possible when occupying the reserved RE, so as to reduce the complexity of implementation under different multiplexing situations, and at the same time, different ⁇ offset values are used to determine the reserved RE according to different situations.
  • the number of REs is reserved, while reducing the adverse effect caused by the ambiguity of the number of HARQ-ACK bits, while optimizing the use of time-frequency resources as much as possible, and further improving the utilization of resources on the PUSCH.
  • the above method includes: the first information block is used to determine a second ⁇ value, and the second ⁇ value is a non-negative number; when the HARQ-ACK bits included in the low-level HARQ bit block When the number of is not greater than 2, the low-level HARQ bit block is used to generate a low-level reference bit block, the low-level reference bit block includes a plurality of bits, and the number of bits included in the low-level reference bit block is equal to A low-level reference quantity value, the low-level reference quantity value is greater than 2, and the second ⁇ value and the low-level reference quantity value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block; When the number of HARQ-ACK bits included in the low-level HARQ bit block is greater than 2, the second ⁇ value is used together with the number of HARQ-ACK bits included in the low-level HARQ bit block to determine the The number of modulation symbols generated by the low-level HARQ bit block
  • the above-mentioned method comprises:
  • the first signaling is used to determine the time-frequency resource occupied by the target PUSCH; the priority level corresponding to the target PUSCH is used together with the first information block to determine Y1 sets of ⁇ values; Any ⁇ value set in the Y1 ⁇ value sets includes multiple candidate ⁇ values, and any candidate ⁇ value included in any ⁇ value set in the Y1 ⁇ value sets is a non-negative number, and the Y1 is A positive integer greater than 1; the first signaling is used to determine a first ⁇ value set from the Y1 ⁇ value sets, and the first ⁇ value is equal to a candidate included in the first ⁇ value set The ⁇ value, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first ⁇ value from the first set of ⁇ values.
  • different ⁇ offset value sets are used according to whether to multiplex HARQ-ACK of different priority levels and the number of bits of the multiplexed HARQ-ACK, so that the effective code rate of the configured UCI satisfies different conditions.
  • the following robustness requirements ensure the transmission performance of HARQ-ACK in URLLC.
  • the above method includes: the scheduling signaling of the target PUSCH includes a first field, and the value of the first field is a non-negative integer; the value of the first field is used to determine the low level The number of HARQ-ACK bits included in the HARQ bit block.
  • the above method includes: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the target PUSCH;
  • the high-level HARQ bit block is used to generate a high-level HARQ bit sequence, the high-level HARQ bit sequence includes a plurality of sequentially indexed bits, and any bit included in the high-level HARQ bit sequence belongs to the target bit sequence, so
  • the target bit sequence is used to generate the target PUSCH, the target bit sequence includes a plurality of sequentially indexed bits; the number of bits included in the high-level HARQ bit sequence is used to determine the target interval, and the target interval is a positive integer, and the target interval is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • the present application discloses a method in a second node for wireless communication, including:
  • the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit
  • the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit
  • the high-level HARQ bit block is For generating a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the target When PUSCH is only used to carry HARQ-ACK, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes the high-level HARQ bit block bits; when the target PUSCH is also used to carry information bits other than HARQ-ACK, the high-level reference bit block is the same as the high-level HARQ bit block.
  • the above method includes: when the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is less than 2, the high-level The HARQ bit block is filled with "0" bits to generate the high-level reference bit block; when the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is not When it is less than 2, the high-level reference bit block is the same as the high-level HARQ bit block.
  • the above method includes: the time-frequency resource occupied by the target PUSCH includes a first time-frequency resource block, the first time-frequency resource block is reserved for HARQ-ACK, and the first time-frequency resource block is reserved for HARQ-ACK.
  • the resource block includes at least one RE; the first ⁇ value and the high-level reference quantity value are used together to determine the number of REs included in the first time-frequency resource block, and the bits included in the high-level reference bit block The quantity is equal to the value of the high-level reference quantity; when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, any modulation symbol mapped to the low-level HARQ bit block One RE is orthogonal to the first time-frequency resource block.
  • the above method includes: the first information block is used to indicate a second ⁇ value, and the second ⁇ value is a non-negative number; when the HARQ-ACK bits included in the low-level HARQ bit block When the number of is not greater than 2, the low-level HARQ bit block is used to generate a low-level reference bit block, the low-level reference bit block includes a plurality of bits, and the number of bits included in the low-level reference bit block is equal to A low-level reference quantity value, the low-level reference quantity value is greater than 2, and the second ⁇ value and the low-level reference quantity value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block; When the number of HARQ-ACK bits included in the low-level HARQ bit block is greater than 2, the second ⁇ value is used together with the number of HARQ-ACK bits included in the low-level HARQ bit block to determine the The number of modulation symbols generated by the low-level HARQ bit block
  • the above-mentioned method comprises:
  • the first signaling is used to indicate the time-frequency resource occupied by the target PUSCH; the priority level corresponding to the target PUSCH is used together with the first information block to determine Y1 sets of ⁇ values; Any ⁇ value set in the Y1 ⁇ value sets includes multiple candidate ⁇ values, and any candidate ⁇ value included in any ⁇ value set in the Y1 ⁇ value sets is a non-negative number, and the Y1 is A positive integer greater than 1; the first signaling is used to determine a first ⁇ value set from the Y1 ⁇ value sets, and the first ⁇ value is equal to a candidate included in the first ⁇ value set The ⁇ value, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first ⁇ value from the first set of ⁇ values.
  • the above method includes: the scheduling signaling of the target PUSCH includes a first field, the value of the first field is a non-negative integer; the value of the first field is used to indicate the low level The number of HARQ-ACK bits included in the HARQ bit block.
  • the above method includes: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the target PUSCH;
  • the high-level HARQ bit block is used to generate a high-level HARQ bit sequence, the high-level HARQ bit sequence includes a plurality of sequentially indexed bits, and any bit included in the high-level HARQ bit sequence belongs to the target bit sequence, so
  • the target bit sequence is used to generate the target PUSCH, the target bit sequence includes a plurality of sequentially indexed bits; the number of bits included in the high-level HARQ bit sequence is used to determine the target interval, and the target interval is a positive integer, and the target interval is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • the present application discloses a first node device for wireless communication, including:
  • a first receiver receiving a first information block, the first information block being used to determine a first ⁇ value, the first ⁇ value being a non-negative number;
  • the first transmitter determines a high-level HARQ bit block and a low-level HARQ bit block and transmits a target PUSCH, where the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block;
  • the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit
  • the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit
  • the high-level HARQ bit block is For generating a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the target When PUSCH is only used to carry HARQ-ACK, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes the high-level HARQ bit block bits; when the target PUSCH is also used to carry information bits other than HARQ-ACK, the high-level reference bit block is the same as the high-level HARQ bit block.
  • the present application discloses a second node device for wireless communication, including:
  • a second transmitter sending a first information block, the first information block being used to indicate a first ⁇ value, the first ⁇ value being a non-negative number;
  • a second receiver receiving a target PUSCH and determining a high-level HARQ bit block and a low-level HARQ bit block, the target PUSCH being used to carry the high-level HARQ bit block and the low-level HARQ bit block;
  • the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit
  • the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit
  • the high-level HARQ bit block is For generating a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the target When PUSCH is only used to carry HARQ-ACK, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes the high-level HARQ bit block bits; when the target PUSCH is also used to carry information bits other than HARQ-ACK, the high-level reference bit block is the same as the high-level HARQ bit block.
  • FIG. 1 shows a flowchart of a first information block and a target PUSCH according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a high-level reference bit block according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the relationship between a high-level HARQ bit block and a low-level HARQ bit block according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between modulation symbols generated by low-level HRRQ bit blocks and low-level HARQ bit blocks according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of Y1 sets of ⁇ values according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a first domain according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the relationship between a high-level HARQ bit sequence and a target bit sequence according to an embodiment of the present application
  • Fig. 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart 100 of a first information block and a target PUSCH according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it is particularly important to emphasize that the order of each block in the figure indicates an example of the sequence between the steps represented, and does not limit the sequence between the steps represented. relationship in time.
  • the first node device in this application receives a first information block in step 101, and the first information block is used to determine a first ⁇ value, and the first ⁇ value is a non-negative number; this application
  • the first node device determines a high-level HARQ bit block and a low-level HARQ bit block and sends a target PUSCH, and the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block ;
  • the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit
  • the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit;
  • the high-level HARQ bit block is used to generate a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the When the target
  • the first information block is transmitted through an air interface or a wireless interface.
  • the first information block includes all or part of a higher layer signaling or a physical layer signaling.
  • the first information block includes all or part of RRC (Radio Resource Control, radio resource control) layer signaling or MAC (Medium Access Control, media access control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • MAC Medium Access Control, media access control
  • the first information block is cell specific (Cell Specific) or user equipment specific (UE-).
  • the first information block is configured per BWP (Bandwidth Part, bandwidth part) (Per BWP Configured).
  • the first information block includes all or part of fields (Field) in a DCI (Downlink Control Information) format (Format).
  • Field Downlink Control Information
  • Form Downlink Control Information
  • the first information block includes a field (Field) "beta_offset indicator" in a DCI (Downlink Control Information) format (Format).
  • Field Field
  • Downlink Control Information Downlink Control Information
  • the first information block includes a field (Field) "Cross Priority beta_offset indicator" in a DCI (Downlink Control Information) format (Format).
  • Field "Cross Priority beta_offset indicator” in a DCI (Downlink Control Information) format (Format).
  • the first information block includes one or more fields in the scheduling DCI format of the target PUSCH.
  • the first information block includes all or part of fields (Fields) in the IE (Information Element, information element) "PUSCH-Config".
  • the first information block includes all or part of fields (Fields) in the IE (Information Element, information element) "UCI-OnPUSCH”.
  • Fields Information Element, information element
  • the first information block includes all or part of fields (Fields) in the IE (Information Element, information element) "UCI-OnPUSCH-r17".
  • Fields Information Element, information element
  • the first information block includes all or part of fields (Fields) included in the IE (Information Element, information element) "BetaOffsets".
  • Fields Information Element, information element
  • the first information block includes all or part of the fields (Fields) included in the IE (Information Element, information element) "betaOffsetsCrossPri-r17".
  • the first information block includes all or part of the fields (Fields) included in the IE (Information Element, information element) "betaOffsetsCrossPri-List-r17".
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meaning: the first information block is used by the first node device in this application to determine The first beta value.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly indicate the first beta value.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly indicate the first Index of the beta value.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly indicate that the first information block includes the A ⁇ offset value index combination of a ⁇ value index, the ⁇ offset value index combination includes the ⁇ offset value indexes of UCI (Uplink Control Information) of different types or different information bit quantity ranges.
  • UCI Uplink Control Information
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly determine multiple ⁇ biases. Shift value index combination, the multiple ⁇ offset value index combinations include the ⁇ offset value index combination to which the index of the first ⁇ value belongs, and any ⁇ offset value index combination in the multiple ⁇ offset value index combinations
  • the value index combination includes indexes of ⁇ offset values of UCI (Uplink Control Information) of different types or different information bit quantity ranges.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the Multiple beta offset values for a beta value.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the A set of beta offset values for a beta value.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the A list of ⁇ offset values for ⁇ values (List).
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly determine multiple ⁇ biases.
  • An offset value set, one of the plurality of ⁇ offset value sets includes the first ⁇ value.
  • the expression "the first information block is used to determine the first ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the ⁇ value in this application.
  • the first ⁇ value is a ⁇ offset value (Beta Offset).
  • the first ⁇ value is a ⁇ offset value (Beta Offset) of the HARQ-ACK not more than 2 bits.
  • the first ⁇ value is a ⁇ offset value (Beta Offset) of the HARQ-ACK that is more than 2 but not more than 11 bits.
  • the first ⁇ value is a ⁇ offset value (Beta Offset) of the HARQ-ACK with more than 11 bits.
  • the first ⁇ value is a ⁇ offset value (Beta Offset) of a high-priority HARQ-ACK.
  • the first ⁇ value is a ⁇ offset value (Beta Offset) of the high-priority HARQ-ACK carried by the low-priority PUSCH.
  • the first ⁇ value is a ⁇ offset value (Beta Offset) of the high-priority HARQ-ACK carried by the high-priority PUSCH.
  • the plurality of predefined candidate ⁇ offset values to which the first ⁇ value belongs includes a candidate ⁇ offset value equal to 0.
  • any candidate ⁇ offset value among the plurality of predefined candidate ⁇ offset values to which the first ⁇ value belongs is greater than 0.
  • any candidate ⁇ offset value among the plurality of predefined candidate ⁇ offset values to which the first ⁇ value belongs is not less than 1.
  • the high-level HARQ bit block only includes 1 HARQ-ACK bit.
  • any bit included in the high-level HARQ bit block is a high-priority HARQ-ACK information bit.
  • any bit included in the high-level HARQ bit block belongs to a HARQ-ACK codebook (Codebook).
  • any bit included in the high-level HARQ bit block belongs to a type 1 (Type1) or type 2 (Type2) or type 3 (Type3) HARQ-ACK codebook (Codebook).
  • any bit included in the high-level HARQ bit block is a bit before channel coding.
  • the high-level HARQ bit block does not include CRC bits.
  • the high-level HARQ bit block includes CRC bits; otherwise, the high-level HARQ bit block does not include CRC bits.
  • the priority index corresponding to the high-level HARQ bit block is equal to 1.
  • all the HARQ-ACK bits included in the high-level HARQ bit block correspond to a high priority level.
  • all signaling used to configure or indicate the high-level HARQ bit block configures or indicates a high priority level.
  • the target PUSCH does not carry the corresponding high-priority HARQ-ACK information bits other than the high-level HARQ bit block.
  • any HARQ-ACK information bit corresponding to a high priority level carried by the target PUSCH belongs to the high level HARQ bit block.
  • the high priority level corresponding to the high-level HARQ bit block is determined by the signaling of scheduling or configuring the HARQ-ACK bits included in the high-level HARQ bit block.
  • the priority level of a PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • a PDSCH Physical Downlink Shared Channel
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • the priority level of TB Transport Block, transport block
  • CBG Code Block Group, coding block group
  • the scheduling signaling of the PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) corresponding to any HARQ-ACK bit included in the high-level HARQ bit block indicates a high priority level.
  • any bit included in the low-level HARQ bit block is a HARQ-ACK information bit.
  • any bit included in the low-level HARQ bit block belongs to a HARQ-ACK codebook (Codebook).
  • any bit included in the low-level HARQ bit block belongs to a type 1 (Type1) or type 2 (Type2) or type 3 (Type3) HARQ-ACK codebook (Codebook).
  • any bit included in the low-level HARQ bit block is a bit before channel coding.
  • the priority level corresponding to the low-level HARQ bit block is a low priority level.
  • the priority index corresponding to the low-level HARQ bit block is equal to 0.
  • the priority level corresponding to the low-level HARQ bit block is the same as the priority level configured for the target PUSCH.
  • the priority level corresponding to the low-level HARQ bit block is different from the priority level configured for the target PUSCH.
  • the priority level corresponding to the low-level HARQ bit block is the same as the priority level of the UL-SCH carried by the target PUSCH.
  • the priority level corresponding to the low-level HARQ bit block is different from the priority level of the UL-SCH carried by the target PUSCH.
  • all HARQ-ACK bits included in the low-level HARQ bit block correspond to a low priority level.
  • all signaling used to configure or indicate the low-level HARQ bit block configures or indicates low priority.
  • the target PUSCH does not carry the corresponding low priority HARQ-ACK information bits outside the low level HARQ bit block.
  • any HARQ-ACK information bit corresponding to a low priority level carried by the target PUSCH belongs to the low level HARQ bit block.
  • the priority level corresponding to the low-level HARQ bit block is determined by the signaling of scheduling or configuring the HARQ-ACK bits included in the low-level HARQ bit block.
  • the priority level of a PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • a PDSCH Physical Downlink Shared Channel
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • the priority level of TB Transport Block, transport block
  • CBG Code Block Group, coding block group
  • the scheduling signaling of the PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) corresponding to any HARQ-ACK bit included in the low-level HARQ bit block indicates a low priority level.
  • the target PUSCH is transmitted through an air interface or a wireless interface.
  • the target PUSCH includes a CG (Configured Grant, configured grant) PUSCH.
  • CG Configured Grant, configured grant
  • the target PUSCH includes a DG (Dynamic Grant, dynamic grant) PUSCH.
  • DG Dynamic Grant, dynamic grant
  • the target PUSCH includes PUSCH and DMRS (Demodulation Reference Signal, demodulation reference signal).
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the target PUSCH is a PUSCH scheduled by DCI format 0-0.
  • the target PUSCH is a PUSCH scheduled by DCI format 0-1.
  • the target PUSCH is a PUSCH scheduled by DCI format 0-2.
  • the expression "the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block" in the claims includes the following meanings: the high-level HARQ bit block and the low-level HARQ bit block A rank HARQ bit block is transmitted in the target PUSCH.
  • the expression "the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block" in the claims includes the following meaning: the target PUSCH carries (Piggyback) the A high-level HARQ bit block and said low-level HARQ bit block.
  • the expression "the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block” in the claims includes the following meanings: the high-level HARQ bit block and the low-level HARQ bit block Hierarchical HARQ bit block multiplexing (Multiplex) is transmitted in the target PUSCH.
  • Multiplex Hierarchical HARQ bit block multiplexing
  • the high-level reference bit block includes at least 2 bits.
  • the high-level reference bit block includes at least 3 bits.
  • the high-level reference bit block is a HARQ-ACK bit sequence obtained through UCI bit sequence generation (UCI bit sequence generation).
  • the high-level reference bit block is a HARQ-ACK bit sequence input to code block segmentation and code block CRC attachment (Code block segmentation and code block CRC attachment).
  • the high-level reference bit block is a HARQ-ACK bit sequence input to channel coding (Channel Coding).
  • any bit included in the high-level reference bit block is a bit before encoding.
  • the high-level reference bit block does not include CRC bits.
  • the high-level reference bit block includes CRC bits.
  • the high-level reference bit block when the number of bits included in the high-level reference bit block is greater than 11, the high-level reference bit block includes CRC bits; otherwise, the high-level reference bit block does not include CRC bits.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is used by the first node device in this application Used to generate the high-level reference bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meanings: the high-level HARQ bit block is filled to generate the high-level reference bit block, Or the high-level reference bit block is the high-level HARQ bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is filled with "0" bits to generate the high-level The reference bit block, or the high-level reference bit block is the high-level HARQ bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is filled with "1" bits to generate the high-level The reference bit block, or the high-level reference bit block is the high-level HARQ bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block undergoes bit repetition to generate the high-level reference bit block , or the high-level reference bit block is the high-level HARQ bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meaning: when the number of HARQ-ACK bits included in the high-level HARQ bit block is equal to When 1, the high-level HARQ bit block is obtained by adding a "0" bit to the high-level reference bit block; when the number of HARQ-ACK bits included in the high-level HARQ bit block is greater than 1, the high-level The reference bit block is the high-level HARQ bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meanings: when the number of bits included in the high-level reference bit block is greater than the high-level When the number of bits included in the high-level HARQ bit block, the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block; otherwise, the high-level reference bit block is the high-level HARQ bit piece.
  • the expression "the high-level HARQ bit block is used to generate a high-level reference bit block” in the claims includes the following meanings: when the number of bits included in the high-level reference bit block is greater than the high-level When the number of bits included in the high-level HARQ bit block, the high-level HARQ bit block is filled with "0" bits after the LSB (Least Significant Bit, least significant bit) to generate the high-level reference bit block; otherwise the high-level reference bit block The high-level reference bit block is the high-level HARQ bit block.
  • the modulation symbol generated by the high-level HARQ bit block is that the high-level HARQ bit block sequentially undergoes UCI bit sequence generation (UCI bit sequence generation), coding block segmentation and coding block CRC attachment (Code block segmentation and code block CRC attachment), channel coding (Channel Coding), rate matching (Rate Matching), code block concatenation (Code block concatenation), coded UCI bits multiplexing to PUSCH (Multiplexing of coded UCI bits to PUSCH), Modulation symbols generated by some or all of data and control multiplexing, scrambling, and modulation.
  • UCI bit sequence generation UCI bit sequence generation
  • coding block segmentation and coding block CRC attachment Code block segmentation and code block CRC attachment
  • channel coding Channel coding
  • Rate Matching rate matching
  • code block concatenation Code block concatenation
  • coded UCI bits multiplexing to PUSCH Multiplexing of coded UCI bits to PUSCH
  • the expression "the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block" in the claims includes the following meaning: the first ⁇ value is used in this application The first node device is used to determine the number of modulation symbols generated by the high-level HARQ bit block.
  • the expression "the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block" in the claims includes the following meaning: the first ⁇ value is used to calculate The number of modulation symbols generated by the high-level HARQ bit block.
  • the expression "the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block" in the claims includes the following meaning: the first ⁇ value is used to calculate The number of modulation symbols generated by the high-level HARQ bit block at each layer (per layer).
  • the expression "the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block" in the claims includes the following meanings: when the target PUSCH is used to carry UL -SCH (Uplink Shared Channel, uplink shared channel), the number of modulation symbols Q′ UCI1 generated by the high-level HARQ bit block satisfies the following formula:
  • the number of modulation symbols Q′ UCI1 generated by the high-level HARQ bit block satisfies the following formula:
  • O UCI1 represents the number of HARQ-ACK information bits included in the high-level HARQ bit block
  • L UCI1 represents the number of CRC bits (L UCI1 may be equal to 0 or greater than 0)
  • K r represents the size of the rth UL-SCH (Uplink Shared Channel, Uplink Shared Channel) coding block carried by the target PUSCH
  • C UL-SCH represents the target The number of UL-SCH coding blocks carried by PUSCH
  • Q m represents the modulation order of the target PUSCH
  • R represents the code rate of the target PUSCH
  • ⁇ 1 is a configured scaling factor
  • N' RE represents the target PUSCH The number of REs occupied by symbols later than the earliest DMRS symbol.
  • the expression "the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block" in the claims includes the following meanings: when the target PUSCH is used to carry UL -SCH (Uplink Shared Channel, uplink shared channel), the number of modulation symbols Q′ UCI1 generated by the high-level HARQ bit block satisfies the following formula:
  • the number of modulation symbols Q′ UCI1 generated by the high-level HARQ bit block satisfies the following formula:
  • O UCI1 represents the number of HARQ-ACK information bits included in the high-level reference bit block
  • L UCI1 represents the number of CRC bits (L UCI1 may be equal to 0 or greater than 0)
  • K r represents the size of the rth UL-SCH (Uplink Shared Channel, Uplink Shared Channel) coding block carried by the target PUSCH
  • C UL-SCH represents the target The number of UL-SCH coding blocks carried by PUSCH
  • Q m represents the modulation order of the target PUSCH
  • R represents the code rate of the target PUSCH
  • ⁇ 1 is a configured scaling factor
  • N'RE represents the target PUSCH The number of REs occupied by symbols later than the earliest DMRS symbol.
  • the number of transmission layers of the target PUSCH is also used to determine the number of modulation symbols generated by the high-level HARQ bit block.
  • the modulation order of the target PUSCH is also used to determine the number of modulation symbols generated by the high-level HARQ bit block.
  • the code rate of the target PUSCH is also used to determine the number of modulation symbols generated by the high-level HARQ bit block.
  • the number of coding blocks carried by the target PUSCH is also used to determine the number of modulation symbols generated by the high-level HARQ bit block.
  • the expression "the target PUSCH is only used to carry HARQ-ACK" in the claims includes the following meanings: the target PUSCH is not used to carry CSI (Channel Status information, channel state information) bits and the The target PUSCH is not used to carry UL-SCH (Uplink Shared Channel, uplink shared channel) bits.
  • the expression "the target PUSCH is only used to carry HARQ-ACK" in the claims includes the following meaning: the target PUSCH is not used to carry CSI or UL-SCH.
  • the expression "the target PUSCH is only used to carry HARQ-ACK" in the claims includes the following meanings: the target PUSCH is not used to carry CSI part 1 (Part 1) or CSI part 2 (Part 1). 2) or UL-SCH.
  • the expression "the target PUSCH is only used to carry HARQ-ACK" in the claims includes the following meaning: the target PUSCH is not used to carry UL-SCH.
  • the expression "the target PUSCH is also used to carry information bits other than HARQ-ACK" in the claims includes the following meaning: the target PUSCH is also used to carry both CSI and UL-SCH at least one of the .
  • the expression "the target PUSCH is also used to carry information bits other than HARQ-ACK" in the claims includes the following meaning: the target PUSCH is also used to carry UL-SCH.
  • the expression "the target PUSCH is also used to carry information bits other than HARQ-ACK" in the claims includes the following meaning: the target PUSCH is also used to carry CSI.
  • the expression "the target PUSCH is also used to carry information bits other than HARQ-ACK" in the claims includes the following meaning: the target PUSCH is also used to carry CSI part 1 or UL-SCH two at least one of those.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meanings: the number of HARQ-ACK bits included in the high-level HARQ bit block is used by the first node device in this application to determine whether the high-level reference bit block includes the high-level HARQ Bits outside the bit block.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meaning: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes padding bits.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meaning: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes bits preset to "0".
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meanings: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level HARQ bit block is filled or preset bits are added to generate the high-level reference bit block.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meanings: when the number of HARQ-ACK bits included in the high-level HARQ bit block is less than 2, the high-level reference bit block includes bits other than the high-level HARQ bit block; otherwise, the The high-level reference bit block does not include bits other than the high-level HARQ bit block.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meanings: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the number of bits included in the high-level reference bit block is equal to the number of bits included in the high-level HARQ bit block The number of HARQ-ACK bits.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meanings: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the number of bits included in the high-level reference bit block is greater than that included in the high-level HARQ bit block The number of HARQ-ACK bits.
  • the expression in the claims "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes "bit” includes the following meanings: when the number of HARQ-ACK bits included in the high-level HARQ bit block is less than 2, the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block, so The high-level reference bit block includes 2 bits; when the number of HARQ-ACK bits included in the high-level HARQ bit block is greater than or equal to 2, the high-level reference bit block is the high-level HARQ bit block.
  • the expression "the high-level reference bit block is the same as the high-level HARQ bit block" in the claims includes the following meanings: the bits included in the high-level reference bit block and the high-level HARQ bit The bit correspondences included in the blocks are the same.
  • the expression "the high-level reference bit block and the high-level HARQ bit block are the same” in the claims includes the following meaning: the high-level reference bit block and the high-level HARQ bit block are the same bit blocks.
  • the expression "the high-level reference bit block is the same as the high-level HARQ bit block" in the claims includes the following meanings: the bits in the high-level reference bit block are indexed from 0 in sequence, and the Bits in the high-level HARQ bit block are indexed sequentially from 0, and the high-level reference bit block is the same as the bits with the same index in the high-level HARQ bit block.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • Accompanying drawing 2 illustrates 5G NR, the diagram of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, NG-RAN (next generation radio access network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, Evolved packet core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management, unified data management) 220 and Internet service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR/evolved Node B (gNB/eNB) 203 and other gNBs (eNB) 204 .
  • the gNB (eNB) 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB (eNB) 203 may connect to other gNBs (eNBs) 204 via an Xn/X2 interface (eg, backhaul).
  • gNB (eNB) 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receiver Node) or some other appropriate term.
  • gNB (eNB) 203 provides UE 201 with an access point to 5GC/EPC 210 .
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, test equipment , test instrument, test tool or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB (eNB) 203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, Session management function) 211, other MME/AMF/SMF 214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) /UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node device in this application.
  • the UE 201 supports multiplexed PUSCH transmission of UCIs associated with different priority levels.
  • the gNB (eNB) 201 corresponds to the second node device in this application.
  • the gNB (eNB) 201 supports transmission of UCI associated with different priorities multiplexed into the PUSCH.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows three layers for a first node device (UE or gNB) and a second node device (gNB or UE ) radio protocol architecture of the control plane 300: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for the first node device between the second node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the communication between the second node device and the first node device RRC signaling to configure the lower layers.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and a network layer terminating at the other end of the connection.
  • Application layer at eg, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node device in this application.
  • the first information block in this application is generated by the RRC306, or the MAC302, or the MAC352, or the PHY301, or the PHY351.
  • the target PUSCH in this application is generated by the RRC306, or the MAC302, or the MAC352, or the PHY301, or the PHY351.
  • the first signaling in this application is generated by the RRC306, or the MAC302, or the MAC352, or the PHY301, or the PHY351.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application, as shown in FIG. 4 .
  • a controller/processor 490, a data source/buffer 480, a receive processor 452, a transmitter/receiver 456 and a transmit processor 455 may be included in the first node device (450), and the transmitter/receiver 456 includes an antenna 460.
  • a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416 and a transmitting processor 415 may be included in the second node device (410), and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet such as the upper layer information included in the first information block in this application and the upper layer information included in the first signaling (when the first signaling includes the upper layer information ) to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio communication to the first node device 450 based on various priority metrics. Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first node device 450, such as the high layer information included in the first information block in this application and the first signaling
  • the included higher layer information (when said first signaling includes higher layer information) is generated in the controller/processor 440 .
  • the transmit processor 415 implements various signal processing functions for the L1 layer (i.e., the physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc., such as this
  • the first signaling in the application (when the first signaling only includes physical layer information) and the generation of the physical layer signal carrying the first information block are completed in the transmit processor 415 .
  • the generated modulation symbols are divided into parallel streams and each stream is mapped to corresponding multi-carrier subcarriers and/or multi-carrier symbols, and then mapped to antenna 420 by transmit processor 415 via transmitter 416 for transmission in the form of radio frequency signals.
  • each receiver 456 receives the radio frequency signal through its respective antenna 460 , each receiver 456 recovers the baseband information modulated onto a radio frequency carrier, and provides the baseband information to the receive processor 452 .
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes receiving the physical layer signal carrying the first information block and the first signaling in the present application, and performing multi-carrier symbols in the multi-carrier symbol flow based on various modulation schemes (for example, binary phase shift key) control (BPSK), quadrature phase shift keying (QPSK)), followed by descrambling, decoding and deinterleaving to recover the data or control transmitted by the second node device 410 on the physical channel, and then the data and control signals Provided to controller/processor 490.
  • modulation schemes for example, binary phase shift key) control (BPSK), quadrature phase shift keying (QPSK)
  • the controller/processor 490 is responsible for the L2 layer and above layers, and the controller/processor 490 is responsible for the high-level information included in the first information block and the high-level information included in the first signaling in this application (when the first signaling includes the upper layer information) for interpretation.
  • the controller/processor can be associated with memory 480 that stores program codes and data. Memory 480 may be referred to as a computer-readable medium.
  • the high-level information includes the high-level information carried by the target PUSCH in this application (when carrying high-level information), which is generated by the controller/processor 490 and implemented by the transmit processor 455.
  • Various signal transmission processing functions for the L1 layer that is, the physical layer
  • the antenna 460 emits radio frequency signals.
  • Receivers 416 receive radio frequency signals through their respective antennas 420 , each receiver 416 recovers the baseband information modulated onto a radio frequency carrier and provides the baseband information to receive processor 412 .
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (i.e., the physical layer), including receiving and processing the physical layer signal of the target PUSCH in this application, and then providing data and/or control signals to the controller/processing device 440.
  • Implementing the functions of the L2 layer in the controller/processor 440 includes interpreting the high-layer information, including the interpretation of the high-layer information (when carrying the high-layer information) carried by the target PUSCH in this application.
  • the controller/processor can be associated with a buffer 430 that stores program codes and data. Buffer 430 may be a computer readable medium.
  • the apparatus of the first node device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first node device 450 device at least: receives a first information block, said first information block is used to determine a first ⁇ value, said first ⁇ value is a non-negative number; determines a high A high-level HARQ bit block and a low-level HARQ bit block and transmit a target PUSCH, the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block; wherein, the high-level HARQ bit block includes at least 1 high-priority HARQ-ACK bit, the low-level HARQ bit block includes at least 1 low-priority HARQ-ACK bit; the high-level HARQ bit block is used to generate a high-level reference bit block, the The high-level reference bit block includes a
  • the apparatus of the first node device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving A first information block, the first information block is used to determine a first ⁇ value, the first ⁇ value is a non-negative number; determine a high-level HARQ bit block and a low-level HARQ bit block and send a target PUSCH, the target PUSCH Used to carry the high-level HARQ bit block and the low-level HARQ bit block; wherein the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit, and the low-level HARQ bit block includes At least one low priority HARQ-ACK bit; the high-level HARQ bit block is used to generate a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used for Determine the number of modulation symbols generated by the high-level
  • the apparatus of the second node device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second node device 410 means at least: sending a first information block, the first information block is used to indicate a first ⁇ value, and the first ⁇ value is a non-negative number; receiving a target PUSCH and determining a high-level HARQ bit block and a low-level HARQ bit block, the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block; wherein, the high-level HARQ bit block includes at least one high-priority HARQ- ACK bit, the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit; the high-level HARQ bit block is used to generate a high-level reference bit block, and the high-level reference bit block
  • the second node device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first An information block, the first information block is used to indicate a first ⁇ value, the first ⁇ value is a non-negative number; receiving a target PUSCH and determining a high-level HARQ bit block and a low-level HARQ bit block, the target PUSCH is Used to carry the high-level HARQ bit block and the low-level HARQ bit block; wherein, the high-level HARQ bit block includes at least one high-priority HARQ-ACK bit, and the low-level HARQ bit block includes at least 1 low-priority HARQ-ACK bit; the high-level HARQ bit block is used to generate a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine The number of modulation symbols generated by
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the first node device 450 is a user equipment that supports multiplexing of UCI with different priority levels into a PUSCH.
  • the second node device 410 is a base station device (gNB/eNB).
  • the second node device 410 is a base station device that supports multiplexing of UCIs with different priorities into the PUSCH.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used to receive the first information block in this application.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used to transmit the target PUSCH in this application.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used to receive the first signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmitting processor 415 and the controller/processor 440 are used to transmit the first information block in this application.
  • the receiver 416 (including the antenna 420), the receive processor 412 and the controller/processor 440 are used to receive the target PUSCH in this application.
  • the transmitter 416 (including the antenna 420), the transmitting processor 415 and the controller/processor 440 are used to send the first signaling in this application.
  • Embodiment 5 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the second node device N500 is the maintenance base station of the serving cell of the first node device U550. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • the first information block is sent in step S501, the first signaling is sent in step S502, the target PUSCH is received in step S503 and the high-level HARQ bit block and the low-level HARQ bit block are determined.
  • the first information block is received in step S551
  • the first signaling is received in step S552
  • the high-level HARQ bit block and the low-level HARQ bit block are determined in step S553 and the target PUSCH is transmitted.
  • the first information block is used to determine a first ⁇ value, and the first ⁇ value is a non-negative number;
  • the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block;
  • the high-level HARQ bit block includes at least 1 high-priority HARQ-ACK bit, and the low-level HARQ bit block includes at least 1 low-priority HARQ-ACK bit;
  • the high-level HARQ bit The block is used to generate a high-level reference bit block, the high-level reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the When the target PUSCH is only used to carry HARQ-ACK, the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine whether the high-level reference bit block includes the high-level HARQ bit block When the target PUSCH is also used to carry information
  • the first signaling is transmitted through an air interface or a wireless interface.
  • the first signaling includes all or part of a higher layer signaling or a physical layer signaling.
  • the first signaling includes all or part of RRC (Radio Resource Control, radio resource control) layer signaling or MAC (Medium Access Control, media access control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • MAC Medium Access Control, media access control
  • the first signaling is user equipment specific (UE-specific).
  • the first signaling is configured per BWP (Bandwidth Part, bandwidth part) (Per BWP Configured).
  • the first signaling is transmitted through a PDCCH.
  • the first signaling includes all or part of fields in a DCI format.
  • the first signaling includes one of DCI formats (Format) 0_0, 0_1, and 0_2.
  • the first signaling includes one of DCI format (Format) 0_1 or 0_2.
  • the first signaling includes part or all of the fields in the DCI format for scheduling the target PUSCH.
  • the first signaling is used to determine whether the target PUSCH is used to carry the UL-SCH.
  • the first signaling is used to determine a modulation and coding scheme of the target PUSCH.
  • the first signaling is used to determine the priority level corresponding to the target PUSCH.
  • the expression "the first signaling is used to determine the time-frequency resource occupied by the target PUSCH" in the claims includes the following meaning: the first signaling is used by the first signaling in this application
  • a node device is configured to determine the time-frequency resource occupied by the target PUSCH.
  • the expression "the first signaling is used to determine the time-frequency resource occupied by the target PUSCH" in the claims includes the following meaning: the first signaling is used explicitly or implicitly indicates the time-frequency resource occupied by the target PUSCH.
  • the expression "the first signaling is used to determine the time-frequency resource occupied by the target PUSCH" in the claims includes the following meanings: one or more
  • the field is used to explicitly or implicitly indicate the time-frequency resource occupied by the target PUSCH.
  • Embodiment 6 illustrates a schematic diagram of a high-level reference bit block according to an embodiment of the present application, as shown in FIG. 6 .
  • the high-level reference bit block in case A (the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is not less than 2), the high-level reference bit block is the high-level HARQ bit block; in case B (the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is less than 2), the high-level HARQ bit block is filled with "0" bits to generate a high The rank reference bit-block.
  • the target PUSCH in this application when the target PUSCH in this application is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block in this application is less than 2, the The high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block; when the target PUSCH is only used to carry HARQ-ACK bits and the HARQ-ACK bits included in the high-level HARQ bit block When the number of is not less than 2, the high-level reference bit block is the same as the high-level HARQ bit block.
  • the expression "the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is filled with a "0" bit generates the high-level reference bit block.
  • the expression "the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is filled with more than one " 0" bits to generate the high-level reference bit block.
  • the expression "the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is in the MSB (Most Significant Bit , the most significant bit) is filled with "0" bits before generating the high-level reference bit block.
  • the expression "the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block” in the claims includes the following meaning: the high-level HARQ bit block is in the LSB (Least Significant Bit , the least significant bit) is filled with "0" bits to generate the high-level reference bit block.
  • the expression "the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block” in the claims includes the following meaning: the bits included in the high-level HARQ bit block are used as the The lowest bit of the high-level reference bit block, the bits in the high-level reference bit block other than the high-level HARQ bit block are set to "0".
  • the expression "the high-level HARQ bit block is filled with "0" bits to generate the high-level reference bit block” in the claims includes the following meaning: the bits included in the high-level HARQ bit block are used as the The highest bit of the high-level reference bit block, and bits other than the high-level HARQ bit block in the high-level reference bit block are set to "0".
  • Embodiment 7 illustrates a schematic diagram of a relationship between a high-level HARQ bit block and a low-level HARQ bit block according to an embodiment of the present application, as shown in FIG. 7 .
  • the area filled with cross lines represents the resources mapped to the modulation symbols generated by the high-level HARQ bit blocks
  • the area filled with small dots represents the resources mapped to the modulation symbols generated by the low-level HARQ bit blocks.
  • the filled area represents the resources mapped to the modulation symbols generated by the UL-SCH
  • the rectangular area with thick lines represents the RE reserved for HARQ-ACK.
  • the time-frequency resource occupied by the target PUSCH in this application includes a first time-frequency resource, the first time-frequency resource block is reserved for HARQ-ACK, and the first time-frequency resource
  • the block includes at least one RE; the first ⁇ value in this application is used together with the high-level reference number value to determine the number of REs included in the first time-frequency resource block, and the high-level reference bit block
  • the number of included bits is equal to the value of the high-level reference quantity; when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, the low-level HARQ bit block in this application generates Any RE mapped by the modulation symbol of is orthogonal to the first time-frequency resource block.
  • any RE included in the first time-frequency resource block is a (Reserved) RE reserved for HARQ-ACK in data and control multiplexing.
  • any RE included in the first time-frequency resource block is a reserved (Reserved) RE determined after the first step in the multiplexing of data and control.
  • the first time-frequency resource block includes REs reserved for potential (Potential) HARQ-ACK transmission.
  • the first time-frequency resource block includes REs used for HARQ-ACK puncturing transmission.
  • the first time-frequency resource block includes REs used for HARQ-ACK puncturing for other UCI or UL-SCH transmissions.
  • the first time-frequency resource block includes REs used for HARQ-ACK punctured CSI part 2 or UL-SCH transmission.
  • the first time-frequency resource block is reserved for high-priority HARQ-ACK.
  • the first time-frequency resource block is reserved for low-priority HARQ-ACK.
  • the first time-frequency resource block may be reserved for HARQ-ACK with high priority or HARQ-ACK with low priority.
  • the first time-frequency resource block is actually occupied by HARQ-ACK.
  • the first time-frequency resource block is not actually occupied by HARQ-ACK.
  • only part of REs in the first time-frequency resource block are actually occupied by HARQ-ACK.
  • the REs included in the first time-frequency resource block are discretely distributed in the frequency domain.
  • the REs included in the first time-frequency resource block are continuously distributed in the frequency domain.
  • the REs included in the first time-frequency resource block are discretely distributed in the time domain.
  • the REs included in the first time-frequency resource block are continuously distributed in the time domain.
  • the high-level reference quantity value is a positive integer.
  • the high-level reference quantity value is equal to two.
  • the high-level reference quantity value is equal to three.
  • the high-level reference quantity value is fixed.
  • the high-level reference quantity value is predefined or configured in signaling.
  • the expression "the first ⁇ value and the high-level reference quantity value are used together to determine the number of REs included in the first time-frequency resource block" in the claims includes the following meanings: the first A ⁇ value and the high-level reference quantity value are used together by the first node device in this application to determine the number of REs included in the first time-frequency resource block.
  • the expression "the first ⁇ value and the high-level reference quantity value are used together to determine the number of REs included in the first time-frequency resource block" in the claims includes the following meanings: when the When the target PUSCH carries UL-SCH, the number of REs Q' UCI_reserve included in the first time-frequency resource block satisfies the following formula:
  • the number of REs Q'UCI included in the first time-frequency resource block satisfies the following formula:
  • O UCI_ref represents the high-level reference quantity value
  • L UCI_ref represents the number of CRC bits ( LUCI_ref may be equal to 0 or greater than 0)
  • LUCI_ref represents the first beta value
  • K r represents the size of the rth UL-SCH (Uplink Shared Channel, Uplink Shared Channel) coding block carried by the target PUSCH
  • C UL-SCH represents the target The number of UL-SCH coding blocks carried by the PUSCH
  • R represents the code rate of the target PUSCH
  • Q m represents the modulation order of the target PUSCH
  • ⁇ _ref is a configured scaling factor
  • N'RE represents the target PUSCH The number of REs occupied by symbols later than the earliest DMRS symbol.
  • the expression "any RE to which the modulation symbol generated by the low-level HARQ bit block is mapped is orthogonal to the first time-frequency resource block" in the claims includes the following meanings: the low-level HARQ Any RE mapped to the modulation symbol generated by the bit block does not belong to the first time-frequency resource block.
  • the expression "any RE to which the modulation symbol generated by the low-level HARQ bit block is mapped is orthogonal to the first time-frequency resource block" in the claims includes the following meanings: the low-level HARQ Any RE to which the modulation symbols generated by the bit blocks are mapped to physical resource resources (Mapping to physical resource blocks) does not belong to the first time-frequency resource block.
  • the expression "any RE to which the modulation symbol generated by the low-level HARQ bit block is mapped is orthogonal to the first time-frequency resource block" in the claims includes the following meanings: the low-level HARQ Any RE mapped to the modulation symbol generated by the bit block is outside the first time-frequency resource block.
  • the expression "any RE to which the modulation symbol generated by the low-level HARQ bit block is mapped is orthogonal to the first time-frequency resource block" in the claims includes the following meanings: the low-level HARQ When the modulation symbols generated by the bit blocks are mapped to the physical resources, rate matching is performed on the REs included in the first time-frequency resource block.
  • the expression "any RE to which the modulation symbol generated by the low-level HARQ bit block is mapped is orthogonal to the first time-frequency resource block" in the claims includes the following meanings: the low-level HARQ The modulation symbols generated by the bit block are not mapped to the REs included in the first time-frequency resource block.
  • the modulation symbol generated by the low-level HARQ bit block is that the low-level HARQ bit block undergoes UCI bit sequence generation (UCI bit sequence generation), coding block segmentation and coding block CRC attachment (Code block segmentation and code block CRC attachment), channel coding (Channel Coding), rate matching (Rate Matching), code block concatenation (Code block concatenation), coded UCI bits multiplexing to PUSCH (Multiplexing of coded UCI bits to PUSCH), Modulation symbols generated by some or all of data and control multiplexing, scrambling, and modulation.
  • UCI bit sequence generation UCI bit sequence generation
  • coding block segmentation and coding block CRC attachment Code block segmentation and code block CRC attachment
  • channel coding Channel coding
  • Rate Matching rate matching
  • code block concatenation Code block concatenation
  • coded UCI bits multiplexing to PUSCH Multiplexing of coded UCI bits to PUSCH
  • Embodiment 8 illustrates a schematic diagram of the relationship between low-level HARQ bit blocks and modulation symbols generated by the low-level HARQ bit blocks according to an embodiment of the present application, as shown in FIG. 8 .
  • the second ⁇ value and the number of HARQ-ACK bits that the low-level HARQ bit block comprises are used together to determine the number of modulation symbols formed by the low-level HARQ bit block;
  • the low-level HARQ bit block generates a low-level reference bit block, and the second ⁇ value and the number of bits included in the low-level reference bit block are used together to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • the first information block in this application is used to determine a second ⁇ value, and the second ⁇ value is a non-negative number; when the HARQ bit block included in the low-level HARQ bit block in this application -
  • the low-level HARQ bit block is used to generate a low-level reference bit block, the low-level reference bit block includes a plurality of bits, and the bits included in the low-level reference bit block The number of is equal to the low-level reference number value, the low-level reference number value is greater than 2, and the second ⁇ value and the low-level reference number value are used together to determine the modulation symbols generated by the low-level HARQ bit block
  • the second ⁇ value and the number of HARQ-ACK bits included in the low-level HARQ bit block are used together is used to determine the number of modulation symbols generated by the low-level HARQ bit block
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used by the first node device in this application to determine the second beta value.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly indicate the second beta value.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly indicate the second Index of the beta value.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meanings: the first information block is used to explicitly or implicitly indicate that the second ⁇ value is included.
  • a ⁇ offset value index combination of two ⁇ value indexes, the ⁇ offset value index combination includes indexes of ⁇ offset values of UCI (Uplink Control Information) of different types or different information bit quantity ranges.
  • UCI Uplink Control Information
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine multiple ⁇ biases A shift value index combination, the multiple ⁇ offset value index combinations include the ⁇ offset value index combination to which the index of the second ⁇ value belongs, any one of the multiple ⁇ offset value index combinations is shifted
  • the value index combination includes indexes of ⁇ offset values of UCI (Uplink Control Information) of different types or different information bit quantity ranges.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the Multiple beta offset values for two beta values.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the Set of beta offset values for two beta values.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the A list of beta offset values for two beta values (List).
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine multiple ⁇ biases An offset value set, one of the plurality of ⁇ offset value sets includes the second offset ⁇ value.
  • the expression "the first information block is used to determine the second ⁇ value" in the claims includes the following meaning: the first information block is used to explicitly or implicitly determine the The Y1 set of beta values.
  • the second ⁇ value is a ⁇ offset value (Beta Offset).
  • the second ⁇ value is a ⁇ offset value (Beta Offset) of the HARQ-ACK not more than 2 bits.
  • the second ⁇ value is a ⁇ offset value (Beta Offset) of the HARQ-ACK that is more than 2 but not more than 11 bits.
  • the second ⁇ value is a ⁇ offset value (Beta Offset) of the HARQ-ACK with more than 11 bits.
  • the second ⁇ value is a ⁇ offset value (Beta Offset) of a low-priority HARQ-ACK.
  • the second ⁇ value is a ⁇ offset value (Beta Offset) of the low-priority HARQ-ACK carried by the low-priority PUSCH.
  • the second ⁇ value is a ⁇ offset value (Beta Offset) of the low-priority HARQ-ACK carried by the high-priority PUSCH.
  • the plurality of predefined candidate ⁇ offset values to which the second ⁇ value belongs includes a candidate ⁇ offset value equal to 0.
  • any candidate ⁇ offset value among the plurality of predefined candidate ⁇ offset values to which the second ⁇ value belongs is greater than 0.
  • any candidate ⁇ offset value among the plurality of predefined candidate ⁇ offset values to which the second ⁇ value belongs is not less than 1.
  • the first ⁇ value and the second ⁇ value are independently configured.
  • the first ⁇ value and the second ⁇ value may or may not be equal.
  • the first ⁇ value and the second ⁇ value are configured by the same RRC layer signaling or two different fields (Fields) in the same IE.
  • the first ⁇ value and the second ⁇ value belong to the same predefined or configured ⁇ offset value set.
  • the first ⁇ value and the second ⁇ value respectively belong to different predefined or configured ⁇ offset value sets.
  • the number of HARQ-ACK bits included in the low-level HARQ bit block is equal to 1 or 2.
  • the number of HARQ-ACK bits included in the low-level HARQ bit block is greater than 2.
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block" in the claims includes the following meaning: the low-level HARQ bit block is used by the first node device in this application used to generate the low-level reference bit block.
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block" in the claims includes the following meanings: the low-level HARQ bit block is filled (Padding) or extended (Extension) or Repeat (Repetition) to generate the low-level reference bit block.
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block” in the claims includes the following meaning: the low-level HARQ bit block is generated by padding "0" bits The low-level reference bit-block described above.
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block” in the claims includes the following meaning: the low-level HARQ bit block is filled with "1" bits to generate the low-level See bitblocks.
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block” in the claims includes the following meanings: the low-level HARQ bit block passes through the LSB (Least Significant Bit, least significant bit ) is filled with “0” bits to generate the low-level reference bit block.
  • LSB east Significant Bit, least significant bit
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block” in the claims includes the following meanings: the low-level HARQ bit block passes through the MSB (Most Significant Bit, most significant bit ) is filled with "0" bits to generate the low-level reference bit block.
  • the expression "the low-level HARQ bit block is used to generate a low-level reference bit block” in the claims includes the following meaning: the bits included in the low-level HARQ bit block are arranged in sequence from MSB to LSB , the low-level HARQ bit block is filled with "0" bits after the LSB (Least Significant Bit, least significant bit) to generate the low-level reference bit block.
  • the low-level reference bit block includes 3 bits.
  • any bit included in the low-level reference bit block is a bit obtained through UCI bit sequence generation (UCI bit sequence generation).
  • the low-level reference bit block is a HARQ-ACK bit sequence obtained through UCI bit sequence generation (UCI bit sequence generation).
  • the low-level reference bit block is a HARQ-ACK bit sequence input to code block segmentation and code block CRC attachment (Code block segmentation and code block CRC attachment).
  • the low-level reference bit block is a HARQ-ACK bit sequence input to channel coding.
  • any bit included in the low-level reference bit block is a bit before encoding.
  • the low-level reference bit block does not include CRC bits.
  • the low-level reference bit block includes CRC bits.
  • the low-level reference bit block when the number of bits included in the low-level reference bit block is greater than 11, the low-level reference bit block includes CRC bits; otherwise, the low-level reference bit block does not include CRC bits.
  • the low-level reference quantity value is a positive integer.
  • the low-level reference quantity value is equal to three.
  • the low-level reference number is greater than three.
  • the low-level reference quantity value is fixed.
  • the low-level reference quantity value is predefined or configured by signaling.
  • the expression "the second ⁇ value and the low-level reference quantity value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block" in the claims includes the following meanings:
  • the second ⁇ value and the low-level reference number value are used together by the first node device or the second node device in this application to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • the expression "the second ⁇ value and the low-level reference quantity value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block" in the claims includes the following meanings: The second ⁇ value and the low-level reference number value are used together to calculate the number of modulation symbols generated by the low-level HARQ bit block at each layer.
  • the expression "the second ⁇ value and the low-level reference quantity value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block" in the claims includes the following meanings: when When the target PUSCH carries UL-SCH, the number of modulation symbols Q′ UCI2 generated by the low-level HARQ bit block satisfies the following formula:
  • Q′ UCI2 satisfies the following formula:
  • O UCI2_ref represents the low-level reference quantity value
  • L UCI2_ref represents the number of CRC bits (L UCI2_ref may be equal to 0 or greater than 0)
  • K r represents the size of the rth UL-SCH (Uplink Shared Channel, Uplink Shared Channel) coding block carried by the target PUSCH
  • C UL-SCH represents the target The number of UL-SCH coding blocks carried by the PUSCH
  • R represents the code rate of the target PUSCH
  • Q m represents the modulation order of the target PUSCH
  • ⁇ 2 is a configured scaling factor
  • N'RE represents the target PUSCH The number of REs occupied by symbols later than the earliest DMRS symbol.
  • the number of symbols includes the following meanings: the second ⁇ value and the number of HARQ-ACK bits included in the low-level HARQ bit block are together determined by the first node device or the second node device in this application Used to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • the number of symbols includes the following meanings: the second ⁇ value and the number of HARQ-ACK bits included in the low-level HARQ bit block are used together to calculate the modulation generated by the low-level HARQ bit block at each layer number of symbols.
  • the number of symbols includes the following meanings: when the target PUSCH carries UL-SCH, the number of modulation symbols Q' UCI2 generated by the low-level HARQ bit block satisfies the following formula:
  • Q′ UCI2 satisfies the following formula:
  • O UCI2 represents the number of HARQ-ACK bits included in the low-level HARQ bit block
  • L UCI2 represents the number of CRC bits (L UCI2 may be equal to 0 or greater than 0)
  • K r represents the size of the rth UL-SCH (Uplink Shared Channel, Uplink Shared Channel) coding block carried by the target PUSCH
  • C UL-SCH represents the target The number of UL-SCH coding blocks carried by the PUSCH
  • R represents the code rate of the target PUSCH
  • Q m represents the modulation order of the target PUSCH
  • ⁇ 2 is a configured scaling factor
  • N'RE represents the target PUSCH The number of REs occupied by symbols later than the earliest DMRS symbol.
  • the number of transmission layers of the target PUSCH is also used to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • the modulation order of the target PUSCH is also used to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • the code rate of the target PUSCH is also used to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • the number of coding blocks carried by the target PUSCH is also used to determine the number of modulation symbols generated by the low-level HARQ bit block.
  • Embodiment 9 illustrates a schematic diagram of Y1 sets of ⁇ values according to an embodiment of the present application, as shown in FIG. 9 .
  • each dotted box represents a ⁇ value set in Y1 ⁇ value sets
  • each ⁇ in the dotted line box represents a ⁇ value included in a ⁇ value set.
  • the first signaling in this application is used to determine the time-frequency resource occupied by the target PUSCH in this application; the priority level corresponding to the target PUSCH is the same as that described in this application.
  • the first information block is used together to determine Y1 sets of beta values; any set of beta values in the Y1 sets of beta values includes multiple candidate beta values, and any set of beta values in the Y1 sets of beta values Any one of the included candidate ⁇ values is a non-negative number, and the Y1 is a positive integer greater than 1; the first signaling is used to determine a first ⁇ value set from the Y1 ⁇ value sets, and in this application The first ⁇ value is equal to a candidate ⁇ value included in the first ⁇ value set, and the number of HARQ-ACK bits included in the high-level HARQ bit block in this application is used to obtain from the first The first beta value is determined from the set of beta values.
  • the expression "the first signaling is used to determine the first set of beta values from the Y1 sets of beta values” in the claims includes the following meaning: the first signaling is used in this application
  • the first node device is configured to determine the first set of ⁇ values from the Y1 sets of ⁇ values.
  • the expression "the first signaling is used to determine the first set of beta values from the Y1 sets of beta values” in the claims includes the following meanings: the 1 included in the first signaling
  • One or more fields are used to indicate, explicitly or implicitly, said first set of beta values from among said Y1 sets of beta values.
  • the expression "the first signaling is used to determine the first set of beta values from the Y1 sets of beta values” in the claims includes the following meanings: the 1 included in the first signaling
  • One or more fields are used to explicitly or implicitly indicate the index of the first set of beta values in the Y1 sets of beta values.
  • any two beta value sets in the Y1 beta value sets are different.
  • any ⁇ value set in the Y1 ⁇ value sets includes HARQ-ACK ⁇ offset values for different information bit quantity ranges.
  • any ⁇ value set in the Y1 ⁇ value sets includes at least 3 candidate ⁇ values.
  • any two ⁇ value sets in the Y1 ⁇ value sets include the same number of candidate ⁇ values.
  • any ⁇ value set in the Y1 ⁇ value sets includes 6 candidate ⁇ values.
  • any ⁇ value set in the Y1 ⁇ value sets includes 9 candidate ⁇ values.
  • the candidate ⁇ values included in any one of the Y1 ⁇ value sets are indicated by the same IE.
  • any two candidate ⁇ values belonging to the same ⁇ value set in the Y1 set of ⁇ values are respectively ⁇ for two different types of UCIs or for two different information bit quantity ranges offset value.
  • any two ⁇ value sets in the Y1 ⁇ value sets are indicated by a list of IEs of the same type.
  • any ⁇ value set in the Y1 ⁇ value sets includes the ⁇ offset value of the CSI part 1 .
  • any ⁇ value set in the Y1 ⁇ value sets does not include the ⁇ offset value of the CSI part 1 .
  • any ⁇ value set in the Y1 ⁇ value sets includes the ⁇ offset value of the CSI part 2 .
  • any ⁇ value set in the Y1 ⁇ value sets does not include the ⁇ offset value of the CSI part 2 .
  • any one of the Y1 beta value sets is configured through all or part of fields included in one IE "betaOffsetsCrossPri-r17".
  • the Y1 is equal to 2.
  • the Y1 is equal to 4.
  • the Y1 is configurable or predefined.
  • the expression "the priority level corresponding to the target PUSCH and the first information block are used together to determine Y1 sets of ⁇ values" in the claims includes the following meanings: the priority level corresponding to the target PUSCH The grade and the first information block are used together by the first node device in this application to determine the Y1 sets of ⁇ values.
  • the expression "the priority level corresponding to the target PUSCH and the first information block are used together to determine Y1 sets of ⁇ values" in the claims includes the following meaning: the first information block is used To explicitly or implicitly indicate multiple ⁇ value set sequences (Sequence), the Y1 ⁇ value sets belong to one ⁇ value set sequence in the multiple ⁇ value set sequences, and the multiple ⁇ value set sequences Any one of the ⁇ value set sequences in includes multiple ⁇ value sets; the priority level corresponding to the target PUSCH is used to determine the ⁇ value set to which the Y1 ⁇ value sets belong from the multiple ⁇ value set sequences sequence.
  • the expression "the priority level corresponding to the target PUSCH and the first information block are used together to determine Y1 sets of ⁇ values" in the claims includes the following meaning: the first information block is used To explicitly or implicitly indicate multiple ⁇ -value set sequences, the Y1 ⁇ -value sets belong to one ⁇ -value set sequence in the multiple ⁇ -value set sequences, and any of the multiple ⁇ -value set sequences
  • a ⁇ value set sequence includes multiple ⁇ value sets; when the priority level corresponding to the target PUSCH is a high priority level, the ⁇ value set sequence to which the Y1 ⁇ value sets belong is the multiple ⁇ value set sequences in the first ⁇ value set sequence; when the priority level corresponding to the target PUSCH is a low priority level, the ⁇ value set sequence to which the Y1 ⁇ value sets belong is the first among the multiple ⁇ value set sequences Set sequence of two beta values.
  • the expression "the priority level corresponding to the target PUSCH and the first information block are used together to determine Y1 sets of ⁇ values" in the claims includes the following meaning: the first information block is used To explicitly or implicitly indicate multiple ⁇ -value set sequences, the Y1 ⁇ -value sets belong to one ⁇ -value set sequence in the multiple ⁇ -value set sequences, and any of the multiple ⁇ -value set sequences A ⁇ value set sequence includes multiple ⁇ value sets; when the priority level corresponding to the target PUSCH is a high priority level, the DCI format for scheduling the target PUSCH is used to determine from the multiple ⁇ value set sequences The first ⁇ value set sequence, the ⁇ value set sequence to which the Y1 ⁇ value sets belong is the first ⁇ value set sequence; when the priority level corresponding to the target PUSCH is a low priority level, the Y1 The ⁇ value set sequence to which the ⁇ value set belongs is the second ⁇ value set sequence in the plurality of ⁇ value set sequences.
  • the expression "the priority level corresponding to the target PUSCH and the first information block are used together to determine Y1 sets of ⁇ values" in the claims includes the following meaning: the first information block is used To explicitly or implicitly indicate multiple ⁇ -value set sequences, the Y1 ⁇ -value sets belong to one ⁇ -value set sequence in the multiple ⁇ -value set sequences, and any of the multiple ⁇ -value set sequences A ⁇ value set sequence includes multiple ⁇ value sets; when the priority level corresponding to the target PUSCH is a high priority level, the DCI format for scheduling the target PUSCH is used to determine from the multiple ⁇ value set sequences The first ⁇ value set sequence, the ⁇ value set sequence to which the Y1 ⁇ value sets belong is the first ⁇ value set sequence; when the priority level corresponding to the target PUSCH is a low priority level, schedule the target The DCI format of the PUSCH is used to determine a second ⁇ value set sequence from the plurality of ⁇ value set sequences, and the
  • the DCI format for scheduling the target PUSCH is also used to determine the Y1 sets of ⁇ values.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first ⁇ value from the first ⁇ value set" in the claims includes the following meanings :
  • the number of HARQ-ACK bits included in the high-level HARQ bit block is used by the first node device or the second node device in this application to determine the first ⁇ value set a beta value.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first ⁇ value from the first ⁇ value set" in the claims includes the following meanings :
  • the multiple candidate ⁇ values included in the first ⁇ value set correspond to multiple number ranges respectively, and the first ⁇ value corresponds to the HARQ-ACK bits included in the high-level HARQ bit block.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first ⁇ value from the first ⁇ value set" in the claims includes the following meanings :
  • the first ⁇ value set includes 1 candidate ⁇ value corresponding to no more than 2 bits of HARQ-ACK information bits, and the first ⁇ value set includes 1 candidate ⁇ value corresponding to more than 2 bits but not more than 11 bit HARQ-ACK information bits, the first ⁇ value set includes 1 candidate ⁇ value corresponding to more than 11 bits of HARQ-ACK information bits, the first ⁇ value is included in the first ⁇ value set A candidate ⁇ value corresponding to the number of HARQ-ACK bits included in the high-level HARQ bit block.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first ⁇ value from the first ⁇ value set" in the claims includes the following meanings : When the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, the first ⁇ value is equal to the first candidate ⁇ value included in the first ⁇ value set; when the high When the number of HARQ-ACK bits included in the level HARQ bit block is greater than 2 but not greater than 11, the first ⁇ value is equal to the second candidate ⁇ value included in the first ⁇ value set; when the high-level HARQ When the number of HARQ-ACK bits included in the bit block is greater than 11, the first ⁇ value is equal to the third candidate ⁇ value included in the first ⁇ value set.
  • Embodiment 10 illustrates a schematic diagram of a first domain according to an embodiment of the present application, as shown in FIG. 10 .
  • the rectangles filled with cross lines represent the first field
  • the area filled with cross lines represents low-level HARQ bit blocks.
  • the scheduling signaling of the target PUSCH in this application includes a first field, and the value of the first field is a non-negative integer; the value of the first field is used to determine all The number of HARQ-ACK bits included in the low-level HARQ bit block.
  • the scheduling signaling of the target PUSCH is the first signaling in this application.
  • the scheduling signaling of the target PUSCH includes the first information block.
  • the scheduling signaling of the target PUSCH is signaling other than the first signaling in this application.
  • the scheduling signaling of the target PUSCH does not include the first information block.
  • the scheduling signaling of the target PUSCH is a DCI format for scheduling the target PUSCH.
  • the scheduling signaling of the target PUSCH is a DCI format carried by a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) that schedules the target PUSCH.
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the scheduling signaling of the target PUSCH is used to allocate or configure the time-frequency resources occupied by the target PUSCH, the modulation coding scheme (MCS, Modulation Coding Scheme) adopted by the target PUSCH or the At least one of the redundancy versions (RV, Redundancy Version) corresponding to the target PUSCH.
  • MCS modulation coding scheme
  • RV Redundancy Version
  • the first field is a DAI (Donwlink Assignment Index, downlink assignment index) field.
  • DAI Donwlink Assignment Index, downlink assignment index
  • the first domain is the first DAI domain.
  • the first domain is the second DAI domain.
  • the first domain is the third DAI domain.
  • the first domain is a domain other than the DAI domain.
  • the expression "the value of the first field is used to determine the number of corresponding low-priority HARQ-ACK bits carried by the PUSCH" in the claims includes the following meanings: the first The value of the field is used by the first node device in this application to determine the number of HARQ-ACK bits included in the low-level HARQ bit block.
  • the expression "the value of the first field is used to determine the number of HARQ-ACK bits included in the low-level HARQ bit block" in the claims includes the following meanings: the value of the first field is used to explicitly or implicitly indicate the number of HARQ-ACK bits included in the low-level HARQ bit block.
  • the expression "the value of the first field is used to determine the number of HARQ-ACK bits included in the low-level HARQ bit block" in the claims includes the following meanings: the value of the first field Equal to one of K1 candidate integers, where K1 is a positive integer greater than 1; the remainder of K1 to the number of HARQ-ACK bits included in the low-level HARQ bit block is equal to the value of the first field.
  • the expression "the value of the first field is used to determine the number of HARQ-ACK bits included in the low-level HARQ bit block" in the claims includes the following meanings: the value of the first field Equal to one of K1 candidate integers, where K1 is a positive integer greater than 1; the value of the first field is used to determine the number of HARQ-ACK bits included in the low-level HARQ bit block for the K1 remainder of .
  • the bit width (bitwidth) of the first domain is used to determine the K1 candidate integers; the bit width of the first domain is predefined, or the first The bit width of the field is signaling configured.
  • the expression "the value of the first field is used to determine the number of HARQ-ACK bits included in the low-level HARQ bit block" in the claims includes the following meanings: the value of the first field Equal to one of K1 candidate integers, where K1 is a positive integer greater than 1; the sum of the number of HARQ-ACK bits included in the low-level HARQ bit block and the remainder of K1 plus 1 is equal to the first The value of the domain.
  • the scheduling signaling of the target PUSCH includes a second field, the value of the second field is a non-negative integer, and the value of the second field is equal to one of W1 candidate values, and the W1 is A positive integer greater than 1, any one of the W1 candidate values is a non-negative integer, the feature reference value is one of the W1 candidate values, whether the value of the second field is equal to the The characteristic reference value is used to determine whether the target PUSCH is used to carry HARQ-ACK bits corresponding to different priority levels.
  • the second domain is a DAI domain.
  • the second domain is a UL DAI domain.
  • the second domain is different from the first domain.
  • the second field is a field used to indicate a ⁇ offset value.
  • Embodiment 11 illustrates a schematic diagram of the relationship between a high-level HARQ bit sequence and a target bit sequence according to an embodiment of the present application, as shown in FIG. 11 .
  • each small box filled with oblique lines represents a bit in the high-level HARQ bit sequence
  • each small box without filling represents a bit in the target bit sequence.
  • the number of HARQ-ACK bits included in the high-level HARQ bit block in this application is used to determine the number of multiplexed high-level HARQ bit blocks on the target PUSCH in this application sequence;
  • the high-level HARQ bit block is used to generate a high-level HARQ bit sequence, the high-level HARQ bit sequence includes a plurality of sequentially indexed bits, and any bit included in the high-level HARQ bit sequence belongs to the target bit sequence, the target bit sequence is used to generate the target PUSCH, the target bit sequence includes a plurality of sequentially indexed bits;
  • the number of bits included in the high-level HARQ bit sequence is used to determine the target interval, so The target interval is a positive integer, and the target interval is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: The number of HARQ-ACK bits included in the high-level HARQ bit block is used by the first node device in this application or the second node device in this application to determine the high-level HARQ bit block The order of multiplexing on the PUSCH.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: The number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the step of multiplexing the high-level HARQ bit block onto the PUSCH.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the sequence or steps in which the high-level HARQ bit sequence is used to generate the target bit sequence.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: The number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order or steps in which the bits included in the high-level HARQ bit sequence are added or assigned to the target bit sequence.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, the multiplexing of the high-level HARQ bit block to the PUSCH belongs to step 5 of data and control multiplexing; when the When the number of HARQ-ACK bits included in the high-level HARQ bit block is greater than 2, multiplexing the high-level HARQ bit block onto the PUSCH belongs to step 2 of data and control multiplexing.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, the high-level HARQ bit block is multiplexed on the PUSCH using step 5 of data and control multiplexing; when the When the number of HARQ-ACK bits included in the high-level HARQ bit block is greater than 2, the high-level HARQ bit block is multiplexed onto the PUSCH using step 2 belonging to data and control multiplexing.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, multiplexing the high-level HARQ bit block onto the PUSCH belongs to step 1 and step 5 of data and control multiplexing ; When the number of HARQ-ACK bits included in the high-level HARQ bit block is greater than 2, multiplexing the high-level HARQ bit block onto the PUSCH belongs to step 2 of data and control multiplexing.
  • the expression "the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the PUSCH" in the claim includes the following Meaning: When the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, the high-level HARQ bit block is multiplexed on the PUSCH using steps 1 and 5 of data and control multiplexing ; When the number of HARQ-ACK bits included in the high-level HARQ bit block is greater than 2, the high-level HARQ bit block is multiplexed onto the PUSCH using step 2 belonging to data and control multiplexing.
  • the high-level HARQ bit sequence is a coded bit sequence.
  • the high-level HARQ bit sequence is a bit sequence generated through channel coding and rate matching.
  • any bit included in the high-level HARQ bit sequence is a coded bit (Coded bit).
  • any bit included in the high-level HARQ bit sequence is an encoded HARQ-ACK bit.
  • any bit included in the high-level HARQ bit sequence is a coded bit (Coded bit), and the channel coding adopted by the high-level HARQ bit sequence is short code block length (small block length) coding Or one of polar coding (Polar coding).
  • any bit included in the high-level HARQ bit sequence is an input bit used for high-priority HARQ-ACK during data and control multiplexing (Data and control multiplexing).
  • any bit included in the high-level HARQ bit sequence is an output bit after code block concatenation.
  • the high-level HARQ bit sequence is a coded bit sequence of a high-priority HARQ-ACK.
  • the high-level HARQ bit sequence only includes encoded bits of the high-level reference bit block.
  • the high-level HARQ bit sequence further includes bits other than coded bits of the high-level reference bit block.
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the high-level HARQ bit block is used by the first node device in this application Or the second node device in this application is used to generate the high-level HARQ bit sequence.
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the bits included in the high-level HARQ bit block are generated through a UCI bit sequence (UCI bit sequence generation), code block segmentation and code block CRC attachment (Code block segmentation and code block CRC attachment), channel coding (Channel Coding), rate matching (Rate Matching), code block concatenation (Code block concatenation), after encoding Any bit generated by at least one of multiplexing of coded UCI bits to PUSCH (Multiplexing of coded UCI bits to PUSCH) and data and control multiplexing (Data and control multiplexing) belongs to the high-level HARQ bit sequence.
  • UCI bit sequence generation UCI bit sequence generation
  • code block segmentation and code block CRC attachment Code block segmentation and code block CRC attachment
  • channel coding Channel coding
  • Rate Matching rate matching
  • code block concatenation Code block concatenation
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the bits included in the high-level HARQ bit block are generated through a UCI bit sequence (UCI bit sequence generation), code block segmentation and code block CRC attachment (Code block segmentation and code block CRC attachment), channel coding (Channel Coding), rate matching (Rate Matching), code block concatenation (Code block concatenation) at least Any bit generated by one of them belongs to the high-level HARQ bit sequence.
  • UCI bit sequence generation UCI bit sequence generation
  • code block segmentation and code block CRC attachment Code block segmentation and code block CRC attachment
  • channel coding Channel coding
  • Rate Matching rate matching
  • code block concatenation Code block concatenation
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the high-level HARQ bit block is used to generate the high-level HARQ bit sequence All or part of the bits in .
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the bits of the high-level HARQ bit block after channel coding and rate matching belong to the The high-level HARQ bit sequence described above.
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meanings: the bits of the high-level HARQ bit block after channel coding and rate matching The coded output order constitutes the high-level HARQ bit sequence.
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the high-level HARQ bit block undergoes bit repetition to obtain the high-level HARQ bit sequence .
  • the expression "the high-level HARQ bit block is used to generate a high-level HARQ bit sequence" in the claims includes the following meaning: the high-level HARQ bit block undergoes bit stuffing to obtain the high-level HARQ bit sequence .
  • the bits included in the high-level HARQ bit sequence are sequentially indexed starting from "0".
  • the bits included in the high-level HARQ bit sequence are sequentially indexed in the order of 0, 1, 2, . . .
  • the index value of any bit included in the high-level HARQ bit sequence is a non-negative integer.
  • the index value of any bit included in the high-level HARQ bit sequence is a positive integer.
  • the bits included in the high-level HARQ bit sequence are sequentially indexed according to the sequence of channel coding output.
  • the bits included in the high-level HARQ bit sequence are sequentially indexed according to an output sequence of channel coding and rate matching.
  • the bits included in the high-level HARQ bit sequence are sequentially indexed according to the sequence of the outputs of the concatenated coding blocks.
  • any bit included in the target bit sequence is a coded bit (Coded bit).
  • the target bit sequence is an output bit sequence during data and control multiplexing.
  • the target bit sequence is scrambling (Scrambling) input bits.
  • the target bit sequence includes coded bits multiplexed in the target PUSCH.
  • the expression "the target bit sequence is used to generate the target PUSCH" in the claims includes the following meaning: the target bit sequence is used by the first node device in this application to generate the Target PUSCH.
  • the expression "the target bit sequence is used to generate the target PUSCH" in the claims includes the following meaning: the target PUSCH carries the target bit sequence.
  • the expression "the target bit sequence is used to generate the target PUSCH" in the claims includes the following meaning: the target bit sequence is used to determine the target PUSCH.
  • the expression "the target bit sequence is used to generate the target PUSCH” in the claims includes the following meanings: the target bit sequence undergoes scrambling (Scrambling), modulation (Modulation), layer mapping ( Layer Mapping), Transform Precoding, Precoding, Mapping to Virtual resource blocks, Mapping from virtual to physical resource blocks, OFDM baseband At least one of signal generation (OFDM baseband signal generation), modulation and upconversion (Modulation and upconversion) generates the target PUSCH.
  • the expression "the target bit sequence is used to generate the target PUSCH" in the claims includes the following meanings: the target bit sequence is processed by data and control multiplexing (Data and Control Multiplexing) in the Coded bit sequence transmitted in the target PUSCH.
  • the expression "the target bit sequence is used to generate the target PUSCH" in the claims includes the following meaning: the target bit sequence is the encoded data and control multiplexed data carried by the target PUSCH sequence of bits.
  • the bits included in the target bit sequence are sequentially indexed starting from "0".
  • the bits included in the target bit sequence are sequentially indexed in the order of 0, 1, 2, . . .
  • the index value of any bit included in the target bit sequence is a positive integer.
  • the target bit sequence further includes bits other than the high-level HARQ bit sequence.
  • indexes of bits included in the high-level HARQ bit sequence in the target bit sequence are discrete.
  • indices of bits included in the high-level HARQ bit sequence in the target bit sequence are continuous.
  • an index of a bit included in the high-level HARQ bit sequence in the high-level HARQ bit sequence is the same as an index in the target bit sequence.
  • an index of a bit included in the high-level HARQ bit sequence in the high-level HARQ bit sequence is different from an index in the target bit sequence.
  • an index of a bit included in the high-level HARQ bit sequence in the target bit sequence is positively correlated with an index in the high-level HARQ bit sequence.
  • the index of a bit included in the high-level HARQ bit sequence in the target bit sequence increases as the index in the high-level HARQ bit sequence increases.
  • an index of a bit included in the high-level HARQ bit sequence in the target bit sequence is negatively correlated with an index in the high-level HARQ bit sequence.
  • an index of a bit included in the high-level HARQ bit sequence in the target bit sequence is linearly related to an index in the high-level HARQ bit sequence.
  • the index of any bit included in the high-level HARQ bit sequence in the target bit sequence is equal to the sum of the index in the high-level HARQ bit sequence and the first difference, and the first difference
  • a difference value is a predefined non-negative integer or a non-negative integer configured by signaling.
  • the target interval may be equal to 1.
  • the target interval is greater than 1.
  • the expression "the number of bits included in the high-level HARQ bit sequence is used to determine the target interval" in the claims includes the following meaning: the number of bits included in the high-level HARQ bit sequence is used by this The first node device or the second node device in the application is used to determine the target interval.
  • the expression "the number of bits included in the high-level HARQ bit sequence is used to determine the target interval" in the claims includes the following meaning: the number of bits included in the high-level HARQ bit sequence is used in calculating the target interval.
  • the expression "the number of bits included in the high-level HARQ bit sequence is used to determine the target interval" in the claims includes the following meaning: the remaining number is equal to the number of bits included in the high-level HARQ bit sequence
  • the number, the modulation order of the modulation and coding scheme adopted by the target PUSCH, and the number of subcarriers occupied by the target PUSCH in one time domain symbol are used to determine the target interval.
  • the expression "the number of bits included in the high-level HARQ bit sequence is used to determine the target interval" in the claims includes the following meaning: the remaining number is equal to the number of bits included in the high-level HARQ bit sequence The difference between the number and a first intermediate number equal to the high-level HARQ bit sequence mapped in the time-domain symbol preceding the latest time-domain symbol occupied by the high-level HARQ bit sequence The number of sequences in ; the number of comparisons is equal to the maximum number of REs that the high-level HARQ bit sequence can occupy in the latest time-domain symbol occupied and the modulation order of the target PUSCH and the target PUSCH The product of the number of layers; when the remaining number is not less than the comparison number, the target interval is equal to 1; when the remaining number is less than the comparison number, the target interval is equal to the comparison number and the comparison number The rounded down value of the ratio between the stated remaining quantities.
  • the expression "the number of bits included in the high-level HARQ bit sequence is used to determine the target interval" in the claim is realized by the target interval d satisfying the following formula
  • N L represents the number of layers of the target PUSCH
  • Q m represents the modulation of the target PUSCH order
  • G ACK (i) represents the number of bits included in the high-level HARQ bit sequence
  • the modulation order (Modulation Order) of the target PUSCH and the number of layers (Layer) of the target PUSCH are used to determine the target interval.
  • the product between the modulation order (Modulation Order) of the target PUSCH and the number of layers (Layer) of the target PUSCH is used to determine the target interval.
  • the expression "the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence" in the claims includes: the bits included in the high-level HARQ bit sequence are distributed in the target bit sequence The distribution of indices in the sequence.
  • the expression "the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence” in the claims includes: the bits included in the high-level HARQ bit sequence are distributed in the target bit sequence The pattern of indices in the sequence (Pattern).
  • the expression "the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence" in the claims includes: the two bits included in the high-level HARQ bit sequence are in the The difference between indices in the target bit sequence.
  • the expression "distribution of bits included in the high-level HARQ bit sequence in the target bit sequence" in the claims includes: the REs occupied or mapped by the high-level HARQ bit sequence are in the Distribution among all REs occupied by the target PUSCH.
  • the expression "the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence" in the claims includes: the occupied or Distribution of mapped REs in the frequency domain.
  • the expression "the target interval is used to determine the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence" in the claims includes the following meaning: the target interval is determined by this The first node device or the second node device in the application is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • the expression "the target interval is used to determine the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence” in the claims includes the following meanings: the high-level HARQ bit sequence The difference between the indices of two bits included in the sequence that are mapped in the time domain or multiplexed onto the latest time domain symbol that is mapped, in the target bit sequence, is equal to the target interval.
  • the expression "the target interval is used to determine the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence” in the claims includes the following meanings: the high-level HARQ bit sequence
  • the maximum value of the index difference between any two bits in the target bit sequence included in the time-domain mapping or multiplexed onto the latest time-domain symbol mapped is equal to the target interval.
  • the expression "the target interval is used to determine the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence” in the claims includes the following meanings: the target interval is used To determine the distribution of the REs occupied by the high-level HARQ bit sequence in all the REs occupied by the target PUSCH; the REs occupied by the high-level HARQ bit sequence are in all the REs occupied by the target PUSCH The distribution in is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • the expression "the target interval is used to determine the distribution of the bits included in the high-level HARQ bit sequence in the target bit sequence” in the claims includes the following meanings: the target interval is used It is used to determine the frequency domain distribution of the REs occupied by the high-level HARQ bit sequence on the latest time-domain symbol mapped; the RE occupied by the high-level HARQ bit sequence is on the latest time-domain symbol mapped The frequency domain distribution on is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • Embodiment 12 illustrates a structural block diagram of a processing device in the first node device of an embodiment, as shown in FIG. 12 .
  • a first node device processing apparatus 1200 includes a first receiver 1201 and a first transmitter 1202 .
  • the first receiver 1201 includes the transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 in the accompanying drawing 4 of the application; Transmitter/receiver 456 (including antenna 460 ), transmit processor 455 and controller/processor 490 .
  • the first receiver 1201 receives the first information block, the first information block is used to determine the first ⁇ value, and the first ⁇ value is a non-negative number; the first transmitter 1202 determines the high-level HARQ Bit blocks and low-level HARQ bit blocks and transmit target PUSCH, the target PUSCH is used to carry the high-level HARQ bit blocks and the low-level HARQ bit blocks; wherein, the high-level HARQ bit blocks include at least 1 High-priority HARQ-ACK bits, the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit; the high-level HARQ bit block is used to generate a high-level reference bit block, the high-level The reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the target PUSCH is only used to carry HARQ-ACK, the The number of HARQ-ACK bits included in
  • the high-level HARQ bit block is filled with " 0" bit to generate the high-level reference bit block; when the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is not less than 2, the The high-level reference bit block is the same as the high-level HARQ bit block.
  • the time-frequency resource occupied by the target PUSCH includes a first time-frequency resource, the first time-frequency resource block is reserved for HARQ-ACK, and the first time-frequency resource block includes at least one RE ;
  • the first ⁇ value and the high-level reference quantity value are used together to determine the number of REs included in the first time-frequency resource block, the number of bits included in the high-level reference bit block and the high-level The value of the level reference number is equal; when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, any RE mapped to the modulation symbol generated by the low-level HARQ bit block and the first A time-frequency resource block is orthogonal.
  • the first information block is used to determine a second ⁇ value, and the second ⁇ value is a non-negative number; when the number of HARQ-ACK bits included in the low-level HARQ bit block is not greater than 2 , the low-level HARQ bit block is used to generate a low-level reference bit block, the low-level reference bit block includes a plurality of bits, and the number of bits included in the low-level reference bit block is equal to the low-level reference quantity value, The low-level reference number value is greater than 2, and the second ⁇ value and the low-level reference number value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block; when the low-level HARQ When the number of HARQ-ACK bits included in the bit block is greater than 2, the second ⁇ value and the number of HARQ-ACK bits included in the low-level HARQ bit block are used together to determine the low-level HARQ bit block The number of modulation symbols generated.
  • the first receiver 1201 receives the first signaling, where the first signaling is used to determine the time-frequency resource occupied by the target PUSCH; the priority level and the corresponding priority of the target PUSCH
  • the first information block is used together to determine Y1 sets of ⁇ values; any one of the Y1 sets of beta values includes a plurality of candidate beta values, and any one of the Y1 sets of beta values Any candidate ⁇ value included in the set is a non-negative number, and the Y1 is a positive integer greater than 1; the first signaling is used to determine a first ⁇ value set from the Y1 set of ⁇ values, and the first a ⁇ value equal to a candidate ⁇ value included in the first set of ⁇ values from which the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first beta value.
  • the scheduling signaling of the target PUSCH includes a first field, and the value of the first field is a non-negative integer; the value of the first field is used to determine the number of bits included in the low-level HARQ bit block. Number of HARQ-ACK bits.
  • the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the target PUSCH; the high-level HARQ bit block is used to generate a high-level HARQ bit sequence, the high-level HARQ bit sequence includes a plurality of sequentially indexed bits, any bit included in the high-level HARQ bit sequence belongs to a target bit sequence, and the target bit sequence is used For generating the target PUSCH, the target bit sequence includes a plurality of sequentially indexed bits; the number of bits included in the high-level HARQ bit sequence is used to determine a target interval, the target interval is a positive integer, and the target The spacing is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • Embodiment 13 illustrates a structural block diagram of a processing device in the second node device of an embodiment, as shown in FIG. 13 .
  • the second node device processing apparatus 1300 includes a second transmitter 1301 and a second receiver 1302 .
  • the second transmitter 1301 includes the transmitter/receiver 416 (including the antenna 460) in the accompanying drawing 4 of the application, the transmitting processor 415 and the controller/processor 440;
  • the second receiver 1302 includes the application accompanying drawing 4 Transmitter/receiver 416 (including antenna 460 ), receive processor 412 and controller/processor 440 .
  • the second transmitter 1301 sends the first information block, the first information block is used to indicate the first ⁇ value, and the first ⁇ value is a non-negative number;
  • the second receiver 1302 receives the target PUSCH and Determine a high-level HARQ bit block and a low-level HARQ bit block, the target PUSCH is used to carry the high-level HARQ bit block and the low-level HARQ bit block; wherein the high-level HARQ bit block includes at least 1 High-priority HARQ-ACK bits, the low-level HARQ bit block includes at least one low-priority HARQ-ACK bit; the high-level HARQ bit block is used to generate a high-level reference bit block, the high-level The reference bit block includes a plurality of bits, and the first ⁇ value is used to determine the number of modulation symbols generated by the high-level HARQ bit block; when the target PUSCH is only used to carry HARQ-ACK, the The number of HARQ-ACK
  • the high-level HARQ bit block is filled with " 0" bit to generate the high-level reference bit block; when the target PUSCH is only used to carry HARQ-ACK bits and the number of HARQ-ACK bits included in the high-level HARQ bit block is not less than 2, the The high-level reference bit block is the same as the high-level HARQ bit block.
  • the time-frequency resource occupied by the target PUSCH includes a first time-frequency resource, the first time-frequency resource block is reserved for HARQ-ACK, and the first time-frequency resource block includes at least one RE ;
  • the first ⁇ value and the high-level reference quantity value are used together to determine the number of REs included in the first time-frequency resource block, the number of bits included in the high-level reference bit block and the high-level The value of the level reference quantity is equal; when the number of HARQ-ACK bits included in the high-level HARQ bit block is not greater than 2, any RE mapped to the modulation symbol generated by the low-level HARQ bit block and the first A time-frequency resource block is orthogonal.
  • the first information block is used to indicate a second ⁇ value, and the second ⁇ value is a non-negative number; when the number of HARQ-ACK bits included in the low-level HARQ bit block is not greater than 2 , the low-level HARQ bit block is used to generate a low-level reference bit block, the low-level reference bit block includes a plurality of bits, and the number of bits included in the low-level reference bit block is equal to the low-level reference quantity value, The low-level reference number value is greater than 2, and the second ⁇ value and the low-level reference number value are used together to determine the number of modulation symbols generated by the low-level HARQ bit block; when the low-level HARQ When the number of HARQ-ACK bits included in the bit block is greater than 2, the second ⁇ value and the number of HARQ-ACK bits included in the low-level HARQ bit block are used together to determine the low-level HARQ bit block The number of modulation symbols generated.
  • the second transmitter 1301 sends the first signaling; wherein, the first signaling is used to indicate the time-frequency resource occupied by the target PUSCH; the priority level and the target PUSCH corresponding to the target PUSCH
  • the first information block is used together to determine Y1 sets of ⁇ values; any one of the Y1 sets of beta values includes a plurality of candidate beta values, and any one of the Y1 sets of beta values Any candidate ⁇ value included in the set is a non-negative number, and the Y1 is a positive integer greater than 1; the first signaling is used to determine a first ⁇ value set from the Y1 set of ⁇ values, and the first a ⁇ value equal to a candidate ⁇ value included in the first set of ⁇ values from which the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the first beta value.
  • the scheduling signaling of the target PUSCH includes a first field, and the value of the first field is a non-negative integer; the value of the first field is used to indicate that the low-level HARQ bit block includes Number of HARQ-ACK bits.
  • the number of HARQ-ACK bits included in the high-level HARQ bit block is used to determine the order in which the high-level HARQ bit block is multiplexed on the target PUSCH; the high-level HARQ bit block is used to generate a high-level HARQ bit sequence, the high-level HARQ bit sequence includes a plurality of sequentially indexed bits, any bit included in the high-level HARQ bit sequence belongs to a target bit sequence, and the target bit sequence is used For generating the target PUSCH, the target bit sequence includes a plurality of sequentially indexed bits; the number of bits included in the high-level HARQ bit sequence is used to determine a target interval, the target interval is a positive integer, and the target The spacing is used to determine the distribution of bits included in the high-level HARQ bit sequence in the target bit sequence.
  • the first node device or second node device or UE or terminal in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, Aircraft, unmanned aerial vehicles, remote control aircraft, test devices, test equipment, test instruments and other equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, relay satellite, satellite base station, aerial base station, Test equipment, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的节点中的方法和装置。节点接收第一信息块,接收第一信息块,所述第一信息块被用于确定第一β值;节点确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH携带所述高等级HARQ比特块和所述低等级HARQ比特块;所述高等级HARQ比特块生成高等级参考比特块,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块包括的HARQ-ACK比特数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。本申请提高PUSCH的资源利用率。

Description

一种用于无线通信的节点中的方法和装置
本申请要求于2021年11月01日提交中国专利局、申请号为202111281407.2、申请名称为“一种用于无线通信的节点中的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的具有高低优先等级的上行控制信息的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。在3GPP RAN#86次全会上决定开始NR Rel-17的SI(Study Item,研究项目)和WI(Work Item,工作项目)的工作。
在新空口技术中,增强移动宽带(eMBB,enhanced Mobile BroadBand)、超可靠低时延通信(URLLC,Ultra-reliable and Low Latency Communications)、大规模机器类型通信(mMTC,massive Machine Type Communications)是三个主要的应用场景。
发明内容
在URLLC通信中,存在具有不同的优先等级的数据或者控制信息的传输。在NR Rel-16中,当具有不同的优先等级的UCI(Uplink Control Information,上行控制信息)在时域碰撞时,低优先级的UCI会被放弃来保证高优先级的UCI的传输。在NR Rel-17中,支持不同优先等级的UCI的复用到同一个PUSCH上。
针对关联到不同的优先等级的UCI的复用到同一个PUSCH上的问题,本申请公开了一种解决方案。需要说明的是,在本申请的的描述中,只是URLLC作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景(例如存在多种业务共存的场景,或者其它的具有不同优先等级的信息的复用的场景,或者具有不同的QoS要求的业务复用的场景,或者针对不同的应用场景,比如车联网和eMBB复用等),也可以取得类似的技术效果。此外,不同场景(包括但不限于URLLC的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;
确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,根据目标PUSCH是否仅被用于携带HARQ-ACK的时候来作为高优先等级的HARQ-ACK是否进行填充比特的判决条件,从而支持了在高低优先等级的HARQ-ACK复用到同一个PUSCH上的情况设计了占用预留RE(Reserved RE)的方法,避免了预留RE的浪费,保证了控制复用到PUSCH上时的资源利用率。
根据本申请的一个方面,上述方法包括:当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块;当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2时,所述高等级参考比特块和所述高等级HARQ比特块相同。
根据本申请的一个方面,上述方法包括:所述目标PUSCH所占用的时频资源包括第一时频资源,所述第一时频资源块被预留给HARQ-ACK,所述第一时频资源块包括至少一个RE;所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量,所述高等级参考比特块所包括的比特的数量和所述高等级参考数量值相等;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交。
作为一个实施例,在占用预留RE时尽量重用现有的信道编码器,实现了在不同的复用情况下降低实现的复杂度,同时根据不同的情况采用不同的β偏移值来确定预留RE的数量,在降低HARQ-ACK比特数量模糊所造成的不利影响的同时尽量最优化时频资源的使用,进一步提高PUSCH上的资源的利用率。
根据本申请的一个方面,上述方法包括:所述第一信息块被用于确定第二β值,所述第二β值是非负数;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块被用于生成低等级参考比特块,所述低等级参考比特块包括多个比特,所述低等级参考比特块所包括的比特的数量等于低等级参考数量值,所述低等级参考数量值大于2,所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,当存在高低等级的HARQ-ACK一起复用到PUSCH上的时候,根据填充后的低等级的HARQ-ACK的比特的数量来计算速率匹配后的输出比特序列的长度,同时重用现有的CSI部分1的资源(RE)映射,在降低实现的复杂度的同时,使得速率匹配和资源映射更加适配,并且降低由于低等级HARQ-ACK比特数量的模糊所造成的影响。
根据本申请的一个方面,上述方法包括:
接收第一信令;
其中,所述第一信令被用于确定所述目标PUSCH所占用的时频资源;所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合;所述Y1个β值集合中的任意一个β值集合包括多个候选β值,所述Y1个β值集合中的任意一个β值集合所包括的任意一个候选β值是非负数,所述Y1是大于1的正整数;所述第一信令被用于从所述Y1个β值集合中确定第一β值集合,所述第一β值等于所述第一β值集合所包括的一个候选β值,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值。
作为一个实施例,根据是否复用不同的优先等级的HARQ-ACK以及复用的HARQ-ACK的比特数量采用不同的β偏移值集合,从而是的所配置的UCI的有效码率满足不同情况下的鲁棒性要求,保证了URLLC中的HARQ-ACK的传输性能。
根据本申请的一个方面,上述方法包括:所述目标PUSCH的调度信令包括第一域,所述第一域的值是非负整数;所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
根据本申请的一个方面,上述方法包括:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述目标PUSCH上的顺序;所述高等级HARQ比特块被用于生成高等级HARQ比特序列,所述高等级HARQ比特序列包括多个依次索引的比特,所述高等级HARQ比特序列所包括的任意一个比特属于目标比特序列,所述目标比特序列被用于生成所述目标PUSCH,所述目标比特序列包括多个依次索引的比特;所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔,所述目标间隔是正整数,所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;
接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ 比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
根据本申请的一个方面,上述方法包括:当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块;当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2时,所述高等级参考比特块和所述高等级HARQ比特块相同。
根据本申请的一个方面,上述方法包括:所述目标PUSCH所占用的时频资源包括第一时频资源,所述第一时频资源块被预留给HARQ-ACK,所述第一时频资源块包括至少一个RE;所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量,所述高等级参考比特块所包括的比特的数量和所述高等级参考数量值相等;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交。
根据本申请的一个方面,上述方法包括:所述第一信息块被用于指示第二β值,所述第二β值是非负数;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块被用于生成低等级参考比特块,所述低等级参考比特块包括多个比特,所述低等级参考比特块所包括的比特的数量等于低等级参考数量值,所述低等级参考数量值大于2,所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
根据本申请的一个方面,上述方法包括:
发送第一信令;
其中,所述第一信令被用于指示所述目标PUSCH所占用的时频资源;所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合;所述Y1个β值集合中的任意一个β值集合包括多个候选β值,所述Y1个β值集合中的任意一个β值集合所包括的任意一个候选β值是非负数,所述Y1是大于1的正整数;所述第一信令被用于从所述Y1个β值集合中确定第一β值集合,所述第一β值等于所述第一β值集合所包括的一个候选β值,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值。
根据本申请的一个方面,上述方法包括:所述目标PUSCH的调度信令包括第一域,所述第一域的值是非负整数;所述第一域的值被用于指示所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
根据本申请的一个方面,上述方法包括:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述目标PUSCH上的顺序;所述高等级HARQ比特块被用于生成高等级HARQ比特序列,所述高等级HARQ比特序列包括多个依次索引的比特,所述高等级HARQ比特序列所包括的任意一个比特属于目标比特序列,所述目标比特序列被用于生成所述目标PUSCH,所述目标比特序列包括多个依次索引的比特;所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔,所述目标间隔是正整数,所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
本申请公开了一种用于无线通信的第一节点设备,包括:
第一接收机,接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;
第一发射机,确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等 级参考比特块和所述高等级HARQ比特块相同。
本申请公开了一种用于无线通信的第二节点设备,包括:
第二发射机,发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;
第二接收机,接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息块和目标PUSCH的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的高等级参考比特块的示意图;
图7示出了根据本申请的一个实施例的高等级HARQ比特块和低等级HARQ比特块之间的关系的示意图;
图8示出了根据本申请的一个实施例的低等级HRRQ比特块和低等级HARQ比特块所生成的调制符号之间的关系的示意图;
图9示出了根据本申请的一个实施例的Y1个β值集合的示意图;
图10示出了根据本申请的一个实施例的第一域的示意图;
图11示出了根据本申请的一个实施例的高等级HARQ比特序列和目标比特序列之间的关系的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息块和目标PUSCH的流程图100,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序指示所表示的步骤之间的先后顺序的一个示例,并不限制所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点设备在步骤101中接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;本申请中的第一节点设备在步骤102中确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述第一信息块通过空中接口或无线接口传输。
作为一个实施例,所述第一信息块包括了一个高层信令或物理层信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个RRC(Radio Resource Control,无线资源控制)层信令或MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信息块是小区特定的(Cell Specific)或者用户设备特定的(UE-
specific)。
作为一个实施例,所述第一信息块是每BWP(Bandwidth Part,带宽部分)配置的(Per BWP Configured)。
作为一个实施例,所述第一信息块包括一个DCI(Downlink Control Information)格式(Format)中的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括一个DCI(Downlink Control Information)格式(Format)中的域(Field)“beta_offset indicator”。
作为一个实施例,所述第一信息块包括一个DCI(Downlink Control Information)格式(Format)中的域(Field)“Cross Priority beta_offset indicator”。
作为一个实施例,所述第一信息块包括所述目标PUSCH的调度DCI格式中的一个或多个域。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“PUSCH-Config”中的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“UCI-OnPUSCH”中的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“UCI-OnPUSCH-r17”中的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“BetaOffsets”所包括的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“betaOffsetsCrossPri-r17”所包括的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“betaOffsetsCrossPri-List-r17”所包括的全部或部分域(Field)。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被本申请中的所述第一节点设备用于确定所述第一β值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地指示所述第一β值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地指示所述第一β值的索引。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地指示包括所述第一β值的索引的β偏移值索引组合,所述β偏移值索引组合包括不同类型或者不同信息比特数量范围的UCI(Uplink Control Information)的β偏移值的索引。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定多个β偏移值索引组合,所述多个β偏移值索引组合包括所述第一β值的索引所属的β偏移值索引组合,所述多个β偏移值索引组合中的任意一个β偏移值索引组合包括不同类型或者不同信息比特数量范围的UCI(Uplink Control Information)的β偏移值的索引。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定包括所述第一β值的多个β偏移值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定包括所述第一β值的β偏移值集合。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定包括所述第一β值的β偏移值列表(List)。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定多个β偏移值集合,所述多个β偏移值集合中的一个β偏移值集合包括所述第一β值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第一β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定本申请中的所述Y1个β值集合。
作为一个实施例,所述第一β值是β偏移值(Beta Offset)。
作为一个实施例,所述第一β值是不多于2比特的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第一β值是多于2但不多于11比特的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第一β值是多于11比特的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第一β值是高优先等级的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第一β值是低优先等级的PUSCH所携带的高优先等级的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第一β值是高优先等级的PUSCH所携带的高优先等级的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第一β值所属的预定义的多个候选β偏移值中包括一个候选β偏移值等于0。
作为一个实施例,所述第一β值所属的预定义的多个候选β偏移值中的任意一个候选β偏移值大于0。
作为一个实施例,所述第一β值所属的预定义的多个候选β偏移值中的任意一个候选β偏移值不小于1。
作为一个实施例,所述高等级HARQ比特块仅包括1个HARQ-ACK比特。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个比特是高优先等级的HARQ-ACK信息比特。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个比特属于一个HARQ-ACK码本(Codebook)。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个比特属于一个类型1(Type1)或者类型2(Type2)或者类型3(Type3)的HARQ-ACK码本(Codebook)。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个比特是信道编码前的比特。
作为一个实施例,所述高等级HARQ比特块不包括CRC比特。
作为一个实施例,当所述高等级HARQ比特块所包括的HARQ-ACK信息比特的数量大于11
时,所述高等级HARQ比特块包括CRC比特;否则,所述高等级HARQ比特块不包括CRC比特。
作为一个实施例,所述高等级HARQ比特块所对应的优先等级索引等于1。
作为一个实施例,所述高等级HARQ比特块所包括的所有的HARQ-ACK比特都对应高优先等级。
作为一个实施例,被用于配置或指示所述高等级HARQ比特块的所有的信令都配置或指示高优先等级。
作为一个实施例,所述目标PUSCH不携带所述高等级HARQ比特块之外的对应高优先等级的HARQ-ACK信息比特。
作为一个实施例,所述目标PUSCH所携带的任意一个对应高优先等级的HARQ-ACK信息比特属于所述高等级HARQ比特块。
作为一个实施例,所述高等级HARQ比特块所对应的高优先等级由调度或者配置所述高等级HARQ比特块所包括的HARQ-ACK比特的信令所确定的。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个HARQ-ACK比特所对应的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的优先等级是高优先等级。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个HARQ-ACK比特所对应的TB(Transport Block,传输块)或CBG(Code Block Group,编码块组)的优先等级是高优先等级。
作为一个实施例,所述高等级HARQ比特块所包括的任意一个HARQ-ACK比特所对应的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的调度信令指示高优先等级。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个比特是HARQ-ACK信息比特。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个比特属于一个HARQ-ACK码本(Codebook)。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个比特属于一个类型1(Type1)或者类型2(Type2)或者类型3(Type3)的HARQ-ACK码本(Codebook)。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个比特是信道编码前的比特。
作为一个实施例,所述低等级HARQ比特块所对应的优先等级是低优先等级。
作为一个实施例,所述低等级HARQ比特块所对应的优先等级索引等于0。
作为一个实施例,所述低等级HARQ比特块所对应的优先等级和所述目标PUSCH所被配置的优 先等级相同。
作为一个实施例,所述低等级HARQ比特块所对应的优先等级和所述目标PUSCH所被配置的优先等级不相同。
作为一个实施例,当所述目标PUSCH携带UL-SCH的时候,所述低等级HARQ比特块所对应的优先等级和所述目标PUSCH所携带的UL-SCH的优先等级相同。
作为一个实施例,当所述目标PUSCH携带UL-SCH的时候,所述低等级HARQ比特块所对应的优先等级和所述目标PUSCH所携带的UL-SCH的优先等级不相同。
作为一个实施例,所述低等级HARQ比特块所包括的所有的HARQ-ACK比特都对应低优先等级。
作为一个实施例,被用于配置或指示所述低等级HARQ比特块的所有的信令都配置或指示低优先等级。
作为一个实施例,所述目标PUSCH不携带所述低等级HARQ比特块之外的对应低优先等级的HARQ-ACK信息比特。
作为一个实施例,所述目标PUSCH所携带的任意一个对应低优先等级的HARQ-ACK信息比特属于所述低等级HARQ比特块。
作为一个实施例,所述低等级HARQ比特块所对应的优先等级由调度或者配置所述低等级HARQ比特块所包括的HARQ-ACK比特的信令所确定的。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个HARQ-ACK比特所对应的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的优先等级是低优先等级。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个HARQ-ACK比特所对应的TB(Transport Block,传输块)或CBG(Code Block Group,编码块组)的优先等级是低优先等级。
作为一个实施例,所述低等级HARQ比特块所包括的任意一个HARQ-ACK比特所对应的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的调度信令指示低优先等级。
作为一个实施例,所述目标PUSCH通过空中接口或无线接口传输。
作为一个实施例,所述目标PUSCH包括CG(Configured Grant,配置授予)的PUSCH。
作为一个实施例,所述目标PUSCH包括DG(Dynamic Grant,动态授予)的PUSCH。
作为一个实施例,所述目标PUSCH包括PUSCH和DMRS(Demodulation Reference Signal,解调参考信号)。
作为一个实施例,所述目标PUSCH是DCI格式0-0所调度的PUSCH。
作为一个实施例,所述目标PUSCH是DCI格式0-1所调度的PUSCH。
作为一个实施例,所述目标PUSCH是DCI格式0-2所调度的PUSCH。
作为一个实施例,权利要求中的表述“所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块”包括以下含义:所述高等级HARQ比特块和所述低等级HARQ比特块在所述目标PUSCH中传输。
作为一个实施例,权利要求中的表述“所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块”包括以下含义:所述目标PUSCH背负携带(Piggyback)所述高等级HARQ比特块和所述低等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块”包括以下含义:所述高等级HARQ比特块和所述低等级HARQ比特块复用(Multiplex)在所述目标PUSCH中传输。
作为一个实施例,所述高等级参考比特块至少包括2个比特。
作为一个实施例,所述高等级参考比特块至少包括3个比特。
作为一个实施例,所述高等级参考比特块是经过UCI比特序列生成(UCI bit sequence generation)所得到的HARQ-ACK比特序列。
作为一个实施例,所述高等级参考比特块是输入到编码块分段和编码块CRC附着(Code block segmentation and code block CRC attachment)的HARQ-ACK比特序列。
作为一个实施例,所述高等级参考比特块是输入到信道编码(Channel Coding)的HARQ-ACK比特序列。
作为一个实施例,所述高等级参考比特块所包括的任意一个比特是编码前比特。
作为一个实施例,所述高等级参考比特块不包括CRC比特。
作为一个实施例,所述高等级参考比特块包括CRC比特。
作为一个实施例,当所述高等级参考比特块所包括的比特的数量大于11时,所述高等级参考比特 块包括CRC比特;否则,所述高等级参考比特块不包括CRC比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:所述高等级HARQ比特块被本申请中的所述第一节点设备用于生成所述高等级参考比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:所述高等级HARQ比特块经过填充生成所述高等级参考比特块,或者所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块,或者所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:所述高等级HARQ比特块经过填充“1”比特生成所述高等级参考比特块,或者所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:所述高等级HARQ比特块经过比特重复生成所述高等级参考比特块,或者所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量等于1时,所述高等级HARQ比特块经过添加“0”比特得到所述高等级参考比特块;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于1时,所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:当所述高等级参考比特块所包括的比特的数量大于所述高等级HARQ比特块所包括的比特的数量的时候,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块;否则所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级参考比特块”包括以下含义:当所述高等级参考比特块所包括的比特的数量大于所述高等级HARQ比特块所包括的比特的数量的时候,所述高等级HARQ比特块经过在LSB(Least Significant Bit,最低有效位)之后填充“0”比特生成所述高等级参考比特块;否则所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,所述高等级HARQ比特块所生成的调制符号是所述高等级HARQ比特块依次经过UCI比特序列生成(UCI bit sequence generation)、编码块分段和编码块CRC附着(Code block segmentation and code block CRC attachment)、信道编码(Channel Coding)、速率匹配(Rate Matching)、编码块串联(Code block concatenation)、编码后的UCI比特复用到PUSCH(Multiplexing of coded UCI bits to PUSCH)、数据与控制复用(Data and control multiplexing)、加扰(Scrambling)、调制(Modulation)中的部分或全部所生成的调制符号。
作为一个实施例,权利要求中的表述“所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第一β值被本申请中的所述第一节点设备用于确定所述高等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第一β值被用于计算所述高等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第一β值被用于计算所述高等级HARQ比特块在每层(per layer)所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量”包括以下含义:当所述目标PUSCH被用于携带UL-SCH(Uplink Shared Channel,上行共享信道)的时候,所述高等级HARQ比特块所生成的调制符号的数量Q′ UCI1满足下式:
Figure PCTCN2022091354-appb-000001
当所述目标PUSCH不被用于携带UL-SCH(Uplink Shared Channel,上行共享信道)的时候,所述高等级HARQ比特块所生成的调制符号的数量Q′ UCI1满足下式:
Figure PCTCN2022091354-appb-000002
其中,O UCI1代表所述高等级HARQ比特块所包括的HARQ-ACK信息比特的数量,L UCI1代表CRC比特的数量(L UCI1可以等于0或大于0),
Figure PCTCN2022091354-appb-000003
代表所述第一β值,
Figure PCTCN2022091354-appb-000004
代表所述目标PUSCH所占用的RE的数量,K r代表所述目标PUSCH所携带的第r个UL-SCH(Uplink Shared Channel,上行共享信道)编码块的尺寸,C UL-SCH代表所述目标PUSCH所携带的UL-SCH编码块的数量,Q m代表所述目标PUSCH的调制阶数,R代表所述目标PUSCH的码率,α1是一个配置的比例因子,N′ RE代表所述目标PUSCH所占的晚于最早的DMRS符号的符号的RE的数量。
作为一个实施例,权利要求中的表述“所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量”包括以下含义:当所述目标PUSCH被用于携带UL-SCH(Uplink Shared Channel,上行共享信道)的时候,所述高等级HARQ比特块所生成的调制符号的数量Q′ UCI1满足下式:
Figure PCTCN2022091354-appb-000005
当所述目标PUSCH不被用于携带UL-SCH(Uplink Shared Channel,上行共享信道)的时候,所述高等级HARQ比特块所生成的调制符号的数量Q′ UCI1满足下式:
Figure PCTCN2022091354-appb-000006
其中,O UCI1代表所述高等级参考比特块所包括的HARQ-ACK信息比特的数量,L UCI1代表CRC比特的数量(L UCI1可以等于0或大于0),
Figure PCTCN2022091354-appb-000007
代表所述第一β值,
Figure PCTCN2022091354-appb-000008
代表所述目标PUSCH所占用的RE的数量,K r代表所述目标PUSCH所携带的第r个UL-SCH(Uplink Shared Channel,上行共享信道)编码块的尺寸,C UL-SCH代表所述目标PUSCH所携带的UL-SCH编码块的数量,Q m代表所述目标PUSCH的调制阶数,R代表所述目标PUSCH的码率,α1是一个配置的比例因子,N′ RE代表所述目标PUSCH所占的晚于最早的DMRS符号的符号的RE的数量。
作为一个实施例,所述目标PUSCH的传输层数也被用于确定所述高等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,所述目标PUSCH的调制阶数也被用于确定所述高等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,所述目标PUSCH的码率也被用于确定所述高等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,所述目标PUSCH所携带的编码块的数量也被用于确定所述高等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述目标PUSCH仅被用于携带HARQ-ACK”包括以下含义:所述目标PUSCH不被用于携带CSI(Channel Status information,信道状态信息)比特并且所述目标PUSCH不被用于携带UL-SCH(Uplink Shared Channel,上行共享信道)比特。
作为一个实施例,权利要求中的表述“所述目标PUSCH仅被用于携带HARQ-ACK”包括以下含义:所述目标PUSCH不被用于携带CSI或者UL-SCH。
作为一个实施例,权利要求中的表述“所述目标PUSCH仅被用于携带HARQ-ACK”包括以下含义:所述目标PUSCH不被用于携带CSI部分1(Part 1)或者CSI部分2(Part 2)或者UL-SCH。
作为一个实施例,权利要求中的表述“所述目标PUSCH仅被用于携带HARQ-ACK”包括以下含义:所述目标PUSCH不被用于携带UL-SCH。
作为一个实施例,权利要求中的表述“所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特”包括以下含义:所述目标PUSCH还被用于携带CSI或者UL-SCH两者中的至少之一。
作为一个实施例,权利要求中的表述“所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特”包括以下含义:所述目标PUSCH还被用于携带UL-SCH。
作为一个实施例,权利要求中的表述“所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特”包括以下含义:所述目标PUSCH还被用于携带CSI。
作为一个实施例,权利要求中的表述“所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特”包括以下含义:所述目标PUSCH还被用于携带CSI部分1或者UL-SCH两者中的至少之一。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被本申请中的所述第一节点设备用于确定 所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括填充比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括预置为“0”的比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块是否经过填充或添加预置比特生成所述高等级参考比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级参考比特块包括所述高等级HARQ比特块之外的比特;否则,所述高等级参考比特块不包括所述高等级HARQ比特块之外的比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块所包括的比特的数量是否等于所述高等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块所包括的比特的数量是否大于所述高等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块,所述高等级参考比特块包括2个比特;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于或者等于2时,所述高等级参考比特块就是所述高等级HARQ比特块。
作为一个实施例,权利要求中的表述“所述高等级参考比特块和所述高等级HARQ比特块相同”包括以下含义:所述高等级参考比特块所包括的比特和所述高等级HARQ比特块所包括的比特对应相同。
作为一个实施例,权利要求中的表述“所述高等级参考比特块和所述高等级HARQ比特块相同”包括以下含义:所述高等级参考比特块和所述高等级HARQ比特块是同一个比特块。
作为一个实施例,权利要求中的表述“所述高等级参考比特块和所述高等级HARQ比特块相同”包括以下含义:所述高等级参考比特块中的比特依次从0开始索引,所述高等级HARQ比特块中的比特依次从0开始索引,所述高等级参考比特块和所述高等级HARQ比特块中索引相同的比特相同。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR/演进节点B(gNB/eNB)203和其它gNB(eNB)204。gNB(eNB)203提供朝向UE201的用户和控制平面协议终止。
gNB(eNB)203可经由Xn/X2接口(例如,回程)连接到其它gNB(eNB)204。gNB(eNB)203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB(eNB)203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,测试设备、测试仪表、测试工具或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB(eNB)203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持关联到不同的优先等级的UCI的复用到PUSCH的传输。
作为一个实施例,所述gNB(eNB)201对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB(eNB)201支持关联到不同的优先等级的UCI的复用到PUSCH的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或gNB)和第二节点设备(gNB或UE)的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,本申请中的所述第一信息块生成于所述RRC306,或者MAC302,或者MAC352,或者所述PHY301,或者PHY351。
作为一个实施例,本申请中的所述目标PUSCH生成于所述RRC306,或者MAC302,或者MAC352,或者所述PHY301,或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306,或者MAC302,或者MAC352,或者所述PHY301,或者PHY351。
实施例4
实施例4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中可以包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息块所包括的上层信息和所述第一信令所包括的上层信息(当所述第一信令包括上层信息时)提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信息块所包括的高层信息和所述第一信令所包括的高层信息(当所述第一信令包括高层信息时)在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,比如本申请中的第一信令(当所述第一信令仅包括物理层信息时)和携带第一信息块的物理层信号的生成在发射处理器415完成。生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的携带第一信息块的物理层信号和第一信令的接收,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息块所包括的高层信息和第一信令所包括的高层信息(当第一信令包括上层信息时)进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,和下行传输类似,高层信息包括本申请中的目标PUSCH所携带的高层信息(当携带高层信息的时候)在控制器/处理器490生成后经过发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,包括本申请中的目标PUSCH的物理层信号的生成在发射处理器455完成,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中目标PUSCH的物理层信号,随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能包括对高层信息进行解读,包括本申请中的目标PUSCH所携带的高层信息(当携带高层信息的时候)的解读。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所 生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述第一节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一节点设备450是支持不同的优先等级的UCI复用到PUSCH的用户设备。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备410是支持不同的优先等级的UCI复用到PUSCH的基站设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于接收本申请中的所述第一信息块。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于发送本申请中的所述目标PUSCH。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于接收本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息块。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述目标PUSCH。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二节点设备N500是第一节点设备U550的服务小区的维持基站。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第二节点设备N500,在步骤S501中发送第一信息块,在步骤S502中发送第一信令,在步骤S503中接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块。
对于第一节点设备U550,在步骤S551中接收第一信息块,在步骤S552中接收第一信令,在步骤S553中确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH。
在实施例5中,所述第一信息块被用于确定第一β值,所述第一β值是非负数;所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同;所述第一信令被用于确定所述目标PUSCH所占用的时频资源。
作为一个实施例,所述第一信令通过空中接口或无线接口传输。
作为一个实施例,所述第一信令包括了一个高层信令或物理层信令中的全部或部分。
作为一个实施例,所述第一信令包括了一个RRC(Radio Resource Control,无线资源控制)层信令或MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信令是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信令是每BWP(Bandwidth Part,带宽部分)配置的(Per BWP Configured)。
作为一个实施例,所述第一信令是通过PDCCH传输的。
作为一个实施例,所述第一信令包括一个DCI格式中的全部或部分域。
作为一个实施例,所述第一信令包括DCI格式(Format)0_0、0_1、0_2中之一。
作为一个实施例,所述第一信令包括DCI格式(Format)0_1或者0_2中之一。
作为一个实施例,所述第一信令包括调度所述目标PUSCH的DCI格式中的部分或者全部的域。
作为一个实施例,所述第一信令被用于确定所述目标PUSCH是否被用于携带UL-SCH。
作为一个实施例,所述第一信令被用于确定所述目标PUSCH的调制编码方式。
作为一个实施例,所述第一信令被用于确定所述目标PUSCH所对应的优先等级。
作为一个实施例,权利要求中的表述“所述第一信令被用于确定所述目标PUSCH所占用的时频资源”包括以下含义:所述第一信令被本申请中的所述第一节点设备用于确定所述目标PUSCH所占用的时频资源。
作为一个实施例,权利要求中的表述“所述第一信令被用于确定所述目标PUSCH所占用的时频资源”包括以下含义:所述第一信令被用于显示地或者隐式地指示所述目标PUSCH所占用的时频资源。
作为一个实施例,权利要求中的表述“所述第一信令被用于确定所述目标PUSCH所占用的时频资源”包括以下含义:所述第一信令所包括的1个或者多个域被用于显示地或者隐式地指示所述目标PUSCH所占用的时频资源。
实施例6
实施例6示例了根据本申请的一个实施例的高等级参考比特块的示意图,如附图6所示。在附图6中,在情况A(目标PUSCH仅被用于携带HARQ-ACK比特并且高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2),高等级参考比特块就是高等级HARQ比特块;情况B(目标PUSCH仅被用于携带HARQ-ACK比特并且高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2)中,高等级HARQ比特块经过填充“0”比特生成高等级参考比特块。
在实施例6中,当本申请中的所述目标PUSCH仅被用于携带HARQ-ACK比特并且本申请中的所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填 充“0”比特生成所述高等级参考比特块;当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2时,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块”包括以下含义:所述高等级HARQ比特块经过填充一个“0”比特生成所述高等级参考比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块”包括以下含义:所述高等级HARQ比特块经过填充多于一个“0”比特生成所述高等级参考比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块”包括以下含义:所述高等级HARQ比特块在MSB(Most Significant Bit,最高有效位)之前经过填充“0”比特生成所述高等级参考比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块”包括以下含义:所述高等级HARQ比特块在LSB(Least Significant Bit,最低有效位)之后经过填充“0”比特生成所述高等级参考比特块。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块”包括以下含义:所述高等级HARQ比特块所包括的比特作为所述高等级参考比特块的最低位,所述高等级参考比特块中的所述高等级HARQ比特块之外的比特被置为“0”。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块”包括以下含义:所述高等级HARQ比特块所包括的比特作为所述高等级参考比特块的最高位,所述高等级参考比特块中的所述高等级HARQ比特块之外的比特被置为“0”。
实施例7
实施例7示例了根据本申请的一个实施例的高等级HARQ比特块和低等级HARQ比特块之间的关系的示意图,如附图7所示。在附图7中,交叉线填充的区域代表高等级HARQ比特块所生成的调制符号所映射的资源,小点填充的区域代表低等级HARQ比特块所生成的调制符号所映射的资源,十字线填充的区域代表UL-SCH所生成的调制符号所映射的资源,粗线款矩形区域代表为HARQ-ACK预留的RE。
在实施例7中,本申请中的所述目标PUSCH所占用的时频资源包括第一时频资源,所述第一时频资源块被预留给HARQ-ACK,所述第一时频资源块包括至少一个RE;本申请中的所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量,所述高等级参考比特块所包括的比特的数量和所述高等级参考数量值相等;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,本申请中的所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交。
作为一个实施例,所述第一时频资源块所包括的任意一个RE是数据与控制复用中的为HARQ-ACK预留的(Reserved)RE。
作为一个实施例,所述第一时频资源块所包括的任意一个RE是数据与控制复用中经过第一步后所确定的预留的(Reserved)RE。
作为一个实施例,所述第一时频资源块包括为潜在的(Potential)HARQ-ACK传输所预留的RE。
作为一个实施例,所述第一时频资源块包括被用于HARQ-ACK打孔传输的RE。
作为一个实施例,所述第一时频资源块包括被用于HARQ-ACK打孔其它UCI或UL-SCH传输的RE。
作为一个实施例,所述第一时频资源块包括被用于HARQ-ACK打孔CSI部分2或UL-SCH传输的RE。
作为一个实施例,所述第一时频资源块被预留给高优先等级的HARQ-ACK。
作为一个实施例,所述第一时频资源块被预留给低优先等级的HARQ-ACK。
作为一个实施例,所述第一时频资源块既可以被预留给高优先等级的HARQ-ACK也可以被预留给低优先等级的HARQ-ACK。
作为一个实施例,所述第一时频资源块被HARQ-ACK所实际占用。
作为一个实施例,所述第一时频资源块不被HARQ-ACK所实际占用。
作为一个实施例,所述第一时频资源块中仅部分RE被HARQ-ACK所实际占用。
作为一个实施例,所述第一时频资源块所包括的RE在频域是离散分布的。
作为一个实施例,所述第一时频资源块所包括的RE在频域是连续分布的。
作为一个实施例,所述第一时频资源块所包括的RE在时域是离散分布的。
作为一个实施例,所述第一时频资源块所包括的RE在时域是连续分布的。
作为一个实施例,所述高等级参考数量值是正整数。
作为一个实施例,所述高等级参考数量值等于2。
作为一个实施例,所述高等级参考数量值等于3。
作为一个实施例,所述高等级参考数量值是固定的。
作为一个实施例,所述高等级参考数量值是预定义的或者信令配置的。
作为一个实施例,权利要求中的表述“所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量”包括以下含义:所述第一β值和所述高等级参考数量值一起被本申请中的所述第一节点设备用于确定所述第一时频资源块所包括的RE的数量。
作为一个实施例,权利要求中的表述“所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量”包括以下含义:当所述目标PUSCH携带UL-SCH的时候,所述第一时频资源块所包括的RE的数量Q′ UCI_reserve满足下式:
Figure PCTCN2022091354-appb-000009
当所述目标PUSCH不携带UL-SCH的时候,所述第一时频资源块所包括的RE的数量Q′ UCI满足下式:
Figure PCTCN2022091354-appb-000010
其中,O UCI_ref代表所述高等级参考数量值,L UCI_ref代表CRC比特的数量(L UCI_ref可以等于0或大于0),
Figure PCTCN2022091354-appb-000011
代表所述第一β值,
Figure PCTCN2022091354-appb-000012
代表所述目标PUSCH所占用的RE的数量,K r代表所述目标PUSCH所携带的第r个UL-SCH(Uplink Shared Channel,上行共享信道)编码块的尺寸,C UL-SCH代表所述目标PUSCH所携带的UL-SCH编码块的数量,R代表所述目标PUSCH的码率,Q m代表所述目标PUSCH的调制阶数,α_ref是一个配置的比例因子,N′ RE代表所述目标PUSCH所占的晚于最早的DMRS符号的符号的RE的数量。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交”包括以下含义:所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE不属于所述第一时频资源块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交”包括以下含义:所述低等级HARQ比特块所生成的调制符号在映射到物理资源资源(Mapping to physical resource blocks)时所映射的任意一个RE不属于所述第一时频资源块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交”包括以下含义:所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE在所述第一时频资源块之外。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交”包括以下含义:所述低等级HARQ比特块所生成的调制符号在映射到物理资源时对所述第一时频资源块所包括的RE进行速率匹配。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交”包括以下含义:所述低等级HARQ比特块所生成的调制符号不映射到所述第一时频资源块所包括的RE上。
作为一个实施例,所述低等级HARQ比特块所生成的调制符号是所述低等级HARQ比特块依次经过UCI比特序列生成(UCI bit sequence generation)、编码块分段和编码块CRC附着(Code block segmentation and code block CRC attachment)、信道编码(Channel Coding)、速率匹配(Rate Matching)、编码块串联(Code block concatenation)、编码后的UCI比特复用到PUSCH(Multiplexing of coded UCI bits to PUSCH)、数据与控制复用(Data and control multiplexing)、加扰(Scrambling)、调制(Modulation)中的部分或全部所生成的调制符号。
实施例8
实施例8示例了根据本申请的一个实施例的低等级HARQ比特块和低等级HARQ比特块所生成的调制符号之间的关系的示意图,如附图8所示。在附图8中,在情况A中,第二β值和低等级 HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定低等级HARQ比特块所成成的调制符号的数量;在情况B中,低等级HARQ比特块生成低等级参考比特块,第二β值和低等级参考比特块所包括的比特的数量一起被用于确定低等级HARQ比特块所生成的调制符号的数量。
在实施例8中,本申请中的所述第一信息块被用于确定第二β值,所述第二β值是非负数;当本申请中的所述低等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块被用于生成低等级参考比特块,所述低等级参考比特块包括多个比特,所述低等级参考比特块所包括的比特的数量等于低等级参考数量值,所述低等级参考数量值大于2,所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被本申请中的所述第一节点设备用于确定所述第二β值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地指示所述第二β值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地指示所述第二β值的索引。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地指示包括所述第二β值的索引的β偏移值索引组合,所述β偏移值索引组合包括不同类型或者不同信息比特数量范围的UCI(Uplink Control Information)的β偏移值的索引。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定多个β偏移值索引组合,所述多个β偏移值索引组合包括所述第二β值的索引所属的β偏移值索引组合,所述多个β偏移值索引组合中的任意一个β偏移值索引组合包括不同类型或者不同信息比特数量范围的UCI(Uplink Control Information)的β偏移值的索引。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定包括所述第二β值的多个β偏移值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定包括所述第二β值的β偏移值集合。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定包括所述第二β值的β偏移值列表(List)。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定多个β偏移值集合,所述多个β偏移值集合中的一个β偏移值集合包括所述第二偏β值。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定第二β值”包括以下含义:所述第一信息块被用于显示地或者隐式地确定本申请中的所述Y1个β值集合。
作为一个实施例,所述第二β值是β偏移值(Beta Offset)。
作为一个实施例,所述第二β值是不多于2比特的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第二β值是多于2但不多于11比特的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第二β值是多于11比特的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第二β值是低优先等级的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第二β值是低优先等级的PUSCH所携带的低优先等级的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第二β值是高优先等级的PUSCH所携带的低优先等级的HARQ-ACK的β偏移值(Beta Offset)。
作为一个实施例,所述第二β值所属的预定义的多个候选β偏移值中包括一个候选β偏移值等于0。
作为一个实施例,所述第二β值所属的预定义的多个候选β偏移值中的任意一个候选β偏移值大于0。
作为一个实施例,所述第二β值所属的预定义的多个候选β偏移值中的任意一个候选β偏移值不 小于1。
作为一个实施例,所述第一β值和所述第二β值是独立配置的。
作为一个实施例,所述第一β值和所述第二β值可能相等也可能不相等。
作为一个实施例,所述第一β值和所述第二β值是由同一个RRC层信令或者同一个IE中的两个不同的域(Field)配置的。
作为一个实施例,所述第一β值和所述第二β值属于同一个预定义的或配置的β偏移值集合。
作为一个实施例,所述第一β值和所述第二β值分别属于不同的预定义的或配置的β偏移值集合。
作为一个实施例,所述低等级HARQ比特块所包括的HARQ-ACK比特的数量等于1或者2。
作为一个实施例,所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块被本申请中的所述第一节点设备用于生成所述低等级参考比特块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块经过填充(Padding)或者扩展(Extension)或者重复(Repetition)生成所述低等级参考比特块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块经过填充(Padding)“0”比特生成所述低等级参考比特块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块经过填充“1”比特生成所述低等级参考比特块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块经过在LSB(Least Significant Bit,最低有效位)之后填充“0”比特生成所述低等级参考比特块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块经过在MSB(Most Significant Bit,最高有效位)之前填充“0”比特生成所述低等级参考比特块。
作为一个实施例,权利要求中的表述“所述低等级HARQ比特块被用于生成低等级参考比特块”包括以下含义:所述低等级HARQ比特块所包括的比特按照从MSB到LSB依次排列,所述低等级HARQ比特块经过在LSB(Least Significant Bit,最低有效位)之后填充“0”比特生成所述低等级参考比特块。
作为一个实施例,所述低等级参考比特块包括3个比特。
作为一个实施例,所述低等级参考比特块所包括的任意一个比特是经过UCI比特序列生成(UCI bit sequence generation)所得到的比特。
作为一个实施例,所述低等级参考比特块是经过UCI比特序列生成(UCI bit sequence generation)所得到的HARQ-ACK比特序列。
作为一个实施例,所述低等级参考比特块是输入到编码块分段和编码块CRC附着(Code block segmentation and code block CRC attachment)的HARQ-ACK比特序列。
作为一个实施例,所述低等级参考比特块是输入到信道编码的HARQ-ACK比特序列。
作为一个实施例,所述低等级参考比特块所包括的任意一个比特是编码前比特。
作为一个实施例,所述低等级参考比特块不包括CRC比特。
作为一个实施例,所述低等级参考比特块包括CRC比特。
作为一个实施例,当所述低等级参考比特块所包括的比特的数量大于11时,所述低等级参考比特块包括CRC比特;否则,所述低等级参考比特块不包括CRC比特。
作为一个实施例,所述低等级参考数量值是正整数。
作为一个实施例,所述低等级参考数量值等于3。
作为一个实施例,所述低等级参考数量值大于3。
作为一个实施例,所述低等级参考数量值是固定的。
作为一个实施例,所述低等级参考数量值是预定义的或者信令配置的。
作为一个实施例,权利要求中的表述“所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第二β值和所述低等级参考数量值一起被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述低等级HARQ比特块所生 成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第二β值和所述低等级参考数量值一起被用于计算所述低等级HARQ比特块在每层所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量”包括以下含义:当所述目标PUSCH携带UL-SCH的时候,所述低等级HARQ比特块所生成的调制符号的数量Q′ UCI2满足下式:
Figure PCTCN2022091354-appb-000013
当所述目标PUSCH不携带UL-SCH的时候,Q′ UCI2满足下式:
Figure PCTCN2022091354-appb-000014
其中,O UCI2_ref代表所述低等级参考数量值,L UCI2_ref代表CRC比特的数量(L UCI2_ref可以等于0或大于0),
Figure PCTCN2022091354-appb-000015
代表所述第二β值,
Figure PCTCN2022091354-appb-000016
代表所述目标PUSCH所占用的RE的数量,K r代表所述目标PUSCH所携带的第r个UL-SCH(Uplink Shared Channel,上行共享信道)编码块的尺寸,C UL-SCH代表所述目标PUSCH所携带的UL-SCH编码块的数量,R代表所述目标PUSCH的码率,Q m代表所述目标PUSCH的调制阶数,α2是一个配置的比例因子,N′ RE代表所述目标PUSCH所占的晚于最早的DMRS符号的符号的RE的数量。
作为一个实施例,权利要求中的表述“所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量”包括以下含义:所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于计算所述低等级HARQ比特块在每层所生成的调制符号的数量。
作为一个实施例,权利要求中的表述“所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量”包括以下含义:当所述目标PUSCH携带UL-SCH的时候,所述低等级HARQ比特块所生成的调制符号的数量Q′ UCI2满足下式:
Figure PCTCN2022091354-appb-000017
当所述目标PUSCH不携带UL-SCH的时候,Q′ UCI2满足下式:
Figure PCTCN2022091354-appb-000018
其中,O UCI2代表所述低等级HARQ比特块所包括的HARQ-ACK比特的数量,L UCI2代表CRC比特的数量(L UCI2可以等于0或大于0),
Figure PCTCN2022091354-appb-000019
代表所述第二β值,
Figure PCTCN2022091354-appb-000020
代表所述目标PUSCH所占用的RE的数量,K r代表所述目标PUSCH所携带的第r个UL-SCH(Uplink Shared Channel,上行共享信道)编码块的尺寸,C UL-SCH代表所述目标PUSCH所携带的UL-SCH编码块的数量,R代表所述目标PUSCH的码率,Q m代表所述目标PUSCH的调制阶数,α2是一个配置的比例因子,N′ RE代表所述目标PUSCH所占的晚于最早的DMRS符号的符号的RE的数量。
作为一个实施例,所述目标PUSCH的传输层数也被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,所述目标PUSCH的调制阶数也被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,所述目标PUSCH的码率也被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,所述目标PUSCH所携带的编码块的数量也被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
实施例9
实施例9示例了根据本申请的一个实施例的Y1个β值集合的示意图,如附图9所示。在附图9 中,每个虚线框代表Y1个β值集合中的一个β值集合,虚线框中的每个β代表一个β值集合所包括的一个β值。
在实施例9中,本申请中的所述第一信令被用于确定本申请中的所述目标PUSCH所占用的时频资源;所述目标PUSCH所对应的优先等级和本申请中所述第一信息块一起被用于确定Y1个β值集合;所述Y1个β值集合中的任意一个β值集合包括多个候选β值,所述Y1个β值集合中的任意一个β值集合所包括的任意一个候选β值是非负数,所述Y1是大于1的正整数;所述第一信令被用于从所述Y1个β值集合中确定第一β值集合,本申请中的所述第一β值等于所述第一β值集合所包括的一个候选β值,本申请中的所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值。
作为一个实施例,权利要求中的表述“所述第一信令被用于从所述Y1个β值集合中确定第一β值集合”包括以下含义:所述第一信令被本申请中的所述第一节点设备用于从所述Y1个β值集合中确定所述第一β值集合。
作为一个实施例,权利要求中的表述“所述第一信令被用于从所述Y1个β值集合中确定第一β值集合”包括以下含义:所述第一信令所包括的1个或者多个域被用于显示地或者隐式地从所述Y1个β值集合中指示所述第一β值集合。
作为一个实施例,权利要求中的表述“所述第一信令被用于从所述Y1个β值集合中确定第一β值集合”包括以下含义:所述第一信令所包括的1个或者多个域被用于显示地或者隐式地指示所述第一β值集合在所述Y1个β值集合中的索引。
作为一个实施例,所述Y1个β值集合中的任意两个β值集合不相同。
作为一个实施例,所述Y1个β值集合中的存在两个β值集合相同。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合包括针对不同的信息比特数量范围的HARQ-ACK的β偏移值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合包括至少3个候选β值。
作为一个实施例,所述Y1个β值集合中的任意两个β值集合包括相同数量的候选β值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合包括6个候选β值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合包括9个候选β值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合所包括的候选β值是通过同一个IE所指示的。
作为一个实施例,属于所述Y1个β值集合中的同一个β值集合的任意两个候选β值是分别针对两个不同类型的UCI或者是分别针对两个不同的信息比特数量范围的β偏移值。
作为一个实施例,所述Y1个β值集合中的任意两个β值集合通过同一类IE的列表所指示的。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合包括CSI部分1的β偏移值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合不包括CSI部分1的β偏移值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合包括CSI部分2的β偏移值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合不包括CSI部分2的β偏移值。
作为一个实施例,所述Y1个β值集合中的任意一个β值集合是通过一个IE“betaOffsetsCrossPri-r17”所包括的全部或部分域配置的。
作为一个实施例,所述Y1等于2。
作为一个实施例,所述Y1等于4。
作为一个实施例,所述Y1是可配置的或者是预定义的。
作为一个实施例,权利要求中的表述“所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合”包括以下含义:所述目标PUSCH所对应的优先等级和所述第一信息块一起被本申请中的所述第一节点设备用于确定所述Y1个β值集合。
作为一个实施例,权利要求中的表述“所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合”包括以下含义:所述第一信息块被用于显示地或者隐式地指示多个β值集合序列(Sequence),所述Y1个β值集合属于所述多个β值集合序列中的一个β值集合序列,所述多个β值集合序列中的任意一个β值集合序列包括多个β值集合;所述目标PUSCH所对应的优先等级被用于从所述多个β值集合序列中确定所述Y1个β值集合所属的β值集合序列。
作为一个实施例,权利要求中的表述“所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合”包括以下含义:所述第一信息块被用于显示地或者隐式地指示多个β值集合序列,所述Y1个β值集合属于所述多个β值集合序列中的一个β值集合序列,所述多个β值集合序列中的任意一个β值集合序列包括多个β值集合;当所述目标PUSCH所对应的优先等级是高优先 等级时,所述Y1个β值集合所属的β值集合序列是所述多个β值集合序列中的第一β值集合序列;当所述目标PUSCH所对应的优先等级是低优先等级时,所述Y1个β值集合所属的β值集合序列是所述多个β值集合序列中的第二β值集合序列。作为上述实施例的一个附属实施例,所述多个β值集合序列中的任意两个β值集合序列是独立配置的。
作为一个实施例,权利要求中的表述“所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合”包括以下含义:所述第一信息块被用于显示地或者隐式地指示多个β值集合序列,所述Y1个β值集合属于所述多个β值集合序列中的一个β值集合序列,所述多个β值集合序列中的任意一个β值集合序列包括多个β值集合;当所述目标PUSCH所对应的优先等级是高优先等级时,调度所述目标PUSCH的DCI格式被用于从所述多个β值集合序列中确定第一β值集合序列,所述Y1个β值集合所属的β值集合序列是所述第一β值集合序列;当所述目标PUSCH所对应的优先等级是低优先等级时,所述Y1个β值集合所属的β值集合序列是所述多个β值集合序列中的第二β值集合序列。作为上述实施例的一个附属实施例,所述多个β值集合序列中的任意两个β值集合序列是独立配置的。
作为一个实施例,权利要求中的表述“所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合”包括以下含义:所述第一信息块被用于显示地或者隐式地指示多个β值集合序列,所述Y1个β值集合属于所述多个β值集合序列中的一个β值集合序列,所述多个β值集合序列中的任意一个β值集合序列包括多个β值集合;当所述目标PUSCH所对应的优先等级是高优先等级时,调度所述目标PUSCH的DCI格式被用于从所述多个β值集合序列中确定第一β值集合序列,所述Y1个β值集合所属的β值集合序列是所述第一β值集合序列;当所述目标PUSCH所对应的优先等级是低优先等级时,调度所述目标PUSCH的DCI格式被用于从所述多个β值集合序列中确定第二β值集合序列,所述Y1个β值集合所属的β值集合序列是所述第二β值集合序列。作为上述实施例的一个附属实施例,所述多个β值集合序列中的任意两个β值集合序列是独立配置的。
作为一个实施例,调度所述目标PUSCH的DCI格式也被用于确定所述Y1个β值集合。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被本申请中的所述第一节点设备或者所述第二节点设备用于从所述第一β值集合中确定所述第一β值。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值”包括以下含义:所述第一β值集合所包括的多个候选β值分别对应多个数量范围,所述第一β值对应所述高等级HARQ比特块所包括的HARQ-ACK比特的数量所属的所述多个数量范围中的数量范围。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值”包括以下含义:所述第一β值集合包括1个候选β值对应不多于2比特的HARQ-ACK信息比特,所述第一β值集合包括1个候选β值对应多于2比特但是不多于11比特的HARQ-ACK信息比特,所述第一β值集合包括1个候选β值对应多于11比特的HARQ-ACK信息比特,所述第一β值是所述第一β值集合所包括的所述高等级HARQ比特块所包括的HARQ-ACK比特的数量所对应的候选β值。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述第一β值等于所述第一β值集合所包括第一个候选β值;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于2但是不大于11时,所述第一β值等于所述第一β值集合所包括第二个候选β值;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于11时,所述第一β值等于所述第一β值集合所包括第三个候选β值。
实施例10
实施例10示例了根据本申请的一个实施例的第一域的示意图,如附图10所示。在附图10中,交叉线填充的矩形代表第一域,十字线填充的区域代表低等级HARQ比特块。
在实施例10中,本申请中的所述目标PUSCH的调度信令包括第一域,所述第一域的值是非负整数;所述第一域的值被用于确定本申请中的所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述目标PUSCH的调度信令是本申请中的所述第一信令。
作为一个实施例,所述目标PUSCH的调度信令包括所述第一信息块。
作为一个实施例,所述目标PUSCH的调度信令是本申请中的所述第一信令之外的信令。
作为一个实施例,所述目标PUSCH的调度信令不包括所述第一信息块。
作为一个实施例,所述目标PUSCH的调度信令是调度所述目标PUSCH的DCI格式。
作为一个实施例,所述目标PUSCH的调度信令是调度所述目标PUSCH的PDCCH(Physical Downlink Control Channel,物理下行控制信道)所携带的DCI格式。
作为一个实施例,所述目标PUSCH的调度信令被用于分配或配置所述目标PUSCH所占用的时频资源、所述目标PUSCH所采用的调制编码方式(MCS,Modulation Coding Scheme)或者所述目标PUSCH所对应的冗余版本(RV,Redundancy Version)中的至少之一。
作为一个实施例,所述第一域是DAI(Donwlink Assignment Index,下行分配索引)域。
作为一个实施例,所述第一域是第一个DAI域。
作为一个实施例,所述第一域是第二个DAI域。
作为一个实施例,所述第一域是第三个DAI域。
作为一个实施例,所述第一域是DAI域之外的域。
作为一个实施例,权利要求中的表述“所述第一域的值被用于确定所述PUSCH被用于携带的对应低优先等级的HARQ-ACK比特的数量”包括以下含义:所述第一域的值被本申请中的所述第一节点设备用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,权利要求中的表述“所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量”包括以下含义:所述第一域的值被用于显示地或者隐式地指示所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,权利要求中的表述“所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量”包括以下含义:所述第一域的值等于K1个候选整数中之一,所述K1是大于1的正整数;所述低等级HARQ比特块所包括的HARQ-ACK比特的数量对所述K1的余数等于所述第一域的值。
作为一个实施例,权利要求中的表述“所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量”包括以下含义:所述第一域的值等于K1个候选整数中之一,所述K1是大于1的正整数;所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量对所述K1的余数。作为上述实施例的一个附属实施例,所述第一域的比特宽度(bitwidth)被用于确定所述K1个候选整数;所述第一域的比特宽度是预定义的,或者所述第一域的比特宽度是信令配置的。
作为一个实施例,权利要求中的表述“所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量”包括以下含义:所述第一域的值等于K1个候选整数中之一,所述K1是大于1的正整数;所述低等级HARQ比特块所包括的HARQ-ACK比特的数量对所述K1的余数加1的和等于所述第一域的值。
作为一个实施例,所述目标PUSCH的调度信令包括第二域,所述第二域的值是非负整数,所述第二域的值等于W1个备选数值中之一,所述W1是大于1的正整数,所述W1个备选数值中的任意一个备选数值是非负整数,特征参考数值是所述W1个备选数值中之一,所述第二域的值是否等于所述特征参考数值被用于确定所述目标PUSCH是否被用于携带对应不同的优先等级的HARQ-ACK比特。作为上述实施例的一个附属实施例,所述第二域是DAI域。作为上述实施例的一个附属实施例,所述第二域是UL DAI域。作为上述实施例的一个附属实施例,所述第二域和所述第一域不相同。作为上述实施例的一个附属实施例,所述第二域是被用于指示β偏移值的域。
实施例11
实施例11示例了根据本申请的一个实施例的高等级HARQ比特序列和目标比特序列之间的关系的示意图,如附图11所示。在附图11中,每个斜线填充的小方框代表高等级HARQ比特序列中的一个比特,每个无填充的小方框代表目标比特序列中的一个比特。
在实施例11中,本申请中的所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到本申请中的所述目标PUSCH上的顺序;所述高等级HARQ比特块被用于生成高等级HARQ比特序列,所述高等级HARQ比特序列包括多个依次索引的比特,所述高等级HARQ比特序列所包括的任意一个比特属于目标比特序列,所述目标比特序列被用于生成所述目标PUSCH,所述目标比特序列包括多个依次索引的比特;所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔,所述目标间隔是正整数,所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:所述高等级 HARQ比特块所包括的HARQ-ACK比特的数量被本申请中的所述第一节点设备或者本申请中的所述第二节点设备用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的步骤。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特序列被用于生成所述目标比特序列中的顺序或者步骤。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特序列所包括的比特被添加或赋值到所述目标比特序列中的顺序或者步骤。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述高等级HARQ比特块复用到所述PUSCH上属于数据与控制复用的步骤5;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述高等级HARQ比特块复用到所述PUSCH上属于数据与控制复用的步骤2。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述高等级HARQ比特块采用数据与控制复用的步骤5复用到所述PUSCH上;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述高等级HARQ比特块采用属于数据与控制复用的步骤2复用到所述PUSCH上。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述高等级HARQ比特块复用到所述PUSCH上属于数据与控制复用的步骤1和步骤5;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述高等级HARQ比特块复用到所述PUSCH上属于数据与控制复用的步骤2。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述PUSCH上的顺序”包括以下含义:当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述高等级HARQ比特块采用数据与控制复用的步骤1和步骤5复用到所述PUSCH上;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述高等级HARQ比特块采用属于数据与控制复用的步骤2复用到所述PUSCH上。
作为一个实施例,所述高等级HARQ比特序列是编码后的比特(coded bit)序列。
作为一个实施例,所述高等级HARQ比特序列是经过信道编码和速率匹配所生成的比特序列。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特是编码后比特(Coded bit)。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特是HARQ-ACK比特经过编码后的比特。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特是编码后比特(Coded bit),所述高等级HARQ比特序列所采用的信道编码是短码块长度(small block length)编码或者极化编码(Polar coding)中之一。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特是数据与控制复用(Data and control multiplexing)时的输入的用于高优先等级的HARQ-ACK的比特。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特是经过编码块串联(Code block concatenation)的输出的比特。
作为一个实施例,所述高等级HARQ比特序列是高优先等级的HARQ-ACK的编码后的比特序列。
作为一个实施例,所述高等级HARQ比特序列仅包括所述高等级参考比特块编码后的比特。
作为一个实施例,所述高等级HARQ比特序列还包括所述高等级参考比特块编码后的比特之外的比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块被本申请中的所述第一节点设备或者本申请中的所述第二节点设备用于生成所述高等级HARQ比特序列。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块所包括的比特经过UCI比特序列生成(UCI bit sequence generation)、编码块分段和编码块CRC附着(Code block segmentation and code block CRC attachment)、信道编码(Channel Coding)、速率匹配(Rate Matching)、编码块串联(Code block concatenation)、编码后的UCI比特复用到PUSCH(Multiplexing of coded UCI bits to PUSCH)、数据与控制复用(Data and control multiplexing)中的至少之一所生成的任意一个比特属于所述高等级HARQ比特序列。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块所包括的比特经过UCI比特序列生成(UCI bit sequence generation)、编码块分段和编码块CRC附着(Code block segmentation and code block CRC attachment)、信道编码(Channel Coding)、速率匹配(Rate Matching)、编码块串联(Code block concatenation)中的至少之一所生成的任意一个比特属于所述高等级HARQ比特序列。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块被用于生成所述高等级HARQ比特序列中的全部或部分比特。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块经过信道编码和速率匹配后的比特属于所述高等级HARQ比特序列。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块经过信道编码和速率匹配后的比特按照信道编码的输出顺序组成所述高等级HARQ比特序列。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块经过比特重复得到所述高等级HARQ比特序列。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特块被用于生成高等级HARQ比特序列”包括以下含义:所述高等级HARQ比特块经过比特填充得到所述高等级HARQ比特序列。
作为一个实施例,所述高等级HARQ比特序列所包括的比特从“0”开始依次索引。
作为一个实施例,所述高等级HARQ比特序列所包括的比特按照0,1,2,…的顺序依次索引。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特的索引值是非负整数。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特的索引值是正整数。
作为一个实施例,所述高等级HARQ比特序列所包括的比特按照信道编码输出的顺序依次索引。
作为一个实施例,所述高等级HARQ比特序列所包括的比特按照信道编码和速率匹配的输出的顺序依次索引。
作为一个实施例,所述高等级HARQ比特序列所包括的比特按照经过编码块串联的输出的顺序依次索引。
作为一个实施例,所述目标比特序列所包括的任意一个比特是编码后比特(Coded bit)。
作为一个实施例,所述目标比特序列是数据与控制复用过程中的输出比特序列。
作为一个实施例,所述目标比特序列是加扰(Scrambling)的输入比特。
作为一个实施例,所述目标比特序列包括在所述目标PUSCH中复用的编码后的比特。
作为一个实施例,权利要求中的表述“所述目标比特序列被用于生成所述目标PUSCH”包括以下含义:所述目标比特序列被本申请中的所述第一节点设备用于生成所述目标PUSCH。
作为一个实施例,权利要求中的表述“所述目标比特序列被用于生成所述目标PUSCH”包括以下含义:所述目标PUSCH携带所述目标比特序列。
作为一个实施例,权利要求中的表述“所述目标比特序列被用于生成所述目标PUSCH”包括以下含义:所述目标比特序列被用于确定所述目标PUSCH。
作为一个实施例,权利要求中的表述“所述目标比特序列被用于生成所述目标PUSCH”包括以下含义:所述目标比特序列依次经过加扰(Scrambling)、调制(Modulation)、层映射(Layer Mapping)、变换预编码(Transform Precoding)、预编码(Precoding)、映射到虚拟资源块 (Mapping to Virtual resource blocks)、从虚拟到物理资源块映射(Mapping from virtual to physical resource blocks)、OFDM基带信号生成(OFDM baseband signal generation)、调制与上变频(Modulation and upconversion)中的至少之一生成所述目标PUSCH。
作为一个实施例,权利要求中的表述“所述目标比特序列被用于生成所述目标PUSCH”包括以下含义:所述目标比特序列是经过数据与控制复用(Data and Control Multiplexing)在所述目标PUSCH中传输的编码后比特序列。
作为一个实施例,权利要求中的表述“所述目标比特序列被用于生成所述目标PUSCH”包括以下含义:所述目标比特序列是所述目标PUSCH所携带的数据与控制复用的编码后比特序列。
作为一个实施例,所述目标比特序列所包括的比特从“0”开始依次索引。
作为一个实施例,所述目标比特序列所包括的比特按照0,1,2,…的顺序依次索引。
作为一个实施例,所述目标比特序列所包括的任意一个比特的索引值是正整数。
作为一个实施例,所述目标比特序列还包括所述高等级HARQ比特序列之外的比特。
作为一个实施例,所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的索引是离散的。
作为一个实施例,所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的索引是连续的。
作为一个实施例,所述高等级HARQ比特序列所包括的一个比特在所述高等级HARQ比特序列中的索引和在所述目标比特序列中的索引是相同的。
作为一个实施例,所述高等级HARQ比特序列所包括的一个比特在所述高等级HARQ比特序列中的索引和在所述目标比特序列中的索引是不相同的。
作为一个实施例,所述高等级HARQ比特序列所包括的一个比特在所述目标比特序列中的索引和在所述高等级HARQ比特序列中的索引正相关。
作为一个实施例,所述高等级HARQ比特序列所包括的一个比特在所述目标比特序列中的索引随着在所述高等级HARQ比特序列中的索引增大而增大。
作为一个实施例,所述高等级HARQ比特序列所包括的一个比特在所述目标比特序列中的索引和在所述高等级HARQ比特序列中的索引负相关。
作为一个实施例,所述高等级HARQ比特序列所包括的一个比特在所述目标比特序列中的索引和在所述高等级HARQ比特序列中的索引线性相关。
作为一个实施例,所述高等级HARQ比特序列所包括的任意一个比特在所述目标比特序列中的索引等于在所述高等级HARQ比特序列中的索引和第一差值的和,所述第一差值是预定义的非负整数或者是信令配置的非负整数。
作为一个实施例,所述目标间隔可以等于1。
作为一个实施例,所述目标间隔大于1。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔”包括以下含义:所述高等级HARQ比特序列所包括的比特的数量被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述目标间隔。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔”包括以下含义:所述高等级HARQ比特序列所包括的比特的数量被用于计算所述目标间隔。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔”包括以下含义:剩余数量等于所述高等级HARQ比特序列所包括的比特的数量和所述目标PUSCH所采用的调制编码方式的调制阶数和所述目标PUSCH在一个时域符号中所占用的子载波的数量一起被用于确定所述目标间隔。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔”包括以下含义:剩余数量等于所述高等级HARQ比特序列所包括的比特的数量和第一中间数量之间的差值,所述第一中间数量等于所述高等级HARQ比特序列占用的最晚的时域符号之前的时域符号中所映射的所述高等级HARQ比特序列中的序列的数量;比较数量等于所述高等级HARQ比特序列在所占用的最晚的时域符号中所能占用的最大的RE的数量和所述目标PUSCH的调制阶数和所述目标PUSCH的层的数量的乘积;当所述剩余数量不小于所述比较数量时,所述目标间隔等于1;当所述剩余数量小于所述比较数量时,所述目标间隔等于所述比较数量与所述剩余数量之间的比值的向下取整值。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特的数量被用于确 定目标间隔”是通过所述目标间隔d满足下式实现的
Figure PCTCN2022091354-appb-000021
其中,
Figure PCTCN2022091354-appb-000022
代表所述高等级HARQ比特序列在所占用的最晚的时域符号中所能占用的最大的RE的数量,N L代表所述目标PUSCH的层的数量,Q m代表所述目标PUSCH的调制阶数,G ACK(i)代表所述高等级HARQ比特序列所包括的比特的数量,
Figure PCTCN2022091354-appb-000023
代表所述高等级HARQ比特序列占用的最晚的时域符号之前的时域符号中所映射的所述高等级HARQ比特序列中的序列的数量。
作为一个实施例,所述目标PUSCH的调制阶数(Modulation Order)和所述目标PUSCH的层(Layer)的数量被用于确定所述目标间隔。
作为一个实施例,所述目标PUSCH的调制阶数(Modulation Order)和所述目标PUSCH的层(Layer)的数量之间的乘积被用于确定所述目标间隔。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括:所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的索引的分布。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括:所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的索引的图样(Pattern)。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括:所述高等级HARQ比特序列所包括的两个比特在所述目标比特序列中的索引之间的差值。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括:所述高等级HARQ比特序列所占用或映射的RE在所述目标PUSCH所占用的所有RE中的分布。
作为一个实施例,权利要求中的表述“所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括:所述高等级HARQ比特序列在一个时域符号上所占用或映射的RE在频域的分布。
作为一个实施例,权利要求中的表述“所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括以下含义:所述目标间隔被本申请中的所述第一节点设备或者第二节点设备用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
作为一个实施例,权利要求中的表述“所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括以下含义:所述高等级HARQ比特序列所包括的在时域映射或者复用到所映射的最晚的时域符号上的两个比特在所述目标比特序列中的索引的差值等于所述目标间隔。
作为一个实施例,权利要求中的表述“所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括以下含义:所述高等级HARQ比特序列所包括的在时域映射或者复用到所映射的最晚的时域符号上的任意两个比特在所述目标比特序列中的索引的差值的最大值等于所述目标间隔。
作为一个实施例,权利要求中的表述“所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括以下含义:所述目标间隔被用于确定所述高等级HARQ比特序列所占用的RE在所述目标PUSCH所占用的所有的RE中的分布;所述高等级HARQ比特序列所占用的RE在所述目标PUSCH所占用的所有的RE中的分布被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
作为一个实施例,权利要求中的表述“所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布”包括以下含义:所述目标间隔被用于确定所述高等级HARQ比特序列所占用的RE在所映射的最晚的时域符号上的频域分布;所述高等级HARQ比特序列所占用的RE在所映射的最晚的时域符号上的频域分布被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
实施例12
实施例12示例了一个实施例的第一节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第一节点设备处理装置1200包括第一接收机1201和第一发射机1202。第一接收机1201包括本申请附图4中的发射器/接收器456(包括天线460)、接收处理器452和控制器/处理器490;第一发射机1202包括本申请附图4中的发射器/接收器456(包括天线460)、发射处 理器455和控制器/处理器490。
在实施例12中,第一接收机1201接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;第一发射机1202确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块;当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2时,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述目标PUSCH所占用的时频资源包括第一时频资源,所述第一时频资源块被预留给HARQ-ACK,所述第一时频资源块包括至少一个RE;所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量,所述高等级参考比特块所包括的比特的数量和所述高等级参考数量值相等;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交。
作为一个实施例,所述第一信息块被用于确定第二β值,所述第二β值是非负数;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块被用于生成低等级参考比特块,所述低等级参考比特块包括多个比特,所述低等级参考比特块所包括的比特的数量等于低等级参考数量值,所述低等级参考数量值大于2,所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,第一接收机1201接收第一信令,其中,所述第一信令被用于确定所述目标PUSCH所占用的时频资源;所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合;所述Y1个β值集合中的任意一个β值集合包括多个候选β值,所述Y1个β值集合中的任意一个β值集合所包括的任意一个候选β值是非负数,所述Y1是大于1的正整数;所述第一信令被用于从所述Y1个β值集合中确定第一β值集合,所述第一β值等于所述第一β值集合所包括的一个候选β值,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值。
作为一个实施例,所述目标PUSCH的调度信令包括第一域,所述第一域的值是非负整数;所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述目标PUSCH上的顺序;所述高等级HARQ比特块被用于生成高等级HARQ比特序列,所述高等级HARQ比特序列包括多个依次索引的比特,所述高等级HARQ比特序列所包括的任意一个比特属于目标比特序列,所述目标比特序列被用于生成所述目标PUSCH,所述目标比特序列包括多个依次索引的比特;所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔,所述目标间隔是正整数,所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
实施例13
实施例13示例了一个实施例的第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300包括第二发射机1301和第二接收机1302。第二发射机1301包括本申请附图4中的发射器/接收器416(包括天线460),发射处理器415和控制器/处理器440;第二接收机1302包括本申请附图4中的发射器/接收器416(包括天线460),接收处理器412和控制器/处理器440。
在实施例13中,第二发射机1301发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;第二接收机1302接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块;当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2时,所述高等级参考比特块和所述高等级HARQ比特块相同。
作为一个实施例,所述目标PUSCH所占用的时频资源包括第一时频资源,所述第一时频资源块被预留给HARQ-ACK,所述第一时频资源块包括至少一个RE;所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量,所述高等级参考比特块所包括的比特的数量和所述高等级参考数量值相等;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交。
作为一个实施例,所述第一信息块被用于指示第二β值,所述第二β值是非负数;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块被用于生成低等级参考比特块,所述低等级参考比特块包括多个比特,所述低等级参考比特块所包括的比特的数量等于低等级参考数量值,所述低等级参考数量值大于2,所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
作为一个实施例,第二发射机1301发送第一信令;其中,所述第一信令被用于指示所述目标PUSCH所占用的时频资源;所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合;所述Y1个β值集合中的任意一个β值集合包括多个候选β值,所述Y1个β值集合中的任意一个β值集合所包括的任意一个候选β值是非负数,所述Y1是大于1的正整数;所述第一信令被用于从所述Y1个β值集合中确定第一β值集合,所述第一β值等于所述第一β值集合所包括的一个候选β值,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值。
作为一个实施例,所述目标PUSCH的调度信令包括第一域,所述第一域的值是非负整数;所述第一域的值被用于指示所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述目标PUSCH上的顺序;所述高等级HARQ比特块被用于生成高等级HARQ比特序列,所述高等级HARQ比特序列包括多个依次索引的比特,所述高等级HARQ比特序列所包括的任意一个比特属于目标比特序列,所述目标比特序列被用于生成所述目标PUSCH,所述目标比特序列包括多个依次索引的比特;所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔,所述目标间隔是正整数,所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备或者第二节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通 信设备,飞行器,飞机,无人机,遥控飞机,测试装置,测试设备,测试仪表等设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;
    第一发射机,确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
    其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
  2. 根据权利要求1所述的第一节点设备,其特征在于,当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量小于2时,所述高等级HARQ比特块经过填充“0”比特生成所述高等级参考比特块;当所述目标PUSCH仅被用于携带HARQ-ACK比特并且所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不小于2时,所述高等级参考比特块和所述高等级HARQ比特块相同。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述目标PUSCH所占用的时频资源包括第一时频资源,所述第一时频资源块被预留给HARQ-ACK,所述第一时频资源块包括至少一个RE;所述第一β值和高等级参考数量值一起被用于确定所述第一时频资源块所包括的RE的数量,所述高等级参考比特块所包括的比特的数量和所述高等级参考数量值相等;当所述高等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块所生成的调制符号所映射的任意一个RE和所述第一时频资源块正交。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一信息块被用于确定第二β值,所述第二β值是非负数;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量不大于2时,所述低等级HARQ比特块被用于生成低等级参考比特块,所述低等级参考比特块包括多个比特,所述低等级参考比特块所包括的比特的数量等于低等级参考数量值,所述低等级参考数量值大于2,所述第二β值和所述低等级参考数量值一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量;当所述低等级HARQ比特块所包括的HARQ-ACK比特的数量大于2时,所述第二β值和所述低等级HARQ比特块所包括的HARQ-ACK比特的数量一起被用于确定所述低等级HARQ比特块所生成的调制符号的数量。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信令,其中,所述第一信令被用于确定所述目标PUSCH所占用的时频资源;所述目标PUSCH所对应的优先等级和所述第一信息块一起被用于确定Y1个β值集合;所述Y1个β值集合中的任意一个β值集合包括多个候选β值,所述Y1个β值集合中的任意一个β值集合所包括的任意一个候选β值是非负数,所述Y1是大于1的正整数;所述第一信令被用于从所述Y1个β值集合中确定第一β值集合,所述第一β值等于所述第一β值集合所包括的一个候选β值,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于从所述第一β值集合中确定所述第一β值。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述目标PUSCH的调度信令包括第一域,所述第一域的值是非负整数;所述第一域的值被用于确定所述低等级HARQ比特块所包括的HARQ-ACK比特的数量。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级HARQ比特块复用到所述目标PUSCH上的顺序;所述高等级HARQ比特块被用于生成高等级HARQ比特序列,所述高等级HARQ比特序列包括多个依次索引的比特,所述高等级HARQ比特序列所包括的任意一个比特属于目标比特序列,所述目标比特序列被用于生成所述目标PUSCH,所述目标比特序列包括多个依次索引的比特;所述高等级HARQ比特序列所包括的比特的数量被用于确定目标间隔,所述目标间隔是正整数,所述目标间隔被用于确定所述高等级HARQ比特序列所包括的比特在所述目标比特序列中的分布。
  8. 一种用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;
    第二接收机,接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标 PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
    其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
  9. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息块,所述第一信息块被用于确定第一β值,所述第一β值是非负数;
    确定高等级HARQ比特块和低等级HARQ比特块并且发送目标PUSCH,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
    其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
  10. 一种用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息块,所述第一信息块被用于指示第一β值,所述第一β值是非负数;
    接收目标PUSCH并且确定高等级HARQ比特块和低等级HARQ比特块,所述目标PUSCH被用于携带所述高等级HARQ比特块和所述低等级HARQ比特块;
    其中,所述高等级HARQ比特块包括至少1个高优先等级的HARQ-ACK比特,所述低等级HARQ比特块包括至少1个低优先等级的HARQ-ACK比特;所述高等级HARQ比特块被用于生成高等级参考比特块,所述高等级参考比特块包括多个比特,所述第一β值被用于确定所述高等级HARQ比特块所生成的调制符号的数量;当所述目标PUSCH仅被用于携带HARQ-ACK的时候,所述高等级HARQ比特块所包括的HARQ-ACK比特的数量被用于确定所述高等级参考比特块是否包括所述高等级HARQ比特块之外的比特;当所述目标PUSCH还被用于携带HARQ-ACK之外的信息比特的时候,所述高等级参考比特块和所述高等级HARQ比特块相同。
PCT/CN2022/091354 2021-11-01 2022-05-07 一种用于无线通信的节点中的方法和装置 WO2023071135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111281407.2 2021-11-01
CN202111281407.2A CN116095851A (zh) 2021-11-01 2021-11-01 一种用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023071135A1 true WO2023071135A1 (zh) 2023-05-04

Family

ID=86160452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091354 WO2023071135A1 (zh) 2021-11-01 2022-05-07 一种用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116095851A (zh)
WO (1) WO2023071135A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208510A1 (en) * 2018-01-04 2019-07-04 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in wireless communication system
CN113489576A (zh) * 2021-04-26 2021-10-08 上海移远通信技术股份有限公司 一种用于无线通信的节点中的方法和装置
CN113498179A (zh) * 2020-04-02 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113572495A (zh) * 2020-04-13 2021-10-29 英特尔公司 对ul控制和ul数据传输进行复用的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208510A1 (en) * 2018-01-04 2019-07-04 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in wireless communication system
CN113498179A (zh) * 2020-04-02 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113572495A (zh) * 2020-04-13 2021-10-29 英特尔公司 对ul控制和ul数据传输进行复用的系统和方法
CN113489576A (zh) * 2021-04-26 2021-10-08 上海移远通信技术股份有限公司 一种用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUECTEL, LANGBO: "Discussion on Intra-UE Multiplexing/Prioritization", 3GPP TSG RAN WG1 MEETING #106BIS-E, R1-2109260, 1 October 2021 (2021-10-01), XP052058215 *

Also Published As

Publication number Publication date
CN116095851A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2021204156A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018166188A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN113890708B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021147892A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021082932A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022227428A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2022062982A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022205848A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021197043A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071135A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023092953A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023035420A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2022237643A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023077757A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230137740A1 (en) Method and device in nodes used for wireless communication
CN115134053B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061248A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061231A1 (zh) 用于无线通信的方法和装置
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE