WO2023071102A1 - 一种顺铂交联的蛋白水凝胶及制备方法 - Google Patents

一种顺铂交联的蛋白水凝胶及制备方法 Download PDF

Info

Publication number
WO2023071102A1
WO2023071102A1 PCT/CN2022/089407 CN2022089407W WO2023071102A1 WO 2023071102 A1 WO2023071102 A1 WO 2023071102A1 CN 2022089407 W CN2022089407 W CN 2022089407W WO 2023071102 A1 WO2023071102 A1 WO 2023071102A1
Authority
WO
WIPO (PCT)
Prior art keywords
cisplatin
drug
serum albumin
protein hydrogel
cross
Prior art date
Application number
PCT/CN2022/089407
Other languages
English (en)
French (fr)
Inventor
于双江
闫安
魏舒
孙鸿程
刘俊秋
Original Assignee
杭州师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州师范大学 filed Critical 杭州师范大学
Publication of WO2023071102A1 publication Critical patent/WO2023071102A1/zh
Priority to US18/458,057 priority Critical patent/US20230398143A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the field of pharmaceutical preparations, and in particular relates to a protein hydrogel with cisplatin as a cross-linking agent and a preparation method thereof.
  • Hydrogel is a material with a three-dimensional network structure and contains a large amount of water or biological fluid. According to the source of the components, they can be divided into two categories: natural polymer hydrogels and synthetic polymer hydrogels. Natural polymers mainly include polysaccharides (such as chitosan, hyaluronic acid, etc.) and proteins (such as collagen, gelatin, albumin, etc.); synthetic polymers mainly include polymethacrylic acid and its derivatives, Polyester, polyether and polyamino acid materials, etc.
  • Natural polymers mainly include polysaccharides (such as chitosan, hyaluronic acid, etc.) and proteins (such as collagen, gelatin, albumin, etc.); synthetic polymers mainly include polymethacrylic acid and its derivatives, Polyester, polyether and polyamino acid materials, etc.
  • the use of natural source proteins as the substrate of gel materials has many advantages, such as good biocompatibility, adjustable viscoelasticity, and biodegradability in vivo, etc., while in drug delivery, biological It has broad application prospects in sensing, tissue engineering and artificial organs.
  • Albumin is the most important protein in the body's serum. It is easy to obtain, easy to dissolve, and has good biocompatibility. It is widely used in the field of biomedicine.
  • hydrogel can be used as a drug release library locally, which can continuously provide effective drug concentration to the lesion in time, and can deliver the drug to the lesion more directly in space.
  • hydrogel It is more direct and effective, especially for drugs with relatively high toxicity and side effects, and it is a very promising drug delivery method.
  • water-soluble drugs such as cisplatin, doxorubicin hydrochloride, etc.
  • the explosive release behavior of the drug in the early stage is a problem that cannot be ignored, which will greatly weaken the regulatory effect of the hydrogel carrier and affect the therapeutic effect.
  • the drug released in the early burst will cause greater local tissue toxicity. Therefore, reducing the drug burst release behavior and realizing the controllability of drug release is very necessary to take advantage of the hydrogel carrier.
  • Cisplatin is one of the conventional chemotherapeutic drugs. It has the characteristics of broad anti-cancer spectrum and definite curative effect. It is clinically used in the treatment of various solid tumors. However, due to its large toxic and side effects, it often causes huge psychological and physical harm to patients. If the local sustained-release treatment of such drugs can be realized, it will have good potential application value for reducing the side effects of patients' systemic treatment, improving the quality of life of patients, and improving tumor compression in advanced patients.
  • the object of the present invention is to address the deficiencies of the prior art and provide a protein prodrug hydrogel formulation and preparation method using cisplatin as a cross-linking agent.
  • the invention provides a cisplatin cross-linked protein hydrogel, the main components of which include the following components in mass content: 0.5%-5.0% of drug, 6.0%-50.0% of serum albumin, and 47.0%-93.0% of solvent medium ; wherein the carboxyl group on the surface of serum albumin forms a coordination bond with the drug;
  • the drug is cisplatin
  • the serum albumin is one of human serum albumin, bovine serum albumin, and mouse serum albumin;
  • the solvent medium is water or a solution without chloride ions.
  • the mass content of the serum albumin is 15.0-40.0%, most preferably 20.0-30.0%.
  • the mass content of the drug is 1.5-2.0%.
  • Another object of the present invention is to provide a kind of preparation method of cisplatin cross-linked protein hydrogel, specifically:
  • Step (1) prepare serum albumin and solvent media into a serum albumin solution with a certain concentration, place it in a water bath at 25-65°C and heat for a period of time until the albumin is completely dissolved to obtain a clear albumin solution;
  • Step (2) add drug to the above-mentioned clarified albumin solution, and at a certain temperature, a coordination reaction occurs between the drug and the carboxyl group on the surface of serum albumin in the solvent medium to generate a cisplatin complex; After standing for a period of time at a speed of 10-230 r/min, the cisplatin-crosslinked protein hydrogel can be obtained.
  • the reaction temperature in the coordination reaction is 10-50°C.
  • Another object of the present invention is to provide the application of a cisplatin cross-linked protein hydrogel on a slow-release carrier.
  • Another object of the present invention is to provide a combined drug, including cisplatin cross-linked protein hydrogel, and other drugs loaded on the cisplatin cross-linked protein hydrogel;
  • the other drug is one of immune adjuvant drugs, immune check blocking drugs and the like.
  • the cisplatin cross-linked protein gel has good stability in vitro, but can degrade under protease and chloride ion stimulation conditions, so as to achieve the purpose of sustained drug release.
  • the cell experiment data shows that the toxicity of the cisplatin cross-linked albumin hydrogel is significantly reduced in the short term compared with the simple cisplatin drug, which proves that the hydrogel has obvious sustained release effect on the drug, which is due to the It is caused by the coordination between the carboxyl group on the surface and cisplatin. This property is of great significance for reducing the side effects caused by the burst release behavior of the drug and prolonging the action time of the drug at the tumor site.
  • the cisplatin cross-linked albumin hydrogel obtained in the present invention has the characteristics of triggering degradation by chloride ions, and has good biocompatibility and biodegradability, which is conducive to its further application as a drug carrier in the body, and the degradation can be obtained
  • the products of the hydrogel are only serum albumin and cisplatin, the former can be absorbed or decomposed by the body, and is basically harmless to the human body, while the latter can be used as a chemotherapy drug to enter tumor cells to exert anti-tumor effects; therefore, the hydrogel has a broad range of applications. Application prospects.
  • the hydrogel preparation provided by the present invention has a simple structure and is easy to prepare, and the cisplatin used has dual functions: it is not only a cross-linking agent that promotes the formation of protein hydrogel, but also an anti-tumor agent that exerts a tumor-inhibiting effect. drug.
  • the present invention effectively reduces the introduction of other ingredients and reduces the potential risk of side effects in the body; on the other hand, the carboxyl group of the protein restricts the release of cisplatin through coordination, which can greatly reduce the burst release behavior of the drug. It helps to reduce the tissue toxicity of cisplatin, and provides an effective solution for improving the efficiency of local tumor treatment.
  • Fig. 1 (A) obtains the photo of cisplatin cross-linked protein hydrogel forming gel for embodiment 1;
  • Fig. 1 (B) is the photo that can't be cross-linked into gel when the drug mass content is less than 0.5%;
  • Fig. 2 is the SEM microstructure diagram of cisplatin cross-linked protein hydrogel obtained in embodiment 1;
  • Fig. 3 is the rheological research result of cisplatin cross-linked protein hydrogel obtained in embodiment 1;
  • Fig. 4 is the result of the in vitro degradation experiment of cisplatin cross-linked protein hydrogel obtained in embodiment 2;
  • Fig. 5 is the result of the cytotoxicity experiment of the cisplatin-crosslinked protein hydrogel obtained in Example 2.
  • the invention provides a protein hydrogel with cisplatin drug as a cross-linking agent, which comprises cisplatin drug, serum albumin and a solvent medium.
  • the mass ratio of serum albumin to the gel material is preferably 6.0%-50.0%, more preferably 15.0-40.0%, and most preferably 20.0-30.0%.
  • the content of the drug cisplatin is preferably 0.5%-5.0%, more preferably 1.0-3.0%, most preferably 1.5-2.0%.
  • the present invention uses cisplatin to prepare drug-loaded hydrogel preparations, including serum albumin and solvents described in the above technical scheme.
  • the drug-loaded gel preparation prepared by the present invention can prepare a certain concentration of serum albumin solution through a solvent medium, add cisplatin drug, and obtain drug-loaded cisplatin complex hydrogel by controlling conditions.
  • the solvent medium is ultrapure water and any solution that does not contain chloride ions, and the solution must have functional groups that form coordination with platinum atoms.
  • the mass ratio of the serum albumin to the gel material is preferably 6.0%-50.0%, more preferably 15.0-40.0%, most preferably 20.0-30.0%.
  • the serum albumin solution in the gel material can not only be cross-linked with cisplatin to form a gel for local treatment, but also can be cross-linked with other anti-tumor drugs that can form coordination bonds with carboxyl groups; the hydrogel can Used alone or co-loaded with other drugs (such as protein peptide drugs, immune adjuvants and immune check blocking drugs, etc.) for combined treatment.
  • the chloride ion-responsive hydrogel material is a general drug-carrying platform that can be used for local disease treatment, and the drug type, degradation time, and indications can be adjusted according to needs.
  • the cisplatin cross-linked albumin hydrogel prepared in Example 1 of the present invention was quickly frozen by the liquid nitrogen quick freezing method, and freeze-dried to obtain a freeze-dried gel sample; the sample was subjected to a scanning electron microscope test to obtain a gel microscopic Form photo. It can be seen from Figure 2 that the complex hydrogel material has a connected macroporous structure, which facilitates the delivery and release of drugs in the gel material.
  • Fig. 1 (A) obtains the photo of cisplatin cross-linked protein hydrogel forming gel for embodiment 1;
  • Figure 1(B) is a photo of the drug that cannot be cross-linked into a gel when the mass content of the drug is less than 0.5%.
  • Fig. 3 is the rheological research result of the cisplatin cross-linked protein hydrogel obtained in Example 1.
  • Example 2 of the present invention In the process of preparing cisplatin cross-linked albumin hydrogel in Example 2 of the present invention, when cisplatin completely disappears, pour the fluid colloid from the container into a mold with a bottom diameter of 2.5 cm, and place it in a shaker , set the temperature at 45°C to continue to gel. After gel formation, the disc gel was taken out and placed on a rotational rheometer to test the modulus of the cisplatin-crosslinked albumin hydrogel.
  • the cisplatin cross-linked albumin hydrogel prepared in Example 2 of the present invention was accurately weighed to obtain block gels loaded with different cisplatin masses, and corresponding pure cisplatin solutions of different concentrations were prepared with culture medium. Taking the 4T1 cell line as the research object, 30,000 cells/well were seeded in a 12-well plate and cultured overnight. Cytotoxicity studies were carried out with pure cisplatin (pure cisplatin in FIG. 5 ) and the cisplatin cross-linked albumin hydrogel obtained in Example 2 (cross-linked cisplatin hydrogel in FIG. 5 ).
  • Example 2 It can be seen from the experimental results that the cisplatin cross-linked albumin hydrogel obtained in Example 2 has low toxicity, which indicates that the action of cisplatin and carboxyl group slows down the release of the drug, showing a sustained release behavior. This lays the foundation for reducing the burst release of drugs and realizing the sustained release of drugs.
  • mice serum albumin powder into 70 ⁇ L of ultrapure water, heat it in a water bath at 45°C to dissolve it completely to obtain a light yellow clear solution, add 1.5mg of cisplatin to the solution and put it on a shaker, set the temperature at 25°C, and rotate at 230r/ min, or use mechanical stirring to disperse cisplatin evenly in the solution, and after 72-84 hours of reaction, a protein hydrogel with cisplatin as a cross-linking agent is obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种顺铂交联的蛋白水凝胶及其制备方法,水凝胶的主成分包括以下质量含量的组分:药物0.5%~5.0%、血清白蛋白6.0%~50.0%、溶媒介质47.0%~93.0%,其中血清白蛋白表面的羧基与药物形成配位键,药物为顺铂。水凝胶制剂结构简单、易于制备,且顺铂既是促进蛋白水凝胶形成的交联剂,也是发挥抑瘤疗效的抗肿瘤药物;蛋白羧基通过配位作用对顺铂的释放产生限制,减少药物的爆释行为。

Description

一种顺铂交联的蛋白水凝胶及制备方法 技术领域
本发明属于药物制剂领域,具体涉及一种顺铂药物作为交联剂的蛋白水凝胶及其制备方法。
背景技术
由于实体肿瘤组织生长速度快,从而造成相对于正常生理组织更高的细胞间质压力,这使得化疗过程中肿瘤区域有效的药物浓度低;另外,肿瘤微环境十分复杂,这也是影响药物扩散的重要原因之一。而静脉注射给药的方法具有毒副作用大、病灶部位有效药物浓度低等缺点。肿瘤局部治疗具有给药浓度集中、全身副作用小等优势,且能够克服生理性给药障碍,因而近年来受到了广泛的研究和关注。
水凝胶是一种具有三维网络结构且含有大量水或生物体液的材料。根据组成成分来源的不同,可分为天然高分子水凝胶和合成高分子水凝胶两大类。天然高分子主要包括多糖类(如:壳聚糖、透明质酸等)和蛋白类(如:胶原、明胶、白蛋白等);合成高分子则主要包括聚甲基丙烯酸及其衍生物、聚酯、聚醚和聚氨基酸材料等。在不同类型的水凝胶中,使用天然来源的蛋白质作为凝胶材料的基底,具备许多优势,如生物相容性良好、粘弹性可调、及生物体内可降解等,而在药物递送、生物传感、组织工程及人造器官等方面应用前景广阔。白蛋白是机体血清中最主要的蛋白质,具有易得、易溶解、生物相容性好等特点,在生物医学领域被广泛应用。
水凝胶作为药物载体,能够在局部作为一个药物释放库,时间上能够向病灶部位持续提供有效的药物浓度,空间上能够更加直接的将药物递送到病灶部位,该方法相对于全身治疗而言更加直接有效,特别对于毒副作用较大的药物,是一种非常有发展潜力的给药手段。但对于水溶性药物来说(如顺铂、盐酸阿霉素等),前期的药物爆释行为是一个不容忽视的问题,这会使水凝胶载体的调控作用大大削弱,影响治疗效果,而且前期爆释的药物会造成较大的局部组织毒性。因此,减少药物爆释行为,实现药物释放的可控性,对于发挥水凝胶载体的优势是十分必要的。
顺铂药物属于常规化疗药物之一,具有抗癌谱广、疗效确切等特点,临床用于多种实体肿瘤治疗。但由于其较大的毒副作用往往给病人造成巨大的心理和生理的伤害。如 果能够实现该类药物的局部缓释治疗,对于减少病人全身治疗的副作用、提高病人生活质量以及改善晚期病人肿瘤压迫等均具有较好的潜在应用价值。
发明内容
本发明的目的是针对现有技术的不足,提供了一种以顺铂药物作为交联剂的蛋白前药水凝胶制剂及制备方法。
本发明提供了一种顺铂交联的蛋白水凝胶,其主成分包括以下质量含量的组分:药物0.5%~5.0%、血清白蛋白6.0%~50.0%、溶媒介质47.0%~93.0%;其中血清白蛋白表面的羧基与药物形成配位键;
所述药物为顺铂;
所述血清白蛋白为人血清白蛋白、牛血清白蛋白、鼠血清白蛋白中的一种;
所述溶媒介质为水或不含氯离子的溶液。
作为优选,所述血清白蛋白的质量含量为15.0~40.0%,最优选为20.0~30.0%。
作为优选,所述药物的质量含量为1.5~2.0%。
本发明的另一个目的是提供了一种顺铂交联蛋白水凝胶的制备方法,具体是:
步骤(1)、将血清白蛋白、溶媒介质配置成一定浓度的血清白蛋白溶液,置于25~65℃水浴中加热一段时间,直至白蛋白完全溶解,得到澄清白蛋白溶液;
步骤(2)、在上述澄清白蛋白溶液中加入药物,一定温度下药物与血清白蛋白表面的羧基在溶媒介质中发生配位反应,生成顺铂配合物;置于4~65℃恒温摇床中以10~230r/min的转速放置一段时间后,即可得到顺铂交联的蛋白水凝胶。
作为优选,配位反应中的反应温度为10~50℃。
本发明的又一个目的是提供一种顺铂交联蛋白水凝胶在缓释载体上的应用。
本发明的再一个目的是提供一种联合药物,包括顺铂交联蛋白水凝胶,以及负载在顺铂交联蛋白水凝胶上的其他药物;
作为优选,其他药物为免疫佐剂药物、免疫检查阻断药物等中的一种。
通过流变学实验和降解实验可见,该顺铂交联蛋白凝胶具有良好的体外稳定性,但在蛋白酶及氯离子刺激条件下,能够发生降解,从而实现药物缓释的目的。细胞实验数据可见:该顺铂交联白蛋白水凝胶与单纯顺铂药物相比,其毒性在短期内明显减小,证明水凝胶对药物具有明显的缓释作用,这是由于白蛋白表面的羧基与顺铂的配位作用引起的,该性质对于降低药物的爆释行为带来的副作用和延长药物在肿瘤部位的作用时间 均具有重要意义。
本发明所获得的顺铂交联白蛋白水凝胶具有氯离子触发降解特性,并具有良好的生物相容性和生物可降解性,有利于其作为药物载体在体内的进一步应用,而且降解得到的产物仅为血清白蛋白和顺铂,前者可被机体吸收或分解,对人体基本无害,而后者可作为化疗药物进入肿瘤细胞内从而发挥抗肿瘤作用;因此,该水凝胶具有广阔的应用前景。
与现有技术相比,本发明提供的水凝胶制剂结构简单、易于制备,且使用的顺铂具有双重作用:既是促进蛋白水凝胶形成的交联剂,也是发挥抑瘤疗效的抗肿瘤药物。本发明有效减少了其他成分的引入,降低了机体副作用的潜在风险;另一方面,蛋白羧基通过配位作用对顺铂的释放产生限制,能够在很大程度上减少药物的爆释行为,这有助于减少顺铂的机体组织毒性,为提高肿瘤局部治疗效率提供了有效的方案。
附图说明
图1(A)为实施例1获得顺铂交联蛋白水凝胶成胶照片;
图1(B)为药物质量含量小于0.5%时无法交联成胶的照片;
图2为实施例1获得顺铂交联蛋白水凝胶SEM微观结构图;
图3为实施例1获得顺铂交联蛋白水凝胶的流变学研究结果;
图4为实施例2获得顺铂交联蛋白水凝胶的体外降解实验结果;
图5为实施例2获得顺铂交联蛋白水凝胶的细胞毒性实验结果。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供了一种顺铂药物作为交联剂的蛋白水凝胶,包括顺铂药物、血清白蛋白和溶媒介质。其中血清白蛋白占凝胶材料的质量比优选为6.0%~50.0%,更优选为15.0~40.0%,最优选为20.0~30.0%。所述药物顺铂的含量优选为0.5%~5.0%,更优选为1.0~3.0%,最优选为1.5~2.0%。
本发明以顺铂药物制备载药水凝胶制剂,包含上述技术方案所述的血清白蛋白和溶剂。
本发明所制备的载药凝胶制剂可以通过溶媒介质配制一定浓度的血清白蛋白溶液, 加入顺铂药物,通过控制条件,获得载药顺铂配合物水凝胶。
优选的,所述溶媒介质为超纯水及任何不含氯离子的溶液,且该溶液中须具备与铂原子形成配位作用的官能团。所述血清白蛋白所占凝胶材料的质量比优选为6.0%~50.0%,更优选为15.0~40.0%,最优选为20.0~30.0%。
同时,该凝胶材料中的血清白蛋白溶液不仅可以与顺铂交联成胶进行局部治疗,亦可与其他能够与羧基形成配位键的抗肿瘤药物交联成胶;该水凝胶可单独使用或通过与其他药物(如蛋白多肽类药物、免疫佐剂和免疫检查阻断药物等)共载进行联合治疗。应当说,该氯离子响应型水凝胶材料是一个可用于局部疾病治疗的通用的药物担载平台,能够根据需要调整药物种类、降解时间、适应症等。
为了进一步说明本发明,以下结合实施例对本发明提供的顺铂交联白蛋白水凝胶及其制备方法进行详细描述。
实施例1
将300mg牛血清白蛋白粉末加入700μL超纯水中,45℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入15mg顺铂后放入摇床,设置温度42℃,转速230r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过36-48h反应后,获得顺铂作为交联剂的蛋白水凝胶。
将本发明实施例1制备的顺铂交联白蛋白水凝胶通过液氮速冻法将凝胶快速冷冻,并经冷冻干燥获得冻干凝胶样品;将样品进行扫描电镜测试,获得凝胶微观形态照片。从图2中可见,配合物水凝胶材料具有联通的大孔结构,这有利于药物在凝胶材料中传输和释放。
图1(A)为实施例1获得顺铂交联蛋白水凝胶成胶照片;
图1(B)为药物质量含量小于0.5%时无法交联成胶的照片。
图3为实施例1获得顺铂交联蛋白水凝胶的流变学研究结果。
实施例2
将200mg牛血清白蛋白粉末加入800μL超纯水中,45℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入15mg顺铂后放入摇床,设置温度10℃,转速230r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过72-84h反应后,获得顺铂作为交联剂的蛋白水凝胶。
在本发明实施例2制备顺铂交联白蛋白水凝胶的过程中,顺铂完全消失时将具有流 动性的胶体从容器中倒入底面直径2.5cm的模具中,将其置入摇床中,设置温度45℃继续成胶。成胶后取出圆片状凝胶置于旋转流变仪上,测试该顺铂交联白蛋白水凝胶的模量。
向实施例2所制得的顺铂交联白蛋白水凝胶中分别加入生理条件浓度的胰蛋白酶水溶液、含有生理条件浓度胰蛋白酶的生理盐水溶液,并置于37℃下培养,在特定时间点吸干液体,称取剩余凝胶质量。降解曲线参见图4,降解实验结果表明凝胶本身具有一定的稳定性,而且在胰蛋白酶和生理盐水(氯离子)存在的模拟体内条件下可降解,证明凝胶的生物降解性,且具有一定的氯离子响应性,有利于生物医学应用。
将本发明实施例2制备的顺铂交联白蛋白水凝胶精确称量得到担载不同顺铂质量的块状凝胶,并用培养基配置相对应的不同浓度的纯顺铂溶液。以4T1细胞系为研究对象,将3万/孔细胞种于12孔板中,培养过夜。以纯顺铂药物(图5中顺铂纯药)、实施例2获得的顺铂交联白蛋白水凝胶(图5中交联顺铂水凝胶)进行细胞毒性研究。通过实验结果可见,由实施例2所获得的顺铂交联白蛋白水凝胶毒性较低,这说明顺铂与羧基的作用减缓了药物的释放,表现出缓释的行为。这对于减少药物爆释,实现药物的持续释放奠定了基础。
实施例3
将60mg牛血清白蛋白粉末加入940μL超纯水中,65℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入10mg顺铂后放入摇床,设置温度37℃,转速200r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过72-84h反应后,获得顺铂作为交联剂的蛋白水凝胶。
实施例4
将50mg牛血清白蛋白粉末加入50μL超纯水中,65℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入5mg顺铂后放入摇床,设置温度42℃,转速10r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过72-84h反应后,获得顺铂作为交联剂的蛋白水凝胶。
实施例5
将20mg人血清白蛋白粉末加入80μL超纯水中,25℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入1.5mg顺铂后放入摇床,设置温度40℃,转速230r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过36-48h反应后,获得顺铂作 为交联剂的蛋白水凝胶。
实施例6
将30mg鼠血清白蛋白粉末加入70μL超纯水中,45℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入1.5mg顺铂后放入摇床,设置温度25℃,转速230r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过72-84h反应后,获得顺铂作为交联剂的蛋白水凝胶。
实施例7
将500mg牛血清白蛋白粉末加入500μL超纯水中,25℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入6mg顺铂后放入摇床,设置温度65℃,转速200r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过48-72h反应后,获得顺铂作为交联剂的蛋白水凝胶。
实施例8
将100mg牛血清白蛋白粉末加入900μL超纯水中,25℃水浴加热使其完全溶解得到淡黄色澄清溶液,向溶液中加入50mg顺铂后放入摇床,设置温度4℃,转速230r/min,或使用机械搅拌使顺铂均匀分散在溶液中,经过72-84h反应后,获得顺铂作为交联剂的蛋白水凝胶。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (10)

  1. 一种顺铂交联的蛋白水凝胶,其特征在于主成分包括以下质量含量的组分:药物0.5%~5.0%、血清白蛋白6.0%~50.0%、溶媒介质47.0%~93.0%;其中血清白蛋白表面的羧基与药物形成配位键;所述药物为顺铂。
  2. 如权利要求1所述的一种顺铂交联的蛋白水凝胶,其特征在于所述血清白蛋白为人血清白蛋白、牛血清白蛋白、鼠血清白蛋白中的一种;
  3. 如权利要求1或2所述的一种顺铂交联的蛋白水凝胶,其特征在于所述溶媒介质为水或不含氯离子的溶液。
  4. 如权利要求1所述的一种顺铂交联的蛋白水凝胶,其特征在于所述血清白蛋白的质量含量为15.0~40.0%。
  5. 如权利要求4所述的一种顺铂交联的蛋白水凝胶,其特征在于所述血清白蛋白的质量含量为20.0~30.0%。
  6. 如权利要求1所述的一种顺铂交联的蛋白水凝胶,其特征在于所述药物的质量含量为1.5~2.0%。
  7. 制备如权利要求1-6任一所述的一种顺铂交联蛋白水凝胶的方法,其特征在于具体是:
    步骤(1)、将血清白蛋白、溶媒介质配置成一定浓度的血清白蛋白溶液,置于25~65℃水浴中加热一段时间,直至白蛋白完全溶解,得到澄清白蛋白溶液;
    步骤(2)、在上述澄清白蛋白溶液中加入药物,一定温度下药物与血清白蛋白表面的羧基在溶媒介质中发生配位反应,生成顺铂配合物;然后置于4~65℃恒温摇床中以10~230r/min的转速放置一段时间后,即可得到顺铂交联的蛋白水凝胶。
  8. 如权利要求1所述的一种顺铂交联蛋白水凝胶的制备方法,其特征在于步骤(2)中配位反应的反应温度为10~50℃。
  9. 如权利要求1-6任一所述的一种顺铂交联蛋白水凝胶在作为缓释载体上的应用。
  10. 一种联合药物,其特征在于包括如权利要求1-6任一所述的一种顺铂交联蛋白水凝胶,以及负载在顺铂交联蛋白水凝胶上的其他药物。
PCT/CN2022/089407 2021-10-28 2022-04-26 一种顺铂交联的蛋白水凝胶及制备方法 WO2023071102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/458,057 US20230398143A1 (en) 2021-10-28 2023-08-29 Cis-platinum cross-linked protein hydrogel and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111279597.4A CN113995714B (zh) 2021-10-28 2021-10-28 一种顺铂交联的蛋白水凝胶及制备方法
CN202111279597.4 2021-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/458,057 Continuation US20230398143A1 (en) 2021-10-28 2023-08-29 Cis-platinum cross-linked protein hydrogel and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2023071102A1 true WO2023071102A1 (zh) 2023-05-04

Family

ID=79925907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089407 WO2023071102A1 (zh) 2021-10-28 2022-04-26 一种顺铂交联的蛋白水凝胶及制备方法

Country Status (3)

Country Link
US (1) US20230398143A1 (zh)
CN (1) CN113995714B (zh)
WO (1) WO2023071102A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113995714B (zh) * 2021-10-28 2023-04-28 杭州师范大学 一种顺铂交联的蛋白水凝胶及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077545A (en) * 1995-10-30 2000-06-20 Matrix Pharmaceuticals, Inc. Process and composition for therapeutic cisplatin (CDDP)
CN109528627A (zh) * 2018-12-03 2019-03-29 深圳大学 一种Ru-BSA水凝胶及其制备方法与应用
WO2020151727A1 (zh) * 2019-01-23 2020-07-30 锐创生物医药(香港)有限公司 药物复合物及其制备方法和用途
CN112451542A (zh) * 2020-11-30 2021-03-09 西安交通大学 一种白蛋白/透明质酸纳米复合物-铂类前药及制备方法和应用
CN113995714A (zh) * 2021-10-28 2022-02-01 杭州师范大学 一种顺铂交联的蛋白水凝胶及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584392A (en) * 1982-11-10 1986-04-22 Inco Alloys International, Inc. Platinum and palladium complexes
CN111621038B (zh) * 2020-06-08 2021-08-17 中国科学院长春应用化学研究所 一种白蛋白水凝胶、其制备方法及应用
CN112451473A (zh) * 2020-11-30 2021-03-09 西安交通大学医学院第一附属医院 一种递送铂类化疗药物的可注射透明质酸水凝胶及制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077545A (en) * 1995-10-30 2000-06-20 Matrix Pharmaceuticals, Inc. Process and composition for therapeutic cisplatin (CDDP)
CN109528627A (zh) * 2018-12-03 2019-03-29 深圳大学 一种Ru-BSA水凝胶及其制备方法与应用
WO2020151727A1 (zh) * 2019-01-23 2020-07-30 锐创生物医药(香港)有限公司 药物复合物及其制备方法和用途
CN112451542A (zh) * 2020-11-30 2021-03-09 西安交通大学 一种白蛋白/透明质酸纳米复合物-铂类前药及制备方法和应用
CN113995714A (zh) * 2021-10-28 2022-02-01 杭州师范大学 一种顺铂交联的蛋白水凝胶及制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 September 2020, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, CN, article ZHANG, ZHEN: "Click-type Cross-linking Strategy to Prepare Hydrogels for Drug Delivery and Tissue Adhesive", pages: 1 - 122, XP009545255, DOI: 10.27517/d.cnki.gzkju.2020.001676 *
LI RONGCHANG ZUO QI ZHU LINSONG WANG KUI: "Interactions between Bovine Serum Albumin (BSA) with Tetrachloroplatinate(II), Cisplatin and Sic-diaquodiammineplatin(II)", CHINESE JOURNAL OF INORGANIC CHEMISTRY, CHINESE ELECTRONIC PERIODICAL SERVICES, CN, vol. 6, no. 3, 30 September 1990 (1990-09-30), CN , pages 339 - 343, XP009545256, ISSN: 1001-4861 *
LIANG, JUN ET AL.: "Controlled release of BSA-linked cisplatin through a PepGel self-assembling peptide nanofiber hydrogel scaffold.", AMINO ACIDS, vol. 49, no. 12, 12 June 2017 (2017-06-12), XP036368762, ISSN: 1438-2199, DOI: 10.1007/s00726-017-2444-z *
ZHANG YI, WANG FENG, LI MINGQIANG, YU ZHIQIANG, QI RUOGU, DING JIANXUN, ZHANG ZHIYU, CHEN XUESI: "Self-Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma", ADVANCED SCIENCE, vol. 5, no. 5, 1 May 2018 (2018-05-01), pages 1700821, XP093061925, ISSN: 2198-3844, DOI: 10.1002/advs.201700821 *
ZHONG YANQIANG, JIANG XUETAO, SUN QIRONG, ZHANG GUOQING: " Study on the Preparation Technology of Cisplatin Albumin Microspheres", ACADEMIC JOURNAL OF SECOND MILITARY MEDICAL UNIVERSITY, vol. 19, no. 3, 30 June 1998 (1998-06-30), pages 286 - 287, XP009545258, ISSN: 2097-1338, DOI: 10.16781/j.0258-879x.1998.03.045 *

Also Published As

Publication number Publication date
CN113995714A (zh) 2022-02-01
CN113995714B (zh) 2023-04-28
US20230398143A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
Cortes et al. Xanthan gum in drug release
Konishi et al. In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel
Emoto et al. Intraperitoneal administration of cisplatin via an in situ cross-linkable hyaluronic acid-based hydrogel for peritoneal dissemination of gastric cancer
Chaves et al. pH-responsive chitosan based hydrogels affect the release of dapsone: design, set-up, and physicochemical characterization
CN106699896B (zh) 一种可自组装成水凝胶的肿瘤杀伤性多肽及其应用
WO2021042778A1 (zh) 一种治疗肿瘤的温敏型凝胶药物组合物
WO2018028058A1 (zh) 一种表面功能化可载药洗脱微球的制备方法
WO2022001006A1 (zh) 一种支架材料、其制备方法及应用
CN112933288B (zh) 兼具止血和术后抗肿瘤功能的交联止血海绵及其制备方法
Chen et al. Multifunctional injectable hydrogels for three-in-one cancer therapy: Preoperative remission via mild photothermal-enhanced supramolecular chemotherapy and prevention of postoperative recurrence and adhesion
WO2021042777A1 (zh) 一种治疗肿瘤的多组分凝胶缓释药物组合物
CN111228212A (zh) 载药可注射植入原位水凝胶
Mi et al. Postsurgical wound management and prevention of triple-negative breast cancer recurrence with a pryoptosis-inducing, photopolymerizable hydrogel
US20230398143A1 (en) Cis-platinum cross-linked protein hydrogel and preparation method thereof
Marzi et al. Hydrogels as promising therapeutic strategy for the treatment of skin cancer
Hu et al. Thermosensitive PNIPAM-based hydrogel crosslinked by composite nanoparticles as rapid wound-healing dressings
CN111097070A (zh) 一种用于抑制肿瘤和促进修复的可注射生物活性水凝胶
Yang et al. An in situ spontaneously forming micelle-hydrogel system with programmable release for the sequential therapy of anaplastic thyroid cancer
Shi et al. A pH-responsive, injectable and self-healing chitosan-coumarin hydrogel based on Schiff base and hydrogen bonds
CN111035612B (zh) 一种活性氧响应性凝胶贮库及其制备方法与应用
Meng et al. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering
CN111686075B (zh) 一种以纳米胶束为交联剂的原位水凝胶组合物及其应用
P Venkatesh et al. In situ gels based drug delivery systems
US20230248642A1 (en) Injectable high-drug-loaded nanocomposite gels and process for making the same
CN116139293A (zh) 一种靶向调控肿瘤血管新生的两亲性分子及靶向肿瘤组织的酸响应型多肽纳米药物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885017

Country of ref document: EP

Kind code of ref document: A1