WO2023071099A1 - 加热装置、电池及用电设备 - Google Patents

加热装置、电池及用电设备 Download PDF

Info

Publication number
WO2023071099A1
WO2023071099A1 PCT/CN2022/089335 CN2022089335W WO2023071099A1 WO 2023071099 A1 WO2023071099 A1 WO 2023071099A1 CN 2022089335 W CN2022089335 W CN 2022089335W WO 2023071099 A1 WO2023071099 A1 WO 2023071099A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
port
heating wire
battery
heating
Prior art date
Application number
PCT/CN2022/089335
Other languages
English (en)
French (fr)
Inventor
李兴星
何润泳
黄小腾
陈智明
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023071099A1 publication Critical patent/WO2023071099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery heating, and in particular, relates to a heating device, a battery and electrical equipment.
  • the application provides a heating device, a battery and electrical equipment, which effectively solves the problem that the heating device is prone to insulation failure and improves the safety performance of the heating device.
  • the present application provides a heating device for heating a battery cell, comprising: a heat pipe, at least one end of which is opened to form a port; a heating wire is arranged in the heat pipe, and the Both ends of the heating wire protrude from the port; an insulating guard is installed on the port to isolate the heating wire from the port.
  • a heating wire is arranged in the heat pipe, the heating wire heats up the heat pipe, and the heat pipe heats up to provide heat for the battery cell, thereby realizing the function of heating the battery cell;
  • the insulation protection part isolates the heating wire and the port.
  • This design isolates the wire body of the heating wire from the port of the heat pipe. On the one hand, it can prevent the port of the heat pipe from scratching the heating wire due to possible burrs, sharp edges, etc. On the other hand, it can avoid the problem of damage to the heating wire caused by the deformation of the port of the heat pipe due to the shear force on the heating wire, thereby effectively protecting the insulation of the heating wire.
  • the heat pipe includes: a pipe body, the pipe body is a flat pipe, and includes a top wall and a bottom wall opposite to each other along its thickness direction and two side walls opposite to each other along its width direction; A plurality of partition walls are arranged in the tube body, each of the partition walls is respectively connected to the inner surface of the top wall and the inner surface of the bottom wall, and the plurality of partition walls are arranged along the width of the tube body The directions are arranged at intervals to divide the inner cavity of the tubular body into multiple parallel cavities.
  • a plurality of partition walls are arranged in the tube body of the heat transfer tube.
  • the plurality of partition walls support the lumen of the heat transfer tube, effectively enhancing the deformation resistance of the heat transfer tube, and avoiding the excessive deformation of the heat transfer tube. deformation to form a strong squeeze on the heating wire in the lumen, thereby further improving the protection of the heating wire insulation;
  • multiple partition walls divide the lumen of the heat pipe into multiple parallel cavities, which can The position of the heating wire in the heat pipe acts as a limiter, so that the heating wire can be evenly distributed in the tube cavity of the heat pipe easily and conveniently, so as to improve the heating balance of the heat pipe.
  • the insulating protection member has a plurality of openings, and the plurality of openings correspond to the plurality of cavities one by one.
  • the insulating protection member includes: a body, the body is located outside the tube body, the body has a first surface facing the port; a plurality of bosses protruding from the first surface and respectively inserted into the corresponding cavity, the openings are set corresponding to the bosses, and each opening passes through the corresponding bosses and the body.
  • the body is provided with a plurality of bosses corresponding to the plurality of cavities one by one, and the plurality of bosses are inserted into the plurality of cavities in one-to-one correspondence to form insulation protection for the opening surface of each cavity.
  • the structure is simple and easy to install, and the practicability is strong.
  • the boss is in interference fit with the cavity.
  • the whole insulation protection piece can be connected to the heat pipe by inserting the boss correspondingly into the cavity, without installing other connection structures, which effectively simplifies the overall heating device structure, improves the convenience of assembly of the heating device, and saves material costs
  • the interference fit between each boss and each mold cavity makes the boss play a certain role in supporting the opening end of the mold cavity, further enhancing the deformation resistance of the port of the heat pipe.
  • the middle part of the heating wire includes a plurality of main body segments and a plurality of connecting segments, the plurality of main body segments are correspondingly arranged in a plurality of the mold cavities, and each of the connecting segments is arranged in the The port is used to connect the main body sections in two adjacent cavities, and the two ends of the heating wire are respectively connected to the two ends of the outermost cavities in the width direction of the pipe body. two said body segments.
  • the inner cavity of the heat pipe is evenly laid with the main section of the heating line along its width direction, which effectively improves the heating rate of the overall heat pipe; and the multiple main sections of the heating line are limited by the partition wall in the heat pipe, effectively Ensure the uniformity of the distribution of the heating wires in the heat pipe, thereby ensuring the uniformity of the temperature rise of the overall heat pipe, and improving the stability of the heating performance of the heating device.
  • one end of the heat pipe is open to form the port, the other end of the heat pipe is closed, and each of the main body segments extends meanderingly in the corresponding cavity.
  • one end of the heat pipe is closed.
  • the heat pipe only forms a port at one end, and the two ends of the heating wire protrude from the same end of the heat pipe, which is more convenient for the heating wire.
  • the present application provides a battery, including: a box body; a plurality of battery cells arranged in the box and arranged in multiple rows; the heating device in the above embodiment, the heating device is arranged in a corresponding between two adjacent rows of the battery cells, so as to heat the battery cells.
  • the battery cell is cylindrical, and the heat pipe is corrugated to match the shape of the battery cell.
  • the heat pipe is wavy, and its trough directly forms a limiting groove that matches the shape of the battery cell.
  • it effectively increases the contact area between the heat conduction plate and the battery cell, thereby improving the heating efficiency of the heat pipe to the battery cell;
  • the wave-shaped heat pipe plays a certain role in profiling and limiting the battery cells, further improving the positioning stability of each battery cell in the battery; at the same time, the wave-shaped heat pipe maximizes the use of its surface space to Heat as many battery cells as possible in a certain space, thereby effectively improving the compactness of the overall battery structure.
  • the present application provides an electrical device, including the battery in the above embodiment, where the battery is used to provide electrical energy.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of the battery provided by some embodiments of the present application.
  • Fig. 3 is a schematic diagram of the overall structure of the battery provided by some embodiments of the present application.
  • Fig. 4 is an exploded view of the structure of the heating device provided by some embodiments of the present application.
  • Fig. 5 is an exploded view of the structure of the heating device provided by some other embodiments of the present application.
  • Fig. 6 is a sectional view of the heat pipe shown in Fig. 5;
  • FIG. 7 is a schematic structural diagram of an insulating protection provided in some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of the insulation protection provided by some embodiments of the present application connected to the heat pipe;
  • Fig. 9 is a schematic structural diagram of some embodiments of heating wires provided by some embodiments of the present application.
  • Fig. 10 is a schematic structural diagram of heating wires provided in some embodiments of the present application in still other embodiments;
  • Fig. 11 is a structural front view of one end of the heat pipe shown in Fig. 10 provided with an insulating guard;
  • Fig. 12 is an exploded view of the structure of the heating device provided by other embodiments of the present application.
  • Marking instructions 1000-vehicle; 100-battery; 200-controller; 300-motor; 10-box; 11-first part; 12-second part; 13-third part; 20-battery unit; 30- Heating device; 31-heat pipe; 311-tube body; 3111-top wall; 3112-bottom wall; 3113-side wall; 312-port; 313-dividing wall; 314-cavity; 32-heating wire; 321-end 322-connection section; 323-main body section; 33-insulation guard; 331-opening; 332-body; 333-boss; 334-first surface.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields , and its application environment also has special circumstances such as high temperature and low temperature. Temperature has an important impact on the performance of the battery. In a low temperature environment, the energy of the battery cannot be fully released, and there is a safety hazard during charging. In order to ensure that the battery can work normally in a low temperature environment, it is usually necessary to heat the battery to reach a normal working temperature range.
  • the heat pipe in order to ensure its thermal conductivity, the heat pipe generally uses a metal pipe body with good heat conductivity.
  • the port of the heat pipe is easy to leave burrs, sharp edges and other problems after early cutting. The two ends of the heating wire pass through the port.
  • the burr left over from the port is easy to scratch the insulation protection layer on the surface of the heating wire body, resulting in the failure of the heating wire insulation; and if the heat transfer tube undergoes serious deformation with the accumulation of force, the port of the heat transfer tube will form a A certain shearing force will damage the insulating protective layer on the surface of the heating wire and cause the heating wire insulation to fail.
  • the inventor has studied and designed a heating device, by setting an insulation protection piece at the port of the heat pipe And the heating wire is isolated from the port of the heat pipe to avoid contact between the port of the heat pipe and the wire body of the heating wire.
  • the insulating protection prevents the burrs and sharp edges of the port from directly contacting the heating wire, thereby avoiding the sharp protrusions at the port of the heat pipe from scratching the heating element.
  • the insulation protection layer of the heating wire plays a protective role in the insulation protection of the heating wire, effectively alleviating the problem that the overall heating device is prone to insulation failure.
  • the insulating guard forms isolation and support for the port of the heat pipe, preventing the metal heat pipe port from directly generating shear force on the heating wire.
  • the setting of the insulating guard is effective
  • the stress area of the heating wire is increased to avoid shear damage of the insulation layer of the heating wire due to the deformation of the heat pipe port; in addition, even if the insulation protection layer of the heating wire at the heat pipe port is damaged, because there is an insulating protection
  • the isolation of the heating wire cannot directly contact the port of the heat pipe, and the insulation protection itself still ensures the insulation protection between the heating wire and the port of the heat pipe.
  • the heating device 30 disclosed in the embodiment of the present application can be used for heating the battery cell 20, and the battery 100 with the heating device 30 disclosed in the embodiment of the present application can be used in electrical equipment such as a vehicle 1000, a ship or an aircraft, but not limited to,
  • the battery 100 equipped with the heating device 30 disclosed in the present application can be used to form the power supply system of the electrical equipment. In this way, the heating device 30 can heat up the battery 100 working in a low temperature environment, so that the battery cell 20 can reach the temperature in the working range. to normal power supply.
  • the embodiment of the present application provides an electric device using a battery 100 as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can be used not only as an operating power source for the vehicle 1000, but also as a driving power source for the vehicle 1000, replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application
  • FIG. 3 is a schematic diagram of the overall structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 , a battery cell 20 and a heating device 30 , and the battery cell 20 is accommodated in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cells 20 , and the box body 10 may adopt various structures.
  • the box body 10 may include a first part 11, a second part 12 and a third part 13 connecting the first part 11 and the second part 12, the first part 11 and the second part 12 are arranged oppositely, and the first part 11, The second part 12 and the third part 13 jointly define a receiving space for receiving the battery cells 20 .
  • the first part 11 and the second part 12 may be plate-like structures disposed opposite to each other, and the third part 13 connects the first part 11 and the second part 12 .
  • the box body 10 formed by the first part 11 , the second part 12 and the third part 13 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • Each battery cell 20 can be a secondary battery or a primary battery; it can also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • the heating device 30 is arranged between two adjacent rows of battery cells 20 to heat a plurality of battery cells 20 to ensure normal power supply of the battery cells 20 in a low temperature environment.
  • FIG. 4 is an exploded view of a heating device 30 provided in some embodiments of the present application.
  • the present application provides a heating device 30 for heating the battery cells 20, comprising: a heat pipe 31, at least one end of which is opened to form a port 312; a heating wire 32, arranged in the heat pipe 31, the heating wire The two ends 321 of 32 protrude from the port 312 ; the insulating guard 33 is arranged on the port 312 for isolating the heating wire 32 and the port 312 .
  • the heat pipe 31 refers to a pipe fitting for transferring heat to the battery cell 20.
  • the heat pipe 31 has two ends. At least one end of the heat pipe 31 is opened to form a port 312, which is convenient for setting the heating wire 32 in the heat pipe 31 through the port 312. Two ends 321 of the heating wire 32 protrude from the port 312 of the heat pipe 31 to be connected to a power supply that provides electric energy for the heating wire 32 .
  • the shape of the heat pipe 31 can be determined according to the shape and size of the battery cells 20 and the arrangement sequence of the battery cells 20 .
  • the heat pipe 31 can be made of a metal material (such as aluminum alloy) with a certain strength and strong heat conductivity, so that the heat pipe 31 has good heat conductivity and reduces heat energy loss.
  • the metal heat pipe 31 has a certain strength and is resistant to The deformation performance is strong, and it is not easy to deform when it is sandwiched between a plurality of battery cells 20 .
  • the heating wire 32 can be a bendable wire body that converts electrical energy into heat energy with a certain degree of flexibility. It can be understood that the heating wire 32 should include a resistance wire and a wire insulation layer wrapped around the outer peripheral surface of the resistance wire.
  • the body insulating layer can be an insulating tube made of insulating material (such as rubber), or an insulating coating coated on the outer peripheral surface of the resistance wire.
  • the heating wire 32 is arranged in the heat pipe 31, and the two ends 321 of the heating wire 32 are used to connect the power supply for energizing the heating wire.
  • the insulating guard 33 is arranged on the port 312 of the heat pipe 31, to isolate the port 312 of the heat pipe 31 and the heating wire 32, the insulating guard 33 should be made of insulating material, and the insulating guard 33 can be installed on the port 312 of the heat pipe 31 It is a separate component made of plastic, acrylic and other materials, and the insulating protective member 33 is connected to the port 312 of the heat pipe 31, and the heating wire 32 is separated from the port 312 of the heat pipe 31.
  • the insulating protection member 33 can also be an insulating film coated on the port 312 of the heat pipe 31, or an insulating glue poured on the port 312 of the heat pipe 31, and the insulating glue can be epoxy resin glue, epoxy polyester glue, etc. .
  • the battery cell 20 is heated by setting the heating wire 32 in the lumen of the heat pipe 31, the structure is simple and easy to assemble, and the material cost, the heating rate is high, and the practicability is strong.
  • the end 321 of the heat pipe 31 is provided with insulation protection
  • the part 33 isolates the heating wire 32 and the port 312 of the heat pipe 31. This design prevents the wire body of the heating wire 32 from contacting the port 312 of the heat pipe 31. On the one hand, it can avoid the port 312 of the heat pipe 31 due to possible burrs, Abnormalities such as sharp edges will scratch the heating wire 32 and lead to the failure of the heating wire insulation. Large hidden danger of deformation. After the port 312 of the heat pipe 31 is deformed, a certain shear force will be generated on the heating wire 32.
  • an insulating protective member 33 is provided at the port 312 of the heat pipe 31 to isolate the port 312 from the heating wire 32, so as to prevent the heat pipe 31
  • the heating wire 32 is directly damaged due to the deformation, thereby effectively protecting the insulation between the heat pipe 31 and the heating wire 32 .
  • FIG. 5 is a schematic structural view of a heating device 30 provided in some other embodiments of the present application.
  • FIG. 6 is a cross-sectional view of the heat pipe 31 shown in FIG. 5 of the present application.
  • the heat pipe 31 includes: , the tube body 311 can be a flat tube, and includes a top wall 3111 and a bottom wall 3112 opposite to each other along its thickness direction and two side walls 3113 opposite to each other along its width direction; a plurality of partition walls 313 are arranged on the tube body 311 Each partition wall 313 is connected to the inner surface of the top wall 3111 and the inner surface of the bottom wall 3112 respectively, and a plurality of partition walls 313 are arranged at intervals along the width direction of the tube body 311 to separate the inner cavity of the tube body 311 into multiple parts. parallel cavities 314.
  • Top wall and bottom wall 3112 of the tube body 311 generally refers to two side walls of the battery cell 20 corresponding to two sides of the heat pipe 31 .
  • the multiple battery cells 20 will often exert a certain pressure on the top wall 3111 and/or bottom wall 3112 of the tube body 311.
  • a plurality of partition walls 313 are arranged in the body 311 to divide the inner cavity of the tube body 311 into a plurality of parallel cavities 314.
  • the partition walls 313 can support the inner cavity of the flat tube and increase the strength of the flat tube.
  • the partition wall 313 can be a planar structure or a curved surface structure, and the partition wall 313 can be parallel to the thickness direction of the flat tube or can form a certain angle with the thickness direction of the flat tube, and the partition wall 313 can be integrally formed with the tube body 311 It can also be fixed to the inner cavity of the tube body 311 by means of welding or the like.
  • the heat pipe 31 can adopt a tube body 311 similar to a harmonica tube. As shown in FIG.
  • the inner cavity is divided into a plurality of parallel cavities 314 with a rectangular cross-section.
  • the deformation resistance of the heat pipe 31 can be effectively enhanced, so as to prevent the heat pipe 31 from forming a strong extrusion on the heating wire 32 in the lumen due to excessive deformation.
  • the partition wall 313 plays a limiting role on the position of the heating wire 32 in the heat pipe 31, and can evenly limit the heating wire 32 in each cavity 314, so as to Improve the temperature rise balance of the heat pipe 31 .
  • the insulating protection member 33 has a plurality of openings 331 , and the plurality of openings 331 correspond to the plurality of cavities 314 one by one.
  • a plurality of partition walls 313 divide the inner cavity of the pipe body 311 into a plurality of cavities 314, and the insulating protection member 33 has a plurality of openings 331 corresponding to the cavities 314, that is, the plurality of openings 331 and the plurality of cavities 314 are one-to-one. One-to-one connection.
  • the insulating protection member has a structure of multiple openings 331 communicating with the cavity 314 , which effectively isolates the end of each partition wall 313 facing the port 312 of the tube body 311 from the heating wire 32 to form a comprehensive insulation protection for the port 312 of the heat pipe 31 .
  • FIG. 7 is a schematic structural diagram of an insulating protection member 33 provided in some embodiments of the present application
  • FIG. 8 is an insulating protection member 33 provided in some embodiments of the present application.
  • the structural diagram of the protective part 33 connected to the heat pipe 31, the insulating protective part 33 may include: a body 332, the body 332 is located outside the tube body 311, the body 332 has a first surface 334 facing the port 312; a plurality of bosses 333 protrudingly arranged On the first surface 334 and respectively inserted into the corresponding cavity 314 , the openings 331 are disposed corresponding to the bosses 333 , and each opening 331 passes through the corresponding bosses 333 and the body 332 .
  • the body 332 is provided with a plurality of bosses 333 that can be inserted into a plurality of cavities 314 one by one. Each opening 331 passes through the boss 333 and the body 332 to communicate with the corresponding cavity 314. When the heating wire 32 enters and exits each cavity 314 The wire body of the heating wire 32 enters the cavity 314 through the opening 331 of the insulating guard 33 without contacting the end 321 of the pipe body 311 and the partition wall 313, and the body 332 and the boss 333 work together to isolate the heating wire 32 from the The port 312 of the heat pipe 31 .
  • the material of the body 332 and the boss 333 can be plastic, silica gel, acrylic and the like.
  • the first surface 334 of the body 332 faces the port 312 , and the first surface 334 may be in contact with the port 312 or there may be a gap between the first surface 334 and the port 312 .
  • the insulating guard 33 can be fixed on the port 312 by insulating glue or other insulating connectors, such as insulating glue is set between the first surface 334 and the port 312 or between the outer surface of the boss 333 and the inner surface of the cavity 314, In order to install and fix the insulating protection member 33 on the port 312 of the conduit.
  • the cross-sectional shape of the boss 333 may be a shape adapted to the cross-sectional shape of the cavity 314, or may be a circle or other shapes.
  • the structure of the insulating guard makes when the heating wire 32 enters and exits each cavity 314, the line body of the heating wire 32 all enters the cavity 314 through the opening 331 on the boss 333, and does not contact the end portion 321 of the pipe body 311 and the partition wall 313. Contact, the overall structure is simple and easy to install, and forms a comprehensive insulation isolation for the port 312 of the heat pipe 31 provided with a plurality of partition walls 313 .
  • the boss 333 and the cavity 314 can be interference fit.
  • the boss 333 and the cavity 314 are connected by an interference fit, so that after the boss 333 is inserted into the cavity 314 , the insulating protection member 33 can be fastened on the heat pipe 31 .
  • each boss 333 has an interference fit with each cavity 314 , so that the boss 333 plays a role of supporting the opening 331 of the cavity 314 to further enhance the deformation resistance of the port 312 of the heat pipe 31 .
  • FIG. 9 is a schematic structural view of the heating wire 32 provided in some embodiments of the present application.
  • a main body segment 323 and a plurality of connecting segments 322 , the plurality of main body segments 323 are correspondingly arranged in a plurality of cavities 314 , each connecting segment 322 is arranged at the port 312 and is used to connect the main body segments in two adjacent cavities 314 323 , the two ends 321 of the heating wire 32 are respectively connected to the two main body segments 323 in the two outermost cavities 314 in the width direction of the tubular body 311 .
  • a plurality of main line segments of the heating wire 32 are correspondingly arranged in a plurality of cavities 314, and each main line segment can extend directly along the length direction of the heat conduction tube 31 to both ends of the heat conduction tube 31 in the corresponding cavity 314, or can The circuitous arrangement of the main line segment in the cavity 314 can make each cavity 314 contain multiple strands of heating wires 32 , effectively increasing the efficiency of the overall heat pipe 31 .
  • connection section 322 is arranged at the port 312 and connects the main body sections 323 in two adjacent cavities 314, and the port 312 is provided with an insulating protective member 33, so that the two ends of the connection section 322 pass through the two adjacent openings 331 and the corresponding The main body sections 323 in the adjacent two cavities 314 are connected, and the insulating protection member 33 separates the port 312 of the heat pipe 31 from the connecting section 322 of the heating wire 32 .
  • the two ends 321 of the heating wire 32 are respectively connected to the two main body sections 323 in the two outermost cavities 314 in the width direction of the pipe body 311, and the two ends 321 of the heating wire 32 can pass through the heat pipe 31.
  • the same port 312 protrudes, or protrudes from both ends of the heat pipe 31 respectively.
  • Such a design enables the entire heating wire 32 to be distributed in multiple cavities 314 of the heat pipe 31 along the width direction of the heat pipe 31, effectively improving the temperature rise rate of the overall heat pipe 31; and the plurality of main body segments 323 of the heating wire 32
  • the inside of the heat pipe 31 is limited by the partition wall 313 to effectively ensure the uniform distribution of the heating wires 32 in the heat pipe 31 , thereby improving the uniformity of heating of the heat pipe 31 as a whole and improving the stability of the heating performance of the heating device 30 .
  • both ends of the heat pipe 31 are open to form ports 312 , and the two ports 312 are provided with insulating protection members 33 , and the main body section 323 in each cavity 314 is directly along the cavity 314 The length direction extends to the ports 312 at both ends of the heat pipe 31, and then connected end to end through the connecting section 322 in turn.
  • one end of the heating wire 32 can be guided to penetrate into the outermost cavity 314 in the width direction of the tube body 311, and then reciprocate through each cavity 314 in turn until it passes through the tube body 311.
  • Another mold cavity 314 on the outermost side in the width direction can pass through.
  • Each cavity 314 encloses a bundle of heating wires 32 .
  • FIG. 10 is a schematic structural view of the heating wire 32 provided in some embodiments of the present application in some other embodiments.
  • FIG. 11 is a view of one end of the heat pipe 31 shown in FIG. Front view; one end of the heat pipe 31 is opened to form a port 312 , the other end of the heat pipe 31 is closed, and each main body segment 323 extends in a circuitous manner in the corresponding cavity 314 .
  • One end of the heat pipe 31 is opened to form a port 312 and the other end is closed, that is, the heating wire 32 does not pass through the closed end of the heat pipe 31.
  • Such an arrangement only needs to install an insulating protective member 33 at one end of the heat pipe 31 to achieve the purpose of this application. .
  • each main line segment can detour one or more times in the corresponding cavity 314.
  • One end of the heat conduction pipe 31 is closed. On the one hand, it is only necessary to install an insulating protection member 33 at one end of the heat conduction pipe 31 where the port 312 is provided.
  • the material cost of the insulating protective part 33 on the other hand, at least two bundles of heating wires 32 are included in each cavity 314, which effectively improves the heating efficiency; Compared with the structure where the heat pipe 31 has wires at both ends, it is more convenient to set up the power supply of the heating wire 32 and other connecting parts, and improves the structural compactness of the overall heating device 30 .
  • the present application also provides a battery 100, including the heating device 30 in the above embodiments, and also includes: a box body 10; a plurality of battery cells 20, arranged in the box body 10 and arranged The heating device 30 is arranged between two adjacent rows of battery cells 20 to heat the battery cells 20 .
  • the box 10 may be any one of the aforementioned boxes 10
  • the battery cell 20 may be any one of the aforementioned battery cells 20 .
  • the shape of the outer surface of the heat pipe 31 of the heating device 30 can be changed according to the shape of the battery cell 20.
  • the outer surface of the heat pipe 31 can have a plane parallel to the outer surface of the battery cell 20.
  • the outer surface of the heat pipe 31 contacts the outer surface of the battery cell 20 to effectively increase the contact area.
  • the outer surface of the heat pipe 31 may not completely match the outer surface of the battery cell 20, as long as It only needs to be able to provide heat to the battery cells 20 on adjacent two sides of the heat pipe 31 .
  • FIG. 12 is an exploded view of the structure of the heating device 30 provided in other embodiments of the present application.
  • the battery cell 20 is cylindrical, and the heat pipe 31 is wavy. shape to match the shape of the battery cell 20.
  • the surface of the heat pipe 31 is wavy, that is, the surface of the heat pipe 31 adjacent to the battery cell 20 has a plurality of arc-shaped grooves matching the shape of the cylindrical battery cell 20, and the plurality of batteries on both sides of the heat pipe 31
  • the cells 20 can be positioned in the limiting grooves of the heat pipe 31 in a mutually misaligned position. It can be understood that the axis of the arc-shaped groove is parallel to the axis of the cylindrical battery cells 20 .
  • the position of the heat pipe 31 corresponding to the battery cell 20 may be close to one end of the cylindrical battery cell 20 or correspond to a middle position of the cylindrical battery cell 20 .
  • the heat pipe 31 corresponds to the middle position of the cylindrical battery cell 20, and the width of the heat pipe 31 extending along the axial direction of the cylindrical cell is greater than half of the length of the cylindrical battery cell 20, so as to ensure the battery
  • the single cell 20 provides enough heating area to effectively ensure the heating efficiency of the battery 100 .
  • the wave-shaped heat pipe 31 effectively increases the contact area between the heat pipe 31 and the battery cell 20, thereby improving the heating efficiency of the heat pipe 31 for the battery cell 20; 20 plays a certain role of profiling and limiting, further improving the positioning stability of each battery cell 20 in the battery 100; at the same time, the wave-shaped heat pipe 31 maximizes the use of its surface space, so that as many as possible in a certain space Each battery cell 20 is heated, thereby effectively improving the compactness of the overall battery 100 structure.
  • the battery cell 20 can be pasted on the heat pipe 31 with an insulating glue, so as to fix the position of the heat pipe 31 on the battery cell 20 and play an insulating role between the battery cell 20 and the heat pipe 31 .
  • the present application provides an electric device, including the battery 100 in the above embodiment, and the battery 100 is used to provide electric energy.
  • the powered device may be any of the aforementioned devices using the battery 100 .
  • the present application provides a heating device 30, including a heat pipe 31, a heating wire 32 and an insulating protection member 33, one end of the heat pipe 31 is closed, and the other end is opened to form
  • the port 312 the heat pipe 31 includes a tube body 311 and five partition walls 313, the tube body 311 is a corrugated flat tube, and the five partition walls 313 are arranged in the tube body 311 at intervals along the width direction of the tube body 311, and the tube body 311
  • the inner cavity of is divided into six parallel cavities 314.
  • the insulating protection member 33 includes a main body 332 and six bosses 333 protruding from the main body 332, each boss 333 is inserted into a cavity 314 correspondingly, and an opening 331 communicating with the cavity 314 is set on the boss 333;
  • the middle part includes six main body segments 323 and five connecting segments 322 , the six main body segments 323 meander in the corresponding cavity 314 , and the five connecting segments 322 are arranged at the port 312 and are used to connect two adjacent cavities 314 In the inner body section 323 , the two ends of the heating wire 32 protrude through the two outermost cavities 314 of the tube body 311 .
  • a straight harmonica tube can be used as the heat conduction tube 31, and the insulation protection is inserted into the harmonica tube.
  • Each boss 333 of the insulation protection piece 33 corresponds to a cavity 314 of the harmonica tube, and then the main body section 323 of the heating wire 32 can be inserted into the harmonica tube.
  • Each cavity 314 of the piano pipe is dragged in turn by a barb or other similar tooling, so that each cavity 314 includes two bundles of heating wires 32. After the heating wires 32 are arranged, the heat pipe 31 is then bent to make The heat pipe 31 is formed in a wave shape.

Abstract

本申请提供一种加热装置、电池及用电设备,加热装置包括:导热管,所述导热管的至少一端敞开形成端口;加热线,设置于所述导热管内,所述加热线的两个端部从所述端口伸出;绝缘防护件,安装于所述端口,用于隔离所述加热线和所述端口。本申请在导热管的端部设置绝缘防护件隔离加热线和端口,一方面,可以避免导热管的端口因可能存在的毛刺、锋边等异常而划伤加热线、致使加热线绝缘失效的问题,另一方面,可以避免导热管的端口因形变对加热线产生剪切力而使加热线产生损坏的问题,从而有效保护加热线的绝缘性。

Description

加热装置、电池及用电设备
相关申请的交叉引用
本申请要求享有2021年10月29日提交的名称为“加热装置、电池及用电设备”的中国专利申请(202122637500.4)的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池加热技术领域,具体而言,涉及一种加热装置、电池及用电设备。
背景技术
随着节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
温度对于电池的性能有重要的影响,在低温环境下电池的能量不能充分释放,且充电时有安全隐患。为了在低温环境下保证电池能够正常工作,通常需要对电池进行加热,使其达到正常工作温度区间。然而,现有技术的电池加热装置,容易发生绝缘失效而影响加热装置的安全性能。
发明内容
本申请提供一种加热装置、电池及用电设备,有效解决加热装置容易绝缘失效的问题,提高加热装置的安全性能。
第一方面,本申请提供了一种加热装置,用于对电池单体进行加热,包括:导热管,所述导热管的至少一端敞开形成端口;加热线,设置于所述导热管内,所述加热线的两个端部从所述端口伸出;绝缘防护件,安装于所述端口,用于隔离所述加热线和所述端口。
本申请实施例的技术方案中,在导热管内设置加热线,加热线升温加热导热管,导热管升温为电池单体提供热量,从而实现对电池单体加热的功能;在导热管的 端部设置绝缘防护件隔离加热线和端口,这样的设计使得加热线的线体与导热管的端口隔离开,一方面,可以避免导热管的端口因可能存在的毛刺、锋边等异常划伤加热线、致使加热线绝缘失效的问题;另一方面,可以避免导热管的端口因形变对加热线产生剪切力而使加热线产生损坏的问题,从而有效保护加热线的绝缘性。
在一些实施例中,所述导热管包括:管体,所述管体为扁管,并且包括沿其厚度方向彼此相对的顶壁和底壁以及沿其宽度方向彼此相对的两个侧壁;多个分隔壁,设置于所述管体内,每个所述分隔壁分别与所述顶壁的内表面和所述底壁的内表面连接,多个所述分隔壁沿所述管体的宽度方向间隔设置,以将所述管体的内腔分隔成多个并列的型腔。
上述技术方案中,在导热管的管体内设置多个分隔壁,一方面,多个分隔壁对导热管的管腔起到支撑作用,有效增强导热管的抗变形性,避免导热管因过大变形而对管腔内的加热线形成强力挤压,从而进一步提高对加热线绝缘的防护性;另一方面,多个分隔壁将导热管的管腔分隔成多个并列的型腔,可以对加热线在导热管内的位置起到限位作用,便于简单、便捷的将加热线均匀的分布于导热管的管腔内,提高导热管升温的均衡性。
在一些实施例中,所述绝缘防护件具有多个开口,多个所述开口与多个所述型腔一一对应。
在一些实施例中,所述绝缘防护件包括:本体,所述本体位于所述管体外,所述本体具有面向所述端口的第一表面;多个凸台,突出设置于所述第一表面且分别插入对应的所述型腔,所述开口与所述凸台对应设置,每个所述开口贯穿对应的凸台和所述本体。
上述技术方案中,在本体上设置与多个型腔一一对应的多个凸台,多个凸台一一对应插入多个型腔,即可对每个型腔的开口面形成绝缘防护,结构简单且便于安装,实用性强。
在一些实施例中,所述凸台与所述型腔过盈配合。一方面,将凸台对应插入型腔即可将整个绝缘防护件连接于导热管上,无需再加装其他连接结构,有效简化整体加热装置结构、提高加热装置的装配便捷性,且节约材料成本;另一方面,每个凸台与每个型腔过盈配合,使得凸台对型腔的开口端起到一定支撑作用,进一步加强导热管的端口的抗形变性能。
在一些实施例中,所述加热线的中部包括多个主体段和多个连接段,多个所述主体段对应设置在多个所述型腔内,每个所述连接段设置在所述端口处且用于连接相邻两个所述型腔内的所述主体段,所述加热线的两个端部分别连接于所述管体的宽度方向上最外侧的两个型腔内的两个所述主体段。
上述技术方案中,导热管的内腔沿其宽度方向均匀铺设加热线的主体段,有效提高整体导热管的升温速率;且加热线的多个主体段在导热管内通过分隔壁进行限位,有效保证加热线在导热管内的分布均匀性,从而保证整体导热管的升温均匀性,提高加热装置的加热性能的稳定性。
在一些实施例中,所述导热管的一端敞开形成所述端口,所述导热管的另一端封闭,每个所述主体段在对应的所述型腔内迂回地延伸。
上述技术方案中,导热管的一端封闭,一方面,只需在导热管设置端口的一端设置绝缘防护件即可,相较于在导热管两端均设置绝缘防护件的结构,可以有效节省绝缘防护件材料成本;另一方面,导热管只在一端形成端口,则加热线的两个端部均从导热管的同一端伸出,相较于导热管两端出线的结构,更加便于加热线的安装和连接件以及安全防护结构的设置,并且提高整体加热装置的结构紧凑性。
第二方面,本申请提供了一种电池,包括:箱体;多个电池单体,设置于所述箱体内且排列成多排;上述实施例中的加热装置,所述加热装置设置在相邻两排所述电池单体之间,以对所述电池单体进行加热。
在一些实施例中,所述电池单体呈圆柱形,所述导热管呈波浪形以与所述电池单体的形状相匹配。导热管呈波浪形,其波谷直接形成与电池单体的形状匹配的限位槽,一方面,有效增加导热板与电池单体的接触面积,从而提高导热管对电池单体的加热效率;另一方面,波浪形的导热管对电池单体起到一定仿形限位作用,进一步提高电池中每个电池单体的定位稳定性;同时,波浪形的导热管最大化利用其表面空间,以在一定空间内尽可能对多个电池单体进行加热,从而有效提高整体电池结构的紧凑性。
第三方面,本申请提供了一种用电设备,包括上述实施例中的电池,所述电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池的整体结构示意图;
图4为本申请一些实施例提供的加热装置的结构爆炸图;
图5为本申请又一些实施例提供的加热装置的结构爆炸图;
图6为图5所示中的导热管的剖视图;
图7为本申请一些实施例提供的绝缘防护件的结构示意图;
图8为本申请一些实施例提供的绝缘防护件连接于导热管的结构示意图;
图9为本申请一些实施例提供的加热线在一些实施例中的结构示意图;
图10为本申请一些实施例提供的加热线在又一些实施例中的结构示意图;
图11为图10所示的导热管设有绝缘防护件一端的结构主视图;
图12为本申请另一些实施例提供的加热装置的结构爆炸图;
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;200-控制器;300-马达;10-箱体;11-第一部分;12-第二部分;13-第三部分;20-电池单体;30-加热装置;31-导热管;311-管体;3111-顶壁;3112-底壁;3113-侧壁;312-端口;313-分隔壁;314-型腔;32-加热线;321-端部;322-连接段;323-主体段;33-绝缘防护件;331-开口;332-本体;333-凸台;334-第一表面。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保 护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简 化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域,其应用环境也不乏高温、低温等特殊情况,温度对于电池的性能有重要的影响,在低温环境下电池的能量不能充分释放,且充电时有安全隐患。为了在低温环境下保证电池能够正常工作,通常需要对电池进行加热,使其达到正常工作温度区间。
申请人注意到,普通的采用加热线作为加热介质的电池单体的加热装置在使用过程中容易出现绝缘失效的问题,此问题严重影响加热装置的使用寿命和整体电池的使用安全性能。申请人研究发现,加热装置的绝缘失效大多因为加热线的绝缘防护遭到损坏而产生,且加热线的绝缘破坏点较多发生于加热线对应导热管的端口的位置。分析其原因,一方面,导热管为了保证其导热性能,一般使用导热性能好的金属管体,导热管的端口容易在早期切割后遗留毛刺、锋边等问题,加热线的两端通过端口,端口遗留的毛刺容易划伤加热线体表面的绝缘防护层,导致加热线绝缘失效;并且如果导热管随着受力累积产生较严重的形变,其导热管的端口会对经过端口的加热线形成一定剪切力,使得加热线的线体表面的绝缘防护层受到损伤而致使加热线绝缘失效。
为了缓解加热装置的导热管的端口容易对加热线的绝缘防护层造成损坏而致使加热线绝缘失效的问题,发明人经过研究,设计了一种加热装置,通过在导热管的端口设置绝缘防护件而将加热线与导热管的端口隔离开,避免导热管的端口与加热线的线体接触。
也就是说,无论在加热线安装过程中还是在加热装置使用过程中,绝缘防护件 杜绝了端口的毛刺、锋边等直接接触加热线,从而避免导热管的端口存在的尖锐突出部划伤加热线的绝缘防护层,对加热线的绝缘防护性起到保护作用,有效缓解整体加热装置容易绝缘失效的问题。
并且,即使导热管尤其是其端口发生了形变,绝缘防护件对导热管的端口形成隔离和支撑,避免金属的导热管端口直接对加热线产生剪切力,此时,绝缘防护件的设置有效加大了加热线的受力面积,避免加热线的绝缘层因导热管端口形变而受到剪切破坏;另外,即使处于导热管端口处的加热线的绝缘防护层受到损坏,因为有绝缘防护件的隔离,加热线也无法与导热管的端口直接接触,绝缘防护件本身依旧保证了加热线与导热管端口之间的绝缘防护性。
本申请实施例公开的加热装置30可以用于电池单体20的加热,本申请实施例公开的具有加热装置30的电池100可以但不限用于车辆1000、船舶或飞行器等用电设备中,可以使用具备本申请公开的加热装置30的电池100组成该用电设备的电源系统,这样,加热装置30可以为在低温环境下工作的电池100加热升温,使电池单体20达到工作区间温度,以正常供电。
本申请实施例提供一种使用电池100作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可 以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2和图3,图2为本申请一些实施例提供的电池100的爆炸图,图3为本申请一些实施例提供的电池100的整体结构示意图。电池100包括箱体10、电池单体20和加热装置30,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11、第二部分12和连接第一部分11和第二部分12的第三部分13,第一部分11、第二部分12相对设置,第一部分11、第二部分12和第三部分13共同限定出用于容纳电池单体20的容纳空间。第一部分11和第二部分12可以为相对设置的板状结构,第三部分13连接第一部分11与第二部分12。当然,第一部分11、第二部分12和第三部分13形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
其中,加热装置30设置在相邻两排的电池单体20之间,以对多个电池单体20进行加热,保证电池单体20在低温环境中能够正常供电。
根据本申请的一些实施例,请参照图4,图4为本申请一些实施例提供的加热装置30的爆炸图。本申请提供了一种加热装置30,用于对电池单体20进行加热,包括:导热管31,导热管31的至少一端敞开形成端口312;加热线32,设置于导热管31内,加热线32的两个端部321从端口312伸出;绝缘防护件33,设置于端口312,用于隔离加热线32和端口312。
导热管31是指对电池单体20传递热量的管件,导热管31具有两端,导热管 31的至少一端敞开形成端口312,便于将加热线32经端口312设置于导热管31内,也便于加热线32的两个端部321从导热管31的端口312伸出连接为加热线32提供电能的电源。
导热管31的形状可以根据电池单体20的形状和尺寸以及多个电池单体20的排列顺序来确定。导热管31可以采用具有一定强度的导热性能强的金属材质(比如铝合金)制成,以使导热管31具备良好的导热性,减少热能损失,另外,金属的导热管31具有一定强度,抗形变性能强,夹在多个电池单体20之间不易变形。
加热线32可以为具有一定柔韧性的可弯折的将电能转化为热能的线体,可以理解的是,加热线32应当包括电阻丝和包裹在电阻丝外周面的线体绝缘层,其线体绝缘层可以为采用绝缘材质(比如橡胶)制成的绝缘管,也可以为涂覆在电阻丝外周面的绝缘涂层。加热线32设置于导热管31内,加热线32的两个端部321用于连接对加热线通电的电源,加热线32通电后产生热量而对导热管31进行加热,使得导热管31升温。
绝缘防护件33设置在导热管31的端口312,以隔离导热管31的端口312和加热线32,绝缘防护件33应该由绝缘材料制成,绝缘防护件33可以为安装在导热管31端口312的塑胶、亚克力等材质制成的单独的部件,将绝缘防护件33连接至导热管31端口312,隔开加热线32与导热管31的端口312即可。
当然,绝缘防护件33也可以为包覆在导热管31端口312的绝缘膜,还可以为浇注在导热管31端口312的绝缘胶,绝缘胶可以为环氧树脂胶、环氧聚酯胶等。
通过在导热管31的管腔内设置加热线32对电池单体20进行加热,结构简单易于装配,且材料成本、加热升温速率高、实用性强,在导热管31的端部321设置绝缘防护件33隔离加热线32和导热管31的端口312,这样的设计避免加热线32的线体与导热管31的端口312接触,一方面,可以避免导热管31的端口312因可能存在的毛刺、锋边等异常而划伤加热线32线体、致使加热线绝缘失效的问题,另一方面,电池单体20会给与导热管31一定压力,随着使用时间的延长,导热管31存在较大的形变隐患,导热管31的端口312形变后会对加热线32产生一定剪切力,本申请在导热管31端口312设置绝缘防护件33将端口312和加热线32隔离,避免导热管31因形变而直接对加热线32产生损坏,从而有效保护导热管31和加热线32之间的绝缘性。
请参照图5和图6,图5为本申请又一些实施例提供的加热装置30的结构示意 图,图6为本申请图5所示的导热管31的剖视图,导热管31包括:管体311,管体311可以为扁管,并且包括沿其厚度方向彼此相对的顶壁3111和底壁3112以及沿其宽度方向彼此相对的两个侧壁3113;多个分隔壁313,设置于管体311内,每个分隔壁313分别与顶壁3111的内表面和底壁3112的内表面连接,多个分隔壁313沿管体311的宽度方向间隔设置,以将管体311的内腔分隔成多个并列的型腔314。
“管体311的顶壁和底壁3112”通常指对应于导热管31两侧的电池单体20的两个侧壁。管体311设置在电池100的多个电池单体20之间时,多个电池单体20往往会对管体311的顶壁3111和/或底壁3112产生一定压力,本申请中,在管体311内设置多个分隔壁313,以将管体311的内腔分隔成多个并列的型腔314,分隔壁313可以对扁管的内腔产生支撑作用,增加扁管的强度。
其中,分隔壁313可以为平面结构也可以为曲面结构,且分隔壁313可以与扁管的厚度方向平行也可以与扁管的厚度方向成一定夹角,分隔壁313可以与管体311一体成型也可以通过焊接等方式固定于管体311的内腔。
示例性的,导热管31可以采用类似口琴管的管体311,如图6所示,管体311的横截面可以为长方形,分隔壁313平行于管体311的厚度方向,将管体311的内腔分隔成多个并列的横截面为矩形的型腔314。
通过在导热管31的管体311内设置多个分隔壁313,可以有效增强导热管31的抗变形性,避免导热管31因过大变形而对管腔内的加热线32形成强力挤压,从而进一步提高加热线32绝缘的防护性;同时,分隔壁313对加热线32在导热管31内的位置起到限位作用,可将加热线32均匀的限位于每个型腔314内,以提高导热管31升温的均衡性。
在一些实施例中,请继续参照图5,绝缘防护件33具有多个开口331,多个开口331与多个型腔314一一对应。
多个分隔壁313将管体311的内腔分隔为多个型腔314,绝缘防护件33具有多个与型腔314一一对应的开口331,即多个开口331与多个型腔314一一对应连通。
绝缘防护件具有多个与型腔314连通的开口331的结构,有效隔离每个分隔壁313朝向管体311端口312的一端和加热线32,以对导热管31的端口312形成全面绝缘防护。
在一些实施例中,请继续参照图5,并进一步参照图7和图8,图7为本申请一 些实施例提供的绝缘防护件33的结构示意图,图8为本申请一些实施例提供的绝缘防护件33连接于导热管31的结构示意图,绝缘防护件33可以包括:本体332,本体332位于管体311外,本体332具有面向端口312的第一表面334;多个凸台333,突出设置于第一表面334且分别插入对应的型腔314,开口331与凸台333对应设置,每个开口331贯穿对应的凸台333和本体332。
在本体332上设置多个可以一一插入多个型腔314的凸台333,每个开口331贯穿凸台333和本体332与对应的型腔314连通,加热线32进出每个型腔314时,加热线32的线体均通过绝缘防护件33的开口331进入型腔314,而不与管体311和分隔壁313的端部321接触,本体332和凸台333共同作用隔离加热线32与导热管31的端口312。
其中,本体332和凸台333的材质可以采用塑料、硅胶、亚克力等。本体332的第一表面334朝向端口312,第一表面334可以抵接于端口312也可以和端口312之间存在一定间隙。绝缘防护件33可以通过绝缘胶或其他绝缘连接件固定在端口312上,比如在第一表面334和端口312之间或在凸台333的外表面和型腔314的内表面之间设置绝缘胶,以将绝缘防护件33安装固定在导管的端口312上。凸台333的横截面形状可以为与型腔314的横截面适配的形状,也可以为圆形或其他形状。
绝缘防护件的结构使得加热线32进出每个型腔314时,加热线32的线体均通过凸台333上的开口331进入型腔314,不与管体311和分隔壁313的端部321接触,整体结构简单且便于安装,对设置有多个分隔壁313的导热管31的端口312形成全面绝缘隔离。
在一些实施例中,凸台333与型腔314可以过盈配合。
凸台333和型腔314采用过盈配合的连接方式,使得凸台333插入型腔314后,绝缘防护件33即可紧固于导热管31上。
一方面,过盈配合的方式使得绝缘防护件33与导热管31的连接无需再加装其他绝缘连接件,有效简化整体加热装置30结构、提高加热装置30的装配便捷性,且节约材料成本;另一方面,每个凸台333与每个型腔314过盈配合,使得凸台333对型腔314的开口331端起到一定支撑作用,进一步加强导热管31的端口312的抗形变性能。
根据本申请的一些实施例,请再次参照图5,并进一步参照图9,图9为本申 请一些实施例提供的加热线32在一些实施例中的结构示意图,加热线32的中部包括多个主体段323和多个连接段322,多个主体段323对应设置在多个型腔314内,每个连接段322设置在端口312处且用于连接相邻两个型腔314内的主体段323,加热线32的两个端部321分别连接于管体311的宽度方向上最外侧的两个型腔314内的两个主体段323。
加热线32的多个主线段对应设置在多个型腔314内,每个主线段既可以在对应的型腔314内直接沿导热管31的长度方向延伸至导热管31的两端,也可以迂回的在型腔314内设置,主线段在型腔314内迂回的设置可以使得每个型腔314内囊括多股加热线32,有效增加整体导热管31的效率。
连接段322设于端口312处连接相邻两个型腔314内的主体段323,端口312处设置有绝缘防护件33,则连接段322的两端穿过相邻的两个开口331与相邻两个型腔314内的主体段323连接,绝缘防护件33隔开导热管31的端口312与加热线32的连接段322。
加热线32的两个端部321分别连接于管体311的宽度方向上最外侧的两个型腔314内的两个主体段323,加热线32的两个端部321可以经导热管31的同一个端口312伸出,也可以分别从导热管31的两端伸出。
这样的设计使得整个加热线32可以沿导热管31的宽度方向分布于导热管31的多个型腔314中,有效提高整体导热管31的升温速率;且加热线32的多个主体段323在导热管31内通过分隔壁313进行限位,有效保证加热线32在导热管31内的分布均匀性,从而提高整体导热管31的升温均匀性,提高加热装置30的加热性能的稳定性。
在一些实施例中,请继续参照图9,导热管31的两端均敞开形成端口312,两个端口312均设置绝缘防护件33,每个型腔314内的主体段323直接沿型腔314的长度方向延伸至导热管31的两端的端口312处,然后通过连接段322依次首尾相连。
在将加热线32布置到导热管31时,可以引导加热线32的一端穿入管体311的宽度方向上最外侧的一个型腔314内,然后依次往复穿插每个型腔314直至从管体311的宽度方向上最外侧的另一个型腔314穿出即可。每个型腔314内囊括一束加热线32的线体。
请参照图10和图11,图10为本申请一些实施例提供的加热线32在又一些实 施例中的结构示意图,图11为图10所示的导热管31设有绝缘防护件33一端的主视图;导热管31的一端敞开形成端口312,导热管31的另一端封闭,每个主体段323在对应的型腔314内迂回地延伸。
导热管31的一端敞开形成端口312另一端封闭,即加热线32不穿出导热管31封闭的一端,这样的设置方式只需要在导热管31的一端设置绝缘防护件33即可实现本申请目的。
其中,每个主线段可在对应的型腔314内迂回一次或多次,示例性的,如图10所示,每个主线段在型腔314内迂回一次,使得每个型腔314内囊括两束加热线32体。
导热管31的一端封闭,一方面,只需在导热管31设置端口312的一端设置绝缘防护件33即可,相较于在导热管31两端均设置绝缘防护件33的结构,可以有效节省绝缘防护件33材料成本;另一方面,使得每个型腔314内至少囊括两束加热线32体,有效提高加热效率;同时,加热线32的两个端部321均从导热管31的同一端伸出,相较于导热管31两端出线的结构,更加便于加热线32的电源及其他连接件的设置,并且提高整体加热装置30的结构紧凑性。
根据本申请的一些实施例,本申请还提供了一种电池100,包括上述实施例中的加热装置30,还包括:箱体10;多个电池单体20,设置于箱体10内且排列成多排;加热装置30设置在相邻两排电池单体20之间,以对电池单体20进行加热。
箱体10可以是前述任一一种箱体10,电池单体20可以为前述任一一种电池单体20。加热装置30的导热管31的外表面形状可以根据电池单体20的形状变更,比如,如果电池单体20为长方体,则导热管31可以为外表面具有与电池单体20外表面平行的平面的直管,导热管31的外表面接触电池单体20的外表面,以有效增加接触面积,当然,导热管31的外表面也可以不与电池单体20的外表面完全匹配贴合,只要能为导热管31的相邻两侧的电池单体20提供热量即可。
在一些实施例中,请再次参照图3,并进一步参照图12,图12为本申请另一些实施例提供的加热装置30的结构爆炸图,电池单体20呈圆柱形,导热管31呈波浪形以与电池单体20的形状相匹配。
导热管31的表面为波浪形,即导热管31与电池单体20相邻的表面具有多个与圆柱形电池单体20的形状匹配的弧形凹槽,导热管31两侧的多个电池单体20可以 相互错位的限位于导热管31的限位槽内,可以理解的是,弧形凹槽的轴线与圆柱形电池单体20的轴心线平行。
导热管31对应于电池单体20的位置可以为靠近圆柱电池单体20的一端或对应于圆柱电池单体20的中间位置。
示例性的,导热管31对应于圆柱电池单体20的中间位置,且导热管31沿圆柱单体的轴线方向延伸的宽度大于圆柱电池单体20的长度的二分之一,以确保对电池单体20提供足够的加热面积,有效保证电池100加热效率。
当然,可以理解的是,如果单个导热管31的宽度不足以对电池单体20提供足够的加热面积,可以在相邻两排的电池单体20之间并排设置多个导热管31,相邻两个导热管31之间可以抵接也可以存在一定间隙。
一方面,波浪形导热管31有效增加导热管31与电池单体20的接触面积,从而提高导热管31对电池单体20的加热效率;另一方面,波浪形的导热管31对电池单体20起到一定仿形限位作用,进一步提高电池100中每个电池单体20的定位稳定性;同时,波浪形的导热管31最大化利用其表面空间,以在一定空间内尽可能对多个电池单体20进行加热,从而有效提高整体电池100结构的紧凑性。
其中,电池单体20可通过绝缘胶粘贴于导热管31,固定导热管31在电池单体20上的位置的同时起到电池单体20与导热管31之间的绝缘防护作用。
第三方面,本申请提供了一种用电设备,包括上述实施例中的电池100,电池100用于提供电能。
用电设备可以是前述任一应用电池100的设备。
根据本申请的一些实施例,参见图4至图12,本申请提供了一种加热装置30,包括导热管31、加热线32和绝缘防护件33,导热管31的一端封闭,另一端敞开形成端口312,导热管31包括管体311和五个分隔壁313,管体311为波浪形扁管,五个分隔壁313沿管体311的宽度方向间隔设置在管体311内,将管体311的内腔分隔成六个并列的型腔314。绝缘防护件33包括本体332和突出设置于本体332的六个凸台333,每个凸台333对应插入一个型腔314,凸台333上设置与型腔314连通的开口331;加热线32的中部包括六个主体段323和五个连接段322,六个主体段323在对应的型腔314内迂回延伸,五个连接段322设置在端口312处且用于连接相邻两个型腔314内的主体段323,加热线32的两端经管体311最外层的两个型腔314伸出。
实施时,可采用平直口琴管作为导热管31,将绝缘防护插入口琴管,绝缘防护件33的每个凸台333对应口琴管的一个型腔314,然后可以将加热线32的主体段323通过倒钩或其他类似工装依次拽入口琴管的每个型腔314,使每个型腔314内囊括两束加热线32体,加热线32完成布置后,再对导热管31进行折弯使导热管31形成波浪形。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种加热装置,用于对电池单体进行加热,包括:
    导热管,所述导热管的至少一端敞开形成端口;
    加热线,设置于所述导热管内,所述加热线的两个端部从所述端口伸出;
    绝缘防护件,安装于所述端口,用于隔离所述加热线和所述端口。
  2. 根据权利要求1所述的加热装置,其中,所述导热管包括:
    管体,所述管体为扁管,并且包括沿其厚度方向彼此相对的顶壁和底壁以及沿其宽度方向彼此相对的两个侧壁;
    多个分隔壁,设置于所述管体内,每个所述分隔壁分别与所述顶壁的内表面和所述底壁的内表面连接,多个所述分隔壁沿所述管体的宽度方向间隔设置,以将所述管体的内腔分隔成多个并列的型腔。
  3. 根据权利要求2所述的加热装置,其中,所述绝缘防护件具有多个开口,多个所述开口与多个所述型腔一一对应。
  4. 根据权利要求3所述的加热装置,其中,所述绝缘防护件包括:
    本体,所述本体位于所述管体外,所述本体具有面向所述端口的第一表面;
    多个凸台,突出设置于所述第一表面且分别插入对应的所述型腔,所述开口与所述凸台对应设置,每个所述开口贯穿对应的凸台和所述本体。
  5. 根据权利要求4所述的加热装置,其中,所述凸台与所述型腔过盈配合。
  6. 根据权利要求2至5任意一项所述的加热装置,其中,所述加热线的中部包括多个主体段和多个连接段,多个所述主体段对应设置在多个所述型腔内,每个所述连接段设置在所述端口处且用于连接相邻两个所述型腔内的所述主体段,所述加热线的两个端部分别连接于所述管体的宽度方向上最外侧的两个型腔内的两个所述主体段。
  7. 根据权利要求6所述的加热装置,其中,所述导热管的一端敞开形成所述端口,所述导热管的另一端封闭,每个所述主体段在对应的所述型腔内迂回地延伸。
  8. 一种电池,包括:
    箱体;
    多个电池单体,设置于所述箱体内且排列成多排;
    如权利要求1至7任意一项所述的加热装置,所述加热装置设置在相邻两排所述电池单体之间,以对所述电池单体进行加热。
  9. 根据权利要求8所述的一种电池,其中,所述电池单体呈圆柱形,所述导热管呈波浪形以与所述电池单体的形状相匹配。
  10. 一种用电设备,包括权利要求8或9所述的电池,所述电池用于提供电能。
PCT/CN2022/089335 2021-10-29 2022-04-26 加热装置、电池及用电设备 WO2023071099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122637500.4U CN216354439U (zh) 2021-10-29 2021-10-29 加热装置、电池及用电设备
CN202122637500.4 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071099A1 true WO2023071099A1 (zh) 2023-05-04

Family

ID=81132396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089335 WO2023071099A1 (zh) 2021-10-29 2022-04-26 加热装置、电池及用电设备

Country Status (2)

Country Link
CN (1) CN216354439U (zh)
WO (1) WO2023071099A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216354439U (zh) * 2021-10-29 2022-04-19 宁德时代新能源科技股份有限公司 加热装置、电池及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257843A (ja) * 2006-03-20 2007-10-04 Autech Japan Inc 車両用バッテリーパック
CN105958158A (zh) * 2016-06-27 2016-09-21 华霆(合肥)动力技术有限公司 一种加热液冷装置
CN108123076A (zh) * 2016-11-28 2018-06-05 德阳九鼎智远知识产权运营有限公司 一种防碰撞电池
CN207802424U (zh) * 2018-01-16 2018-08-31 深圳市安耐电热科技有限公司 一种单头模具加热管
CN216354439U (zh) * 2021-10-29 2022-04-19 宁德时代新能源科技股份有限公司 加热装置、电池及用电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257843A (ja) * 2006-03-20 2007-10-04 Autech Japan Inc 車両用バッテリーパック
CN105958158A (zh) * 2016-06-27 2016-09-21 华霆(合肥)动力技术有限公司 一种加热液冷装置
CN108123076A (zh) * 2016-11-28 2018-06-05 德阳九鼎智远知识产权运营有限公司 一种防碰撞电池
CN207802424U (zh) * 2018-01-16 2018-08-31 深圳市安耐电热科技有限公司 一种单头模具加热管
CN216354439U (zh) * 2021-10-29 2022-04-19 宁德时代新能源科技股份有限公司 加热装置、电池及用电设备

Also Published As

Publication number Publication date
CN216354439U (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
US11247554B2 (en) High pressure container
WO2023071099A1 (zh) 加热装置、电池及用电设备
WO2023065982A1 (zh) 箱体、电池及用电装置
CN108054462A (zh) 电池及其热管理装置、以及具有该电池的uav
WO2023029504A1 (zh) 电池的箱体、电池和用电装置
WO2023207798A1 (zh) 热管理部件、电池及用电装置
CN215662966U (zh) Bdu结构、电池包及电动汽车
CN215731877U (zh) 一种电池模组和电池包
WO2023160118A1 (zh) 电池、用电装置
CN217764637U (zh) 管接头、连接结构、换热系统、电池及用电装置
WO2023142971A1 (zh) 柔性电路板组件、电池及用电装置
WO2023147771A1 (zh) 线路板采样结构、电池模组、电池包及用电设备
WO2023160030A1 (zh) 箱体、电池、用电装置以及制备电池的装置
WO2023134536A1 (zh) 电池及用电设备
WO2023165376A1 (zh) 采样组件、电池和用电装置
WO2024036771A1 (zh) 加热装置、电池以及用电装置
WO2023024988A1 (zh) 电池及用电装置
WO2023130785A1 (zh) 极片、电极组件、电池单体、电池及用电装置
CN217158352U (zh) 连接管、电池、用电设备及电子设备
WO2023213022A1 (zh) 应变检测组件、电池以及用电设备
CN216872135U (zh) 电池及电池模组、电能设备
WO2023065687A1 (zh) 电池单体支架、电池模组、电池及用电装置
WO2023159397A1 (zh) 电池的线缆类连接件保护装置、电池以及用电装置
CN210403853U (zh) 一种电池包和汽车
EP4195360A1 (en) Battery cell holder, battery module, battery and electrical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885014

Country of ref document: EP

Kind code of ref document: A1