WO2023070981A1 - 一种丝柔细旦无纺布及其制造方法 - Google Patents

一种丝柔细旦无纺布及其制造方法 Download PDF

Info

Publication number
WO2023070981A1
WO2023070981A1 PCT/CN2022/074242 CN2022074242W WO2023070981A1 WO 2023070981 A1 WO2023070981 A1 WO 2023070981A1 CN 2022074242 W CN2022074242 W CN 2022074242W WO 2023070981 A1 WO2023070981 A1 WO 2023070981A1
Authority
WO
WIPO (PCT)
Prior art keywords
denier
fiber
fine
fiber web
melt
Prior art date
Application number
PCT/CN2022/074242
Other languages
English (en)
French (fr)
Inventor
蔡吉祥
郑庆中
武丹聘
Original Assignee
厦门延江新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门延江新材料股份有限公司 filed Critical 厦门延江新材料股份有限公司
Publication of WO2023070981A1 publication Critical patent/WO2023070981A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels

Definitions

  • the invention relates to the field of non-woven fabrics, in particular to a silky fine denier non-woven fabric for personal care and infant care and a manufacturing method thereof.
  • non-woven fabrics are often used in disposable hygiene products. As they are favored by consumers, consumers are also demanding more and more performance, especially in terms of touch.
  • the touch of the non-woven fabric has a great influence on the denier of the fiber forming the non-woven fabric. The smaller the denier of the fiber, the smaller the diameter of the fiber, and the softer, more delicate and smoother the non-woven fabric feels.
  • the non-woven fabrics used in disposable sanitary products mostly use fibers with a fiber denier of 1.5 to 3.0 denier, and fibers with a fiber denier of ⁇ 1.0 denier, although the formed non-woven fabric is softer and feels more delicate, but due to The fibers are very thin, and there are problems such as difficult fiber carding and processing during production, and uneven mesh surface of the formed non-woven fabric.
  • the fibers produced by the melt blown process although the fiber denier is ⁇ 1.0 denier, the arrangement of the fibers and the fibers Often too dense, with high fiber density and low air permeability, it is difficult to be used as a top layer of disposable hygiene products.
  • the object of the present invention is to provide a kind of fine-denier non-woven fabric with silky hand feeling and its manufacturing method, which overcomes the defects of existing products and production methods.
  • the solution of the present invention is: a silk soft fine denier nonwoven fabric, the silk soft fine denier nonwoven fabric comprises an upper layer of fine denier fibers composed of bicomponent melt blown fibers with a fiber denier number ⁇ 1.0 denier A net and a lower coarse denier fiber web composed of fibers with a fiber denier of 2.0 to 12.0 denier;
  • the two-component melt-blown fiber is composed of thermoplastic resins whose melting points differ by more than 20°C, wherein: the two-component melt-blown fiber The surface layer contains low melting point resin; the air permeability of the upper fine denier fiber web is 100-300 m 3 /m 2 /min.
  • the fiber denier of the upper fine denier fiber web is 0.1-1.0 denier.
  • the bicomponent meltblown fiber is a bicomponent sheath-core meltblown fiber, a bicomponent pie-shaped meltblown fiber or a bicomponent side-by-side meltblown fiber.
  • the coarse denier fiber web of the lower layer is a two-component coarse denier short fiber web, air-through non-woven fabric, spun-bonded non-woven fabric, hot-rolled non-woven fabric or spunlace non-woven fabric.
  • a method for manufacturing silky soft fine-denier non-woven fabrics the specific steps are as follows: (1) Upper-layer fine-denier fiber supply process: adopting a melt blown process, respectively passing two thermoplastic resins with a difference of melting point ⁇ 20°C through a hot-melt extrusion device Heating, using the hot air flow in the spinning device to blow the melted stream of the thermoplastic resin ejected from the two-component spinneret hole on the spinneret into a fiber bundle with a fiber denier ⁇ 1.0 denier, thereby forming with the hot air flow
  • Two-component melt-blown fibers form the upper fine-denier fiber web; wherein: the distance between adjacent spinneret holes is 1.5mm-2.5mm, and the speed of the fan forming the hot air flow is less than 2000rpm.
  • Lower layer coarse denier fiber web supply process The lower layer coarse denier fiber web composed of fibers with a fiber denier of 2.0 to 12.0 denier is transported to the upper layer fine denier fiber web and the lower layer coarse denier fiber web.
  • the overlapping composite mesh surface passes through the heating device. Since the fine fiber in the upper fine denier fiber web is a two-component melt-blown fiber, the low melting point resin on the surface is melted in the heating device, so that the upper fine denier Between the fiber and the fine denier fiber, between the fine denier fiber web and the coarse denier fiber web adjacent to the upper layer fine denier fiber web and the coarse denier fiber, consolidate together, and then wind up to form the silk soft fine denier nonwoven cloth.
  • the two-component spinneret holes on the spinneret in the step (1) are sheath-core type and orange segment type.
  • the two-component spinneret holes on the spinneret in the step (1) are parallel.
  • the two-component side-by-side melt-blown fibers are laid into a fiber web, and then enter a hot air oven, under the action of hot air at a temperature of 100°C to 110°C,
  • the two-component side-by-side melt-blown fibers have different shrinkage stresses due to the high-melting-point resin and the low-melting-point resin, and the two-component side-by-side melt-blown fibers start to crimp to form a crimped upper fine-denier fiber web.
  • the lower coarse denier fiber web is a two-component coarse denier short fiber web, and in the step (2), the two-component coarse denier short fiber with a fiber denier of 2.0 to 12.0 denier is opened by an opening machine. Loose, the carding machine combs into the lower coarse denier fiber web.
  • the lower coarse denier fiber web is air-through non-woven fabric, spunbonded non-woven fabric, hot-rolled non-woven fabric or spunlace non-woven fabric, and the step (2) is to pass the non-woven fabric through an unwinding device. After unwinding, it is transported to the upper layer of fine denier fiber web and the lower layer of coarse denier fiber web by guide rollers.
  • the heating device is a hot air oven, a hot roll or a combination of the two.
  • the temperature of the heating device is 130°C to 150°C.
  • the upper fine denier fiber web of the silk soft fine denier nonwoven fabric of the present invention is composed of two-component melt-blown fibers, and the two-component melt-blown fibers adopt a sparse melt-blown process to directly form fine denier fibers, and pass Control the distance between adjacent spinneret holes and the pressure of hot air flow to control the fineness of melt-blown fibers and the air permeability of the upper fine-denier fiber web to meet the requirements for the use of disposable sanitary products, which not only meets the needs of fine-denier fibers Denier ⁇ 1.0 denier, the formed fine denier fiber web has a silky, delicate and smooth touch, and also effectively avoids the problems of difficult carding and processing of fine denier fibers.
  • the coarse denier fiber web of the lower layer can not only increase the mechanical properties of the silk soft fine denier nonwoven fabric, but also have better tensile strength even in the case of low grammage, and the fiber denier of the lower fiber web is thicker, which is beneficial to The diversion and penetration of liquid can also improve the bulkiness and resilience in the thickness direction of the composite non-woven fabric, thereby increasing the comfort during use.
  • Figure 1 is a cross-sectional view of the silky fine denier nonwoven fabric of Example 1 of the present invention.
  • Fig. 2 is a cross-sectional view of the bicomponent sheath-core melt-blown fiber and the bi-component pie-shaped melt-blown fiber of the present invention.
  • Fig. 3 is a schematic diagram of the production of the silky fine denier nonwoven fabric according to Example 1 of the present invention.
  • Figure 4 is a cross-sectional view of the silky fine denier nonwoven fabric of Example 2 of the present invention.
  • Fig. 5 is a cross-sectional view of the double-component side-by-side crimped spunbonded long fiber of the present invention.
  • Fig. 6 is a schematic diagram of the production of the silky fine denier nonwoven fabric according to Example 2 of the present invention.
  • Fig. 7 is a cross-sectional view of the silky fine denier nonwoven fabric of Example 3 of the present invention.
  • Fig. 8 is a schematic diagram of the production of the silky fine denier nonwoven fabric according to Example 3 of the present invention.
  • Embodiment 1 A1, A1' hot-melt extrusion device; B1 spinning device; C1, C1' hot air flow; D1 spinneret; E1 hot air oven in the molding process; F1 unpacking opener; G1 carding machine.
  • Embodiment 2 A2, A2' hot-melt extrusion device; B2 spinning device; C2, C2' hot air flow; D2 spinneret; E2 hot air oven in the molding process; F2 unpacking opener; G2 carding machine; H2 The hot air oven in the crimping process of the upper fine denier fiber; f2 The upper fine denier fiber web after crimping.
  • Embodiment 3 A3, A3' hot-melt extrusion device; B3 spinning device; C3, C3' hot air flow; D3 spinneret; E3 hot air oven in the forming process; ; I3 guide roll; J3 hot roll; f3 crimped upper fine-denier fiber web.
  • the present invention discloses a silky and fine-denier nonwoven fabric 1, 2, and 3, including an upper layer composed of two-component melt-blown fibers with a fiber denier of ⁇ 1.0 denier
  • the fine denier fiber webs a1, a2, a3 and the lower layer coarse denier fiber webs b1, b2, b3 composed of fibers with a fiber denier number of 2.0 to 12.0 denier;
  • the resin composition wherein: the surface layer of the two-component melt-blown fiber contains a low-melting resin; the air permeability of the upper fine-denier fiber web is 100-300 m 3 /m 2 /min.
  • the two-component melt-blown fiber is a two-component sheath-core type melt-blown fiber 11, a two-component orange segment type melt-blown fiber 12 or a two-component side-by-side type melt-blown fiber 21, wherein: two-component sheath-core type The surface skin layer 11a of the melt-blown fiber 11 is a low-melting resin, and the core layer 11b is a high-melting resin; the two-component orange segment melt-blown fiber 12 is composed of a low-melting resin 12a and a high-melting resin 12b distributed by the segment; the two-component The side-by-side melt-blown fibers 21 are composed of low-melting-point resin 21a and high-melting-point resin 21b distributed side by side.
  • the fiber webs of the lower coarse denier fiber webs b1, b2, and b3 are two-component coarse denier short fiber webs, air-through non-woven fabrics, spun-bonded non-woven fabrics, hot-rolled non-woven fabrics or spunlace non-woven fabrics.
  • Testing instrument FX3300-IV gas permeability tester.
  • Test samples By using the same process conditions, only the upper fine-denier fiber web a1 is manufactured and molded in the oven E1, and 5 samples of 10cm ⁇ 10cm are reserved.
  • Test procedure Place the test sample in a laboratory with an ambient room temperature of (23 ⁇ 2)°C and a relative humidity of (50 ⁇ 2)% for at least two hours. Install the upper test head with an area of 38cm2 on the air permeability tester on the clamp arm and connect the high-pressure rubber tube to the upper test head, fix the lower test head with 38cm2 in the sample diameter setting circle and connect the high-pressure rubber tube Lower the test head. Set the experimental conditions: unit selection: m 3 /m 2 /min Test pressure: 125 Pa. Put the front side of the sample flat on the lower test head, press the clamp arm to start the test, and record the reading when the indicator light of the correct test range becomes stable and turns green.
  • the silk soft fine denier nonwoven fabric 1 of the present invention adopts the following manufacturing method: (1) upper layer fine denier fiber supply process: adopting the meltblown process, the difference between the two melting points
  • the thermoplastic resin high-density polyethylene HDPE and polypropylene PP at ⁇ 20°C are heated through the hot-melt extruders A1 and A1', and in the spinning device B1, the hot air flow C1, C1' is used to spin the two groups of spinnerets from the spinneret D1
  • the melt stream of the thermoplastic resin sprayed out from the spinneret hole is blown into a fiber bundle with a fiber denier ⁇ 1.0 denier, thereby forming a two-component melt-blown fiber c1 along with the hot air flow, forming the upper fine-denier fiber web a1;
  • the distance between adjacent spinneret holes is 1.5mm
  • the rotating speed of the fan forming the hot air flow is 1800
  • the upper fine-denier fiber web a1 of the silk soft fine-denier nonwoven fabric in this embodiment is composed of two-component melt-blown fibers c1, and the two-component melt-blown fibers c1 adopt a sparse melt-blown process to directly form a fine denier fibers, and consolidated into the silky fine denier non-woven fabric together with the lower coarse denier fiber web.
  • the mechanical properties are good, usually the spinneret holes are arranged with a small hole pitch and high density, and adjacent spinnerets The hole distance is about 0.6mm-0.7mm, but the melt-blown non-woven fabric formed by this traditional melt-blown process has high fiber density and poor air permeability, which is difficult to meet the needs of sanitary products. If the distance between adjacent spinneret holes is directly increased, the formed melt-blown non-woven fabric will have an uneven grammage and uneven mesh surface, resulting in poor web-forming and mechanical properties.
  • the net and the lower coarse denier fiber are laminated and consolidated to make silk soft and fine denier non-woven fabrics, which not only increases the silky, delicate and soft touch of silk soft and fine denier non-woven fabrics, but also solves the problem caused by sparse melting.
  • the fineness of the melt-blown fibers and the air permeability of the upper fine-denier fiber web are controlled by controlling the distance between adjacent spinneret holes and the pressure of the hot air flow. By using the same process conditions, only the upper fine-denier fiber web a1 is manufactured and passed through the oven. E1 was molded, and samples were taken to test its air permeability.
  • the test result showed that the air permeability was 100 m 3 /m 2 /min, while the air permeability of conventional melt-blown non-woven fabrics was only 30-50 m 3 /m 2 /min.
  • the air permeability of the upper fine-denier fiber web is greatly improved compared with conventional melt-blown non-woven fabrics, so that it meets the requirements for use of disposable sanitary products. Therefore, the silky fine-denier non-woven fabric manufactured by this process not only satisfies the fiber denier of the fine-denier fiber ⁇ 1.0 denier, the formed fine-denier fiber web has a silky, delicate and smooth touch, but also effectively avoids the fine-denier The fiber is difficult to comb, difficult to process and other problems.
  • the silk soft fine denier nonwoven fabric 2 of the present invention adopts the following manufacturing method: (1) The upper layer fine denier fiber supply process: using the melt blown process, the difference between the two melting points is ⁇ 20°C
  • the thermoplastic resin, high-density polyethylene HDPE and polyethylene terephthalate PET are heated through the hot-melt extrusion device A2 and A2', and the hot air flow C2 is used in the spinning device B2, and C2' will flow from the spinneret D2
  • the melted stream of thermoplastic resin ejected from the upper two-component spinneret hole is blown into a fiber bundle with a fiber denier of 0.8 denier, thereby forming a two-component melt-blown fiber c2 along with the hot air flow, forming the upper fine denier Fiber web a2; wherein: the distance between adjacent spinneret holes is 2.0mm, the rotating speed of the blower fan forming the hot air flow is 1500rpm, and the air permeability of
  • the crimping process of the upper fine denier fiber the two-component side-by-side melt-blown fiber 21 is laid into the upper fine denier fiber web a2, and then enters the hot air oven H2.
  • the two-component side-by-side melt-blown fiber 21 has different shrinkage stresses due to the high-melting-point resin 21b and the low-melting-point resin 21a, and the described two-component side-by-side melt-blown fiber 21 begins to crimp to form a crimped upper fine-denier fiber web a2.
  • the upper fine denier fiber web a2 of the silk soft fine denier nonwoven fabric 2 of the present embodiment is made up of two-component side-by-side melt-blown fibers 21, due to the high-density polyethylene HDPE and polyethylene terephthalate PET has different shrinkage forces.
  • the fibers first produce free curls under the action of hot air at 100°C to 110°C in a stacked state where adjacent fibers are not bonded, and then the low-melting point resin begins to melt and blend with the hot air at 135°C. Adjacent fibers are bonded together to form the upper fine-denier fiber web a1, so that the curl of the formed fibers will not be affected by the consolidation of adjacent fibers, and the degree of curl is higher.
  • the lower layer of coarse denier The bulkiness of the fiber web b2 is better than that of the nonwoven fabric after off-line unwinding, and the silk soft fine denier nonwoven fabric 2 obtained after being laminated with the upper fine denier fiber web a2 has better bulkiness.
  • the lower coarse denier fiber web b2 produced on-line may also be a spunbonded fiber web produced on-line, or a melt-blown fiber web or the like.
  • the silky soft fine denier nonwoven fabric 3 of the present invention adopts the following manufacturing method: (1) The upper layer fine denier fiber supply process: using a melt blown process, the difference between the two melting points is ⁇ 20°C
  • the thermoplastic resin, low-melting-point polyethylene terephthalate PET and high-melting-point polyethylene terephthalate PET are heated through the hot-melt extruders A3 and A3', and the hot air flow C3 is utilized in the spinning device B3, C3' blows the melted stream of thermoplastic resin ejected from the two-component spinneret hole on the spinneret D3 into a fiber bundle with a fiber denier of 0.6 denier, thereby forming a two-component melt-blown fiber c3 with the hot air flow , forming the upper fine denier fiber web a3; wherein: the distance between adjacent spinneret holes is 2.5 mm, the air permeability of the upper fine denier fiber web a3 is
  • the crimping process of the upper fine denier fiber the two-component side-by-side melt-blown fiber 21 is laid into the upper fine denier fiber web a3, and then enters the hot air oven H3.
  • the two-component side-by-side melt-blown fiber 21 has different shrinkage stresses due to the high-melting-point resin 21b and the low-melting-point resin 21a, and the described two-component side-by-side melt-blown fiber 21 begins to crimp to form a crimped upper fine-denier fiber web a3.
  • Lower layer coarse denier fiber web supply process unwind the lower layer coarse denier fiber web b3 through the unwinding device, and then transport it to the upper layer fine denier fiber web a3 and the lower layer coarse denier fiber web b3 through the guide roller I3.
  • the lower coarse denier fiber web b3 is air-through non-woven fabric, spunbond non-woven fabric, hot-rolled non-woven fabric or spunlace non-woven fabric.
  • the lower coarse denier fiber web in this embodiment is air-through non-woven fabric, spunbond non-woven fabric, hot-rolled non-woven fabric or spunlace non-woven fabric, which can increase the mechanical properties of silk soft fine denier non-woven fabric , even in the case of low grammage, it can have better tensile strength, and the fiber denier of the lower fiber web is thicker, which is conducive to the diversion and penetration of liquid, and can also improve the bulkiness and thickness direction of the composite nonwoven fabric. Resilience, which increases the comfort during use.
  • the lower non-woven fabric can have different properties, such as antibacterial, skin-friendly, covering properties, etc., and can be combined with the upper fine-denier fiber net to give silk softness and fineness.
  • the corresponding properties of denier non-woven fabrics can be used.

Abstract

一种丝柔细旦无纺布,所述丝柔细旦无纺布包括由纤维旦数≤1.0旦的双组份熔喷纤维组成的上层细旦纤维网以及由纤维旦数为2.0~12.0旦的纤维组成的下层粗旦纤维网;所述上层细旦纤维网的透气率为100-300m 3/m 2/min,该双组份熔喷纤维采用熔喷稀梳工艺,直接形成细旦纤维,并且通过控制相邻喷丝孔的距离和热气流压力来控制熔喷纤维的细度和上层细旦纤维网的透气性,这样既满足了细旦纤维的纤维旦数≤1.0旦,形成的细旦纤维网具有丝柔、细腻和滑爽的触感,也有效避免了细旦纤维难梳理,不易加工等问题。

Description

一种丝柔细旦无纺布及其制造方法 技术领域
本发明涉及无纺布领域,尤其涉及应用于个人护理、婴幼儿护理用的一种丝柔细旦无纺布及其制造方法。
背景技术
目前,无纺布常被用于一次性卫生用品,随着其备受消费者的青睐,消费者对其性能也要求越来越高,尤其触感方面。而无纺布的触感和形成无纺布的纤维旦数有很大影响,纤维旦数越小,纤维直径越小,形成的无纺布手感越丝柔、细腻、滑爽。通常用于一次性卫生用品的无纺布多选用纤维旦数为1.5旦~3.0旦的纤维,而纤维旦数≤1.0旦的纤维,虽然形成的无纺布更加柔软,手感更加细腻,但是由于纤维很细,在生产时存在纤维难梳理,不易加工,形成的无纺布网面不均匀等问题,而如果采用熔喷工艺生产的纤维,虽然纤维旦数≤1.0旦,但是纤维与纤维排列往往过于致密,纤维密度高,透气率低,很难用于一次性卫生用品面层。
技术问题
本发明的目的在于提供一种手感丝柔的细旦无纺布及其制造方法,克服了现有产品及生产方法的缺陷。
技术解决方案
为实现上述目的,本发明的解决方案是:一种丝柔细旦无纺布,所述丝柔细旦无纺布包括由纤维旦数≤1.0旦的双组份熔喷纤维组成的上层细旦纤维网以及由纤维旦数为2.0~12.0旦的纤维组成的下层粗旦纤维网;所述双组份熔喷纤维由熔点相差20℃以上的热塑性树脂组成,其中:所述双组份熔喷纤维的表层含有低熔点树脂;所述上层细旦纤维网的透气率为100-300 m 3/m 2/min。
所述上层细旦纤维网的纤维旦数为0.1~1.0旦。
所述双组份熔喷纤维为双组份皮芯型熔喷纤维、双组份橘瓣型熔喷纤维或双组份并列型熔喷纤维。
所述的下层粗旦纤维网为双组份粗旦短纤维网、热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布。
一种丝柔细旦无纺布的制造方法,具体步骤在于:(1)上层细旦纤维供应工序:采用熔喷工艺,分别将两种熔点之差≥20℃的热塑性树脂通过热熔挤出装置加热,在纺丝装置中利用热气流将从喷丝板上的双组份喷丝孔喷出的热塑性树脂的溶体细流吹散成纤维旦数≤1.0旦的纤维束,从而伴随热气流形成双组份熔喷纤维,形成所述的上层细旦纤维网;其中:相邻喷丝孔的距离为1.5mm-2.5mm,形成热气流的风机的转速小于2000rpm。
(2)下层粗旦纤维网供应工序:将由纤维旦数为2.0~12.0旦的纤维组成的下层粗旦纤维网输送到上层细旦纤维网与下层粗旦纤维网叠网处。
(3)叠网工序:所述的上层细旦纤维网与所述的下层粗旦纤维网叠加在一起形成上层为细旦纤维网,下层为粗旦纤维网的重叠复合网面。
(4)成型工序:所述的重叠复合网面通过加热装置,由于上层细旦纤维网中细旦纤维为双组份熔喷纤维,表层的低熔点树脂在加热装置中熔融,使得上层细旦纤维与细旦纤维之间,上层细旦纤维网与下层粗旦纤维网相邻的细旦纤维与粗旦纤维之间,固结在一起,然后收卷,形成所述的丝柔细旦无纺布。
所述的步骤(1)中喷丝板上的双组份喷丝孔为皮芯型和桔瓣型。
所述的步骤(1)中喷丝板上的双组份喷丝孔为并列型。
所述的步骤(3)之前,具有上层细旦纤维卷曲工序:所述的双组份并列型熔喷纤维铺设成纤维网,然后进入热风烘箱,在温度为100℃~110℃热风作用下,所述双组份并列型熔喷纤维由于高熔点树脂和低熔点树脂具有不同的收缩应力,所述的双组份并列型熔喷纤维开始卷曲,形成卷曲后的上层细旦纤维网。
所述的下层粗旦纤维网为双组份粗旦短纤维网,所述的步骤(2)中由纤维旦数为2.0~12.0旦的双组份粗旦短纤维通过开包开松机开松,梳理机梳理成下层粗旦纤维网。
所述下层粗旦纤维网为热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布,所述的步骤(2)为将所述无纺布通过放卷装置进行放卷后通过导辊输送到上层细旦纤维网与下层粗旦纤维网叠网处。
所述的加热装置为热风烘箱、热轧辊或两者相结合。
所述的加热装置的温度为130℃~150℃。
有益效果
采用上述方案后,本发明的丝柔细旦无纺布的上层细旦纤维网由双组份熔喷纤维组成,该双组份熔喷纤维采用稀疏熔喷工艺,直接形成细旦纤维,并且通过控制相邻喷丝孔的距离和热气流压力来控制熔喷纤维的细度和上层细旦纤维网的透气性,使其满足一次性卫生用品的使用要求,这样既满足了细旦纤维的纤维旦数≤1.0旦,形成的细旦纤维网具有丝柔、细腻和滑爽的触感,也有效避免了细旦纤维难梳理,不易加工等问题。同时,下层粗旦纤维网既可以增加丝柔细旦无纺布的力学性能,即使在低克重情况下也可以具有较好的拉伸强度,而且下层纤维网的纤维旦数较粗,有利于液体的导流渗透,也可以提高复合无纺布的蓬松性和厚度方向的回弹性,从而增加了使用过程中的舒适性。
附图说明
图1 为本发明实施例1的丝柔细旦无纺布的剖面图。
图2 为本发明双组份皮芯型熔喷纤维和双组份橘瓣型熔喷纤维的剖面图。
图3 为本发明实施例1的丝柔细旦无纺布的制造示意图。
图4 为本发明实施例2的丝柔细旦无纺布的剖面图。
图5 为本发明双组份并列卷曲纺粘长纤维的剖面图。
图6 为本发明实施例2的丝柔细旦无纺布的制造示意图。
图7为本发明实施例3的丝柔细旦无纺布的剖面图。
图8为本发明实施例3的丝柔细旦无纺布的制造示意图。
符号说明:1,2,3 丝柔细旦无纺布;11双组分皮芯型熔喷纤维;11a高熔点树脂  11b低熔点树脂;12 双组份橘瓣型熔喷纤维;12a 高熔点树脂  12b 低熔点树脂;23 双组份并列型熔喷纤维;23a 高熔点树脂;23b 低熔点树脂;a1,a2,a3 上层细旦纤维网;b1,b2,b3 下层粗旦纤维网;c1,c2,c3 双组份熔喷纤维。
实施例 1 A1,A1’ 热熔挤出装置;B1纺丝装置;C1,C1’ 热气流;D1喷丝口;E1成型工序中的热风烘箱;F1 开包开松机;G1 梳理机。
实施例 2 A2,A2’ 热熔挤出装置;B2纺丝装置;C2,C2’ 热气流;D2喷丝口;E2成型工序中的热风烘箱;F2 开包开松机;G2 梳理机;H2上层细旦纤维卷曲工序中的热风烘箱;f2 卷曲后的上层细旦纤维网。
实施例 3 A3,A3’ 热熔挤出装置;B3纺丝装置;C3,C3’ 热气流;D3喷丝口;E3成型工序中的热风烘箱;H3上层细旦纤维卷曲工序中的热风烘箱;I3 导辊;J3 热轧辊;f3 卷曲后的上层细旦纤维网。
本发明的实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
配合图1、2、4、5、7所示,本发明揭示了一种丝柔细旦无纺布1、2、3,包括由纤维旦数≤1.0旦的双组份熔喷纤维组成的上层细旦纤维网a1、a2、a3以及由纤维旦数为2.0~12.0旦的纤维组成的下层粗旦纤维网b1、b2、b3;所述双组份熔喷纤维由熔点相差20℃以上的热塑性树脂组成,其中:所述双组份熔喷纤维的表层含有低熔点树脂;所述上层细旦纤维网的透气率为100-300 m 3/m 2/min。
所述的双组份熔喷纤维为双组份皮芯型熔喷纤维11、双组份橘瓣型熔喷纤维12或双组份并列型熔喷纤维21,其中:双组份皮芯型熔喷纤维11的表面皮层11a为低熔点树脂,芯层11b为高熔点树脂;双组份橘瓣型熔喷纤维12由橘瓣分布的低熔点树脂12a和高熔点树脂12b组成;双组份并列型熔喷纤维21由并列分布的低熔点树脂21a和高熔点树脂21b组成。
所述的下层粗旦纤维网b1、b2、b3的纤维网为双组份粗旦短纤维网、热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布。
透气性测试。
   测试仪器:FX3300-Ⅳ透气性测试仪。
   测试样品:通过采用相同工艺条件,仅制造上层细旦纤维网a1并经烘箱E1成型,留取10cm×10cm的样品5条。
   测试步骤:将测试样品在环境室温为(23±2)℃和相对湿度为(50±2)%的实验室中至少放置两个小时。将透气性测试仪上面积为 38cm 2 的上测试头装上夹臂并将高压橡胶管连接上测试头,将38cm 2的下测试头固定在试样直径定值圈内并将高压橡胶管连接下测试头。设置实验条件:单位选择为:m 3/m 2/min 测试压力:125 Pa。将样品正面平放于下测试头上,按下夹臂开始测试,当正确测试范围指示灯趋于稳定并显示为绿色时即可记下读数。
实施例 1
如图3并配合图1、图2所示,本发明的丝柔细旦无纺布1采用如下制造方法:(1)上层细旦纤维供应工序:采用熔喷工艺,分别将两种熔点之差≥20℃的热塑性树脂高密度聚乙烯HDPE和聚丙烯PP通过热熔挤出装置A1和A1’加热,在纺丝装置B1中利用热气流C1,C1’将从喷丝板D1上的双组份喷丝孔喷出的热塑性树脂的溶体细流吹散成纤维旦数≤1.0旦的纤维束,从而伴随热气流形成双组份熔喷纤维c1,形成所述的上层细旦纤维网a1;其中:相邻喷丝孔的距离为1.5mm,形成热气流的风机的转速为1800rpm,上层细旦纤维网a1的透气率为100 m 3/m 2/min,所述双组份熔喷纤维c1为双组分皮芯型熔喷纤维11或双组份橘瓣型熔喷纤维12。
(2)下层粗旦纤维网供应工序:将由纤维旦数为4.0旦的双组份粗旦短纤维通过开包开松机F1开松,梳理机G1梳理成下层粗旦纤维网b1,并输送到上层细旦纤维网a1与下层粗旦纤维网b1叠网处。
(3)叠网工序:所述的上层细旦纤维网a1与所述的下层粗旦纤维网b1叠加在一起形成上层为细旦纤维网a1,下层为粗旦纤维网b1的重叠复合网面。
(4)成型工序:所述的重叠复合网面通过热风烘箱E1,热风烘箱E1的温度为130℃,由于上层细旦纤维网a1中细旦纤维为双组份熔喷纤维c1,在热风作用下,表层的低熔点树脂在热风烘箱E1中熔融,使得上层细旦纤维与细旦纤维之间,上层细旦纤维网与下层粗旦纤维网相邻的细旦纤维与粗旦纤维之间,固结在一起,然后收卷,形成所述的丝柔细旦无纺布1。
采用上述方案后,本实施例的丝柔细旦无纺布的上层细旦纤维网a1由双组份熔喷纤维c1组成,该双组份熔喷纤维c1采用稀疏熔喷工艺,直接形成细旦纤维,并与下层粗旦纤维网一起固结成所述的丝柔细旦无纺布。而传统的熔喷工艺,为了保证熔喷纤维的均匀一致和形成的熔喷无纺布纤维分布均匀,力学性能好,通常喷丝孔采用小孔距、高密度的排列法,相邻喷丝孔的距离大约为0.6mm-0.7mm,但是采用这种传统熔喷工艺形成的熔喷无纺布纤维密度大、透气性差,难以满足卫生用品的需求。如果直接增加相邻喷丝孔的间距,则形成的熔喷无纺布克重、网面不均匀,从而成网性、力学性能较差,而通过将由稀疏熔喷工艺形成的上层细旦纤维网与下层粗旦纤维叠网、固结成一体的方式来制造丝柔细旦无纺布,这既增加了丝柔细旦无纺布的丝滑、细腻、柔软的触感,又解决了由稀疏熔喷工艺形成的无纺布网面不均、力学性能较差的问题。同时,通过控制相邻喷丝孔的距离和热气流压力来控制熔喷纤维的细度和上层细旦纤维网的透气性,通过采用相同工艺条件,仅制造上层细旦纤维网a1并经烘箱E1成型,留取样品检测其透气性,检测结果为透气率为100 m 3/m 2/min,而常规的熔喷无纺布的透气率仅为30~50 m 3/m 2/min,本实施例中上层细旦纤维网的透气性较常规熔喷无纺布大大提高,使其满足一次性卫生用品的使用要求。因此,采用该工艺制造的丝柔细旦无纺布既满足了细旦纤维的纤维旦数≤1.0旦,形成的细旦纤维网具有丝柔、细腻和滑爽的触感,也有效避免了细旦纤维难梳理,不易加工等问题。
实施例 2
如图4、5、6所示, 本发明的丝柔细旦无纺布2采用如下制造方法:(1)上层细旦纤维供应工序:采用熔喷工艺,分别将两种熔点之差≥20℃的热塑性树脂,高密度聚乙烯HDPE和聚对苯二甲酸乙二酯PET通过热熔挤出装置A2和A2’加热,在纺丝装置B2中利用热气流C2,C2’将从喷丝板D2上的双组份喷丝孔喷出的热塑性树脂的溶体细流吹散成纤维旦数为0.8旦的纤维束,从而伴随热气流形成双组份熔喷纤维c2,形成所述的上层细旦纤维网a2;其中:相邻喷丝孔的距离为2.0mm,形成热气流的风机的转速为1500rpm,上层细旦纤维网a2的透气率为185 m 3/m 2/min,所述双组份熔喷纤维c2为双组分并列型熔喷纤维21。
(2)上层细旦纤维卷曲工序:所述的双组份并列型熔喷纤维21铺设成上层细旦纤维网a2,然后进入热风烘箱H2,在温度为100℃~110℃热风作用下,所述双组份并列型熔喷纤维21由于高熔点树脂21b和低熔点树脂21a具有不同的收缩应力,所述的双组份并列型熔喷纤维21开始卷曲,形成卷曲后的上层细旦纤维网a2。
(3)下层粗旦纤维网供应工序:将由纤维旦数为3.0旦的双组份粗旦短纤维通过开包开松机F2开松,梳理机G2梳理成下层粗旦纤维网,并输送到上层细旦纤维网a2与下层粗旦纤维网b2叠网处。
(4)叠网工序:所述的上层细旦纤维网a2与所述的下层粗旦纤维网b2叠加在一起形成上层为细旦纤维网a2,下层为粗旦纤维网b2的重叠复合网面。
(5)成型工序:所述的重叠复合网面通过热风烘箱E2,热风烘箱E2的温度为135℃,由于上层细旦纤维网a2中细旦纤维为双组份熔喷纤维c2,在热风作用下,表层的低熔点树脂在热风烘箱E2中熔融,使得上层细旦纤维与细旦纤维之间,上层细旦纤维网与下层粗旦纤维网相邻的细旦纤维与粗旦纤维之间,固结在一起,然后收卷,形成所述的丝柔细旦无纺布2。
采用上述方案后,本实施例的丝柔细旦无纺布2的上层细旦纤维网a2由双组份并列型熔喷纤维21组成,由于高密度聚乙烯HDPE和聚对苯二甲酸乙二酯PET具有不同的收缩力,纤维先在100℃~110℃的热风作用下,在相邻纤维未粘连的堆叠状态下产生自由卷曲,然后再在135℃的热风作用下低熔点树脂开始熔融并与相邻纤维粘连在一起形成上层细旦纤维网a1,这样形成的纤维卷曲不会受到相邻纤维固结的影响,卷曲度更高,形成的丝柔细旦无纺布中上层细旦纤维之间的粘结点会因纤维卷曲而较少,这样既增加了丝柔细旦无纺布的柔软性、蓬松性和透气性,也有效避免了细旦纤维由于旦数小,难梳理,不易加工等问题。同时,由于下层粗旦纤维网b2为在线生产的,未经过收卷,减少了收卷和放卷设备,还减少了中途运输阶段,从而降低了生产成本,减少运输污染风险,因此下层粗旦纤维网b2的蓬松性较离线放卷后的无纺布更好,在与上层细旦纤维网a2叠网成型后所得到的丝柔细旦无纺布2的蓬松性更好。另外,在线生产的下层粗旦纤维网b2也可以是在线生产的纺粘纤维网,或熔喷纤维网等。
实施例 3
如图5、7、8所示,本发明的丝柔细旦无纺布3采用如下制造方法:(1)上层细旦纤维供应工序:采用熔喷工艺,分别将两种熔点之差≥20℃的热塑性树脂,低熔点聚对苯二甲酸乙二酯PET和高熔点聚对苯二甲酸乙二酯PET通过热熔挤出装置A3和A3’加热,在纺丝装置B3中利用热气流C3,C3’将从喷丝板D3上的双组份喷丝孔喷出的热塑性树脂的溶体细流吹散成纤维旦数为0.6旦的纤维束,从而伴随热气流形成双组份熔喷纤维c3,形成所述的上层细旦纤维网a3;其中:相邻喷丝孔的距离为2.5 mm,上层细旦纤维网a3的透气率为300 m 3/m 2/min,形成热气流的风机的转速为1200rpm,所述双组份熔喷纤维c3为双组分并列型熔喷纤维21。
(2)上层细旦纤维卷曲工序:所述的双组份并列型熔喷纤维21铺设成上层细旦纤维网a3,然后进入热风烘箱H3,在温度为100℃~110℃热风作用下,所述双组份并列型熔喷纤维21由于高熔点树脂21b和低熔点树脂21a具有不同的收缩应力,所述的双组份并列型熔喷纤维21开始卷曲,形成卷曲后的上层细旦纤维网a3。
(3)下层粗旦纤维网供应工序:将下层粗旦纤维网b3通过放卷装置进行放卷后通过导辊I3输送到上层细旦纤维网a3与下层粗旦纤维网b3叠网处,其中:下层粗旦纤维网b3为热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布。
(4)叠网工序:所述的上层细旦纤维网a3与所述的下层粗旦纤维网b3叠加在一起形成上层为细旦纤维网a3,下层为粗旦纤维网b3的重叠复合网面。
(5)成型工序:所述的重叠复合网面通过热风烘箱E3,热风烘箱E3的温度为135℃,由于上层细旦纤维网a3中细旦纤维为双组份熔喷纤维c3,在热风作用下,表层的低熔点树脂在热风烘箱E3中熔融,使得上层细旦纤维与细旦纤维之间,上层细旦纤维网与下层粗旦纤维网相邻的细旦纤维与粗旦纤维之间,固结在一起,然后再通过热轧辊J3进一步成型,再收卷,形成所述的丝柔细旦无纺布3。
采用上述方案后,本实施例中下层粗旦纤维网为热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布,既可以增加丝柔细旦无纺布的力学性能,即使在低克重情况下也可以具有较好的拉伸强度,而且下层纤维网的纤维旦数较粗,有利于液体的导流渗透,也可以提高复合无纺布的蓬松性和厚度方向的回弹性,从而增加了使用过程中的舒适性,同时下层无纺布可以具有不同性能,例如,抗菌性、亲肤性、遮盖性等,在与上层细旦纤维网结合成型可以赋予丝柔细旦无纺布相应的性能。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (12)

  1. 一种丝柔细旦无纺布,其特征在于:所述丝柔细旦无纺布包括由纤维旦数≤1.0旦的双组份熔喷纤维组成的上层细旦纤维网以及由纤维旦数为2.0~12.0旦的纤维组成的下层粗旦纤维网;所述双组份熔喷纤维由熔点相差20℃以上的热塑性树脂组成,其中:所述双组份熔喷纤维的表层含有低熔点树脂;所述上层细旦纤维网的透气率为100-300 m 3/m 2/min。
  2. 如权利要求1所述的一种丝柔细旦无纺布,其特征在于:所述上层细旦纤维网的纤维旦数为0.1~1.0旦。
  3. 如权利要求1所述的一种丝柔细旦无纺布,其特征在于:所述双组份熔喷纤维为双组份皮芯型熔喷纤维、双组份橘瓣型熔喷纤维或双组份并列型熔喷纤维。
  4. 如权利要求1所述的一种丝柔细旦无纺布,其特征在于:所述的下层粗旦纤维网为双组份粗旦短纤维网、热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布。
  5. 一种丝柔细旦无纺布的制造方法,其特征在于,具体步骤在于:
    (1)上层细旦纤维供应工序:采用熔喷工艺,分别将两种熔点之差≥20℃的热塑性树脂通过热熔挤出装置加热,在纺丝装置中利用热气流将从喷丝板上的双组份喷丝孔喷出的热塑性树脂的溶体细流吹散成纤维旦数≤1.0旦的纤维束,从而伴随热气流形成双组份熔喷纤维,形成所述的上层细旦纤维网;其中:相邻喷丝孔的距离为1.5mm-2.5mm,形成热气流的风机的转速小于2000rpm;
    (2)下层粗旦纤维网供应工序:将由纤维旦数为2.0~12.0旦的纤维组成的下层粗旦纤维网输送到上层细旦纤维网与下层粗旦纤维网叠网处;
    (3)叠网工序:所述的上层细旦纤维网与所述的下层粗旦纤维网叠加在一起形成上层为细旦纤维网,下层为粗旦纤维网的重叠复合网面;
    (4)成型工序:所述的重叠复合网面通过加热装置,由于上层细旦纤维网中细旦纤维为双组份熔喷纤维,表层的低熔点树脂在加热装置中熔融,使得上层细旦纤维与细旦纤维之间,上层细旦纤维网与下层粗旦纤维网相邻的细旦纤维与粗旦纤维之间,固结在一起,然后收卷,形成所述的丝柔细旦无纺布。
  6. 如权利要求5所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述的步骤(1)中喷丝板上的双组份喷丝孔为皮芯型和桔瓣型。
  7. 如权利要求5所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述的步骤(1)中喷丝板上的双组份喷丝孔为并列型。
  8. 如权利要求7所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述的步骤(3)之前,具有上层细旦纤维卷曲工序:所述的双组份并列型熔喷纤维铺设成纤维网,然后进入热风烘箱,在温度为100℃~110℃热风作用下,所述双组份并列型熔喷纤维由于高熔点树脂和低熔点树脂具有不同的收缩应力,所述的双组份并列型熔喷纤维开始卷曲,形成卷曲后的上层细旦纤维网。
  9. 如权利要求5所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述的下层粗旦纤维网为双组份粗旦短纤维网,所述的步骤(2)中由纤维旦数为2.0~12.0旦的双组份粗旦短纤维通过开包开松机开松,梳理机梳理成下层粗旦纤维网。
  10. 如权利要求5所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述下层粗旦纤维网为热风无纺布、纺粘无纺布、热轧无纺布或水刺无纺布,所述的步骤(2)为将所述无纺布通过放卷装置进行放卷后通过导辊输送到上层细旦纤维网与下层粗旦纤维网叠网处。
  11. 如权利要求5所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述的加热装置为热风烘箱、热轧辊或两者相结合。
  12. 如权利要求5所述的一种丝柔细旦无纺布的制造方法,其特征在于:所述的加热装置的温度为130℃~150℃。
PCT/CN2022/074242 2021-10-25 2022-01-27 一种丝柔细旦无纺布及其制造方法 WO2023070981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111241758.0 2021-10-25
CN202111241758.0A CN113914014A (zh) 2021-10-25 2021-10-25 一种丝柔细旦无纺布及其制造方法

Publications (1)

Publication Number Publication Date
WO2023070981A1 true WO2023070981A1 (zh) 2023-05-04

Family

ID=79242697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074242 WO2023070981A1 (zh) 2021-10-25 2022-01-27 一种丝柔细旦无纺布及其制造方法

Country Status (2)

Country Link
CN (1) CN113914014A (zh)
WO (1) WO2023070981A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113914014A (zh) * 2021-10-25 2022-01-11 厦门延江新材料股份有限公司 一种丝柔细旦无纺布及其制造方法
CN115139598B (zh) * 2022-06-24 2023-10-24 厦门延江新材料股份有限公司 一种擦拭无纺布及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733635A (en) * 1995-11-21 1998-03-31 Chisso Corporation Laminated non-woven fabric and process for producing the same
JP2011047098A (ja) * 2009-08-25 2011-03-10 Toray Saehan Inc 改善された特性を有する複合スパンボンド長繊維多層不織布及びその製造方法
CN111074427A (zh) * 2020-01-17 2020-04-28 厦门延江新材料股份有限公司 一种熔喷复合无纺布及其制造方法
CN111114056A (zh) * 2020-01-17 2020-05-08 厦门延江新材料股份有限公司 一种纺粘复合无纺布及其制造方法
CN212372885U (zh) * 2020-01-17 2021-01-19 厦门延江新材料股份有限公司 一种纺粘复合无纺布
CN212611237U (zh) * 2020-01-17 2021-02-26 厦门延江新材料股份有限公司 一种熔喷复合无纺布
CN113512824A (zh) * 2021-04-30 2021-10-19 厦门延江新材料股份有限公司 一种细旦复合无纺布及其制造方法
CN113914014A (zh) * 2021-10-25 2022-01-11 厦门延江新材料股份有限公司 一种丝柔细旦无纺布及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733635A (en) * 1995-11-21 1998-03-31 Chisso Corporation Laminated non-woven fabric and process for producing the same
JP2011047098A (ja) * 2009-08-25 2011-03-10 Toray Saehan Inc 改善された特性を有する複合スパンボンド長繊維多層不織布及びその製造方法
CN111074427A (zh) * 2020-01-17 2020-04-28 厦门延江新材料股份有限公司 一种熔喷复合无纺布及其制造方法
CN111114056A (zh) * 2020-01-17 2020-05-08 厦门延江新材料股份有限公司 一种纺粘复合无纺布及其制造方法
CN212372885U (zh) * 2020-01-17 2021-01-19 厦门延江新材料股份有限公司 一种纺粘复合无纺布
CN212611237U (zh) * 2020-01-17 2021-02-26 厦门延江新材料股份有限公司 一种熔喷复合无纺布
CN113512824A (zh) * 2021-04-30 2021-10-19 厦门延江新材料股份有限公司 一种细旦复合无纺布及其制造方法
CN113914014A (zh) * 2021-10-25 2022-01-11 厦门延江新材料股份有限公司 一种丝柔细旦无纺布及其制造方法

Also Published As

Publication number Publication date
CN113914014A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
JP7224430B2 (ja) 積層体の製造方法および積層体
WO2023070981A1 (zh) 一种丝柔细旦无纺布及其制造方法
CN101324012B (zh) 一种麻纤维无纺布的制造方法
US7914637B2 (en) Method for manufacturing a particularly soft and three-dimensional nonwoven and nonwoven thus obtained
EP2113042B2 (en) Pre-consolidated spunbonded web, composite nonwowen comprising said pre-consolidated spunbonded web, method and continuous system for producing said composite
CN102758311B (zh) 凹凸伸缩无纺布及其制造方法
CN104884696B (zh) 水刺成形的复合无纺布
MXPA06014144A (es) Un material no tejido de fibra separada hidroenmaranada.
JP5272229B2 (ja) 分割型複合繊維、その集合体および該分割型複合繊維を用いた繊維成形体
CN111074427A (zh) 一种熔喷复合无纺布及其制造方法
WO2022148453A1 (zh) 一种复合擦拭巾及其制造方法
CN110093719B (zh) 一种纺粘无纺布的制造设备及其制造方法
EP1961850B1 (en) Hydroentangled composite nonwoven comprising a spunbonded layer and an absorbent pulp layer, method and continuous system for producing said composite
CN212372885U (zh) 一种纺粘复合无纺布
WO2022227749A1 (zh) 一种细旦复合无纺布及其制造方法
CN212611237U (zh) 一种熔喷复合无纺布
WO2023000643A1 (zh) 一种超柔复合擦拭无纺布及其制造方法
CN103132249B (zh) 一种浆粕气流成网纺粘复合非织造布及其生产工艺
WO2017206177A1 (zh) 超柔疏水无纺布的生产系统及生产方法
CN210262230U (zh) 一种纺粘无纺布的制造设备
CN112359489A (zh) 一种双组份纺粘无纺布的制造设备及其制造方法
CN104884695A (zh) 压花复合无纺幅材料
CN111114056A (zh) 一种纺粘复合无纺布及其制造方法
WO2015175676A1 (en) Patterned nonwoven and method of making the same using a through-air drying process
CN107254743A (zh) 一种纺熔多组分复合水波纹非织造材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884899

Country of ref document: EP

Kind code of ref document: A1