WO2023070957A1 - 一种抗反射涂层组合物及可交联聚合物 - Google Patents

一种抗反射涂层组合物及可交联聚合物 Download PDF

Info

Publication number
WO2023070957A1
WO2023070957A1 PCT/CN2022/072277 CN2022072277W WO2023070957A1 WO 2023070957 A1 WO2023070957 A1 WO 2023070957A1 CN 2022072277 W CN2022072277 W CN 2022072277W WO 2023070957 A1 WO2023070957 A1 WO 2023070957A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
polymer
coating composition
unsubstituted
alkyl
Prior art date
Application number
PCT/CN2022/072277
Other languages
English (en)
French (fr)
Inventor
张爱强
陈仁治
奈舍马克
江一敏
陈渊
Original Assignee
嘉庚创新实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉庚创新实验室 filed Critical 嘉庚创新实验室
Publication of WO2023070957A1 publication Critical patent/WO2023070957A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F120/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Definitions

  • the invention belongs to the technical field of semiconductors, in particular to an antireflection coating composition and a crosslinkable polymer.
  • the photolithography process is one of the most important processes in the semiconductor device manufacturing process. Specifically, the photolithography process uses the photosensitive function of the photoresist to transfer the fine circuit pattern on the mask to the photoresist and even the silicon wafer, preparing for subsequent etching and ion implantation.
  • the active light used for exposure has also undergone a transition from i-line (365nm) to deep ultraviolet (248nm and 193nm) ) development history.
  • i-line 365nm
  • 248nm and 193nm deep ultraviolet
  • an effective method is to introduce an anti-reflection coating between the photoresist and the substrate to reduce and eliminate the reflection of the substrate.
  • anti-reflective coatings there are mainly the following two types: inorganic coatings and organic coatings composed of light-absorbing components and polymers.
  • the inorganic anti-reflective coating has the following disadvantages: special equipment is required, redundant manufacturing steps are difficult to remove for subsequent processing, and the like.
  • the organic anti-reflective coating because it can be spin-coated on the surface of the substrate similarly to the photoresist, effectively simplifies the process and reduces the cost, and is widely used and researched.
  • the organic anti-reflective coating composition needs to be further baked at high temperature to make it cross-linked and solidified.
  • the generation of "outgassing" of chemical components has become a major problem in this process.
  • "outgassing” mainly comes from small molecular compounds such as cross-linking agents.
  • the exhaust system may not always exhaust it quickly enough, causing the exhausted components to condense on the inner wall of the baking chamber. . This condensate can break off and land on subsequent wafers, causing cross-contamination.
  • the technical problem to be solved by the present invention is to provide an antireflective coating composition and a crosslinkable polymer that can effectively solve or avoid the problem of "outgassing" during the baking process.
  • the invention provides an antireflective coating composition, comprising an organic polymer
  • the organic polymer comprises a crosslinkable polymer
  • the crosslinkable polymer comprises a monomer unit formed from a monomer represented by formula (I);
  • R 1 is selected from substituted or unsubstituted C2 ⁇ C10 alkenyl
  • R 2 and R 3 are each independently selected from H, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C6-C20 aryl;
  • the substituents in the substituted C2-C10 alkenyl, substituted C1-C6 alkyl and substituted C6-C20 aryl are each independently selected from C1-C5 alkyl, C1-C6 alkoxy One or more of radicals and phenyl groups.
  • the R 1 is selected from substituted or unsubstituted C2-C4 alkenyl groups
  • R 2 and R 3 are each independently selected from H, substituted or unsubstituted C1-C3 alkyl, substituted or unsubstituted C6-C10 aryl.
  • the mass of the organic polymer is 2% to 10% of the mass of the antireflective coating composition; the mass of the crosslinkable polymer is 10% to 100% of the mass of the organic polymer; the crosslinkable polymer is 10% to 100% of the mass of the organic polymer;
  • the content of the monomer unit formed by the monomer represented by the formula (I) in the polymer is 5-80wt%.
  • the cross-linkable polymer comprises a functional group and/or the organic polymer further comprises a first polymer; the first polymer comprises a functional group; the functional group is selected from one of hydroxyl, amino and mercapto or more.
  • the mass of the monomer unit containing the functional group is 20% to 300% of the mass of the monomer unit formed by the monomer represented by formula (I).
  • the crosslinkable polymer further comprises a light-absorbing organic chromophore and/or the first polymer further comprises a light-absorbing organic chromophore and/or the organic polymer further comprises a second polymer;
  • the second polymer includes a light-absorbing organic chromophore; the light-absorbing organic chromophore is selected from one of substituted or unsubstituted aryl groups, polyhalogenated alkyl groups, and substituted or unsubstituted isocyanurate groups. one or more species.
  • the mass of the monomer unit containing the light-absorbing colored chromophore is 10% to 85% of the mass of the organic polymer.
  • the antireflective coating composition also includes a thermal acid generator, a photoacid generator, a surfactant and a solvent; the mass of the thermal acid generator is 0.1% to 15% of the mass of the antireflective coating composition. %; the quality of the photoacid generator is 0% to 15% of the quality of the antireflection coating composition; the quality of the surfactant is 0% to 20% of the quality of the antireflection coating composition; the solvent The mass is 90%-99% of the mass of the anti-reflection coating composition.
  • the thermal acid generator is selected from ionic thermal acid generators and/or non-ionic thermal acid generators; the ionic thermal acid generator is selected from dodecylsulfonic acid triethylamine salt, para One or more of toluenesulfonate amine salt and sulfonate; the nonionic thermal acid generator is selected from cyclohexyl trifluoromethanesulfonate, methyl trifluoromethanesulfonate, 2,4, 6-Triisopropylbenzenesulfonate cyclohexyl ester, 2-nitrobenzyl p-toluenesulfonate, benzoin toluenesulfonate, 2-nitrobenzyltoluenesulfonate, tris(2,3- Dibromopropyl)-1,3,5-triazine-trione, alkyl organic sulfonate, p-toluenesulfonic acid,
  • the photoacid generator is selected from (tetra-tert-butylphenyl)-iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate, (p-tert-butoxyphenyl)diphenylsulfonium methanesulfonate, tri(p-tert-butoxyphenyl)sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, 2-nitrobenzyl -p-toluenesulfonate, 2,6-dinitrobenzyl-p-toluenesulfonate, 2,4-dinitrobenzyl-p-toluenesulfonate, benzoin tosylate, N -
  • the surfactant is selected from polyoxyethylene lauryl (lauryl) ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol Ether, polyoxyethylene nonylphenol ether, polyoxyethylene, polyoxypropylene block polymer, sorbitan monolaurate, sorbitan monopalmitate (hexadecanoate), sorbitan Monostearate, sorbitan monooleate (octadec-9-enoate), sorbitan trioleate, sorbitan tristearate, polyoxyethylene sorbitan monooleate Laurate, polyoxyethylene sorbitan monopalmitate (hexadecanoate), polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate (stearate 9- One or more of enoic acid) ester, polyoxyethylene sorbitan trioleate and polyoxyethylene sorbitan triste
  • Described solvent is selected from ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol , propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, 2-hydroxy-3 methyl methyl butyrate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate , one or more of ethyl pyruvate, ethyl acetate,
  • the present invention also provides a cross-linkable polymer, the cross-linkable polymer comprises monomer units formed from monomers represented by formula (I);
  • R 1 is selected from substituted or unsubstituted C2 ⁇ C10 alkenyl
  • R 2 and R 3 are each independently selected from H, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C6-C20 aryl;
  • the substituents in the substituted C2-C10 alkenyl, substituted C1-C6 alkyl and substituted C6-C20 aryl are each independently selected from C1-C5 alkyl, C1-C6 alkoxy One or more of radicals and phenyl groups.
  • the present invention also provides a preparation method of the above-mentioned cross-linkable polymer, comprising: mixing the monomer represented by formula (I) and an initiator in a solvent and heating to carry out a polymerization reaction to obtain a cross-linkable polymer.
  • the present invention also provides a photoresist pattern forming method in the process of manufacturing and using a semiconductor device, comprising: the film forming process of the above antireflection coating composition, the film forming process of the photoresist, and the subsequent Exposure process and development process of photoresist.
  • the invention provides an antireflection coating composition, comprising an organic polymer; the organic polymer comprises a crosslinkable polymer; the crosslinkable polymer comprises a monomer formed from a monomer represented by formula (I) Unit; wherein, R 1 is selected from substituted or unsubstituted C2 ⁇ C10 alkenyl; R 2 and R 3 are each independently selected from H, substituted or unsubstituted C1 ⁇ C6 alkyl, substituted or unsubstituted C6 ⁇ C20 aryl group; the substituents in the substituted C2 ⁇ C10 alkenyl, substituted C1 ⁇ C6 alkyl and substituted C6 ⁇ C20 aryl are each independently selected from C1 ⁇ C5 alkyl or phenyl.
  • formula (I) Unit wherein, R 1 is selected from substituted or unsubstituted C2 ⁇ C10 alkenyl; R 2 and R 3 are each independently selected from H, substituted or unsubstituted C1 ⁇ C6 alkyl
  • the crosslinkable polymer provided by the present invention contains monomer units capable of self-crosslinking with functional groups such as hydroxyl and amino groups, so that there is no need to add a crosslinking agent in the coating, which can effectively solve or avoid
  • the composition generates gas during the baking process, reduces unnecessary cleaning procedures and at the same time reduces the risk of pattern damage caused by solids formed by gas condensation, which can simplify the corresponding process flow and save costs.
  • Fig. 1 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 1;
  • Fig. 2 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 2;
  • Fig. 3 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 3;
  • Fig. 4 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 4.
  • Fig. 5 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 5;
  • Fig. 6 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 6;
  • Fig. 7 is the proton nuclear magnetic resonance spectrogram of the polymer obtained in the embodiment of the present invention 7;
  • Fig. 8 is a schematic structural view of a device for evaluating the outgassing effect in an embodiment of the present invention.
  • Figure 9 is a graph showing the outgassing evaluation results of the antireflective coating compositions obtained in Examples 8 to 12 of the present invention and Comparative Example 1
  • Fig. 10 is a scanning electron microscope image of the pattern obtained after the antireflection coating composition obtained in Example 8 of the present invention is applied to photolithography;
  • FIG. 11 is a scanning electron micrograph of a pattern obtained by applying the antireflective coating composition obtained in Example 8 of the present invention to a photolithographic slice.
  • the present invention provides a kind of crosslinkable polymer, described crosslinkable polymer comprises monomer unit formed by the monomer represented by formula (I);
  • R 1 is a substituted or unsubstituted C2-C10 alkenyl group, preferably a substituted or unsubstituted C2-C8 alkenyl group, more preferably a substituted or unsubstituted C2-C6 alkenyl group, more preferably a substituted Or unsubstituted C2 ⁇ C4 alkenyl, most preferably C2 ⁇ C3 alkenyl;
  • the number of double bonds in the alkenyl can be one or more, in the present invention, double bonds in the alkenyl
  • the number of keys is preferably 1 to 2, more preferably 1.
  • R 2 and R 3 are each independently H, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C6-C20 aryl, preferably H, substituted or unsubstituted C1-C6 alkyl , substituted or unsubstituted C6-C15 aryl, more preferably H, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C6-C10 aryl, more preferably H, substituted or unsubstituted A substituted C1-C2 alkyl group, a substituted or unsubstituted phenyl group.
  • the substituents in the substituted C2-C10 alkenyl, substituted C1-C6 alkyl and substituted C6-C20 aryl are each independently C1-C5 alkyl or phenyl, preferably C1-C5 C3 alkyl or phenyl, more preferably methyl, ethyl, C1-C6 alkoxy or phenyl.
  • the content of the monomer unit formed by the monomer represented by formula (I) in the crosslinkable polymer is preferably 5 to 80 wt%, more preferably 10% to 76%, more preferably 15% to 55%, most preferably 15% to 53%; in the examples provided by the present invention, the content of the monomer unit formed by the monomer represented by formula (I) in the crosslinkable polymer is specifically 15%, 18%, 53%, 76% or 28.8%.
  • the cross-linkable polymer preferably also includes an acrylate monomer unit in addition to the monomer unit formed by the monomer shown in formula (I); the acrylate monomer forming the acrylate monomer unit is a person skilled in the art
  • the well-known acrylate monomers are sufficient, without special limitations, preferably substituted or unsubstituted alkyl acrylates, substituted or unsubstituted alkyl methacrylates in the present invention; the substituted or unsubstituted
  • the number of carbon atoms of the alkyl group in the alkyl acrylate and the substituted or unsubstituted alkyl methacrylate is preferably 1 to 8, more preferably 1 to 6, and more preferably 1 to 4; the substituted alkyl acrylate
  • the substituents in the base ester and the substituted alkyl methacrylate are each independently preferably one or more of hydroxyl, amino, mercapto, halogen and light-absorbing chromophore; the light
  • the present invention is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group , substituted or unsubstituted quinolinyl;
  • the number of carbon atoms in the alkyl group in the polyhalogenated alkyl group is preferably 1-10, more preferably 1-8, more preferably 1-6, more preferably 1-4, most preferably Preferably 1-2;
  • the halogen in the polyhaloalkyl is preferably one or more of bromine and iodine; the number of halogen in the polyhaloalkyl is preferably 2-4, more preferably 3-4;
  • the substituents in the substituted aryl group and the substituted isocyanurate group are each independently selected from one or more of C1-C8 alkyl groups, C6-C10 aryl groups, hydroxyl groups, carbonyl groups and
  • the acrylate monomer unit in the cross-linkable polymer preferably includes an acrylate monomer unit containing at least one substitution of a halogen and a light-absorbing chromophore and an acrylate monomer unit containing a functional group
  • the functional group is preferably one or more of hydroxyl, amino and mercapto;
  • the mass of the acrylate monomer unit containing the functional group is preferably 5% of the mass of the acrylate monomer unit in the crosslinkable polymer ⁇ 50%, more preferably 5% ⁇ 30%, more preferably 10% ⁇ 30%, more preferably 15% ⁇ 25%, most preferably 1%5 ⁇ 20%;
  • the mass of at least one substituted acrylate monomer unit in the group is preferably 10% to 50% of the mass of the acrylate monomer unit in the crosslinkable polymer, more preferably 20% to 50%, and more preferably 30% to 50%, more preferably 30% to 40%, most preferably 34% to 40%.
  • the present invention also provides a preparation method of the above-mentioned cross-linkable polymer, comprising: mixing the monomer represented by formula (I) and an initiator in a solvent and heating to carry out a polymerization reaction to obtain a cross-linkable polymer.
  • the monomers in the system can also include other monomers in addition to the monomers shown in formula (I), which can be selected according to the type of monomer units contained in the crosslinkable polymer.
  • it is preferred It also includes acrylate monomer units; the type of the acrylate monomer units is the same as described above, and will not be repeated here;
  • the quality of the monomers shown in the formula (I) is preferably 5% of the total monomer quality % ⁇ 80%, more preferably 10% ⁇ 76%, more preferably 15% ⁇ 55%, most preferably 15% ⁇ 53%;
  • the formula (I) shown The quality of the monomer is specifically 15%, 18%, 53%, 76% or 28.8% of the total monomer quality;
  • the initiator can be an initiator well known to those skilled in the art, and there is no special limitation.
  • the present invention is preferably an azo initiator; in the embodiments provided by the invention, the initiator is specifically azobisisobutyronitrile; the solvent is an organic solvent well known to those skilled in the art, and there is no special Restrictions, the present invention provides specific tetrahydrofuran in the examples; the concentration of the monomer in the reaction system is preferably 0.1-0.5g/ml; the heating is preferably heated to reflux for polymerization; the polymerization time is preferably 15-30h , more preferably 20-26h, and more preferably 24h.
  • the present invention also provides an anti-reflection coating composition, comprising an organic polymer
  • the organic polymer comprises a crosslinkable polymer
  • the crosslinkable polymer comprises a monomer unit formed from a monomer represented by formula (I);
  • R 1 is a substituted or unsubstituted C2-C10 alkenyl group
  • R 2 and R 3 are each independently H, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C6-C20 aryl;
  • the substituents in the substituted C2-C10 alkenyl, substituted C1-C6 alkyl and substituted C6-C20 aryl are each independently C1-C5 alkyl or phenyl.
  • cross-linkable polymer is the same as described above, and will not be repeated here.
  • the mass of the organic polymer is preferably 2% to 10% of the mass of the antireflection coating composition, more preferably 2% to 8%, more preferably 3% to 7%, more preferably 3% % to 5%, most preferably 3% to 4%.
  • the mass of the crosslinkable polymer is preferably 10%-100% of the mass of the organic polymer, more preferably 15%-100%.
  • said crosslinkable polymer comprises functional groups and/or said organic polymer further comprises a first polymer; said first polymer comprises functional groups; i.e. said organic polymer comprises functional groups which may be
  • the cross-linked polymer contains functional groups, or other polymers contained in the organic polymer contain functional groups, or both have functional groups; the functional groups are preferably hydroxyl and/or amino groups.
  • the mass of the monomer unit containing the functional group is preferably 20% to 300% of the mass of the monomer unit formed by the monomer represented by formula (I), more preferably 30% to 200%, and more preferably 35% to 200%.
  • the crosslinkable polymer further comprises a light-absorbing organic chromophore and/or the first polymer further comprises a light-absorbing The organic chromophore and/or the organic polymer further comprises a second polymer; the second polymer comprises a light-absorbing organic chromophore; that is, the organic polymer comprises a light-absorbing organic chromophore, the The light-absorbing organic chromophore can be grafted on the crosslinkable polymer, or on the first polymer, or on a second polymer other than the above two polymers, or both of them.
  • the light-absorbing organic chromophore is selected from one or more of substituted or unsubstituted aryl groups, polyhalogenated alkyl groups, and substituted or unsubstituted isocyanurate groups; wherein the Substituted or unsubstituted aryl can be substituted or unsubstituted monocyclic aryl can also be substituted or unsubstituted polycyclic aryl, without special restrictions, preferably substituted or unsubstituted phenyl, Substituted or unsubstituted naphthyl, substituted or unsubstituted anthracenyl, substituted or unsubstituted quinolinyl; the number of carbon atoms in the alkyl group in the polyhalogenated alkyl group is preferably 1-10, more preferably 1-8, More preferably 1-6, more preferably 1-4
  • the light-absorbing organic chromophore used can be changed according to the different rays to be exposed, such as for the exposure light with a wavelength of 248nm, the preferred light-absorbing organic chromophore is substituted or unsubstituted naphthyl and substituted or one or more of unsubstituted anthracenyl groups; for exposure light with a wavelength of 193nm, the preferred light-absorbing organic chromophore is one of substituted or unsubstituted naphthyl and substituted or unsubstituted phenyl groups or Various.
  • the mass of the monomer unit containing the light-absorbing colored chromophore is preferably 10% to 85% of the mass of the organic polymer, more preferably 15% to 60%, and more preferably 20% to 60%. .
  • the antireflection coating composition further includes thermal acid generator, photoacid generator, surfactant and solvent.
  • the mass of the thermal acid generator is 0.01% to 15% of the mass of the antireflective coating composition, preferably 0.01% to 10%, more preferably 0.01% to 5%, and more preferably 0.01% to 2%. , more preferably 0.01% to 1%, most preferably 0.05% to 0.5%;
  • the thermal acid generator is preferably an ionic thermal acid generator and/or a non-ionic thermal acid generator;
  • the ionic thermal acid generator is preferably one or more of triethylamine dodecylsulfonate, amine p-toluenesulfonate and sulfonate;
  • the sulfonate is preferably carbocyclic aryl and heteroarylsulfonic acid
  • the nonionic thermal acid generator is preferably cyclohexyl trifluoromethane
  • the mass of the photoacid generator is preferably 0% to 15% of the mass of the antireflection coating composition, more preferably 0.01% to 10%, more preferably 0.01% to 10%, and more preferably 0.01% to 8%. , more preferably 0.01% to 5%, more preferably 0.01% to 2%, more preferably 0.01% to 1%, most preferably 0.01% to 0.5%; the photoacid generator is well known to those skilled in the art The photoacid generator can be used without any special limitation.
  • an onium salt photoacid generator nitrobenzyl derivatives, sulfonate photoacid generators, diazomethane derivatives, ethyl
  • dioxime derivatives sulfonate derivatives of N-hydroxyimide compounds and halogen-containing triazine compounds
  • dioxime derivatives sulfonate derivatives of N-hydroxyimide compounds and halogen-containing triazine compounds
  • tetra-tert-butylphenyl-trifluoromethanesulfonic acid Ionium salt triphenylsulfonium trifluoromethanesulfonate salt, triphenylsulfonium trifluoromethanesulfonate, (p-tert-butoxyphenyl)diphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate Tris(p-tert-butoxyphenyl)sulfonium, triphenylsulfon
  • the quality of the surfactant is preferably 0% to 20% of the mass of the antireflective coating composition, more preferably 0% to 15%, and more preferably 1% to 10%; the surfactant is preferably nonionic Surfactant, more preferably polyoxyethylene lauryl (lauryl) ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol Ether, polyoxyethylene nonylphenol ether, polyoxyethylene, polyoxypropylene block polymer, sorbitan monolaurate, sorbitan monopalmitate (hexadecanoate), sorbitan Monostearate, sorbitan monooleate (octadec-9-enoate), sorbitan trioleate, sorbitan tristearate, polyoxyethylene sorbitan monooleate Laurate, polyoxyethylene sorbitan monopalmitate (hexadecanoate), polyoxyethylene sorbitan mono
  • the quality of the solvent is preferably 90% to 99% of the mass of the antireflective coating composition, more preferably 95% to 99%, and more preferably 95% to 97%;
  • the solvent is an organic compound well known to those skilled in the art.
  • the solvent is sufficient, and there is no special limitation.
  • it is preferably one or more of alcohol, ester, ether and cyclic ketone solvents, more preferably ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl Cellosolve-based acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate Esters, Toluene, Xylene, Methyl Ethyl Ketone, Cyclopentanone, Cyclohexanone, Ethyl 2-Hydroxypropionate, Methyl 2-Hydroxy-3 Methylbutyrate, Methyl 3-Methoxypropionate, 3-Methyl Ethyl oxypropionate, ethyl 3-ethoxypropionate,
  • the crosslinkable polymer provided by the present invention contains monomer units capable of self-crosslinking with functional groups such as hydroxyl, amino, and mercapto groups, so that there is no need to add a crosslinking agent in the coating, which can effectively solve or avoid the problem of the composition being baked. Gas is generated during the process; taking hydroxyl as a functional group as an example, the crosslinking mechanism is as follows:
  • the present invention also provides the application of the above-mentioned anti-reflection coating composition in the photolithography process; the anti-reflection coating composition is arranged between the photoresist layer and the substrate to form an anti-reflection coating, which can reduce exposure radiation caused by The substrate is reflective to the photoresist; the thickness of the anti-reflection coating is preferably 10-100 nm, more preferably 33-100 nm.
  • the present invention also provides a method for forming a pattern of a photoresist during the manufacture and use of a semiconductor device, comprising: the film forming process of the above-mentioned antireflection coating composition, the film forming process of the photoresist, Subsequent photoresist exposure process and development process.
  • an anti-reflective coating composition and a cross-linkable polymer provided by the present invention will be described in detail below in conjunction with examples.
  • Example 1 The polymer obtained in Example 1 was analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum was obtained as shown in FIG. 1 .
  • Example 2 The polymer obtained in Example 2 was analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum was obtained as shown in FIG. 2 .
  • Example 3 The polymer obtained in Example 3 is analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum is obtained as shown in Figure 3.
  • Example 4 The polymer obtained in Example 4 was analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum was obtained as shown in FIG. 4 .
  • Example 5 The polymer obtained in Example 5 was analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum was obtained as shown in FIG. 5 .
  • Example 6 The polymer obtained in Example 6 was analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum was obtained as shown in FIG. 6 .
  • Example 7 The polymer obtained in Example 7 was analyzed by nuclear magnetic resonance, and its hydrogen nuclear magnetic resonance spectrum was obtained as shown in Figure 7.
  • Example 2 To 10 g of ethyl lactate containing 0.4 g of the polymer obtained in Example 1, 10 mg of toluenesulfonic acid was added. The prepared solution was filtered through a 0.2 ⁇ m polyethylene microporous filter to obtain an antireflection coating composition.
  • the composition was spin-coated on a silicon wafer with a spin coater, and heated with a 205° C. electric heating plate for one minute to form an antireflection film of 85 nm.
  • the film was measured with a spectroscopic ellipsometer to obtain a refractive index n of 1.79 and an extinction coefficient k of 0.34 at 193 nm.
  • Example 4 To 10 g of ethyl lactate containing 0.2 g of the polymers obtained in Example 3 and 0.1 g of Example 4, 10 mg of toluenesulfonic acid was added. The prepared solution was filtered through a 0.2 ⁇ m polyethylene microporous filter to obtain an antireflection coating composition.
  • the composition was spin-coated on a silicon wafer with a spin coater, and heated with a 205° C. electric heating plate for one minute to form an antireflection film of 33 nm.
  • the film was measured with a spectroscopic ellipsometer to obtain a refractive index n of 1.44 and an extinction coefficient k of 0.38 at 248 nm.
  • Example 2 To 10 g of methyl 2-hydroxyisobutyrate containing 0.4 g of the polymers obtained in Example 6 and 0.075 g of Example 2, p-10 mg of toluenesulfonic acid was added. The prepared solution was filtered through a 0.2 ⁇ m polyethylene microporous filter to obtain an antireflection coating composition.
  • the composition was spin-coated on a silicon wafer with a spin coater, and heated with a 205° C. electric heating plate for one minute to form an antireflection film of 61 nm.
  • the film was measured with a spectroscopic ellipsometer to obtain a refractive index n of 1.75 and an extinction coefficient k of 0.43 at 193 nm.
  • Example 2 To 10 g of ethyl lactate containing 200 mg of the polymers obtained in Example 5 and 200 mg of Example 2, 10 mg of toluenesulfonic acid was added. The prepared solution was filtered through a 0.2 ⁇ m polyethylene microporous filter to obtain an antireflection coating composition.
  • the composition was spin-coated on a silicon wafer with a spin coater, and heated with a 205° C. electric heating plate for one minute to form a 44 nm antireflection film.
  • the film was measured with a spectroscopic ellipsometer to obtain a refractive index n of 1.81 and an extinction coefficient k of 0.33 at 193 nm.
  • Example 7 To 10 g of ethyl lactate containing 0.4 g of the polymer obtained in Example 7, p-10 mg of toluenesulfonic acid was added. The prepared solution was filtered through a 0.2 ⁇ m polyethylene microporous filter to obtain an antireflection coating composition.
  • the composition was spin-coated on a silicon wafer with a spinner, and heated with a 205° C. electric heating plate for one minute to form a 58 nm antireflection film.
  • the film was measured with a spectroscopic ellipsometer to obtain a refractive index n of 1.46 and an extinction coefficient k of 0.48 at 248 nm.
  • the composition was spin-coated on a silicon wafer with a spinner, and heated with a 205° C. electric heating plate for one minute to form a 58 nm antireflection film.
  • the film was measured with a spectroscopic ellipsometer to obtain a refractive index n of 1.77 and an extinction coefficient k of 0.44 at 193 nm.
  • compositions obtained in Examples 8-12 were coated on a silicon wafer by a spinner, and heated on a 205° C. electric heating plate for 60 seconds to obtain a corresponding antireflection film, and the film thickness was measured.
  • the film is dipped in a photoresist solvent such as ethyl lactate, propylene glycol monomethyl ether, etc. for 20 seconds.
  • the film thickness was re-measured after the film was baked at 100°C for 30 seconds.
  • the two film thickness measurements before and after are all less than 1 nm, confirming that the antireflection film is not dissolved in the solvent used for the photoresist.
  • the outgassing effect was evaluated according to the following method.
  • the anti-reflective coating compositions obtained in Examples 8-12 and Comparative Example 1 were respectively spin-coated on silicon wafers by a spin coater to a thickness of 60 ⁇ 3nm, and when heated and baked on a 205°C electric heating plate, the A quartz plate was placed 3 cm above the wafer for receiving outgassing (the specific device is shown in Figure 8), and the quartz plate obtained after repeated spin-coating and baking 5 times was used for UV/Vis/NIR Spectrophotometer (UV/Vis/NIR Spectrophotometer) LAMBDA 1050+) was tested, and the results are shown in Figure 9.
  • the photolithography effect evaluation was performed according to the following method.
  • the anti-reflection coating of Example 8 was coated on a 200mm silicon wafer, and baked on a hot plate at 205° C. for 60 seconds. Spin time and speed were varied as needed to obtain 87 nm thick films.
  • a positive photoresist was spin-coated on the anti-reflection coating and baked and cured to obtain a photoresist layer with a thickness of 166 nm.
  • Exposure was performed using an ArF scanner with a numerical aperture of 1.1, and the exposed photoresist was baked at 115° C. for 60 seconds. Then develop with a tetramethylammonium hydroxide-based developer. Scanning electron microscopy (SEM) inspection of the obtained patterns yielded FIGS. 10 and 11 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明提供了一种抗反射涂层组合物,包括有机聚合物;所述有机聚合物包括可交联聚合物;所述可交联聚合物包括式(I)所示单体形成的单体单元;其中,R1选自取代或未取代的C2~C10的烯基;R 2与R 3各自独立地选自H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基。与现有技术相比,本发明提供的可交联聚合物包含能够与羟基、氨基和巯基等官能团进行自交联的单体单元,从而在涂层中无需加入交联剂,能够有效地解决或避免组合物在烘烤过程中产生气体,减少不必要的清洁程序同时降低气体凝结而成的固体掉落造成图案被破坏的风险,能够简化相应的工艺流程,节约成本。

Description

一种抗反射涂层组合物及可交联聚合物
本申请要求于2021年10月25日提交中国专利局、申请号为202111241133.4、发明名称为“一种抗反射涂层组合物及可交联聚合物”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于半导体技术领域,尤其涉及一种抗反射涂层组合物及可交联聚合物。
背景技术
光刻工艺是半导体器件制造过程中最为重要的工艺之一。具体来说,光刻过程利用光致抗蚀剂的感光功能将掩膜版上的精细线路图案转移到光致抗蚀剂乃至硅片,为后续的蚀刻以及离子注入做好准备。
然而,随着半导体器件越来越高的集成化发展,为了满足越来越小的工艺尺寸下的高分辨要求,曝光所用的活性光线也经历由i线(365nm)向深紫外(248nm和193nm)的发展历程。而活性光线的短波化趋势伴随而来的是基板的漫反射、驻波等问题的影响加剧,这严重地影响了图案的均一性、清晰度以及分辨率。
为了克服上述问题,一种行之有效的方法就是在光致抗蚀剂和基板之间引入一层抗反射涂层,用于减少、消除基板的反射。对于抗反射涂层,主要有以下两种:无机涂层以及包含有吸光组分和高分子聚合物组成的有机涂层。其中无机抗反射涂层有如下缺点:需要特殊的装备、多余的制成步骤、后续难以去除再加工等。而有机抗反射涂层,由于与光致抗蚀剂类似可以通过涂布的方式旋涂于基材表面,其有效地简化了工艺和降低了成本,被广泛应用和研究。
有机抗反射涂层组合物在旋涂之后,需要进一步进行高温烘烤使其交联固化,在这一过程中,化学成分“释气”的产生成了该工艺的一大问题。通常来说,“释气”主要来自交联剂等小分子化合物,当气体被大量排出时,排气系统可能并不总是足够快地排出,导致排出的成分凝结在烘烤室的内壁上。这些冷凝物可能脱落并落在后续晶片上,导致交叉污染。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种能够有效地解决或避免 在烘烤过程中“释气”问题的抗反射涂层组合物及可交联聚合物。
本发明提供了一种抗反射涂层组合物,包括有机聚合物;
所述有机聚合物包括可交联聚合物;
所述可交联聚合物包括式(I)所示单体形成的单体单元;
Figure PCTCN2022072277-appb-000001
其中,R 1选自取代或未取代的C2~C10的烯基;
R 2与R 3各自独立地选自H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基;
所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的芳基中的取代基各自独立地选自C1~C5的烷基、C1~C6的烷氧基与苯基中的一种或多种。
优选的,所述R 1选自取代或未取代的C2~C4的烯基;
R 2与R 3各自独立地选自H、取代或未取代的C1~C3的烷基、取代或未取代的C6~C10的芳基。
优选的,所述有机聚合物的质量为抗反射涂层组合物质量的2%~10%;所述可交联聚合物的质量为有机聚合物质量的10%~100%;所述可交联聚合物中式(I)所示单体形成的单体单元的含量为5~80wt%。
优选的,所述可交联聚合物包含官能团和/或所述有机聚合物还包括第一聚合物;所述第一聚合物包含官能团;所述官能团选自羟基、氨基与巯基中的一种或多种。
优选的,包含官能团的单体单元的质量为式(I)所示单体形成的单体单元质量的20%~300%。
优选的,所述可交联聚合物还包括吸光性有机发色团和/或所述第一聚合物还包括吸光性有机发色团和/或所述有机聚合物还包括第二聚合物;所述第二聚合物包括吸光性有机发色团;所述吸光性有机发色团选自取代或未取代的 芳基、多卤代烷基与取代或未取代的异氰酸脲酯基中的一种或多种。
优选的,包含吸光性有色发色团的单体单元的质量为有机聚合物质量的10%~85%。
优选的,所述抗反射涂层组合物还包括热酸发生剂、光酸发生剂、表面活性剂与溶剂;所述热酸发生剂的质量为抗反射涂层组合物质量的0.1%~15%;所述光酸发生剂的质量为抗反射涂层组合物质量的0%~15%;所述表面活性剂的质量为抗反射涂层组合物质量的0%~20%;所述溶剂的质量为抗反射涂层组合物质量的90%~99%。
优选的,所述热酸发生剂选自离子型热酸发生剂和/或非离子型热酸发生剂;所述离子型热酸发生剂选自十二烷基磺酸三乙胺盐、对甲苯磺酸胺盐与磺酸盐中的一种或多种;所述非离子型热酸发生剂选自环己基三氟甲磺酸酯、三氟甲基磺酸甲酯、2,4,6-三异丙基苯磺酸环己酯、2-硝基苄基对甲苯磺酸酯、苯偶姻甲苯磺酸酯、2-硝基苄基甲苯磺酸酯、三(2,3-二溴丙基)-1,3,5-三嗪-三酮、有机磺酸烷基酯、对甲苯磺酸、十二烷基苯磺酸、草酸、邻苯二甲酸、磷酸、樟脑磺酸及上述物质的盐中的一种或多种;
所述光酸发生剂选自(四叔丁基苯基)-三氟甲磺酸碘鎓盐、三苯基三氟甲磺酸锍鎓盐、三氟甲烷磺酸三苯基锍、三氟甲烷磺酸(对叔丁氧基苯基)二苯基锍、三氟甲烷磺酸三(对叔丁氧基苯基)锍、对甲苯磺酸三苯基锍、2-硝基苯甲基-对甲苯磺酸盐、2,6-二硝基苯甲基-对甲苯磺酸盐、2,4-二硝基苯甲基-对甲苯磺酸盐、苯偶姻甲苯磺酸酯、N-羟基琥珀酰亚胺基三氟甲磺酸酯、1,2,3-三(甲烷磺酰基氧基)苯、1,2,3-三(三氟甲烷磺酰基氧基)苯、1,2,3-三(对甲苯磺酰基氧基)苯、双(苯磺酰基)重氮甲烷、双(对甲苯磺酰基)重氮甲烷、双-O-(对甲苯磺酰基)-α-二甲基乙二肟、双-O-(正丁烷磺酰基)-α-二甲基乙二肟、N-羟基丁二酰亚胺甲磺酸酯、N-羟基丁二酰亚胺三氟甲磺酸酯、苯基双(三氯甲基)-s-三嗪、2-(4-甲氧基苯基)-4,6-双(三氯甲基)-1,3,5-三嗪与2-(4-甲氧基萘基)-4,6-双(三氯甲基)-1,3,5-三嗪)中的一种或多种;
所述表面活性剂选自聚氧乙烯月桂基(十二烷基)醚、聚氧乙烯硬脂基醚、聚氧乙烯十六烷基醚、聚氧乙烯油基醚、聚氧乙烯辛基苯酚醚、聚氧乙烯壬基苯酚醚、聚氧乙烯,聚氧丙烯嵌段聚合物、脱水山梨糖醇单月桂酸酯、脱水山 梨糖醇单棕榈酸(十六烷酸)酯、脱水山梨糖醇单硬脂酸酯、脱水山梨糖醇单油酸(十八9-烯酸)酯、脱水山梨糖醇三油酸酯、脱水山梨糖醇三硬脂酸酯、聚氧乙烯脱水山梨糖醇单月桂酸酯、聚氧乙烯脱水山梨糖醇单棕榈酸(十六烷酸)酯、聚氧乙烯脱水山梨糖醇单硬脂酸酯、聚氧乙烯脱水山梨糖醇单油酸(十八9-烯酸)酯、聚氧乙烯脱水山梨糖醇三油酸酯与聚氧乙烯脱水山梨糖醇三硬脂酸酯中的一种或多种;
所述溶剂选自乙二醇单甲醚、乙二醇单乙醚、甲基溶纤剂乙酸酯、乙基溶纤剂乙酸酯、二甘醇单甲醚、二甘醇单乙醚、丙二醇、丙二醇单甲醚、丙二醇单甲醚乙酸酯、丙二醇丙醚乙酸酯、甲苯、二甲苯、甲乙酮、环戊酮、环己酮、2-羟基丙酸乙酯、2-羟基-3甲基丁酸甲酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸甲酯、丙酮酸甲酯、丙酮酸乙酯、乙酸乙酯、乙酸丁酯、乳酸乙酯、乳酸丁酯、N,N-二甲基甲酰胺与N-甲基吡咯烷酮中的一种或多种。
本发明还提供了一种可交联聚合物,所述可交联聚合物包括式(I)所示单体形成的单体单元;
Figure PCTCN2022072277-appb-000002
其中,R 1选自取代或未取代的C2~C10的烯基;
R 2与R 3各自独立地选自H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基;
所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的芳基中的取代基各自独立地选自C1~C5的烷基、C1~C6的烷氧基与苯基中的一种或多种。
本发明还提供了一种上述可交联聚合物的制备方法,包括:将式(I)所示的单体与引发剂在溶剂中混合加热进行聚合反应,得到可交联聚合物。
本发明还提供了一种半导体器件在制造使用过程中的光致抗蚀剂的图案 形成方法,包括:上述抗反射涂层组合物的成膜工序、光致抗蚀剂的成膜工序、后续光致抗蚀剂的曝光工序、显影工序。
本发明提供了一种抗反射涂层组合物,包括有机聚合物;所述有机聚合物包括可交联聚合物;所述可交联聚合物包括式(I)所示单体形成的单体单元;其中,R 1选自取代或未取代的C2~C10的烯基;R 2与R 3各自独立地选自H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基;所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的芳基中的取代基各自独立地选自C1~C5的烷基或苯基。与现有技术相比,本发明提供的可交联聚合物包含能够与羟基、氨基等官能团进行自交联的单体单元,从而在涂层中无需加入交联剂,能够有效地解决或避免组合物在烘烤过程中产生气体,减少不必要的清洁程序同时降低气体凝结而成的固体掉落造成图案被破坏的风险,能够简化相应的工艺流程,节约成本。
附图说明
图1为本发明实施例1中得到的聚合物的核磁共振氢谱图;
图2为本发明实施例2中得到的聚合物的核磁共振氢谱图;
图3为本发明实施例3中得到的聚合物的核磁共振氢谱图;
图4为本发明实施例4中得到的聚合物的核磁共振氢谱图;
图5为本发明实施例5中得到的聚合物的核磁共振氢谱图;
图6为本发明实施例6中得到的聚合物的核磁共振氢谱图;
图7为本发明实施例7中得到的聚合物的核磁共振氢谱图;
图8为本发明实施例中用于释气效果评价的装置的结构示意图;
图9为本发明实施例8~12和比较例1所得到的抗反射涂层组合物的释气评价结果图
图10为本发明实施例8所得到的抗反射涂层组合物应用于光刻后得到的图案的扫描电镜图;
图11为本发明实施例8所得到的抗反射涂层组合物应用于光刻切片得到的图案的扫描电镜图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整 地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种可交联聚合物,所述可交联聚合物包括式(I)所示单体形成的单体单元;
Figure PCTCN2022072277-appb-000003
其中,R 1为取代或未取代的C2~C10的烯基,优选为取代或未取代的C2~C8的烯基,更优选为取代或未取代的C2~C6的烯基,再优选为取代或未取代的C2~C4的烯基,最优选为C2~C3的烯基;所述烯基中双键的个数可为一个也为多个,在本发明中,所述烯基中双键的个数优选为1~2个,更有选为1个。
R 2与R 3各自独立地为H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基,优选为H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C15的芳基,更优选为H、取代或未取代的C1~C4的烷基、取代或未取代的C6~C10的芳基,再优选为H、取代或未取代的C1~C2的烷基、取代或未取代的苯基。
所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的芳基中的取代基各自独立地为C1~C5的烷基或苯基,优选为C1~C3的烷基或苯基,更优选为甲基、乙基、C1-C6的烷氧基或苯基。
所述可交联聚合物中式(I)所示单体形成的单体单元的含量优选为5~80wt%,更优选为10%~76%,再优选为15%~55%,最优选为15%~53%;在本发明提供的实施例中,所述可交联聚合物中式(I)所示单体形成的单体单元的含量具体为15%、18%、53%、76%或28.8%。
所述可交联聚合物除式(I)所示单体形成的单体单元外优选还包括丙烯酸酯类单体单元;形成丙烯酸酯类单体单元的丙烯酸酯类单体为本领域技术人 员熟知的丙烯酸酯类单体即可,并无特殊的限制,在本发明中优选为取代或未取代的丙烯酸烷基酯、取代或未取代的甲基丙烯酸烷基酯;所述取代或未取代的丙烯酸烷基酯与取代或未取代的甲基丙烯酸烷基酯中烷基的碳原子数优选为1~8,更优选为1~6,再优选为1~4;所述取代的丙烯酸烷基酯与取代的甲基丙烯酸烷基酯中的取代基各自独立地优选为羟基、氨基、巯基、卤素与吸光性发色团中的一种或多种;所述吸光性有机发色团优选为取代或未取代的芳基、多卤代烷基与取代或未取代的异氰酸脲酯基中的一种或多种;其中所述取代或未取代的芳基可为取代或未取代的单环芳基也可为取代或未取代的多环芳基,并无特殊的限制,本发明中优选为取代或未取代的苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的喹啉基;所述多卤代烷基中烷基的碳原子数优选为1~10,更优选为1~8,再优选为1~6,再优选为1~4,最优选为1~2;所述多卤代烷基中的卤素优选为溴与碘中的一种或多种;所述多卤代烷基中卤素的个数优选为2~4,更优选为3~4;所述取代的芳基与取代的异氰酸脲酯基中的取代基各自独立地选自C1~C8的烷基、C6~C10的芳基、羟基、羰基与醚基中的一种或多种。
按照本发明,所述可交联聚合物中丙烯酸酯类单体单元优选包括含有卤素与吸光性发色团中至少一种取代的丙烯酸酯类单体单元与含有官能团的丙烯酸酯类单体单元;所述官能团优选为羟基、氨基与巯基中的一种或多种;所述含有官能团的丙烯酸酯类单体单元的质量优选为可交联聚合物中丙烯酸酯类单体单元质量的5%~50%,更优选为5%~30%,再优选为10%~30%,再优选为15%~25%,最优选为1%5~20%;所述含有卤素与吸光性发色团中至少一种取代的丙烯酸酯类单体单元的质量优选为为可交联聚合物中丙烯酸酯类单体单元质量的10%~50%,更优选为20%~50%,再优选为30%~50%,再优选为30%~40%,最优选为34%~40%。
本发明还提供了一种上述可交联聚合物的制备方法,包括:将式(I)所示的单体与引发剂在溶剂中混合加热进行聚合反应,得到可交联聚合物。
在本发明中体系中的单体除式(I)所示的单体外还可包括其他单体,具体可根据可交联聚合物所含有单体单元的种类进行选择,在本发明中优选还包括丙烯酸酯类单体单元;所述丙烯酸酯类单体单元的种类同上所述,在此不再 赘述;所述式(I)所示的单体的质量优选为总单体质量的5%~80%,更优选为10%~76%,再优选为15%~55%,最优选为15%~53%;在本发明提供的实施例中,所述式(I)所示的单体的质量具体为总单体质量的15%、18%、53%、76%或28.8%;所述引发剂为本领域技术人员熟知的引发剂即可,并无特殊的限制,本发明中优选为偶氮类引发剂;在本发明提供的实施例中,所述引发剂具体为偶氮二异丁腈;所述溶剂为本领域技术人员熟知的有机溶剂即可,并无特殊的限制,本发明提供实施例中具体为四氢呋喃;反应体系中单体的浓度优选为0.1~0.5g/ml;所述加热优选加热至回流进行聚合反应;所述聚合反应的时间优选为15~30h,更优选为20~26h,再优选为24h。
聚合反应结束后,优选用正己烷沉淀,干燥后得到可交联聚合物。
本发明还提供了一种抗反射涂层组合物,包括有机聚合物;
所述有机聚合物包括可交联聚合物;
所述可交联聚合物包括式(I)所示单体形成的单体单元;
Figure PCTCN2022072277-appb-000004
其中,R 1为取代或未取代的C2~C10的烯基;
R 2与R 3各自独立地为H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基;
所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的芳基中的取代基各自独立地为C1~C5的烷基或苯基。
其中,所述可交联聚合物同上所述,在此不再赘述。
在本发明中,所述有机聚合物的质量优选为抗反射涂层组合物质量的2%~10%,更优选为2%~8%,再优选为3%~7%,再优选为3%~5%,最优选为3%~4%。
所述可交联聚合物的质量优选为有机聚合物质量的10%~100%,更优选为15%~100%。
按照本发明,所述可交联聚合物包含官能团和/或所述有机聚合物还包括第一聚合物;所述第一聚合物包含官能团;即所述有机聚合物包含官能团,其可以是可交联聚合物包含官能团,还可是所述有机聚合物包含的其他聚合物含有官能团,或者两者同时均均有官能团;所述官能团优选为羟基和/或氨基。在本发明中,所述包含官能团的单体单元的质量优选为式(I)所示单体形成的单体单元质量的20%~300%,更优选为30%~200%,再优选为35%~200%。
为了使抗反射涂层组合物可以吸收返回光致抗蚀剂的非必须的活性光线,所述可交联聚合物还包括吸光性有机发色团和/或所述第一聚合物还包括吸光性有机发色团和/或所述有机聚合物还包括第二聚合物;所述第二聚合物包括吸光性有机发色团;即,所述有机聚合物包含吸光性有机发色团,该吸光性有机发色团可以接枝于可交联聚合物上,也可以接枝于第一聚合物上,还可以位于除上述两种聚合物之外的第二聚合物上,或者其中的两者含有,或者其中的三者均含有吸光性有机发色团,并无特殊的限制;所述吸光性有机发色团为本领域技术人员熟知的吸光性有机发色团即可,并无特殊的限制,本发明中所述吸光性有机发色团选自取代或未取代的芳基、多卤代烷基与取代或未取代的异氰酸脲酯基中的一种或多种;其中所述取代或未取代的芳基可为取代或未取代的单环芳基也可为取代或未取代的多环芳基,并无特殊的限制,本发明中优选为取代或未取代的苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的喹啉基;所述多卤代烷基中烷基的碳原子数优选为1~10,更优选为1~8,再优选为1~6,再优选为1~4,最优选为1~2;所述多卤代烷基中的卤素优选为氟、氯与溴中的一种或多种;所述多卤代烷基中卤素的个数优选为2~4,更优选为3~4;所述取代的芳基与取代的异氰酸脲酯基中的取代基各自独立地选自C1~C8的烷基、C6~C10的芳基、羟基、羰基与醚基中的一种或多种。在本发明中,使用的吸光性有机发色团可根据被曝光的射线的不同而改变,如对于波长为248nm的曝光光线,优选吸光性有机发色团为取代或未取代的萘基与取代或未取代的蒽基中的一种或多种;对于波长为193nm的曝光光线,优选吸光性有机发色团为取代或未取代的萘基与取代或未取代的苯基中的一种或多种。在本发明中,所述包含吸光性有色发色团的单体单元的质量优选为有机聚合物质量的10%~85%,更优选为15%~60%,再优选为20%~60%。
按照本发明,所述抗反射涂层组合物还包括热酸发生剂、光酸发生剂、表面活性剂与溶剂。
其中,所述热酸发生剂的质量为抗反射涂层组合物质量的0.01%~15%,优选为0.01%~10%,更优选为0.01%~5%,再优选为0.01%~2%,再优选为0.01%~1%,最优选为0.05%~0.5%;所述热酸发生剂优选为离子型热酸发生剂和/或非离子型热酸发生剂;所述离子型热酸发生剂优选为十二烷基磺酸三乙胺盐、对甲苯磺酸胺盐与磺酸盐中的一种或多种;所述磺酸盐优选为碳环芳基和杂芳基磺酸盐、脂族磺酸盐、苯磺酸盐与三氟甲磺酸盐中的一种或多种;所述非离子型热酸发生剂优选为环己基三氟甲磺酸酯、三氟甲基磺酸甲酯、2,4,6-三异丙基苯磺酸环己酯、2-硝基苄基对甲苯磺酸酯、苯偶姻甲苯磺酸酯、2-硝基苄基甲苯磺酸酯、三(2,3-二溴丙基)-1,3,5-三嗪-三酮、有机磺酸烷基酯、对甲苯磺酸、十二烷基苯磺酸、草酸、邻苯二甲酸、磷酸、樟脑磺酸及上述物质的盐中的一种或多种,还可为专利号为US10429737B2的美国专利所披露的那些热酸发生剂。
所述光酸发生剂的质量优选为抗反射涂层组合物质量的0%~15%,更优选为0.01%~10%,更优选为0.01%~10%,再优选为0.01%~8%,再优选为0.01%~5%,再优选为0.01%~2%,再优选为0.01%~1%,最优选为0.01%~0.5%;所述光酸发生剂为本领域技术人员熟知的光酸发生剂即可,并无特殊的限制,本发明中优选为鎓盐类光酸发生剂、硝基苯甲基衍生物、磺酸酯类光酸发生剂、重氮甲烷衍生物、乙二肟衍生物、N-羟基酰亚胺化合物的磺酸酯衍生物与含卤素的三嗪化合物中的一种或多种,更优选为(四叔丁基苯基)-三氟甲磺酸碘鎓盐、三苯基三氟甲磺酸锍鎓盐、三氟甲烷磺酸三苯基锍、三氟甲烷磺酸(对叔丁氧基苯基)二苯基锍、三氟甲烷磺酸三(对叔丁氧基苯基)锍、对甲苯磺酸三苯基锍、2-硝基苯甲基-对甲苯磺酸盐、2,6-二硝基苯甲基-对甲苯磺酸盐、2,4-二硝基苯甲基-对甲苯磺酸盐、苯偶姻甲苯磺酸酯、N-羟基琥珀酰亚胺基三氟甲磺酸酯、1,2,3-三(甲烷磺酰基氧基)苯、1,2,3-三(三氟甲烷磺酰基氧基)苯、1,2,3-三(对甲苯磺酰基氧基)苯、双(苯磺酰基)重氮甲烷、双(对甲苯磺酰基)重氮甲烷、双-O-(对甲苯磺酰基)-α-二甲基乙二肟、双-O-(正丁烷磺酰基)-α-二甲基乙二肟、N-羟基丁二酰亚胺甲磺酸酯、N-羟基丁二酰亚胺三氟甲磺酸酯、苯 基双(三氯甲基)-s-三嗪、2-(4-甲氧基苯基)-4,6-双(三氯甲基)-1,3,5-三嗪与2-(4-甲氧基萘基)-4,6-双(三氯甲基)-1,3,5-三嗪)中的一种或多种。
所述表面活性剂的质量优选为抗反射涂层组合物质量的0%~20%,更优选为0%~15%,再优选为1%~10%;所述表面活性剂优选为非离子表面活性剂,更优选为聚氧乙烯月桂基(十二烷基)醚、聚氧乙烯硬脂基醚、聚氧乙烯十六烷基醚、聚氧乙烯油基醚、聚氧乙烯辛基苯酚醚、聚氧乙烯壬基苯酚醚、聚氧乙烯,聚氧丙烯嵌段聚合物、脱水山梨糖醇单月桂酸酯、脱水山梨糖醇单棕榈酸(十六烷酸)酯、脱水山梨糖醇单硬脂酸酯、脱水山梨糖醇单油酸(十八9-烯酸)酯、脱水山梨糖醇三油酸酯、脱水山梨糖醇三硬脂酸酯、聚氧乙烯脱水山梨糖醇单月桂酸酯、聚氧乙烯脱水山梨糖醇单棕榈酸(十六烷酸)酯、聚氧乙烯脱水山梨糖醇单硬脂酸酯、聚氧乙烯脱水山梨糖醇单油酸(十八9-烯酸)酯、聚氧乙烯脱水山梨糖醇三油酸酯与聚氧乙烯脱水山梨糖醇三硬脂酸酯中的一种或多种。
所述溶剂的质量优选为抗反射涂层组合物质量的90%~99%,更优选为95%~99%,再优选为95%~97%;所述溶剂为本领域技术人员熟知的有机溶剂即可,并无特殊的限制,本发明中优选为醇、酯、醚与环酮类溶剂中的一种或多种,更优选为乙二醇单甲醚、乙二醇单乙醚、甲基溶纤剂乙酸酯、乙基溶纤剂乙酸酯、二甘醇单甲醚、二甘醇单乙醚、丙二醇、丙二醇单甲醚、丙二醇单甲醚乙酸酯、丙二醇丙醚乙酸酯、甲苯、二甲苯、甲乙酮、环戊酮、环己酮、2-羟基丙酸乙酯、2-羟基-3甲基丁酸甲酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸甲酯、丙酮酸甲酯、丙酮酸乙酯、乙酸乙酯、乙酸丁酯、乳酸乙酯、乳酸丁酯、N,N-二甲基甲酰胺(DMF)与N-甲基吡咯烷酮中的一种或多种。
本发明提供的可交联聚合物包含能够与羟基、氨基、巯基等官能团进行自交联的单体单元,从而在涂层中无需加入交联剂,能够有效地解决或避免组合物在烘烤过程中产生气体;以羟基作为官能团为例,其交联机理如下所述:
Figure PCTCN2022072277-appb-000005
本发明还提供了上述抗反射涂层组合物在光刻工艺中的应用;所述抗反射 涂层组合物设置在光刻蚀剂层与基板之间形成抗反射涂层,能够减少曝光辐射由基底向光刻蚀剂反射;所述抗反射涂层的厚度优选为10~100nm,更优选为33~100nm。
本发明还提供了一种半导体器件在制造使用过程中的光致抗蚀剂的图案形成方法,包括:上述的抗反射涂层组合物的成膜工序、光致抗蚀剂的成膜工序、后续光致抗蚀剂的曝光工序、显影工序。
为了进一步说明本发明,以下结合实施例对本发明提供一种抗反射涂层组合物及可交联聚合物进行详细描述。
以下实施例中所用的试剂均为市售。
实施例1
将900毫克N-(甲氧基甲基)甲基丙烯酰胺,1.92克甲基丙烯酸甲酯,780毫克2-羟基乙基甲基丙烯酸酯和1.42克甲基丙烯酸苄基酯溶解于15毫升四氢呋喃中,加入70毫克偶氮二异丁腈(AIBN)。加热至回流并反应24个小时。生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例1中得到的聚合物进行分析,得到其核磁共振氢谱图如图1所示。
实施例2
将2.3克的甲基丙烯酸甲酯和2.6克的N-(甲氧基甲基)甲基丙烯酰胺溶解于10毫升四氢呋喃中,加入500毫克偶氮二异丁腈(AIBN)。加热至回流并反应24个小时。生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例2中得到的聚合物进行分析,得到其核磁共振氢谱图如图2所示。
实施例3
将1.2克的甲基丙烯酸甲酯和3.8克的N-(甲氧基甲基)甲基丙烯酰胺溶解于10毫升四氢呋喃中,加入250毫克偶氮二异丁腈(AIBN)。加热至回流并反应24个小时。生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例3中得到的聚合物进行分析,得到其核磁共振氢谱 图如图3所示。
实施例4
将2.8克的甲基丙烯酸缩水甘油酯溶解于8毫升四氢呋喃中,加入300毫克偶氮二异丁腈(AIBN)。加热至回流并反应24个小时。生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到的树脂和4.4克的9-蒽甲酸溶解于丙二醇单甲醚12毫升中,加入700毫克苄基三乙基氯化铵,在110度下反应24个小时,生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例4中得到的聚合物进行分析,得到其核磁共振氢谱图如图4所示。
实施例5
将520毫克2-羟基乙基甲基丙烯酸酯、600毫克甲基丙烯酸甲酯和1.62克甲基丙烯酸苄基酯溶解于10毫升四氢呋喃中,加入160毫克偶氮二异丁腈(AIBN)。加热至回流并反应24个小时。生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例5中得到的聚合物进行分析,得到其核磁共振氢谱图如图5所示。
实施例6
将5.2克1,3,5-三(2-羟乙基)氰尿酸,7.76克对二甲苯甲酸二甲酯,1.84克的丙三醇和90毫克的对甲苯磺酸加热至150度并反应24个小时。生成的聚合物使用叔丁基甲醚进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例6中得到的聚合物进行分析,得到其核磁共振氢谱图如图6所示。
实施例7
将1.1克甲基丙烯酸-9-蒽甲酯,520mg 2-羟基乙基甲基丙烯酸酯,656mg克的N-(甲氧基甲基)甲基丙烯酰胺溶解于6毫升四氢呋喃中,加入90毫克偶氮二异丁腈(AIBN)。加热至回流并反应24个小时。生成的聚合物使用正己烷进行沉淀并于干燥箱中加热干燥,得到所需聚合物。
利用核磁共振对实施例7中得到的聚合物进行分析,得到其核磁共振氢谱 图如图7所示。
实施例8
在10克含有0.4克实施例1得到的聚合物的乳酸乙酯中,加入对10毫克甲苯磺酸。所配成的溶液用0.2μm的聚乙烯制微孔过滤器过滤,得到抗反射涂层组合物。
用旋涂器将该组合物旋涂于硅晶片上,并与205℃电热板加热一分钟,形成85nm的防反射膜。用分光椭圆仪测定该膜可得到其在193nm下的折射率n为1.79,消光系数k为0.34。
实施例9
在10克含有0.2克实施例3以及0.1g实施例4中得到的聚合物的乳酸乙酯中,加入对10毫克甲苯磺酸。所配成的溶液用0.2μm的聚乙烯制微孔过滤器过滤,得到抗反射涂层组合物。
用旋涂器将该组合物旋涂于硅晶片上,并与205℃电热板加热一分钟,形成33nm的防反射膜。用分光椭圆仪测定该膜可得到其在248nm下的折射率n为1.44,消光系数k为0.38。
实施例10
在10克含有0.4克实施例6和0.075克实施例2得到的聚合物的2-羟基异丁酸甲酯中,加入对10毫克甲苯磺酸。所配成的溶液用0.2μm的聚乙烯制微孔过滤器过滤,得到抗反射涂层组合物。
用旋涂器将该组合物旋涂于硅晶片上,并与205℃电热板加热一分钟,形成61nm的防反射膜。用分光椭圆仪测定该膜可得到其在193nm下的折射率n为1.75,消光系数k为0.43。
实施例11
在10克含有200毫克实施例5以及200毫克实施例2中得到的聚合物的乳酸乙酯中,加入对10毫克甲苯磺酸。所配成的溶液用0.2μm的聚乙烯制微孔过滤器过滤,得到抗反射涂层组合物。
用旋涂器将该组合物旋涂于硅晶片上,并与205℃电热板加热一分钟,形成44nm的防反射膜。用分光椭圆仪测定该膜可得到其在193nm下的折射率n为1.81,消光系数k为0.33。
实施例12
在10克含有0.4克实施例7得到的聚合物的乳酸乙酯中,加入对10毫克甲苯磺酸。所配成的溶液用0.2μm的聚乙烯制微孔过滤器过滤,得到抗反射涂层组合物。
用旋涂器将该组合物旋涂于硅晶片上,并与205℃电热板加热一分钟,形成58nm的防反射膜。用分光椭圆仪测定该膜可得到其在248nm下的折射率n为1.46,消光系数k为0.48。
比较例1
在10克含有0.4克实施例7得到的聚合物的乳酸乙酯中,加入100毫克TMGU(四甲氧基甲基甘脲)和10毫克对甲苯磺酸。所配成的溶液用0.2μm的聚乙烯制微孔过滤器过滤,得到抗反射涂层组合物。
用旋涂器将该组合物旋涂于硅晶片上,并与205℃电热板加热一分钟,形成58nm的防反射膜。用分光椭圆仪测定该膜可得到其在193nm下的折射率n为1.77,消光系数k为0.44。
将实施例8~12得到的组合物通过旋涂器涂布与硅晶片上,与205℃电热板加热60秒,得到相应的抗反射膜,并测量其膜厚。将该膜于光致抗蚀剂溶剂,如乳酸乙酯,丙二醇单甲醚等中浸渍20秒。该膜于100℃下烘烤30秒后重新测量其膜厚。对于实施例8~12,前后两次的膜厚测量均小于1nm,确认抗反射膜不溶解于光致抗蚀剂所用的溶剂。
根据以下方法对释气效果进行评价。将实施例8~12和比较例1所得到的抗反射涂层组合物分别通过旋涂器旋涂于硅晶圆片上旋涂厚度为60±3nm,在205℃电热板加热烘烤时于硅晶圆偏上3厘米处放置一石英片用于接收释气(具体装置如图8所示),重复旋涂烘烤5次后得到的石英片用紫外分光光度计(UV/Vis/NIR Spectrophotometer LAMBDA 1050+)进行测试,得到结果如图9所示。
根据以下方法进行光刻效果评价。将实施例8的抗反射涂料涂于200mm的硅晶圆片上,并于205℃热板上烘烤60秒。根据需要改变旋转时间和速度来获得87nm厚的薄膜。接下来于抗反射涂层上旋涂正性光刻胶并烘烤固化得到166nm厚的光致抗蚀剂层。利用数值孔径为1.1的ArF扫描器进行曝光, 曝光后的光致抗蚀剂在115℃下烘烤60秒。之后以四甲基氢氧化铵类显影液进行显影。对所得到的图案进行扫描电镜(SEM)检查得到图10和图11。

Claims (12)

  1. 一种抗反射涂层组合物,其特征在于,包括有机聚合物;
    所述有机聚合物包括可交联聚合物;
    所述可交联聚合物包括式(I)所示单体形成的单体单元;
    Figure PCTCN2022072277-appb-100001
    其中,R 1选自取代或未取代的C2~C10的烯基;
    R 2与R 3各自独立地选自H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基;
    所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的芳基中的取代基各自独立地选自C1~C5的烷基、C1~C6的烷氧基与苯基中的一种或多种。
  2. 根据权利要求1所述的抗反射涂层组合物,其特征在于,所述R 1选自取代或未取代的C2~C4的烯基;
    R 2与R 3各自独立地选自H、取代或未取代的C1~C3的烷基、取代或未取代的C6~C10的芳基。
  3. 根据权利要求1所述的抗反射涂层组合物,其特征在于,所述有机聚合物的质量为抗反射涂层组合物质量的2%~10%;所述可交联聚合物的质量为有机聚合物质量的10%~100%;所述可交联聚合物中式(I)所示单体形成的单体单元的含量为5~80wt%。
  4. 根据权利要求1所述的抗反射涂层组合物,其特征在于,所述可交联聚合物包含官能团和/或所述有机聚合物还包括第一聚合物;所述第一聚合物包含官能团;所述官能团选自羟基、氨基与巯基中的一种或多种。
  5. 根据权利要求4所述的抗反射涂层组合物,其特征在于,包含官能团的单体单元的质量为式(I)所示单体形成的单体单元质量的20%~300%。
  6. 根据权利要求4所述的抗反射涂层组合物,其特征在于,所述可交联聚合物还包括吸光性有机发色团和/或所述第一聚合物还包括吸光性有机发色团和/或所述有机聚合物还包括第二聚合物;所述第二聚合物包括吸光性有机发色团;所述吸光性有机发色团选自取代或未取代的芳基、多卤代烷基与取代或未取代的异氰酸脲酯基中的一种或多种。
  7. 根据权利要求6所述的抗反射涂层组合物,其特征在于,包含吸光性有色发色团的单体单元的质量为有机聚合物质量的10%~85%。
  8. 根据权利要求1所述的抗反射涂层组合物,其特征在于,所述抗反射涂层组合物还包括热酸发生剂、光酸发生剂、表面活性剂与溶剂;所述热酸发生剂的质量为抗反射涂层组合物质量的0.1%~15%;所述光酸发生剂的质量为抗反射涂层组合物质量的0%~15%;所述表面活性剂的质量为抗反射涂层组合物质量的0%~20%;所述溶剂的质量为抗反射涂层组合物质量的90%~99%。
  9. 根据权利要求8所述的抗反射涂层组合物,其特征在于,所述热酸发生剂选自离子型热酸发生剂和/或非离子型热酸发生剂;所述离子型热酸发生剂选自十二烷基磺酸三乙胺盐、对甲苯磺酸胺盐与磺酸盐中的一种或多种;所述非离子型热酸发生剂选自环己基三氟甲磺酸酯、三氟甲基磺酸甲酯、2,4,6-三异丙基苯磺酸环己酯、2-硝基苄基对甲苯磺酸酯、苯偶姻甲苯磺酸酯、2-硝基苄基甲苯磺酸酯、三(2,3-二溴丙基)-1,3,5-三嗪-三酮、有机磺酸烷基酯、对甲苯磺酸、十二烷基苯磺酸、草酸、邻苯二甲酸、磷酸、樟脑磺酸及上述物质的盐中的一种或多种;
    所述光酸发生剂选自(四叔丁基苯基)-三氟甲磺酸碘鎓盐、三苯基三氟甲磺酸锍鎓盐、三氟甲烷磺酸三苯基锍、三氟甲烷磺酸(对叔丁氧基苯基)二苯基锍、三氟甲烷磺酸三(对叔丁氧基苯基)锍、对甲苯磺酸三苯基锍、2-硝基苯甲基-对甲苯磺酸盐、2,6-二硝基苯甲基-对甲苯磺酸盐、2,4-二硝基苯甲基-对甲苯磺酸盐、苯偶姻甲苯磺酸酯、N-羟基琥珀酰亚胺基三氟甲磺酸酯、1,2,3-三(甲烷磺酰基氧基)苯、1,2,3-三(三氟甲烷磺酰基氧基)苯、1,2,3-三(对甲苯磺酰基氧基)苯、双(苯磺酰基)重氮甲烷、双(对甲苯磺酰基)重氮甲烷、双-O-(对甲苯磺酰基)-α-二甲基乙二肟、双-O-(正丁烷磺酰基)-α-二甲基乙二肟、N-羟基丁二酰亚胺甲磺酸酯、N-羟基丁二酰亚胺三氟甲磺酸酯、苯基双(三氯甲基) -s-三嗪、2-(4-甲氧基苯基)-4,6-双(三氯甲基)-1,3,5-三嗪与2-(4-甲氧基萘基)-4,6-双(三氯甲基)-1,3,5-三嗪)中的一种或多种;
    所述表面活性剂选自聚氧乙烯月桂基(十二烷基)醚、聚氧乙烯硬脂基醚、聚氧乙烯十六烷基醚、聚氧乙烯油基醚、聚氧乙烯辛基苯酚醚、聚氧乙烯壬基苯酚醚、聚氧乙烯,聚氧丙烯嵌段聚合物、脱水山梨糖醇单月桂酸酯、脱水山梨糖醇单棕榈酸(十六烷酸)酯、脱水山梨糖醇单硬脂酸酯、脱水山梨糖醇单油酸(十八9-烯酸)酯、脱水山梨糖醇三油酸酯、脱水山梨糖醇三硬脂酸酯、聚氧乙烯脱水山梨糖醇单月桂酸酯、聚氧乙烯脱水山梨糖醇单棕榈酸(十六烷酸)酯、聚氧乙烯脱水山梨糖醇单硬脂酸酯、聚氧乙烯脱水山梨糖醇单油酸(十八9-烯酸)酯、聚氧乙烯脱水山梨糖醇三油酸酯与聚氧乙烯脱水山梨糖醇三硬脂酸酯中的一种或多种;
    所述溶剂选自乙二醇单甲醚、乙二醇单乙醚、甲基溶纤剂乙酸酯、乙基溶纤剂乙酸酯、二甘醇单甲醚、二甘醇单乙醚、丙二醇、丙二醇单甲醚、丙二醇单甲醚乙酸酯、丙二醇丙醚乙酸酯、甲苯、二甲苯、甲乙酮、环戊酮、环己酮、2-羟基丙酸乙酯、2-羟基-3甲基丁酸甲酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸甲酯、丙酮酸甲酯、丙酮酸乙酯、乙酸乙酯、乙酸丁酯、乳酸乙酯、乳酸丁酯、N,N-二甲基甲酰胺与N-甲基吡咯烷酮中的一种或多种。
  10. 一种可交联聚合物,其特征在于,所述可交联聚合物包括式(I)所示单体形成的单体单元;
    Figure PCTCN2022072277-appb-100002
    其中,R 1选自取代或未取代的C2~C10的烯基;
    R 2与R 3各自独立地选自H、取代或未取代的C1~C6的烷基、取代或未取代的C6~C20的芳基;
    所述取代的C2~C10的烯基、取代的C1~C6的烷基与取代的C6~C20的 芳基中的取代基各自独立地选自C1~C5的烷基、C1~C6的烷氧基与苯基中的一种或多种。
  11. 一种权利要求10所述可交联聚合物的制备方法,其特征在于,包括:将式(I)所示的单体与引发剂在溶剂中混合加热进行聚合反应,得到可交联聚合物。
  12. 一种半导体器件在制造使用过程中的光致抗蚀剂的图案形成方法,其特征在于,包括:权利要求1~9任意一项所述的抗反射涂层组合物的成膜工序、光致抗蚀剂的成膜工序、后续光致抗蚀剂的曝光工序、显影工序。
PCT/CN2022/072277 2021-10-25 2022-01-17 一种抗反射涂层组合物及可交联聚合物 WO2023070957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111241133.4A CN113913075B (zh) 2021-10-25 2021-10-25 一种抗反射涂层组合物及可交联聚合物
CN202111241133.4 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023070957A1 true WO2023070957A1 (zh) 2023-05-04

Family

ID=79242711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072277 WO2023070957A1 (zh) 2021-10-25 2022-01-17 一种抗反射涂层组合物及可交联聚合物

Country Status (2)

Country Link
CN (1) CN113913075B (zh)
WO (1) WO2023070957A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913075B (zh) * 2021-10-25 2022-09-20 嘉庚创新实验室 一种抗反射涂层组合物及可交联聚合物
CN115403976B (zh) * 2022-08-19 2023-04-18 嘉庚创新实验室 一种抗反射涂层组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242161B1 (en) * 1998-05-29 2001-06-05 Jsr Corporation Acrylic copolymer and reflection-preventing film-forming composition containing the same
JP2009025670A (ja) * 2007-07-20 2009-02-05 Jsr Corp レジスト下層膜形成用組成物
CN101506736A (zh) * 2006-08-28 2009-08-12 日产化学工业株式会社 含有液体添加剂的形成抗蚀剂下层膜的组合物
US20140106570A1 (en) * 2011-05-20 2014-04-17 Nissan Chemical Industries, Ltd. Composition for forming organic hard mask layer for use in lithography containing polymer having acrylamide structure
CN106164774A (zh) * 2014-05-22 2016-11-23 日产化学工业株式会社 含有包含丙烯酰胺结构和丙烯酸酯结构的聚合物的光刻用抗蚀剂下层膜形成用组合物
CN113913075A (zh) * 2021-10-25 2022-01-11 嘉庚创新实验室 一种抗反射涂层组合物及可交联聚合物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100252061B1 (ko) * 1998-04-20 2000-06-01 윤종용 포토레지스트용 중합체, 이를 포함하는 포토레지스트 조성물 및이의 제조방법
JP3852889B2 (ja) * 1998-09-24 2006-12-06 富士写真フイルム株式会社 フォトレジスト用反射防止膜材料組成物
KR100400243B1 (ko) * 1999-06-26 2003-10-01 주식회사 하이닉스반도체 유기 반사방지 중합체 및 그의 제조방법
US6187506B1 (en) * 1999-08-05 2001-02-13 Clariant Finance (Bvi) Limited Antireflective coating for photoresist compositions
US20030215736A1 (en) * 2002-01-09 2003-11-20 Oberlander Joseph E. Negative-working photoimageable bottom antireflective coating
US8088548B2 (en) * 2007-10-23 2012-01-03 Az Electronic Materials Usa Corp. Bottom antireflective coating compositions
US10280328B2 (en) * 2012-12-18 2019-05-07 Nissan Chemical Industries, Ltd. Bottom layer film-forming composition of self-organizing film containing styrene structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242161B1 (en) * 1998-05-29 2001-06-05 Jsr Corporation Acrylic copolymer and reflection-preventing film-forming composition containing the same
CN101506736A (zh) * 2006-08-28 2009-08-12 日产化学工业株式会社 含有液体添加剂的形成抗蚀剂下层膜的组合物
JP2009025670A (ja) * 2007-07-20 2009-02-05 Jsr Corp レジスト下層膜形成用組成物
US20140106570A1 (en) * 2011-05-20 2014-04-17 Nissan Chemical Industries, Ltd. Composition for forming organic hard mask layer for use in lithography containing polymer having acrylamide structure
CN106164774A (zh) * 2014-05-22 2016-11-23 日产化学工业株式会社 含有包含丙烯酰胺结构和丙烯酸酯结构的聚合物的光刻用抗蚀剂下层膜形成用组合物
CN113913075A (zh) * 2021-10-25 2022-01-11 嘉庚创新实验室 一种抗反射涂层组合物及可交联聚合物

Also Published As

Publication number Publication date
CN113913075B (zh) 2022-09-20
CN113913075A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
US7932018B2 (en) Antireflective coating composition
WO2023070957A1 (zh) 一种抗反射涂层组合物及可交联聚合物
TWI272455B (en) Composition for antireflection film formation
JPH11109640A (ja) 反射防止膜又は光吸収膜用組成物及びこれに用いる重合体
JP5382321B2 (ja) レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP4831324B2 (ja) スルホンを含有するレジスト下層膜形成組成物
JP4134760B2 (ja) 反射防止膜形成組成物および反射防止膜
CN1111547C (zh) 光吸收聚合物及其抗反射涂层的应用
WO2010143054A1 (en) Spin on organic antireflective coating composition comprising polymer with fused aromatic rings
TWI628512B (zh) 光阻與半導體裝置的製作方法
JP5418906B2 (ja) 反射防止コーティング組成物
US20120077124A1 (en) Resist lower layer film-forming composition, polymer, resist lower layer film, pattern-forming method, and method of producing semiconductor device
JP4892670B2 (ja) レジスト下層膜形成用組成物
KR101668113B1 (ko) 하층막 형성 조성물
JP3852868B2 (ja) 反射防止膜材料組成物及びそれを用いたレジストパターン形成方法
US20110053097A1 (en) Protective film-forming material and method of photoresist patterning with it
JP4250939B2 (ja) 反射防止膜形成組成物
WO2024036679A1 (zh) 一种抗反射涂层组合物
JP2005015532A (ja) 重合体および反射防止膜形成組成物
JP4179116B2 (ja) 反射防止膜形成組成物及び反射防止膜の製造方法
TW201825582A (zh) 形成下層抗反射膜之組成物
JP3632875B2 (ja) 反射防止膜材料用組成物
JP4433933B2 (ja) 感放射線性組成物およびハードマスク形成材料
JP4753018B2 (ja) 付加重合性樹脂を含むリソグラフィー用反射防止膜形成組成物
US20090053646A1 (en) Material for protective film formation and method of forming resist pattern therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884877

Country of ref document: EP

Kind code of ref document: A1