WO2023070898A1 - 一种利用陀螺仪判断和计算液压尾板动作的系统及方法 - Google Patents

一种利用陀螺仪判断和计算液压尾板动作的系统及方法 Download PDF

Info

Publication number
WO2023070898A1
WO2023070898A1 PCT/CN2021/138967 CN2021138967W WO2023070898A1 WO 2023070898 A1 WO2023070898 A1 WO 2023070898A1 CN 2021138967 W CN2021138967 W CN 2021138967W WO 2023070898 A1 WO2023070898 A1 WO 2023070898A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
gyroscope
tailgate
action
hydraulic tailgate
Prior art date
Application number
PCT/CN2021/138967
Other languages
English (en)
French (fr)
Inventor
宋作伟
王泽黎
王坚
吕有逵
周铭
Original Assignee
江苏凯卓立液压设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏凯卓立液压设备有限公司 filed Critical 江苏凯卓立液压设备有限公司
Publication of WO2023070898A1 publication Critical patent/WO2023070898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the present application relates to the technical field of hydraulic tail lift control, in particular to a system and method for judging and calculating the hydraulic tail lift movement by using a gyroscope.
  • the lifting tailgate installed at the rear of trucks and trailers is a mechanical-electrical-hydraulic integrated vehicle-mounted equipment that can improve loading and unloading efficiency and reduce the labor intensity of employees.
  • Lifting tail lift is usually composed of three parts, namely electromechanical hydraulic actuator, electro-hydraulic power source and operation control box.
  • the electromechanical hydraulic actuator includes the dock assembly, boom assembly, frame assembly and hydraulic system.
  • the traditional lifting tail lift hydraulic system includes a booster cylinder and a closing cylinder.
  • the tail lift uses the booster cylinder in the hydraulic system to automatically lower the head when the loading and unloading platform components touch the ground and automatically raise the head before leaving the ground.
  • the door closing oil cylinder continues to recover under the action of gravity.
  • the pressure at port B of the door closing oil circuit is greater than the pressure at port A of the lifting oil circuit.
  • the pressure at port A of the lifting oil circuit is greater than the pressure at port B of the closing oil circuit.
  • the detection of the state of the tailgate is realized by detecting the pressure of the booster cylinder in the mechanical mechanism, that is, by detecting the pressure of the booster cylinder, it is detected whether the tailgate is lowered to the ground or lowered to the ground.
  • the inventor found that the above-mentioned technology has at least the following problems: the accuracy of detecting the action of the hydraulic tailgate through the pressurized cylinder is low, and it is easy to cause damage to the hydraulic cylinder.
  • the present application provides a system and method for judging and calculating the movement of the hydraulic tailgate by using a gyroscope.
  • the present application provides a system and method for using a gyroscope to judge and calculate the movement of the hydraulic tailgate, and adopts the following technical solutions:
  • a method for judging and calculating the action of a hydraulic tailgate by using a gyroscope, based on including at least one gyroscope, the method includes the following steps:
  • the action types include opening the door, lowering, lowering the head, raising the head, lifting and closing the door;
  • the action type is opening the door, raising the head and lifting, the acquisition signal of the gyroscope is obtained, and the rotation angle of the hydraulic tailgate is controlled according to the acquisition signal.
  • the method before obtaining data according to the action type or waiting to obtain data, the method further includes:
  • Actions with abutting relationship in the working process are judged as the state that needs to obtain data, and actions with abutting relationship are lowering, bowing the head and closing the door;
  • the actions without abutting relationship during the working process are judged as the state of waiting for data acquisition, and the actions without abutting relationship are opening the door, raising the head and lifting.
  • the reverse acceleration will only be generated if there is an abutment relationship. Therefore, when descending, bowing the head and closing the door, the hydraulic tailgate is controlled to descend to a stop by waiting to obtain the reverse acceleration. Compared with the original judgment based on the increase in hydraulic pressure The hydraulic tailgate touches the ground more sensitively and accurately, which can reduce the damage to the hydraulic cylinder.
  • the acquiring data according to the action type or waiting to acquire data specifically includes:
  • the obtained reverse acceleration is compared with the reverse acceleration threshold, and when the obtained reverse acceleration is greater than the reverse acceleration threshold, the hydraulic tailgate is controlled to stop descending.
  • said obtaining data according to the action type or waiting to obtain data further includes:
  • the hydraulic tail lift is controlled to stop descending.
  • the hydraulic tailgate may be blocked by foreign objects during the rotation process. If the resistance is not large, the rotation of the hydraulic tailgate will not be affected. Setting the time threshold can effectively reduce the situation that the hydraulic tailgate is stuck and unable to rotate occur.
  • the acquiring data according to the action type or waiting to acquire data specifically includes:
  • the hydraulic tail flap is controlled to stop rotating.
  • the action without abutting relationship can adjust the actual angle of the hydraulic tailgate through the set angle, so as to achieve the required attitude, without the need to adjust through the hydraulic cylinder, thereby reducing the damage to the hydraulic cylinder .
  • all types of actions can control the operation of the hydraulic tailgate by collecting rotation angle information.
  • the movement with abutting relationship can be controlled not only by detecting the reverse acceleration, but also by collecting the rotation angle information, so as to realize multi-mode control and improve work efficiency. Reduced damage to hydraulic cylinders.
  • the difference between the rotation angle information of the hydraulic tailgate and the rotation angle threshold is less than the deviationable angle value, after the control of the hydraulic tailgate to stop falling, it also includes:
  • the present application provides a system for judging and calculating the hydraulic tailgate action by using a gyroscope, and adopts the following technical solution:
  • a system for judging and calculating the action of a hydraulic tailgate by using a gyroscope comprising: a nine-axis gyroscope, a control box, a remote controller and a wire controller, the wire controller and the nine-axis gyroscope are connected to the control box by wire,
  • the remote controller is wirelessly connected to the control box, the control box is provided with an interface, the interface is connected with a cable, the cable is used to connect the power supply, and the nine-axis gyroscope includes a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the three-axis accelerometer is used to detect the three-axis acceleration of the hydraulic tailgate, the three-axis gyroscope is used to detect the three-axis angular velocity of the hydraulic tailgate, and the three-axis magnetometer is used for Detect the three-axis angle of the hydraulic tailgate, the wire controller and the remote controller are used
  • the main controller is used to receive control instructions and control the operation of the hydraulic tailgate according to the control instructions.
  • the key switch It is used to control the total power supply of the control box.
  • the operation button is provided with a prompt light, the operation button is used to communicate with the control circuit, and the master switch is used to control the switch of the corresponding action according to the demand.
  • the nine-axis gyroscope will detect a large reverse acceleration, based on which it can judge that the hydraulic tail lift falls to touch the ground, so as to control the hydraulic tail lift to stop , which is more sensitive and accurate than the original judgment based on the increase in hydraulic pressure when the hydraulic tailgate touches the ground, and can reduce damage to the hydraulic cylinder.
  • the present application provides an intelligent terminal, which adopts the following technical solution:
  • An intelligent terminal including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the computer program is executed by the processor, one of the above-mentioned ones can be realized.
  • the corresponding program can be stored and processed, and it can be judged more accurately whether the hydraulic tailgate touches the ground.
  • the present application provides a computer-readable storage medium, adopting the following technical solution:
  • a computer-readable storage medium including a readable storage medium and a computer program stored on the readable storage medium, and the computer program is loaded and executed by a processor to realize the utilization as described in any of the above A method for judging and calculating the action of the hydraulic tailgate by the gyroscope.
  • the present application includes at least one of the following beneficial technical effects:
  • the actual angle of the hydraulic tailgate can be adjusted through the set angle to achieve the desired attitude
  • FIG. 1 is a block diagram of the overall structure of a system that uses a gyroscope to judge and calculate the movement of a hydraulic tailgate in an embodiment of the present application.
  • FIG. 2 is a structural diagram of a nine-axis gyroscope in an embodiment of the present application.
  • Fig. 3 is a schematic flow chart of a method for judging and calculating the movement of a hydraulic tailgate by using a gyroscope in an embodiment of the present application.
  • Fig. 4 is a schematic flow chart of controlling the hydraulic tailgate through reverse acceleration in the embodiment of the present application.
  • Fig. 5 is a schematic flow chart of monitoring and adjusting the hydraulic tail lift in the embodiment of the present application.
  • the embodiment of the present application discloses a system for judging and calculating the movement of a hydraulic tailgate by using a gyroscope.
  • a kind of system that utilizes gyroscope to judge and calculate hydraulic tailgate action comprises control box 2 and nine-axis gyroscope 1, is provided with main controller 21 in control box 2, nine-axis gyroscope 1 and main controller The controller 21 is wired.
  • the nine-axis gyroscope 1 includes a three-axis accelerometer 11, a three-axis gyroscope 12 and a three-axis magnetometer 13, and the three-axis accelerometer 11 is used to detect the three-axis acceleration of the hydraulic tailgate, and transmit the detected three-axis acceleration to The main controller 21; the three-axis gyroscope 12 is used to detect the three-axis angular velocity of the hydraulic tail lift, and transmits the detected three-axis angular velocity to the main controller 21; the three-axis magnetometer 13 is used to detect the three-axis angular velocity of the hydraulic tail lift angle, and transmit the detected three-circle angle to the main controller 21.
  • the main controller 21 is wired to the wired controller 4, and the main controller 21 is wirelessly connected to the remote controller 3. Both the wired controller 4 and the remote controller 3 are used to issue control commands for controlling the rise or fall of the hydraulic tailgate, and the issued control commands The command is transmitted to the main controller 21.
  • the main controller 21 controls the hydraulic tailgate according to the received control command and the three-axis acceleration, three-axis angular velocity and three-axis angle sent by the nine-axis gyroscope 1 .
  • an interface 5 is provided on the control box 2, and a cable 6 for connecting a power supply is connected to the interface 5.
  • the control box 2 includes an operation button 22 , a key switch 23 and a master switch 24 , and the operation button 22 , the key switch 23 and the master switch 24 are all arranged on the side wall of the control box 2 .
  • the key switch 23 is used to control the total power supply of the control box 2, the key switch 23 is connected with the master switch 24, and the current is transmitted to the master switch 24 after the key switch 23 is opened.
  • the master switch 24 is used to control the switch of the corresponding action according to the demand.
  • the master switch 24 is pushed upward to close the ascending switch, pushed downward to the closed descending switch, and pushed to the left to close the master switch 24.
  • Door-opening switch, master switch 24 is closed door-closing switch towards the right leg.
  • the operation button 22 is used to communicate with the control circuit, and the operation button 22 is provided with a prompt light, which is turned on when the circuit is connected.
  • the main controller 21 receives the control command and controls the rotation of the hydraulic tailgate.
  • the nine-axis gyroscope 1 detects the hydraulic tailgate and reminds the main controller 21 to stop rotating the hydraulic tailgate when the hydraulic tailgate rotates to the desired angle. The detection by the nine-axis gyroscope 1 can improve the detection sensitivity without using a hydraulic cylinder, thus effectively reducing the damage to the hydraulic cylinder.
  • FIG. 3 another embodiment of the present application provides a method for using a gyroscope to judge and calculate the movement of a hydraulic tailgate, including the following steps:
  • the action type includes opening the door, lowering, lowering the head, raising the head, lifting and closing the door.
  • Actions with abutting relationship are lowering, head down and door closing, and actions without abutting relationship are door opening, head up and lifting.
  • actions with abutting relationship can also be determined as a state that needs to acquire data, while actions without an abutting relationship cannot be determined as a state that needs to wait for data acquisition.
  • the reverse acceleration generated by the hydraulic tailgate is obtained by waiting through the gyroscope.
  • the resolution steps here specifically include:
  • the hydraulic tail lift is controlled to stop descending.
  • A1 set the rotation angle threshold corresponding to the action type, and set the deviation angle value
  • A2 obtain data according to the action type
  • the rotation angle information of the hydraulic tailgate is collected through the gyroscope.
  • the rotation angle information of the hydraulic tailgate can also be collected through the gyroscope.
  • A3 calculate the difference between the rotation angle information of the hydraulic tailgate and the set rotation angle threshold in real time
  • the hydraulic tail flap is controlled to stop rotating.
  • A10 set the angle value corresponding to each attitude of the hydraulic tail lift
  • the hydraulic tailgate when the door is open, the hydraulic tailgate is 0°, and the lifting arm is 45°; when the door is closed, the hydraulic tailgate is 90°, and the lifting arm is 45°; when the head is raised, the hydraulic tailgate is 0°, The lift arm is -45°; the hydraulic tail flap is -5° in the down attitude, and the lift arm is -45°; the hydraulic plate is 0° in the lift attitude, and the lift arm is 45°; the hydraulic tail flap in the down attitude is 0° and the lift arm is -45°.
  • A20 obtain the angle information of the hydraulic tail lift in real time
  • A40 compare the angle information of the hydraulic tail lift with the angle value corresponding to the current attitude of the hydraulic tail lift, and judge whether there is a deviation between the angle of the hydraulic tail lift and the angle value corresponding to the current attitude;
  • an intelligent terminal including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the computer program is executed by the processor, one of the above-mentioned ones can be realized.
  • the embodiment of the present application also discloses a computer-readable storage medium, which stores at least one instruction, at least one program, code set or instruction set, at least one instruction, at least one program, code set Or the instruction set can be loaded and executed by the processor to implement the method for judging and calculating the hydraulic tailgate action by using the gyroscope provided in the above method embodiment.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned includes, for example: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc., which can store program codes. medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种利用陀螺仪判断和计算液压尾板动作的系统及方法,其属于液压尾板控制的领域,其中方法包括获取控制液压尾板动作的控制信号和发出控制信号的动作类型(S10),动作类型包括开门、下降、低头、抬头、举升和关门;根据动作类型获取数据或等待获取数据(S20);当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度,当获取到反向加速度后控制液压尾板停止下降;当动作类型为开门、抬头和举升时,获取陀螺仪的采集信号,并根据采集信号控制液压尾板的转动角度。根据反向加速度判断出液压尾板下降至触地,从而控制液压尾板停止,较原本的根据液压增大判断液压尾板触地更为准确,能够降低对液压缸的损坏的效果。

Description

一种利用陀螺仪判断和计算液压尾板动作的系统及方法 技术领域
本申请涉及液压尾板控制的技术领域,尤其是涉及一种利用陀螺仪判断和计算液压尾板动作的系统及方法。
背景技术
安装在载货汽车和挂车尾部的起重尾板,是一个可以提高装卸效率,降低从业人员劳动强度的机电液一体化车载装备。在国内外物流装备市场上有庞大的存量和每年新增的市场需求量。
起重尾板通常是由三大部分组成,即机电液执行机构、电液动力源和操作控制箱组成。机电液执行机构包括装卸平台组件、举升臂组件、机架组件和液压系统。
传统的起重尾板液压系统包括增压缸和关闭油缸,其中尾板通过液压系统中的增压缸来实现装卸平台组件接触地面时的自动低头和离开地面前的自动抬头动作。当装卸平台组件下降到触地时,举升臂组件由于地面限制无法再动作。关门油缸在重力的作用下继续回收,这时,关门油路B口压力大于举升油路A口压力,增压缸在压力作用下回收,拉动装卸平台组件完成低头动作。当装卸平台组件举升抬头前,举升油路A口压力大于关门油路B口压力,增压缸在压力作用下顶出,推动关门油缸伸长,推动装卸平台组件完成抬头动作。通过对机械机构中的增压缸压力的检测实现对尾板状态的检测,即通过检测增压缸的压力检测尾板的下降是否至触地、低头是否至触地。
在实现本申请的过程中,发明人发现上述技术至少存在以下问题:通 过增压缸检测液压尾板动作时准确度较低,容易造成液压缸的损坏。
发明内容
为了解决通过增压缸检测液压尾板动作时准确度较低,容易造成液压缸的损坏的问题,本申请提供一种利用陀螺仪判断和计算液压尾板动作的系统及方法。
第一方面,本申请提供一种利用陀螺仪判断和计算液压尾板动作的系统及方法,采用如下的技术方案:
一种利用陀螺仪判断和计算液压尾板动作的方法,基于包含至少一个陀螺仪,所述方法包括以下步骤:
获取控制液压尾板动作的控制信号和发出控制信号的动作类型,所述动作类型包括开门、下降、低头、抬头、举升和关门;
根据动作类型获取数据或等待获取数据;
当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度,当获取到反向加速度后控制液压尾板停止下降;
当动作类型为开门、抬头和举升时,获取陀螺仪的采集信号,并根据采集信号控制液压尾板的转动角度。
通过采用上述技术方案,在液压尾板下降至触地时,会有很大的反向加速度,据此能够判断液压尾板下降至触地,从而控制液压尾板下降至停止,较之原本的根据液压增大判断液压尾板触地更为灵敏准确,能够降低对液压缸的损坏。
可选的,所述根据动作类型获取数据或等待获取数据之前还包括:
将工作过程中有抵接关系的动作判定为需要获取数据的状态,有抵接 关系的动作为下降、低头和关门;
将工作过程中无抵接关系的动作判定为等待获取数据的状态,无抵接关系的动作为开门、抬头和举升。
通过采用上述技术方案,有抵接关系才会产生反向加速度,因此在下降、低头和关门时,通过等待获取反向加速度从而控制液压尾板下降至停止,较之原本的根据液压增大判断液压尾板触地更为灵敏准确,能够降低对液压缸的损坏。
可选的,所述根据动作类型获取数据或等待获取数据具体包括:
设定反向加速度阈值;
根据动作类型等待获取数据;
当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度;
将获取的反向加速度与反向加速度阈值进行比较,当获取的反向加速度大于反向加速度阈值时控制液压尾板停止下降。
通过采用上述技术方案,液压尾板在转动时,空气的阻力或其他因素可能会产生一定的反向加速度,因此设定反向加速度阈值,能够更加准确地判断液压尾板触碰到了地面,从而控制液压尾板停止下降。
可选的,所述根据动作类型获取数据或等待获取数据还包括:
设定时间阈值;
通过陀螺仪获取液压尾板产生的反向加速度大于反向加速度阈值的时间;
当反向加速度大于反向加速度阈值的时间大于时间阈值时,控制液压 尾板停止下降。
通过采用上述技术方案,液压尾板在转动过程中可能会被外物阻挡,若阻力不大则不会影响液压尾板转动,设定时间阈值可以有效降低液压尾板被卡住无法转动的情况发生。
可选的,所述根据动作类型获取数据或等待获取数据具体包括:
设定动作类型对应的转动角度阈值;
设定可偏差角度值;
根据动作类型获取数据;
当动作类型为开门、抬头和举升时,通过陀螺仪采集液压尾板的转动角度信息;
实时计算液压尾板的转动角度信息和设定的转动角度阈值之间的差值;
当液压尾板的转动角度信息和转动角度阈值之间的差值小于可偏差角度值时,控制液压尾板停止转动。
通过采用上述技术方案,无抵接关系的动作通过设定的角度可以对液压尾板的实际角度进行调节,从而达到所需的姿态,无需通过液压缸进行调节,从而减少了对液压缸的损坏。
可选的,所有的动作类型均可通过采集转动角度信息控制液压尾板工作。
通过采用上述技术方案,有抵接关系的动作不仅可以通过检测反向加速度进行转动控制,还可以通过采集转动角度信息进行控制,从而实现多方式控制,提高了工作效率,且两种控制方式均减少了对液压缸的损坏。
可选的,所述当液压尾板的转动角度信息和转动角度阈值之间的差值 小于可偏差角度值时,控制液压尾板停止下降之后还包括:
设定液压尾板每个姿态对应的角度值;
实时获取液压尾板的角度信息;
根据液压尾板的角度信息判断液压尾板的姿态;
比较液压尾板的角度信息和液压尾板当前姿态对应的角度值,判断液压尾板的角度是否与当前姿态对应的角度值存在偏差;
若液压尾板的角度与当前姿态对应的角度值存在偏差,则将液压尾板调节至当前姿态对应的角度。
通过采用上述技术方案,液压尾板上放置货物后,若液压尾板的姿态出现变化,可通过九轴陀螺仪检测到,并将液压尾板因货物重压而导致的角度变化调整恢复,以避免货物重压导致液压尾板的姿态变化。
第二方面,本申请提供一种利用陀螺仪判断和计算液压尾板动作的系统,采用如下的技术方案:
一种利用陀螺仪判断和计算液压尾板动作的系统,包括:九轴陀螺仪、控制箱、遥控器和线控器,所述线控器和九轴陀螺仪均与控制箱有线连接,所述遥控器与控制箱无线连接,所述控制箱上设有接口,所述接口上连接有电缆,所述电缆用于连接电源,所述九轴陀螺仪包括三轴加速度计、三轴陀螺仪和三轴磁强计,所述三轴加速度计用于检测液压尾板的三轴加速度,所述三轴陀螺仪用于检测液压尾板的三轴角速度,所述三轴磁强计用于检测液压尾板的三轴角度,所述线控器和遥控器均用于发出控制液压尾板的控制指令,所述控制箱包括主控器、操作按钮、钥匙开关和主令开关,所述主控器设置在控制箱内,所述操作按钮、钥匙开关和主令开关均设置 在控制箱上,所述主控器用于接收控制指令并根据控制指令控制液压尾板运作,所述钥匙开关用于控制控制箱总电源,所述操作按钮上设有提示灯,所述操作按钮用于连通控制电路,所述主令开关用于根据需求控制对应动作的开关。
通过采用上述技术方案,在液压尾板下降至触地时,九轴陀螺仪会检测到很大的反向加速度,据此能够判断液压尾板下降至触地,从而控制液压尾板下降至停止,较之原本的根据液压增大判断液压尾板触地更为灵敏准确,能够降低对液压缸的损坏。
第三方面,本申请提供一种智能终端,采用如下的技术方案:
一种智能终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述任一所述的一种利用陀螺仪判断和计算液压尾板动作的方法。
通过采用上述技术方案,能够存储并处理相应的程序,能够更加准确的判断出液压尾板是否触地。
第四方面,本申请提供一种计算机可读存储介质,采用如下的技术方案:
一种计算机可读存储介质,包括可读存储介质及存储在所述可读存储介质上运行的计算机程序,所述计算机程序由处理器加载并执行以实现如上述任一所述的一种利用陀螺仪判断和计算液压尾板动作的方法。
通过采用上述技术方案,便于储存相关的程序,便于分析液压尾板的角度和反向加速度的大小,从而对液压尾板进行更加精确的监测。
综上所述,本申请包括以下至少一种有益技术效果:
1.在液压尾板下降至触地时,会有很大的反向加速度,据此能够判断液压尾板下降至触地,从而控制液压尾板下降至停止,较之原本的根据液压增大判断液压尾板触地更为灵敏准确,能够降低对液压缸的损坏;
2.通过设定的角度可以对液压尾板的实际角度进行调节,从而达到所需的姿态;
3.液压尾板上放置货物后,若液压尾板的姿态出现变化,可通过九轴陀螺仪检测到,并将液压尾板因货物重压而导致的角度变化调整恢复,以避免货物重压导致液压尾板的姿态变化。
附图说明
图1是本申请实施例中一种利用陀螺仪判断和计算液压尾板动作的系统的整体结构框图。
图2是本申请实施例中九轴陀螺仪的组成结构图。
图3是本申请实施例中一种利用陀螺仪判断和计算液压尾板动作的方法的整体流程示意图。
图4是本申请实施例中通过反向加速度控制液压尾板的流程示意图。
图5是本申请实施例中对液压尾板进行监测调节的流程示意图。
附图标记说明:1、九轴陀螺仪;11、三轴加速度计;12、三轴陀螺仪;13、三轴磁强计;2、控制箱;21、主控器;22、操作按钮;23、钥匙开关;24、主令开关;3、遥控器;4、线控器;5、接口;6、电缆。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细说明。
以下结合说明书附图对本申请一种利用陀螺仪判断和计算液压尾板动作的系统及方法的实施例作进一步详细描述。
本申请实施例公开一种利用陀螺仪判断和计算液压尾板动作的系统。
参照图1和图2,一种利用陀螺仪判断和计算液压尾板动作的系统包括控制箱2和九轴陀螺仪1,控制箱2内设有主控器21,九轴陀螺仪1与主控器21有线连接。九轴陀螺仪1包括三轴加速度计11、三轴陀螺仪12和三轴磁强计13,三轴加速度计11用于检测液压尾板的三轴加速度,并将检测的三轴加速度传输给主控器21;三轴陀螺仪12用于检测液压尾板的三轴角速度,并将检测的三轴角速度传输给主控器21;三轴磁强计13用于检测液压尾板的三轴角度,并将检测的三周角度传输给主控器21。主控器21有线连接有线控器4,主控器21无线连接有遥控器3,线控器4和遥控器3均用于发出控制液压尾板上升或者下降的控制指令,并将发出的控制指令传输给主控器21。主控器21根据接收到的控制指令和九轴陀螺仪1发出的三轴加速度、三轴角速度和三轴角度对液压尾板进行控制。
参照图1和图2,控制箱2上设有接口5,接口5上连接有用于连接电源的电缆6。控制箱2包括操作按钮22、钥匙开关23和主令开关24,操作按钮22、钥匙开关23和主令开关24均设置在控制箱2的侧壁上。钥匙开关23用于控制控制箱2总电源,钥匙开关23与主令开关24连接,钥匙开关23打开后将电流传输至主令开关24处。主令开关24用于根据需求控制对应动作的开关,具体的,主令开关24朝上推为闭合上升开关,主令开关24朝下推为闭合下降开关,主令开关24朝左推为闭合开门开关,主令开关24朝右腿为闭合关门开关。操作按钮22用于连通控制电路,操作按钮22 上设有提示灯,当电路连通时提示灯处于打开状态。
在实施中,转动钥匙打开总电源,按下操作按钮22从而使得控制电路连通,根据需求转动主令开关24,从而使得电路内对应的动作开关闭合。主控器21接收控制指令,控制液压尾板转动,九轴陀螺仪1对液压尾板进行检测,当液压尾板转动至所需角度时提醒主控器21停止继续转动液压尾板。通过九轴陀螺仪1检测,可以提高检测的灵敏度,无需使用液压缸,从而有效地降低了对液压缸的损坏。
下面结合一种利用陀螺仪判断和计算液压尾板动作的系统对一种利用陀螺仪判断和计算液压尾板动作的方法的实施进行详细说明:
参照图3,本申请另一实施例提供一种利用陀螺仪判断和计算液压尾板动作的方法,包括以下步骤:
S10,获取控制液压尾板动作的控制信号和发出控制信号的动作类型;
具体的,动作类型包括开门、下降、低头、抬头、举升和关门。
S20,根据动作类型获取数据或等待获取数据;
其中,在分辨需要获取数据的动作类型和需要等待获取数据的动作类型时,将工作过程中有抵接关系的动作判定为需要获取数据的状态,将工作过程中无抵接关系的动作判定为等待获取数据的状态。有抵接关系的动作为下降、低头和关门,无抵接关系的动作为开门、抬头和举升。
在实施中,有抵接关系的动作也可以判定为需要获取数据的状态,而无抵接关系的动作不可以判定为需要等待获取数据的状态。
参照图4,当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度,当获取到反向加速度后控制液压尾板停止下降。
在液压尾板下降至触地时,会有很大的反向加速度,据此能够判断液压尾板下降至触地,从而控制液压尾板下降至停止,与原本的根据液压增大判断液压尾板触地更为灵敏准确,能够降低对液压缸的损坏,具体步骤如下:
S100,设定反向加速度阈值;
S200,根据动作类型等待获取数据;
具体的,当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度。
S300,将获取的反向加速度与反向加速度阈值进行比较;
当获取的反向加速度大于反向加速度阈值时控制液压尾板停止下降;
当获取的反向加速度小于方向加速度阈值时不对液压尾板发出控制信号。
在实施中,液压尾板在转动时,空气的阻力或其他因素可能会产生一定的反向加速度,当反向加速度大于反向加速度阈值时,判定为液压尾板触碰到了地面或者车厢。
液压尾板在转动时可能会触碰到一些障碍物从而导致产生了大于反向加速度阈值的反向加速度,此时反向加速度大于反向加速度阈值并不代表液压尾板达到所需状态,对此的分辨步骤具体包括:
S1,设定时间阈值;
S2,通过陀螺仪获取液压尾板产生的反向加速度大于反向加速度阈值的时间;
当反向加速度大于反向加速度阈值的时间大于时间阈值时,控制液压 尾板停止下降。
当动作类型为开门、抬头和举升时,获取陀螺仪的采集信号,并根据采集信号控制液压尾板的转动角度,具体步骤如下:
A1,设定动作类型对应的转动角度阈值,并设定可偏差角度值;
A2,根据动作类型获取数据;
具体的,当动作类型为开门、抬头和举升时,通过陀螺仪采集液压尾板的转动角度信息。动作类型为关门、低头和下降时,也可以通过陀螺仪采集液压尾板的转动角度信息。
A3,实时计算液压尾板的转动角度信息和设定的转动角度阈值之间的差值;
当液压尾板的转动角度信息和转动角度阈值之间的差值小于可偏差角度值时,控制液压尾板停止转动。
在一个实施例中,液压尾板上放置货物后,若液压尾板的姿态出现变化,可通过九轴陀螺仪检测到,并将液压尾板因货物重压而导致的角度变化调整恢复,以避免货物重压导致液压尾板的姿态变化,参照图5,具体控制步骤如下:
A10,设定液压尾板每个姿态对应的角度值;
在一个实施例中,开门姿态时液压尾板为0°,举升臂为45°;关门姿态时液压尾板为90°,举升臂为45°;抬头姿态时液压尾板为0°,举升臂为-45°;低头姿态时液压尾板为-5°,举升臂为-45°;举升姿态时液压板为0°,举升臂为45°;下降姿态时液压尾板为0°,举升臂为-45°。
A20,实时获取液压尾板的角度信息;
A30,根据液压尾板的角度信息判断液压尾板的姿态;
A40,比较液压尾板的角度信息和液压尾板当前姿态对应的角度值,判断液压尾板的角度是否与当前姿态对应的角度值存在偏差;
若液压尾板的角度与当前姿态对应的角度值存在偏差,则将液压尾板调节至当前姿态对应的角度。
基于上述同一发明构思,本申请实施例还公开一种智能终端。一种智能终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述任一所述的一种利用陀螺仪判断和计算液压尾板动作的方法。
基于上述同一发明构思,本申请实施例还公开一种计算机可读存储介质,该存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集能够由处理器加载并执行以实现上述方法实施例提供的一种利用陀螺仪判断和计算液压尾板动作的方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质例如包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random  Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,基于包含至少一个陀螺仪,所述方法包括以下步骤:
    获取控制液压尾板动作的控制信号和发出控制信号的动作类型,所述动作类型包括开门、下降、低头、抬头、举升和关门;
    根据动作类型获取数据或等待获取数据;
    当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度,当获取到反向加速度后控制液压尾板停止下降;
    当动作类型为开门、抬头和举升时,获取陀螺仪的采集信号,并根据采集信号控制液压尾板的转动角度。
  2. 根据权利要求1所述的一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,所述根据动作类型获取数据或等待获取数据之前还包括:
    将工作过程中有抵接关系的动作判定为需要获取数据的状态,有抵接关系的动作为下降、低头和关门;
    将工作过程中无抵接关系的动作判定为等待获取数据的状态,无抵接关系的动作为开门、抬头和举升。
  3. 根据权利要求1所述的一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,所述根据动作类型获取数据或等待获取数据具体包括:
    设定反向加速度阈值;
    根据动作类型等待获取数据;
    当动作类型为下降、低头和关门时,通过陀螺仪等待获取液压尾板产生的反向加速度;
    将获取的反向加速度与反向加速度阈值进行比较,当获取的反向加速度大于反向加速度阈值时控制液压尾板停止下降。
  4. 根据权利要求3所述的一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,所述根据动作类型获取数据或等待获取数据还包括:
    设定时间阈值;
    通过陀螺仪获取液压尾板产生的反向加速度大于反向加速度阈值的时间;
    当反向加速度大于反向加速度阈值的时间大于时间阈值时,控制液压尾板停止下降。
  5. 根据权利要求1所述的一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,所述根据动作类型获取数据或等待获取数据具体包括:
    设定动作类型对应的转动角度阈值;
    设定可偏差角度值;
    根据动作类型获取数据;
    当动作类型为开门、抬头和举升时,通过陀螺仪采集液压尾板的转动角度信息;
    实时计算液压尾板的转动角度信息和设定的转动角度阈值之间的差值;
    当液压尾板的转动角度信息和转动角度阈值之间的差值小于可偏差角度值时,控制液压尾板停止转动。
  6. 根据权利要求5所述的一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,所有的动作类型均可通过采集转动角度信息控制液压尾板工作。
  7. 根据权利要求5所述的一种利用陀螺仪判断和计算液压尾板动作的方法,其特征在于,所述当液压尾板的转动角度信息和转动角度阈值之间的差值小于可偏差角度值时,控制液压尾板停止下降之后还包括:
    设定液压尾板每个姿态对应的角度值;
    实时获取液压尾板的角度信息;
    根据液压尾板的角度信息判断液压尾板的姿态;
    比较液压尾板的角度信息和液压尾板当前姿态对应的角度值,判断液压尾板的角度是否与当前姿态对应的角度值存在偏差;
    若液压尾板的角度与当前姿态对应的角度值存在偏差,则将液压尾板调节至当前姿态对应的角度。
  8. 一种利用陀螺仪判断和计算液压尾板动作的系统,其特征在于,包括:九轴陀螺仪(1)、控制箱(2)、遥控器(3)和线控器(4),所述线控器(4)和九轴陀螺仪(1)均与控制箱(2)有线连接,所述遥控器(3)与控制箱(2)无线连接,所述控制箱(2)上设有接口(5),所述接口(5)上连接有电缆(6),所述电缆(6)用于连接电源,所述九轴陀螺仪(1)包括三轴加速度计(11)、三轴陀螺仪(12)和三轴磁强计(13),所 述三轴加速度计(11)用于检测液压尾板的三轴加速度,所述三轴陀螺仪(12)用于检测液压尾板的三轴角速度,所述三轴磁强计(13)用于检测液压尾板的三轴角度,所述线控器(4)和遥控器(3)均用于发出控制液压尾板的控制指令,所述控制箱(2)包括主控器(21)、操作按钮(22)、钥匙开关(23)和主令开关(24),所述主控器(21)设置在控制箱(2)内,所述操作按钮(22)、钥匙开关(23)和主令开关(24)均设置在控制箱(2)上,所述主控器(21)用于接收控制指令并根据控制指令控制液压尾板运作,所述钥匙开关(23)用于控制控制箱(2)总电源,所述操作按钮(22)上设有提示灯,所述操作按钮(22)用于连通控制电路,所述主令开关(24)用于根据需求控制对应动作的开关。
  9. 一种智能终端,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7任一所述的一种利用陀螺仪判断和计算液压尾板动作的方法。
  10. 一种计算机可读存储介质,其特征在于,包括可读存储介质及存储在所述可读存储介质上运行的计算机程序,所述计算机程序由处理器加载并执行以实现如权利要求1至7任一所述的一种利用陀螺仪判断和计算液压尾板动作的方法。
PCT/CN2021/138967 2021-10-29 2021-12-17 一种利用陀螺仪判断和计算液压尾板动作的系统及方法 WO2023070898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111277170.0 2021-10-29
CN202111277170.0A CN114111749B (zh) 2021-10-29 2021-10-29 一种利用陀螺仪判断和计算液压尾板动作的系统及方法

Publications (1)

Publication Number Publication Date
WO2023070898A1 true WO2023070898A1 (zh) 2023-05-04

Family

ID=80379719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138967 WO2023070898A1 (zh) 2021-10-29 2021-12-17 一种利用陀螺仪判断和计算液压尾板动作的系统及方法

Country Status (2)

Country Link
CN (1) CN114111749B (zh)
WO (1) WO2023070898A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309375A (ja) * 1996-05-24 1997-12-02 Atex Co Ltd コンテナ等の重量物運搬車
JP2006088889A (ja) * 2004-09-24 2006-04-06 Shin Meiwa Ind Co Ltd 車両の荷役装置
EP2832585A1 (de) * 2013-07-30 2015-02-04 MBB Palfinger GmbH Hubladebühne und Verfahren zur Steuerung derselben
CN104837718A (zh) * 2012-12-07 2015-08-12 穆尔蒂马蒂奇公司 用于尾板的可分离的动力驱动
CN205318232U (zh) * 2016-01-05 2016-06-15 南京信息工程大学 一种基于stm32的承载平台平衡调整装置
CN107702684A (zh) * 2017-09-30 2018-02-16 广东工贸职业技术学院 基于九轴传感器汽车前轮转向角监测方法
CN209336561U (zh) * 2018-12-25 2019-09-03 深圳市凯卓立液压设备股份有限公司 一种用于液压尾板的电控系统
CN211550120U (zh) * 2020-01-09 2020-09-22 深圳市凯卓立液压设备股份有限公司 一种液压尾板自动低头和抬头控制系统
CN113135530A (zh) * 2021-05-11 2021-07-20 温岭市绿能机电有限公司 一种高防护性升降平台

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203098B (zh) * 2015-10-13 2018-10-02 上海华测导航技术股份有限公司 基于九轴mems传感器的农业机械全姿态角更新方法
CN207207840U (zh) * 2017-06-01 2018-04-10 南京云计趟信息技术有限公司 基于加速度传感器与陀螺仪的举升识别系统
US10775784B2 (en) * 2018-06-14 2020-09-15 Wing Aviation Llc Unmanned aerial vehicle with decentralized control system
US12000702B2 (en) * 2018-12-19 2024-06-04 Honeywell International Inc. Dynamic gyroscope bias offset compensation
CN109901602A (zh) * 2019-03-21 2019-06-18 华南农业大学 一种菱形四轮中耕机主动调平系统及方法
CN112304337B (zh) * 2020-10-22 2022-09-16 上海立可芯半导体科技有限公司 基于陀螺仪和加速度计的运动角度估计方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309375A (ja) * 1996-05-24 1997-12-02 Atex Co Ltd コンテナ等の重量物運搬車
JP2006088889A (ja) * 2004-09-24 2006-04-06 Shin Meiwa Ind Co Ltd 車両の荷役装置
CN104837718A (zh) * 2012-12-07 2015-08-12 穆尔蒂马蒂奇公司 用于尾板的可分离的动力驱动
EP2832585A1 (de) * 2013-07-30 2015-02-04 MBB Palfinger GmbH Hubladebühne und Verfahren zur Steuerung derselben
CN205318232U (zh) * 2016-01-05 2016-06-15 南京信息工程大学 一种基于stm32的承载平台平衡调整装置
CN107702684A (zh) * 2017-09-30 2018-02-16 广东工贸职业技术学院 基于九轴传感器汽车前轮转向角监测方法
CN209336561U (zh) * 2018-12-25 2019-09-03 深圳市凯卓立液压设备股份有限公司 一种用于液压尾板的电控系统
CN211550120U (zh) * 2020-01-09 2020-09-22 深圳市凯卓立液压设备股份有限公司 一种液压尾板自动低头和抬头控制系统
CN113135530A (zh) * 2021-05-11 2021-07-20 温岭市绿能机电有限公司 一种高防护性升降平台

Also Published As

Publication number Publication date
CN114111749B (zh) 2022-12-02
CN114111749A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US20140320293A1 (en) Operator alert and height limitation system for load carrying machines
CN205942833U (zh) 一种可用于物业管理中的机器人智能系统
US9243450B1 (en) System for operating a drilling rig with a retracting guide dolly and a top drive
CN107473139A (zh) 一种自适应的货叉控制方法
CN113474517B (zh) 作业机械
US8037807B2 (en) Controlled motion in a hydraulically actuated system
CN112253110B (zh) 基于视觉的综采工作面智能自主跟机控制方法以及装置
US20210270013A1 (en) Shovel, controller for shovel, and method of managing worksite
CN104865863A (zh) 结构的监控系统
WO2023070898A1 (zh) 一种利用陀螺仪判断和计算液压尾板动作的系统及方法
CN113022405A (zh) 工程运输车的举升控制系统及方法
CN112942481A (zh) 一种挖掘机及其防倾翻控制方法、装置及存储介质
CN110467116A (zh) 起重机
CN111824082A (zh) 一种自走式甘蔗转运车转运自动控制方法及系统
CN205472069U (zh) 基于人货梯的监控系统
CN215592484U (zh) 一种快速起降卧式千斤顶
CN218367545U (zh) 一种新型智能液压尾板
CN105253747A (zh) 一种设有救援装置的电梯
KR20110037048A (ko) 휠로더의 붐 링크 상승속도 보상 장치 및 방법
WO2023070897A1 (zh) 一种新型智能液压尾板
US11428035B2 (en) Systems and methods for avoiding interference between an overhead door and a lifter
JPS611734A (ja) ロ−ダの制御装置
CN209651666U (zh) 一种电梯安全救援系统
CN210313072U (zh) 一种带门信号误动作检测装置的智能放人电梯
CN103669447B (zh) 连续墙成槽机的自动提斗控制方法、控制系统和控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE