WO2023070809A1 - 光学成像模组和ar设备 - Google Patents
光学成像模组和ar设备 Download PDFInfo
- Publication number
- WO2023070809A1 WO2023070809A1 PCT/CN2021/133850 CN2021133850W WO2023070809A1 WO 2023070809 A1 WO2023070809 A1 WO 2023070809A1 CN 2021133850 W CN2021133850 W CN 2021133850W WO 2023070809 A1 WO2023070809 A1 WO 2023070809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging module
- optical imaging
- light source
- optical
- Prior art date
Links
- 238000012634 optical imaging Methods 0.000 title claims abstract description 49
- 230000003287 optical effect Effects 0.000 claims description 41
- 239000011521 glass Substances 0.000 claims description 9
- 230000000712 assembly Effects 0.000 claims description 2
- 238000000429 assembly Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000004075 alteration Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/005—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
Definitions
- This application relates to the field of optical technology, and more specifically, to an optical imaging module and an AR device.
- AR Augmented Reality
- VR Virtual Reality
- MR Mediated Reality, Mediated Reality
- XR XR
- AR technology is a technology that ingeniously integrates virtual information with the real world. It widely uses various technical means such as multimedia, 3D modeling, real-time tracking and registration, intelligent interaction, and sensing to integrate computer-generated text and images. , 3D models, music, video and other virtual information are simulated and applied to the real world. The two kinds of information complement each other, thus realizing the "enhancement" of the real world.
- the optical imaging module is an important functional component of AR devices, and its optical performance and weight will greatly affect the user experience of AR devices.
- One purpose of the application is to provide a new technical solution for an optical imaging module and an AR device, so as to solve at least one technical problem raised in the background art.
- an optical imaging module including:
- the lens assembly includes a first lens, a second lens, a third lens and a fourth lens arranged in sequence, the light source is located on the object side of the fourth lens, and the aperture is located on the image side of the first lens ;
- the first lens has positive optical power
- the second lens has positive optical power
- the third lens has negative optical power
- the fourth lens has positive optical power
- optical imaging module satisfies the following inequality:
- TL is the distance between the light source and the aperture
- D is the lens diameter of the largest lens among the first lens, the second lens, the third lens and the fourth lens.
- the lens assembly satisfies the following inequality:
- f is the total effective focal length of the lens assembly.
- the first lens, the second lens, the third lens and the fourth lens respectively satisfy the following inequalities:
- f1 is the effective focal length of the first lens
- f2 is the effective focal length of the second lens
- f3 is the effective focal length of the third lens
- f4 is the effective focal length of the fourth lens.
- a diaphragm is also included, the diaphragm is located on the image side of the first lens, and the optical imaging module also satisfies the following inequalities:
- TL is the distance between the light source and the aperture
- D is the lens diameter of the largest lens among the first lens, the second lens, the third lens and the fourth lens.
- the aperture of the aperture is 4mm, and the apertures of the fourth lens are respectively larger than the apertures of the first lens, the second lens and the third lens.
- the first lens, the second lens, the third lens and the fourth lens are all glass spherical lenses.
- the refractive index of the fourth lens is greater than 1.75, and both the object side and the image side of the fourth lens are convex.
- the light source is a self-illuminating light source.
- the light source is a micro-LED monochromatic light source.
- an AR device including the optical imaging module described in the first aspect.
- an optical waveguide structure is also included, the light emitted by the light source passes through the lens assembly, is transmitted through the optical waveguide structure, and then exits to human eyes.
- the lens assembly of the AR optical imaging module provided by the present application is composed of the first lens, the second lens, the third lens and the fourth lens.
- the positive-negative distribution method and the limitation of the ratio of the distance from the light source to the aperture to the maximum lens aperture improve the optical performance of the AR optical imaging module and reduce the weight of the system.
- FIG. 1 is a schematic structural diagram of an optical imaging module of the present application.
- FIG. 2 is the MTF of each field of view of an optical imaging module of the present application.
- FIG. 3 shows distortions of various fields of view of an optical imaging module of the present application.
- Fig. 4 shows the MTF values of each field of view at 60°C for an optical imaging module of the present application.
- AR equipment usually includes various components, such as heat dissipation devices, optical structures (optical machines), driver board lights, etc.
- the optical imaging module of this application is a part of the optical structure, providing an imaging optical path for the optical structure.
- wearing comfort is also very important.
- light weight has a great impact on improving user experience. Therefore, the present application provides an optical imaging module suitable for AR equipment, which can reduce the weight of the entire AR equipment by reducing its own weight on the premise of ensuring optical performance.
- the present application provides an optical imaging module, which includes a diaphragm 6, a lens assembly and a light source 5;
- the lens assembly includes a first lens 1, a second lens 2, and a third lens arranged in sequence 3 and the fourth lens 4, the light source 5 is located on the object side of the fourth lens 4, and the diaphragm 6 is located on the image side of the first lens 1;
- the first lens 1 has positive refractive power, so
- the second lens 2 has positive refractive power
- the third lens 3 has negative refractive power
- the fourth lens 4 has positive refractive power;
- the optical imaging module satisfies the inequality: 0.5mm ⁇ TL/D ⁇ 3mm ;
- TL is the distance between the light source 5 and the diaphragm 6
- D is the lens diameter of the largest lens among the first lens 1, the second lens 2, the third lens 3 and the fourth lens 4.
- the lens assembly is composed of four lenses, the four lenses have the same optical axis, and the light beam emitted by the light source 5 can pass through the fourth lens 4, the third lens 3, and the second lens 2 of the lens assembly in sequence. and the first lens 1, and finally emerge from the first lens 1 to form an object image on the image side of the lens assembly.
- the third lens 3 has a negative refractive power, and at least one of its object side or image side can be concave, that is, the third lens 3 can be convex on the object image surface, and concave on the image side, Either the object image surface is concave, and the image side is convex, or both the image side and the image side are concave.
- the fourth lens 4 has positive refractive power, and at least one of its object side or image side is a convex surface, that is, the fourth lens 4 can be that the object image surface is convex, and the image surface is concave, or the object image surface is concave, and the image surface is convex. , or both the image side and the image side are convex.
- the first lens 1 has positive refractive power, that is, both the object side and the image side can be convex
- the second lens 2 has positive refractive power, that is, the object side is concave
- the image side is convex
- the diaphragm 6 plays a role in limiting the light beam, and it can be the edge of the lens, a frame or a specially set screen with holes, which is not limited in the present application. .
- the present application reduces the number of lenses and effectively reduces the total weight of the system. Moreover, the reduction in the number of lenses reduces the variable parameters of the system, which can help improve the optical performance of the system.
- the ratio of the distance between the light source 5 to the diaphragm 6 and the aperture of the largest lens is within the above-mentioned range, so that the length (equivalent to TL) or width (equivalent to D) of the entire optical imaging module can be kept at a suitable level. Within the range, the overall size of the optical module is more reasonable. The specific dimensions of the length and width of the optical module can be adjusted according to its actual application environment, which is not limited in this application.
- the effective focal length f of the lens assembly satisfies the inequality 4mm ⁇ f ⁇ 11.7mm.
- the application defines that the effective focal length of the lens assembly is 4mm ⁇ f ⁇ 11.7mm, the effective focal length f of the lens assembly is related to the effective focal length of each lens itself and the distance between each lens, and the effective focal length of each lens itself is affected by The radius of curvature and thickness of each lens are affected.
- the entire optical imaging module can achieve good optical effects only through four lenses.
- the first lens 1, the second lens 2, the third lens 3 and the fourth lens 4 respectively satisfy the following inequalities:
- f1 is the effective focal length of the first lens 1
- f2 is the effective focal length of the second lens 2
- f3 is the effective focal length of the third lens 3
- f4 is the effective focal length of the fourth lens 4 .
- the effective focal length of the lens assembly is affected by the effective focal length of each lens, and the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 are respectively set to meet the above-mentioned focal length range, and the lens can be satisfied
- the effective focal length of the component is kept within the range of 4mm ⁇ f ⁇ 11.7mm, the optical performance of the optical lens module is improved.
- the aperture of the aperture 6 is 4 mm, and the aperture of the fourth lens 4 is larger than that of the first lens 1 , the second lens 2 and the third lens 3 respectively.
- the light source 5 in this embodiment can pass through the lens assembly and emit from the side of the diaphragm 6 .
- the optical imaging module of this embodiment is generally used in AR devices, and the final imaging beam needs to reach the human eye.
- the aperture of the diaphragm 6 is set to 4mm, so that the imaging beam is more clearly and completely injected into the human eye.
- the diameter of the fourth lens 4 is larger than that of the first lens 1, the second lens 2, and the third lens 3, so that all the light emitted by the light source 5 enters the lens assembly and improves the optical performance of the optical lens module. .
- the first lens 1 , the second lens 2 , the third lens 3 and the fourth lens 4 are all glass spherical lenses.
- the first lens 1 , the second lens 2 , the third lens 3 and the fourth lens 4 are all glass spherical lenses.
- the glass spherical mirror is made of glass material, and the temperature drift of the glass lens is relatively small. In a high temperature environment, the optical imaging module can maintain good image clarity.
- the refractive index of the fourth lens 4 is greater than 1.75, and both the object side and the image side of the fourth lens 4 are convex.
- the AR device used by the optical imaging module usually adopts a monochromatic light source 5, increases the refractive index of the fourth lens 4, and makes both the object side and the image side convex, which can correct the aberration of the monochromatic light source 5 , which not only improves the imaging clarity of the entire device, but also reduces the correction cost.
- the light source 5 is a self-illuminating light source 5 .
- the light source 5 is a micro-LED monochromatic light source 5 .
- the self-illuminating light source 5 has a simple structure, and it can be as close as possible to the lens (the fourth lens 4 ), thereby further reducing the volume of the entire optical imaging module.
- Micro LED is a display technology in which self-luminous micron-scale LEDs are used as light-emitting pixel units and assembled on the drive panel to form a high-density LED array. Due to the characteristics of small size, high integration and self-illumination of micro LED chips, compared with LCD and OLED in terms of display, it has greater brightness, resolution, contrast, energy consumption, service life, response speed and thermal stability. The advantages.
- the micro-LED monochromatic light source 5 is used as the light source 5 of the optical imaging module, which can not only simplify the structure of the module, but also improve the service life, and the correction cost of the monochromatic light source 5 is low, which is suitable for AR equipment.
- the object side and the image side of the first lens 1 of the lens assembly are both convex, and the effective focal length is 13.12 mm; the object side of the second lens 2 is concave, and the image side is convex, and the effective focal length is 9.223 mm. mm; the object side of the third lens 3 is concave, and the effective focal length is -3.445mm; the object side and the image side of the fourth lens 4 are both convex, and the effective focal length is 4.037mm.
- S1, S3, S5, and S7 respectively represent the image sides of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4, that is, the side away from the light source 5;
- S2, S4, S6, and S8 respectively Represents the object side of the first lens 1 , the second lens 2 , the third lens 3 , and the fourth lens 4 , that is, the side close to the light source 5 .
- Thickness refers to the distance between two adjacent surfaces, for example, the distance from S1 to S2 at the optical axis of the lens is 0.526mm, the distance from S2 to S3 is 0.1mm, ... the distance from S7 to S8 is 1.137mm, The distance from S8 to light source 5 is 2.110mm.
- the light source 5 in this embodiment adopts a micro-LED green rectangular light source 5 with an aspect ratio of 16:9, a specific size of 2.877*1.618 mm, and an aperture of the aperture 6 of 4 mm.
- the total effective focal length of the lens assembly is 6.73, and the total system length DL is 8.5 mm.
- the obtained field of view parameters of the above optical imaging module are shown in FIGS. 2 to 4 .
- the MTF value of the optical imaging module that is, the modulation transfer function, which is a more scientific method for analyzing the resolution of the lens. It can be seen from the figure that the MTF values of each field of view are higher than 0.65 (usually > 0.5), it can be seen that the image clarity of the system will be very good in each field of view.
- the optical imaging module provided by the application can achieve TY distortion ⁇ 1%; full field of view MTF >0.5@125lp/mm; telecentricity ⁇ 1.5°, and the total system length is only 8.5mm. It can be seen that the optical imaging module provided by the present application can further simplify the module structure (reduce the number of lenses) and reduce the weight of the system on the premise of ensuring its optical performance.
- an AR device including the optical imaging module described in the first aspect.
- the imaging optical path of the AR device in this embodiment is provided by the optical imaging module in this application.
- the imaging optical path of the AR device in this embodiment is provided by the optical imaging module in this application.
- an optical waveguide structure is also included, the light emitted by the light source 5 passes through the lens assembly, is transmitted through the optical waveguide structure, and then exits to human eyes.
- the optical imaging module cooperates with the optical waveguide structure, so that the imaging beam emitted from the module can enter the human eye through the coupling of the optical waveguide structure, and the optical waveguide structure can provide the effect of turning the optical path and dilating the pupil.
- the pupil expansion effect can expand the imaging light beam, so that the AR device made by using the optical imaging module provided by this application is suitable for the interpupillary distance of people of different genders and ages.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学成像模组,包括:光阑(6)、透镜组件和光源(5);透镜组件包括依次排列的第一透镜(1)、第二透镜(2)、第三透镜(3)和第四透镜(4),光源(5)位于第四透镜(4)的物侧,光阑(6)位于第一透镜(1)的像侧;第一透镜(1)具有正光焦度,第二透镜(2)具有正光焦度,第三透镜(3)具有负光焦度,第四透镜(4)具有正光焦度;光学成像模组满足不等式:0.5mm<TL/D<3mm;其中,TL为光源(5)到所述光阑(6)之间的距离,D为第一透镜(1)、第二透镜(2)、第三透镜(3)和第四透镜(4)中最大透镜的镜片口径。通过对每片镜片的光焦度分配采用正-负分配方式,以及对光源(5)到光阑(6)之间的距离与最大镜片口径之比进行限定,减少了系统组件,减轻了系统重量。
Description
本申请要求于2021年10月29日提交中国专利局、申请号为202111279972.5、申请名称为“光学成像模组和AR设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光学技术领域,更具体地,涉及一种光学成像模组和AR设备。
随着计算机技术的发展,各种可穿戴装置产品应运而生,AR(增强现实,Augmented Reality)、VR(虚拟现实,Virtual Reality)、MR(介导现实,Mediated Reality)、XR等设备越来越得到人们的关注。其中,AR技术是一种将虚拟信息与真实世界巧妙融合的技术,广泛运用了多媒体、三维建模、实时跟踪及注册、智能交互、传感等多种技术手段,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。
目前,AR设备的重量普遍较大,而AR设备的第一性能要求便是可穿戴的舒适性,因此为提升用户体验,AR设备的轻量化成为一个急需解决的技术问题。而光学成像模组作为AR设备的一个重要功能组件,其光学效能和重量很大程度上会影响AR设备用户体验。
申请内容
申请的一个目的是提供一种光学成像模组和AR设备的新的技术方案,以解决背景技术所提出的至少一个技术问题。
根据本申请的第一方面,提供了一种光学成像模组,包括:
光阑、透镜组件和光源;
所述透镜组件包括依次排列的第一透镜、第二透镜、第三透镜和第四透镜,所述光源位于所述第四透镜的物侧,所述光阑位于所述第一透镜的像侧;
所述第一透镜具有正光焦度,所述第二透镜具有正光焦度,所述第三透 镜具有负光焦度,所述第四透镜具有正光焦度;
所述光学成像模组满足以下不等式:
0.5mm<TL/D<3mm;
其中,TL为所述光源到所述光阑之间的距离,D为所述第一透镜、第二透镜、第三透镜和第四透镜中最大透镜的镜片口径。
可选地,所述透镜组件满足以下不等式:
4mm<f<11.7mm;
其中,f为所述透镜组件的总有效焦距。
可选地,所述第一透镜、第二透镜、第三透镜和第四透镜分别满足以下不等式:
10mm<f1<16.3mm;
6mm<f2<12.1mm;
-6mm<f3<-1.4mm;
2mm<f4<8mm;
其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距。
可选地,还包括光阑,所述光阑位于所述第一透镜的像侧,所述光学成像模组还满足以下不等式:
0.5mm<TL/D<3mm;
其中,TL为所述光源到所述光阑之间的距离,D为所述第一透镜、第二透镜、第三透镜和第四透镜中最大透镜的镜片口径。
可选地,所述光阑的孔径为4mm,所述第四透镜的口径分别大于所述第一透镜、第二透镜和第三透镜的口径。
可选地,所述第一透镜、第二透镜、第三透镜和第四透镜均为玻璃球面镜片。
可选地,所述第四透镜的折射率大于1.75,所述第四透镜的物侧面和像侧面均为凸面。
可选地,所述光源为自发光的光源。
可选地,所述光源为micro-LED单色光源。
根据本申请的第二方面,提供了一种AR设备,包括第一方面所述的光学 成像模组。
可选地,还包括光波导结构,所述光源发出的光线透过所述透镜组件后,经所述光波导结构传输后出射至人眼。
根据本申请的一个实施例,本申请提供的AR光学成像模组,其透镜组件采用第一透镜、第二透镜、第三透镜和第四透镜组成,通过对每片镜片的光焦度分配采用正-负分配方式,以及对光源到光阑之间的距离与最大镜片口径之比进行限定,提升了AR光学成像模组的光学效能,减轻了系统重量。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本申请的一种光学成像模组的结构示意图。
图2是本申请的一种光学成像模组的各视场MTF。
图3是本申请的一种光学成像模组的各视场畸变。
图4是本申请的一种光学成像模组在60℃下各视场的MTF值。
其中,1、第一透镜;2、第二透镜;3、第三透镜;4、第四透镜;5、光源;6、光阑。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
AR设备通常包含各种元器件,例如散热器件,光学结构(光机)、驱动板灯等,本申请的光学成像模组即为光学结构的一部分,为光学结构提供成像光路。在现有技术中,AR设备在保证基本的功能的前提下,穿戴舒适性也尤为重要,尤其对于AR眼镜,轻量化对于提升用户体验有较大影响。因此,本申请提供了一种适用于AR设备的光学成像模组,其能够在保证光学效能的前提下,通过减轻本身重量,以轻量化整个AR设备。
如图1所示,本申请提供了一种光学成像模组,其包括光阑6、透镜组件和光源5;所述透镜组件包括依次排列的第一透镜1、第二透镜2、第三透镜3和第四透镜4,所述光源5位于所述第四透镜4的物侧,所述光阑6位于所述第一透镜1的像侧;所述第一透镜1具有正光焦度,所述第二透镜2具有正光焦度,所述第三透镜3具有负光焦度,所述第四透镜4具有正光焦度;所述光学成像模组满足不等式:0.5mm<TL/D<3mm;其中,TL为所述光源5到所述光阑6之间的距离,D为所述第一透镜1、第二透镜2、第三透镜3和第四透镜4中最大透镜的镜片口径。
具体地,在本实施例中,透镜组件采用四片透镜组成,四片透镜具有同一光轴,光源5发出的光束能够依次通过透镜组件的第四透镜4、第三透镜3、第二透镜2和第一透镜1,最终从第一透镜1射出,在透镜组件的像侧形成物像。
其中,在一个实施例中,第三透镜3具有负光焦度,其其物侧面或像侧面可以至少有一面为凹面,即第三透镜3可以是物像面为凸面,像侧面为凹面,或者物像面为凹面,像侧面为凸面,或者像侧面和像侧面均为凹面。第四透镜4具有正光焦度,其物侧面或像侧面至少有一面为凸面,即第四透镜4可以是物像面为凸面,像侧面为凹面,或者物像面为凹面,像侧面为凸面,或者像侧面和像侧面均为凸面。另外,第一透镜1具有正光焦度,即物侧面和像侧面均可以选择凸面,第二透镜2具有正光焦度,即物侧面为凹面,像侧面为凸面。另外,光阑6对光束起着限制作用,它可以是透镜的边缘、框架或特别设置的带孔屏,本申请对此不作限制。。
相比于现有技术,本申请一方面减少了透镜的数量,有效降低了系统总重量。并且,透镜数量的减少,使得系统可变参数变少,能有利于提升提升 系统的光学效能。另外,光源5到光阑6之间的距离与最大透镜的镜片口径之比在上述范围内,可以使整个光学成像模组的长度(相当于TL)或宽度(相当于D)都保持在合适范围内,使得光学模组的整体尺寸更加合理。光学模组的具体长度和宽度的具体的尺寸,可以根据其实际应用环境进行相应的调节,本申请对此不作限制。
可选地,所述透镜组件的有效焦距f满足不等式4mm<f<11.7mm。
具体地,本申请限定了透镜组件的有效焦距为4mm<f<11.7mm,透镜组件的有效焦距f与各个透镜本身的有效焦距以及各透镜之间的距离相关,而各个透镜本身的有效焦距受到每个透镜的曲率半径和厚度的影响。本实施例通过对系统总焦距的进一步限定,使得在4mm<f<11.7mm范围内,仅通过四片透镜即可使整个光学成像模组实现很好的光学效果。
可选地,所述第一透镜1、第二透镜2、第三透镜3和第四透镜4分别满足以下不等式:
10mm<f1<16.3mm;
6mm<f2<12.1mm;
-6mm<f3<-1.4mm;
2mm<f4<8mm;
其中,f1为所述第一透镜1的有效焦距,f2为所述第二透镜2的有效焦距,f3为所述第三透镜3的有效焦距,f4为所述第四透镜4的有效焦距。
具体地,透镜组件的有效焦距受到每片透镜的有效焦距的影响,将第一透镜1、第二透镜2、第三透镜3和第四透镜4分别设置为满足上述焦距范围,能够在满足透镜组件的有效焦距保持在4mm<f<11.7mm范围内的前提下,提升光学透镜模组的光学效能。
可选地,所述光阑6的孔径为4mm,所述第四透镜4的口径分别大于所述第一透镜1、第二透镜2和第三透镜3。
具体地,本实施例中的光源5能够透过透镜组件,从光阑6一侧射出。而本实施例的光学成像模组一般应用在AR设备中,最终成像光束需要达到人眼,将光阑6的孔径设为4mm,使成像光束更加清晰完整体射入人眼。另外,在本实施例中,第四透镜4的口径大于第一透镜1、第二透镜2和第三 透镜3,便于光源5发出的光线全部射入透镜组件,提升光学透镜模组的光学效能。
可选地,所述第一透镜1、第二透镜2、第三透镜3和第四透镜4均为玻璃球面镜片。
具体地,在本实施例中,第一透镜1、第二透镜2、第三透镜3和第四透镜4均为玻璃球面镜片。玻璃球面镜采用玻璃材质制造,玻璃镜片的温漂比较小,在高温环境下,能够使光学成像模组保持良好的图像画面清晰度。
可选地,所述第四透镜4的折射率大于1.75,所述第四透镜4的物侧面和像侧面均为凸面。
具体地,具有透镜组件的光学成像模组,由于透镜中心区域和边缘区域对电磁波会聚能力不同而会造成球差,球差会限制透镜的分辨功能。在本实施例中,光学成像模组应用的AR设备通常采用单色光源5,提高第四透镜4的折射率,以及将物侧面和像侧面均为凸面,能够矫正单色光源5的像差,既提高整个设备的成像清晰度,又降低了矫正成本。
可选地,所述光源5为自发光的光源5。所述光源5为micro-LED单色光源5。
具体地,自发光光源5结构简单,其可以尽可能地靠近镜片(第四透镜4),从而使整个光学成像模组体积进一步减小。Micro LED是以自发光的微米量级的LED为发光像素单元,将其组装到驱动面板上形成高密度LED阵列的显示技术。由于micro LED芯片尺寸小、集成度高和自发光等特点,在显示方面与LCD、OLED相比在亮度、分辨率、对比度、能耗、使用寿命、响应速度和热稳定性等方面具有更大的优势。本实施例采用micro-LED单色光源5作为光学成像模组的光源5,既能够简化模组的结构,还能够提高适用寿命,并且单色光源5的矫正成本较低,适用于AR设备。
为了使本申请的有益效果更加明显,本申请提供了以下具体的实施例以供参考。
在本实施例中,所述透镜组件的第一透镜1的物侧面和像侧面均为凸面,有效焦距为13.12mm;第二透镜2的物侧面为凹面,像侧面为凸面,有效焦距为9.223mm;第三透镜3的物侧面为凹面,有效焦距为-3.445mm;第四透 镜4的物侧面和像侧面均为凸面,有效焦距为4.037mm。
上述每片透镜的其它具体参数如下表1所示:
表1:透镜组件的参数
其中,S1、S3、S5、S7分别代表第一透镜1、第二透镜2、第三透镜3、第四透镜4的像侧面,即远离光源5的一侧;S2、S4、S6、S8分别代表第一透镜1、第二透镜2、第三透镜3、第四透镜4的物侧面,即靠近光源5的一侧。厚度是指两个相邻面之间的距离,例如,位于镜片光轴位置的S1到S2的距离为0.526mm,S2到S3的距离为0.1mm,……S7到S8的距离为1.137mm,S8到光源5的距离为2.110mm。
另外,本实施例中的光源5采用micro-LED绿色矩形光源5,其纵横比为16:9,具体尺寸为2.877*1.618mm,光阑6孔径为4mm。
由上述参数可得透镜组件的总有效焦距为6.73,系统总长DL为8.5mm。经过测量,所得到的上述光学成像模组的各视场参数如图2至4所示。
如图2所示,是光学成像模组的MTF值(即调制传递函数,是分析镜头的解像比较科学的方法),由图可见,各视场的MTF值均高于0.65(通常需>0.5),可见在各个视场下经该系统成像后的图像清晰度会非常好。
如图3所示,是光学成像模组各视场的畸变值,由图可见,各视场的畸变值均小于0.6%(通常需小于<1%即可),可见在各个视场下经该系统成像 后的TV畸变也会较小,完全能满足人眼对畸变的要求。
如图4所示,是光学成像模组在60℃下该系统的MTF值,因AR光学系统配合人眼使用,故使用温度不会很高,由图可见,60℃下各视场的MTF值均高于0.6,故在高温环境下该系统玻璃镜片的温漂很小,仍能保持较好的图像画面清晰度。
通过上述实例可知,本申请提供的光学成像模组能够达到的TY畸变<1%;全视场MTF>0.5@125lp/mm;远心<1.5°,且系统总长仅为8.5mm。由此可见,本申请提供的光学成像模组能够在保证其光学效能的前提下,进一步简化了模组结构(透镜数量减少),减轻了系统重量。
根据本申请的第二方面,提供了一种AR设备,包括第一方面所述的光学成像模组。
具体地,本实施例中的AR设备的成像光路由本申请中的光学成像模组提供。在其保证AR设备具有良好的光学效能的前提下,减轻了整个AR设备的重量和体积,提升了用户体验。
可选地,还包括光波导结构,所述光源5发出的光线透过所述透镜组件后,经所述光波导结构传输后出射至人眼。
具体地,在本实施例中,光学成像模组配合光波导结构,能够使从模组射出的成像光束经光波导结构的耦合进入人眼,光波导结构能够提供转折光路和扩瞳的效果,扩瞳效果能够使成像光束扩大,使得采用本申请提供的光学成像模组制成的AR设备的适用于不同性别和不同年龄的人的双眼瞳孔间距。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。
Claims (10)
- 一种光学成像模组,其特征在于,包括:光阑、透镜组件和光源;所述透镜组件包括依次排列的第一透镜、第二透镜、第三透镜和第四透镜,所述光源位于所述第四透镜的物侧,所述光阑位于所述第一透镜的像侧;所述第一透镜具有正光焦度,所述第二透镜具有正光焦度,所述第三透镜具有负光焦度,所述第四透镜具有正光焦度;所述光学成像模组满足以下不等式:0.5mm<TL/D<3mm;其中,TL为所述光源到所述光阑之间的距离,D为所述第一透镜、第二透镜、第三透镜和第四透镜中最大透镜的镜片口径。
- 根据权利要求1所述的光学成像模组,其特征在于,所述透镜组件满足以下不等式:4mm<f<11.7mm;其中,f为所述透镜组件的总有效焦距。
- 根据权利要求2所述的光学成像模组,其特征在于,所述第一透镜、第二透镜、第三透镜和第四透镜分别满足以下不等式:10mm<f1<16.3mm;6mm<f2<12.1mm;-6mm<f3<-1.4mm;2mm<f4<8mm;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距。
- 根据权利要求1所述的光学成像模组,其特征在于,所述光阑的孔径为4mm,所述第四透镜的口径分别大于所述第一透镜、第二透镜和第三透镜的口径。
- 根据权利要求1所述的光学成像模组,其特征在于,所述第一透镜、第二透镜、第三透镜和第四透镜均为玻璃球面镜片。
- 根据权利要求1所述的光学成像模组,其特征在于,所述第四透镜的折射率大于1.75,所述第四透镜的物侧面和像侧面均为凸面。
- 根据权利要求1所述的光学成像模组,其特征在于,所述光源为自发光的光源。
- 根据权利要求7所述的光学成像模组,其特征在于,所述光源为micro-LED单色光源。
- 一种AR设备,其特征在于,包括权利要求1-8任意一项所述的光学成像模组。
- 根据权利要求9所述的设备,其特征在于,还包括光波导结构,所述光源发出的光线透过所述透镜组件后,经所述光波导结构传输后出射至人眼。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111279972.5A CN113970836B (zh) | 2021-10-29 | 2021-10-29 | 光学成像模组和ar设备 |
CN202111279972.5 | 2021-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023070809A1 true WO2023070809A1 (zh) | 2023-05-04 |
Family
ID=79589181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/133850 WO2023070809A1 (zh) | 2021-10-29 | 2021-11-29 | 光学成像模组和ar设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113970836B (zh) |
WO (1) | WO2023070809A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115166943B (zh) * | 2022-07-18 | 2024-03-12 | 歌尔光学科技有限公司 | 一种光学系统以及增强现实设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030107823A1 (en) * | 2001-09-27 | 2003-06-12 | Kentaro Sekiyama | Imaging optical system |
US20050030651A1 (en) * | 2002-12-17 | 2005-02-10 | Olympus Corporation | Optical system and optical apparatus using the same |
CN110879471A (zh) * | 2019-11-26 | 2020-03-13 | 歌尔股份有限公司 | 光学系统、投影设备以及头戴设备 |
CN112230369A (zh) * | 2020-10-16 | 2021-01-15 | 江西欧迈斯微电子有限公司 | 中继镜头及电子设备 |
CN112327462A (zh) * | 2020-12-02 | 2021-02-05 | 福建福光天瞳光学有限公司 | 光学镜头及成像方法 |
CN212781467U (zh) * | 2020-10-14 | 2021-03-23 | Oppo广东移动通信有限公司 | 镜头、投影光机以及近眼显示系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6065630B2 (ja) * | 2013-02-13 | 2017-01-25 | セイコーエプソン株式会社 | 虚像表示装置 |
KR101914041B1 (ko) * | 2016-08-03 | 2018-11-02 | 주식회사 코렌 | 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치 |
WO2020258063A1 (zh) * | 2019-06-26 | 2020-12-30 | 深圳市大疆创新科技有限公司 | 光学透镜组、成像系统及穿戴式显示设备 |
-
2021
- 2021-10-29 CN CN202111279972.5A patent/CN113970836B/zh active Active
- 2021-11-29 WO PCT/CN2021/133850 patent/WO2023070809A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030107823A1 (en) * | 2001-09-27 | 2003-06-12 | Kentaro Sekiyama | Imaging optical system |
US20050030651A1 (en) * | 2002-12-17 | 2005-02-10 | Olympus Corporation | Optical system and optical apparatus using the same |
CN110879471A (zh) * | 2019-11-26 | 2020-03-13 | 歌尔股份有限公司 | 光学系统、投影设备以及头戴设备 |
CN212781467U (zh) * | 2020-10-14 | 2021-03-23 | Oppo广东移动通信有限公司 | 镜头、投影光机以及近眼显示系统 |
CN112230369A (zh) * | 2020-10-16 | 2021-01-15 | 江西欧迈斯微电子有限公司 | 中继镜头及电子设备 |
CN112327462A (zh) * | 2020-12-02 | 2021-02-05 | 福建福光天瞳光学有限公司 | 光学镜头及成像方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113970836B (zh) | 2023-03-28 |
CN113970836A (zh) | 2022-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016110058A1 (zh) | 光路调节单元和显示装置 | |
US20210141211A1 (en) | Eyepiece and Display Device | |
CN109557666A (zh) | 近眼光学成像系统、近眼显示装置及头戴式显示装置 | |
CN203745713U (zh) | 一种曲面反射式超短焦投影镜头 | |
JP2019530885A (ja) | 3d表示パネル、それを含む3d表示機器、及びその製造方法 | |
WO2023184752A1 (zh) | 一种光学投影系统以及电子设备 | |
WO2023070809A1 (zh) | 光学成像模组和ar设备 | |
TW201326908A (zh) | 裸眼式立體顯示器 | |
WO2020150867A1 (zh) | 直下式背光源及其制作方法、显示装置 | |
CN104049368A (zh) | 一种瞳距可调的穿透式视频眼镜光学引擎系统 | |
CN203337990U (zh) | 指向光源3d成像屏幕及裸眼3d投影系统 | |
US11789272B2 (en) | Near-to-eye display device | |
WO2024016663A1 (zh) | 一种光学系统以及增强现实设备 | |
CN206638889U (zh) | 头戴式显示器 | |
CN107015364A (zh) | 一种具有3d影像功能的智能眼镜 | |
CN110291441A (zh) | 一种适用于扫描振镜像源的投影物镜及使用其的显示装置 | |
CN206657141U (zh) | 一种具有3d影像功能的智能眼镜 | |
TWI752649B (zh) | 近眼光場顯示裝置 | |
CN114236831A (zh) | 光学模组和电子设备 | |
CN104199195A (zh) | 三维图像显示装置及三维图像显示器 | |
CN104076592A (zh) | 指向光源裸眼3d投影系统及其3d成像屏幕 | |
WO2022241820A1 (zh) | 显示装置 | |
CN106353851B (zh) | 一种侧端开口侧体发光光纤、其制造方法及背光模组 | |
CN108169899B (zh) | 穿戴式显示装置及其显示模块 | |
TWI281069B (en) | Back light module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21962153 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18705773 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |