WO2023070781A1 - 一种换流变有载分接开关切换拓扑结构设计方法 - Google Patents

一种换流变有载分接开关切换拓扑结构设计方法 Download PDF

Info

Publication number
WO2023070781A1
WO2023070781A1 PCT/CN2021/131982 CN2021131982W WO2023070781A1 WO 2023070781 A1 WO2023070781 A1 WO 2023070781A1 CN 2021131982 W CN2021131982 W CN 2021131982W WO 2023070781 A1 WO2023070781 A1 WO 2023070781A1
Authority
WO
WIPO (PCT)
Prior art keywords
changer
module
load tap
branch
topology
Prior art date
Application number
PCT/CN2021/131982
Other languages
English (en)
French (fr)
Inventor
邓军
高锡明
周海滨
贺智
谢志成
潘志城
张晋寅
钱海
刘青松
夏谷林
方苏
张良
邓然
冯鸫
肖毅
朱强
朱建锋
余一鸣
刘亚东
严英杰
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Publication of WO2023070781A1 publication Critical patent/WO2023070781A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present application relates to the technical field of electric power equipment, in particular to a method for designing a switching topology of an on-load tap changer of a converter transformer.
  • Converter transformer is the most important primary power equipment in high-voltage DC transmission technology. Its main function is to provide special power supply. Its main parameters are determined by the special requirements of the DC system and the parameters of the connected AC system.
  • the AC system In the rectifier station, the AC system is isolated from the DC system with a converter transformer, and the electric energy of the AC network is converted into high-voltage DC power through the converter device, and sent to the high-voltage DC transmission line; at the inverter station, the DC power is converted through the converter device. It can be converted into AC power, and then converted into normal AC sinusoidal voltage through the converter transformer, and sent to the AC grid; thus realizing the connection between the AC transmission line and the high-voltage DC transmission line.
  • the magnetic field analysis of the converter plays an important role in the design, operation and fault analysis of the converter.
  • the magnetic field analysis of converter transformers is the basis for mastering the key technologies of converter transformers. Because the grid side of the converter is subjected to AC voltage and the valve side is subjected to DC voltage, the working condition of the converter converter is worse than that of the traditional AC transformer. For example, the converter needs to withstand the conditions of large amount of harmonics, large DC bias, and frequent short circuits on the valve side.
  • the on-load tap-changer can realize voltage regulation without interruption of power transmission and meet the application requirements of frequent power regulation in high-voltage DC operation.
  • the present application provides a method for designing a switching topology of a converter-on-load tap-changer.
  • a method for designing a switching topology of a converter transformer on-load tap-changer provided by this application adopts the following technical scheme:
  • a method for designing a switching topology of an on-load tap-changer for a converter transformer comprising the following steps: designing a basic branch library of an on-load tap-changer; selecting a basic branch from the basic branch library of an on-load tap-changer According to the selected basic branch, it is judged whether the topology meets the performance requirements; if the performance requirements are met, the final topology of the on-load tap-changer is obtained; Re-select the basic branch to construct a new topology of the on-load tap-changer, and repeat the above method steps.
  • the method is simple and effective, so that the switching circuit of the on-load tap changer can be quickly designed, It reduces the difficulty of on-load tap-changer design, and at the same time, it can also solve the problem of heavy workload and difficult selection of topological structures in mass structures when a large number of topological structures are generated by the three-segment network circuit method.
  • the basic branch library of the on-load tap-changer includes a first module for carrying the rated current in operation and a fault current under short-circuit, a second module for cutting off the load current, and a second module for cutting off the load current. Or the third module of the current between poles of the converter transformer.
  • the first module includes a knife switch.
  • the knife switch can be used to carry the rated current during operation and the fault current under short circuit, thereby improving the safety of the topology.
  • the second module includes a knife switch and an arc extinguishing unit connected in series with the knife switch.
  • the arc can be quickly extinguished and the current can be suppressed after the branch circuit is disconnected, so as to avoid accidents and accidents.
  • the third module includes one or more of several basic branches including a knife switch, an arc extinguishing unit connected in series with the knife switch, and a transition resistor connected in series with the knife switch.
  • a knife switch a knife switch
  • an arc extinguishing unit connected in series with the knife switch
  • a transition resistor connected in series with the knife switch.
  • the series sequence of the knife switch, the arc extinguishing unit and the transition resistor is different.
  • the arc extinguishing unit of the second module is a vacuum interrupter or a power electronic valve.
  • the performance of the vacuum interrupter or the electric electronic valve is excellent, and the current on the branch circuit can be better controlled, thereby making the circuit safer and more reliable.
  • the construction of the topology of the on-load tap-changer includes the following steps:
  • One end of the A-range module is used as a switch connector, and the other end is grounded; one end of the B-range module is used as another switch connector, and the other end is grounded; to obtain an on-load tap-changer topology.
  • the methods for judging whether the topology meets the performance requirements include:
  • Calculation parameter D4 when D1 ⁇ 9000, then the value of D4 is 1; if D1>9000, then the value of D4 is 0, calculation parameter D5: when D2 ⁇ 9000, then the value of D5 is 1; if D2>9000, then The value of D5 is 0, and the calculation parameter D6: when D3 ⁇ 3000, the value of D6 is 1; if D3>3000, the value of D6 is 0;
  • C is the switching capacity of the required converter transformer on-load tap-changer
  • U is the maximum pole-to-pole voltage of the required converter transformer on-load tap-changer
  • I is the maximum voltage of the required converter transformer on-load tap-changer continuous current flow
  • the third module includes one or more of several basic branches including a knife switch, an arc extinguishing unit connected in series with the knife switch, and a transition resistor connected in series with the knife switch; R is the resistance value of the transition resistor; N is the number of basic branches in the third module in the A file module; M is the number of basic branches in the third module in the B file module.
  • the judging whether the topology structure is satisfied further includes:
  • C is the switching capacity of the required converter transformer on-load tap-changer
  • U is the maximum pole-to-pole voltage of the required converter transformer on-load tap-changer
  • I is the maximum continuous passing current of the required converter transformer on-load tap-changer
  • this topology meets the performance requirements of a converter transformer with a first gear voltage of U1 and a rated current of I1 in actual operation.
  • the evaluation parameters are calculated according to the basic branch circuit in the designed topology and the design of the on-load tap-changer, as well as the first-stage voltage and rated current of the on-load tap-changer in actual operation. By setting the range, it can be concluded whether the designed on-load tap-changer meets the performance requirements of the actual converter transformer.
  • the present application includes at least one of the following beneficial technical effects:
  • Fig. 1 is a schematic flow chart of the method of the embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of the module 1 in the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of module 2 in the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of the module 3 in the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of the module 4 in the embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of the module 5 in the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of the module 6 in the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of the module 7 in the embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of the module 8 in the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of the module 9 in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a topology structure of a test example in an embodiment of the present application.
  • the embodiment of the present application discloses a switching topology design method for an on-load tap changer of a converter transformer.
  • the switching topology design method of the on-load tap-changer of the converter transformer includes:
  • S1 Design the basic branch library of the on-load tap-changer.
  • the basic branch library includes the first module for carrying the rated current in operation and the fault current under short-circuit, the second module for cutting off the load current, and the The third module that cuts off the load current or the current between the poles of the converter transformer.
  • the first module includes module 1, and module 1 includes a knife switch that can be in an on or off state. During operation, module 1 flows through the winding current of the grid side of the converter transformer.
  • module 1 is node 1.1 The upper end of the node 1.2 is connected to the node 1.2 through a wire, and the lower end of the node 1.2 is connected to the node 1.3 through a wire.
  • the second module includes module 2 and/or module 3.
  • Both module 2 and module 3 include a knife switch and an arc extinguishing unit that can be in a conducting or disconnecting state.
  • the knife switch is connected in series with the arc extinguishing unit.
  • Module 2 and module 3 The arrangement order of the knife switch and arc extinguishing unit is different.
  • module 2 is node 2.1 connected to the upper end of knife gate node 2.2 through a wire, the lower end of node 2.2 is connected to the upper end of arc extinguishing unit node 2.3 through a wire, and the lower end of arc extinguishing unit node 2.3 passes through node 2.4;
  • the module 3 means that node 3.1 is connected to the upper end of arc extinguishing unit 3.2 through wires, the lower end of node 3.2 is connected to the upper end of knife gate node 3.3 through wires, and the lower end of node 3.3 of arc extinguishing unit is connected to node 3.4 through wires.
  • the third module includes one or more of module 4, module 5, module 6, module 7, module 8, and module 9, and modules 3-9 all include a knife switch that can be in a conducting or disconnecting state.
  • the arc unit, the transition resistor, the knife switch, the arc extinguishing unit and the transition resistor are connected in series, and the sequence of the knife switch, the arc extinguishing unit and the transition resistor in modules 3-9 is different. Referring to Fig.
  • the module 4 is that the node 4.1 is connected to the upper end of the knife gate node 4.2 through a wire, the lower end of the node 4.2 is connected to the upper end of the arc extinguishing unit node 4.3 through a wire, the lower end of the arc extinguishing unit node 4.3 passes through the upper end of the transition resistance node 4.4, and the transition resistance The lower end of node 4.4 is connected to node 4.5 by a wire.
  • the module 5 is that the node 5.1 is connected to the upper end of the transition resistance 5.2 through a wire, the lower end of the node 5.2 is connected to the upper end of the arc extinguishing unit node 5.3 through a wire, and the lower end of the arc extinguishing unit node 5.3 is connected to the upper end of the knife gate node 5.4, and the knife gate The lower end of node 5.4 is connected to node 5.5 by a wire.
  • the module 6 is that the node 6.1 is connected to the upper end of the transition resistance 6.2 through a wire, the lower end of the node 6.2 is connected to the upper end of the knife gate node 6.3 through a wire, and the lower end of the knife gate node 6.3 is connected to the upper end of the arc extinguishing unit node 6.4, and the arc extinguishing unit The lower end of node 6.4 is connected to node 6.5 by a wire.
  • the module 7 is that the node 7.1 is connected to the upper end of the knife gate node 7.2 through a wire, the lower end of the node 7.2 is connected to the upper end of the transition resistance node 7.3 through a wire, and the lower end of the transition resistance node 7.3 passes through the upper end of the arc extinguishing unit node 7.4, and the arc is extinguished
  • the lower end of unit node 7.4 is connected to node 7.5 by a wire.
  • the module 8 is that the node 8.1 is connected to the upper end of the arc extinguishing unit node 8.2 through a wire, the lower end of the node 8.2 is connected to the upper end of the transition resistance node 8.3 through a wire, the lower end of the transition resistance node 8.3 passes through the upper end of the knife gate node 8.4, and the knife gate node The lower end of 8.4 is connected to node 8.5 by a wire.
  • the module 9 is that the node 9.1 is connected to the upper end of the arc extinguishing unit node 9.2 through a wire, the lower end of the node 9.2 is connected to the upper end of the knife gate node 9.3 through a wire, the lower end of the knife gate node 9.3 passes through the upper end of the transition resistance node 9.4, and the transition resistance node The lower end of 9.4 is connected to node 9.5 by a wire.
  • the arc extinguishing unit is preferably a vacuum interrupter or a power electronic valve.
  • S2 Select the basic branch from the basic branch library of the on-load tap-changer to construct the above-mentioned on-load tap-changer topology.
  • the gear switching during the operation of the on-load tap-changer is simplified as Switch from file A to file B; the steps to select the basic branch are as follows:
  • S201 Select the first module as the first branch circuit, that is, select module 1 as the first branch circuit of the A gear, which is used to withstand the rated current in operation and the fault current under short circuit;
  • S202 Select the second module as the second branch, that is, select from module 2 or module 3, or select module 2 and module 3 at the same time, each module can be reused, and the selection result is that the number of module 2 is A22, The number of modules 3 is A33, where A22+A33 ⁇ 1;
  • A-level modules that is, the arrangement sequence of A-level modules is from left to right: 1 module 1, A22 modules 2, A33 modules 3, A34 modules 4, A35 modules 5, A36 modules 6, A37 modules 7, A38 modules 8, A39 modules 9;
  • S205 Combine 1.1 nodes of module 1, A22 2.1 nodes of module 2, A33 3.1 nodes of module 3, A34 4.1 nodes of module 4, A35 5.1 nodes of module 5, A36 6.1 nodes of module 6 , A37 nodes 7.1 of module 7, A38 nodes 8.1 of module 8, A39 nodes 9.1 of module 9 are connected in parallel to form a node A0;
  • S207 Select the third module in parallel as the fourth branch, that is, select from modules 4-9, and each module can be reused.
  • the selection result is that the number of modules 4 is B34, and the number of modules 5 is B35.
  • S208 Select the second module in parallel as the fifth branch, that is, select from module 2 or module 3, which can be reused during selection, and the result of the selection is that the number of modules 2 is B22, and the number of modules 3 is B33, where B22 +B33 ⁇ 1;
  • S209 Select the first module as the sixth branch, that is, select module 1 as a branch of B gear, which is used to withstand the rated current in operation and the fault current under short circuit;
  • the first branch, the second branch and the third branch are connected in parallel as the B-level modules, that is, the arrangement sequence of the B-level modules is from left to right: B39 modules 9, B38 modules 8, B37 modules 7, B36 modules 6, B35 modules 5, B34 modules 4, B33 modules 3, B22 modules 2, 1 module 1;
  • One end of the A-range module is a switch connector, and the other end is grounded; one end of the B-range module is another switch connector, and the other end is grounded, that is, the node A1 and the node B1 are connected in parallel and connected to the ground to complete the topological structure of the on-load tap changer. Construct.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the method also includes the following steps of judging whether the designed topology meets the performance requirements:
  • the switching topology of the converter transformer on-load tap-changer satisfies the requirement that the first-stage voltage is U1 and the rated current is I1 in actual operation. Therefore, it can solve the problem of a large amount of topological structures generated by the three-terminal network circuit method, resulting in a large workload and difficult selection of topological structures with good performance in massive structures, thus promoting the new topology of tap changers
  • the industrial application of the structure reduces the research and development difficulty of tap changer development and meets the industry needs of high-quality development and industrial upgrading.
  • Embodiment Taking the on-load tap-changer of a converter transformer that needs to be designed with a switching capacity C of 6000000VA, a maximum inter-pole voltage of 6000V and a maximum continuous current I of 1300A as an example, the A-grade module selects one module 1, 1 module 2, 0 module 3, 1 module 4, 0 module 5, 2 modules 6, 0 module 7, 0 module 8, 0 module 9; B file module selected 2 modules 8, 1 module 9, 0 module 7, 0 module 6, 0 module 5, 0 module 4, 1 module 3, 0 module 2, 1 module 1, the value of the transition resistance R is 5 ohms. Referring to Figure 11, build the switching topology of the converter transformer on-load tap-changer.
  • the value of E5 is 1. At this time, the result of E1&&E2&&E3&&E4&&E5 is true.
  • the designed converter transformer on-load tap-changer meets the performance requirements of the first-stage voltage of the converter transformer in actual operation is 3789, and the rated current is 450.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Conversion In General (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

本申请涉及一种换流变有载分接开关切换拓扑结构设计方法,该方法包括如下步骤:设计有载分接开关基本支路库;从所述的有载分接开关基本支路库中选择基本支路构建有载分接开关的拓扑结构;根据所选择的基本支路判断所述拓扑结构是否满足性能要求;若满足性能要求,则获得最终的有载分接开关的拓扑结构,若不满足性能要求,则重新选择基本支路构建新的有载分接开关的拓扑结构,并重复上述方法步骤。本申请设计有载分接开关时,提供一种方法简单、评价容易、效率高的换流变有载分接开关切换拓扑结构设计方法,克服有载分接开关新型切换电路设计困难、切换原理择优效率低的设计难题,实现有载分接开关制造中电气回路的自主设计与创新。

Description

一种换流变有载分接开关切换拓扑结构设计方法 技术领域
本申请涉及电力设备技术领域,尤其是涉及一种换流变有载分接开关切换拓扑结构设计方法。
背景技术
换流变压器是高电压直流输电技术中最主要的一次电力设备,主要作用是提供特殊要求的电源,其主要参数由直流系统的特殊要求以及所联结的交流系统参数而确定。在整流站,用换流变压器将交流系统和直流系统隔离,通过换流装置将交流网路的电能转换为高压直流电能,送到高压直流输电线路;在逆变站,通过换流装置将直流电能转换为交流电能,再通过换流变压器转换为正常交流正弦电压,送到交流电网;从而实现交流输电网路与高压直流输电线路的联络。
因此,换流变磁场分析在换流变设计、运行和故障分析中起着重要的作用。然而随着直流输电技术的发展和换流变生产的国产化,换流变的磁场分析是掌握换流变关键技术的基础。换流变因其网侧承受交流电压而阀侧承受直流电压,因此换流变比传统交流变压器工作工况恶劣。例如换流变需要承受谐波量大、直流偏磁大和阀侧频繁短路等情况。
有载分接开关作为换流变压器的重要组部件,能够实现电力输送不中断的情况下实现电压的调节,满足高压直流运行中功率频繁调节的应用需求。
针对上述中的相关技术,发明人认为有载分接开关设计困难,对此有待进一步改进。
发明内容
为了降低有载分接开关设计的难度,本申请提供一种换流变有载分接开关切换拓扑结构设计方法。
本申请提供的一种换流变有载分接开关切换拓扑结构设计方法采用如下的技术方案:
一种换流变有载分接开关切换拓扑结构设计方法,该方法包括如下步骤:设计有载分接开关基本支路库;从所述的有载分接开关基本支路库中选择基本支路构建有载分接开关的拓扑结构;根据所选择的基本支路判断所述拓扑结构是否满足性能要求;若满足性能要求,则获得最终的有载分接开关的拓扑结构,若不满足性能要求,则重新选择基本支路构建新的有载分接开关的拓扑结构,并重复上述方法步骤。
通过采用上述技术方案,根据需求从基本支路库中选出合适的基本支路搭建拓扑结构,并判断拓扑结构是否满足性能要求,方法简单有效,从而可以快速设计有载分接开关切换回路,降低有载分接开关设计的难度,同时,还可以解决三段网络电路法生成大量的拓扑结构时导致海量结构中筛选性能好的拓扑结构存在的工作量大、择优困难的难题。
可选的,所述有载分接开关基本支路库包括用于承载运行中的额定电流和短路下的故障电流的第一模块、用于切断负载电流的第二模块以及用于切断负载电流或换流变压器极间电流的第三模块。
通过采用上述技术方案,设置多个不同功能的基本支路,可以为拓扑结构提供更多的组合可能,使组合后的拓扑结构能覆盖更全的功能,使最终设计出来的有载分接开关能更容易满足需求。
可选的,所述第一模块包括刀闸。
通过采用上述技术方案,刀闸可用于承载运行中的额定电流和短路下的故障电流,提高拓扑结构的安全性。
可选的,所述第二模块包括刀闸和与刀闸串联的灭弧单元。
通过采用上述技术方案,设置灭弧单元,可以在支路断开后迅速熄弧并抑制电流,避免事故和意外的发生。
可选的,所述第三模块包括含有刀闸和与刀闸串联的灭弧单元以及与刀闸串联的过渡电阻的若干基本支路中的一种或多种,多种第三模块中,所述的刀闸、灭弧单元及过渡电阻的串联顺序不同。
可选的,所述第二模块的灭弧单元为真空灭弧室或电力电子阀。
通过采用上述技术方案,真空灭弧室或电力电子阀的性能优异,能更好的控制支路上的电流,从而使电路更加安全、可靠。
可选的,有载分接开关拓扑结构的构建包括如下步骤:
选取第一模块作为第一支路;选取第二模块作为第二支路;选取第三模块并联作为第三支路;第一支路、第二支路和第三支路并联作为A档模块;
选取第三模块并联作为第四支路;选取第二模块作为第五支路;选取第一模块作为第六支路;第一支路、第二支路和第三支路并联作为B档模块;
将A档模块的一端作为开关接头,另一端接地;将B档模块的一端作为另一开关接头,另一端接地;获得有载分接开关拓扑结构。
通过采用上述技术方案,根据自己的需求选取不同的数量和不同结构的支路,使设计的有载分接开关更加符合所需的要求。
可选的,判断拓扑结构是否满足性能要求的方法包括:
计算参数D1:
Figure PCTCN2021131982-appb-000001
计算参数D2:
Figure PCTCN2021131982-appb-000002
计算参数D3:
Figure PCTCN2021131982-appb-000003
计算参数D4:当D1≤9000,则D4的值为1;若D1>9000,则D4的值为0,计算参数D5:当D2≤9000,则D5的值为1;若D2>9000,则D5的值为0,计算参数D6:当D3≤3000,则D6的值为1;若D3>3000,则D6的值为0;
进行以下判断:
若D4&&D5&&D6的结果为真,则设计的分接开关拓扑结构可用;
若D4&&D5&&D6的结果为假,则设计的分接开关拓扑结构不可用;
其中,C为所需换流变压器有载分接开关的切换容量;U为所需换流变压器有载分接开关的最大极间电压;I为所需换流变压器有载分接开关的最大连续通过电流;
所述第三模块包括含有刀闸和与刀闸串联的灭弧单元以及与刀闸串联的过渡电阻的若干基本支路中的一种或多种;R为所述过渡电阻的阻值;N为A档模块中第三模块中的基本支路的数量;M为B档模块中第三模块的基本支路的数量。
通过采用上述技术方案,计算相应参数,根据参数的计算值可以评估该拓扑结构是否可用,判断方式简单且准确,可以更快地设计出符合要求的有载分接开关。
可选的,所述的判断所述拓扑结构是否满足还包括:
计算参数K:
Figure PCTCN2021131982-appb-000004
其中,X 1=I,
Figure PCTCN2021131982-appb-000005
X=I 1
Figure PCTCN2021131982-appb-000006
Y 3=U,Y=U 1
C为所需换流变压器有载分接开关的切换容量;
U为所需换流变压器有载分接开关的最大极间电压;
I为所需换流变压器有载分接开关的最大连续通过电流;
当I≥I1>0、且U≥U1>0且K≤0时,该拓扑结构满足实际运行中一档电压为U1且额定电流为I1的换流变压器的性能要求。
通过采用上述技术方案,根据设计的拓扑结构中的基本支路和有载分接开关设计以及实际运行中有载分接开关一档电压和额定电流计算得到评价参数,根据这个评价参数是否符合预设范围,可以得出设计的有载分接开关是否满足实际中的换流变压器的性能要求。
综上所述,本申请包括以下至少一种有益技术效果:
1.通过设计基本支路库、从支路库中选取基本支路搭建拓扑结构,再根据需求参数和拓扑结构参数计算各项参数,通过评判获得结论,从而可以快速搭建满足要求的拓扑结构,以更快设计出符合要求的有载分接开关。
附图说明
图1是本申请实施例的方法流程示意图。
图2是本申请实施例中模块1的结构示意图。
图3是本申请实施例中模块2的结构示意图。
图4是本申请实施例中模块3的结构示意图。
图5是本申请实施例中模块4的结构示意图。
图6是本申请实施例中模块5的结构示意图。
图7是本申请实施例中模块6的结构示意图。
图8是本申请实施例中模块7的结构示意图。
图9是本申请实施例中模块8的结构示意图。
图10是本申请实施例中模块9的结构示意图。
图11是本申请实施例中试验例的拓扑结构示意图。
具体实施方式
以下结合附图1-11对本申请作进一步详细说明。
本申请实施例公开一种换流变有载分接开关切换拓扑结构设计方法。
实施例1:
参照图1,换流变有载分接开关切换拓扑结构设计方法包括:
S1:设计有载分接开关的基本支路库,基本支路库包括用于承载运行中的额定电流和短路下的故障电流的第一模块、用于切断负载电流的第二模块以及用于切断负载电流或换流变压器极间电流的第三模块。
其中,第一模块包括模块1,模块1包括可处于导通或断开状态的刀闸,在运行过程中,模块1流过换流变压器网侧绕组电流,参照图2,模块1为节点1.1通过导线连接至刀闸节点1.2的上端,节点1.2的下端通过导线连接至节点1.3。
所述第二模块包括模块2和/或模块3,模块2和模块3均包括可处于导通或断开状态的刀闸和灭弧单元,刀闸与灭弧单元串联,模块2与模块3中的刀闸和灭弧单元的排列顺序不同。参照图3,模块2为节点2.1通过导线连接至刀闸节点2.2的上端,节点2.2的下端通过导线连接至灭弧单元节点2.3上端,灭弧单元节点2.3下端通过节点2.4;参照图4,模块3为节点3.1通过导线连接至灭弧单元3.2的上端,节点3.2的下端通过导线连接至刀闸节点3.3上端,灭弧单元节点3.3下端通过导线连接至节点3.4。
所述第三模块包括模块4、模块5、模块6、模块7、模块8、模块9中的一种或几种,模块3-9均包括可处于导通或断开状态的刀闸、灭弧单元以及过渡电阻,刀闸、灭弧单元与过渡电阻相互串联,模块3-9中的刀闸、灭弧单元以及过渡电阻的排列顺序不同。参照图5,模块4为节点4.1通过导线连接至刀闸节点4.2的上端,节点4.2的下端通过导线连接至灭弧单元节点4.3上端,灭弧单元节点4.3下端通过过渡电阻节点4.4上端,过渡电阻节点4.4下端通过导线连接至节点4.5。
参照图6,模块5为节点5.1通过导线连接至过渡电阻5.2的上端,节点5.2的下端通过导线连接至灭弧单元节点5.3上端,灭弧单元节点5.3下端连接至刀闸节点5.4上端,刀闸节点5.4下端通过导线连接至节点5.5。
参照图7,模块6为节点6.1通过导线连接至过渡电阻6.2的上端,节点6.2的下端通过导线连接至刀闸节点6.3上端,刀闸节点6.3下端连接至灭弧单元节点6.4上端,灭弧单元节点6.4下端通过导线连接至节点6.5。
参照图8,模块7为节点7.1通过导线连接至刀闸节点7.2的上端,节点7.2的下端通过导线 连接至过渡电阻节点7.3上端,过渡电阻节点7.3下端通过过灭弧单元节点7.4上端,灭弧单元节点7.4下端通过导线连接至节点7.5。
参照图9,模块8为节点8.1通过导线连接至灭弧单元节点8.2的上端,节点8.2的下端通过导线连接至过渡电阻节点8.3上端,过渡电阻节点8.3下端通过刀闸节点8.4上端,刀闸节点8.4下端通过导线连接至节点8.5。
参照图10,模块9为节点9.1通过导线连接至灭弧单元节点9.2的上端,节点9.2的下端通过导线连接至刀闸节点9.3上端,刀闸节点9.3下端通过过渡电阻节点9.4上端,过渡电阻节点9.4下端通过导线连接至节点9.5。
其中,灭弧单元优选用真空灭弧室或电力电子阀。
S2:从有载分接开关基本支路库中选择基本支路构建所述的有载分接开关拓扑结构,在本实施例中,将有载分接开关运行中的档位切换简化为从A档切换为B档;选取基本支路的步骤如下:
S201:选取第一模块作为第一支路,即选取模块1为A档的第一个支路,用于承受运行中的额定电流和短路下的故障电流;
S202:选取第二模块作为第二支路,即从模块2或模块3中选取,或者同时选择模块2和模块3,每个模块均可以重复使用,选取结果为模块2的个数为A22,模块3的个数为A33,其中,A22+A33≥1;
S203:选取第三模块并联作为第三支路,即从模块4到模块9中选取,每个模块均可以重复使用,选取结果为模块4的个数为A34,模块5的个数为A35,选取结果为模块6的个数为A36,模块7的个数为A37,选取结果为模块8的个数为A38,模块9的个数为A39,其中,A34+A35+A36+A37+A38+A39=N;
S204:第一支路、第二支路和第三支路并联作为A档模块,即A档模块组成排列顺序为从左到右:1个模块1、A22个模块2、A33个模块3、A34个模块4、A35个模块5、A36个模块6、A37个模块7、A38个模块8、A39个模块9;
S205:将1个模块1的1.1节点、A22个模块2的2.1节点、A33个模块3的3.1节点、A34个模块4的4.1节点、A35个模块5的5.1节点、A36个模块6的6.1节点、A37个模块7的7.1节点、A38个模块8的8.1节点、A39个模块9的9.1节点并联在一起,形成一个节点A0;
S206:将1个模块1的1.3节点、A22个模块2的2.4节点、A33个模块3的3.4节点、A34个模块4的4.5节点、A35个模块5的5.5节点、A36个模块6的6.5节点、A37个模块7的7.5节点、A38个模块8的8.5节点、A39个模块9的9.5节点并联在一起,形成一个节点A1;
S207:选取第三模块并联作为第四支路,即从模块4-9中选取,每个模块均可以重复使用,选取结果为模块4的个数为B34,模块5的个数为B35,选取结果为模块6的个数为B36,模块7的个数为B37,选取结果为模块8的个数为B38,模块9的个数为B39,其中,B34+B35+B36+B37+B38+B39=M;
S208:选取第二模块并联作为第五支路,即模块2或模块3中选取,选取中可以重复使用,选取结果为模块2的个数为B22,模块3的个数为B33,其中,B22+B33≥1;
S209:选取第一模块作为第六支路,即选取模块1为B档的一个支路,用于承受运行中的额定电流和短路下的故障电流;
S210:第一支路、第二支路和第三支路并联作为B档模块,即B档模块组成排列顺序为从左到右:B39个模块9、B38个模块8、B37个模块7、B36个模块6、B35个模块5、B34个模块4、B33个模块3、B22个模块2、1个模块1;
S211:将1个模块1的1.1节点、B22个模块2的2.1节点、B33个模块3的3.1节点、A34个模块4的4.1节点、B35个模块5的5.1节点、B36个模块6的6.1节点、B37个模块7的7.1节点、B38个模块8的8.1节点、B39个模块9的的9.1节点并联在一起,形成一个节点B0;
S212:将1个模块1的1.3节点、B22个模块2的2.4节点、B33个模块3的3.4节点、A34个模块4的4.5节点、B35个模块5的5.5节点、B36个模块6的6.5节点、B37个模块7的7.5节点、B38个模块8的8.5节点、B39个模块9的9.5节点并联在一起,形成一个节点B1;
S213:A档模块一端为开关接头,另一端接地;B档模块一端为另一开关接头,另一端接地,即将节点A1与节点B1并联并于大地相连,完成有载分接开关的拓扑结构的构建。
S3:根据所选择的基本支路判断上述拓扑结构是否满足性能要求:
若设计要求有载分接开关的切换容量为C,最大极间电压为U,最大连续通过电流为I;
计算参数D1:
Figure PCTCN2021131982-appb-000007
计算参数D2:
Figure PCTCN2021131982-appb-000008
计算参数D3:
Figure PCTCN2021131982-appb-000009
参数D4:当D1≤9000时,D4的值为1;若D1>9000时,D4的值为0,
参数D5:当D2≤9000时,D5的值为1;若D2>9000时,D5的值为0,
参数D6:当D3≤3000时,D6的值为1;若D3>3000时,D6的值为0,
当D4&&D5&&D6的结果为真时,该设计的分接开关拓扑结构满足设计要求。
当D4&&D5&&D6的结果为假时,该设计的分接开关拓扑结构不满足设计要求。
S4:若不满足性能要求,则重新选择基本支路构建新的拓扑结构,再次判断拓扑结构是否满足要求,由此,可以快速的设计出满足设计需求的换流变有载分接开关切换拓扑结构。
实施例2:
本实施例与实施例1的不同之处在于该方法还包括以下判断所设计的拓扑结构是否满足性能要求的步骤:
S5,计算参数K:
Figure PCTCN2021131982-appb-000010
其中,X 1=I,
Figure PCTCN2021131982-appb-000011
X=I 1
Figure PCTCN2021131982-appb-000012
Y 3=U,Y=U 1
当I≥I1>0时,且U≥U1>0时,且K≤0时,该换流变有载分接开关切换拓扑结构满足实际运行中一档电压为U1且额定电流为I1的换流变压器的性能要求,由此,可以解决三端网络电路法生成大量的拓扑结构,导致海量结构中筛选性能好的拓扑结构存在的工作量大、择优困难的难题,从而推动分接开关新型拓扑结构的产业化应用,降低分接开关开发的研发难度,适应高质量发展与产业升级的行业需求。
实施例:以需要设计切换容量C为6000000VA、最大极间电压为U为6000V以及最大连续通过电流I为1300A的换流变压器有载分接开关为例,A档模块选取了1个模块1、1个模块2、0个模块3、1个模块4、0个模块5、2个模块6、0个模块7、0个模块8、0个模块9;B档模块选取了2个模块8、1个模块9、0个模块7、0个模块6、0个模块5、0个模块4、1个模块3、0个模块2、1个模块1,过渡电阻R取值为5欧姆。参照图11,搭建换流变有载分接开关切换拓扑结构。
计算下述参数:
参数D1:
Figure PCTCN2021131982-appb-000013
参数D2:
Figure PCTCN2021131982-appb-000014
参数D3:
Figure PCTCN2021131982-appb-000015
参数D4:D1<9000,D4的值为1;
参数D5:D1<9000,D5的值为1;
参数D6:D55<3000,D6的值为1;
D4&&D5&&D6的结果为真,该设计的分接开关拓扑结构可用。
当实际运行中的换流变压器一档电压为U1(3789V,该电压为目前主流换流变压器一档电位差),额定电流为I1(450A),首先计算如下参数:
参数E1:450>0,E1的值为1;
参数E2:450≤1300,E2的值为1;
参数E3:3789>0,E3的值为1;
参数E4:3789≤6000,E4的值为1;
参数E5:
X 1=1300,
Figure PCTCN2021131982-appb-000016
Figure PCTCN2021131982-appb-000017
X=450;
Figure PCTCN2021131982-appb-000018
Y 3=6000,Y=3789;
Figure PCTCN2021131982-appb-000019
E5的值为1,此时,E1&&E2&&E3&&E4&&E5的结果为真,该设计的换流变有载分接开关满足实际运行中的换流变压器一档电压为3789,额定电流为450的性能要求。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (9)

  1. 一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:该方法包括如下步骤:
    设计有载分接开关基本支路库;
    从所述的有载分接开关基本支路库中选择基本支路构建有载分接开关的拓扑结构;
    根据所选择的基本支路判断所述拓扑结构是否满足性能要求;
    若满足性能要求,则获得最终的有载分接开关的拓扑结构,若不满足性能要求,则重新选择基本支路构建新的有载分接开关的拓扑结构,并重复上述方法步骤。
  2. 根据权利要求1所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述有载分接开关基本支路库包括用于承载运行中的额定电流和短路下的故障电流的第一模块、用于切断负载电流的第二模块以及用于切断负载电流或换流变压器极间电流的第三模块。
  3. 根据权利要求2所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述第一模块包括刀闸。
  4. 根据权利要求2所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述第二模块包括刀闸和与刀闸串联的灭弧单元。
  5. 根据权利要求2所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述第三模块包括含有刀闸和与刀闸串联的灭弧单元以及与刀闸串联的过渡电阻的若干基本支路中的一种或多种,多种第三模块中,所述的刀闸、灭弧单元及过渡电阻的串联顺序不同。
  6. 根据权利要求4或5所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述灭弧单元为真空灭弧室或电力电子阀。
  7. 根据权利要求5所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述有载分接开关拓扑结构的构建包括如下步骤:
    选取第一模块作为第一支路;
    选取第二模块作为第二支路;
    选取第三模块并联作为第三支路;
    第一支路、第二支路和第三支路并联作为A档模块;
    选取第三模块并联作为第四支路;
    选取第二模块作为第五支路;
    选取第一模块作为第六支路;
    第一支路、第二支路和第三支路并联作为B档模块;
    将A档模块的一端作为开关接头,另一端接地;
    将B档模块的一端作为另一开关接头,另一端接地;
    获得有载分接开关拓扑结构。
  8. 根据权利要求1所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:通过以下方法判断所述拓扑结构是否满足性能要求:
    计算参数D1:
    Figure PCTCN2021131982-appb-100001
    计算参数D2:
    Figure PCTCN2021131982-appb-100002
    计算参数D3:
    Figure PCTCN2021131982-appb-100003
    计算参数D4:当D1≤9000,则D4的值为1;若D1>9000,则D4的值为0,
    计算参数D5:当D2≤9000,则D5的值为1;若D2>9000,则D5的值为0,
    计算参数D6:当D3≤3000,则D6的值为1;若D3>3000,则D6的值为0,
    进行以下判断:
    若D4&&D5&&D6的结果为真,则设计的分接开关拓扑结构可用;
    若D4&&D5&&D6的结果为假,则设计的分接开关拓扑结构不可用;
    其中,C为所需换流变压器有载分接开关的切换容量;
    U为所需换流变压器有载分接开关的最大极间电压;
    I为所需换流变压器有载分接开关的最大连续通过电流;
    所述第三模块包括含有刀闸和与刀闸串联的灭弧单元以及与刀闸串联的过渡电阻的若干基本支路中的一种或多种;
    R为所述过渡电阻的阻值;
    N为A档模块中第三模块中的基本支路的数量;
    M为B档模块中第三模块的基本支路的数量。
  9. 根据权利要求1所述的一种换流变有载分接开关切换拓扑结构设计方法,其特征在于:所述的判断所述拓扑结构是否满足还包括:
    计算参数K:
    Figure PCTCN2021131982-appb-100004
    其中,X 1=I,
    Figure PCTCN2021131982-appb-100005
    X=I 1
    Figure PCTCN2021131982-appb-100006
    Y 3=U,Y=U 1
    C为所需换流变压器有载分接开关的切换容量;
    U为所需换流变压器有载分接开关的最大极间电压;
    I为所需换流变压器有载分接开关的最大连续通过电流;
    当I≥I1>0、U≥U1>0且K≤0时,该拓扑结构满足实际运行中一档电压为U1且额定电流为I1的换流变压器的性能要求。
PCT/CN2021/131982 2021-10-27 2021-11-22 一种换流变有载分接开关切换拓扑结构设计方法 WO2023070781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111258701.1 2021-10-27
CN202111258701.1A CN114004048B (zh) 2021-10-27 2021-10-27 一种换流变有载分接开关切换拓扑结构设计方法

Publications (1)

Publication Number Publication Date
WO2023070781A1 true WO2023070781A1 (zh) 2023-05-04

Family

ID=79924388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131982 WO2023070781A1 (zh) 2021-10-27 2021-11-22 一种换流变有载分接开关切换拓扑结构设计方法

Country Status (2)

Country Link
CN (1) CN114004048B (zh)
WO (1) WO2023070781A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229021A (ja) * 1997-02-13 1998-08-25 Toshiba Corp 負荷時タップ切換装置
CN1845106A (zh) * 2005-04-08 2006-10-11 中国科学院半导体研究所 一种模拟电路数据阵列描述方法
CN108828439A (zh) * 2018-06-01 2018-11-16 国网江苏省电力有限公司南京供电分公司 一种有载分接开关过渡电阻故障的仿真及诊断方法和系统
CN112216494A (zh) * 2020-09-29 2021-01-12 许继集团有限公司 一种有载分接开关及其运行控制方法
CN112908652A (zh) * 2021-01-08 2021-06-04 南京南瑞继保电气有限公司 有载分接开关及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193580B (zh) * 2018-09-12 2019-12-27 山东大学 一种限流式快速重合闸直流断路器拓扑结构及控制方法
CN110729745B (zh) * 2019-08-28 2020-09-01 中国南方电网有限责任公司超高压输电公司广州局 一种多端直流系统转换开关参数计算方法
CN112071672B (zh) * 2020-07-22 2022-10-04 中国电力科学研究院有限公司 一种真空有载分接开关过渡装置和过渡装置的切换方法
CN112421607A (zh) * 2020-09-23 2021-02-26 国网浙江省电力有限公司绍兴供电公司 一种基于拓扑分析的变电站防误操作系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229021A (ja) * 1997-02-13 1998-08-25 Toshiba Corp 負荷時タップ切換装置
CN1845106A (zh) * 2005-04-08 2006-10-11 中国科学院半导体研究所 一种模拟电路数据阵列描述方法
CN108828439A (zh) * 2018-06-01 2018-11-16 国网江苏省电力有限公司南京供电分公司 一种有载分接开关过渡电阻故障的仿真及诊断方法和系统
CN112216494A (zh) * 2020-09-29 2021-01-12 许继集团有限公司 一种有载分接开关及其运行控制方法
CN112908652A (zh) * 2021-01-08 2021-06-04 南京南瑞继保电气有限公司 有载分接开关及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 October 2005, HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, CN, article LI, XIAOMING: "Research on Principles and Applications of on Load Tap Changing Voltage with Connectivity Topology Assembling State", pages: 1 - 183, XP009545774 *

Also Published As

Publication number Publication date
CN114004048A (zh) 2022-02-01
CN114004048B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
JP2019134665A (ja) 光起電力ソリッドステート変圧器、光起電力インバータシステム及び双方向高電圧変流器
CN102780416B (zh) 一种基于模块化多电平变流器柔性直流输电装置及其系统
CN104701868B (zh) 一种可变电压等级的电流扰动源
Li et al. Investigation on the system grounding types for low voltage direct current systems
CN102680861A (zh) 变压器或电抗器的短路承受能力试验系统及其方法
Zhang et al. High voltage gain dual active bridge converter with an extended operation range for renewable energy systems
CN109188156A (zh) 一种高压直挂储能变流器模块化测试平台及测试电路
CN103529335B (zh) 一种并网光伏逆变器的低电压穿越检测装置
CN203587718U (zh) 一种并网光伏逆变器的低电压穿越检测装置
WO2023070781A1 (zh) 一种换流变有载分接开关切换拓扑结构设计方法
Zhang et al. Design of main circuit parameters for modular multilevel matrix converter in LFAC system
CN106160463B (zh) 一种直流电压变换装置及其桥臂控制方法
CN106501674A (zh) 中压配电网单相接地故障定位装置及其故障定位方法
CN106856373A (zh) 一种谐波产生装置
Saleh et al. Solid-state transformers for distribution systems: Technology, performance, and challenges
Golzarfar et al. Optimal placement and sizing of fault current limiter in a real network: A case study
CN105811387B (zh) 一种耦合型电力故障限流器
KR101813673B1 (ko) 단락전류 저감 장치 및 이를 이용한 차단 장치, 분전반 및 케이블 릴 장치
Xue et al. Development of an advanced LCC-HVDC model for transmission system
Xin et al. Study on fault deduction and operation mode optimization of VSC HVDC power grid
CN204615638U (zh) 一种高压级联变频器的软启电路
Rinzo et al. HVDC Unsolved Issues: A Review
CN201219241Y (zh) 大电流发生器
RU2324251C1 (ru) Электрический реактор с подмагничиванием
CN217639312U (zh) 一种中高压直挂储能系统及低电压穿越测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962125

Country of ref document: EP

Kind code of ref document: A1