CN106160463B - 一种直流电压变换装置及其桥臂控制方法 - Google Patents

一种直流电压变换装置及其桥臂控制方法 Download PDF

Info

Publication number
CN106160463B
CN106160463B CN201510153175.0A CN201510153175A CN106160463B CN 106160463 B CN106160463 B CN 106160463B CN 201510153175 A CN201510153175 A CN 201510153175A CN 106160463 B CN106160463 B CN 106160463B
Authority
CN
China
Prior art keywords
cascade structure
voltage
module
sub
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510153175.0A
Other languages
English (en)
Other versions
CN106160463A (zh
Inventor
杨杰
贺之渊
庞辉
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Smart Grid Research Institute of SGCC
Original Assignee
State Grid Corp of China SGCC
Smart Grid Research Institute of SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Smart Grid Research Institute of SGCC filed Critical State Grid Corp of China SGCC
Priority to CN201510153175.0A priority Critical patent/CN106160463B/zh
Priority to PCT/CN2015/087796 priority patent/WO2016029824A1/zh
Publication of CN106160463A publication Critical patent/CN106160463A/zh
Application granted granted Critical
Publication of CN106160463B publication Critical patent/CN106160463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种直流电压变换装置及其桥臂控制方法,该装置为单相、两相或两相以上结构,每相由基本功能模块组成,基本功能模块包括串联的器件级联结构和子模块级联结构;本发明提供的技术方案通过采用器件串联结构和子模块级联结合的方法,在无变压器的情况下实现电压变换,同时还可实现串联器件的软开关,并减小投资和占地。

Description

一种直流电压变换装置及其桥臂控制方法
技术领域
本发明涉及一种柔性直流输电领域的电压变换装置,具体讲涉及一种直流电压变换装置及其桥臂控制方法。
背景技术
柔性直流技术的迅猛发展使直流电网成为可能,直流电网技术无输电距离限制,不需无功补偿设备,有较强的灵活性和可控性,能为大型城市供电、海上风电接入等提供良好的解决手段,有着广阔的应用前景。
实际应用中,直流电网技术面临与交流电网类似的电压等级变换问题,而对于直流电压变换器的研究,世界范围内尚处于初步阶段。根据直流电网的特性,直流电压变换器的主要特点需求如下:
1、可实现宽范围的电压变比。直流电压等级的多样性,要求电压变换器能够实现宽范围的电压变比,能够满足不同场合的要求;
2、双向功率流动能力。由于直流电网功率调控的灵活性需求,相应的,直流电压变换器需要具备双向功率调节能力;
3、故障隔离能力。良好的直流变压器应满足在一侧发生直流故障情况下,不影响另一侧的运行,即具备故障隔离能力;
4、较低的投资、损耗和占地水平。良好的直流变压器应投资少,具备低损耗水平,同时相应的组件不宜过多导致占地过大。
针对DC-DC变换器已经有了很多的研究成果,在适用于高压领域并采用扩展性良好的模块化多电平技术方向上,“面对面”型模块化多电平变压器是最基础的拓扑形式,该拓扑占地大,而且造价高、损耗大,难以大规模推广应用。
WO2014/056540 A1的“Modular Multilevel DC/DC converter for HVDCapplications”号专利披露了一种新型高压直流输电的DC-DC变压器拓扑结构,其中通过共用“面对面”拓扑中的双端子模块,有效减小了系统投入的子模块数量、损耗和占地,但必须采用变压器隔离电位。
WO2013/026477 A1的“Bidirectional Unisolated DC-DC converter based oncascaded cells”号专利公开了一种基于级联电池的双向隔离DC-DC变压器,其中披露的直接变换至DC的模块化多电平结构,省去了变压器,有效减小了投资和占地,但在低压侧输出仍需要较大的电抗器或者共轭电抗器,同时针对故障隔离,需要投入额外的全桥子模块。
综上所述,传统的低压拓扑很难应用到高压领域,另一方面,基于模块化多电平技术的DC-DC变压器,以其良好的扩展性能得到大家的广泛关注,然而,最初提出的“面对面”型基于模块化多电平技术的直流变压器,通过交流变压器将两个AC/DC模块化多电平换流器进行连接进行电压变换,不但占地大,而且造价高、损耗大,难以进行大范围推广。
发明内容
为解决上述现有技术中的不足,本发明的目的是提供一种直流电压变换装置及其桥臂控制方法,本发明提供的技术方案通过采用器件串联结构和子模块级联结合的方法,在无变压器的情况下实现电压变换,同时还可实现串联器件的软开关,并减小投资和占地。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
本发明的目的是采用下述技术方案实现的:
本发明提供一种直流电压变换装置,所述装置为单相、两相或两相以上结构,每相由基本功能模块组成,其改进之处在于,所述基本功能模块包括串联的器件级联结构和子模块级联结构。
进一步地,所述基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至低压端子,所述器件级联结构S4的另一端连接至接地点;所述子模块级联结构的另一端连接至高压端子。
进一步地,所述基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至高压端子,所述器件级联结构S4的另一端连接至低压端子;所述子模块级联结构的另一端连接至接地点。
进一步地,所述基本功能模块包括四组器件级联结构S1、S4’、S1’和S4以及子模块级联结构;所述器件级联结构S1和S4’连接于高压端子与低压端子之间,另两组器件级联结构S1’和S4连接于低压端子与接地点之间;所述子模块级联结构一端连接至器件级联结构S1与S4’之间的连接点,另外一端连接至器件级联结构S1’与S4之间连接点。
进一步地,所述器件级联结构由多个电力电子器件串联组成,所述电力电子器件包括全控型器件(如IGBT,GTO等)及其反并联二极管、半控型器件(如晶闸管等)或者二极管。
进一步地,所述子模块级联结构由多个半桥子模块级联结构与电抗器串联组成、全桥子模块级联结构与电抗器串联组成或全桥子模块级联结构与半桥子模块级联结构混合组成,所述半桥子模块由全控型器件串联后与电容器并联组成;所述全桥子模块由H桥与电容器并联组成;所述H桥的每个桥臂由全控型器件(如IGBT,GTO等)组成;每个全控型器件均反并联二极管。
进一步地,所述装置包括至少两个基本功能模块时,形成两相结构或两相以上结构,即变换单元,所述变换单元的工作频率为基频或高频。
进一步地,在所述器件级联结构开通或关断时,调整子模块级联结构的投入数量,实现器件级联结构的软开关功能。
本发明还提供一种直流电压变换装置的桥臂控制方法,所述直流电压变换装置中的基本功能模块通过桥臂控制实现电压变换;其改进之处在于,所述方法依据基本功能模块的连接方式不同包括下述实现方式:
1)所述基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至低压端子,所述器件级联结构S4的另一端连接至接地点;所述子模块级联结构的另一端连接至高压端子;当所述器件级联结构S1导通时,器件级联结构S4关断,低压端子正极电流通过器件级联结构S1进入子模块级联结构,所述子模块级联结构输出的电压为高压端电压减低压端电压,用于补偿高压端和低压端的电压差;当器件级联结构S4导通时,器件级联结构S1关断,低压端和高压端的电流差通过器件级联结构S4注入子模块级联结构,子模块级联结构输出的电压为高压端电压,用于补偿高压端对地电压差;
2)基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至高压端子,所述器件级联结构S4的另一端连接至低压端子;所述子模块级联结构的另一端连接至接地点;当所述器件级联结构S1导通时,所述器件级联结构S4关断,高压端正极电流通过器件级联结构S1进入子模块级联结构,所述子模块级联结构输出的电压为高压端电压,用于补偿高压端对地电压差;当所述器件级联结构S4导通时,所述器件级联结构S1关断,低压端电流通过器件级联结构S4注入子模块级联结构,所述子模块级联结构输出的电压为低压端电压,用于补偿低压侧对地电压差;
3)所述基本功能模块包括呈星形连接的四组器件级联结构S1、S4’、S1’和S4以及子模块级联结构;所述器件级联结构S1和S4’连接于高压端子与低压端子之间,另两组器件级联结构S1’和S4连接于低压端子与接地点之间;所述子模块级联结构一端连接至器件级联结构S1与S4’之间的连接点,另外一端连接至器件级联结构S1’与S4之间连接点;当所述器件级联结构S1和S1’导通时,所述器件级联结构S4和S4’关断,高压端正极电流通过器件级联结构S1和S1’进入子模块级联结构,所示子模块级联结构输出的电压为高压端电压减低压端电压,用于补偿高压端和低压端的电压差;当所述器件级联结构S4和S4’导通时,所述器件级联结构S1和S1’关断,低压端和高压端的电流差通过所述器件级联结构S4和S4’注入子模块级联结构,所述子模块级联结构输出的电压为低压端电压,用于补偿低压端对地电压差。
与最接近的现有技术相比,本发明提供的技术方案具有的优异效果是:
1、本发明提供的技术方案可实现宽范围的电压变比。直流电压等级的多样性,要求电压变换器能够实现宽范围的电压变比,能够满足不同场合的要求;
2、具备双向功率流动能力。由于直流电网功率调控的灵活性需求,直流电压变换器需要具备双向功率调节能力;
3、具有好的故障隔离能力。良好的直流变压器应满足在一侧直流故障情况下,另一侧的运行不受到任何影响,即具备故障隔离能力;
4、低的投资、损耗和占地水平。良好的直流变压器应投资少,具备低损耗水平,同时相应的组件不宜过多导致占地过大。
为了上述以及相关的目的,一个或多个实施例包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明某些示例性方面,并且其指示的仅仅是各个实施例的原则可以利用的各种方式中的一些方式。其它的益处和新颖性特征将随着下面的详细说明结合附图考虑而变得明显,所公开的实施例是要包括所有这些方面以及它们的等同。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明提供的半桥或全桥子模块结构图,其中(a)为半桥子模块结构;(b)为全桥子模块结构;
图2是本发明提供的基本功能模块结构图,其中(a)为基本功能模块结构图一;(b)为基本功能模块结构图二;(c)为基本功能模块结构图三;
图3是本发明提供的三相变换单元结构图,其中(a)为三相变换单元结构图一;(b)为三相变换单元结构图二;(c)为三相变换单元结构图三。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的组件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本发明的这些实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。
本发明提供一种直流电压变换装置,所述装置为单相或者多相结构,每相由基本功能模块组成,所述基本功能模块包括串联的器件级联结构和子模块级联结构;主要有三种实现形式:
如图2(a)所示,所述基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至低压端子(VL),所述器件级联结构S4的另一端连接至接地点;所述子模块级联结构的另一端连接至高压端子(VH)。
如图2(b)所示,所述基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至高压端子(VH),所述器件级联结构S4的另一端连接至低压端子(VL);所述子模块级联结构的另一端连接至接地点。
如图2(c)所示,所述基本功能模块包括呈星形连接的四组器件级联结构S1、S4’、S1’和S4以及子模块级联结构;所述器件级联结构S1和S4’连接于高压端子(VH)与低压端子(VL)之间,另两组器件级联结构S1’和S4连接于低压端子(VL)与接地点之间;所述子模块级联结构一端连接至器件级联结构S1与S4’之间的连接点,另外一端连接至器件级联结构S1’与S4之间连接点。
器件级联结构由多个电力电子器件串联组成,所述电力电子器件包括全控型器件(如IGBT,GTO等)及其反并联二极管、半控型器件(如晶闸管等)或者二极管。
子模块级联结构由多个半桥子模块级联结构与电抗器串联组成或全桥子模块级联结构与电抗器串联组成,所述半桥子模块由全控型器件串联支路与电容器并联组成;所述全桥子模块由H桥与电容器并联组成;所述H桥的每个桥臂由全控型器件组成;每个全控型器件(如IGBT,GTO等)均反并联二极管,半桥或全桥子模块结构图如图1(a)和(b)所示。
基本功能模块可以拓展至两相结构,或者增加相数至三相甚至更多相,三相变换单元结构图如图3(a)、(b)和(c)所示,从而形成变换单元,变换单元又可以形成并联或者双极结构。同时,变换单元的工作频率不限于基频,还可以是高频运行。
本发明的直流变换装置拓扑的另外一种有利特点是,通过在器件级联结构开通或者关断时刻,调整子模块级联结构投入的数量,可以有效实现器件级联结构的软开关。
本发明还提供一种直流电压变换装置的桥臂控制方法,所述直流电压变换装置中的基本功能模块通过桥臂控制实现电压变换;包括:
1、对于图2(a)给出的基本功能模块结构,当所述器件级联结构S1导通时,器件级联结构S4关断,低压端子正极电流通过器件级联结构S1进入子模块级联结构,所述子模块级联结构输出的电压为高压端电压减低压端电压,用于补偿高压端和低压端的电压差;当器件级联结构S4导通时,器件级联结构S1关断,低压端和高压端的电流差通过器件级联结构S4注入子模块级联结构,子模块级联结构输出的电压为负的高压端电压,用于补偿高压端对地电压差。
2、对于图2(b)给出的基本功能模块结构,当所述器件级联结构S1导通时,所述器件级联结构S4关断,高压端正极电流通过器件级联结构S1进入子模块级联结构,所述子模块级联结构输出的电压为高压端电压,用于补偿高压端对地电压差;当所述器件级联结构S4导通时,所述器件级联结构S1关断,低压端电流通过器件级联结构S4注入子模块级联结构,所述子模块级联结构输出的电压为低压端电压,用于补偿低压侧对地电压差。
3、对于图2(c)给出的基本功能模块结构,当所述器件级联结构S1和S1’导通时,所述器件级联结构S4和S4’关断,高压端正极电流通过器件级联结构S1和S1’进入子模块级联结构,所示子模块级联结构输出的电压为高压端电压减低压端电压,用于补偿高压端和低压端的电压差;当所述器件级联结构S4和S4’导通时,所述器件级联结构S1和S1’关断,低压端和高压端的电流差通过所述器件级联结构S4和S4’注入子模块级联结构,所述子模块级联结构输出的电压为低压端电压,用于补偿低压端对地电压差。
本发明提供的直流电压变换装置仅采用器件串联结构和一定数量的子模块串联实现电压变换,投资少,损耗小,同时,高频运行对损耗的提升少;两端直流侧电压电流质量高,不需要其他滤波器;功率双向流动,同时变比范围宽。
在上述的详细描述中,各种特征一起组合在单个的实施方案中,以简化本公开。不应该将这种公开方法解释为反映了这样的意图,即,所要求保护的主题的实施方案需要清楚地在每个权利要求中所陈述的特征更多的特征。相反,如所附的权利要求书所反映的那样,本发明处于比所公开的单个实施方案的全部特征少的状态。因此,所附的权利要求书特此清楚地被并入详细描述中,其中每项权利要求独自作为本发明单独的优选实施方案。
本领域技术人员还应当理解,结合本文的实施例描述的各种说明性的逻辑框、模块、电路和算法步骤均可以实现成电子硬件、计算机软件或其组合。为了清楚地说明硬件和软件之间的可交换性,上面对各种说明性的部件、框、模块、电路和步骤均围绕其功能进行了一般地描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开的保护范围。
上文的描述包括一个或多个实施例的举例。当然,为了描述上述实施例而描述部件或方法的所有可能的结合是不可能的,但是本领域普通技术人员应该认识到,各个实施例可以做进一步的组合和排列。因此,本文中描述的实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、修改和变型。此外,就说明书或权利要求书中使用的术语“包含”,该词的涵盖方式类似于术语“包括”,就如同“包括,”在权利要求中用作衔接词所解释的那样。此外,使用在权利要求书的说明书中的任何一个术语“或者”是要表示“非排它性的或者”。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (6)

1.一种直流电压变换装置,所述装置为单相、两相或两相以上结构,每相由基本功能模块组成,其特征在于,所述基本功能模块包括串联的电力电子开关器件级联结构和子模块级联结构;
所述基本功能模块包括呈星形连接的两组电力电子开关器件级联结构S1和S4以及子模块级联结构;所述子模块级联结构的一端分别与电力电子开关器件级联结构S1的一端和电力电子开关器件级联结构S4的一端连接;所述电力电子开关器件级联结构S1的另一端连接至高压端子,所述电力电子开关器件级联结构S4的另一端连接至低压端子;所述子模块级联结构的另一端连接至接地点;或者
所述基本功能模块包括四组电力电子开关器件级联结构S1、S4’、S1’和S4以及子模块级联结构;所述电力电子开关器件级联结构S1和S4’连接于直流高压端子与直流低压端子之间,另两组电力电子开关器件级联结构S1’和S4连接于直流低压端子与接地点之间;所述子模块级联结构一端连接至电力电子开关器件级联结构S1与S4’之间的连接点,另外一端连接至电力电子开关器件级联结构S1’与S4之间连接点。
2.如权利要求1所述的直流电压变换装置,其特征在于,所述器件级联结构由电力电子开关器件串联组成,所述电力电子开关器件包括全控型器件及其反并联二极管、半控型器件或者二极管。
3.如权利要求1所述的直流电压变换装置,其特征在于,所述子模块级联结构由半桥子模块级联结构与电抗器串联组成、全桥子模块级联结构与电抗器串联组成或全桥子模块级联结构与半桥子模块级联结构混合组成,所述半桥子模块由全控型器件串联后与电容器并联组成;所述全桥子模块由H桥与电容器并联组成;所述H桥的每个桥臂由全控型器件组成;每个全控型器件均反并联二极管。
4.如权利要求1所述的直流电压变换装置,其特征在于,所述装置包括至少两个基本功能模块时,形成两相结构或两相以上结构,即变换单元,所述变换单元的工作频率为基频或高频。
5.如权利要求1所述的直流电压变换装置,其特征在于,在所述器件级联结构开通或关断时,调整子模块级联结构的投入数量,实现器件级联结构的软开关功能。
6.一种如权利要求1-5中任一项所述的直流电压变换装置的桥臂控制方法,所述直流电压变换装置中的基本功能模块通过桥臂控制实现电压变换;其特征在于,所述方法包括:
当基本功能模块包括呈星形连接的两组器件级联结构S1和S4以及子模块级联结构时;所述子模块级联结构的一端分别与器件级联结构S1的一端和器件级联结构S4的一端连接;所述器件级联结构S1的另一端连接至高压端子,所述器件级联结构S4的另一端连接至低压端子;所述子模块级联结构的另一端连接至接地点;当所述器件级联结构S1导通时,所述器件级联结构S4关断,高压端正极电流通过器件级联结构S1进入子模块级联结构,所述子模块级联结构输出的电压为高压端电压,用于补偿高压端对地电压差;当所述器件级联结构S4导通时,所述器件级联结构S1关断,低压端电流通过器件级联结构S4注入子模块级联结构,所述子模块级联结构输出的电压为低压端电压,用于补偿低压侧对地电压差;或者
当所述基本功能模块包括呈星形连接的四组器件级联结构S1、S4’、S1’和S4以及子模块级联结构时;所述器件级联结构S1和S4’连接于高压端子与低压端子之间,另两组器件级联结构S1’和S4连接于低压端子与接地点之间;所述子模块级联结构一端连接至器件级联结构S1与S4’之间的连接点,另外一端连接至器件级联结构S1’与S4之间连接点;当所述器件级联结构S1和S1’导通时,所述器件级联结构S4和S4’关断,高压端正极电流通过器件级联结构S1和S1’进入子模块级联结构,所示子模块级联结构输出的电压为高压端电压减低压端电压,用于补偿高压端和低压端的电压差;当所述器件级联结构S4和S4’导通时,所述器件级联结构S1和S1’关断,低压端和高压端的电流差通过所述器件级联结构S4和S4’注入子模块级联结构,所述子模块级联结构输出的电压为低压端电压,用于补偿低压端对地电压差。
CN201510153175.0A 2014-08-25 2015-04-01 一种直流电压变换装置及其桥臂控制方法 Active CN106160463B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510153175.0A CN106160463B (zh) 2015-04-01 2015-04-01 一种直流电压变换装置及其桥臂控制方法
PCT/CN2015/087796 WO2016029824A1 (zh) 2014-08-25 2015-08-21 一种直流电压变换装置及其桥臂控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510153175.0A CN106160463B (zh) 2015-04-01 2015-04-01 一种直流电压变换装置及其桥臂控制方法

Publications (2)

Publication Number Publication Date
CN106160463A CN106160463A (zh) 2016-11-23
CN106160463B true CN106160463B (zh) 2019-09-06

Family

ID=57338145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510153175.0A Active CN106160463B (zh) 2014-08-25 2015-04-01 一种直流电压变换装置及其桥臂控制方法

Country Status (1)

Country Link
CN (1) CN106160463B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108566071B (zh) 2016-12-16 2021-04-20 台达电子企业管理(上海)有限公司 模块化电源系统
CN107370365B (zh) * 2017-08-02 2019-09-13 哈尔滨工业大学 高压直流输电dc-dc变换器及采用该变换器实现电压充放电的方法
CN110323933B (zh) * 2019-08-07 2021-03-23 哈尔滨工业大学 具有故障阻断能力的柔性直流输电dc/dc变换器
CN114826000A (zh) * 2022-05-09 2022-07-29 北京易菲盛景科技有限责任公司 三桥臂多电平变换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427657A (zh) * 2013-08-01 2013-12-04 南京南瑞继保电气有限公司 一种高压直流-直流变换设备
JP2014018028A (ja) * 2012-07-11 2014-01-30 Toshiba Corp 半導体電力変換装置
CN103633845A (zh) * 2013-12-19 2014-03-12 国家电网公司 一种dc-dc变换器
CN103715931A (zh) * 2012-09-28 2014-04-09 通用电气公司 多级转换器系统
CN105375757A (zh) * 2014-08-25 2016-03-02 国家电网公司 一种直流电压变换装置及其桥臂控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018028A (ja) * 2012-07-11 2014-01-30 Toshiba Corp 半導体電力変換装置
CN103715931A (zh) * 2012-09-28 2014-04-09 通用电气公司 多级转换器系统
CN103427657A (zh) * 2013-08-01 2013-12-04 南京南瑞继保电气有限公司 一种高压直流-直流变换设备
CN103633845A (zh) * 2013-12-19 2014-03-12 国家电网公司 一种dc-dc变换器
CN105375757A (zh) * 2014-08-25 2016-03-02 国家电网公司 一种直流电压变换装置及其桥臂控制方法

Also Published As

Publication number Publication date
CN106160463A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
CN102334274B (zh) 转换器
EP2380255B1 (en) A method of upgrading a plant for transmitting electric power and such a plant
CN102460933B (zh) 变换器
CN104702114B (zh) 一种开关电容接入的高频链双向直流变压器及其控制方法
Wang et al. Unified power flow controller using the cascade multilevel inverter
CN105743352B (zh) 一种改进的开关电容接入的双向直流变压器及其控制方法
CN101546964B (zh) 用于实现负序电流补偿的模块组合型多电平变换器
CN107017638A (zh) 一种适用于配电网的多端口多母线电能路由器拓扑结构
CN113364311B (zh) 一种多中压交流端口固态变压器及其控制方法
CN105375757B (zh) 一种直流电压变换装置及其桥臂控制方法
CN207459728U (zh) 一种储能型多端口电力电子变压器
CN105191108A (zh) 变换器
CN102780416B (zh) 一种基于模块化多电平变流器柔性直流输电装置及其系统
CN103066587B (zh) 一种模块化多电平柔性直流系统的优化配置方法
CN106160463B (zh) 一种直流电压变换装置及其桥臂控制方法
CN107592017B (zh) 一种dc-dc变换器及控制方法
WO2016029824A1 (zh) 一种直流电压变换装置及其桥臂控制方法
CN104283436A (zh) 一种基于变压器耦合的组合式mmc型直流变压器
CN110311381A (zh) 一种可穿越直流故障的交直流混合电网电力电子变压器
CN103715930A (zh) 一种提升柔性直流输电系统容量的方法及其装置
CN107370392A (zh) 面向中高压智能配电网的电力电子变压器
CN107800299A (zh) 基于mmc高频变换的模块化直流变换系统及其控制方法
CN105191091A (zh) 电压源型变换器
CN101574935A (zh) 模块组合型牵引供电网电能质量调节系统
Vidal-Albalate et al. A modular multi-level DC-DC converter for HVDC grids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant