WO2023070681A1 - 光学系统、以及具备光学系统的摄像装置 - Google Patents

光学系统、以及具备光学系统的摄像装置 Download PDF

Info

Publication number
WO2023070681A1
WO2023070681A1 PCT/CN2021/128002 CN2021128002W WO2023070681A1 WO 2023070681 A1 WO2023070681 A1 WO 2023070681A1 CN 2021128002 W CN2021128002 W CN 2021128002W WO 2023070681 A1 WO2023070681 A1 WO 2023070681A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
optical system
lens
focusing
optical
Prior art date
Application number
PCT/CN2021/128002
Other languages
English (en)
French (fr)
Inventor
帯金靖彦
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2021573543A priority Critical patent/JP7510960B2/ja
Priority to CN202180003578.0A priority patent/CN116583773A/zh
Priority to PCT/CN2021/128002 priority patent/WO2023070681A1/zh
Priority to KR1020237038225A priority patent/KR20230162716A/ko
Priority to US18/288,559 priority patent/US20240210666A1/en
Publication of WO2023070681A1 publication Critical patent/WO2023070681A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances

Definitions

  • the present invention relates to an optical system including a plurality of lens groups, and an imaging device including the optical system.
  • Patent Document 1 an optical system capable of capturing images at a short distance and widening an angle.
  • These optical systems are sequentially provided along the optical axis from the object side to the image side: a first lens group with negative diopter, a second lens group with positive bending power, and a third lens group with negative bending power.
  • Patent Document 1 Japanese Patent No. 5716569
  • Patent Document 2 Japanese Patent No. 6784950
  • an object of the present invention is to provide an optical system with a sufficiently wide angle and a reduced thickness, and an imaging device including the optical system.
  • the optical system of the present invention has:
  • a first lens group including at least one lens and having a negative diopter
  • a second lens group including at least one lens and having a positive diopter
  • a third lens including at least one lens and having a negative diopter Group
  • the distance between the first lens group and the third lens group on the optical axis and the imaging surface is fixed, and the second lens group moves along the optical axis;
  • the lateral magnification of the second lens group is set to b2 when focusing at infinity
  • the lateral magnification of the third lens group is set to b3 when focusing at infinity
  • the overall optical system when focusing at infinity The focal length is set as f
  • the focal length of the second lens group is set as f2
  • the focal length of the third lens set is set as f3
  • the lens surface of each lens group is set from the lens surface closest to the object side to the lens surface closest to the image side.
  • optical system satisfies at least one of the following formulas (1) to (4):
  • the second lens group is configured to be able to move in a direction perpendicular to the optical axis, which can satisfy:
  • the optical system is equipped with an aperture device capable of changing the diameter of the aperture
  • the aperture device may be disposed between the first lens group and the second lens group.
  • the first lens group is configured to be movable toward the image side during non-photography.
  • the imaging device of the present invention includes:
  • the imaging element is arranged on the imaging surface of the optical system.
  • FIG. 1 is a schematic diagram showing the configuration of an imaging device according to the present embodiment, and is a diagram showing an imaging state.
  • FIG. 2 is a schematic diagram showing the configuration of the imaging device, and is a diagram showing a state in which an optical system is accommodated.
  • Embodiment 3 is a lens structure diagram of the optical system of Embodiment 1 in an infinity focusing state.
  • FIG. 4 is a lens configuration diagram in the closest focusing state of the optical system of Example 1.
  • FIG. 4 is a lens configuration diagram in the closest focusing state of the optical system of Example 1.
  • Example 5 is a longitudinal aberration diagram of the optical system of Example 1 in an infinity focus state.
  • Example 6 is a longitudinal aberration diagram of the optical system of Example 1 in a state of closest focus.
  • FIG. 7 is a lens structure diagram of the optical system of Embodiment 2 in an infinity focusing state.
  • FIG. 8 is a lens configuration diagram in the closest focusing state of the optical system of Example 2.
  • Example 9 is a longitudinal aberration diagram of the optical system of Example 2 in an infinity focus state.
  • Example 10 is a longitudinal aberration diagram of the optical system of Example 2 in a state of closest focus.
  • FIG. 11 is a lens structure diagram of the optical system of Embodiment 3 in an infinity focusing state.
  • FIG. 12 is a lens configuration diagram in the closest focusing state of the optical system of Example 3.
  • FIG. 12 is a lens configuration diagram in the closest focusing state of the optical system of Example 3.
  • Example 13 is a longitudinal aberration diagram of the optical system of Example 3 in an infinity in-focus state.
  • Example 14 is a longitudinal aberration diagram of the optical system of Example 3 in a state of closest focus.
  • FIG. 15 is a lens configuration diagram of the optical system of Embodiment 4 in an infinity focusing state.
  • FIG. 16 is a lens configuration diagram in the closest focusing state of the optical system of Example 4.
  • 17 is a longitudinal aberration diagram of the optical system of Example 4 in an infinity in-focus state.
  • Example 18 is a longitudinal aberration diagram of the optical system of Example 4 in a state of closest focus.
  • the imaging device 1 of the present embodiment includes: an optical system 2 that can be telescopically accommodated in the imaging device main body 10; an imaging element 3 disposed at the imaging surface of the optical system 2; and a liquid crystal
  • the display screen 4 displays the imaging (image) data transmitted from the imaging element 3 .
  • the imaging element 3 is an element that converts an optical image formed by the optical system 2 into an electrical signal (imaging data), and the imaging element 3 of this embodiment is an image sensor.
  • the optical system 2 has at least a first lens group G1 , a second lens group G2 , and a third lens group G3 in this order along the optical axis C from the object side to the image side.
  • Each of these lens groups G1, G2, G3 includes at least one lens.
  • the optical system 2 of the present embodiment includes a first lens group G1 , a second lens group G2 , a third lens group G3 , and an optical filter 23 in this order along the optical axis C from the object side to the image side.
  • the lens groups G1 to G3 are named for convenience, and a lens group composed of only one optical element (lens, etc.) is also included. That is, each of the first to third lens groups G1, G2, and G3 has an optical element such as at least one lens.
  • the optical elements (lenses, etc.) whose positions on the optical axis C are respectively fixed and the optical elements that are moved are divided during focusing, and the fixed at least One optical element is used as a lens group, and the moving at least one optical element in the divided area is used as another lens group.
  • the optical system 2 has an aperture stop (aperture device) 21 disposed between the first lens group G1 and the second lens group G2 and a lens barrel 22 that holds the first lens Group G1 and the second lens group G2 (refer to FIG. 1 ).
  • the lens barrel 22 extends toward the object side during shooting (see FIG. 1 ), and is stretched and accommodated in the imaging device main body (body, etc.) when not shooting (see FIG. 2 ).
  • the second lens group G2 when focusing, the distance between the first lens group G1 and the third lens group G3 on the optical axis C of the imaging element 3 (imaging surface of the optical system 2) is fixed, and the second lens group G2 Move along the optical axis C. That is, in the optical system 2 of the present embodiment, among the lens groups G1 , G2 , and G3 , the second lens group G2 constitutes a focusing lens group.
  • the first lens group G1 moves toward the image side during telescopic storage.
  • the optical system 2 of the present embodiment is telescopically housed in the imaging device main body 10 by moving the first lens group G1 and the second lens group G2 to the image side when telescopically housed (see FIG. 2 ).
  • the movement of the lens groups G1 to G3 and the expansion and contraction of the lens barrel 22 are performed by various conventionally known mechanisms.
  • each lens group G1-G3 in the optical system 2 is demonstrated in detail.
  • the first lens group G1 includes one lens (optical element), and it has negative diopter.
  • the second lens group G2 includes a plurality of lenses (optical elements), and it has a positive curvature.
  • the third lens group G3 includes a plurality of lenses (optical elements), and it has negative diopter.
  • the overall optical system 2 when focusing at infinity Set the focal length as f, set the focal length of the second lens group G2 as f2, set the focal length of the third lens group G3 as f3, and set the focal length of each lens group G1, G2, and G3 from the lens surface closest to the object side to the closest
  • the optical system 2 satisfies at least one of the following formulas (1) to (4):
  • the first lens group G1 having a negative diopter is disposed closest to the object side, it is easy to obtain a power arrangement of inverse focus, thereby enabling widening of the angle of view by shortening the focal length.
  • the third lens group G3 having negative diopter power is arranged on the most image side, it is easy to obtain a telephoto power arrangement, whereby thinning can be achieved by shortening the focal length to the second lens group G2 ( size reduction in the direction of the optical axis C).
  • the second lens group G2 can be moved to adjust the balance of aberration fluctuations with the front and rear groups (first lens group G1, third lens group G3), which is comparable to the overall extension type optical system. Compared with that, the field curvature variation during close-up shooting is suppressed, so the close-up shooting distance can be further shortened.
  • the second lens group G2 when focusing, by fixing the distance between the first lens group G1 and the third lens group G3 on the optical axis C and the imaging element 3 (imaging surface), only the second lens group G2 can be adjusted in the direction of the optical axis C.
  • the upward movement reduces the load on the moving mechanism of the lens group G2 by the actuator or the like, so that the thinning and miniaturization of the optical system 2 can be realized.
  • Formula (1) specifies the range of the ratio (f3/f) of the focal length of the third lens group G3 to the focal length of the optical system 2 as a whole when focusing at infinity, and the ratio (f3/f) is less than the lower limit (-1.20 ), the focal length of the third lens group G3 becomes weak, making it difficult to achieve telephoto, and therefore cannot be shortened to the focal length of the second lens group G2, and therefore, the reduction in thickness is insufficient.
  • the third lens group G3 has a strong refractive power, and thinning becomes easy, but since the group closest to the image side ( The negative power of the third lens group) G3 is too strong, so it is difficult to configure the bright (ie, small F-number) optical system 2 and becomes a dark (ie, large F-number) optical system. Therefore, in the optical system 2 of the present embodiment, by setting the ratio (f3/f) of the focal length of the third lens group G3 to the focal length of the entire optical system 2 at infinity within the range of formula (1), it is possible to Achieving a balance between thinness and brightness.
  • the ratio (f3/f) preferably satisfies:
  • optical system 2 of the present embodiment by satisfying formula (2), it is possible to obtain a thinner and wider-angle optical system 2 .
  • the details are as follows.
  • the formula (2) specifies the range of the lateral magnification (b2) of the second lens group G2 when focusing at infinity.
  • the lateral magnification (b2) is less than the lower limit (-0.40)
  • it is difficult to shorten to the second lens group G2 focal length it is difficult to sufficiently reduce the thickness.
  • the lateral magnification (b2) exceeds the upper limit (-0.06)
  • the refractive power of the first lens group G1 becomes weak, making it difficult to widen the angle. Therefore, in the optical system 2 of the present embodiment, by setting the lateral magnification (b2) of the second lens group G2 at infinity focusing within the range of formula (2), a balance between thinning and widening can be achieved.
  • the lateral magnification (b2) preferably satisfies:
  • optical system 2 of the present embodiment by satisfying the formula (3), a high-performance, thinner, and bright optical system 2 can be obtained.
  • the details are as follows.
  • the first formula (0.3 ⁇ OAL123/Y ⁇ 2.30) of formula (3) specifies the total value of the distance from the lens surface closest to the object side to the lens surface closest to the image side in each lens group G1, G2, G3
  • the range of the ratio (OAL123/Y) to the maximum image height, when the ratio (OAL123/Y) is less than the lower limit (0.3) the thickness of each lens group G1, G2, G3 is too thin (that is, on the optical axis If the dimension in the C direction is too small), it becomes difficult to correct aberrations, so that it becomes difficult to improve performance.
  • the ratio (OAL123/Y) is greater than the upper limit (2.30)
  • the thickness of each lens group G1, G2, G3 is too thick (that is, the size in the direction of the optical axis C is too large), so Difficult to thin. Therefore, in the optical system 2 of the present embodiment, the ratio of the total value of the distance from the lens surface closest to the object side to the lens surface closest to the image side in each of the lens groups G1, G2, and G3 to the maximum image height ( OAL123/Y) is set as the first formula (0.3 ⁇ OAL123/Y ⁇ 2.30) of formula (3), which can achieve a balance between high performance and thinning.
  • the total value of the distance from the lens surface closest to the object side to the lens surface closest to the image side in each lens group G1, G2, G3 refers to the distance from the lens surface closest to the object side to the lens surface closest to the image side of the first lens group G1.
  • the distance from the lens surface near the image side, the distance from the lens surface closest to the object side of the second lens group G2 to the lens surface closest to the image side, and the distance from the lens surface closest to the object side of the third lens group G3 to The sum of the distances of the lens surfaces closest to the image side.
  • the ratio (OAL123/Y) preferably satisfies:
  • the second formula (1.00 ⁇ b3 ⁇ 1.30) of formula (3) specifies the range of the lateral magnification (b3) of the third lens group G3 when focusing at infinity, where the lateral magnification (b3) is less than the lower limit value When (1.00), it is difficult to shorten the focal length of the second lens group G2, so it is difficult to sufficiently reduce the thickness.
  • the third lens group G3 has stronger refractive power and thinner becomes easier, but the group closest to the image side (the third lens group) Since the negative power of group) G3 is too strong, it is difficult to configure the optical system 2 that is bright (that is, with a small F-number) and becomes a dark (that is, with a large F-number) optical system. Therefore, in the optical system 2 of the present embodiment, by setting the lateral magnification (b3) of the third lens group G3 at the time of focusing at infinity as the second formula (1.00 ⁇ b3 ⁇ 1.30) of the formula (3), it is possible to Achieving a balance between thinness and brightness.
  • the lateral magnification (b3) preferably satisfies:
  • optical system 2 of the present embodiment by satisfying formula (4), it is possible to obtain a high-performance and thin optical system 2 .
  • the details are as follows.
  • Formula (4) specifies the range of the ratio (f2/f) of the focal length of the second lens group G2 to the focal length of the optical system 2 when focusing at infinity as a whole, and the ratio (f2/f) is less than the lower limit value (0.60) , the refractive power of the second lens group G2 becomes stronger, and it becomes difficult to correct aberrations, so it becomes difficult to improve performance.
  • the ratio (f2/f) is greater than the upper limit value (0.90)
  • the power of the second lens group G2 becomes weak, and the positive power of the optical system 2 as a whole becomes weak, so the power of the optical system 2 becomes weak. Thinning becomes difficult.
  • the optical system 2 of the present embodiment by setting the ratio (f2/f) of the focal length of the second lens group G2 to the focal length of the entire optical system 2 at infinity within the range of formula (4), it is possible to Achieving a balance between high performance and low profile.
  • the ratio (f2/f) preferably satisfies:
  • the second lens group G2 is configured to be able to move in a direction perpendicular to the optical axis C during optical hand-shake correction, so that:
  • optical hand-shake correction by optical image stabilization (OIS) of a conventional optical system it is necessary to move (displace) the optical system or the imaging element in a direction orthogonal to the optical axis. Therefore, as shown in the optical system 2 of the present embodiment, only a part of the lens groups (second lens group) G2 among the plurality of lens groups G1, G2, and G3 constituting the optical system 2 are positioned relative to the optical axis C.
  • the structure that moves in the orthogonal direction can suppress the weight (that is, reduce the weight) of the unit that moves in the direction orthogonal to the optical axis C during OIS.
  • the above-mentioned formula stipulates the movement amount of the second lens group G2 when the second lens group G2 is moved in the orthogonal direction with respect to the optical axis C and the image direction generated by the movement of the second lens group G2 with respect to the optical axis.
  • the range of the ratio of the amount of movement of C in the orthogonal direction by using the calculation formula of the lateral magnification of the second lens group G2 at infinity focusing and the lateral magnification of the third lens group G3 at infinity focusing (( 1-b2) ⁇ b3) obtained.
  • the ratio (the value of the calculation formula) is less than the lower limit value (1.00)
  • the amount of movement of the image due to the movement of the second lens group G2 in the direction orthogonal to the optical axis C is small, so it is necessary to increase
  • the amount of movement of the second lens group G2 at the time of OIS (movement in the orthogonal direction) is large, so the load on the drive system becomes large, and the overall size of the optical system 2 and the imaging device 1 including the optical system 2 becomes small. difficulty.
  • the ratio (the value of the calculation formula) is greater than the upper limit value (1.90)
  • the amount of movement of the image due to the movement of the second lens group G2 in the direction perpendicular to the optical axis becomes large ( That is, it becomes sensitive), so it is difficult to ensure the accuracy of the stop position of the lens group G2 when the lens group G2 moves in the direction perpendicular to the optical axis C in the optical hand-shake correction.
  • the amount of movement of the second lens group G2 when the second lens group G2 moves in the direction perpendicular to the optical axis C and the amount of movement of the second lens group G2 due to the movement of the second lens group G2 The ratio of the amount of movement of the generated image with respect to the optical axis C in the orthogonal direction (the value of the calculation formula) is set within the range of the above formula, which can realize miniaturization and ensure that the lens group G2 is in the same position as the optical hand shake correction. It is a balance between the accuracy and difficulty of the stop position of the lens group G2 when moving in the direction perpendicular to the optical axis C.
  • the ratio (the value of the calculation formula) preferably satisfies:
  • the above formula specifies the range of the ratio (f1/f) of the focal length of the first lens group G1 to the focal length of the entire optical system 2 when focusing at infinity, when the ratio (f1/f) is less than the lower limit (-16.00) , the refractive power of the first lens group G1 becomes weak, and the negative refractive power on the object side becomes weak, so wide-angle widening becomes difficult.
  • the ratio (f1/f) is larger than the upper limit value (-1.80)
  • the power of the first lens group G1 becomes strong, so the lens sheet is increased for positive power at the second lens group G2 Therefore, it becomes difficult to reduce the thickness of the optical system 2 .
  • the optical system 2 of the present embodiment by setting the ratio (f1/f) of the focal length of the first lens group to the focal length of the entire optical system 2 at infinity within the range of the above formula, widening of the angle of view can be achieved. Balance with thinness.
  • the ratio (f1/f) preferably satisfies:
  • the optical system 2 includes an aperture stop (aperture device) 21 capable of changing the aperture diameter, and the aperture stop 21 is arranged between the first lens group G1 and the second lens group G2.
  • the size of the optical system 2 in the direction of the optical axis increases due to the thickness of the mechanism part.
  • the diaphragm 21 is disposed between the first lens group G1 and the second lens group G2 so that the diameter of the diaphragm of the optical system 2 can be changed and the thickness of the optical system 2 can be reduced.
  • the distance from the lens surface closest to the object side in the optical system 2 to the imaging element (that is, the imaging surface) 3 is set as OAL, it can satisfy:
  • the above formula defines the range of the ratio (OAL/f) of the distance from the lens surface closest to the object side of the optical system 2 to the imaging element 3 and the focal length of the optical system 2 as a whole when focusing at infinity.
  • f is less than the lower limit value (1.20)
  • the ratio (OAL/f) exceeds the upper limit (2.30) since the total optical length of the optical system 2 becomes long, it becomes difficult to reduce the thickness.
  • the ratio of the distance from the lens surface closest to the object side of the optical system 2 to the imaging element (imaging surface) 3 and the focal length of the entire optical system 2 when focusing at infinity is set within the range of the above formula, and a balance between high performance and thinning can be achieved.
  • the ratio (OAL/f) preferably satisfies:
  • the above formula specifies the amount of movement of the second lens group G2 when the second lens group G2 is moved in the direction of the optical axis C and the movement of the imaging position in the direction of the optical axis C due to the movement of the second lens group G2
  • the range of the amount ratio, the ratio is calculated by using the lateral magnification of the second lens group G2 when focusing at infinity and the lateral magnification of the third lens group G3 when focusing at infinity ((1-b2 2 ) ⁇ b3 2 ) to obtain.
  • the ratio (the value of the calculation formula) is less than the lower limit value (1.00), the amount of movement of the imaging position when the second lens group G2 is moved in the direction of the optical axis C becomes small (that is, becomes dull), so It is necessary to increase the amount of movement of the second lens group G2 during focusing, which makes it difficult to reduce the thickness of the optical system 2 .
  • the ratio (the value of the calculation formula) is greater than the upper limit value (1.70)
  • the amount of movement of the imaging position when the second lens group G2 is made movable in the direction of the optical axis C becomes larger (that is, becomes larger). is sensitive), so it is difficult to ensure the accuracy of the stop position of the second lens group G2 during focusing.
  • the amount of movement of the second lens group G2 when the second lens group G2 is moved in the direction of the optical axis C and the imaging position caused by the movement of the second lens group G2 The ratio of the amount of movement in the direction of the optical axis C is within the range of the above formula, and it is possible to achieve a balance between thinness and ease of securing the accuracy of the stop position of the second lens group G2 during focusing.
  • the ratio (the value of the calculation formula) preferably satisfies:
  • the above-mentioned first formula (1.50 ⁇ nd1 ⁇ 1.70) specifies the range of the refractive index (nd1) of at least one lens in the first lens group G1 on the line d, where the refractive index (nd1) is less than the lower limit value (1.50 ), since the refractive power of the first lens group G1 becomes weak, it is difficult to widen the angle.
  • the refractive index (nd1) exceeds the upper limit (1.70), performance degradation due to manufacturing errors becomes significant, making it difficult to improve performance.
  • the optical system 2 of the present embodiment by setting the refractive index (nd1) of at least one lens in the first lens group G1 on the line d to the above-mentioned first formula (1.50 ⁇ nd1 ⁇ 1.70), it is possible to Achieve a balance between wide-angle and high performance.
  • the refractive index (nd1) preferably satisfies:
  • the above-mentioned second formula (15.00 ⁇ vd1 ⁇ 60.00) specifies the range of the Abbe number (vd1) of at least one lens in the first lens group G1 based on the d-line, where the Abbe number (vd1) is less than
  • the limit value (15.00) increases the number of lenses to correct the axial chromatic aberration and lateral chromatic aberration of the first lens group G1
  • the Abbe's number (vd1) is greater than the upper limit (60.00), it becomes difficult to adjust the balance with the chromatic aberration correction of the other groups, and therefore it becomes difficult to increase the performance.
  • the optical system 2 of the present embodiment by setting the Abbe number based on the d-line of at least one lens in the first lens group G1 to the above-mentioned second formula (15.00 ⁇ vd1 ⁇ 60.00), it is possible to realize a thin profile. balance between modernization and high performance.
  • the Abbe number (vd1) preferably satisfies:
  • the above-mentioned first formula (1.50 ⁇ nd3 ⁇ 1.70) specifies the range of the refractive index (nd3) of at least one lens in the third lens group G3 on the line d, where the refractive index (nd3) is less than the lower limit value (1.50 ), since the power of the third lens group G3 becomes weak, widening the angle of view becomes difficult.
  • the refractive index (nd3) exceeds the upper limit (1.70), performance degradation due to manufacturing errors becomes significant, making it difficult to improve performance.
  • the optical system 2 of the present embodiment by setting the refractive index (nd3) of at least one lens in the third lens group G3 on the line d to the above-mentioned first formula (1.50 ⁇ nd3 ⁇ 1.70), it is possible to Achieve a balance between wide-angle and high performance.
  • the refractive index (nd3) preferably satisfies:
  • the above-mentioned second formula (15.00 ⁇ vd3 ⁇ 60.00) specifies the range of the Abbe number (vd3) of at least one lens in the third lens group G3 based on the d-line, where the Abbe number (vd3) is less than
  • the limit value (15.00) is used, the number of lenses is increased in order to correct the axial chromatic aberration and lateral chromatic aberration of the third lens group G3, so it becomes difficult to reduce the thickness of the optical system 2 .
  • the Abbe's number (vd3) is greater than the upper limit (60.00), it becomes difficult to adjust the balance with the chromatic aberration correction of the other groups, and therefore it becomes difficult to increase the performance.
  • the optical system 2 of the present embodiment by setting the range of Abbe's number (vd3) based on the d-line of at least one lens in the third lens group G3 to the above-mentioned second formula (15.00 ⁇ vd3 ⁇ 60.00 ), which can achieve a balance between thinness and high performance.
  • the Abbe number (vd3) preferably satisfies:
  • At least the first lens group G1 among the first lens group G1 , the second lens group G2 , and the third lens group G3 is configured to be movable toward the image side during non-photography.
  • the optical system 2 is arranged in the imaging device 1, and at least the first lens group G1 is moved toward the imaging element (image plane) 3 side during non-photography, so that the entire optical system 2 is accommodated in the imaging device main body 10 (i.e. , making it stretchable), thereby also realizing the thinning of the imaging device 1 .
  • the imaging device 1 configured as described above, it is possible to achieve a sufficient widening of the angle of view and reduction in thickness.
  • Examples 1 to 4 of the optical system of the present invention will be described.
  • the same reference numerals are used for the structures corresponding to the respective structures of the optical system of the above-mentioned embodiment.
  • r is the radius of curvature
  • d is the lens thickness or lens spacing
  • nd is the refractive index of the d-line
  • vd is the Abbe number based on the d-line.
  • an aspheric surface is defined by Formula 1 shown below.
  • each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion aberration (DIS (%)) in order from the left.
  • the vertical axis represents the F number (indicated by FNO in the figure)
  • the solid line is the characteristic of the d-line (d-line)
  • the short dashed line is the characteristic of the F-line (F-line)
  • the long dashed line is the C The characteristics of the line (C-line).
  • the vertical axis represents the maximum image height (indicated by Y in the figure)
  • the solid line is the characteristic of the sagittal plane (indicated by S in the figure)
  • the dotted line is the characteristic of the meridional plane (indicated by M in the figure).
  • the vertical axis represents the maximum image height (indicated by Y in the diagram).
  • Fig. 3 and Fig. 4 are lens structure diagrams of the optical system of the present embodiment 1, Fig. 3 shows the infinity focus state, and Fig. 4 shows the closest focus state.
  • symbol which shows each structure of an optical system is the same as the code
  • the positions of the first lens group and the third lens group on the optical axis with respect to the imaging element (image plane) are fixed.
  • FIG. 5 is a longitudinal aberration diagram in the infinity focusing state
  • FIG. 6 is a longitudinal aberration diagram in the closest focusing state.
  • Table 1 shows the surface data of each lens
  • Table 2 shows the aspheric surface
  • Data Table 3 shows various data
  • Table 4 shows lens group data.
  • the focal length is 8.480, and the maximum image height is 6.293.
  • FIG. 7 and 8 are lens structure diagrams of the optical system of the second embodiment, FIG. 7 shows the infinity focus state, and FIG. 8 shows the closest focus state.
  • symbol which shows each structure of an optical system is the same as the code
  • the positions of the first lens group and the third lens group on the optical axis with respect to the imaging element (image plane) are also fixed.
  • FIG. 9 is a longitudinal aberration diagram in the infinity focusing state
  • FIG. 10 is a longitudinal aberration diagram in the closest focusing state.
  • Table 5 shows the surface data of each lens
  • Table 6 shows the aspheric surface data.
  • Data Table 7 shows various data
  • Table 8 shows lens group data.
  • the focal length is 8.264, and the maximum image height is 6.324.
  • Fig. 11 and Fig. 12 are lens structure diagrams of the optical system of the third embodiment, Fig. 11 shows the infinity focus state, and Fig. 12 shows the closest focus state.
  • symbol which shows each structure of an optical system is the same as the code
  • the positions of the first lens group and the third lens group on the optical axis with respect to the imaging element (image plane) are also fixed.
  • FIG. 13 is a longitudinal aberration diagram in the infinity focusing state
  • FIG. 14 is a longitudinal aberration diagram in the closest focusing state.
  • Table 9 shows the surface data of each lens
  • Table 10 shows the aspheric surface data.
  • Data Table 11 shows various data
  • Table 12 shows lens group data.
  • the focal length is 8.417, and the maximum image height is 7.150.
  • FIG. 15 and FIG. 16 are lens configuration diagrams of the optical system of the third embodiment, FIG. 15 shows the infinity focus state, and FIG. 16 shows the closest focus state.
  • symbol which shows each structure of an optical system is the same as the code
  • the positions of the first lens group and the third lens group on the optical axis with respect to the imaging element (image plane) are also fixed.
  • FIG. 17 is a longitudinal aberration diagram in the infinity focusing state
  • FIG. 18 is a longitudinal aberration diagram in the closest focusing state.
  • Table 13 shows the surface data of each lens
  • Table 14 shows the aspheric surface data.
  • Data shows various data
  • Table 16 shows lens group data.
  • the focal length is 8.419, and the maximum image height is 7.150.
  • conditional formula (1) is f3/f
  • conditional formula (2) is b2
  • conditional formula (3) is OAL123/Y
  • conditional formula (4) is b3
  • conditional formula (5) is f2 /f
  • conditional formula (6) is (1-b2) ⁇ b3
  • conditional formula (7) is f1/f
  • conditional formula (8) is OAL/f
  • conditional formula (9) is (1-b2 2 ) ⁇ b3 2

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

本发明提供一种光学系统。该光学系统从物体侧向像侧依次具备:包括至少一个透镜并且具有负屈光度的第一透镜组、包括至少一个透镜并且具有正屈光度的第二透镜组、以及包括至少一个透镜并且具有负屈光度的第三透镜组,在调焦时,第一透镜组和第三透镜组在光轴上的与成像面的距离被固定,第二透镜组沿光轴移动。

Description

光学系统、以及具备光学系统的摄像装置 技术领域
本发明涉及具备多个透镜组的光学系统、以及具备该光学系统的摄像装置。
背景技术
以往,已知能够近距离摄像且能够广角化的光学系统(参照专利文献1以及专利文献2)。这些光学系统从物体侧向像侧沿着光轴依次均具备:具有负屈光度的第一透镜组、具有正弯曲力的第二透镜组、以及具有负弯曲力的第三透镜组。
然而,在专利文献1记载的光学系统和专利文献2记载的光学系统中,各组的倍率和焦距均不适当,不仅广角化不充分,而且光轴方向上的尺寸的小型化(薄型化)也不充分。
现有技术文献
专利文献
专利文献1:日本专利第5716569号公报
专利文献2:日本专利第6784950号公报
发明内容
发明要解决的问题
因此,本发明的课题在于,提供一种充分广角化且薄型化的光学系统、以及具备该光学系统的摄像装置。
用于解决问题的方案
本发明的光学系统,具备:
从物体侧向像侧依次具备:包括至少一个透镜并且具有负屈光度的第一透镜组、包括至少一个透镜并且具有正屈光度的第二透镜组、以及包括至少一个透镜并且具有负屈光度的第三透镜组;
在调焦时,所述第一透镜组以及所述第三透镜组在光轴上的与成像面的距离被固定,而所述第二透镜组沿所述光轴移动;
在将所述第二透镜组在无限远对焦时的横向倍率设为b2,将所述第三透镜组在无限远对焦时的横向倍率设为b3,将该光学系统整体在无限远对焦时的焦距设为f,将所述第二透镜组的焦距设为f2,将所述第三透镜组的焦距设为f3,将各透镜组中从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的合计值设为OAL123,将最大像高设为Y时,
所述光学系统满足以下公式(1)~(4)中的至少一个:
-1.20≤f3/f≤-0.10                                         …(1)
-0.40≤b2≤-0.06                                            …(2)
0.3≤OAL123/Y≤2.30并且1.00≤b3≤1.30                   …(3)
0.60≤f2/f≤0.90                                           …(4)。
在所述光学系统中,
所述第二透镜组构成为还能够在与所述光轴正交的方向上移动,可以满足:
1.00≤(1-b2)×b3≤1.90。
另外,在所述光学系统中,
在将所述第一透镜组的焦距设为f1时,可以满足:
-16.00≤f1/f≤-1.80。
另外,所述光学系统具备能够改变光圈直径的光圈装置,
该光圈装置可以配置在所述第一透镜组与所述第二透镜组之间。
另外,在所述光学系统中,
在将从该光学系统中最靠近物体侧的透镜面到成像面的距离设为OAL时,可以满足:
1.20≤OAL/f≤2.30。
另外,在所述光学系统中,可以满足:
1.00≤(1-b2 2)×b3 2≤1.70。
另外,在所述光学系统中,
在将所述第一透镜组中至少一个透镜在d线上的折射率设为nd1,并将所述第一透镜组中至少一个透镜的d线基准的阿贝数设为vd1时,可以满足:
1.50≤nd1≤1.70并且15.00≤vd1≤60.00。
另外,在所述光学系统中,
在将所述第三透镜组中至少一个透镜在d线上的折射率设为nd3,并将所述第三透镜组中至少一个透镜的d线基准的阿贝数设为vd3时,可以满足:
1.50≤nd3≤1.70并且15.00≤vd3≤60.00。
另外,在所述光学系统中,
所述第一透镜组,所述第二透镜组,以及所述第三透镜组中至少所述第一透镜组构成为在非摄影时能够向像侧移动。
另外,本发明的摄像装置,具备:
上述任一光学系统,以及
摄像元件,其配置于所述光学系统的成像面位置。
附图说明
图1是示出本实施方式的摄像装置的结构的示意图,是表示摄影状态的图。
图2是示出所述摄像装置的结构的示意图,是表示收容有光学系统的状态的图。
图3是实施例1的光学系统的无限远对焦状态下的透镜结构图。
图4是实施例1的光学系统的最近对焦状态下的透镜结构图。
图5是实施例1的光学系统的无限远对焦状态下的纵向像差图。
图6是实施例1的光学系统的最近对焦状态下的纵向像差图。
图7是实施例2的光学系统的无限远对焦状态下的透镜结构图。
图8是实施例2的光学系统的最近对焦状态下的透镜结构图。
图9是实施例2的光学系统的无限远对焦状态下的纵向像差图。
图10是实施例2的光学系统的最近对焦状态下的纵向像差图。
图11是实施例3的光学系统的无限远对焦状态下的透镜结构图。
图12是实施例3的光学系统的最近对焦状态下的透镜结构图。
图13是实施例3的光学系统的无限远对焦状态下的纵向像差图。
图14是实施例3的光学系统的最近对焦状态下的纵向像差图。
图15是实施例4的光学系统的无限远对焦状态下的透镜结构图。
图16是实施例4的光学系统的最近对焦状态下的透镜结构图。
图17是实施例4的光学系统的无限远对焦状态下的纵向像差图。
图18是实施例4的光学系统的最近对焦状态下的纵向像差图。
具体实施方式
以下参照附图对本发明的一个实施方式进行说明。
如图1和图2所示,本实施方式的摄像装置1具备:能够被伸缩容纳在摄像装置主体10中的光学系统2;摄像元件3,其配置于光学系统2的成像面位置;以及液晶显示屏4,其显示从摄像元件3发送的摄像(图像)数据。该摄像元件3是将由光学系统2形成的光学影像转换为电信号(摄像数据)的元件,本实施方式的摄像元件3是图像传感器。
光学系统2沿着光轴C从物体侧向像侧依次至少具有第一透镜组G1、第二透镜组G2、以及第三透镜组G3。这些各透镜组G1、G2、G3分别包括至少一个透镜。本实施方式的光学系统2沿着光轴C从物体侧向像侧依次具有第一透镜组G1、第二透镜组G2、第三透镜组G3、以及光学滤光片23。
另外,在本实施方式的光学系统2中,透镜组G1~G3是为了方便而命名的,也包括仅由一个光学元件(透镜等)构成的透镜组。即,第一~第三透镜组G1、G2、G3分别具有至少一个透镜等的光学元件。另外,在光学系统2中,在调焦时光轴C上的位置分别被固定的光学元件(透镜等)和移动的光学元件之间进行划分,将划分出的区域内的所述被固定的至少一个光学元件作为一个透镜组,并将划分出的区域内的所述移动的至少一个光学元件作为另一个透镜组。
另外,光学系统2具有孔径光阑(光圈装置)21和镜筒22,所述孔径光阑21配置在第一透镜组G1和第二透镜组G2之间,所述镜筒22保持第一透镜组G1和第二透镜组G2(参照图1)。该镜筒22在摄影时向物体侧延伸(参照图1),在不进行摄影时(非摄影时)被伸缩容纳在摄像装置主体(body等)中(参照图2)。
在该光学系统2中,在调焦时,第一透镜组G1和第三透镜组G3在光轴C上的摄像元件3(光学系统2的成像面)的距离被固定,第二透镜组G2沿光轴C移动。即,在本实施方式的光学系统2中,各透镜组G1、G2、G3中,第二透镜组G2构成对焦透镜组。
另外,在该光学系统2中,在伸缩容纳时,至少第一透镜组G1向像侧移动。本实施方式的光学系统2在伸缩容纳时,通过第一透镜组G1和第二透镜组G2分别向像侧移动,从而被伸缩容纳在摄像装置主体10中(图2参照)。此时,各透镜组G1~G3的移动和镜筒22的伸缩由以往公知的各种机构进行。
以下,对光学系统2中的各透镜组G1~G3进行详细说明。
第一透镜组G1包括一个透镜(光学元件),并且其具有负屈光度。另外,第二透镜组G2包括多个透镜(光学元件),并且其具有正曲率。另外,第三透镜组G3包括多个透镜(光学元件),并且其具有负屈光度。
其中,在将第二透镜组G2在无限远对焦时的横向倍率设为b2,将第三透镜组G3在无限远对焦时的横向倍率设为b3,将光学系统2整体在无限远对焦时的焦距设为f,将第二透镜组G2的焦距设为f2,将第三透镜组G3的焦距设为f3,将各透镜组G1、G2、G3中从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的合计值设为OAL123,并将最大像高设为Y时,光学系统2满足以下公式(1)~(4)中的至少一个:
-1.20≤f3/f≤-0.10                                         …(1)
-0.40≤b2≤-0.06                                            …(2)
0.3≤OAL123/Y≤2.30并且1.00≤b3≤1.30                  …(3)
0.60≤f2/f≤0.90                                           …(4)。
在该光学系统2中,由于在最靠近物体侧配置有具有负屈光度的第一透镜组G1,因此容易取得逆焦的光焦度配置,由此,能够通过缩短焦距来实现广角化。另外,由于在最靠近像侧配置有具有负屈光度的第三透镜组G3,因此容易取得长焦的光焦度配置,由此,能够通过缩短到第二透镜组G2的焦距来实现薄型化(光轴C方向上的尺寸的小型化)。
而且,在调焦时,通过使第二透镜组G2能够移动,调整与前后的组(第一透镜组G1、第三透镜组G3)的像差变动平衡,与整体伸出方式的光学系统相比,抑制了特写摄像时的像面弯曲变动,因此能够进一步缩短特写摄像距离。
而且,在调焦时,通过固定第一透镜组G1和第三透镜组G3在光轴C上的与摄像元件3(成像面)的距离,能够仅使第二透镜组G2在光轴C方向上移动,减小了致动器等对透镜组G2的移动机构的负荷,因此能够实现光学系统2的薄型化和小型化。
另外,在本实施方式的光学系统2中,通过满足公式(1),能够得到薄型化并且明亮的光学系统2。具体如下所示。
公式(1)规定了第三透镜组G3的焦距与光学系统2整体在无限远对焦时的焦距之比(f3/f)的范围,在该比率(f3/f)小于下限值(-1.20)时,第三透镜组G3的光焦度变弱,从而难以长焦化,因此无法缩短到第二透镜组G2的焦距,由此,薄型化不充分。另一方面,在该比率(f3/f)大于上限值(-0.10)时,第三透镜组G3的光焦度变强,从而薄型化变得容易,但由于最靠近像侧的组(第三透镜组)G3的负光焦度过强,因此难以构成明亮的(即,F数小的)光学系统2,成为暗的(即,F数大的)光学系统。因此,在本实施方式的光学系统2中,通过将第三透镜组G3的焦距与光学系统2整体在无限远对焦时的焦距之比(f3/f)设为公式(1)的范围,能够实现薄型化与明亮度的平衡。
另外,在本实施方式的光学系统2中,所述比率(f3/f)优选满足:
-1.10≤f3/f≤-0.50;
更优选满足:
-1.00≤f3/f≤-0.70。
另外,在本实施方式的光学系统2中,通过满足公式(2),能够得到薄型化并且广角化的光学系统2。具体如下所示。
公式(2)规定了第二透镜组G2在无限远对焦时的横向倍率(b2)的范围,在该横向倍率(b2)小于下限值(-0.40)时,难以缩短到第二透镜组G2的焦距,因此难以充分进行薄型化。另一方面,在该横向倍率(b2)大于上限值(-0.06)时,第一透镜组G1的光焦度变弱,因此难以广角化。因此,在本实施方式的光学系统2中,通过将第二透镜组G2在无限远对焦时的横向倍率(b2)设为公式(2)的范围,能够实现薄型化与广角化的平衡。
另外,在本实施方式的光学系统2中,所述横向倍率(b2)优选满足:
-0.38≤b2≤-0.10;
更优选满足:
-0.36≤b2≤-0.15。
另外,在本实施方式的光学系统2中,通过满足公式(3),能够得到高性能化、薄型化、并且明亮 的光学系统2。具体如下所示。
公式(3)的第一个公式(0.3≤OAL123/Y≤2.30)规定了各透镜组G1、G2、G3中从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的合计值与最大像高之比(OAL123/Y)的范围,在该比率(OAL123/Y)小于下限值(0.3)时,各透镜组G1、G2、G3的厚度均过薄(即,在光轴C方向上的尺寸过小),像差修正变得困难,因此高性能化变得困难。另一方面,在该比率(OAL123/Y)大于上限值(2.30)时,各透镜组G1、G2、G3的厚度均过厚(即,在光轴C方向上的尺寸过大),因此难以薄型化。因此,在本实施方式的光学系统2中,将各透镜组G1、G2、G3中从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的合计值与最大像高之比(OAL123/Y)设为公式(3)的第一个公式(0.3≤OAL123/Y≤2.30),能够实现高性能化与薄型化的平衡。
另外,各透镜组G1、G2、G3中从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的合计值是指第一透镜组G1的从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离、第二透镜组G2的从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离、以及第三透镜组G3的从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的和。
另外,在本实施方式的光学系统2中,所述比率(OAL123/Y)优选满足:
0.50≤OAL123/Y≤2.00;
更优选满足:
0.80≤OAL123/Y≤1.80。
另外,公式(3)的第二个公式(1.00≤b3≤1.30)规定了第三透镜组G3在无限远对焦时的横向倍率(b3)的范围,在该横向倍率(b3)小于下限值(1.00)时,难以缩短到第二透镜组G2的焦距,因此难以充分薄型化。另一方面,在该横向倍率(b3)大于上限值(1.30)时,第三透镜组G3的光焦度变强,从而薄型化变得容易,但最靠近像侧的组(第三透镜组)G3的负光焦度过强,因此难以构成明亮的(即,F数小的)光学系统2,成为暗的(即,F数大的)光学系统。因此,在本实施方式的光学系统2中,通过将第三透镜组G3在无限远对焦时的横向倍率(b3)设为公式(3)的第二个公式(1.00≤b3≤1.30),能够实现薄型化与明亮度的平衡。
另外,在本实施方式的光学系统2中,所述横向倍率(b3)优选满足:
1.05≤b3≤1.26;
更优选满足:
1.10≤b3≤1.24。
另外,在本实施方式的光学系统2中,通过满足公式(4),能够得到高性能化并且薄型化的光学系统2。具体如下所示。
公式(4)规定了第二透镜组G2的焦距与光学系统2整体在无限远对焦时的焦距之比(f2/f)的范围,在该比率(f2/f)小于下限值(0.60)时,第二透镜组G2的光焦度变强,像差修正变得困难,因此高性能化变得困难。另一方面,在该比率(f2/f)大于上限值(0.90)时,第二透镜组G2的光焦度变弱,光学系统2整体中的正光焦度变弱,因此光学系统2的薄型化变得困难。因此,在本实施方式的光学系统2中,通过将第二透镜组G2的焦距与光学系统2整体在无限远对焦时的焦距之比(f2/f)设为公式(4)的范围,能够实现高性能化与薄型化的平衡。
另外,在本实施方式的光学系统2中,所述比率(f2/f)优选满足:
0.70≤f2/f≤0.85;
更优选满足:
0.75≤f2/f≤0.80。
另外,在光学系统2中,第二透镜组G2构成为在光学手抖动修正时也能够在与光轴C正交的方向上移动,可以满足:
1.00≤(1-b2)×b3≤1.90。
根据该构成,能够得到在光学手抖动修正中容易保证透镜组G2在与光轴C正交的方向上移动时的停止位置的精度,并且小型化的光学系统2。具体如下所示。
在由现有的光学系统的光学防抖(OIS)进行的光学手抖动修正中,需要使光学系统或摄像元件相对于光轴在正交方向上移动(位移)。因此,通过设为如本实施方式的光学系统2所示的仅使构成该光学系统2的多个透镜组G1、G2、G3中的一部分透镜组(第二透镜组)G2相对于光轴C在正交方向上移动的结构,能够抑制在OIS时在与光轴C正交的方向上移动的单元的重量(即,轻量化)。由此,抑制了驱动所述单元的驱动系统的负荷,其结果是,能够实现光学系统2和具有该光学系统2的摄像装置1的小型化。另外,在将该光学系统2应用于具有大型的摄像元件3的摄像装置1中时,能够显著地获得该效果。
另外,上述公式规定了使第二透镜组G2相对于光轴C在正交方向上移动时的第二透镜组G2的移动量与因第二透镜组G2的移动而产生的像向对于光轴C在正交方向上的移动量之比的范围,该比通过使用第二透镜组G2在无限远对焦时的横向倍率和第三透镜组G3在无限远对焦时的横向倍率的计算公式((1-b2)×b3)求得。在该比(所述计算公式的值)小于下限值(1.00)时,因第二透镜组G2相对于光轴C在正交方向上的移动而产生的像的移动量小,因此需要增大OIS时的第二透镜组G2的移动量(所述正交方向上的移动),因此驱动系统的负荷变大,光学系统2和具备该光学系统2的摄像装置1整体的小型化变得困难。另一方面,在该比(所述计算公式的值)大于上限值(1.90)时,因第二透镜组G2相对于光轴在正交方向上的移动而产生的像的移动量变大(即,变得敏感),因此在光学手抖动修正中难以保证透镜组G2在与光轴C正交的方向上移动时的该透镜组G2的停止位置的精度。因此,在本实施方式的光学系统2中,通过将第二透镜组G2相对于光轴C在正交方向上移动时的第二透镜组G2的移动量与因第二透镜组G2的移动而产生的像相对于光轴C在正交方向上的移动量之比(所述计算公式的值)设为上述公式的范围,能够实现小型化与在光学手抖动修正中保证透镜组G2在与光轴C正交的方向上移动时的该透镜组G2的停止位置的精度的难易度的平衡。
另外,在本实施方式的光学系统2中,所述比(所述计算公式的值)优选满足:
1.15≤(1-b2)×b3≤1.80;
更优选满足:
1.30≤(1-b2)×b3≤1.70。
另外,在光学系统2中,在将第一透镜组G1的焦距设为f1时,可以满足:
-16.00≤f1/f≤-1.80。
根据该构成,能够得到广角化并且薄型化的光学系统2。具体如下所示。
上述公式规定了第一透镜组G1的焦距与光学系统2整体在无限远对焦时的焦距之比(f1/f)的范围,在该比率(f1/f)小于下限值(-16.00)时,第一透镜组G1的光焦度变弱,物体侧的负光焦度变弱,因此广角化变得困难。另一方面,在该比率(f1/f)大于上限值(-1.80)时,第一透镜组G1的光焦度变强,因此为了第二透镜组G2处的正光焦度而增加透镜片数,由此,光学系统2的薄型化变得困难。因此,在本实施方式的光学系统2中,通过将第一透镜组的焦距与光学系统2整体在无限远对焦时的焦距之比(f1/f)设为上述公式的范围,能够实现广角化与薄型化的平衡。
另外,在本实施方式的光学系统2中,所述比率(f1/f)优选满足:
-10.00≤f1/f≤-2.00;
更优选满足:
-6.00≤f1/f≤-2.20。
另外,光学系统2具备能够改变光圈直径的孔径光阑(光圈装置)21,该孔径光阑21配置在第一透镜组G1与第二透镜组G2之间。
在第一透镜组G1的物体侧配置有孔径光阑(iris)21时,因该机构部分的厚度,光学系统2在光轴方向上的尺寸增大,但如上述结构所示,通过将孔径光阑21配置在第一透镜组G1与第二透镜组G2之间而使光学系统2的光圈直径能够改变,能够实现光学系统2的薄型化。
另外,在光学系统2中,在将从该光学系统2中最靠近物体侧的透镜面到摄像元件(即,成像面)3的距离设为OAL时,可以满足:
1.20≤OAL/f≤2.30。
根据该构成,能够得到高性能化并且薄型化的光学系统2。具体如下所示。
上述公式规定了从光学系统2的最靠近物体侧的透镜面到摄像元件3的距离与光学系统2整体在无限远对焦时的焦距之比(OAL/f)的范围,在该比率(OAL/f)小于下限值(1.20)时,光学系统2的光学全长变短,像差修正变得困难,因此高性能化变得困难。另一方面,在该比率(OAL/f)大于上限值(2.30)时,光学系统2的光学全长变长,因此难以薄型化。因此,在本实施方式的光学系统2中,通过将从光学系统2的最靠近物体侧的透镜面到摄像元件(成像面)3的距离与光学系统2整体在无限远对焦时的焦距之比(OAL/f)设为上述公式的范围,能够实现高性能化与薄型化的平衡。
另外,在本实施方式的光学系统2中,所述比率(OAL/f)优选满足:
1.35≤OAL/f≤2.10;
更优选满足:
1.50≤OAL/f≤1.90。
另外,在光学系统2中,可以满足:
1.00≤(1-b2 2)×b3 2≤1.70。
根据该构成,能够得到薄型化并且容易保证在调焦时第二透镜组G2的停止位置的精度的光学系统 2。具体如下所示。
上述公式规定了在使第二透镜组G2在光轴C方向上移动时的第二透镜组G2的移动量和因第二透镜组G2的移动而产生的成像位置在光轴C方向上的移动量之比的范围,该比通过使用第二透镜组G2在无限远对焦时的横向倍率和第三透镜组G3在无限远对焦时的横向倍率的计算公式((1-b2 2)×b3 2)求得。在该比(所述计算公式的值)小于下限值(1.00)时,使第二透镜组G2在光轴C方向上移动时的成像位置的移动量变小(即,变得迟钝),因此需要增大调焦时的第二透镜组G2的移动量,由此,光学系统2的薄型化变得困难。另一方面,在该比(所述计算公式的值)大于上限值(1.70)时,使第二透镜组G2在光轴C方向上可动时的成像位置的移动量变大(即,变得敏感),因此难以保证调焦时第二透镜组G2的停止位置的精度。因此,在本实施方式的光学系统2中,通过将第二透镜组G2在光轴C方向上移动时的第二透镜组G2的移动量与因第二透镜组G2的移动而产生的成像位置在光轴C方向上的移动量之比设为上述公式的范围,能够实现薄型化和保证调焦时第二透镜组G2的停止位置的精度的难易度的平衡。
另外,在本实施方式的光学系统2中,所述比(所述计算公式的值)优选满足:
1.10≤(1-b2 2)×b3 2≤1.60;
更优选满足:
1.20≤(1-b2 2)×b3 2≤1.50。
另外,在光学系统2中,在将第一透镜组G1中的至少一个透镜在d线上的折射率设为nd1,并将第一透镜组G1中的至少一个透镜的d线基准的阿贝数设为vd1时,可以满足:
1.50≤nd1≤1.70并且15.00≤vd1≤60.00。
根据该构成,能够得到广角化、高性能化、并且薄型化的光学系统2。具体如下所示。
上述第一个公式(1.50≤nd1≤1.70)规定了第一透镜组G1中的至少一个透镜在d线上的折射率(nd1)的范围,在该折射率(nd1)小于下限值(1.50)时,第一透镜组G1的光焦度变弱,因此难以广角化。另一方面,在该折射率(nd1)大于上限值(1.70)时,制造时的误差导致性能下降变得显著,因此高性能化变得困难。因此,在本实施方式的光学系统2中,通过将第一透镜组G1中的至少一个透镜在d线上的折射率(nd1)设为上述第一个公式(1.50≤nd1≤1.70),能够实现广角化与高性能化的平衡。
另外,在本实施方式的光学系统2中,所述折射率(nd1)优选满足:
1.54≤nd1≤1.69;
更优选满足:
1.57≤nd1≤1.68。
另外,上述第二个公式(15.00≤vd1≤60.00)规定了第一透镜组G1中的至少一个透镜的d线基准的阿贝数(vd1)的范围,在该阿贝数(vd1)小于下限值(15.00)时,为了修正第一透镜组G1的轴向色差和倍率色差而增加透镜片数,因此光学系统2的薄型化变得困难。另一方面,在该阿贝数(vd1)大于上限值(60.00)时,与其他组的色差修正的平衡调整变得困难,因此高性能化变得困难。因此,在本实施方式的光学系统2中,通过将第一透镜组G1中的至少一个透镜的d线基准的阿贝数设为上述第二个公式(15.00≤vd1≤60.00),能够实现薄型化与高性能化的平衡。
另外,在本实施方式的光学系统2中,所述阿贝数(vd1)优选满足:
18.00≤vd1≤57.00;
更优选满足:
19.00≤vd1≤38.00。
另外,在光学系统2中,在将第三透镜组G3中的至少一个透镜在d线上的折射率设为nd3,并将第三透镜组G3中的至少一个透镜的d线基准的阿贝数设为vd3时,可以满足:
1.50≤nd3≤1.70并且15.00≤vd3≤60.00。
根据该构成,能够得到广角化、高性能化、并且薄型化的光学系统2。具体如下所示。
上述第一个公式(1.50≤nd3≤1.70)规定了第三透镜组G3中的至少一个透镜在d线上的折射率(nd3)的范围,在该折射率(nd3)小于下限值(1.50)时,第三透镜组G3的光焦度变弱,因此广角化变得困难。另一方面,在该折射率(nd3)大于上限值(1.70)时,制造时的误差导致性能下降变得显著,因此高性能化变得困难。因此,在本实施方式的光学系统2中,通过将第三透镜组G3中的至少一个透镜在d线上的折射率(nd3)设为上述第一个公式(1.50≤nd3≤1.70),能够实现广角化与高性能化的平衡。
另外,在本实施方式的光学系统2中,所述折射率(nd3)优选满足:
1.54≤nd3≤1.69;
更优选满足:
1.57≤nd3≤1.68。
另外,上述第二个公式(15.00≤vd3≤60.00)规定了第三透镜组G3中的至少一个透镜的d线基准的阿贝数(vd3)的范围,在该阿贝数(vd3)小于下限值(15.00)时,为了修正第三透镜组G3的轴向色差和倍率色差而增加透镜片数,因此光学系统2的薄型化变的困难。另一方面,在该阿贝数(vd3)大于上限值(60.00)时,与其他组的色差修正的平衡调整变得困难,因此高性能化变得困难。因此,在本实施方式的光学系统2中,通过将第三透镜组G3中的至少一个透镜的d线基准的阿贝数(vd3)的范围设为上述第二个公式(15.00≤vd3≤60.00),能够实现薄型化与高性能化的平衡。
另外,在本实施方式的光学系统2中,所述阿贝数(vd3)优选满足:
18.00≤vd3≤57.00;
更优选满足:
19.00≤vd3≤38.00。
另外,在光学系统2中,第一透镜组G1、第二透镜组G2、以及第三透镜组G3中至少第一透镜组G1构成为在非摄影时能够向像侧移动。
因此,在非摄影时,通过使至少第一透镜组G1(在本实施方式的光学系统2中,第一透镜组G1和第二透镜组G2)向摄像元件(像面)3侧移动,能够进一步薄型化。另外,该光学系统2配置于摄像装置1,在非摄影时使至少第一透镜组G1向摄像元件(像面)3侧移动,以使该光学系统2整体容纳在摄像装置主体10内(即,使其伸缩),从而还实现了摄像装置1的薄型化。
根据如上构成的摄像装置1,能够实现充分的广角化和薄型化。
接着,对本发明的光学系统的实施例1~4进行说明。在以下的各实施例中,对与上述实施方式的光学系统的各结构对应结构使用相同的附图标记。另外,在以下的各实施例中的表中,r是曲率半径,d是透镜厚度或透镜间隔,nd是d线的折射率,vd表示d线基准的阿贝数。另外,非球面由以下所示的公式1定义。
公式1
z=ch 2/[1+{1-(1+k)c 2h 2} 1/2]A4h 4+A6h 6+A8h 8+A10h 10
(其中,c是曲率(1/r),h是距离光轴的高度(距离),k是圆锥系数,A4、A6、A8、A10…是各次数的非球面系数。)
另外,各纵向像差图从左侧依次示出了球面像差(SA(mm))、像散(AST(mm))、畸变像差(DIS(%))。在球面像差图中,纵轴表示F数(图中用FNO表示),实线是d线(d-line)的特性,短虚线是F线(F-line)的特性,长虚线是C线(C-line)的特性。在像散图中,纵轴表示最大像高(图中用Y表示),实线是弧矢平面(图中用S表示)的特性,虚线是子午平面(图中用M表示)的特性。在畸变像差图中,纵轴表示最大像高(图中用Y表示)。
实施例1
图3和图4是本实施例1的光学系统的透镜结构图,图3表示无限远对焦状态,图4表示最近对焦状态。另外,表示光学系统的各结构的附图标记与上述实施方式的光学系统2的对应的结构的附图标记相同。另外,在该光学系统中,在调焦时,第一透镜组和第三透镜组相对于摄像元件(像面)的在光轴上的位置被固定。
另外,图5是无限远对焦状态下的纵向像差图,图6是最近对焦状态下的纵向像差图,下述的表1示出了各透镜的面数据,表2示出了非球面数据,表3示出了各种数据,表4示出了透镜组数据。
表1
(表1)面数据
面编号 r d nd vd  
1* 19.169 0.500 1.5731 37.65  
2* 8.520 0.398      
3 d3     (孔径光阑)
4* 7.134 1.051 1.5445 55.96  
5* -30.682 0.100      
6* 45.330 1.512 1.5445 55.96  
7* -9.064 0.100      
8* 4.372 0.500 1.6714 19.27  
9* 2.742 1.037      
10* 41.560 1.455 1.5445 55.96  
11* -6.627 d11      
12* -4.298 0.847 1.5731 37.65  
13* -59.840 0.400      
14 0.300 1.5168 64.20  
15 0.100      
*是非球面
表2
Figure PCTCN2021128002-appb-000001
表3
(表3)各种数据
物体距离 100.000
F数 1.440 1.545
半视角 41.111 37.996
透镜全长 14.163 14.163
d3 1.660 1.064
d11 4.203 4.799
焦距为8.480,最大像高为6.293。
表4
(表4)透镜组数据
起始面 焦距 透镜构成长度 透镜移动量 倍率
1 1 -27.226 0.898 0.000 0.000
2 4 6.571 5.755 0.596 -0.269
3 12 -8.125 0.847 0.000 1.156
实施例2
图7和图8是本实施例2的光学系统的透镜结构图,图7表示无限远对焦状态,图8表示最近对焦状态。另外,表示光学系统的各结构的附图标记与上述实施方式的光学系统2的对应的结构的附图标记相同。另外,在该光学系统中,在调焦时,第一透镜组和第三透镜组相对于摄像元件(像面)的在光轴上的位置也被固定。
另外,图9是无限远对焦状态下的纵向像差图,图10是最近对焦状态下的纵向像差图,下述的表5示出了各透镜的面数据,表6示出了非球面数据,表7示出了各种数据,表8示出了透镜组数据。
表5
(表5)面数据
面编号 r d nd vd  
1* 100.000 0.500 1.5731 37.65  
2* 14.838 0.416      
3* 10.417 0.532 1.5445 55.96  
4* 7.669 0.315      
5 d5     (孔径光阑)
6* 8.588 1.335 1.5445 55.96  
7* -10.522 0.211      
8* 30.812 1.538 1.5445 55.96  
9* -8.191 0.100      
10* 5.114 0.516 1.6714 19.27  
11* 3.092 1.799      
12* -61.079 1.791 1.5445 55.96  
13* -5.480 d13      
14* -5.139 1.011 1.5880 28.42  
15* 16.915 0.536      
16 0.300 1.5168 64.20  
17 0.100      
*是非球面
表6
Figure PCTCN2021128002-appb-000002
表7
(表7)各种数据
物体距离 100.000
F数 1.440 1.539
半视角 41.993 38.595
透镜全长 15.000 15.000
d5 1.154 0.583
d13 2.846 3.417
焦距为8.264,最大像高为6.324。
表8
(表8)透镜组数据
起始面 焦距 透镜构成长度 透镜移动量 倍率
1 1 -19.499 1.763 0.000 0.000
2 6 6.278 7.290 0.571 -0.354
3 14 -6.591 1.011 0.000 1.198
实施例3
图11和图12是本实施例3的光学系统的透镜结构图,图11表示无限远对焦状态,图12表示最近对焦状态。另外,表示光学系统的各结构的附图标记与上述实施方式的光学系统2的对应的结构的附图标记相同。另外,在该光学系统中,在调焦时,第一透镜组和第三透镜组相对于摄像元件(像面)的在光轴上的位置也被固定。
另外,图13是无限远对焦状态下的纵向像差图,图14是最近对焦状态下的纵向像差图,下述的表9示出了各透镜的面数据,表10示出了非球面数据,表11示出了各种数据,表12示出了透镜组数据。
表9
(表9)面数据
面编号 r d nd vd  
1* 11.315 0.400 1.6714 19.27 (孔径光阑)
2* 7.991 d2      
3* 8.664 0.633 1.5445 55.96  
4* -108.143 0.108      
5* -83.676 1.365 1.5445 55.96  
6* -5.866 0.100      
7* 3.991 0.598 1.6714 19.27  
8* 2.805 1.671      
9* -34.161 1.435 1.5445 55.96  
10* -5.123 d10      
11* -6.400 1.040 1.6362 23.91  
12* 13.389 0.550      
13 0.300 1.5168 64.20  
14 0.100      
表10
Figure PCTCN2021128002-appb-000003
表11
(表11)各种数据
物体距离 120.000
F数 1.950 2.036
半视角 40.999 39.061
透镜全长 12.742 12.742
d2 1.219 0.783
d10 3.222 3.658
焦距为8.417,最大像高为7.150。
表12
(表12)透镜组数据
起始面 焦距 透镜构成长度 透镜移动量 倍率
1 1 -42.573 0.400 0.000 0.000
2 3 6.522 5.911 0.436 -0.166
3 11 -6.671 1.040 0.000 1.188
实施例4
图15和图16是本实施例3的光学系统的透镜结构图,图15表示无限远对焦状态,图16表示最近对焦状态。另外,表示光学系统的各结构的附图标记与上述实施方式的光学系统2的对应的结构的附图标记相同。另外,在该光学系统中,在调焦时,第一透镜组和第三透镜组相对于摄像元件(像面)的在光轴上的位置也被固定。
另外,图17是无限远对焦状态下的纵向像差图,图18是最近对焦状态下的纵向像差图,下述的表13示出了各透镜的面数据,表14示出了非球面数据,表15示出了各种数据,表16示出了透镜组数据。
表13
(表13)面数据
面编号 r d nd vd  
1* 12.754 0.402 1.6714 19.27 (孔径光阑)
2* 8.581 d2      
3* 8.521 0.654 1.5445 55.96  
4* -146.190 0.137      
5* -82.877 1.395 1.5445 55.96  
6* -5.850 0.100      
7* 4.008 0.616 1.6714 19.27  
8* 2.857 1.722      
9* -36.337 1.518 1.5445 55.96  
10* -5.055 d10      
11* -6.578 0.600 1.6362 23.91  
12* -40.621 0.174      
13* -13.896 0.600 1.6714 19.27  
14* 42.060 0.505      
15 0.300 1.5168 64.20  
16 0.100      
*是非球面
表14
Figure PCTCN2021128002-appb-000004
表15
(表15)各种数据
物体距离 120.000
F数 1.950 2.027
半视角 40.996 39.132
透镜全长 13.040 13.040
d2 1.359 0.945
d10 2.858 3.272
焦距为8.419,最大像高为7.150。
表16
(表16)透镜组数据
起始面 焦距 透镜构成长度 透镜移动量 倍率
1 1 -40.268 0.402 0.000 0.000
2 3 6.430 6.142 0.414 -0.172
3 11 -6.669 1.374 0.000 1.215
在以上的实施例1~4中,上述实施方式的各条件所对应的值如下述的表17所示。
另外,在表17中,条件公式(1)为f3/f,条件公式(2)为b2,条件公式(3)为OAL123/Y,条件公式(4)为b3,条件公式(5)为f2/f,条件公式(6)为(1-b2)×b3,条件公式(7)为f1/f,条件公式(8)为OAL/f,条件公式(9)为(1-b2 2)×b3 2,条件公式(10)为nd1,条件公式(11)为vd1,条件公式(12)为nd3,条件公式(13)为vd3。
表17
(表17)条件式对应值
Figure PCTCN2021128002-appb-000005
虽然为了表现本发明,在上述中参照附图通过实施方式适当且充分地对本发明进行了说明,但是本领域技术人员应该认识到,变更和/或改良上述实施方式是容易实现的。因此,只要本领域技术人员实施的变更方式或改良方式不是脱离权利要求书中记载的权利要求范围的水平,则可以解释为该变更方式或该改良方式被包括在该权利要求范围内。
附图标记说明
1:摄像装置
2:光学系统
21:孔径光阑(光圈装置)
22:镜筒
23:光学滤光片
3:摄像元件
4:液晶显示屏
10:摄像装置主体
C:光轴
F:对焦透镜组
G1:第一透镜组
G2:第二透镜组
G3:第三透镜组

Claims (10)

  1. 一种光学系统,其特征在于,
    从物体侧向像侧依次具备:包括至少一个透镜并且具有负屈光度的第一透镜组、包括至少一个透镜并且具有正屈光度的第二透镜组、以及包括至少一个透镜并且具有负屈光度的第三透镜组,
    在调焦时,所述第一透镜组和所述第三透镜组在光轴上的与成像面的距离被固定,所述第二透镜组沿所述光轴移动,
    在将所述第二透镜组在无限远对焦时的横向倍率设为b2,将所述第三透镜组在无限远对焦时的横向倍率设为b3,将该光学系统整体在无限远对焦时的焦距设为f,将所述第二透镜组的焦距设为f2,将所述第三透镜组的焦距设为f3,将各透镜组中从最靠近物体侧的透镜面到最靠近像侧的透镜面的距离的合计值设为OAL123,并将最大像高设为Y时,
    满足以下公式(1)~(4)中的至少一个:
    -1.20≤f3/f≤-0.10                            …(1)
    -0.40≤b2≤-0.06                               …(2)
    0.3≤OAL123/Y≤2.30并且1.00≤b3≤1.30          …(3)
    0.60≤f2/f≤0.90                              …(4)。
  2. 根据权利要求1所述的光学系统,其特征在于,
    所述第二透镜组构成为还能够在与所述光轴正交的方向上移动,并满足:
    1.00≤(1-b2)×b3≤1.90。
  3. 根据权利要求1所述的光学系统,其特征在于,
    在将所述第一透镜组的焦距设为f1时,满足:
    -16.00≤f1/f≤-1.80。
  4. 根据权利要求1所述的光学系统,其特征在于,
    具备能够改变光圈直径的光圈装置,
    该光圈装置配置在所述第一透镜组与所述第二透镜组之间。
  5. 根据权利要求1所述的光学系统,其特征在于,
    在将从该光学系统中最靠近物体侧的透镜面到成像面的距离设为OAL时,满足:
    1.20≤OAL/f≤2.30。
  6. 根据权利要求1所述的光学系统,其特征在于,
    满足:
    1.00≤(1-b2 2)×b3 2≤1.70。
  7. 根据权利要求1所述的光学系统,其特征在于,
    在将所述第一透镜组中至少一个透镜在d线上的折射率设为nd1,并将所述第一透镜组中至少一个透镜的d线基准的阿贝数设为vd1时,满足:
    1.50≤nd1≤1.70并且15.00≤vd1≤60.00。
  8. 根据权利要求1所述的光学系统,其特征在于,
    在将所述第三透镜组中至少一个透镜在d线上的折射率设为nd3,并将所述第三透镜组中至少一个透镜的d线基准的阿贝数设为vd3时,满足:
    1.50≤nd3≤1.70并且15.00≤vd3≤60.00。
  9. 根据权利要求1所述的光学系统,其特征在于,
    所述第一透镜组、所述第二透镜组、以及所述第三透镜组中至少所述第一透镜组构成为在非摄影时能够向像侧移动。
  10. 一种摄像装置,其特征在于,具备:
    权利要求1~9中任一项所述的光学系统,以及
    摄像元件,其配置于所述光学系统的成像面位置。
PCT/CN2021/128002 2021-11-01 2021-11-01 光学系统、以及具备光学系统的摄像装置 WO2023070681A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021573543A JP7510960B2 (ja) 2021-11-01 2021-11-01 光学系、及び光学系を備えた撮像装置
CN202180003578.0A CN116583773A (zh) 2021-11-01 2021-11-01 光学系统、以及具备光学系统的摄像装置
PCT/CN2021/128002 WO2023070681A1 (zh) 2021-11-01 2021-11-01 光学系统、以及具备光学系统的摄像装置
KR1020237038225A KR20230162716A (ko) 2021-11-01 2021-11-01 광학 시스템, 및 광학 시스템을 구비한 촬영 장치
US18/288,559 US20240210666A1 (en) 2021-11-01 2021-11-01 Optical system and camera device having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128002 WO2023070681A1 (zh) 2021-11-01 2021-11-01 光学系统、以及具备光学系统的摄像装置

Publications (1)

Publication Number Publication Date
WO2023070681A1 true WO2023070681A1 (zh) 2023-05-04

Family

ID=86159926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128002 WO2023070681A1 (zh) 2021-11-01 2021-11-01 光学系统、以及具备光学系统的摄像装置

Country Status (5)

Country Link
US (1) US20240210666A1 (zh)
JP (1) JP7510960B2 (zh)
KR (1) KR20230162716A (zh)
CN (1) CN116583773A (zh)
WO (1) WO2023070681A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226691A (ja) * 2003-01-23 2004-08-12 Seiko Precision Inc 変倍レンズ
JP2005077692A (ja) * 2003-08-29 2005-03-24 Kyocera Corp 変倍撮像レンズ
JP2006039174A (ja) * 2004-07-27 2006-02-09 Fujinon Corp ズームレンズ
CN101344636A (zh) * 2007-07-12 2009-01-14 奥林巴斯映像株式会社 三单元变焦透镜系统和利用其的图像拾取装置
US20140009841A1 (en) * 2012-07-09 2014-01-09 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP5749629B2 (ja) 2011-11-01 2015-07-15 株式会社タムロン インナーフォーカス式望遠レンズ
CN113267876A (zh) * 2020-01-29 2021-08-17 富士胶片株式会社 成像镜头及摄像装置
CN113341536A (zh) * 2020-02-18 2021-09-03 富士胶片株式会社 成像镜头及摄像装置
JP2021173847A (ja) 2020-04-23 2021-11-01 富士フイルム株式会社 撮像レンズおよび撮像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322796A (ja) 2002-05-07 2003-11-14 Canon Inc ズームレンズ及びそれを有する光学機器
JP2011227362A (ja) 2010-04-22 2011-11-10 Konica Minolta Opto Inc 像シフト可能な撮像レンズ,撮像光学装置及びデジタル機器
JP5716569B2 (ja) 2011-06-23 2015-05-13 株式会社リコー 結像レンズ、カメラ装置および携帯情報端末装置
JP5788257B2 (ja) 2011-07-28 2015-09-30 株式会社シグマ 結像光学系
JP6784950B2 (ja) 2016-02-29 2020-11-18 株式会社ニコン 光学系及び光学機器
JP6689771B2 (ja) 2017-03-01 2020-04-28 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6942098B2 (ja) 2018-07-26 2021-09-29 富士フイルム株式会社 撮像レンズおよび撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226691A (ja) * 2003-01-23 2004-08-12 Seiko Precision Inc 変倍レンズ
JP2005077692A (ja) * 2003-08-29 2005-03-24 Kyocera Corp 変倍撮像レンズ
JP2006039174A (ja) * 2004-07-27 2006-02-09 Fujinon Corp ズームレンズ
CN101344636A (zh) * 2007-07-12 2009-01-14 奥林巴斯映像株式会社 三单元变焦透镜系统和利用其的图像拾取装置
JP5749629B2 (ja) 2011-11-01 2015-07-15 株式会社タムロン インナーフォーカス式望遠レンズ
US20140009841A1 (en) * 2012-07-09 2014-01-09 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
CN113267876A (zh) * 2020-01-29 2021-08-17 富士胶片株式会社 成像镜头及摄像装置
CN113341536A (zh) * 2020-02-18 2021-09-03 富士胶片株式会社 成像镜头及摄像装置
JP2021173847A (ja) 2020-04-23 2021-11-01 富士フイルム株式会社 撮像レンズおよび撮像装置

Also Published As

Publication number Publication date
US20240210666A1 (en) 2024-06-27
JP2023550851A (ja) 2023-12-06
CN116583773A (zh) 2023-08-11
KR20230162716A (ko) 2023-11-28
JP7510960B2 (ja) 2024-07-04

Similar Documents

Publication Publication Date Title
US9274326B2 (en) Zoom lens system, imaging device and camera
US7715121B2 (en) Optical system and optical apparatus including optical system
US8339501B2 (en) Zoom lens system, imaging device and camera
US8427756B2 (en) Zoom lens system, imaging device and camera
US8462440B2 (en) Optical system and optical apparatus having the same
US8379317B2 (en) Zoom lens system, imaging device and camera
US8169720B2 (en) Rear focus wide-angle lens system and electronic imaging device using the same
US9904042B2 (en) Zoom lens system, imaging device and camera
US20090161230A1 (en) Zoom lens and image pickup apparatus having the same
CN113671674B (zh) 变焦镜头和摄像装置
CN110221417B (zh) 广角光学系统及光学设备
JP2010176015A (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP2015232664A (ja) ズームレンズ及びそれを有する撮像装置
CN108780213B (zh) 变焦透镜及摄像装置
US20120229903A1 (en) Zoom Lens System, Imaging Device and Camera
US9274324B2 (en) Zoom lens system, imaging device and camera
US20140340545A1 (en) Zoom lens system, imaging device and camera
JP2012252253A (ja) ズームレンズ及びそれを有する撮像装置
WO2006025130A1 (ja) 高変倍率ズームレンズ
US8395848B2 (en) Zoom lens system, imaging device and camera
JP4799210B2 (ja) ズームレンズ系及びそれを備えたカメラシステム
JP2017156431A (ja) 光学系、光学機器および光学系の製造方法
WO2023070681A1 (zh) 光学系统、以及具备光学系统的摄像装置
JP5006627B2 (ja) 光学系及びそれを有する光学機器
JP5338345B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003578.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021573543

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288559

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237038225

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038225

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021962031

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021962031

Country of ref document: EP

Effective date: 20240603