WO2023070532A1 - 电池单体、电池、用电装置、制备电池单体的方法和装置 - Google Patents

电池单体、电池、用电装置、制备电池单体的方法和装置 Download PDF

Info

Publication number
WO2023070532A1
WO2023070532A1 PCT/CN2021/127470 CN2021127470W WO2023070532A1 WO 2023070532 A1 WO2023070532 A1 WO 2023070532A1 CN 2021127470 W CN2021127470 W CN 2021127470W WO 2023070532 A1 WO2023070532 A1 WO 2023070532A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
groove
wall
seal
injection hole
Prior art date
Application number
PCT/CN2021/127470
Other languages
English (en)
French (fr)
Inventor
潘峰
倪军
温裕乾
张盛武
唐鸣浩
熊康林
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180091673.0A priority Critical patent/CN116848727A/zh
Priority to EP21961890.7A priority patent/EP4277012A1/en
Priority to PCT/CN2021/127470 priority patent/WO2023070532A1/zh
Publication of WO2023070532A1 publication Critical patent/WO2023070532A1/zh
Priority to US18/447,995 priority patent/US20230395959A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/645Plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery cell, a battery, an electrical device, and a method and device for preparing a battery cell.
  • the liquid injection hole of the battery cell needs to be sealed. If the liquid injection hole of the battery cell is poorly sealed, or a defect occurs during the sealing process, it is easy to cause electrolyte leakage, causing battery failure and battery safety issues. Therefore, how to ensure the sealing performance of the liquid injection hole in the battery cell is particularly important.
  • the present application provides a battery cell, a battery, an electrical device, a method and a device for preparing the battery cell, which can ensure the sealing performance of the liquid injection hole in the battery cell.
  • the present application provides a battery cell, including: a first wall, a liquid injection hole is provided on the first wall, and a circular first groove is provided around the liquid injection hole, so The opening of the first groove faces the outside of the battery cell; the sealing member, the sealing member includes a bottom wall and a side wall, and the bottom wall covers the part of the liquid injection hole that is away from the inside of the battery cell At one end, the side wall is at least partially accommodated in the first groove, the side wall is an annular structure, and the side wall of the sealing member is friction welded with the bottom wall of the first groove to seal the Injection hole.
  • the sealing member can perform friction welding in the first groove to seal the liquid injection hole.
  • the friction welding is the friction between the sealing member and the first wall, no need to consume a stirring pin, and no particles produced by welding will remain on the surface of the weld seam.
  • friction welding has lower requirements on the cleanliness of the liquid injection hole, and it is not easy to form welding defects. It can achieve a better welding effect and ensure the sealing performance of the liquid injection hole in the battery cell.
  • the seal is provided with a clamping portion for a clamping device to clamp and rotate the seal.
  • the clamping part provided on the sealing member can facilitate the clamping of the clamping device, so as to facilitate the rotation of the sealing member during the friction welding process and improve the production efficiency.
  • the clamping portion protrudes from a surface of the bottom wall of the sealing member facing away from the interior of the battery cell.
  • the clamping part protrudes from the surface of the seal, which is beneficial for the clamping device to clamp, and at the same time, the clamping device does not need to contact the side wall of the seal, so as to avoid damage to the side wall of the seal by the clamping device during the clamping process, affecting The sealing performance of the seal to the liquid injection hole.
  • the clamping portion has two clamping surfaces parallel to each other, the two clamping surfaces are perpendicular to the bottom wall of the seal, and the clamping device clamps the two clamping surfaces Holding face.
  • the clamping parts are arranged to be parallel to each other and perpendicular to the two clamping surfaces of the bottom wall of the seal, which can make the clamping device clamp more firmly, and the seal is not easy to rotate relative to the clamping device during the rotation process, which can Improve work efficiency.
  • the clamping portion is a cylinder, and the clamping device clamps the cylindrical surface of the cylinder.
  • the clamping part is set in the shape of a cylinder, which can reserve more operating space for the clamping device, which is conducive to improving production efficiency.
  • the seal is provided with a tool interface for receiving a rotating head of a rotating device to rotate the seal.
  • a tool interface on the seal can provide accommodating space for tools, and at the same time, the seal that uses the tool interface for friction welding can not protrude from the surface of the battery cell, so no protrusions will be left on the surface of the battery cell, making The surface of the battery cell is relatively smooth, which prevents the seal from becoming loose or falling off due to collision during transportation or use, and ensures the sealing performance of the liquid injection hole in the battery cell.
  • a convex portion is formed on the side wall of the sealing element facing the opening of the sealing element, and the convex portion protrudes from the side of the sealing element in the radial direction of the liquid injection hole. wall, the protrusion is accommodated in the first groove.
  • the convex portion of the seal can increase the contact area between the seal and the first groove, and the formed part of the sealed connection can also have a larger area, thereby improving the connection strength between the seal and the first groove and ensuring that the battery cell
  • the sealing performance of the liquid injection hole in the body At the same time, the protrusion is accommodated in the first groove, and the battery cell is subsequently assembled into the battery, so that it is not easy to fall off due to collision or impact of other battery cells or other components in the battery. Moreover, even if the protrusion falls off, it will fall into the first groove, reducing the possibility of falling into the inside of the battery, thereby avoiding problems such as internal short circuit of the battery, and improving the safety of the battery.
  • the protrusion is welded to the sidewall of the first groove.
  • the sealing connection between the protrusion and the side wall of the first groove can further increase the contact area between the seal and the first groove, thereby further improving the connection strength between the seal and the first groove, and ensuring that the liquid injection hole in the battery cell sealing performance.
  • connection between the bottom wall and the side wall of the first groove is rounded.
  • connection between the bottom wall and the side wall of the first groove can increase the contact area between the side wall of the seal and the first groove, which is beneficial to quickly generate a large amount of heat through a larger area of friction during the friction welding process. to form a sealed structure.
  • the rounded corners can make it easier for the convex part to contact the side wall of the first groove during the forming process, thereby increasing the contact area between the convex part and the groove, improving the connection strength between the sealing member and the first groove, and ensuring The sealing performance of the liquid injection hole in the battery cell.
  • the maximum depth of the first groove is greater than or equal to the length of the sealing member in the thickness direction of the first wall, so that the sealing member is away from the inside of the battery cell. A surface does not protrude beyond a surface of the first wall remote from the interior of the battery cell.
  • the sealing member and the first groove are disposed integrally to sink below the surface of the first wall away from the interior of the battery cell, so that the sealing member does not protrude from the surface of the first wall of the battery cell. In this way, the protruding part of the seal on the outer surface of the battery cell is prevented from being impacted or collided during the transportation process, resulting in the problem that the seal is not tightly sealed or falls off, thereby ensuring the sealing performance of the liquid injection hole in the battery cell.
  • the battery cell further includes a gasket disposed between the bottom wall and the first wall to seal the liquid injection hole.
  • the sealing structure formed between the sealing member and the first groove can seal the liquid injection hole, and further cover the liquid injection hole
  • the opening on the side surface away from the inside of the battery cell seals the liquid injection hole, so that the sealing effect of the liquid injection hole can be further improved.
  • the surface of the first wall facing the sealing gasket is provided with multiple rings of concave structures surrounding the liquid injection hole, and the surface of the sealing gasket facing the liquid injection hole is provided with multiple rings of protrusions structure, the multi-circle concave structure and the multi-circle protruding structure are arranged correspondingly, and each protruding structure in the multi-circle protruding structure is accommodated in the corresponding concave structure.
  • the protruding structure on the gasket can be in close contact with the concave structure on the first wall, and the contact between the gasket and the first wall can be increased.
  • the contact area makes it difficult for the electrolyte to leak through the gap between the gasket and the first wall, so as to improve the sealing performance of the liquid injection hole in the battery cell.
  • the distance between every two adjacent turns of the raised structures in the multi-turn raised structures is equal to a preset value, and the distance between every two adjacent turns of the sunken structures in the multi-turn concave structures The spacing is equal to the preset value.
  • the distance between the multi-circle convex structure and the multi-circle concave structure is equal, which can ensure that each convex structure can be accommodated in a corresponding concave structure, so that a close contact structure can be formed between the convex structure and the concave structure, so that It is difficult for the electrolyte to leak through the gap between the gasket and the first wall, so as to ensure the sealing performance of the liquid injection hole in the battery cell.
  • the sealing pad is adhered to the bottom wall of the sealing member through an adhesive layer.
  • the adhesive layer can ensure that the position of the gasket on the bottom wall of the seal is relatively fixed, and the gasket can accurately cover the opening of the liquid injection hole during the process of pressing down the seal, while Dislocation is not easy to occur, which affects the sealing performance of the liquid injection hole.
  • a heat insulation layer is provided between the sealing member and the gasket.
  • a heat insulation layer is provided between the seal and the gasket to block the heat transfer between the gasket and the seal, avoiding the sealing failure caused by the heat of the gasket, thereby ensuring the sealing performance of the liquid injection hole in the battery cell .
  • the distance between the first groove and the liquid injection hole is 0.5-10 mm
  • the depth of the first groove is 0.2-2 mm
  • the width of the first groove is 0.5-5 mm.
  • the size of the seal will also be too small, which will increase the difficulty of friction welding; if the distance is too large If the size is too large, the size of the bottom wall of the seal will be too large, and the seal will occupy too much space on the first wall, which will affect the arrangement of other components of the battery cell on the first wall.
  • the depth of the first groove is too small, it will not be able to reserve enough space to accommodate the convex part formed by the friction welding process, which will affect the sealing strength of the seal, and will easily cause the convex part to fall into the inside of the battery and cause a short circuit; if the depth is too large, due to If the thickness of the first wall is limited, the distance between the bottom wall of the first groove and the surface of the first wall facing the inside of the battery cell may be too small, and the sealing member may easily penetrate the first wall during the friction welding process , resulting in welding defects.
  • the width of the first groove is too small, the side wall of the seal will be thinner, which will affect the strength of the seal, thereby affecting the sealing effect of the liquid injection port; if the width is too large, the first groove on the first wall will be thinner. The occupied space is too large, which affects the arrangement of other components of the battery cell on the first wall.
  • the present application provides a battery, which includes the battery cell in the above embodiment; and a box for accommodating the battery cell.
  • the present application provides an electric device, which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • the present application provides a method for preparing a battery cell, comprising: providing a first wall, a liquid injection hole is provided on the first wall, and an annular first wall is provided around the liquid injection hole.
  • the present application provides a device for preparing a battery cell, including: providing a module for providing a first wall, a liquid injection hole is provided on the first wall, and a circle is provided around the liquid injection hole.
  • An annular first groove, the opening of the first groove faces the outside of the battery cell;
  • the providing module is also used to: provide a seal, the seal includes a bottom wall and a side wall, the The bottom wall covers the end of the liquid injection hole facing away from the inside of the battery cell, the side wall is at least partially accommodated in the first groove, and the side wall has a ring structure;
  • the assembled module is used to The first groove rotates the sealing member so that the side wall of the sealing member is friction-welded with the bottom wall of the first groove to seal the liquid injection hole.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic diagram of an exploded structure of a battery provided by some embodiments of the present application.
  • Fig. 3 is a schematic structural diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 4 is a partial cross-sectional view of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is another partial cross-sectional view of a battery cell provided by some embodiments of the present application.
  • Fig. 6 is an enlarged view of area A in Fig. 5;
  • Fig. 7 is a schematic structural diagram of a seal provided by some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of another seal provided by some embodiments of the present application.
  • Fig. 9 is a schematic flowchart of a method for preparing a battery cell provided by some embodiments of the present application.
  • Fig. 10 is a schematic block diagram of a device for preparing a battery cell provided by some embodiments of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the widely used sealing methods of the battery liquid injection hole mainly include the following types.
  • One is laser welding and sealing, in which a sealing nail is welded to the liquid injection hole by laser, so as to realize the sealing of the liquid injection hole.
  • This sealing process has extremely high requirements on the assembly and positioning of the sealing nail and the positioning of the liquid injection hole, which is prone to partial welding. At the same time, it has high requirements on the cleanliness of the liquid injection hole. When required, it is easy to produce welding hole defects and cause liquid leakage.
  • the other is pressing steel balls or zirconium balls for interference extrusion and sealing. This method has low reliability and the steel balls are easy to loosen.
  • the present application provides a battery cell, an annular groove surrounding the liquid injection hole is arranged around the liquid injection hole of the battery cell, and the sealing member matching the groove
  • the annular side wall is at least partially accommodated in the groove, and is friction-welded with the bottom wall of the groove to seal the liquid injection hole.
  • the liquid injection hole is sealed by the friction between the side wall of the sealing member and the bottom wall of the first groove, without consumption of a stirring needle, and no particles produced by welding remain on the surface of the weld seam.
  • friction welding has lower requirements on the cleanliness of the liquid injection hole, and it is not easy to form welding defects. It can achieve a better welding effect and ensure the sealing performance of the liquid injection hole in the battery cell.
  • the embodiment of the present application provides an electric device using a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 housed in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cell 20, and the box body 10 can adopt various structures.
  • the box body 10 may include a first part 11 and a second part 12, the first part 11 and the second part 12 cover each other, the first part 11 and the second part 12 jointly define a of accommodation space.
  • the second part 12 can be a hollow structure with one end open, the first part 11 can be a plate-like structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define an accommodation space ;
  • the first part 11 and the second part 12 can also be hollow structures with one side opening, and the opening side of the first part 11 is covered by the opening side of the second part 12 .
  • the box body 10 formed by the first part 11 and the second part 12 can be in various shapes, such as a cylinder, a cuboid and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes, which are not limited in this application.
  • FIG. 3 is a schematic structural diagram of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit constituting a battery.
  • the battery cell 20 includes a first wall 21 , a casing 22 , an electrode terminal 23 , a liquid injection hole 24 , a seal 25 and other functional components.
  • the first wall 21 is a wall provided with a liquid injection hole 24 on the battery cell 20, for example, it may be an end cover of the battery cell 20, which covers the opening of the casing 22 to isolate the internal environment of the battery cell 20 from the outside. environment.
  • the shape of the first wall 21 can be adapted to the shape of the housing 22 to match the housing 22 .
  • the first wall 21 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the first wall 21 is not easily deformed when it is squeezed and collided, so that the battery cell 20 can have a stronger With high structural strength, safety performance can also be improved.
  • Functional components such as electrode terminals 23 may be provided on the first wall 21 .
  • the electrode terminal 23 may be used to electrically connect with the electrode assembly for outputting or inputting electric energy of the battery cell 20 .
  • the first wall 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • the material of the first wall 21 may also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the first wall 21 , and the insulator can be used to isolate the electrical connection components in the housing 22 from the first wall 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the housing 22 is a component for cooperating with the first wall 21 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate electrode assemblies, electrolyte and other components.
  • the casing 22 and the first wall 21 may be independent components, and an opening may be provided on the casing 22 , and the internal environment of the battery cell 20 is formed by covering the opening with the first wall 21 .
  • the first wall 21 and the housing 22 may also be integrated. Specifically, the first wall 21 and the housing 22 may form a common connection surface before other components are inserted into the housing. When the housing needs to be packaged 22, then make the first wall 21 cover the housing 22.
  • the housing 22 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on.
  • the shape of the casing 22 can be determined according to the specific shape and size of the electrode assembly.
  • the housing 22 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode terminal 23 is used for electrical connection with the electrode assembly, so as to output the electric energy of the battery cell 20 .
  • the electrode terminal 23 may include a positive electrode terminal and a negative electrode terminal, the positive electrode terminal is used for electrical connection with the positive electrode tab, and the negative electrode terminal is used for electrical connection with the negative electrode tab.
  • the positive electrode terminal and the positive tab can be connected directly or indirectly, and the negative electrode terminal and the negative tab can be directly connected or indirectly connected.
  • the positive electrode terminal is electrically connected to the positive electrode lug through a connecting member
  • the negative electrode terminal is electrically connected to the negative electrode lug through a connecting member.
  • the electrolyte can be injected into the interior of the battery cell 20 through the liquid injection hole 24, so that the interior of the battery cell 20 can form ion channels, thereby ensuring that the battery has enough lithium ions to migrate between the positive and negative electrodes during the charging and discharging process. , realizing a reversible cycle.
  • the sealing member 25 is used to seal the liquid injection hole 24 , which can prevent the electrolyte from leaking through the liquid injection hole 24 and affect the conduction of the electrode terminal 23 , so as to ensure the normal use of the battery 100 .
  • the battery cell 20 provided by the embodiment of the present application will be described in detail below with reference to FIG. 4 to FIG. 7 .
  • Fig. 4 is a partial cross-sectional view of a battery cell 20 provided by some embodiments of the present application, which can be regarded as a partial cross-sectional view of a battery cell 20 before sealing welding;
  • Fig. 5 is a partial cross-sectional view of a battery cell 20 provided by some embodiments of the present application Another partial cross-sectional view of 20 can be regarded as a partial cross-sectional view of the battery cell 20 after sealing and welding.
  • the battery cell 20 includes a first wall 21 and a sealing member 25 .
  • a liquid injection hole 24 is disposed on the first wall 21
  • an annular first groove 26 is disposed around the liquid injection hole 24 .
  • the opening of the first groove 26 faces the outside of the battery cell 20 .
  • the sealing member 25 includes a bottom wall 252 and a side wall 251.
  • the bottom wall 252 covers the end of the liquid injection hole 24 facing away from the inside of the battery cell 20.
  • the side wall 251 is at least partially accommodated in the first groove 26.
  • the side wall 251 is ring-shaped. structure, and the side wall 251 of the sealing member 25 is friction welded with the bottom wall of the first groove 26 to seal the liquid injection hole 24 .
  • the first wall 21 is a wall provided with a liquid injection hole 24 on the battery cell 20 , for example, it may be a top wall of the battery cell 20 .
  • the liquid injection hole 24 on the first wall 21 runs through the first wall 21 in the thickness direction of the first wall 21, and the electrolyte can be injected into the inside of the battery cell 20 through the liquid injection hole 24, so that the battery cell 20 Ion channels can be formed inside, so as to ensure that ions can migrate between the positive and negative electrodes during the charging and discharging process of the battery 100 .
  • the first groove 26 is a groove surrounding the liquid injection hole 24 on the first wall 21 , and is circular in cross-section along the direction perpendicular to the thickness of the first wall 21 .
  • the center of the annular first groove 26 may coincide with the center of the opening of the liquid injection hole 24 at the end facing away from the inside of the battery cell 20, so that the liquid injection hole 24
  • the distance between the edge and the edge of the first groove 26 close to the liquid injection hole 24 is relatively uniform, which is not prone to local weakness, and can ensure the sealing strength of the sealing member 25 on the liquid injection port 24 .
  • the side wall 251 of the sealing member 25 is an annular structure, at least partially accommodated in the first groove 26 ; the bottom wall 252 of the sealing member 25 is circular.
  • the diameter of the circular seal 25 is not greater than the outer diameter of the ring groove, and the thickness of its side wall 251 is not greater than the first groove 26 width.
  • the first groove 26 can provide positioning for the sealing member 25 to ensure that the sealing member 25 is always kept around the liquid injection hole 24 during friction welding, which can effectively avoid partial welding.
  • the sealing member 25 When the sealing member 25 seals the liquid injection hole 24 , its bottom wall 252 can cover the end of the liquid injection hole 24 facing away from the inside of the battery cell 20 , so that the side wall 251 of the sealing member 25 and the first groove 26 When the bottom wall forms a sealing structure, the bottom wall 252 of the sealing member 25 can prevent the electrolyte from leaking out, so as to realize the sealing of the liquid injection hole 24 .
  • the side wall 251 of the sealing member 25 can be partly accommodated in the first groove 26, and can also be completely accommodated in the groove.
  • the part of the side wall 251 of the sealing member 25 accommodated in the first groove 26 may only be in contact with the bottom wall of the first groove 26, or may be in contact with both the bottom wall 252 and the side wall 251 of the first groove 26, so as to increase Large friction welded area.
  • the side wall 251 of the sealing member 25 and the bottom wall friction welding of the first groove 26 mean that the side wall 251 of the sealing member 25 is in contact with the bottom wall of the first groove 26 toward the end of the opening of the sealing member 25, and the friction welding makes the A sealing structure capable of being sealed is formed between the two.
  • the clamping device 30 can clamp the sealing member 25 and rotate at a first speed.
  • the clamping device 30 is relatively fixed to the sealing member 25 , and rotates together with the clamping device 30 at a first speed.
  • the clamping device 30 places the seal 25 in the first groove 26 at a preset position while co-rotating with the seal 25 , so that the seal 25 can rotate along the first groove 26 .
  • the preset position refers to the position where the first groove 26 is provided on the first wall 21, and the part of the side wall 251 of the seal 25 is accommodated in the first groove 26, and can pass through the axis of the center of the circle along the first groove 26. direction rotation.
  • the clamping device 30 may accelerate the seal 25 to a second speed, and contact the bottom wall of the first groove 26 at the second speed.
  • the sealing member 25 may decelerate to the third speed after contacting the bottom wall of the first groove 26, then the side wall 251 of the sealing member 25 and the bottom wall of the first groove 26 move at the third speed.
  • Velocity rotation friction The side wall 251 of the sealing member 25 and the bottom wall of the first groove 26 will generate heat due to friction, so that the frictional surfaces of the two are softened.
  • the clamping device 30 can apply an upsetting pressure to the sealing member 25, and the sealing member 25 can be pressed downward by a certain distance under the action of the upsetting pressure, so that the side of the sealing member 25
  • the wall 251 is further in close contact with the bottom wall of the first groove 26 .
  • the side wall 251 of the sealing member 25 and the bottom wall of the first groove 26 are gradually cooled, and the parts in close contact between the two will form a sealing structure, so as to realize the sealing of the liquid injection hole 24 .
  • the sealing member 25 can be friction welded in the first groove 26 to seal the liquid injection hole 24 .
  • the friction welding is the friction between the sealing member 25 and the first wall 21 , no need to consume the stirring needle, and no particles produced by welding will remain on the surface of the welding seam.
  • friction welding has lower requirements on the cleanliness of the liquid injection hole 24 and is less likely to form welding defects. It can achieve a better welding effect and ensure the sealing performance of the liquid injection hole 24 in the battery cell 20 .
  • the maximum depth of the first groove 26 is greater than or equal to the length of the sealing member 25 in the thickness direction of the first wall 21 , so that the sealing member 25 is far away from the inside of the battery cell 20 The surface of the first wall 21 does not protrude from the surface of the first wall 21 away from the interior of the battery cell 20 .
  • the first groove 26 has a certain depth in a direction perpendicular to the first wall 21 . Since the first groove 26 is circular, it can have two depths in the direction perpendicular to the first wall 21, that is, at the position of the outer circle of the circular shape, the first groove 26 has a first depth; Where the inner circle of the circular shape is located, the first groove 26 has a second depth. In order to make the upper surface of the sealing member 25 not protrude from the upper surface of the first wall 21 in the battery cell 20 after welding, the first depth needs to be at least greater than the second depth, considering that the bottom wall 252 of the sealing member 25 has a certain The first depth also needs to be greater than or equal to the thickness of the sealing member 25 .
  • the upper surface of the sealing member 25 refers to the surface away from the inside of the battery cell 20
  • the upper surface of the first wall 21 refers to the surface of the first wall 21 away from the inside of the battery cell 20
  • the thickness of the sealing member 25 refers to the length of the sealing member 25 in a direction perpendicular to the thickness of the first wall 21 .
  • the sealing member 25 and the first groove 26 are set to be integrally sunk below the surface of the first wall 21 away from the interior of the battery cell 20 , so that the sealing member 25 does not protrude from the first wall 21 of the battery cell 20 s surface. This can avoid the problem that the protruding part of the outer surface of the battery cell 20 is impacted or collided during transportation, causing the sealing member 25 to seal poorly or fall off, thereby ensuring the sealing performance of the liquid injection hole 24 in the battery cell 20 .
  • the distance between the first groove 26 and the liquid injection hole 24 is 0.5 to 10 mm
  • the depth of the first groove 26 is 0.2 to 2 mm
  • the width of the first groove 26 is 0.5 to 5mm.
  • the distance between the first groove 26 and the liquid injection hole 24 refers to the distance between the edge of the first groove 26 close to the liquid injection hole 24 and the edge of the liquid injection hole 24 . If the distance between the first groove 26 and the liquid injection hole 24 is too small, the area between the two will be relatively weak, which will easily deform and cause liquid leakage. Correspondingly, the size of the sealing member 25 will also be too small, which will increase the difficulty of friction welding. If the distance is too large, the size of the bottom wall 252 of the sealing member 25 will be set too large, which will cause the sealing member 25 to occupy too much space on the first wall 21 and affect other components of the battery cell 20 on the first wall 21 layout.
  • the depth of the first groove 26 refers to the maximum depth of the first groove 26 , that is, the distance between the edge of the first groove 26 away from the liquid injection hole 24 and the plane where the bottom wall of the first groove 26 is located. If the depth of the first groove 26 is too small, enough space cannot be reserved to accommodate the protrusion 253 formed by the friction welding process, which will affect the sealing strength of the sealing member 25 and easily cause the protrusion 253 to fall into the interior of the battery 100 to cause a short circuit; If the depth is too large, due to the limited thickness of the first wall 21, the distance between the bottom wall of the first groove 26 and the surface of the first wall 21 facing the inside of the battery cell 20 may be too small. The middle seal 25 easily penetrates the first wall 21, causing welding defects.
  • the width of the first groove 26 refers to the distance between the inner edge and the outer edge of the first groove 26 in the radial direction of the first groove 26 . If the width of the first groove 26 is too small, the side wall of the sealing member 25 will be relatively thin, which will affect the strength of the sealing member 25, thereby affecting the sealing effect of the liquid injection port 24; if the width is too large, the first wall 21 will be The space occupied by the upper first groove 26 is too large, which affects the arrangement of other components of the battery cell 20 on the first wall 21 .
  • the size of the sealing member 25 and the first groove 26 can be flexibly adjusted by setting the relevant parameters between the first groove 26 and the liquid injection hole 24 to meet the requirements of different types of batteries 100 .
  • one end of the side wall 251 of the sealing member 25 facing the opening of the sealing member 25 is formed with a convex portion 253 , and the convex portion 253 protrudes from the sealing member in the radial direction of the liquid injection hole 24
  • the side wall 251 of 25 and the protrusion 253 are accommodated in the first groove 26 .
  • the radial direction of the liquid injection hole 24 may be a direction toward the center of the liquid injection hole 24 or a direction away from the center of the liquid injection hole 24 . It can be seen from FIG. 4 and FIG. 5 that a convex portion 253 is formed on the side wall 251 of the sealing member 25 toward the liquid injection hole 24 and in a direction away from the liquid injection hole 24, and the convex portion 253 is accommodated in the first recess. slot 26.
  • the convex portion 253 of the sealing member 25 can increase the contact area between the sealing member 25 and the first groove 26, and the part of the formed sealing connection can also have a larger area, thereby improving the contact area between the sealing member 25 and the first groove 26.
  • the connection strength ensures the sealing performance of the liquid injection hole 24 in the battery cell 20 .
  • the protrusion 253 is accommodated in the first groove 26 , and the battery cell 20 is assembled into the battery 100 later, so that it is not easy to fall off due to collision or impact of other battery cells 20 or other components in the battery 100 .
  • the protrusion 253 falls off, it will fall into the first groove 26 , reducing the possibility of falling into the battery 100 , thereby avoiding problems such as internal short circuit of the battery 100 and improving the safety of the battery 100 .
  • the protrusion 253 is welded to the sidewall of the first groove 26 .
  • the welding of the sidewall of the protrusion 253 and the first groove 26 refers to a structure in which the protrusion 253 and the sidewall of the first groove 26 form a sealed connection through friction welding.
  • the upsetting pressure applied by the clamping device 30 is relatively large or the upsetting pressure is applied for a long time, more protrusions 253 may be formed.
  • the protrusion 253 can not only be sealingly connected with the bottom wall of the first groove 26 , but also be sealingly connected with the side wall of the first groove 26 .
  • the sealing connection between the protrusion 253 and the side wall of the first groove 26 can further increase the contact area between the sealing member 25 and the first groove 26, thereby further improving the connection strength between the sealing member 25 and the first groove 26, ensuring that the battery The sealing performance of the liquid injection hole 24 in the monomer 20.
  • connection between the bottom wall and the side wall of the first groove 26 is rounded.
  • a rounded corner can be set between the bottom wall and the side wall of the first groove 26, and the radius of the rounded corner can be flexibly set.
  • connection between the bottom wall and the side wall of the first groove 26 can increase the contact area between the side wall 251 of the seal 25 and the first groove 26, which is conducive to the friction welding process through a larger area to quickly A large amount of heat is generated to form a sealed structure.
  • the rounded corners can make it easier for the convex portion 253 to contact the side wall of the first groove 26 during the forming process, thereby increasing the contact area between the convex portion 253 and the groove, and improving the gap between the sealing member 25 and the first groove 26.
  • the connection strength can ensure the sealing performance of the liquid injection hole 24 in the battery cell 20.
  • the battery cell 20 further includes a gasket 27 disposed between the bottom wall 252 and the first wall 21 to seal the liquid injection hole 24 .
  • a wall 21 faces the gap between the side surfaces facing away from the interior of the battery cell 20 , so that the liquid injection hole 24 can be directly sealed at its opening on the side surface of the first wall 21 facing away from the interior of the battery cell 20 , so as to play a better sealing role.
  • the gasket 27 may be made of elastic material, such as rubber-like material, specifically, such as fluororubber.
  • the clamping device 30 will press down a certain distance after applying upsetting pressure to the sealing member 25, so that the liquid injection hole 24
  • the opening on the surface of the first wall 21 facing away from the inside of the battery cell 20 presses the gasket 27 to deform it, thereby further improving the sealing effect of the liquid injection hole 24 .
  • the gasket 27 is disposed on the surface of the bottom wall 252 of the sealing member 25 facing the inside of the battery cell 20 .
  • the cross-sectional shapes of the gasket 27 and the sealing member 25 can be the same, for example, they are all circular; or, the cross-sectional shapes of the gasket 27 and the sealing member 25 can also be different, such as a seal
  • the cross-sectional shape of 25 is circular, and the cross-sectional shape of gasket 27 is square.
  • the cross-sectional area of the gasket 27 is at least larger than the cross-sectional area of the liquid injection hole 24 , and is located at a position that can completely cover the liquid injection hole 24 .
  • the sealing structure formed between the sealing member 25 and the first groove 26 can seal the liquid injection hole 24, further
  • the liquid injection hole 24 is sealed by covering the opening on the surface of the liquid injection hole 24 facing away from the inside of the battery cell 20 , so that the sealing effect of the liquid injection hole 24 can be further improved.
  • the sealing gasket 27 is bonded to the bottom wall 252 of the sealing member 25 through an adhesive layer 271 .
  • An adhesive layer 271 may be provided between the gasket 27 and the bottom wall 252 of the sealing member 25 , and the gasket 27 is bonded to the surface of the bottom wall 252 of the sealing member 25 facing the inside of the battery cell 20 .
  • the cross-sectional shapes of the adhesive layer 271 and the gasket 27 can be the same or different;
  • the cross-sectional areas of the adhesive layer 271 can be the same, or the cross-sectional area of the adhesive layer 271 can be slightly smaller than that of the gasket 27 . Meanwhile, the adhesive layer 271 may have a certain thickness.
  • the adhesive layer 271 can ensure that the position of the sealing gasket 27 on the bottom wall 252 of the sealing member 25 is relatively fixed.
  • the sealing gasket 27 can accurately cover the The opening of the liquid injection hole 24 is less prone to misalignment, which affects the sealing performance of the liquid injection hole 24 .
  • a heat insulation layer is provided between the sealing member 25 and the gasket 27 .
  • a heat insulating layer can be provided between the sealing gasket 27 and the sealing member 25 , which can block the transfer of heat between the sealing member 25 and the sealing gasket 27 .
  • the gasket 27 may be bonded to the bottom wall of the sealing member 25 by an adhesive made of a heat insulating material, that is, the adhesive layer 271 is a heat insulating layer. In this way, only one layer of structure needs to be provided, which can not only play the role of fixing the gasket, but also play the role of heat insulation.
  • a heat insulating layer is provided between the sealing member 25 and the sealing gasket 27, which can block the heat transfer between the sealing gasket 27 and the sealing member 25, avoiding the sealing failure caused by the heating of the sealing gasket 27, thereby ensuring that the battery cell 20 The sealing performance of the liquid injection hole 24.
  • the surface of the first wall 21 facing the sealing gasket 27 is provided with a multi-circle concave structure 211 surrounding the liquid injection hole 24, and the surface of the sealing gasket 27 facing the liquid injection hole 24 is provided with multiple rings.
  • the protruding structure 272 , the multi-circle concave structure 211 and the multi-circle protruding structure 272 are arranged correspondingly, and each protruding structure 272 in the multi-circle protruding structure 272 is accommodated in the corresponding concave structure 211 .
  • Area A in FIG. 5 is a part of the recessed structure 211 provided on the surface of the first wall 21 and the raised structure 272 provided on the surface of the gasket 27.
  • the recessed structure 211 is provided in the liquid injection hole. 24 , that is, around the liquid injection hole 24 , so that the raised structure 272 on the gasket 27 is accommodated behind the concave structure 211 and can seal the liquid injection hole 24 . Since the protruding structures 272 and the recessed structures 211 are arranged correspondingly, each circle of the recessed structures 211 has a circle of correspondingly provided protruding structures 272 disposed on the gasket 27 .
  • the protruding structure 272 on the gasket 27 is accommodated in the corresponding concave structure 211 on the first wall 21, that is, the surface of the protruding structure 272 on the gasket 27 and the surface of the concave structure 211 on the first wall 21 Close contact, so as to increase the contact area between the sealing gasket 27 and the first wall 21 as a whole, so that the electrolyte is difficult to leak through the gap between the sealing gasket 27 and the first wall 21 .
  • FIG. 6 is an enlarged view of area A in FIG. 5 .
  • the cross-sectional area of a ring of protruding structures 272 may be slightly smaller than the area of a cross-sectional area of a ring of recessed structures 211 .
  • This design is to reserve a space for pressing the gasket 27 when the protruding structure 272 is accommodated in the corresponding concave structure 211, so that the protruding structure 272 and the concave structure 211 can be in close contact to seal Liquid injection hole 24.
  • the surface of the gasket 27 is provided with multiple rings of raised structures 272, and the multi-turned raised structures 272 may be closely connected, or a certain gap may be set between every two adjacent rings of raised structures.
  • the gap can be parallel to the side surface of the gasket 27 facing the inside of the battery cell 20 , or can be recessed relative to the surface in a direction away from the inside of the battery cell 20 .
  • the multi-circle concave structure 211 provided on the surface of the first wall 21 facing the sealing member 25 is required to cooperate with the multi-circle protruding structure 272 provided on the surface of the sealing gasket 27, so that each protruding structure 272 can be accommodated in the In a circle of recessed structures 211 .
  • the multi-circle protruding structure 272 can also be provided on the surface of the first wall 21 facing the seal 25, and the multi-circle concave structure 211 is correspondingly provided on the surface of the gasket 27 facing the liquid injection hole 24, which is not discussed in the embodiment of the present application.
  • each ring of protruding structures 272 can be accommodated in a ring of concave structures 211 in terms of structure.
  • a multi-circle concave structure 211 accommodating a multi-circle protruding structure 272 at the part surrounding the liquid injection hole 24, after the protruding structure 272 on the gasket 27 is in close contact with the concave structure 211 on the first wall 21,
  • the contact area between the gasket 27 and the first wall 21 can be increased, making it difficult for the electrolyte to leak through the gap between the gasket 27 and the first wall 21 , so as to improve the sealing performance of the liquid injection hole 24 in the battery cell 20 .
  • the distance between every two adjacent turns of the raised structures 272 in the multi-turn raised structures 272 is equal to a preset value, and the distance between every two adjacent turns of the sunken structures 211 in the multi-turn sunken structures 211 The spacing between is equal to the preset value.
  • the distance between two adjacent rings of raised structures 272 can be the distance between the edges of the same side of two adjacent rings of raised structures 272, such as L1 shown in FIG. 6; the distance between two adjacent rings of raised structures 272 can also be It is the distance between the centers of two adjacent rings of raised structures 272, such as L2 shown in FIG. It may be the distance between the centers of two adjacent gaps, such as L3 shown in FIG. 6 . Similarly, the distance between two adjacent circles of concave structures 211 can also be determined in the same manner.
  • the spacing between the multi-circle protruding structures 272 and the multi-circle concave structures 211 is equal, which can ensure that each protruding structure 272 can be accommodated in a corresponding concave structure 211, so that the gap between the protruding structures 272 and the concave structures 211 can be formed
  • the tight contact structure makes it difficult for the electrolyte to leak through the gap between the gasket 27 and the first wall 21 , so as to ensure the sealing performance of the liquid injection hole 24 in the battery cell 20 .
  • the seal 25 is provided with a clamping portion 254 , and the clamping portion 254 is used for the clamping device 30 to clamp and rotate the seal 25 .
  • FIG. 7 is a schematic structural diagram of a seal 25 provided by some embodiments of the present application.
  • the seal 25 shown in FIG. 7 is provided with a clamping portion 254 .
  • the sealing member 25 shown in (a) in Fig. 7 does not have the structure that is convenient to clamping additionally, then the clamping device 30 can be clamped on the side wall 251 of the sealing member 25, that is, the side wall 251 of the sealing member 25 is the Clamping portion of seal 25 .
  • the clamping portion 254 provided on the sealing member 25 can facilitate clamping by the clamping device 30 so as to rotate the sealing member 25 during the friction welding process and improve production efficiency.
  • the clamping portion 254 protrudes from the surface of the bottom wall 252 of the sealing member 25 facing away from the interior of the battery cell 20 .
  • the clamping portion 254 shown in FIG. 7 may protrude from the surface of the bottom wall 252 of the sealing member 25 facing away from the inside of the battery cell 20 , and reserve a space for clamping by the clamping device 30 .
  • the clamping device 30 exerts an upsetting pressure on the sealing member 25 to press the sealing member 25 downward, the space can accommodate the clamping device 30 , preventing the clamping device 30 from damaging the surface of the first wall 21 .
  • the clamping portion 254 protrudes from the surface of the sealing member 25, which is beneficial to the clamping of the clamping device 30, while the clamping device 30 does not need to contact the side wall 251 of the sealing member 25, so as to avoid the impact of the clamping device 30 on the sealing member during the clamping process.
  • the side wall 251 of 25 causes damage, which affects the sealing performance of the sealing member 25 on the liquid injection hole 24 .
  • the clamping part 254 has two clamping surfaces parallel to each other, and the two clamping surfaces are perpendicular to the bottom wall 252 of the sealing member 25, and the clamping device 30 clamps the two clamping surfaces. Holding face.
  • FIG. 7 is a schematic diagram of the clamping portion 254 having two clamping surfaces parallel to each other and perpendicular to the bottom wall 252 of the sealing member 25 .
  • the clamping device 30 can be clamped on these two clamping surfaces to move and rotate the seal 25 .
  • the clamping portion 254 is set to be parallel to each other and perpendicular to the two clamping surfaces of the bottom wall 252 of the sealing member 25, which can make the clamping device 30 clamp more firmly, and the sealing member 25 is not easy to contact with the clamping device during rotation. 30 relative rotation occurs, which can improve work efficiency.
  • the clamping portion 254 is a cylinder, and the clamping device 30 clamps the cylindrical surface of the cylinder.
  • FIG. 7 shows that the surface of the bottom wall 252 of the sealing member 25 facing away from the inside of the battery cell 20 is provided with a cylindrical clamping portion 254, which is only an example here.
  • the specific shape of the portion 254 is not limited.
  • the shape of the clamping portion 254 may also be a rectangular parallelepiped.
  • the clamping portion 254 is configured in a cylindrical shape, which can reserve more operating space for the clamping device 30 and is beneficial to improve production efficiency.
  • the sealing member 25 is provided with a tool interface 255 for accommodating a rotating head of a rotating device to rotate the sealing member 25 .
  • FIG. 8 is a schematic structural diagram of another sealing member 25 provided by some embodiments of the present application.
  • the seal 25 shown in FIG. 8 is provided with a tool interface 255 , wherein the tool interface 255 is recessed on the surface of the bottom wall 252 of the seal 25 facing away from the interior of the battery cell 20 , forming a groove.
  • the embodiment of the present application does not limit the shape of the tool interface 255 , for example, the shape of the tool interface 255 may be a cross-shaped shape as shown in FIG. 8 .
  • the shape of the tool interface 255 on the seal 25 is adapted to the shape of the actually used rotary head.
  • the tool interface 255 provided on the seal 25 is in the shape of a cross, so the rotary head used in actual production should also be in the shape of a cross, so that the rotary head can be inserted into the seal.
  • the tool interface 255 on the sealing member 25 drives the sealing member 25 to rotate in the first groove 26 while applying upsetting pressure to the sealing member 25 , so that the friction welding between the sealing member 25 and the first groove 26 is completed.
  • Setting the tool interface 255 on the sealing member 25 can provide accommodating space for the rotating head, and at the same time, the sealing member 25 that is friction-welded using the tool interface 255 can not protrude from the surface of the battery cell 20, so it will not be on the surface of the battery cell 20. Protrusions are left on the surface to make the surface of the battery cell 20 relatively smooth, to prevent the seal 25 from becoming loose or falling off due to collision during transportation or use, and to ensure the sealing performance of the liquid injection hole 24 in the battery cell 20 .
  • the present application also provides a battery 100 , including the battery cell 20 described in any solution above; and a case 10 for accommodating the battery cell 20 .
  • the present application also provides an electric device, including the battery 100 described in any of the above solutions, and the battery 100 is used to provide electric energy.
  • the battery cell 20, the battery 100 and the electrical device provided by the embodiment of the present application are described above.
  • the method and device for preparing the battery cell 20 provided by the embodiment of the present application will be described below in conjunction with FIG. 9 to FIG. Part of the description can refer to the previous embodiments.
  • FIG. 9 is a schematic flowchart of a method 900 for preparing a battery cell 20 provided by some embodiments of the present application.
  • the method 900 may include: 910, providing a first wall 21, the first wall 21 is provided with a liquid injection hole 24, and a circular first groove 26 is provided around the liquid injection hole 24, the second The opening of a groove 26 faces the outside of the battery cell 20; 920, a seal 25 is provided, the seal 25 includes a bottom wall 252 and a side wall 251, and the bottom wall 252 covers the part of the liquid injection hole 24 that is away from the inside of the battery cell 20 At one end, the side wall 251 is at least partially accommodated in the first groove 26, and the side wall 251 is an annular structure; 930, the seal 25 is rotated along the first groove 26, so that the side wall 251 of the seal 25 is aligned with the first groove The bottom wall of 26 is friction welded to seal the injection hole 24.
  • FIG. 10 is a schematic block diagram of a device 1001 for preparing a battery cell 20 provided by some embodiments of the present application.
  • the device 1001 may include: a providing module 1010 for providing a first wall 21, the first wall 21 is provided with a liquid injection hole 24, and a circular first recess is provided around the liquid injection hole 24.
  • the opening of the first groove 26 faces the outside of the battery cell 20; the provision module 1010 is also used to provide a seal 25, the seal 25 includes a bottom wall 252 and a side wall 251, and the bottom wall 252 covers the liquid injection hole 24 One end of the battery cell 20 is away from the inside, the side wall 251 is at least partially accommodated in the first groove 26, and the side wall 251 is an annular structure; the assembly module 1020 is used to rotate the seal 25 along the first groove 26, so that The side wall 251 of the sealing member 25 is friction welded with the bottom wall of the first groove 26 to seal the liquid injection hole 24 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池单体、电池、用电装置、制备电池单体的方法和装置。电池单体(20)包括:第一壁(21),第一壁(21)上设置有注液孔(24),环绕注液孔(24)设置有圆环形的第一凹槽(26),第一凹槽(26)的开口朝向电池单体(20)的外部;密封件(25),密封件(25)包括底壁(252)和侧壁(251),底壁(252)盖合注液孔(24)的背离电池单体(20)内部的一端,侧壁(251)至少部分容纳于第一凹槽(26)内,侧壁(251)为环形结构,且密封件(25)的侧壁(251)与第一凹槽(26)的底壁摩擦焊接,以密封注液孔(24)。通过在第一壁上设置环绕注液孔的第一凹槽,密封件在第一凹槽内进行摩擦焊接,不易形成焊接缺陷,保证电池单体中注液孔的密封性能。

Description

电池单体、电池、用电装置、制备电池单体的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池、用电装置、制备电池单体的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在制备电池单体的过程中,需要对电池单体的注液孔进行密封。若电池单体的注液孔密封不良,或者密封的过程中产生了缺陷,就容易导致电解液漏出,造成电池失效以及电池安全等问题。因此,如何保证电池单体中注液孔的密封性能,就显得尤为重要。
发明内容
鉴于上述问题,本申请提供一种电池单体、电池、用电装置、制备电池单体的方法和装置,能够保证电池单体中注液孔的密封性能。
第一方面,本申请提供了一种电池单体,包括:第一壁,所述第一壁上设置有注液孔,环绕所述注液孔设置有圆环形的第一凹槽,所述第一凹槽的开口朝向所述电池单体的外部;密封件,所述密封件包括底壁和侧壁,所述底壁盖合所述注液孔的背离所述电池单体内部的一端,所述侧壁至少部分容纳于所述第一凹槽内,所述侧壁为环形结构,且所述密封件的侧壁与所述第一凹槽的底壁摩擦焊接,以密封所述注液孔。
通过在第一壁上设置环绕注液孔的第一凹槽,密封件能够在第一凹槽内进行摩擦焊接,以密封注液孔。该摩擦焊接为密封件与第一壁之间的摩擦,不需要消耗搅拌针,焊缝表面也不会残留焊接产生的颗粒。同时,摩擦焊接对注液孔的洁净度要求较低,也不易形成焊接缺陷,能够达到较好的焊接效果,保证电池单体中注液孔的密封性能。
在一些实施例中,所述密封件设置有夹持部,所述夹持部用于供夹持装置夹持和旋转所述密封件。
在密封件上设置夹持部能够便于夹持装置夹持,以便于在摩擦焊接过程中旋转密封件,提高生产效率。
在一些实施例中,所述夹持部凸出于所述密封件的底壁的背离所述电池单体内部的表面。
夹持部凸出于密封件的表面有利于夹持装置夹持,同时夹持装置不需要接触密封件的侧壁,避免在夹持过程中夹持装置对密封件的侧壁造成破坏,影响密封件对注液孔的密封性能。
在一些实施例中,所述夹持部具有相互平行的两个夹持面,所述两个夹持面垂直于所述密封件的底壁,所述夹持装置夹持所述两个夹持面。
夹持部设置为相互平行且垂直于密封件的底壁的两个夹持面,可以使得夹持装置夹持得更加牢固,在旋转过程中密封件也不易与夹持装置发生相对转动,能够提高工作效率。
在一些实施例中,所述夹持部为圆柱体,所述夹持装置夹持所述圆柱体的圆柱面。
夹持部设置为圆柱体形状,可以为夹持装置预留出较多的操作空间,有利于提高生产效率。
在一些实施例中,所述密封件设置有工具接口,所述工具接口用于容纳旋转装置的旋转头,以旋转所述密封件。
在密封件上设置工具接口可以为工具提供容纳空间,同时利用工具接口进行摩擦焊接的密封件能够不凸出与电池单体的表面,因此不会在电池单体的表面留下凸起,使得电池单体的表面较为平整,避免密封件在运输或使用的过程中受到碰撞而松动或脱落,保证电池单体中注液孔的密封性能。
在一些实施例中,所述密封件的侧壁的朝向所述密封件开口的一端形成有凸部,在所述注液孔的径向上,所述凸部凸出于所述密封件的侧壁,所述凸部容纳于所述第一凹槽中。
密封件的凸部能够增加密封件与第一凹槽的接触面积,形成的密封连接的部分也能够具有较大面积,从而能够提高密封件与第一凹槽之间的连接强度,保证电池单体中注液孔的密封性能。同时,凸部容纳于第一凹槽中,在后续将电池单体装配到电池中,不易受到电池内其他电池单体或其他部件的碰撞或冲击而脱落。并且,该凸部即使脱落,也会掉落在第一凹槽中,减少了掉入电池内部的可能性,从而避免电池内部短路等问题,能够提高电池的安全性。
在一些实施例中,所述凸部与所述第一凹槽的侧壁焊接。
凸部与第一凹槽的侧壁密封连接能够进一步增加密封件与第一凹槽的接触面积,从而进一步提高密封件与第一凹槽之间的连接强度,保证电池单体中注液孔的密封性能。
在一些实施例中,所述第一凹槽的底壁与侧壁之间为圆角连接。
第一凹槽的底壁与侧壁之间为圆角连接可以增加密封件的侧壁与第一凹槽的接触面积,有利于摩擦焊接过程中通过更大面积的摩擦而快速产生大量热量,以形成密封结构。同时,圆角能够使得凸部在形成过程中更容易与第一凹槽的侧壁接触, 从而增加凸部与凹槽的接触面积,提高密封件与第一凹槽之间的连接强度,保证电池单体中注液孔的密封性能。
在一些实施例中,所述第一凹槽的最大深度大于或等于所述密封件在所述第一壁的厚度方向上的长度,以使所述密封件的远离所述电池单体内部的表面不突出于所述第一壁的远离所述电池单体的内部的表面。
将密封件与第一凹槽设置为整体下沉至第一壁的远离电池单体内部的表面以下,使得该密封件不会凸出于电池单体的第一壁的表面。这样可以避免电池单体在运输过程中,密封件在外表面的凸起部分受到冲击或碰撞,导致密封件密封不牢或脱落的问题,从而能够保证电池单体中注液孔的密封性能。
在一些实施例中,所述电池单体还包括密封垫,所述密封垫设置于所述底壁和所述第一壁之间,以密封所述注液孔。
通过在密封件的底壁和第一壁之间设置密封垫,可以在密封件与第一凹槽之间形成的密封结构对注液孔进行密封的基础上,进一步通过覆盖在注液孔的背离电池单体内部的一侧表面上的开口来对注液孔进行密封,从而能够进一步提高注液孔的密封效果。
在一些实施例中,所述第一壁朝向所述密封垫的表面设置有环绕所述注液孔的多圈凹陷结构,所述密封垫朝向所述注液孔的表面设置有多圈凸起结构,所述多圈凹陷结构和所述多圈凸起结构对应设置,所述多圈凸起结构中每圈凸起结构容纳于对应的凹陷结构中。
通过在环绕注液孔的部分设置有容纳多圈凸起结构的多圈凹陷结构,可以使得密封垫上的凸起结构与第一壁上的凹陷结构紧密接触后,能够增加密封垫与第一壁的接触面积,使得电解液难以通过密封垫与第一壁之间的间隙漏出,以提高电池单体中注液孔的密封性能。
在一些实施例中,所述多圈凸起结构中每相邻两圈所述凸起结构的间距等于预设值,所述多圈凹陷结构中每相邻两圈所述凹陷结构之间的间距等于所述预设值。
多圈凸起结构与多圈凹陷结构之间的间距相等,可以保证每一个凸起结构都能够容纳于一个对应的凹陷结构,使得凸起结构与凹陷结构之间能够形成紧密接触的结构,使得电解液难以通过密封垫与第一壁之间的间隙漏出,以保证电池单体中注液孔的密封性能。
在一些实施例中,所述密封垫通过粘接层粘接于所述密封件的底壁。
在密封件进行高速旋转时,粘接层能够保证密封垫在密封件的底壁上的位置相对固定,在对密封件进行下压过程中,密封垫能够准确地覆盖注液孔的开口,而不易发生错位,影响注液孔的密封性能。
在一些实施例中,所述密封件和所述密封垫之间设置有隔热层。
密封件和密封垫之间设置有隔热层能够阻滞密封垫与密封件之间的热量传递,避免由于密封垫受热而导致的密封失效,从而能够保证电池单体中注液孔的密封性能。
在一些实施例中,所述第一凹槽与所述注液孔的距离为0.5至10mm,所述第一凹槽的深度为0.2至2mm,且第一凹槽的宽度为0.5至5mm。
第一凹槽与注液孔的距离过小会使得两者之间的区域较为薄弱,容易发生变形而导致漏液,相应地密封件的尺寸也会过小,增加摩擦焊接的难度;距离过大则会导致密封件的底壁尺寸设置过大,进而使得密封件过多地占用第一壁上的空间,影响电池单体在第一壁上的其他组件的布置。第一凹槽的深度过小就无法预留足够的空间容纳摩擦焊接过程形成的凸部,影响密封件的密封强度,还容易导致凸部掉入电池的内部而造成短路;深度过大,由于第一壁的厚度有限,则有可能导致第一凹槽的底壁与第一壁的朝向电池单体内部的表面之间的距离过小,在摩擦焊接过程中密封件容易穿透第一壁,造成焊接缺陷。第一凹槽的宽度过小则相应地会导致密封件的侧壁较薄,影响密封件的强度,从而影响注液口的密封效果;宽度过大则会导致第一壁上第一凹槽占据的空间过大,影响电池单体在第一壁上的其他组件的布置。可以通过设置第一凹槽和注液孔之间的相关参数,灵活调整密封件与第一凹槽的大小,以适应不同的电池型号的需求。
第二方面,本申请提供了一种电池,其包括上述实施例中的电池单体;以及箱体,用于容纳所述电池单体。
第三方面,本申请提供了一种用电装置,其包括上述实施例中的电池,所述电池用于提供电能。
第四方面,本申请提供了一种制备电池单体的方法,包括:提供第一壁,所述第一壁上设置有注液孔,环绕所述注液孔设置有圆环形的第一凹槽,所述第一凹槽的开口朝向所述电池单体的外部;提供密封件,所述密封件包括底壁和侧壁,所述底壁盖合所述注液孔的背离所述电池单体内部的一端,所述侧壁至少部分容纳于所述第一凹槽内,所述侧壁为环形结构;沿所述第一凹槽旋转所述密封件,以使所述密封件的侧壁与所述第一凹槽的底壁摩擦焊接,以密封所述注液孔。
第五方面,本申请提供了一种制备电池单体的装置,包括:提供模块,用于提供第一壁,所述第一壁上设置有注液孔,环绕所述注液孔设置有圆环形的第一凹槽,所述第一凹槽的开口朝向所述电池单体的外部;所述提供模块还用于:提供密封件,所述密封件包括底壁和侧壁,所述底壁盖合所述注液孔的背离所述电池单体内部的一端,所述侧壁至少部分容纳于所述第一凹槽内,所述侧壁为环形结构;组装模块,用于沿所述第一凹槽旋转所述密封件,以使所述密封件的侧壁与所述第一凹槽的底壁摩擦焊接,以密封所述注液孔。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例提供的车辆的结构示意图;
图2是本申请一些实施例提供的电池的分解结构示意图;
图3是本申请一些实施例提供的电池单体的结构示意图;
图4是本申请一些实施例提供的电池单体的局部剖面图;
图5是本申请一些实施例提供的电池单体的另一局部剖面图;
图6是图5中区域A的放大图;
图7是本申请一些实施例提供的一种密封件的结构示意图;
图8是本申请一些实施例提供的另一种密封件的结构示意图;
图9是本申请一些实施例提供的一种制备电池单体的方法的示意性流程图;
图10是本申请一些实施例提供的一种制备电池单体的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种
“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴 向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
在目前的电池单体生产过程中,广泛应用的电池注液孔密封方式主要有以下几种。
一种是激光焊接密封,通过激光将密封钉焊接在注液孔处,以实现对注液孔的密封。这种密封工艺对密封钉的装配定位,以及对注液孔的定位都有极高的要求,易产生偏焊,同时对注液孔的洁净度要求高,在注液孔的洁净度达不到要求时易产生焊接孔洞缺陷而导致漏液。
另一种是压钢珠或锆珠过盈挤压密封,这种方法可靠性低,钢珠易松脱。
还有一种是搅拌摩擦焊接,需要在铝壳电池的待封口处放置金属片,以金属片的外侧壁与铝壳电池待封口处的内侧壁之间的缝隙为焊缝,从该焊缝的正上方垂直压入旋转的搅拌焊头,使搅拌焊头沿着焊缝移动,将金属片与铝壳电池壳体焊接在一起。搅拌焊头沿焊缝经过一周后,回到起点位置。搅拌焊头减速,抬起搅拌焊头,将搅拌针从焊接区域抽出,在抽出位置表面留下匙孔,完成铝壳电池封口。这种密封工艺容易产生大量的颗粒残存在焊缝表面,需要二次铣削或打磨处理。搅拌针也会在焊缝表面留下凹坑,影响密封强度。同时,在实际生产中,搅拌针易损耗,其维护难度大,搅拌针出现损耗后会影响焊接质量,不利于电池单体的生产。
为了解决上述密封工艺中存在的问题,本申请提供了一种电池单体,在电池单体的注液孔周围设置环绕注液孔的圆环形凹槽,与该凹槽匹配的密封件的环形侧壁至少部分容纳于该凹槽中,且与凹槽的底壁摩擦焊接,以密封注液孔。通过密封件的侧壁与第一凹槽的底壁之间的摩擦来密封注液孔,不需要消耗搅拌针,焊缝表面也不会残留焊接产生的颗粒。同时,摩擦焊接对注液孔的洁净度要求较低,也不易形成焊接缺陷,能够达到较好的焊接效果,保证电池单体中注液孔的密封性能。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电 池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等,本申请在此不做限定。
请参照图3,图3是本申请一些实施例提供的电池单体20的结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括第一壁21、壳体22、电极端子23、注液孔24、密封件25以及其他的功能性部件。
第一壁21为电池单体20上设置有注液孔24的壁,例如可以为电池单体20的端盖,盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境。不限地,第一壁21的形状可以与壳体22的形状相适应以配合壳体22。可选地,第一壁21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,第一壁21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。第一壁21上可以设置有如电极端子23等的功能性部件。电极端子23可以用于与电极组件电连接,以用于输出或输入电池单体20的电能。在一些实施例中,第一壁21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。第一壁21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在第一壁21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与第一壁21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合第一壁21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件、电解液以及其他部件。壳体22和第一壁21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使第一壁21盖合开口以形成电池单体20的内部环境。不限地,也可以是第一壁21和壳体22一体化设置,具体地,第一壁21和壳体22可以在其他部件入壳前先形成一个共同的连接面, 当需要封装壳体22的内部时,再使第一壁21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极端子23用于与电极组件电连接,以输出电池单体20的电能。电极端子23可以包括正极电极端子和负极电极端子,正极电极端子用于与正极极耳电连接,负极电极端子用于与负极极耳电连接。正极电极端子与正极极耳可以直接连接,也可以间接连接,负极电极端子与负极极耳可以直接连接,也可以间接连接。示例性的,正极电极端子通过一个连接构件与正极极耳电连接,负极电极端子通过一个连接构件与负极极耳电连接。
电解液可以通过注液孔24注入电池单体20的内部,使得电池单体20的内部能够形成离子通道,从而保证电池在充放电过程中有足够的锂离子能够在正、负极片间进行迁移,实现可逆循环。
密封件25用于对注液孔24进行密封,能够避免电解液通过注液孔24漏出而影响电极端子23的导电,以保证电池100的正常使用。
下面结合图4至图7详细说明本申请实施例提供的电池单体20。
图4是本申请一些实施例提供的电池单体20的局部剖面图,可以看做是在密封焊接前的电池单体20的局部剖面图;图5是本申请一些实施例提供的电池单体20的另一局部剖面图,可以看做是密封焊接后的电池单体20的局部剖面图。如图4和图5所示,电池单体20包括第一壁21和密封件25。第一壁21上设置有注液孔24,环绕注液孔24设置有圆环形的第一凹槽26,第一凹槽26的开口朝向电池单体20的外部。密封件25包括底壁252和侧壁251,底壁252盖合注液孔24的背离电池单体20内部的一端,侧壁251至少部分容纳于第一凹槽26内,侧壁251为环形结构,且密封件25的侧壁251与第一凹槽26的底壁摩擦焊接,以密封注液孔24。
第一壁21是电池单体20上设置有注液孔24的壁,例如可以为电池单体20的顶壁。第一壁21上的注液孔24在第一壁21的厚度方向上贯穿第一壁21,电解液可以通过注液孔24向电池单体20的内部注入电解液,使得电池单体20的内部能够形成离子通道,从而保证电池100在充放电过程中离子能够在正、负极片间进行迁移。
第一凹槽26为第一壁21上环绕注液孔24的凹槽,在沿垂直于第一壁21厚度方向的截面为圆环形。在一种可能的实施例中,圆环形的第一凹槽26的圆心可以与注液孔24在背离电池单体20的内部的一端的开口的中心重合,这样可以使得注液孔24的边缘与第一凹槽26的靠近注液孔24的边缘之间的距离较为均匀,不易存在局部薄弱的情况,能够保证密封件25对注液口24的密封强度。
密封件25的侧壁251为环形结构,至少部分容纳于第一凹槽26内;密封件25的底壁252为圆形。为了使得密封件25的侧壁251能够容纳于第一凹槽26中,圆形密封件25的直径不大于圆环凹槽的外径,其侧壁251的厚度也不大于第一凹槽26的宽度。第一凹槽26可以为密封件25提供定位,保证密封件25在进行摩擦焊接时始终保持在注液孔24的周围,能够有效避免偏焊。密封件25在密封注液孔24的状态 下,其底壁252能够盖合注液孔24的背离电池单体20内部的一端,使得在密封件25的侧壁251与第一凹槽26的底壁形成密封结构的情况下,密封件25的底壁252能够避免电解液漏出,以实现对注液孔24的密封。
密封件25的侧壁251可以部分容纳于第一凹槽26中,也可以全部容纳于凹槽中。密封件25的侧壁251容纳于第一凹槽26的部分可以仅与第一凹槽26的底壁接触,也可以与第一凹槽26的底壁252和侧壁251均接触,以增大摩擦焊接的面积。
密封件25的侧壁251与第一凹槽26的底壁摩擦焊接是指密封件25的侧壁251朝向密封件25开口的一端与第一凹槽26的底壁接触,并通过摩擦焊接使得两者之间形成能够密封的密封结构。
在利用密封件25对注液孔24进行摩擦焊接时,夹持装置30可以夹持住密封件25并以第一速度进行旋转。其中,夹持装置30与密封件25相对固定,与夹持装置30共同以第一速度旋转。夹持装置30在与密封件25共同旋转的同时,在预设的位置上将密封件25放置于第一凹槽26中,使得密封件25可以沿第一凹槽26旋转。预设的位置指的是第一壁21上设置第一凹槽26的位置,密封件25的侧壁251的部分容纳于第一凹槽26中,可以沿第一凹槽26经过圆心的轴线方向旋转。密封件25在与第一凹槽26的底壁接触之前,夹持装置30可以将密封件25加速至第二速度,并以第二速度接触第一凹槽26的底壁。在摩擦阻力的作用下,密封件25在接触到第一凹槽26的底壁之后可能会减速至第三速度,则密封件25的侧壁251与第一凹槽26的底壁以第三速度旋转摩擦。密封件25的侧壁251与第一凹槽26的底壁会由于摩擦产生热量,使得两者进行摩擦的表面软化。在经过第一时间段的旋转摩擦后,夹持装置30可以向密封件25施加顶锻压力,密封件25在顶锻压力的作用下可以被向下挤压一定距离,使得密封件25的侧壁251与第一凹槽26的底壁进一步紧密接触。在停止旋转后,密封件25的侧壁251和第一凹槽26的底壁逐渐冷却,两者紧密接触的部分就会形成密封结构,以实现注液孔24的密封。
通过在第一壁21上设置环绕注液孔24的第一凹槽26,密封件25能够在第一凹槽26内进行摩擦焊接,以密封注液孔24。该摩擦焊接为密封件25与第一壁21之间的摩擦,不需要消耗搅拌针,焊缝表面也不会残留焊接产生的颗粒。同时,摩擦焊接对注液孔24的洁净度要求较低,也不易形成焊接缺陷,能够达到较好的焊接效果,保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,第一凹槽26的最大深度大于或等于密封件25在第一壁21的厚度方向上的长度,以使密封件25的远离电池单体20内部的表面不凸出于第一壁21的远离电池单体20的内部的表面。
第一凹槽26在垂直于第一壁21的方向上具有一定的深度。由于第一凹槽26为圆环形,其在垂直于第一壁21的方向上可以具有两个深度,即,在圆环形的外圆所在位置,第一凹槽26具有第一深度;在圆环形的内圆所在位置,第一凹槽26具有第二深度。为了使焊接后的电池单体20中,密封件25的上表面不凸出与第一壁21的上表面,第一深度至少需要大于第二深度,考虑到密封件25的底壁252具有一定的厚度,第一深度还需要大于或等于密封件25的厚度。其中,密封件25的上表面指的是 远离电池单体20内部的表面,第一壁21的上表面指的是第一壁21的远离电池单体20的内部的表面,密封件25的厚度指的是密封件25在垂直于第一壁21的厚度方向上的长度。
将密封件25与第一凹槽26设置为整体下沉至第一壁21的远离电池单体20内部的表面以下,使得该密封件25不会凸出于电池单体20的第一壁21的表面。这样可以避免电池单体20在运输过程中,外表面的凸起部分受到冲击或碰撞,导致密封件25密封不牢或脱落的问题,从而能够保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,第一凹槽26与注液孔24的距离为0.5至10mm,第一凹槽26的深度为0.2至2mm,且第一凹槽26的宽度为0.5至5mm。
第一凹槽26与注液孔24的距离指的是第一凹槽26的靠近注液孔24的边缘与注液孔24的边缘之间的距离。第一凹槽26与注液孔24的距离过小会使得两者之间的区域较为薄弱,容易发生变形而导致漏液,相应地密封件25的尺寸也会过小,增加摩擦焊接的难度;距离过大则会导致密封件25的底壁252尺寸设置过大,进而使得密封件25过多地占用第一壁21上的空间,影响电池单体20在第一壁21上的其他组件的布置。
第一凹槽26的深度指的是第一凹槽26的最大深度,即第一凹槽26的远离注液孔24的边缘处与第一凹槽26的底壁所在平面之间的距离。第一凹槽26的深度过小就无法预留足够的空间容纳摩擦焊接过程形成的凸部253,影响密封件25的密封强度,还容易导致凸部253掉入电池100的内部而造成短路;深度过大,由于第一壁21的厚度有限,则有可能导致第一凹槽26的底壁与第一壁21的朝向电池单体20内部的表面之间的距离过小,在摩擦焊接过程中密封件25容易穿透第一壁21,造成焊接缺陷。
第一凹槽26的宽度指的是在第一凹槽26的径向上,第一凹槽26的内边缘与外边缘之间的距离。第一凹槽26的宽度过小则相应地会导致密封件25的侧壁较薄,影响密封件25的强度,从而影响注液口24的密封效果;宽度过大则会导致第一壁21上第一凹槽26占据的空间过大,影响电池单体20在第一壁21上的其他组件的布置。
可以通过设置第一凹槽26和注液孔24之间的相关参数,灵活调整密封件25与第一凹槽26的大小,以适应不同型号的电池100的需求。
根据本申请的一些实施例,可选地,密封件25的侧壁251的朝向密封件25开口的一端形成有凸部253,在注液孔24的径向上,凸部253凸出于密封件25的侧壁251,凸部253容纳于第一凹槽26中。
如图4和图5所示,在摩擦焊接的过程中,具体是密封件25的侧壁251的朝向密封件25开口的一端与第一凹槽26的底壁发生摩擦,并且密封件25的侧壁251与第一凹槽26的底壁产生摩擦的部分会随着摩擦产生的热量逐渐软化。在受到夹持装置30施加的顶锻压力后,软化的部分会受力变形,在注液孔24的径向上,被挤压成凸出于密封件25的侧壁251的凸部253。其中,注液孔24的径向可以为朝向注液孔24圆心的方向,也可以为背离注液孔24圆心的方向。从图4和图5中可以看出,在密 封件25的侧壁251朝向注液孔24的方向与背离注液孔24的方向均形成了凸部253,且凸部253容纳于第一凹槽26中。
密封件25的凸部253能够增加密封件25与第一凹槽26的接触面积,形成的密封连接的部分也能够具有较大面积,从而能够提高密封件25与第一凹槽26之间的连接强度,保证电池单体20中注液孔24的密封性能。同时,凸部253容纳于第一凹槽26中,在后续将电池单体20装配到电池100中,不易受到电池100内其他电池单体20或其他部件的碰撞或冲击而脱落。并且,该凸部253即使脱落,也会掉落在第一凹槽26中,减少了掉入电池100内部的可能性,从而避免电池100内部短路等问题,能够提高电池100的安全性。
根据本申请的一些实施例,可选地,凸部253与第一凹槽26的侧壁焊接。
凸部253与第一凹槽26的侧壁焊接指的是凸部253与第一凹槽26的侧壁通过摩擦焊接形成了密封连接的结构。在夹持装置30施加的顶锻压力较大或者施加顶锻压力的时间较长的情况下,可能会形成较多的凸部253。在这种情况下,凸部253不仅能够与第一凹槽26的底壁密封连接,还能够与第一凹槽26的侧壁密封连接。
凸部253与第一凹槽26的侧壁密封连接能够进一步增加密封件25与第一凹槽26的接触面积,从而进一步提高密封件25与第一凹槽26之间的连接强度,保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,第一凹槽26的底壁与侧壁之间为圆角连接。
可以在第一凹槽26的底壁和侧壁之间设置圆角,圆角的半径可以灵活设置。
第一凹槽26的底壁与侧壁之间为圆角连接可以增加密封件25的侧壁251与第一凹槽26的接触面积,有利于摩擦焊接过程中通过更大面积的摩擦而快速产生大量热量,以形成密封结构。同时,圆角能够使得凸部253在形成过程中更容易与第一凹槽26的侧壁接触,从而增加凸部253与凹槽的接触面积,提高密封件25与第一凹槽26之间的连接强度,保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,电池单体20还包括密封垫27,密封垫27设置于底壁252和第一壁21之间,以密封注液孔24。
从图5中可以看出,密封件25的侧壁251与第一凹槽26的底壁摩擦焊接后,密封件25的底壁252朝向电池单体20内部的一侧表面与第一壁21朝向背离电池单体20内部的一侧表面之间仍然有一定的间隙,仅能通过密封件25的侧壁251与第一凹槽26之间形成的密封结构实现注液孔24的密封。在图5示出的实施例中,在密封件25的底壁252和第一壁21之间设置密封垫27,填充密封件25的底壁252朝向电池单体20内部的一侧表面与第一壁21朝向背离电池单体20内部的一侧表面之间的间隙,使得注液孔24能够在其位于第一壁21的背离电池单体20内部的一侧表面上的开口处直接被密封,从而起到较好的密封作用。
密封垫27可以为弹性材料制成,例如可以为橡胶类的材料,具体地,例如氟橡胶。在密封件25的侧壁251与第一凹槽26的底壁进行摩擦焊接的过程中,夹持 装置30对密封件25施加顶锻压力后会向下挤压一定距离,使得注液孔24位于第一壁21的背离电池单体20内部的一侧表面上的开口挤压密封垫27使其变形,从而进一步提高注液孔24的密封效果。
密封垫27设置于密封件25的底壁252朝向电池单体20内部的表面上。在垂直于第一壁21的厚度方向上,密封垫27和密封件25的截面形状可以相同,例如均为圆形;或者,密封垫27和密封件25的截面形状也可以不同,例如密封件25的截面形状为圆形,密封垫27的截面形状为方形。应当注意的是,在垂直于第一壁21的厚度方向上,密封垫27的截面面积至少大于注液孔24的截面面积,且位于能够完全覆盖注液孔24的位置上。
通过在密封件25的底壁252和第一壁21之间设置密封垫27,可以在密封件25与第一凹槽26之间形成的密封结构对注液孔24进行密封的基础上,进一步通过覆盖在注液孔24的位于背离电池单体20内部的一侧表面上的开口来对注液孔24进行密封,从而能够进一步提高注液孔24的密封效果。
根据本申请的一些实施例,可选地,密封垫27通过粘接层271粘接于密封件25的底壁252。
在密封垫27与密封件25的底壁252之间可以设置粘接层271,密封垫27粘接于密封件25的底壁252朝向电池单体20内部的一侧表面上。在垂直于第一壁21的厚度方向上,粘接层271与密封垫27的截面形状可以相同,也可以不同;在垂直于第一壁21的厚度方向上,粘接层271与密封垫27的截面面积可以相同,也可以是粘接层271的截面面积略小于密封垫27的截面面积。同时粘接层271可以具有一定厚度。
在密封件25进行高速旋转时,粘接层271能够保证密封垫27在密封件25的底壁252上的位置相对固定,在对密封件25进行下压过程中,密封垫27能够准确地覆盖注液孔24的开口,而不易发生错位,影响注液孔24的密封性能。
根据本申请的一些实施例,可选地,密封件25和密封垫27之间设置有隔热层。
在本申请的实施例中,密封件25的侧壁251在与第一凹槽26进行摩擦焊接时,会通过高速旋转产生大量的热量,以软化密封件25的侧壁251与第一凹槽26产生摩擦的部分。同时,热量也会被传递到密封件25的未与第一凹槽26接触的部分,例如密封件25的底壁252。密封件25的底壁252会进一步将热量传递给密封垫27,导致密封垫27受热变形或老化,影响密封垫27的密封效果。因此,可以在密封垫27与密封件25之间设置隔热层,能够阻滞热量在密封件25和密封垫27之间的传递。在一种可能的实施方式中,可以通过绝热材料制成的粘接剂将密封垫27粘接与密封件25的底壁,即,粘接层271即为隔热层。这样仅需要设置一层结构,就既可以起到固定密封垫的作用,也可以起到隔热的作用。
密封件25和密封垫27之间设置有隔热层能够阻滞密封垫27与密封件25之间的热量传递,避免由于密封垫27受热而导致的密封失效,从而能够保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,第一壁21朝向密封垫27的表面设置有环绕注液孔24的多圈凹陷结构211,密封垫27朝向注液孔24的表面设置有多圈凸起结构272,多圈凹陷结构211和多圈凸起结构272对应设置,多圈凸起结构272中每圈凸起结构272容纳于对应的凹陷结构211中。
图5中的区域A为第一壁21的表面上设置的凹陷结构211与密封垫27的表面上设置的凸起结构272的一部分,从图5可以看出,凹陷结构211设置于注液孔24的周围,即环绕注液孔24,以使得密封垫27上的凸起结构272容纳于凹陷结构211后,能够对注液孔24起到密封作用。由于凸起结构272与凹陷结构211是对应设置的,因此每一圈凹陷结构211都有一圈与其对应设置的凸起结构272设置于密封垫27上。密封垫27上的凸起结构272容纳于第一壁21上的与其对应设置的凹陷结构211中,即密封垫27上的凸起结构272的表面与第一壁21上的凹陷结构211的表面紧密接触,以增大密封垫27整体与第一壁21之间的接触面积,使得电解液难以通过密封垫27与第一壁21之间的间隙漏出。
具体地,图6为图5中的区域A的放大图。如图6所示,在垂直于注液孔24的径向的平面上,一圈凸起结构272的截面的面积可以略小于一圈凹陷结构211的截面的面积。这种设计是为了在凸起结构272容纳于与其对应的凹陷结构211中时,可以预留有挤压密封垫27的空间,使得凸起结构272与凹陷结构211之间能够紧密接触,以密封注液孔24。
密封垫27的表面设置有多圈凸起结构272,多圈凸起结构272可以是紧密相连的,也可以在每相邻两圈凸起之间设置一定的间隙。间隙可以与密封垫27朝向电池单体20内部的一侧表面平行,也可以相对于该表面向背离电池单体20内部的方向凹陷。相应地,第一壁21朝向密封件25的表面设置的多圈凹陷结构211,要求与密封垫27表面设置的多圈凸起结构272相互配合,使得每一圈凸起结构272都能够容纳于一圈凹陷结构211中。另外,多圈凸起结构272也可以设置在第一壁21朝向密封件25的表面,相应地多圈凹陷结构211设置在密封垫27朝向注液孔24的表面,本申请实施例对此不做限定,仅要求在结构上满足每一圈凸起结构272能够容纳于一圈凹陷结构211即可。
通过在环绕注液孔24的部分设置有容纳多圈凸起结构272的多圈凹陷结构211,可以使得密封垫27上的凸起结构272与第一壁21上的凹陷结构211紧密接触后,能够增加密封垫27与第一壁21的接触面积,使得电解液难以通过密封垫27与第一壁21之间的间隙漏出,以提高电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,多圈凸起结构272中每相邻两圈凸起结构272的间距等于预设值,多圈凹陷结构211中每相邻两圈凹陷结构211之间的间距等于该预设值。
相邻两圈凸起结构272的间距可以为相邻两圈凸起结构272的同一侧边缘之间的距离,例如图6中示出的L1;相邻两圈凸起结构272的间距也可以为相邻两圈凸起结构272的中心之间的距离,例如图6中示出的L2;当相邻两圈凸起之间设置有间隙时,相邻两圈凸起结构272的间距还可以为相邻两个间隙的中心之间的距离,例 如图6中示出的L3。相似地,也可以用同样的方式确定相邻两圈凹陷结构211的间距。
多圈凸起结构272与多圈凹陷结构211之间的间距相等,可以保证每一个凸起结构272都能够容纳于一个对应的凹陷结构211,使得凸起结构272与凹陷结构211之间能够形成紧密接触的结构,使得电解液难以通过密封垫27与第一壁21之间的间隙漏出,以保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,可选地,密封件25设置有夹持部254,夹持部254用于供夹持装置30夹持和旋转密封件25。
如图7所示,图7是本申请一些实施例提供的一种密封件25的结构示意图,图7示出的密封件25设置有夹持部254。图7中的(a)示出的密封件25没有额外设置便于夹持的结构,则夹持装置30可以夹持在密封件25的侧壁251上,即密封件25的侧壁251为该密封件25的夹持部。
在密封件25上设置夹持部254能够便于夹持装置30夹持,以便于在摩擦焊接过程中旋转密封件25,提高生产效率。
根据本申请的一些实施例,可选地,夹持部254凸出于密封件25的底壁252的背离电池单体20内部的表面。
图7示出的夹持部254可以凸出于密封件25的底壁252的背离电池单体20内部的表面,且预留有供夹持装置30夹持的空间。在夹持装置30对密封件25施加顶锻压力以向下挤压密封件25时,该空间能够容纳夹持装置30,避免夹持装置30破坏第一壁21的表面。
夹持部254凸出于密封件25的表面有利于夹持装置30夹持,同时夹持装置30不需要接触密封件25的侧壁251,避免在夹持过程中夹持装置30对密封件25的侧壁251造成破坏,影响密封件25对注液孔24的密封性能。
根据本申请的一些实施例,可选地,夹持部254具有相互平行的两个夹持面,两个夹持面垂直于密封件25的底壁252,夹持装置30夹持两个夹持面。
图7中的(b)为夹持部254具有相互平行且垂直于密封件25的底壁252的两个夹持面的示意图。在生产过程中,夹持装置30可以夹持在这两个夹持面上,来移动和旋转密封件25。
夹持部254设置为相互平行且垂直于密封件25的底壁252的两个夹持面,可以使得夹持装置30夹持得更加牢固,在旋转过程中密封件25也不易与夹持装置30发生相对转动,能够提高工作效率。
根据本申请的一些实施例,可选地,夹持部254为圆柱体,夹持装置30夹持圆柱体的圆柱面。
图7中的(c)示出的是密封件25的底壁252的背离电池单体20内部的表面设置圆柱体形状的夹持部254,在此仅为示例,本申请实施例对夹持部254的具体形状不作限定。例如,夹持部254的形状还可以是长方体形状。
夹持部254设置为圆柱体形状,可以为夹持装置30预留出较多的操作空间,有利于提高生产效率。
根据本申请的一些实施例,可选地,密封件25设置有工具接口255,工具接口255用于容纳旋转装置的旋转头,以旋转密封件25。
如图8所示,图8是本申请一些实施例提供的另一种密封件25的结构示意图。图8示出的密封件25设置有工具接口255,其中工具接口255凹陷于密封件25的底壁252的背离电池单体20内部的表面,形成凹槽。本申请实施例对工具接口255的形状不作限定,例如,工具接口255的形状可以是图8所示的十字花形状。相应地,密封件25上的工具接口255的形状与实际使用的旋转头的形状相适应。仍然以图8中示出的工具接口255为例,密封件25上设置的工具接口255为十字花形状,则实际生产中使用的旋转头也应为十字花形状,以便于旋转头能够插入密封件25上的工具接口255,在对密封件25施加顶锻压力的同时带动密封件25在第一凹槽26内旋转,使得密封件25与第一凹槽26之间完成摩擦焊接。
在密封件25上设置工具接口255可以为旋转头提供容纳空间,同时利用工具接口255进行摩擦焊接的密封件25能够不凸出与电池单体20的表面,因此不会在电池单体20的表面留下凸起,使得电池单体20的表面较为平整,避免密封件25在运输或使用的过程中受到碰撞而松动或脱落,保证电池单体20中注液孔24的密封性能。
根据本申请的一些实施例,本申请还提供了一种电池100,包括以上任一方案所述的电池单体20;以及箱体10,用于容纳电池单体20。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案所述的电池100,电池100用于提供电能。
上文描述了本申请实施例提供的电池单体20、电池100和用电装置,下面将结合图9至图10描述本申请实施例提供的制备电池单体20的方法和装置,其中未详细描述的部分可参见前述各实施例。
图9是本申请一些实施例提供的一种制备电池单体20的方法900的示意性流程图。如图9所示,该方法900可以包括:910,提供第一壁21,第一壁21上设置有注液孔24,环绕注液孔24设置有圆环形的第一凹槽26,第一凹槽26的开口朝向电池单体20的外部;920,提供密封件25,密封件25包括底壁252和侧壁251,底壁252盖合注液孔24的背离电池单体20内部的一端,侧壁251至少部分容纳于第一凹槽26内,侧壁251为环形结构;930,沿第一凹槽26旋转密封件25,以使密封件25的侧壁251与第一凹槽26的底壁摩擦焊接,以密封注液孔24。
图10是本申请一些实施例提供的一种制备电池单体20的装置1001的示意性框图。如图10所示,该装置1001可以包括:提供模块1010,用于提供第一壁21,第一壁21上设置有注液孔24,环绕注液孔24设置有圆环形的第一凹槽26,第一凹槽26的开口朝向电池单体20的外部;提供模块1010还用于提供密封件25,密封件25包括底壁252和侧壁251,底壁252盖合注液孔24的背离电池单体20内部的一端,侧壁251至少部分容纳于第一凹槽26内,侧壁251为环形结构;组装模块1020,用于沿第一凹槽26旋转密封件25,以使密封件25的侧壁251与第一凹槽26的底壁摩擦焊接,以密封注液孔24。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池单体(20),其特征在于,包括:
    第一壁(21),所述第一壁(21)上设置有注液孔(24),环绕所述注液孔(24)设置有圆环形的第一凹槽(26),所述第一凹槽(26)的开口朝向所述电池单体(20)的外部;
    密封件(25),所述密封件(25)包括底壁(252)和侧壁(251),所述底壁(252)盖合所述注液孔(24)的背离所述电池单体(20)内部的一端,所述侧壁(251)至少部分容纳于所述第一凹槽(26)内,所述侧壁(251)为环形结构,且所述密封件(25)的侧壁(251)与所述第一凹槽(26)的底壁摩擦焊接,以密封所述注液孔(24)。
  2. 根据权利要求1所述的电池单体(20),其特征在于,所述密封件(25)设置有夹持部(254),所述夹持部(254)用于供夹持装置(30)夹持和旋转所述密封件(25)。
  3. 根据权利要求2所述的电池单体(20),其特征在于,所述夹持部(254)凸出于所述密封件(25)的底壁(252)的背离所述电池单体(20)内部的表面。
  4. 根据权利要求2或3所述的电池单体(20),其特征在于,所述夹持部(254)具有相互平行的两个夹持面,所述两个夹持面垂直于所述密封件(25)的底壁(252),所述夹持装置(30)夹持所述两个夹持面。
  5. 根据权利要求2或3所述的电池单体(20),其特征在于,所述夹持部(254)为圆柱体,所述夹持装置(30)夹持所述圆柱体的圆柱面。
  6. 根据权利要求1所述的电池单体(20),其特征在于,所述密封件(25)设置有工具接口(255),所述工具接口(255)用于容纳旋转装置的旋转头,以旋转所述密封件(25)。
  7. 根据权利要求1至6中任一项所述的电池单体(20),其特征在于,所述密封件(25)的侧壁(251)的朝向所述密封件(25)开口的一端形成有凸部(253),在所述注液孔(24)的径向上,所述凸部(253)凸出于所述密封件(25)的侧壁(251),所述凸部(253)容纳于所述第一凹槽(26)中。
  8. 根据权利要求7所述的电池单体(20),其特征在于,所述凸部(253)与所述第一凹槽(26)的侧壁焊接。
  9. 根据权利要求1至8中任一项所述的电池单体(20),其特征在于,所述第一凹槽(26)的底壁与侧壁之间为圆角连接。
  10. 根据权利要求1至9中任一项所述的电池单体(20),其特征在于,所述第一凹槽(26)的最大深度大于或等于所述密封件(25)在所述第一壁(21)的厚度方向上的长度,以使所述密封件(25)的远离所述电池单体(20)内部的表面不突出于所述第一壁(21)的远离所述电池单体(20)的内部的表面。
  11. 根据权利要求1至10中任一项所述的电池单体(20),其特征在于,所述电池 单体(20)还包括密封垫(27),所述密封垫(27)设置于所述底壁(252)和所述第一壁(21)之间,以密封所述注液孔(24)。
  12. 根据权利要求11所述的电池单体(20),其特征在于,所述第一壁(21)朝向所述密封垫(27)的表面设置有环绕所述注液孔(24)的多圈凹陷结构(211),所述密封垫(27)朝向所述注液孔(24)的表面设置有多圈凸起结构(272),所述多圈凹陷结构(211)和所述多圈凸起结构(272)对应设置,所述多圈凸起结构(272)中每圈凸起结构(272)容纳于对应的凹陷结构(211)中。
  13. 根据权利要求12所述的电池单体(20),其特征在于,所述多圈凸起结构(272)中每相邻两圈所述凸起结构(272)的间距等于预设值,所述多圈凹陷结构(211)中每相邻两圈所述凹陷结构(211)之间的间距等于所述预设值。
  14. 根据权利要求11至13中任一项所述的电池单体(20),其特征在于,所述密封垫(27)通过粘接层(271)粘接于所述密封件(25)的底壁(252)。
  15. 根据权利要求11至14中任一项所述的电池单体(20),其特征在于,所述密封件(25)和所述密封垫(27)之间设置有隔热层。
  16. 根据权利要求1至15中任一项所述的电池单体(20),其特征在于,所述第一凹槽(26)与所述注液孔(24)的距离为0.5至10mm,所述第一凹槽(26)的深度为0.2至2mm,且第一凹槽(26)的宽度为0.5至5mm。
  17. 一种电池,其特征在于,包括:
    根据权利要求1至16中任一项所述的电池单体(20);
    箱体,用于容纳所述电池单体(20)。
  18. 一种用电装置,其特征在于,包括:根据权利要求16所述的电池,所述电池用于提供电能。
  19. 一种制备电池单体(20)的方法,其特征在于,包括:
    提供第一壁(21),所述第一壁(21)上设置有注液孔(24),环绕所述注液孔(24)设置有圆环形的第一凹槽(26),所述第一凹槽(26)的开口朝向所述电池单体(20)的外部;
    提供密封件(25),所述密封件(25)包括底壁(252)和侧壁(251),所述底壁(252)盖合所述注液孔(24)的背离所述电池单体(20)内部的一端,所述侧壁(251)至少部分容纳于所述第一凹槽(26)内,所述侧壁(251)为环形结构;
    沿所述第一凹槽(26)旋转所述密封件(25),以使所述密封件(25)的侧壁(251)与所述第一凹槽(26)的底壁摩擦焊接,以密封所述注液孔(24)。
  20. 一种制备电池单体(20)的装置,其特征在于,包括:
    提供模块(1010),用于提供第一壁(21),所述第一壁(21)上设置有注液孔(24),环绕所述注液孔(24)设置有圆环形的第一凹槽(26),所述第一凹槽(26)的开口朝向所述电池单体(20)的外部;
    所述提供模块(1010)还用于:提供密封件(25),所述密封件(25)包括底壁(252)和侧壁(251),所述底壁(252)盖合所述注液孔(24)的背离所述电池单体(20)内部的一端,所述侧壁(251)至少部分容纳于所述第一凹槽(26)内,所述侧 壁(251)为环形结构;
    组装模块(1020),用于沿所述第一凹槽(26)旋转所述密封件(25),以使所述密封件(25)的侧壁(251)与所述第一凹槽(26)的底壁摩擦焊接,以密封所述注液孔(24)。
PCT/CN2021/127470 2021-10-29 2021-10-29 电池单体、电池、用电装置、制备电池单体的方法和装置 WO2023070532A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180091673.0A CN116848727A (zh) 2021-10-29 2021-10-29 电池单体、电池、用电装置、制备电池单体的方法和装置
EP21961890.7A EP4277012A1 (en) 2021-10-29 2021-10-29 Battery cell, battery, electrical device, and battery cell manufacturing method and apparatus
PCT/CN2021/127470 WO2023070532A1 (zh) 2021-10-29 2021-10-29 电池单体、电池、用电装置、制备电池单体的方法和装置
US18/447,995 US20230395959A1 (en) 2021-10-29 2023-08-10 Battery cell, battery, power consumption apparatus, and method and apparatus for producing battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127470 WO2023070532A1 (zh) 2021-10-29 2021-10-29 电池单体、电池、用电装置、制备电池单体的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/447,995 Continuation US20230395959A1 (en) 2021-10-29 2023-08-10 Battery cell, battery, power consumption apparatus, and method and apparatus for producing battery cell

Publications (1)

Publication Number Publication Date
WO2023070532A1 true WO2023070532A1 (zh) 2023-05-04

Family

ID=86158852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127470 WO2023070532A1 (zh) 2021-10-29 2021-10-29 电池单体、电池、用电装置、制备电池单体的方法和装置

Country Status (4)

Country Link
US (1) US20230395959A1 (zh)
EP (1) EP4277012A1 (zh)
CN (1) CN116848727A (zh)
WO (1) WO2023070532A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169596A (zh) * 1996-07-02 1998-01-07 松下电器产业株式会社 密封蓄电池及其生产方法
JP2000100406A (ja) * 1998-09-25 2000-04-07 Sanyo Electric Co Ltd 密閉型アルカリ蓄電池
CN1897346A (zh) * 2005-05-16 2007-01-17 三星Sdi株式会社 可再充电电池
CN205069696U (zh) * 2015-10-19 2016-03-02 宁德时代新能源科技有限公司 二次电池的顶盖用组件
CN111384357A (zh) * 2020-05-29 2020-07-07 江苏时代新能源科技有限公司 用于电池的顶盖组件、电池和使用电池作为电源的装置
CN211208486U (zh) * 2020-01-18 2020-08-07 惠州西盛科技有限公司 一种稳定性高的纽扣电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169596A (zh) * 1996-07-02 1998-01-07 松下电器产业株式会社 密封蓄电池及其生产方法
JP2000100406A (ja) * 1998-09-25 2000-04-07 Sanyo Electric Co Ltd 密閉型アルカリ蓄電池
CN1897346A (zh) * 2005-05-16 2007-01-17 三星Sdi株式会社 可再充电电池
CN205069696U (zh) * 2015-10-19 2016-03-02 宁德时代新能源科技有限公司 二次电池的顶盖用组件
CN211208486U (zh) * 2020-01-18 2020-08-07 惠州西盛科技有限公司 一种稳定性高的纽扣电池
CN111384357A (zh) * 2020-05-29 2020-07-07 江苏时代新能源科技有限公司 用于电池的顶盖组件、电池和使用电池作为电源的装置

Also Published As

Publication number Publication date
EP4277012A1 (en) 2023-11-15
US20230395959A1 (en) 2023-12-07
CN116848727A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US20220320677A1 (en) Battery cell and manufacturing method and system therefor, battery and electric device
CN214254576U (zh) 端盖组件、电池单体、电池及用电装置
WO2023174047A1 (zh) 电池单体、电池以及用电装置
US20230327306A1 (en) Battery cell, battery and electrical apparatus
CN214477678U (zh) 盖板、电池单体、电池及用电设备
US20230369734A1 (en) Battery cell, battery, and electric apparatus
US20230395931A1 (en) End cover assembly, battery cell, battery, and electric apparatus
WO2023000859A1 (zh) 电池单体、电池以及用电装置
CN216720089U (zh) 电池单体、电池及用电设备
CN215989012U (zh) 电池单体、电池以及用电装置
WO2024032195A1 (zh) 电池单体、电池和用电装置
WO2023070532A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
US20230155262A1 (en) Housing, battery cell, battery and electric apparatus
WO2024016453A1 (zh) 电池单体、电池及用电装置
CN216850124U (zh) 螺钉、连接结构、电池和用电装置
EP4366076A1 (en) Battery cover plate assembly, battery cell, battery and electric device
WO2023160257A1 (zh) 电芯顶盖、电芯、电池、用电设备以及注液嘴
WO2023141840A1 (zh) 电极组件、电池单体、电池及用电设备
CN216354651U (zh) 极耳焊接结构、电池单体及用电设备
WO2023133823A1 (zh) 绝缘贴片、电池单体、电池及装置
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023050183A1 (zh) 电池的顶盖组件、电池和用电装置
WO2023024690A1 (zh) 电池单体及与其相关电池、装置、制备方法和制备装置
WO2024000795A1 (zh) 电池单体、电池和用电设备
CN220138474U (zh) 复合盖板、电池单体、动力电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091673.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021961890

Country of ref document: EP

Effective date: 20230808