WO2023070440A1 - 校准方法及装置 - Google Patents

校准方法及装置 Download PDF

Info

Publication number
WO2023070440A1
WO2023070440A1 PCT/CN2021/127047 CN2021127047W WO2023070440A1 WO 2023070440 A1 WO2023070440 A1 WO 2023070440A1 CN 2021127047 W CN2021127047 W CN 2021127047W WO 2023070440 A1 WO2023070440 A1 WO 2023070440A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sensor
calibration
state
calibration method
Prior art date
Application number
PCT/CN2021/127047
Other languages
English (en)
French (fr)
Inventor
李清华
尹际雄
熊科
蔡梦
潘明
徐义明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180103129.3A priority Critical patent/CN118525187A/zh
Priority to PCT/CN2021/127047 priority patent/WO2023070440A1/zh
Priority to EP21961806.3A priority patent/EP4414663A1/en
Publication of WO2023070440A1 publication Critical patent/WO2023070440A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Definitions

  • the present application relates to the communication field, and in particular to a calibration method and device.
  • the intelligent beam tracing antenna (IBT) antenna can use the double reflector microwave antenna with adjustable sub-reflector to realize beam tracking.
  • the double reflector microwave antenna is composed of a main reflector and a secondary reflector.
  • the control module of the IBT antenna uses the attitude sensor to estimate the antenna attitude, and controls the beam to be adjusted in the opposite direction of the antenna shaking, so that the beam is always aimed at the opposite antenna, and solves the problem of the antenna attitude change caused by wind and sunshine, for example , Antenna shaking caused by wind, iron tower bending caused by sunlight and other reasons will cause changes in antenna attitude.
  • the existing attitude detection technology uses micro-electro-mechanical systems (MEMS) inertial sensors to realize antenna attitude detection, but the detection accuracy of MEMS inertial sensors is greatly affected by temperature, resulting in errors in antenna attitude assessment.
  • MEMS inertial sensors are currently calibrated in the factory manufacturing process.
  • the present application provides a calibration method and device, which can perform online calibration on sensors, and can solve the problem of temperature drift coefficient changes caused by sensor aging over time during the use of sensors.
  • a calibration method includes: determining whether the first device is in the first state through the environment perception algorithm and the first sensor, and obtaining first data through the posture detection algorithm and the first sensor when the first device is in the first state, and The environment perception algorithm and the second sensor obtain the second data, and when the first device is in the first state, control the second sensor, obtain the third data of the first sensor and the fourth data of the second sensor, and the first device
  • the first sensor is calibrated according to the first data, the second data, the third data and the fourth data.
  • the first sensor is used to detect the posture parameters of the first device
  • the first state includes a static state or the first motion state
  • the second sensor is used to detect parameters of the environment where the first device is located.
  • the calibration device determines whether the first device is in the first state through the environment perception algorithm and the first sensor, and if the first device is in the first state, according to the first data, the second data , the third data and the fourth data are for calibrating the first sensor, and the first state includes a static state or a first motion state.
  • the temperature drift coefficient can be calibrated online, thereby solving the problem of temperature drift coefficient changes caused by sensor aging over time during the use of the sensor. Improve the accuracy of the first sensor.
  • factory calibration can be avoided, costs can be reduced, and production efficiency can be improved.
  • the first sensor in the present application may be a sensor calibrated in the factory, or may be a sensor not calibrated in the factory, which is not limited in the present application.
  • the accuracy of the first sensor can be further improved by performing online calibration in combination with the method provided in the present application.
  • the first state includes a static state
  • determining whether the first device is in the first state through the environment perception algorithm and the first sensor may include: using the environment perception algorithm and the first sensor to obtain the fifth Data, at intervals of a first time period, using an environment perception algorithm and a first sensor to obtain sixth data, and if the difference between the fifth data and the sixth data is less than or equal to the first threshold, it is determined that the first device is in the first state, Otherwise, it is determined that the first device is not in the first state. That is to say, the external environment can be determined through the value of the first sensor, and if the value change is greater than the first threshold, it indicates that the external environment is unstable.
  • the calibration method provided in the first aspect may further include: calibrating the first sensor according to the first data and the seventh data.
  • the seventh data is obtained by the first sensor after the previous calibration, or the initial data obtained by the first sensor. In this way, errors caused by aging can be calibrated out.
  • the calibration method provided in the first aspect may further include: when the first device is not in the first state, stop the current operation and control the first device to enter the running state.
  • the running state includes performing beam tracking.
  • the calibration device calibrates the first sensor when the first device is in the first state, and when the environment changes, the online calibration can be interrupted. If the calibration is performed when the environment is abnormal, the calibration result will be abnormal, which will affect the subsequent normal operation of the first device.
  • calibrating the first sensor according to the first data, the second data, the third data and the fourth data may include:
  • the first calibration value is used to compensate the third data of the first sensor to obtain the eighth data, and if the difference between the eighth data and the second data is less than the second threshold, the first data is saved.
  • the first calibration value may be determined according to the first data, the second data, the third data and the fourth data. That is to say, during the process of calibrating the first sensor, the adjusted value can be judged to ensure the correctness of the calibration. If the adjusted value is smaller than the preset second threshold, it can be considered that the calibration process is normal, and the calibration is continued.
  • the calibration method provided in the first aspect may further include: if the difference between the eighth data and the second data is greater than or equal to the second threshold, then stop the current operation and control the first device to enter the running state.
  • the running state includes performing beam tracking. That is to say, if the adjusted value is greater than or equal to the preset second threshold, it can be considered that the calibration process is abnormal, resulting in an abnormality in the adjusted value, the current operation is stopped, and the calibration is exited.
  • determining whether the first device is in the first state by using the environment perception algorithm and the first sensor may include: determining whether the first device is in the first state by using the environment perception algorithm and the first sensor when the first condition is met Whether the first device is in the first state.
  • the first condition includes that the difference between the current time T and T0 is greater than or equal to a first time threshold, and T0 is the time when the first sensor was successfully calibrated last time. In this way, periodic online calibration of the first sensor can be realized.
  • the first condition may further include receiving an instruction to calibrate the first sensor. That is to say, the calibration device can determine whether an instruction to calibrate the first sensor is received, if not received, wait for the instruction, and if received, perform a calibration operation.
  • a calibration device in a second aspect, includes: a main control module and an environment control module.
  • the main control module is used to determine whether the first device is in the first state through the environment perception algorithm and the first sensor.
  • the first sensor is used to detect an attitude parameter of the first device, and the first state includes a static state or a first motion state.
  • the main control module is further configured to acquire first data through an attitude detection algorithm and the first sensor, and acquire second data through an environment perception algorithm and the second sensor when the first device is in the first state.
  • the second sensor is used to detect parameters of the environment where the first device is located.
  • the main control module is further configured to control the second sensor through the environment control module, and acquire third data of the first sensor and fourth data of the second sensor.
  • the main control module is further configured to calibrate the first sensor according to the first data, the second data, the third data and the fourth data.
  • the first state may include a static state
  • the main control module is further configured to acquire fifth data by using an environment perception algorithm and the first sensor.
  • the main control module is also used to obtain the sixth data by using the environment perception algorithm and the first sensor after the interval of the first time period.
  • the main control module is further configured to determine that the first device is in the first state if the difference between the fifth data and the sixth data is less than or equal to the first threshold, otherwise determine that the first device is not in the first state.
  • the main control module is further configured to calibrate the first sensor according to the first data and the seventh data.
  • the seventh data may be acquired by the first sensor after the previous calibration, or initial data acquired by the first sensor.
  • the main control module when the first device is not in the first state, is further configured to stop the current operation and control the first device to enter the running state.
  • the running state includes performing beam tracking.
  • the main control module when the first device is in the first state, is further configured to use the first calibration value to compensate the third data of the first sensor to obtain eighth data.
  • the first calibration value may be determined according to the first data, the second data, the third data and the fourth data.
  • the calibration device may further include a storage module, configured to store the first calibration value if the difference between the eighth data and the second data is less than a second threshold.
  • the main control module is further configured to stop the current operation and control the first device to enter the running state.
  • the running state may include performing beam tracking.
  • the main control module is further configured to determine whether the first device is in the first state through an environment perception algorithm and the first sensor.
  • the first condition may include that the difference between the current time T and T0 is greater than or equal to a first time threshold, and T0 is the time when the first sensor was successfully calibrated last time.
  • the first condition may further include receiving an instruction to calibrate the first sensor.
  • the calibration device described in the second aspect may further include a transceiver module.
  • the transceiver module is used to send data and/or signaling to the first device, and can also be used to receive data and/or signaling sent by other devices
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is configured to send data and/or signaling to the first device
  • the receiving module is configured to receive data and/or signaling sent by other devices.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the calibration device described in the second aspect can execute the calibration method described in the first aspect.
  • the calibration device described in the second aspect may be a chip (system) or other components or components that can be provided in the calibration device, which is not limited in this application.
  • the technical effect of the calibration device described in the second aspect may refer to the technical effect of the calibration method described in any possible implementation manner in the first aspect, which will not be repeated here.
  • a calibration device in a third aspect, includes: a processor, the processor is coupled with a memory, and the memory is used to store computer programs.
  • the processor is configured to execute the computer program stored in the memory, so that the calibration method described in any possible implementation manner of the first aspect is executed.
  • the calibration device described in the third aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an input/output port.
  • the transceiver can be used for the calibration device to communicate with other devices.
  • the input port can be used to implement the receiving function involved in the first aspect
  • the output port can be used to implement the sending function involved in the first aspect
  • the calibration device described in the third aspect may be a chip or a chip system disposed inside the calibration device.
  • a communication system may include a calibration device, an antenna control module, and an antenna, and may also include a motor and a transceiver.
  • a chip system in a fifth aspect, includes a logic circuit and an input/output port.
  • the logic circuit is used to realize the processing function involved in the first aspect
  • the input/output port is used to realize the sending and receiving function involved in the first aspect.
  • the input port can be used to realize the receiving function involved in the first aspect
  • the output port can be used to realize the sending function involved in the first aspect.
  • system-on-a-chip further includes a memory, which is used to store program instructions and data for realizing the functions involved in the first aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium stores computer programs or instructions; when the computer programs or instructions are run on a computer, the The calibration method described above is performed.
  • a computer program product including a computer program or an instruction.
  • the calibration method described in any possible implementation manner in the first aspect is executed.
  • FIG. 1 is a schematic structural diagram of a calibration device provided in an embodiment of the present application.
  • Fig. 2 is a schematic flow chart of a calibration method provided by the embodiment of the present application.
  • FIG. 3a is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3b is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 4a is a schematic diagram of the application of an antenna provided by the embodiment of the present application.
  • Figure 4b is a schematic diagram of a factory calibration provided in the embodiment of the present application.
  • FIG. 5 is a schematic flow chart of a calibration method provided in an embodiment of the present application.
  • Fig. 6 is a schematic flow chart of another calibration method provided by the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another calibration device provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another calibration device provided in the embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a calibration device provided in an embodiment of the present application.
  • the calibration device may include: a working environment control unit and a first main control unit.
  • the calibration device may also include a first sensor, and a second sensor.
  • the working environment control unit, the first sensor, the second sensor and the first main control unit can form an online calibration system.
  • the calibration device may also include an IBT antenna control unit.
  • the working environment control unit may include but not limited to one or more of the following: a temperature control unit, an attitude control unit, and a position control unit.
  • the working environment control unit can be used to control the working environment of the sensor (such as temperature, humidity, etc.), and/or control the change of the attitude of the sensor.
  • the working environment control unit can increase or decrease the environmental parameters (such as temperature), and read the changes of the environmental sensor and attitude sensor parameters before and after the environmental parameter changes to complete the acquisition of sensor aging and temperature drift calibration parameters.
  • the present application does not limit the specific units included in the working environment control unit, which are determined according to actual requirements.
  • the temperature control unit can change the temperature and other environmental parameters by controlling the power of the heating component, the power of the metal oxide semiconductor field effect transistor (MOSFET) and/or the active cooling of the semiconductor.
  • MOSFET metal oxide semiconductor field effect transistor
  • the temperature control unit may include a second main control unit, a temperature control circuit, and a heating resistor.
  • the second main control unit controls the heating resistor through the temperature control circuit to change parameters such as temperature and attitude.
  • the temperature control unit may include an attitude sensor and a temperature sensor.
  • the attitude sensor and temperature sensor can be independent of the temperature control unit.
  • attitude control unit and the position control unit are similar to those of the temperature control unit, and will not be repeated here.
  • the first main control unit can be used to determine whether the first device is in the first state through the environment perception algorithm and the first sensor; when the first device is in the first state, through the posture detection algorithm and the first sensor Obtain the first data, obtain the second data through the environment perception algorithm and the second sensor; when the first device is in the first state, control the second sensor, obtain the third data of the first sensor and the fourth data of the second sensor Data; when the first device is in the first state, the first sensor is calibrated according to the first data, the second data, the third data and the fourth data.
  • the first sensor may be a sensor for detecting attitude parameters.
  • the first sensor can be an attitude sensor, MEMS inertial sensor, position sensor, gyroscope, accelerometer, GPS, magnetometer, electronic compass, magnetic encoder, optical encoder, electronic compass, laser displacement detector, etc. for sensing Devices with positional or angular offsets, etc.
  • the present application may evaluate the change of attitude parameters through the first sensor. Processing the data of the first sensor can obtain the change value of the antenna attitude, such as change direction, change range, change angular velocity and so on.
  • Attitude parameters may include changing direction, changing magnitude, and/or changing angular velocity, etc.
  • the present application may use an environment perception algorithm to process the data of the first sensor, realize real-time perception of the environmental parameters of the first device (such as an antenna), determine whether the first device is in a static state or a moving state, and support the realization of Whether to perform online calibration, or abnormal protection.
  • an environment perception algorithm to process the data of the first sensor, realize real-time perception of the environmental parameters of the first device (such as an antenna), determine whether the first device is in a static state or a moving state, and support the realization of Whether to perform online calibration, or abnormal protection.
  • the second sensor may be a sensor for detecting environmental parameters.
  • the second sensor may be a temperature sensor, a pressure sensor, an altitude sensor, an air pressure sensor, a humidity sensor, and the like.
  • the present application can evaluate the change of the environmental parameter through the first sensor.
  • FIG. 3a and FIG. 3b are schematic structural diagrams of a communication system provided by an embodiment of the present application.
  • the communication system may include a calibration device, an antenna control module, and an antenna, and may also include a motor and a transceiver device.
  • the communication system may be called an intelligent beam tracing antenna (IBT) system.
  • the antenna control module can be called an IBT antenna control module, and the calibration device and the antenna control module can be set independently, or integrated in one device, or the antenna control module is set in the calibration device, for example, called a control device.
  • the antenna may be a double-reflector microwave antenna with an adjustable sub-reflector with a motor, and the control device may control the rotation of the motor, thereby pulling the antenna to rotate and adjusting the angle of the antenna.
  • the motor can be placed inside the antenna.
  • the transceiver device can be used to supply power to the control device and receive signals from the opposite end.
  • the transceiver device may be referred to as a large bandwidth (Eband) transceiver device.
  • This application uses the calibration device, the received signal level (received signal level, RSL) of the transceiver equipment and the transmitted signal level (transmitted signal level, TSL) of the transmitting end, and transmits the received signal level RSL of the local end to the antenna control through the cable Module, and transmit the TSL of the local end to the opposite end through the space link.
  • RSL received signal level
  • TSL transmitted signal level
  • the present application can judge whether the external environment is stable through the receiving signal level of the local end and the sending signal level of the sending end.
  • the calibration device can calculate the theoretical value of the voltage drop from the local end to the opposite end.
  • the theoretical value of the voltage drop can be a preset value, and the voltage drop can be obtained through the actual sending signal level and receiving signal level.
  • the actual value is whether the theoretical value of the pressure drop is the same as the actual value of the pressure drop or the difference is within a certain range. If so, it means that the external environment is stable and online calibration can be performed. Otherwise, it is necessary to wait for the environment to stabilize before performing calibration. This is just an example of judging whether the external environment is suitable for online calibration, and other methods are also described in the following method embodiments.
  • Fig. 3a and Fig. 3b are only simplified schematic diagrams for easy understanding, and the communication system may also include other devices, which are not shown in Fig. 3a and Fig. 3b.
  • Fig. 4a is a schematic diagram of the application of an antenna with a diameter of 0.6m.
  • the abscissa is the angle of the antenna from the center (unit is degree (°)), and the ordinate is the degradation value of received power (unit is decibel (dB)).
  • the degradation value of the received power is usually required according to the standard of +/-3dB. Due to the inherent characteristics of the antenna such as high frequency and large aperture, as shown in Figure 4a, the half-power angle of a large bandwidth antenna with a 0.6m aperture (corresponding to the received power degradation The power angle of the value 3dB) is +/-0.25°. And the half power angle of the 0.9m large bandwidth antenna (the power angle corresponding to the received power degradation value of 3dB) will be further reduced to +/-0.1° (not shown in Fig. 4a).
  • the sensor is greatly affected by aging and temperature, and there are problems such as sensitivity, zero bias, temperature drift coefficient aging, sensitivity temperature drift, and zero bias temperature drift, which lead to errors in antenna attitude assessment.
  • MEMS inertial sensors are currently calibrated in the factory manufacturing process.
  • the fixed zero bias and temperature drift of the attitude sensor are calibrated and compensated by the high-precision attitude reference sensor and the factory calibration environment control device to realize the factory calibration of the sensor temperature drift.
  • the current factory calibration cannot solve the problem of fixed zero bias aging drift and temperature drift coefficient aging drift due to sensor aging as the usage time increases.
  • the correction method provided by this application can solve the aging drift of the fixed zero bias and the aging drift of the temperature drift coefficient due to the aging of the sensor as the use time increases, so as to solve the problem of attitude detection accuracy decline caused by the long-term aging of the sensor and temperature drift.
  • the degradation of the beam tracking accuracy which in turn leads to the degradation of the received signal level RSL and system gain, can affect the detection accuracy of the sensor.
  • factory calibration can be avoided, costs can be reduced, and production efficiency can be improved.
  • FIG. 5 is a schematic flow chart of a calibration method provided in an embodiment of the present application.
  • the calibration method includes the following steps:
  • the calibration device determines whether the first device is in a first state by using an environment perception algorithm and a first sensor.
  • the first sensor is used to detect an attitude parameter of the first device.
  • attitude parameter of the first device For a specific implementation manner, reference may be made to the description of the first sensor shown in FIG. 1 above, which will not be repeated here.
  • the first device may be an antenna.
  • the first state may include a static state, or a first motion state.
  • the first state may be a state in which the first device can be calibrated.
  • the first device for the static state, the first device is considered to be in the static state if the first device is within a certain range of motion.
  • the changing angular velocity if the changing angular velocity is less than a certain threshold, it is considered to be in the static state.
  • Sunshine causes the tower to change slowly, and there is no impact from the external environment.
  • Different first sensors have different requirements for accuracy.
  • the first motion state if the first device can be calibrated in the motion state, it may be determined whether the first device is in the first motion state, and the first motion state may refer to a slight shaking state or an obvious shaking state.
  • the above S501 may include the following step S501a:
  • the calibration device determines whether the first device is in the first state by using an environment perception algorithm and the first sensor.
  • the first condition may include that the difference between the current time T and T0 is greater than or equal to a first time threshold, and T0 is a previous time when the first sensor was successfully calibrated.
  • the first time threshold may be 3 months, 6 months, 1 year, etc., which is not limited in this application.
  • the calibration device may record the event of successfully calibrating the first sensor, and then query the record when determining whether the first condition is satisfied.
  • the first condition may also include receiving an indication to calibrate the first sensor.
  • the initial state of the first device can be aligned, and after the preparations are completed, the calibration device is instructed to work to perform online calibration of the first sensor.
  • the calibration device may determine whether an instruction to calibrate the first sensor is received, if not received, wait for the instruction, and if received, continue to execute S501.
  • FIG. 6 is a schematic flowchart of another calibration method provided by the embodiment of the present application.
  • S601 power on the calibration device, start running after initialization, and the environment perception algorithm starts to work.
  • the calibration device determines whether it is in an enabled state.
  • the enabling state may refer to receiving an instruction to calibrate the first sensor. If it is not in the enabled state (N), the fixed time polling determines whether it is in the enabled state. If it is in the enabled state (Y), continue to execute the following S603.
  • the first state includes a static state
  • the above S501 may include the following steps S501b to S501d.
  • the calibration device acquires fifth data by using an environment perception algorithm and the first sensor.
  • the fifth data may be an average value within a period of time, or a value within a period of time, and the fifth data may be set within a certain range. In this way, calibration accuracy can be improved.
  • the calibration device acquires sixth data by using an environment perception algorithm and the first sensor.
  • the sixth data may be an average value within a period of time, or a value within a period of time, and the sixth data may be set within a certain range. In this way, calibration accuracy can be improved.
  • the external environment can be determined through the value of the first sensor, and if the value change (such as the direction of change, the magnitude of change, the angular velocity of change, etc.) is greater than the first threshold, it indicates that the external environment is unstable.
  • the value change such as the direction of change, the magnitude of change, the angular velocity of change, etc.
  • the calibration device may determine the external environment through the value of the second sensor, for example, if the temperature change is greater than the first threshold, it indicates that the external environment is unstable.
  • the calibration device can judge the external environment through the received signal level at the local end and the sent signal level at the sending end.
  • the calibration device can judge the external environment through the received signal level at the local end and the sent signal level at the sending end.
  • the above-mentioned S501 calibration device may perform once at intervals to determine whether the first device is in the first state through the environment perception algorithm and the first sensor.
  • the calibration method provided by the embodiment of the present application may further include: when the first device is not in the first state, the calibration device stops the current operation and controls the first device to enter the running state.
  • the running state includes performing beam tracking.
  • the beam is adjusted in the opposite direction to align the beam.
  • the calibration device calibrates the first sensor when the first device is in the first state, and when the environment changes, such as other environmental changes such as wind blowing or sunshine, the online calibration can be interrupted in time. If the calibration is performed when the environment is abnormal, the calibration result will be abnormal, which will affect the subsequent normal operation of the first device.
  • the calibration device can monitor the first state of the first device in real time during the execution of subsequent steps S502 to S504, and if the first device is not in the first state, it will directly stop the operation of calibrating the first sensor, so that the first The equipment launches online calibration to control the first equipment to enter the normal operating state.
  • the calibration device stops calibrating the first sensor, it may continue to monitor the first state of the first device, and after the first device is in the first state, start to perform calibration The first sensor is calibrated.
  • the calibration method shown in FIG. 6 may further include S603 to S604.
  • S603. The calibration device determines whether the first device is in the first state through the environment perception algorithm and the first sensor. S604. If the first device is not in the first state, the calibration device stops the current operation, and controls the first device to enter the running state. Continue to monitor the first state of the first device, and start to calibrate the first sensor after the first device is in the first state.
  • S603 to S604 combine the posture environment perception algorithm to detect the external environment in real time, which can be used as a protection mechanism for abnormal exit during the calibration process.
  • the calibration device acquires first data through an attitude detection algorithm and a first sensor, and acquires second data through an environment perception algorithm and a second sensor.
  • the second sensor may be used to detect parameters of the environment where the first device is located.
  • the first sensor shown in FIG. 1 above, which will not be repeated here.
  • the first angle value is detected by the attitude sensor, and 25 degrees Celsius is detected by the temperature sensor.
  • the calibration method shown in FIG. 6 may further include S605 to S613.
  • the calibration device queries whether the initial information of the first sensor and the initial information of the second sensor are currently recorded.
  • the initial information of the first sensor is such as first data
  • the initial information of the second sensor is such as second data, specifically, information such as pitch angle, azimuth angle, sensor temperature, and zero bias.
  • the calibration device executes the following S606 to the following S608 to obtain the initial information.
  • the calibration device acquires data by using an environment perception algorithm and the first sensor.
  • the calibration device determines whether the first device is in the first state.
  • the calibration device records the initial information of the first sensor and the initial information of the second sensor.
  • the calibration device controls the first device to enter the running state.
  • the running state includes performing beam tracking.
  • the calibration device starts an online calibration task judging mechanism. That is to say, the calibration device can determine whether the conditions for calibrating the first sensor are met.
  • the calibration device determines whether a first condition is met.
  • the first condition For a specific implementation manner of the first condition, reference may be made to the implementation manner of S501a above.
  • the calibration device acquires data by using an environment perception algorithm and the first sensor.
  • the calibration device determines whether the first device is in the first state.
  • the calibration device controls the second sensor to acquire third data of the first sensor and fourth data of the second sensor.
  • the temperature of the temperature sensor is controlled, and the value of the attitude sensor is adjusted, and the value of the attitude sensor changes as the temperature changes.
  • the temperature sensor is controlled to adjust the temperature from 25 degrees Celsius to 50 degrees Celsius (at this time, the external environment temperature does not change, or the change is small), and the second angle value is detected by the attitude sensor.
  • the calibration method shown in FIG. 6 may further include S614 to S615.
  • S614 start the working environment control unit, and the working environment control unit can control the value of the second sensor.
  • S615. After waiting for a period of time, acquire the third data of the first sensor and the fourth data of the second sensor.
  • the calibration device calibrates the first sensor according to the first data, the second data, the third data, and the fourth data.
  • the attitude sensor is calibrated through 25 degrees Celsius, 50 degrees Celsius, a first angle value, and a second angle value.
  • the above S504 may include the following S504a to S504b.
  • the calibration device uses the first calibration value to compensate the third data of the first sensor to obtain eighth data.
  • the first calibration value may be determined according to the first data, the second data, the third data and the fourth data.
  • the first calibration value may be a temperature drift coefficient
  • the temperature drift coefficient may be calculated according to 25 degrees Celsius, 50 degrees Celsius, the first angle value, and the second angle value.
  • the calibration device saves the first calibration value.
  • the above S504 may also include the following S504c.
  • the operational state may include performing beam tracking.
  • the adjusted value can be judged to ensure the correctness of the calibration. If the adjusted value is smaller than the preset second threshold, it can be considered that the calibration process is normal, and the calibration is continued. If the adjusted value is greater than or equal to the preset second threshold, it can be considered that an abnormality occurs in the calibration process, resulting in an abnormality in the adjusted value, the current operation is stopped, and the calibration is exited.
  • the calibration method shown in FIG. 5 may also include: the calibration device executes the above S504, after calibrating the first sensor, acquires data 1 of the first sensor and data 2 of the second sensor, and then reversely controls the second sensor , acquire new data 3 of the first sensor and data 4 of the second sensor, generate a new calibration value (such as a temperature drift coefficient), and use the new calibration value to perform real-time compensation.
  • the calibration device executes the above S504, after calibrating the first sensor, acquires data 1 of the first sensor and data 2 of the second sensor, and then reversely controls the second sensor , acquire new data 3 of the first sensor and data 4 of the second sensor, generate a new calibration value (such as a temperature drift coefficient), and use the new calibration value to perform real-time compensation.
  • the implementation manner is similar to the implementation manner of S502-S504 above, and will not be repeated here.
  • reversely controlling the second sensor refers to reversely controlling the second sensor relative to the above S503.
  • the temperature is increased, such as adjusting the temperature from 25 degrees Celsius to 50 degrees Celsius
  • the reverse control of the second sensor can refer to reducing the temperature, such as adjusting the temperature from 50 degrees Celsius to 25 degrees Celsius .
  • the data 3 of the first sensor is compensated with a new calibration value, if the difference between the value obtained after compensation (such as the data 5 of the first sensor) and the data 1 of the first sensor is less than or equal to the set first sensor Three thresholds, the calibration is passed, otherwise the data of this calibration is discarded and the calibration is exited.
  • the calibration result can be verified. If the difference between the value obtained after compensation (for example, the data 5 of the first sensor) and the data 1 of the first sensor is less than or equal to the set third threshold, the calibration result is accurate; otherwise, If the calibration result is abnormal, exit this calibration and re-calibrate again. In this way, verifying whether the parameters after compensation meet the calibration accuracy requirements can ensure the accuracy of online calibration.
  • the calibration method shown in FIG. 5 may further include: the calibration device calibrates the first sensor according to the first data and the seventh data.
  • the seventh data may be acquired by the first sensor after previous calibration, or initial data acquired by the first sensor.
  • the calibration device can calibrate the error caused by aging according to the data A n of the first sensor and the data A n-1 of the first sensor, and the data A n of the first sensor and the data A n-1 of the first sensor
  • the difference of data A n-1 of a sensor may be the aging deviation value of the first sensor.
  • the data A n of the first sensor is the current value of the first sensor
  • the data A n-1 of the first sensor is the value of the first sensor after the previous calibration.
  • the time interval between acquiring the first data and acquiring the seventh data may be a first time threshold, such as a calibration cycle.
  • the difference between the first data and the seventh data may be called an aging deviation value.
  • the calibration method shown in FIG. 6 may further include S616.
  • S616, the calibration device calibrates the first sensor according to the first data and the seventh data.
  • the present application does not limit the order of S616 and the above S614 and S615.
  • the embodiment of the present application does not limit the sequence of the offset caused by calibration aging and the offset caused by calibration temperature drift, and FIG. 6 is only an example.
  • the calibration method shown in FIG. 6 may further include: S617 to S622.
  • the calibration device reversely controls the second sensor.
  • the calibration device uses the new calibration value to perform real-time compensation.
  • the calibration device verifies the calibration result. Optionally, if the verification result is correct, perform the following S620, otherwise exit this calibration and perform S609.
  • the calibration device acquires data by using an environment perception algorithm and the first sensor.
  • the calibration device acquires data by using an environment perception algorithm and the first sensor.
  • the calibration device determines whether the first device is in a first state. For a specific implementation manner, reference may be made to the implementation manner of S501d above. If it is satisfied, execute the following S622, if not, exit this calibration and execute S609.
  • the calibration device stores the first calibration value and the aging deviation value.
  • the calibration device controls the first device to enter the running state, as shown in FIG. 6 .
  • the calibration is performed and recorded.
  • the first device is brought into an operational state. For example, according to the change of attitude data before and after the change of the working environment of the first sensor, the error (temperature drift, aging, etc.) parameter calibration is completed, and the error compensation table is generated.
  • the calibration device determines whether the first device is in the first state through the environment perception algorithm and the first sensor, and if the first device is in the first state, according to the first data, the second data, The third data and the fourth data are for calibrating the first sensor, and the first state includes a static state or a first motion state.
  • the temperature drift coefficient can be calibrated online, thereby solving the problem of temperature drift coefficient changes caused by sensor aging over time during the use of the sensor. Improve the accuracy of the first sensor.
  • the calibration method provided by the embodiment of the present application has been described in detail above with reference to FIGS. 5-6 .
  • the calibration device provided by the embodiment of the present application will be described in detail below with reference to FIGS. 7-8 .
  • FIG. 7 is a schematic structural diagram of a calibration device that can be used to implement the calibration method provided by the embodiment of the present application.
  • the calibration device 700 may be a calibration device, or a chip applied in the calibration device or other components with corresponding functions.
  • the calibration device 700 may include a processor 701 .
  • the calibration device 700 may further include one or more of a memory 702 and a transceiver 703 .
  • the processor 701 may be coupled with one or more of the memory 702 and the transceiver 703, such as through a communication bus, or the processor 701 may be used alone.
  • the components of the calibration device 700 will be specifically introduced below in conjunction with FIG. 7 :
  • the processor 701 is the control center of the calibration device 700, and may be one processor, or a general term for multiple processing elements.
  • the processor 701 is one or more central processing units (central processing unit, CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more An integrated circuit, for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • An integrated circuit for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the processor 701 can execute various functions of the calibration device 700 by running or executing software programs stored in the memory 702 and calling data stored in the memory 702 .
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 7 .
  • the calibration apparatus 700 may also include multiple processors, such as the processor 701 and the processor 704 shown in FIG. 7 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more communication devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 702 may be a read-only memory (read-only memory, ROM) or other types of static storage communication devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information and other types of dynamic storage communication devices for instructions, and can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or Other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disc storage media or other magnetic storage communication devices, or can be used to carry or store desired information in the form of instructions or data structures program code and any other medium that can be accessed by a computer, but not limited to.
  • the memory 702 can be integrated with the processor 701 or exist independently, and is coupled with the processor 701 through an input/output port (not shown in FIG. 7 ) of the calibration device 700 , which is not specifically limited in this embodiment of the present application.
  • the input port can be used to realize the receiving function performed by the calibration device in any of the above method embodiments
  • the output port can be used to realize the sending function performed by the calibration device in any of the above method embodiments.
  • the memory 702 can be used to store a software program for executing the solution of the present application, and the execution is controlled by the processor 701 .
  • the processor 701 controls the execution of the solution of the present application.
  • the transceiver 703 is used for communication with other devices.
  • the transceiver 703 may be used to communicate with the antenna control module shown in Figure 3a, and/or the transceiver device.
  • the transceiver 703 may include a receiver and a transmitter (not separately shown in FIG. 7 ). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 703 can be integrated with the processor 701, or can exist independently, and is coupled with the processor 701 through the input/output port (not shown in FIG. 7 ) of the calibration device 700, which is not specifically limited in this embodiment of the present application. .
  • the structure of the calibration device 700 shown in FIG. 7 does not constitute a limitation to the calibration device, and the actual calibration device may include more or fewer components than shown in the figure, or combine certain components, or Different component arrangements.
  • the above-mentioned actions of the calibration device in FIGS. 5-6 can be executed by the processor 701 in the calibration device 700 shown in FIG. 7 calling the application program code stored in the memory 702 to instruct the calibration device to execute.
  • FIG. 8 is a schematic structural diagram of another calibration device provided in the embodiment of the present application. For ease of illustration, FIG. 8 shows only the main components of the calibration device.
  • the calibration device 800 includes a main control module 801 and an environment control module 802 .
  • the calibration device 800 may be the calibration device in the foregoing method embodiments.
  • main control module 801 and the environment control module 802 may be used together or separately, which is not limited in this application.
  • the calibration device may also include a storage module 803 and a transceiver module (not shown in FIG. 8 ).
  • the transceiver module is used to send data and/or signaling to the first device, and can also be used to receive data and/or signaling sent by other devices
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is configured to send data and/or signaling to the first device
  • the receiving module is configured to receive data and/or signaling sent by other devices. This application does not specifically limit the specific implementation manner of the transceiver module.
  • the calibration device 800 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the calibration device 800 can take the form of the calibration device 700 shown in FIG. 7 .
  • the processor 701 in the calibration apparatus 700 shown in FIG. 7 can invoke the computer-executed instructions stored in the memory 702, so that the calibration method in the above method embodiment is executed.
  • the functions/implementation process of the main control module 801 and the environment control module 802 in FIG. 8 can be implemented by the processor 701 in the calibration device 700 shown in FIG.
  • the function/implementation process of the transceiver module in 8 can be realized by the transceiver 703 in the calibration device 700 shown in FIG. 7 .
  • the calibration device 800 provided in this embodiment can execute the above-mentioned calibration method, the technical effect it can obtain can refer to the above-mentioned method embodiment, and will not be repeated here.
  • the calibration device 800 shown in FIG. 8 can be applied to the communication system shown in FIG. 3a and FIG. 3b, and perform the functions of the calibration device in the calibration method shown in FIG. 5 and FIG. 6 .
  • the main control module 801 is configured to determine whether the first device is in the first state through an environment perception algorithm and the first sensor.
  • the first sensor is used to detect an attitude parameter of the first device, and the first state includes a static state or a first motion state.
  • the main control module 801 is further configured to acquire first data through an attitude detection algorithm and a first sensor, and acquire second data through an environment perception algorithm and a second sensor when the first device is in a first state.
  • the second sensor is used to detect parameters of the environment where the first device is located.
  • the main control module 801 is further configured to control the second sensor through the environment control module 802 to acquire third data of the first sensor and fourth data of the second sensor.
  • the main control module 801 is further configured to calibrate the first sensor according to the first data, the second data, the third data and the fourth data.
  • the first state may include a static state
  • the main control module 801 is further configured to acquire fifth data by using an environment perception algorithm and the first sensor.
  • the main control module 801 is further configured to acquire sixth data by using an environment perception algorithm and the first sensor after a first time interval.
  • the main control module 801 is further configured to determine that the first device is in the first state if the difference between the fifth data and the sixth data is less than or equal to the first threshold, otherwise determine that the first device is not in the first state.
  • the main control module 801 is further configured to calibrate the first sensor according to the first data and the seventh data.
  • the seventh data may be acquired by the first sensor after the previous calibration, or initial data acquired by the first sensor.
  • the main control module 801 is further configured to stop the current operation and control the first device to enter the running state.
  • the running state includes performing beam tracking.
  • the main control module 801 is further configured to use the first calibration value to compensate the third data of the first sensor to obtain eighth data.
  • the first calibration value may be determined according to the first data, the second data, the third data and the fourth data.
  • the calibration device may further include a storage module, configured to store the first calibration value if the difference between the eighth data and the second data is less than a second threshold.
  • the main control module 801 is further configured to stop the current operation and control the first device to enter the running state.
  • the running state may include performing beam tracking.
  • the main control module 801 is further configured to determine whether the first device is in the first state by using an environment perception algorithm and the first sensor.
  • the first condition may include that the difference between the current time T and T0 is greater than or equal to a first time threshold, and T0 is the time when the first sensor was successfully calibrated last time.
  • the first condition may further include receiving an instruction to calibrate the first sensor.
  • the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the calibration device 800 can execute the calibration method described above in FIGS. 5-6 .
  • the calibration device 800 may be a chip (system) or other components or components that may be provided in the calibration device, which is not limited in this application.
  • the technical effect of the calibration device 800 can refer to the technical effect of the calibration method shown in FIG. 5 and FIG. 6 , which will not be repeated here.
  • the communication system may include a calibration device, an antenna control module, and an antenna, and may also include a motor and a transceiver.
  • An embodiment of the present application provides a chip system, and the chip system includes a logic circuit and an input/output port.
  • the logic circuit can be used to implement the processing function involved in the calibration method provided by the embodiment of the present application
  • the input/output port can be used for the sending and receiving function involved in the calibration method provided in the embodiment of the present application.
  • the input port can be used to realize the receiving function involved in the calibration method provided by the embodiment of the present application
  • the output port can be used to realize the sending function involved in the calibration method provided in the embodiment of the present application.
  • the processor in the calibration device 700 can be used to perform, for example but not limited to, baseband related processing, and the transceiver in the calibration device 700 can be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (system on chip). Whether each device is independently arranged on different chips or integrated and arranged on one or more chips often depends on the specific needs of product design.
  • the embodiments of the present application do not limit the specific implementation forms of the foregoing devices.
  • the chip system further includes a memory, which is used to store program instructions and data for implementing functions involved in the calibration method provided by the embodiments of the present application.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program or instruction, and when the computer program or instruction is run on the computer, the calibration method provided in the embodiment of the present application is executed.
  • An embodiment of the present application provides a computer program product, and the computer program product includes: a computer program or an instruction.
  • the calibration method provided in the embodiment of the present application is executed.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory Access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instruction or computer program is loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种校准方法及装置,能够对传感器进行在线校准,可以解决使用传感器过程中,解决随着时间推移传感器老化导致的温漂系数变化的问题。该方法包括:通过环境感知算法和第一传感器,确定第一设备是否处于第一状态(S501);在第一设备处于第一状态的情况下,通过姿态检测算法和第一传感器获取第一数据,通过环境感知算法和第二传感器获取第二数据(S502);控制第二传感器,获取第一传感器的第三数据和第二传感器的第四数据(S503);根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准(S504)。其中,第一传感器用于检测第一设备的姿态参数,第一状态包括静止状态、或第一运动状态,第二传感器用于检测第一设备所处的环境的参数。

Description

校准方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种校准方法及装置。
背景技术
智能波束跟踪(intelligent beam tracing antenna,IBT)天线可利用副反射面可调的双反射面微波天线实现波束跟踪。其中,双反射面微波天线由主反射面和副反射面组成。示例性地,IBT天线的控制模块利用姿态传感器估计天线姿态,控制波束往天线晃动的反方向调整,使波束始终对准对端天线,解决风吹和日照等原因导致天线姿态变化的问题,例如,风吹导致的天线晃动、日照导致的铁塔弯曲等原因会导致天线姿态变化。
现有姿态检测技术是利用微机电系统(micro-electro-mechanical systems,MEMS)惯性传感器,实现天线姿态检测,但是MEMS惯性传感器的检测精度受温度影响较大,导致天线姿态评估存在误差。为了提高姿态检测精度,当前采用在工厂制造环节校正MEMS惯性传感器。
但是当前工厂校正无法应对在使用传感器的过程中,随着时间推移传感器老化导致的温漂系数变化。
发明内容
本申请提供一种校准方法及装置,能够对传感器进行在线校准,可以解决使用传感器过程中,随着时间推移传感器老化导致的温漂系数变化的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种校准方法。该校准方法包括:通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,在第一设备处于第一状态的情况下,通过姿态检测算法和第一传感器获取第一数据,通过环境感知算法和第二传感器获取第二数据,在第一设备处于第一状态的情况下,控制第二传感器,获取第一传感器的第三数据和第二传感器的第四数据,在第一设备处于第一状态的情况下,根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准。其中,第一传感器用于检测第一设备的姿态参数,第一状态包括静止状态、或第一运动状态,第二传感器用于检测第一设备所处的环境的参数。
基于第一方面提供的校准方法,校准装置通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,在第一设备处于第一状态的情况下,根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准,第一状态包括静止状态、或第一运动状态。如此,通过检测外界环境,来确定是否对第一传感器进行在线校准,可以实现在线校准温漂系数,从而可以解决使用传感器过程中,随着时间推移传感器老化导致的温漂系数变化的问题,可以提高第一传感器的精度。并且,可以实现免工厂校准,降低成本,提升生产效率。
需要说明的是,本申请中的第一传感器可以是在工厂中校准后的传感器、或者可以是未经过工厂校准的传感器,本申请对此不进行限定。例如在工厂中针对第一传感器的温漂问题、老化问题等进行校准后,再结合本申请提供的方法进行在线校准,可以进一步提高第一传感器的精度。
在一种可能的设计方式中,第一状态包括静止状态,通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,可以包括;采用环境感知算法和第一传感器,获取第五数据,间隔第一时间段,采用环境感知算法和第一传感器,获取第六数据,若第五数据与第六数据的差值小于或等于第一阈值,则确定第一设备处于第一状态,否则确定第一设备不处于第一状态。也就是说,可以通过第一传感器的值确定外界环境,若数值变化大于第一阈值,则说明外界环境不稳定。
在一种可能的设计方式中,第一方面提供的校准方法还可以包括:根据第一数据和第七数据对第一传感器进行校准。其中,第七数据为前一次校准后通过第一传感器获取的、或者通过第一传感器获取的初始数据。如此,可以校准老化带来的误差。
在一种可能的设计方式中,第一方面提供的校准方法还可以包括:在第一设备不处于第一状态的情况下,停止当前的操作,控制第一设备进入运行状态。其中,运行状态包括进行波束跟踪。如此,校准装置在第一设备处于第一状态的情况下对第一传感器进行校准,当环境发生变化时,可以中断在线校准。若在环境异常时进行校准,会使校准结果异常,影响第一设备后续正常工作。
在一种可能的设计方式中,在第一设备处于第一状态的情况下,根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准,可以包括:在第一设备处于第一状态的情况下,采用第一校准值对第一传感器的第三数据进行补偿,获得第八数据,若第八数据与第二数据的差值小于第二阈值,则保存第一校准值。其中,第一校准值可以是根据第一数据、第二数据、第三数据和第四数据确定的。也就是说,对第一传感器进行校准的过程中,可以对调整的值进行判断,来保证校准的正确性。若调整的值小于预先设置的第二阈值,可以认为校准过程正常,继续校准。
在一种可能的设计方式中,第一方面提供的校准方法还可以包括:若第八数据与第二数据的差值大于或等于第二阈值,则停止当前的操作,控制第一设备进入运行状态。其中,运行状态包括进行波束跟踪。也就是说,若调整的值大于或等于预先设置的第二阈值,可以认为校准过程发生异常,导致调整的值发生异常,停止当前的操作,退出校准。
在一种可能的设计方式中,通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,可以包括:在满足第一条件的情况下,通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。其中,第一条件包括当前时刻T与T0的差值大于或等于第一时间阈值,T0为前一次成功对第一传感器进行校准的时刻。如此,可以实现周期性对第一传感器进行在线校准。
在一种可能的设计方式中,第一条件还可以包括接收到对第一传感器进行校准的指示。也就是说,校准装置可以判断是否接收到对第一传感器进行校准的指示,未接收,则等待指示,若接收,则执行校准操作。
第二方面,提供一种校准装置。该校准装置包括:主控模块和环境控制模块。
其中,主控模块,用于通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。其中,第一传感器用于检测第一设备的姿态参数,第一状态包括静止状态、或第一运动状态。
主控模块,还用于在第一设备处于第一状态的情况下,通过姿态检测算法和第一传感器获取第一数据,通过环境感知算法和第二传感器获取第二数据。其中,第二传感器用于检测第一设备所处的环境的参数。
在第一设备处于第一状态的情况下,主控模块,还用于通过环境控制模块控制第二传感器,获取第一传感器的第三数据和第二传感器的第四数据。
在第一设备处于第一状态的情况下,主控模块,还用于根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准。
在一种可能的设计方式中,第一状态可以包括静止状态,主控模块,还用于采用环境感知算法和第一传感器,获取第五数据。
主控模块,还用于间隔第一时间段后,采用环境感知算法和第一传感器,获取第六数据。
主控模块,还用于若第五数据与第六数据的差值小于或等于第一阈值,则确定第一设备处于第一状态,否则确定第一设备不处于第一状态。
在一种可能的设计方式中,主控模块,还用于根据第一数据和第七数据对第一传感器进行校准。其中,第七数据可以为前一次校准后通过第一传感器获取的、或者通过第一传感器获取的初始数据。
在一种可能的设计方式中,在第一设备不处于第一状态的情况下,主控模块,还用于停止当前的操作,控制第一设备进入运行状态。其中,运行状态包括进行波束跟踪。
在一种可能的设计方式中,在第一设备处于第一状态的情况下,主控模块,还用于采用第一校准值对第一传感器的第三数据进行补偿,获得第八数据。其中,第一校准值可以是根据第一数据、第二数据、第三数据和第四数据确定的。
该校准装置还可以包括存储模块,若第八数据与第二数据的差值小于第二阈值,则存储模块,用于保存第一校准值。
在一种可能的设计方式中,若第八数据与第二数据的差值大于或等于第二阈值,则主控模块,还用于停止当前的操作,控制第一设备进入运行状态。其中,运行状态可以包括进行波束跟踪。
在一种可能的设计方式中,在满足第一条件的情况下,主控模块,还用于通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。其中,第一条件可以包括当前时刻T与T0的差值大于或等于第一时间阈值,T0为前一次对成功第一传感器进行校准的时刻。
在一种可能的设计方式中,第一条件还可以包括接收到对第一传感器进行校准的指示。
可选地,第二方面所述的校准装置还可以包括收发模块。其中,收发模块用于向第一设备发送数据和/或信令,还可以用于接收其他设备发送的数据和/或信令,收发模块可以包括接收模块和发送模块。其中,发送模块,用于向第一设备发送数据和/ 或信令,接收模块,用于接收其他设备发送的数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第二方面所述的校准装置可以执行第一方面所述的校准方法。
需要说明的是,第二方面所述的校准装置可以是可设置于校准装置的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第二方面所述的校准装置的技术效果可以参考第一方面中任一种可能的实现方式所述的校准方法的技术效果,此处不再赘述。
第三方面,提供一种校准装置。该校准装置包括:处理器,该处理器与存储器耦合,存储器用于存储计算机程序。
处理器用于执行存储器中存储的计算机程序,以使得如第一方面中任一种可能的实现方式所述的校准方法被执行。
在一种可能的设计中,第三方面所述的校准装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该校准装置与其他设备通信。
需要说明的是,输入端口可用于实现第一方面所涉及的接收功能,输出端口可用于实现第一方面所涉及的发送功能。
在本申请中,第三方面所述的校准装置可以为设置于校准装置内部的芯片或芯片系统。
此外,第三方面所述的校准装置的技术效果可以参考第一方面中任一种实现方式所述的校准方法的技术效果,此处不再赘述。
第四方面,提供了一种通信系统。该通信系统可以包括校准装置、天线控制模块、和天线,还可以包括电机和收发设备。
第五方面,提供了一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路用于实现第一方面所涉及的处理功能,输入/输出端口用于实现第一方面所涉及的收发功能。具体地,输入端口可用于实现第一方面所涉及的接收功能,输出端口可用于实现第一方面所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面中任意一种可能的实现方式所述的校准方法被执行。
第七方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面中任意一种可能的实现方式所述的校准方法被执行。
附图说明
图1为本申请实施例提供的一种校准装置的结构示意图;
图2为本申请实施例提供的一种校准方法的流程示意图;
图3a为本申请实施例提供的一种通信系统的架构示意图;
图3b为本申请实施例提供的一种通信系统的架构示意图;
图4a为本申请实施例提供的一种天线的应用示意图;
图4b为本申请实施例提供的一种工厂校准的示意图;
图5为本申请实施例提供的一种校准方法的流程示意图;
图6为本申请实施例提供的另一种校准方法的流程示意图;
图7为本申请实施例提供的另一种校准装置的结构示意图;
图8为本申请实施例提供的又一种校准装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中,“信息(information)”,“消息(message)”,有时可以混用,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,在不强调其区别时,其所要表达的含义是一致的。“模块”,“单元”可以混用,“部件”、“实体”和“电路”可以混用,在不强调其区别时,其所要表达的含义是一致的。“控制主机”,“控制设备”和“控制装置”,可以混用,在不强调其区别时,其所要表达的含义是一致的。本申请中的“多个”或“至少一个”是指两个或两个以上,本申请中的术语“/”表示“或”的关系。
本申请中术语“第一”、“第二”、“第三”等字样用于对作用和功能基本相同的相同项或相似项进行区分,“第一”、“第二”、“第三”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1为本申请实施例提供的一种校准装置的结构示意图。
如图1所示,校准装置可以包括:工作环境控制单元和第一主控单元。校准装置还可以包括第一传感器、和第二传感器。工作环境控制单元、第一传感器、第二传感器、第一主控单元可组成在线校准系统。可选地,校准装置还可以包括IBT天线控制单元。
示例性地,工作环境控制单元可以包括但不限于如下一项或多项:温度控制单元、姿态控制单元、以及位置控制单元。在线校准过程中,工作环境控制单元可用于控制传感器的工作环境(例如温度、湿度等)、和/或控制传感器的姿态的变化。例如,工作环境控制单元可以调高或调低环境参数(如温度),并读取环境参数变化前后环境传感器和姿态传感器参数变化情况来完成传感器老化、温漂校准参数获取。本申请对工作环境控制单元具体包括的单元不进行限定,根据实际需求来确定。
其中,例如,温度控制单元可以通过控制加热组件的功率、金属-氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET)功率/或半导 体主动制冷等方式改变温度等环境参数。
如图2所示,温度控制单元可以包括第二主控单元、温度控制电路、和加热电阻。其中,第二主控单元通过温度控制电路控制加热电阻来改变温度、姿态等参数。可选地,温度控制单元可以包括姿态传感器和温度传感器。或者,姿态传感器和温度传感器可独立于温度控制单元之外。
需要说明的是,姿态控制单元、以及位置控制单元的具体实现方式与温度控制单元类似,此处不再赘述。
示例性地,第一主控单元可用于通过环境感知算法和第一传感器,确定第一设备是否处于第一状态;在第一设备处于第一状态的情况下,通过姿态检测算法和第一传感器获取第一数据,通过环境感知算法和第二传感器获取第二数据;在第一设备处于第一状态的情况下,控制第二传感器,获取第一传感器的第三数据和第二传感器的第四数据;在第一设备处于第一状态的情况下,根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准。
示例性地,第一传感器可以是用于检测姿态参数的传感器。例如,第一传感器可以是姿态传感器、MEMS惯性传感器、位置传感器、陀螺仪、加速度计、GPS、磁力计、电子罗盘、磁编码器、光编码器、电子罗盘、激光位移检测器等用于感知位置或角度偏移的装置等。本申请可通过第一传感器评估姿态参数变化情况。对第一传感器的数据进行处理可得到天线姿态变化值,如变化方向、变化幅度、变化角速度等。姿态参数可以包括变化方向、变化幅度、和/或变化角速度等。
可选地,本申请可采用环境感知算法对第一传感器的数据进行处理,实现对第一设备(例如天线)的环境参数的实时感知,确定第一设备是否处于静止状态或运动状态,支撑实现是否进行在线校准、或异常保护。
示例性地,第二传感器可以是用于检测环境参数的传感器。例如,第二传感器可以是温度传感器、压力传感器、高度传感器、气压传感器、湿度传感器等。本申请可通过第一传感器评估环境参数变化情况。
为便于理解本申请实施例,首先以图3a和图3b中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图3a和图3b为本申请实施例提供的通信系统的架构示意图。
如图3a和图3b所示,通信系统可以包括校准装置、天线控制模块、和天线,还可以包括电机和收发设备。该通信系统可以称为智能波束跟踪(intelligent beam tracing antenna,IBT)系统。
其中,天线控制模块可以称为IBT天线控制模块,校准装置和天线控制模块可以独立设置、或集成在一个设备中、或天线控制模块设置在校准装置中,例如称为控制设备。
示例性地,天线可以是带电机的可调副反射面的双反射面微波天线,控制设备可控制电机转动,从而牵引天线转动,调整天线的角度。电机可以置于天线内部。
示例性地,收发设备可用于给控制设备供电、接收来自对端的信号。收发设备可以称为大带宽(Eband)收发设备。
本申请使用校准装置、收发设备的接收信号电平(received signal level,RSL)和 发端的发送信号电平(transmitted signal level,TSL),通过线缆将本端的接收信号电平RSL传给天线控制模块,并通过空间链路将本端的TSL传给对端。
示例性地,本申请可通过本端的接收信号电平和发端的发送信号电平,判断外界环境是否稳定。例如,校准装置可以通过计算得出本端到对端的压降的理论值,该压降的理论值可以是预设值的,通过实际的发送信号电平和接收信号电平可以得出压降的实际值,对于压降的理论值与压降的实际值是否相同或差值在一定范围内,若是,则表示外界环境稳定,可以进行在线校准,否则,需等待环境稳定后进行校准。这只是判断外界环境是否适合在线校准的一种示例,下述方法实施例中还记载了其他方式。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图3a和图3b仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他设备,图3a和图3b中未予以画出。
随着移动无线网络的发展,接入网设备的业务流量越来越大,作为接入网设备回传的微波传输也迎来超过10Gbps时代,而大带宽(Eband)微波成为5G业务回传末端接入和小型汇聚的主要解决方案。
当前应用于大带宽场景的天线主要有0.3m、0.6m两种口径的天线,而长距离大带宽场景则需要增益更大的天线,例如0.9m、1.2m等口径的天线。图4a为0.6m口径的天线的应用示意图。
如图4a所示,横坐标为天线偏离中心的角度(单位为度(°)),纵坐标为接收功率的劣化值(单位分贝(decibel,dB))。接收功率的劣化值通常按照+/-3dB的标准来要求,由于天线的频率高、口径大等固有特性,如图4a所示,0.6m口径的大带宽天线的半功率角(对应接收功率劣化值3dB的功率角)为+/-0.25°。而0.9m大带宽天线的半功率角(对应接收功率劣化值3dB的功率角)会进一步减小到+/-0.1°(图4a中未示出)。
因此受日照、风吹等原因导致大带宽天线发生慢速或快速晃动,会引发接收功率发生大幅度劣化甚至链路中断,影响用户体验。例如,由于日照会引起铁塔向阳面及背阳面受热不均,从而导致天线弯曲,会导致接收功率出现较大劣化。再例如,由于风吹导致铁塔出现晃动,会导致接收功率根据风速变化随机出现跌落。
传感器受老化、温度等影响较大,存在灵敏度、零偏、温漂系数老化和灵敏度温漂、零偏温漂等问题,导致天线姿态评估存在误差。
为了提高姿态检测精度,当前采用在工厂制造环节校正MEMS惯性传感器。如图4b所示,通过高精度姿态参考传感器及工厂校准环境控制装置对姿态传感器的固定零偏、温度漂移进行校准补偿,以实现传感器温漂工厂校正。但是当前工厂校正无法工厂校准无法解决随着使用时间增加由于传感器老化,导致的固定零偏老化漂移和温漂系数老化漂移问题。另外,工厂制造环节,通过进行高精度校准的时间长、成本高,不适合工业级大批量应用。
本申请提供的校正方法,可以解决随着使用时间增加由于传感器老化,导致的固定零偏老化漂移和温漂系数老化漂移问题,从而可以解决传感器长期老化、温度漂移等导致的姿态检测精度下降引起的波束跟踪精度劣化,进而导致接收信号电平RSL和系统增益劣化的问题,可传感器的检测精度。并且,可以实现免工厂校准,降低成本, 提升生产效率。
下面将结合图5-图6对本申请实施例提供的校准方法进行具体阐述。
示例性地,图5为本申请实施例提供的一种校准方法的流程示意图。
如图5所示,该校准方法包括如下步骤:
S501,校准装置通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。
示例性地,第一传感器用于检测第一设备的姿态参数,具体实现方式可参照对上述图1中所示第一传感器的阐述,此处不再赘述。
例如,第一设备可以为天线。
示例性地,第一状态可以包括静止状态、或第一运动状态。
需要说明的是,本申请实施例中,第一状态可以是第一设备处于能够被校准的状态。其中,对于静止状态,第一设备处于一定的运动范围内可以认为第一设备处于静止状态,以变化角速度为例,变化角速度小于某一阈值,则认为是静止状态,如无风吹晃动、无日照导致铁塔缓变、无外界环境冲击,不同的第一传感器对于精度的要求不同。
对于第一运动状态,若第一设备可以在运动状态被校准,则可以确定第一设备是否处于第一运动状态,第一运动状态可以指轻微晃动、或者明显晃动状态。
在一种可能的设计方式中,上述S501可以包括下述步骤S501a:
S501a,在满足第一条件的情况下,校准装置通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。
可选地,第一条件可以包括当前时刻T与T0的差值大于或等于第一时间阈值,T0为前一次成功对第一传感器进行校准的时刻。
例如,第一时间阈值可以为3个月、6个月、1年等,本申请对此不进行限定。
如此,可以实现周期性对第一传感器进行在线校准。
一些实施例中,校准装置可以对成功对第一传感器进行校准这一事件进行记录,再确定是否满足第一条件时查询该记录。
可选地,第一条件还可以包括接收到对第一传感器进行校准的指示。
例如,在接收到对第一传感器进行校准的指示之前,可以对第一设备的初始状态进行对准,准备工作完成后,再指示校准装置进行工作,以对第一传感器进行在线校准。
也就是说,校准装置可以判断是否接收到对第一传感器进行校准的指示,未接收,则等待指示,若接收,则继续执行S501。
图6为本申请实施例提供的另一种校准方法的流程示意图。
如图6所示,S601,对校准装置上电,并进行初始化完成后开始运行,环境感知算法开始工作。
S602,校准装置确定是否处于使能状态。其中,该使能状态可以指接收到对第一传感器进行校准的指示。若不处于使能状态(N),则固定时间轮询确定是否处于使能状态。若处于使能状态(Y),则继续执行下述S603。
在一种可能的设计方式中,第一状态包括静止状态,上述S501可以包括下述步骤 S501b至S501d。
S501b,校准装置采用环境感知算法和第一传感器,获取第五数据。
可选地,第五数据可以是一段时间内的平均值、或者是一段时间内的值,可以设定第五数据在一定范围内。如此,可以提高校准精度。
S501c,间隔第一时间段,校准装置采用环境感知算法和第一传感器,获取第六数据。
可选地,与第五数据类似,第六数据可以是一段时间内的平均值、或者是一段时间内的值,可以设定第六数据在一定范围内。如此,可以提高校准精度。
S501d,若第五数据与第六数据的差值小于或等于第一阈值,则确定第一设备处于第一状态,否则确定第一设备不处于第一状态。
也就是说,可以通过第一传感器的值确定外界环境,若数值变化(例如变化方向、变化幅度、变化角速度等)大于第一阈值,则说明外界环境不稳定。
可选地,校准装置可以通过第二传感器的值确定外界环境,例如,温度变化大于第一阈值,说明外界环境不稳定。
可选地,校准装置可以通过本端的接收信号电平和发端的发送信号电平,判断外界环境。具体实现方式可参照上述对图3a和图3b的阐述中,此处不再赘述。
可选地,上述S501校准装置通过环境感知算法和第一传感器,确定第一设备是否处于第一状态可是间隔一段时间执行一次。
在一种可能的设计方式中,本申请实施例提供的校准方法,还可以包括:在第一设备不处于第一状态的情况下,校准装置停止当前的操作,控制第一设备进入运行状态。
可选地,运行状态包括进行波束跟踪。
示例性地,由于风吹等原因导致波束变化后,反方向调节波束,使波束对准。
如此,校准装置在第一设备处于第一状态的情况下对第一传感器进行校准,当环境发生变化时,如出现风吹或日照等其它环境改变,可以及时中断在线校准。若在环境异常时进行校准,会使校准结果异常,影响第一设备后续正常工作。
这样,校准装置在执行后续S502至S504的过程中,可以实时监测第一设备的第一状态,若第一设备不处于第一状态,则直接停止对第一传感器进行校准的操作,使第一设备推出在线校准,控制第一设备进入正常的运行状态。
可选地,由于第一设备不处于第一状态,校准装置停止对第一传感器进行校准的操作后,可以继续监测第一设备的第一状态,第一设备处于第一状态后,开始进行对第一传感器进行校准。
如图6所示,图6所示的校准方法还可以包括S603至S604。S603,校准装置通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。S604,在第一设备不处于第一状态的情况下,则校准装置停止当前的操作,控制第一设备进入运行状态。继续监测第一设备的第一状态,第一设备处于第一状态后,开始进行对第一传感器进行校准。S603至S604结合姿态环境感知算法实时对外界环境进行检测,可作为校准过程中异常退出保护机制。
S502,在第一设备处于第一状态的情况下,校准装置通过姿态检测算法和第一传 感器获取第一数据,通过环境感知算法和第二传感器获取第二数据。
示例性地,第二传感器可用于检测第一设备所处的环境的参数。具体实现方式可参照对上述图1中所示第一传感器的阐述,此处不再赘述。
例如,以温度和角度为例,通过姿态传感器检测到第一角度值,通过温度传感器检测到25摄氏度。
如图6所示,图6所示的校准方法还可以包括S605至S613。
S605,校准装置查询当前是否记录第一传感器的初始信息和第二传感器的初始信息。示例性地,第一传感器的初始信息如第一数据,第二传感器的初始信息如第二数据,具体地,例如俯仰角、方位角、传感器温度、零偏等信息。
若未记录初始信息,校准装置执行下述S606至下述S608,以获得初始信息。
S606,校准装置采用环境感知算法和第一传感器获取数据。
关于S606的具体实现方式可参照上述S501b至S501c的实现方式。
S607,校准装置确定第一设备是否处于第一状态。
关于S607的具体实现方式可参照上述S501d的实现方式。可选地,若不满足,则固定时间轮询一次,执行S606。
S608,校准装置记录第一传感器的初始信息和第二传感器的初始信息。
S609,校准装置控制第一设备进入运行状态。
可选地,运行状态包括进行波束跟踪。可参照上述S501的阐述,此处不再赘述。
S610,校准装置启动在线校准任务判断机制。也就是说,校准装置可以判断是否满足对第一传感器进行校准的条件。
S611,校准装置确定是否满足第一条件。
关于第一条件的具体实现方式可参照上述S501a的实现方式。可选地,若不满足第一条件,则固定一段时间轮询一次S610至S611。
S612,校准装置采用环境感知算法和第一传感器获取数据。
关于S612的具体实现方式可参照上述S501b至S501c的实现方式。
S613,校准装置确定第一设备是否处于第一状态。
关于S613的具体实现方式可参照上述S501d的实现方式。可选地,若不满足,则固定一段时间轮询一次S612至S613。
S503,在第一设备处于第一状态的情况下,校准装置控制第二传感器,获取第一传感器的第三数据和第二传感器的第四数据。
示例性地,在第一设备处于第一状态的情况下,控制温度传感器的温度,调整姿态传感器的值,姿态传感器的值随着温度的变化而变化。例如,控制温度传感器,将温度由25摄氏度调整至50摄氏度(此时外界环境温度没有变化,或变化较小),通过姿态传感器检测到第二角度值。
如图6所示,图6所示的校准方法还可以包括S614至S615。
S614,启动工作环境控制单元,工作环境控制单元可控制第二传感器的数值。S615,等待一段时间后,获取第一传感器的第三数据和第二传感器的第四数据。
S504,在第一设备处于第一状态的情况下,校准装置根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准。
示例性地,以温度和角度为例,通过25摄氏度、50摄氏度、第一角度值、第二角度值,对姿态传感器进行校准。
在一种可能的设计方式中,在第一设备处于第一状态的情况下,上述S504可以包括下述S504a至S504b。
S504a,在第一设备处于第一状态的情况下,校准装置采用第一校准值对第一传感器第三数据进行补偿,获得第八数据。
可选地,第一校准值可以是根据第一数据、第二数据、第三数据和第四数据确定的。
例如,第一校准值可以时温漂系数,可以根据25摄氏度、50摄氏度、第一角度值、第二角度值计算温漂系数。
S504b,若第八数据与第二数据的差值小于第二阈值,则校准装置保存第一校准值。
可选地,上述S504还可以包括下述S504c。
S504c,若第八数据与第二数据的差值大于或等于第二阈值,则停止当前的操作,控制第一设备进入运行状态。
可选地,运行状态可以包括进行波束跟踪。
也就是说,对第一传感器进行校准的过程中,可以对调整的值进行判断,来保证校准的正确性。若调整的值小于预先设置的第二阈值,可以认为校准过程正常,继续校准。若调整的值大于或等于预先设置的第二阈值,可以认为校准过程发生异常,导致调整的值发生异常,停止当前的操作,退出校准。
可选地,图5所示的校准方法,还可以包括:校准装置执行上述S504,校准第一传感器后,获取第一传感器的数据1和第二传感器的数据2,再反向控制第二传感器,获取新的第一传感器的数据3和第二传感器的数据4,生成新的校准值(例如温漂系数),利用该新的校准值进行实时补偿。实现方式与上述S502-S504的实现方式类似,此处不再赘述。
可选地,反向控制第二传感器指相对于上述S503反向控制第二传感器。例如,以温度传感器为例,上述S503中将温度升高,如将温度由25摄氏度调整至50摄氏度,反向控制第二传感器可以指将将温度降低,如将温度由50摄氏度调整至25摄氏度。
示例性地,采用新的校准值对第一传感器的数据3进行补偿,若补偿后获得的值(例如第一传感器的数据5)与第一传感器的数据1的差小于或等于设定的第三阈值,则校准通过,否则丢弃此次校准的数据,退出校准。
如此,可以对校准结果进行验证,若补偿后获得的值(例如第一传感器的数据5)与第一传感器的数据1的差小于或等于设定的第三阈值,校准的结果精确,否则,校准结果异常,退出本次校准,可以再次进行重新校准。这样,验证补偿后参数是否满足校准精度要求,可以保证在线校准的准确性。
在一种可能的设计方式中,图5所示的校准方法,还可以包括:校准装置根据第一数据和第七数据对第一传感器进行校准。
可选地,第七数据可以为前一次校准后通过第一传感器获取的、或者通过第一传感器获取的初始数据。
例如,在外界环境处于第一状态的情况下,校准装置可以根据第一传感器的数据 A n和第一传感器的数据A n-1校准老化带来的误差,第一传感器的数据A n和第一传感器的数据A n-1的差值可以第一传感器的老化偏差值。第一传感器的数据A n为当前第一传感器的值,第一传感器的数据A n-1为前一次校准后第一传感器的值。
可选地,获取第一数据与获取第七数据的时间间隔可以为第一时间阈值,例如一个校准周期。
可选地,第一数据和第七数据的差可以称为老化偏差值。
如图6所示,图6所示的校准方法,还可以包括S616。S616,校准装置根据第一数据和第七数据对第一传感器进行校准。
需要说明的是,本申请不限定S616与上述S614、S615的先后顺序。本申请实施例不限定校准老化带来的偏移与校准温漂带来的偏移的先后顺序,图6仅为一种示例。如图6所示,图6所示的校准方法还可以包括:S617至S622。
S617,校准装置反向控制第二传感器。S618,校准装置利用该新的校准值进行实时补偿。S619,校准装置对校准结果进行验证。可选地,校验结果准确,则执行下述S620,否则退出本次校准,执行S609。
S620,校准装置采用环境感知算法和第一传感器获取数据。具体实现方式可参照上述S501b至S501c的实现方式。
S621,校准装置确定第一设备是否处于第一状态。具体实现方式可参照上述S501d的实现方式。若满足,则执行下述S622,若不满足,则退出本次校准,执行S609。
S622,校准装置存储第一校准值和老化偏差值。
示例性地,当前校准过程中的环境处于第一状态,则更新第一传感器的老化漂移和温度漂移系数,在线校准结束。进入S609,校准装置控制第一设备进入运行状态,如图6所示。
也就是说,确定校准结果有效,则进行校准并记录。校准后,使第一设备进行运行状态。例如,根据第一传感器工作环境变化前后姿态数据变化情况,完成误差(温漂、老化等)参数校准,生成误差补偿表。
基于图5提供的校准方法,校准装置通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,在第一设备处于第一状态的情况下,根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准,第一状态包括静止状态、或第一运动状态。如此,通过检测外界环境,来确定是否对第一传感器进行在线校准,可以实现在线校准温漂系数,从而可以解决使用传感器过程中,随着时间推移传感器老化导致的温漂系数变化的问题,可以提高第一传感器的精度。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
以上结合图5-图6详细说明了本申请实施例提供的校准方法。以下结合图7-图8 详细说明本申请实施例提供的校准装置。
图7为可用于执行本申请实施例提供的校准方法的一种校准装置的结构示意图。校准装置700可以是校准装置,也可以是应用于校准装置中的芯片或者其他具有相应功能的部件。如图7所示,校准装置700可以包括处理器701。可选地,校准装置700还可以包括存储器702和收发器703中的一个或多个。其中,处理器701可以与存储器702和收发器703中的一个或多个耦合,如可以通过通信总线连接,处理器701也可以单独使用。
下面结合图7对校准装置700的各个构成部件进行具体的介绍:
处理器701是校准装置700的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器701是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器701可以通过运行或执行存储在存储器702内的软件程序,以及调用存储在存储器702内的数据,执行校准装置700的各种功能。
在具体的实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,校准装置700也可以包括多个处理器,例如图7中所示的处理器701和处理器704。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
可选地,存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以和处理器701集成在一起,也可以独立存在,并通过校准装置700的输入/输出端口(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
示例性地,输入端口可用于实现上述任一方法实施例中由校准装置执行的接收功能,输出端口可用于实现上述任一方法实施例中由校准装置执行的发送功能。
其中,所述存储器702可用于存储执行本申请方案的软件程序,并由处理器701来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
可选地,收发器703,用于与其他设备之间的通信。例如,收发器703可以用于与图3a中所示的天线控制模块、和/或收发设备通信。此外,收发器703可以包括接收器和发送器(图7中未单独示出)。其中,接收器用于实现接收功能,发送器用于 实现发送功能。收发器703可以和处理器701集成在一起,也可以独立存在,并通过校准装置700的输入/输出端口(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
需要说明的是,图7中示出的校准装置700的结构并不构成对该校准装置的限定,实际的校准装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,上述图5-图6中校准装置的动作可以由图7所示的校准装置700中的处理器701调用存储器702中存储的应用程序代码以指令校准装置执行。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图8为本申请实施例提供的又一种校准装置的结构示意图。为了便于说明,图8仅示出了该校准装置的主要部件。
该校准装置800包括主控模块801、和环境控制模块802。该校准装置800可以是前述方法实施例中的校准装置。
需要说明的是,主控模块801、和环境控制模块802可以集成在一起使用,或者单独使用,本申请对此不进行限定。
校准装置还可以包括存储模块803和收发模块(图8中未示出)。其中,收发模块用于向第一设备发送数据和/或信令,还可以用于接收其他设备发送的数据和/或信令,收发模块可以包括接收模块和发送模块。其中,发送模块,用于向第一设备发送数据和/或信令,接收模块,用于接收其他设备发送的数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
在本实施例中,该校准装置800以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该校准装置800可以采用图7所示的校准装置700的形式。
比如,图7所示的校准装置700中的处理器701可以通过调用存储器702中存储的计算机执行指令,使得上述方法实施例中的校准方法被执行。
具体的,图8中的主控模块801、和环境控制模块802的功能/实现过程可以通过图7所示的校准装置700中的处理器701调用存储器702中存储的计算机执行指令来实现,图8中的收发模块的功能/实现过程可以通过图7中所示的校准装置700中的收发器703来实现。
由于本实施例提供的校准装置800可执行上述校准方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一种可能的设计方案中,图8所示出的校准装置800可适用于图3a图3b所示出的通信系统中,执行图5和图6所示的校准方法中的校准装置的功能。
其中,主控模块801,用于通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。其中,第一传感器用于检测第一设备的姿态参数,第一状态包括静止状态、或第一运动状态。
主控模块801,还用于在第一设备处于第一状态的情况下,通过姿态检测算法和第一传感器获取第一数据,通过环境感知算法和第二传感器获取第二数据。其中,第二传感器用于检测第一设备所处的环境的参数。
在第一设备处于第一状态的情况下,主控模块801,还用于通过环境控制模块802控制第二传感器,获取第一传感器的第三数据和第二传感器的第四数据。
在第一设备处于第一状态的情况下,主控模块801,还用于根据第一数据、第二数据、第三数据和第四数据,对第一传感器进行校准。
在一种可能的设计方式中,第一状态可以包括静止状态,主控模块801,还用于采用环境感知算法和第一传感器,获取第五数据。
主控模块801,还用于间隔第一时间段后,采用环境感知算法和第一传感器,获取第六数据。
主控模块801,还用于若第五数据与第六数据的差值小于或等于第一阈值,则确定第一设备处于第一状态,否则确定第一设备不处于第一状态。
在一种可能的设计方式中,主控模块801,还用于根据第一数据和第七数据对第一传感器进行校准。其中,第七数据可以为前一次校准后通过第一传感器获取的、或者通过第一传感器获取的初始数据。
在一种可能的设计方式中,在第一设备不处于第一状态的情况下,主控模块801,还用于停止当前的操作,控制第一设备进入运行状态。其中,运行状态包括进行波束跟踪。
在一种可能的设计方式中,在第一设备处于第一状态的情况下,主控模块801,还用于采用第一校准值对第一传感器的第三数据进行补偿,获得第八数据。其中,第一校准值可以是根据第一数据、第二数据、第三数据和第四数据确定的。
该校准装置还可以包括存储模块,若第八数据与第二数据的差值小于第二阈值,则存储模块,用于保存第一校准值。
在一种可能的设计方式中,若第八数据与第二数据的差值大于或等于第二阈值,则主控模块801,还用于停止当前的操作,控制第一设备进入运行状态。其中,运行状态可以包括进行波束跟踪。
在一种可能的设计方式中,在满足第一条件的情况下,主控模块801,还用于通过环境感知算法和第一传感器,确定第一设备是否处于第一状态。其中,第一条件可以包括当前时刻T与T0的差值大于或等于第一时间阈值,T0为前一次对成功第一传感器进行校准的时刻。
在一种可能的设计方式中,第一条件还可以包括接收到对第一传感器进行校准的指示。
可选地,存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得校准装置800可以执行上述图5-图6所述的校准方法。
需要说明的是,校准装置800可以是可设置于校准装置的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,校准装置800的技术效果可以参考图5和图6所示的校准方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统可以包括校准装置、天线控制模块、和天线,还可以包括电机和收发设备。
本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路可用于实现本申请实施例提供的校准方法所涉及的处理功能,输入/输出端口可用于本申请实施例提供的校准方法所涉及的收发功能。
示例性地,输入端口可用于实现本申请实施例提供的校准方法所涉及的接收功能,输出端口可用于实现本申请实施例提供的校准方法所涉及的发送功能。
示例性的,校准装置700中的处理器可用于进行,例如但不限于,基带相关处理,校准装置700中的收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的校准方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储又计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的校准方法被执行。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的校准方法被执行。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态 随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如 多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种校准方法,其特征在于,包括:
    通过环境感知算法和第一传感器,确定第一设备是否处于第一状态;其中,所述第一传感器用于检测所述第一设备的姿态参数,所述第一状态包括静止状态、或第一运动状态;
    在所述第一设备处于所述第一状态的情况下,通过姿态检测算法和所述第一传感器获取第一数据,通过所述环境感知算法和第二传感器获取第二数据;其中,所述第二传感器用于检测所述第一设备所处的环境的参数;
    在所述第一设备处于所述第一状态的情况下,控制所述第二传感器,获取所述第一传感器的第三数据和所述第二传感器的第四数据;
    在所述第一设备处于所述第一状态的情况下,根据所述第一数据、所述第二数据、所述第三数据和所述第四数据,对所述第一传感器进行校准。
  2. 根据权利要求1所述的校准方法,其特征在于,所述第一状态包括静止状态,所述通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,包括:
    采用所述环境感知算法和所述第一传感器,获取第五数据;
    间隔第一时间段,采用所述环境感知算法和所述第一传感器,获取第六数据;
    若所述第五数据与所述第六数据的差值小于或等于第一阈值,则确定所述第一设备处于所述第一状态,否则确定第一设备不处于所述第一状态。
  3. 根据权利要求1或2所述的校准方法,其特征在于,所述方法还包括:
    根据所述第一数据和第七数据对所述第一传感器进行校准;其中,所述第七数据为前一次校准后通过所述第一传感器获取的、或者通过所述第一传感器获取的初始数据。
  4. 根据权利要求1-3中任一项所述的校准方法,其特征在于,所述方法还包括:
    在第一设备不处于所述第一状态的情况下,停止当前的操作,控制所述第一设备进入运行状态;其中,所述运行状态包括进行波束跟踪。
  5. 根据权利要求1-4中任一项所述的校准方法,其特征在于,所述在所述第一设备处于所述第一状态的情况下,根据所述第一数据、所述第二数据、所述第三数据和所述第四数据,对所述第一传感器进行校准,包括:
    在所述第一设备处于所述第一状态的情况下,采用第一校准值对第一传感器的第四数据进行补偿,获得第八数据;其中,所述第一校准值是根据所述第一数据、所述第二数据、所述第三数据和所述第四数据确定的;
    若所述第八数据与所述第二数据的差值小于第二阈值,则保存所述第一校准值。
  6. 根据权利要求5所述的校准方法,其特征在于,所述方法还包括:
    若所述第八数据与所述第二数据的差值大于或等于第二阈值,则停止当前的操作,控制所述第一设备进入运行状态;其中,所述运行状态包括进行波束跟踪。
  7. 根据权利要求1-6中任一项所述的校准方法,其特征在于,所述通过环境感知算法和第一传感器,确定第一设备是否处于第一状态,包括:
    在满足第一条件的情况下,通过所述环境感知算法和所述第一传感器,确定所述第一设备是否处于所述第一状态;其中,所述第一条件包括当前时刻T与T0的差值 大于或等于第一时间阈值,T0为前一次对成功所述第一传感器进行校准的时刻。
  8. 根据权利要求7所述的校准方法,其特征在于,所述第一条件还包括接收到对所述第一传感器进行校准的指示。
  9. 一种校准装置,其特征在于,所述校准装置包括用于执行如权利要求1至8中任一项所述方法的单元或模块。
  10. 一种通信装置,其特征在于,所述通信装置包括:处理器;所述处理器,用于执行如权利要求1-8中任一项所述的校准方法。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-8中任一项所述的校准方法被执行。
  12. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-8中任一项所述的校准方法被执行。
PCT/CN2021/127047 2021-10-28 2021-10-28 校准方法及装置 WO2023070440A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180103129.3A CN118525187A (zh) 2021-10-28 2021-10-28 校准方法及装置
PCT/CN2021/127047 WO2023070440A1 (zh) 2021-10-28 2021-10-28 校准方法及装置
EP21961806.3A EP4414663A1 (en) 2021-10-28 2021-10-28 Calibration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127047 WO2023070440A1 (zh) 2021-10-28 2021-10-28 校准方法及装置

Publications (1)

Publication Number Publication Date
WO2023070440A1 true WO2023070440A1 (zh) 2023-05-04

Family

ID=86160354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127047 WO2023070440A1 (zh) 2021-10-28 2021-10-28 校准方法及装置

Country Status (3)

Country Link
EP (1) EP4414663A1 (zh)
CN (1) CN118525187A (zh)
WO (1) WO2023070440A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118654719A (zh) * 2024-08-19 2024-09-17 陕西森旺信息技术有限公司 基于传感器的电伴热带状态实时监测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003170A1 (en) * 1998-06-29 2001-06-07 Markus Schupfner Method for calibrating an angle sensor and navigation system having an angle sensor
JP2011259369A (ja) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp 通信用アレーアンテナのビーム校正方法、及び通信用アレーアンテナ
CN102946004A (zh) * 2012-11-27 2013-02-27 长沙威佳通信科技有限公司 天线调整方法和装置
CN103983235A (zh) * 2014-05-30 2014-08-13 西安融思电子信息技术有限公司 基站天线工程参数测量方法
US20150121989A1 (en) * 2013-11-05 2015-05-07 Thinkom Solutions, Inc. System and method for calibrating an inertial measurement unit
CN104807475A (zh) * 2015-04-14 2015-07-29 深圳市宏腾通电子有限公司 动中通卫星天线倾角校准过程中零点漂移值的测量方法
CN105515689A (zh) * 2015-11-26 2016-04-20 江苏中兴微通信息科技有限公司 一种智能移动终端辅助定向天线方向调校的系统及方法
CN107532900A (zh) * 2015-12-31 2018-01-02 华为技术有限公司 一种确定校准参数方法和移动设备
US20180115065A1 (en) * 2016-10-26 2018-04-26 International Business Machines Corporation In-field millimeter-wave phased array radiation pattern estimation and validation
CN111536996A (zh) * 2020-05-14 2020-08-14 北京百度网讯科技有限公司 温漂的标定方法、装置、设备和介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003170A1 (en) * 1998-06-29 2001-06-07 Markus Schupfner Method for calibrating an angle sensor and navigation system having an angle sensor
JP2011259369A (ja) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp 通信用アレーアンテナのビーム校正方法、及び通信用アレーアンテナ
CN102946004A (zh) * 2012-11-27 2013-02-27 长沙威佳通信科技有限公司 天线调整方法和装置
US20150121989A1 (en) * 2013-11-05 2015-05-07 Thinkom Solutions, Inc. System and method for calibrating an inertial measurement unit
CN103983235A (zh) * 2014-05-30 2014-08-13 西安融思电子信息技术有限公司 基站天线工程参数测量方法
CN104807475A (zh) * 2015-04-14 2015-07-29 深圳市宏腾通电子有限公司 动中通卫星天线倾角校准过程中零点漂移值的测量方法
CN105515689A (zh) * 2015-11-26 2016-04-20 江苏中兴微通信息科技有限公司 一种智能移动终端辅助定向天线方向调校的系统及方法
CN107532900A (zh) * 2015-12-31 2018-01-02 华为技术有限公司 一种确定校准参数方法和移动设备
US20180115065A1 (en) * 2016-10-26 2018-04-26 International Business Machines Corporation In-field millimeter-wave phased array radiation pattern estimation and validation
CN111536996A (zh) * 2020-05-14 2020-08-14 北京百度网讯科技有限公司 温漂的标定方法、装置、设备和介质

Also Published As

Publication number Publication date
CN118525187A (zh) 2024-08-20
EP4414663A1 (en) 2024-08-14

Similar Documents

Publication Publication Date Title
JP7356510B2 (ja) ホルムアルデヒド濃度の検出方法、装置及び空気清浄機
US20110176145A1 (en) Sphere bar probe
US20210099112A1 (en) Method and system for obtaining initial mechanical angle of electric motor
WO2023070440A1 (zh) 校准方法及装置
US10031206B1 (en) Calibration method of sensor of a satellite antenna
KR102365708B1 (ko) 기울기센서를 이용한 자이로센서의 캘리브레이션 방법
KR20210001873A (ko) 자율 주행 플랫폼의 센서 i/o 커버리지를 향상시키기 위한 플렉시블 테스트 보드
US20190116627A1 (en) Electronic device for controlling data communication of external electronic device and communication system
JP2010517384A (ja) アンテナビームの方向を制御するための方法およびシステム
EP4102190A1 (en) Information obtaining method and apparatus
TW202011762A (zh) 無線定位校準系統及其方法
WO2019006780A1 (zh) 天线延时校准的方法、装置及系统
CN109814063A (zh) 一种干涉仪测向方法和装置
US20190149250A1 (en) Method for calibrating an antenna system, control device, computer program and computer program products
CN114080023B (zh) 定位方法、定位系统、终端及可读存储介质
CN111307174A (zh) 一种传感器的标定方法、运动物体及存储介质
CN114839611A (zh) 一种毫米波雷达的自标定方法及装置
US8816901B2 (en) Calibration to improve weather radar positioning determination
CN111289136B (zh) 一种分布式倾斜仪采集器
CN112965049A (zh) 一种多固态激光雷达的外参标定方法
JP2021076606A (ja) 車両用の慣性測定ユニットを較正するための較正値を作成するための方法及び装置
CN116124072A (zh) 一种角度传感器的校准方法
CN113376404B (zh) 一种标定验证系统、设备、方法及存储介质
US11977175B2 (en) Method and apparatus for estimating position of signal source
JP6644205B2 (ja) 通信装置、制御方法、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447035876

Country of ref document: IN

Ref document number: 2021961806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021961806

Country of ref document: EP

Effective date: 20240506

WWE Wipo information: entry into national phase

Ref document number: 2024114330

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE