WO2023068569A1 - 병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법 - Google Patents

병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법 Download PDF

Info

Publication number
WO2023068569A1
WO2023068569A1 PCT/KR2022/014182 KR2022014182W WO2023068569A1 WO 2023068569 A1 WO2023068569 A1 WO 2023068569A1 KR 2022014182 W KR2022014182 W KR 2022014182W WO 2023068569 A1 WO2023068569 A1 WO 2023068569A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
pack
battery packs
remaining
bms
Prior art date
Application number
PCT/KR2022/014182
Other languages
English (en)
French (fr)
Inventor
고영준
장지훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22883793.6A priority Critical patent/EP4257996A4/en
Priority to US18/271,136 priority patent/US20240304879A1/en
Priority to JP2023539168A priority patent/JP7568329B2/ja
Priority to CN202280009595.XA priority patent/CN116829968A/zh
Publication of WO2023068569A1 publication Critical patent/WO2023068569A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a parallel battery system and a method for predicting remaining charge time of the parallel battery system.
  • An electric vehicle receives power from a battery system, and the battery system includes a plurality of battery packs. Depending on the amount of power to be supplied to the battery system, a plurality of battery packs may be connected in parallel to each other, connected in series to each other, or battery packs connected in parallel in a predetermined unit may be connected in series.
  • a charging remaining time prediction method is a method for predicting a remaining time for charging a plurality of battery packs connected in parallel to a final target SOC, wherein a battery management system (BMS) is estimating the SOC of each battery pack, the BMS assigning ordering numbers to the plurality of battery packs in descending order of SOC, the BMS performing a battery connected to a charging device by closing a relay among the plurality of battery packs Determining a used pack group including a connected pack group including a pack and a battery pack that is not connected to the charging device when a relay is opened, the ordering number among n battery packs constituting the connected pack group by the BMS estimating a first remaining charge time required for a battery pack having the largest SOC to reach the final target SOC, wherein the BMS predicts m remaining charge times for each of the m battery packs constituting the used pack group. and calculating a second remaining charge time by adding the m remaining charge times, and the BMS predicting a final charge remaining time by
  • the estimating the SOC of each of the plurality of battery packs may include, by the BMS, the cell voltage of each of the plurality of battery cells received from the BMIC included in each of the plurality of battery packs, the battery current of the plurality of battery packs, and estimating an SOC of each of the plurality of battery packs based on a signal indicating temperature information of the plurality of battery packs.
  • the determining of the connected pack group and the used pack group includes determining, by the BMS, a battery pack having the estimated SOC value less than the reference SOC value among the plurality of battery packs as the connected pack group. .
  • the determining of the connected pack group and the used pack group includes determining, by the BMS, a battery pack having the estimated SOC value equal to or greater than the reference SOC value among the plurality of battery packs as the used pack group. .
  • the calculating of the second remaining charge time may include, by the BMS, the charge remaining time of the first battery pack excluding the battery pack having the largest ordering number among the m battery packs, the estimated remaining charge time of each of the first battery packs. and estimating the SOC as a charging time required to reach the estimated SOC of the second battery pack corresponding to the next ordering number.
  • the calculating of the second remaining charge time may include, by the BMS, the charge remaining time of a third battery pack having the largest ordering number among the m number of battery packs, the estimated SOC of the third battery pack is the final target and estimating the charging time required to reach the SOC.
  • a battery system estimates a plurality of battery packs connected in parallel and an SOC value of each of the plurality of battery packs, and assigns ordering numbers to the plurality of battery packs in descending order of the SOC,
  • a connected pack group including a battery pack connected to a charging device with a relay closed and a used pack group including a battery pack not connected to the charging device with a relay opened among the plurality of battery packs are determined; Predicting a first remaining charge time, calculating a second remaining charge time of the used pack group, and adding the first remaining charge time and the second remaining charge time to charge the plurality of battery packs to a final target SOC It includes a BMS that predicts the final charge remaining time for
  • the BMS is based on signals representing the cell voltage of each of the plurality of battery cells, the battery current of the plurality of battery packs, and the temperature information of the plurality of battery packs received from the BMIC included in each of the plurality of battery packs. Thus, the SOC of each of the plurality of battery packs is estimated.
  • the BMS sets a battery pack whose estimated SOC value is less than a reference SOC value among the plurality of battery packs as the connected pack group.
  • the BMS sets a battery pack having an estimated SOC value equal to or greater than a reference SOC value among the plurality of battery packs as the used pack group.
  • the BMS predicts, as the first charge remaining time, a time required for a battery pack having the largest ordering number among n battery packs constituting the connected pack group to reach the final target SOC, and wherein n is is a natural number
  • the BMS predicts m remaining charging times for each of the m battery packs constituting the used pack group, and calculates a second remaining charging time by adding the m remaining charging times, where m is a natural number.
  • the BMS determines the charging time required for the estimated SOC of a first battery pack other than the battery pack having the largest ordering number among the m battery packs to reach the estimated SOC of a second battery pack having the next ordering number. It is predicted as the remaining charging time of the first battery pack.
  • the BMS predicts the charging remaining time of the third battery pack having the largest ordering number among the m battery packs as the charging time required for the estimated SOC of the third battery pack to reach the final target SOC,
  • the second remaining charging time is calculated by adding the remaining charging time of the first battery pack and the remaining charging time of the third battery pack.
  • an effective remaining charge time prediction method is provided according to the state of each battery pack connected in parallel and relay control, so that the remaining charge time can be effectively predicted.
  • FIG. 1 is a diagram illustrating configurations of a battery system and an external device connected to the battery system according to an embodiment.
  • FIG. 2 is a flowchart illustrating a method for predicting remaining charging time according to an exemplary embodiment.
  • FIG. 3 is an exemplary diagram schematically illustrating a plurality of battery packs and a state of charge of each battery pack to explain the method for predicting remaining charge time of FIG. 2 .
  • FIG. 4 is a flowchart illustrating a method for predicting remaining charging time according to an exemplary embodiment.
  • a program implemented as a set of commands embodying control algorithms necessary for controlling other components may be installed in a component that controls another component under a specific control condition among components according to an embodiment.
  • the control component may generate output data by processing input data and stored data according to an installed program.
  • the control component may include a non-volatile memory for storing programs and a memory for storing data.
  • FIG. 1 is a diagram illustrating configurations of a battery system and an external device connected to the battery system according to an embodiment.
  • the battery system 1 includes a plurality of battery packs 10-50, a battery management system 60, and a main relay 70.
  • the number of the plurality of battery packs 10 - 50 is five, but the invention is not limited thereto, and the battery system 1 may include two or more battery packs.
  • the battery management system 60 is hereinafter referred to as a battery management system (BMS).
  • the external device 2 may include a load and charging device such as an inverter or converter.
  • a load and charging device such as an inverter or converter.
  • One end of the main relay 70 is connected to the battery system 1, and the other end of the main relay 70 is connected to at least one element in the external device 2.
  • the plurality of battery packs 10 - 50 are connected in parallel to each other, and each of the plurality of battery packs 10 - 50 may also be connected in parallel to the external device 2 through the main relay 70 .
  • Each of the plurality of battery packs 10-50 corresponds to a plurality of battery cells (eg, 11-15) among all battery cells 11-15, 21-25, 31-35, 41-45, and 51-55. ), a plurality of relays 101, 201, 301, 401, and 501, a corresponding relay (eg, 101), and a plurality of pack battery monitoring integrated circuits 102, 202, 302, 402, and 502 corresponding to and a pack battery monitoring integrated circuit (eg 102).
  • the battery monitoring integrated circuit is hereinafter referred to as a battery monitoring integrated circuit (BMIC).
  • the plurality of pack BMICs 102-502 are connected to a plurality of battery cells 11-15, 21-25, 31-35, 41-45, and 51-55 (eg, 11-15), and The cell voltage of each of the battery cells (11-15, 21-25, 31-35, 41-45, 51-55), the battery current of the battery pack (10-50), the temperature of the battery pack (10-50), etc. obtain information about
  • the BMS 60 controls charging and discharging of the plurality of battery packs 10-50 based on the battery pack voltage, battery pack current, battery pack temperature, etc. received from the plurality of pack BMICs 102-502, and Cell balancing operations for cells 11-15, 21-25, 31-35, 41-45, and 51-55 may be controlled.
  • the BMS 60 may transmit control signals for charging and discharging, control signals for controlling cell balancing operations, and the like to the plurality of pack BMICs 102-502 and the main relay 70.
  • Each of the plurality of pack BMICs 102-502 controls the opening and closing of a corresponding relay among the plurality of relays 101, 201, 301, 401, and 501 based on a corresponding control signal received from the BMS 60. and a cell balancing operation for each of a plurality of corresponding battery cells among the plurality of battery cells 11-15, 21-25, 31-35, 41-45, and 51-55.
  • the BMS 60 determines the battery pack voltage, battery pack current, battery pack temperature, and whether each of the plurality of relays 101-501 is open or closed from the plurality of pack BMICs 102-502. A method for estimating the remaining charge time of the battery system 1 by receiving the received data will be described.
  • FIG. 2 is a flowchart illustrating a method for predicting remaining charging time according to an exemplary embodiment.
  • the BMS 60 estimates the SOC of each of the plurality of battery packs 10-50 (S1).
  • the BMS 60 receives each of the battery cell voltages of the plurality of battery cells 11-15, 21-25, 31-35, 41-45, and 51-55 received from the plurality of pack BMICs 102-502, the plurality of The battery state of charge and the degree of battery deterioration of each battery pack 10-50 may be estimated based on information about the battery pack current and battery pack temperature of the battery pack 10-50.
  • the state of charge of the battery is hereinafter referred to as State of Charge (SOC), and the degree of deterioration of the battery is hereinafter referred to as State of Health (SOH).
  • SOC State of Charge
  • SOH State of Health
  • the BMS 60 receives the cell voltages of the plurality of battery cells 11-15, 21-25, 31-35, 41-45, and 51-55 received from the plurality of pack BMICs 102-502, and the plurality of batteries.
  • the SOC of each of the plurality of battery cells 11-15, 21-25, 31-35, 41-45, and 51-55 is estimated based on information about the battery current and temperature of the pack 10-50, and The SOC of each of the battery packs 10 to 50 may be estimated.
  • the BMS 60 may derive a representative SOC based on the SOCs of the plurality of battery cells (eg, 11 to 15) and estimate the SOC of the battery pack (eg, 10).
  • a method of deriving the representative SOC a method of deriving a maximum value, a minimum value, an average value, and the like may be used.
  • the maximum value among the SOCs of the plurality of battery cells eg, 11 to 15
  • the representative SOC may be the representative SOC.
  • a method of estimating the SOC of each of the plurality of battery cells is a current integration method, a SOC estimation method based on a battery equivalent circuit model, and a Kalman filter. It may be one of various known methods, such as a method of mixing a current integration method and an SOC estimation method based on an equivalent circuit model using
  • the BMS 60 orders the numbers of the plurality of battery packs 10-50 in descending order of SOC (S2).
  • FIG. 3 is an exemplary diagram schematically illustrating a plurality of battery packs and a state of charge of each battery pack to explain the method for predicting remaining charge time of FIG. 2 .
  • the BMS 60 assigns an index number to each of the plurality of battery packs 10-50 in order to distinguish each of the plurality of battery packs 10-50 from each other.
  • the plurality of battery packs 10-50 are sequentially numbered 1, 2, 3, 4, and 5 from the left.
  • the estimated SOC of the plurality of battery packs 10 - 50 can be schematically represented by the area of shaded areas inside each battery pack.
  • the arrangement of index numbers according to the SOC of the plurality of battery packs 10-50 is 5, 1, 3, 2, 4 in descending order.
  • the BMS 60 may assign an ordering number to the plurality of battery packs 10-50 by arranging the plurality of battery packs 10-50 in descending order of corresponding SOC through step S2. .
  • the ordering number is a number assigned to each of the plurality of battery packs 10-50 when the plurality of battery packs 10-50 are arranged in descending order of SOC.
  • the BMS 60 when the BMS 60 sorts the plurality of battery packs 10-50 in descending order of SOC, index numbers 5, 1, 3, 2, and 4 are sorted.
  • the BMS 60 may assign ordering numbers to the aligned plurality of battery packs 10-50 in order. Accordingly, the ordering numbers of the plurality of battery packs 10-50 are numbered 1, 2, 3, 4, and 5 sequentially from the left. Also, in FIG. 3(b), the index numbers of the plurality of battery packs 10-50 are 5, 1, 3, 2, and 4 sequentially from the left.
  • the BMS 60 may determine final target SOCs of the plurality of battery packs 10-50. For example, the BMS 60 may determine the final target SOC to be 95% of the SOC of a fully charged battery pack.
  • the BMS 60 includes a connected pack group including battery packs of a plurality of battery packs 10-50 in which the relay 101-501 is closed and connected to the charging device, and the relay 101-501 is open and not connected to the charging device. It is possible to determine a used pack group including battery packs not used (S3).
  • FIG. 4 is a flowchart illustrating a method for predicting remaining charging time according to an exemplary embodiment.
  • the BMS 60 orders the numbers of the plurality of battery packs 10-50 in descending order of SOC (S20), and determines whether the SOC of each battery pack 10-50 is less than the reference SOC (S31). As a result of the determination in step S31, a battery pack having an SOC lower than the reference SOC is determined as a connected pack group (S32). As a result of the determination in step S31, a battery pack having an SOC higher than or equal to the reference SOC is determined as a used pack group (S33).
  • the reference SOC may be predetermined as initial information.
  • battery packs 50, 10, and 30 having ordering numbers 1, 2, and 3 are connected to a pack group, and battery packs 20 and 40 having ordering numbers 4 and 5 are used. It can be determined as a pack group.
  • the relays 501 , 101 , and 301 of the battery packs 50 , 10 , and 30 constituting the connected pack group are controlled to be closed by a control signal generated by the BMS 60 .
  • the relays 201 and 401 of the battery packs 20 and 40 constituting the used pack group are controlled to open by a control signal generated by the BMS 60 .
  • a control signal for controlling the opening or closing of the relay is generated by the BMS 60 and transmitted to the corresponding pack BMIC 102-502 of the battery pack, and the pack BMIC 102-502 generates a relay driving control signal according to the control signal. can be generated and supplied to each relay 101-501.
  • the BMS 60 derives the remaining charging time of the connected pack group and the remaining charging time of the used pack group, respectively.
  • the BMS 60 can estimate the remaining charging time for the connected pack group and the remaining charging time for the used pack group.
  • the BMS 60 may estimate the remaining charging time of each battery pack by dividing the remaining energy of the battery pack by the power that can be supplied from the charging device.
  • the remaining energy of the battery pack is the difference between the energy corresponding to the charging target SOC and the energy corresponding to the currently estimated SOC of the battery pack.
  • the BMS 60 may form and store the energy of the battery pack corresponding to each SOC in a table. This is shown in [Equation 1] below.
  • the charging target SOC for the BMS 60 to select the remaining charging time of each battery pack may be determined differently based on whether a group to which each battery pack 10-50 belongs is a connected pack group or a used pack group. .
  • the BMS 60 determines the remaining charging time (eg, 30) of the battery pack having the largest ordering number among n battery packs (eg, 50, 10, and 30) constituting the connected pack group. c) is predicted as the remaining charging time of the connected pack group (S4).
  • the BMS 60 may estimate an expected time required for a battery pack having the highest SOC among at least one battery pack belonging to the connected pack group to reach a final target SOC as the remaining charging time of the connected pack group.
  • the BMS 60 sets the final target SOC (eg, SOC 95%) as the charging target SOC in predicting the remaining charge time of the battery pack belonging to the connected pack group.
  • the BMS 60 determines the remaining charging time required for the battery pack 30 having the highest SOC among the three battery packs 50, 10, and 30 included in the connected pack group to reach the final target SOC. (c) can be predicted as the remaining charging time of the connected pack group.
  • the battery packs 50, 10, and 30 are connected in parallel to the charging device, 1/3 of the charging power can be supplied to each battery pack. After the charging of the battery packs 50, 10, and 30 starts, charging may be terminated when any one of the battery packs 50, 10, and 30 connected in parallel to the charging device reaches a target SOC.
  • Using the remaining charging time (c) of the battery pack 30 as the remaining charging time of the connected pack group as a representative value is the number of battery packs 30 among the battery packs 50, 10, and 30 connected in parallel to the charging device. This is because the battery pack 30 can first reach the target SOC because the SOC before charging is the highest.
  • the BMS 60 predicts the remaining charge time of the used pack group by adding m remaining charge times for each of the m battery packs (eg, 20 and 40) constituting the used pack group (S5).
  • the BMS 60 may predict the remaining charge time for each of the at least one battery pack belonging to the used pack group and sum up the predicted remaining charge times to predict the remaining charge time for the used pack group.
  • the BMS 60 sums the remaining charging time d of the battery packs 20 and the remaining charging time e of the battery packs 40 included in the used pack group to charge the used pack group. Remaining time can be predicted.
  • the BMS 60 determines the charging time required for the estimated SOC of the battery pack 20 to reach the estimated SOC (charging target SOC) of the battery pack 40 corresponding to the next ordering number as the remaining charge time (d). can be predicted with The BMS 60 may estimate the charging time required for the estimated SOC of the battery pack 40 having the largest ordering number among the used pack group to reach the final target SOC (charging target SOC) as the remaining charge time e. .
  • the BMS 60 estimates the SOC of the battery pack 40 corresponding to the next ordering number in predicting the remaining charging time of the battery pack except for the battery pack having the largest ordering number among the battery packs belonging to the used pack group. Let be the charging target SOC. In addition, the BMS 60 sets the final target SOC (eg, SOC 95%) as the charging target SOC in predicting the remaining charging time of the battery pack having the largest ordering number among the battery packs belonging to the used pack group.
  • the final target SOC eg, SOC 95%) as the charging target SOC in predicting the remaining charging time of the battery pack having the largest ordering number among the battery packs belonging to the used pack group.
  • the total time (d+e) of the remaining charging times (d, e) of the battery packs 20 and 40 constituting the used pack group is the ordering number among the battery packs 20 and 40 constituting the used pack group. Based on the estimated SOC value of the battery pack 20 where is the smallest, it is equal to the expected charging time to reach the final target SOC value.
  • the method for predicting the remaining charging time is based on the remaining charging time of the connected pack group -battery packs 50, 10, and 30- that can be connected to the charging device and the usable pack group -battery pack 20 , 40) - the remaining charging time for - can be predicted in a different way.
  • the BMS 60 estimates the final remaining charging time by adding the remaining charging time of the connected pack group and the remaining charging time of the used pack group (S6).
  • a method for the BMS 60 to predict the final charge remaining time of the battery system 1 is as shown in [Equation 2] below.
  • CRT is the charge remaining time
  • ConnP is the connected battery pack group
  • AvailP is the available battery pack group.
  • the BMS 60 may repeat steps S1 to S6 again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

병렬 배터리 시스템 및 이의 충전 잔여 시간 예측 방법은, 병렬 연결된 복수의 배터리 팩을 최종 목표 SOC까지 충전하기 위한 잔여 시간을 예측함에 있어서, BMS는 복수의 배터리 팩 각각의 SOC를 추정하여 SOC가 낮은 순서대로 오더링 번호를 매기고, 상기 복수의 배터리 팩 중 릴레이가 닫혀 충전 장치에 연결된 n개(n은 자연수)의 배터리 팩을 포함하는 연결 팩 그룹 및 릴레이가 개방되어 상기 충전 장치에 연결되지 않는 m개(m은 자연수)의 배터리 팩을 포함하는 사용 팩 그룹을 결정하며, 상기 n개의 배터리 팩 중 상기 오더링 번호가 가장 큰 배터리 팩이 상기 최종 목표 SOC에 도달하기까지 소요되는 제1 충전 잔여 시간을 예측하고, 상기 m개의 배터리 팩 각각에 대해 예측한 m개의 충전 잔여 시간을 더하여 제2 충전 잔여 시간을 산출하며, 상기 제1 충전 잔여 시간 및 상기 제2 충전 잔여 시간을 더하여 최종 충전 잔여 시간을 예측한다.

Description

병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법
관련 출원(들)과의 상호 인용
본 출원은 2021년 10월 18일자 한국 특허 출원 제10-2021-0138650호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 개시는 병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법에 관한 것이다.
전기 자동차는 배터리 시스템으로부터 전력을 공급받고, 배터리 시스템은 복수의 배터리 팩을 포함한다. 배터리 시스템에 공급해야 하는 전력량에 따라, 복수의 배터리 팩은 서로 병렬 연결되거나, 서로 직렬 연결되거나, 또는 소정 단위로 병렬 연결된 배터리 팩들이 직렬 연결될 수 있다.
2개 이상의 배터리 팩이 직렬 구조로 이루어진 배터리 시스템에 비해서, 2개 이상의 배터리 팩이 병렬 구조로 이루어진 배터리 시스템의 경우, 충전 잔여 시간 예측을 위해 고려해야 할 사항이 많다. 이는 병렬 연결된 복수의 배터리 팩 각각의 릴레이 제어가 수반되기 때문이다. 병렬로 연결되어 있는 각 배터리 팩의 상태와 릴레이 제어에 따른 효과적인 충전 잔여 시간 예측 기술이 필요하다
2개 이상의 배터리 팩이 병렬 연결된 배터리 시스템에서, 병렬로 연결되어 있는 각 배터리 팩의 상태와 릴레이 제어에 따른 효과적인 충전 잔여 시간 예측 방법을 제공하고자 한다.
발명의 한 특징에 따른 충전 잔여 시간 예측 방법은, 병렬 연결된 복수의 배터리 팩을 최종 목표 SOC까지 충전하기 위한 잔여 시간을 예측하는 방법에 있어서, 배터리 관리 시스템(Battery Management System, BMS)이 상기 복수의 배터리 팩 각각의 SOC를 추정하는 단계, 상기 BMS가 상기 복수의 배터리 팩에 대하여 상기 SOC가 낮은 순서대로 오더링 번호를 매기는 단계, 상기 BMS가 상기 복수의 배터리 팩 중 릴레이가 닫혀 충전 장치에 연결된 배터리 팩을 포함하는 연결 팩 그룹 및 릴레이가 개방되어 상기 충전 장치에 연결되지 않는 배터리 팩을 포함하는 사용 팩 그룹을 결정하는 단계, 상기 BMS가 상기 연결 팩 그룹을 구성하는 n개의 배터리 팩 중 상기 오더링 번호가 가장 큰 배터리 팩이 상기 최종 목표 SOC에 도달하기까지 소요되는 제1 충전 잔여 시간을 예측하는 단계, 상기 BMS가 상기 사용 팩 그룹을 구성하는 m개의 배터리 팩 각각에 대한 m개의 충전 잔여 시간을 예측하고, 상기 m개의 충전 잔여 시간을 더하여 제2 충전 잔여 시간을 산출하는 단계, 및 상기 BMS가 상기 제1 충전 잔여 시간 및 상기 제2 충전 잔여 시간을 더하여 최종 충전 잔여 시간을 예측하는 단계를 포함하고, 상기 n 및 상기 m은 자연수이다.
상기 복수의 배터리 팩 각각의 SOC를 추정하는 단계는, 상기 BMS가, 상기 복수의 배터리 팩 각각에 포함된 BMIC로부터 수신한 상기 복수의 배터리 셀 각각의 셀 전압, 상기 복수의 배터리 팩의 배터리 전류, 및 상기 복수의 배터리 팩의 온도 정보를 나타내는 신호에 기초하여 상기 복수의 배터리 팩 각각의 SOC를 추정한다.
상기 연결 팩 그룹 및 상기 사용 팩 그룹을 결정하는 단계는, 상기 BMS가, 상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 상기 기준 SOC 값 미만인 배터리 팩을 상기 연결 팩 그룹으로 결정하는 단계를 포함한다.
상기 연결 팩 그룹 및 상기 사용 팩 그룹을 결정하는 단계는, 상기 BMS가, 상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 상기 기준 SOC 값 이상인 배터리 팩을 상기 사용 팩 그룹으로 결정하는 단계를 포함한다.
상기 제2 충전 잔여 시간을 산출하는 단계는, 상기 BMS가, 상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 배터리 팩을 제외한 제1 배터리 팩의 충전 잔여 시간은, 상기 제1 배터리 팩 각각의 추정된 SOC가 다음 오더링 번호에 해당하는 제2 배터리 팩의 추정된 SOC에 도달하는데 소요되는 충전 시간으로 예측하는 단계를 포함한다.
상기 제2 충전 잔여 시간을 산출하는 단계는, 상기 BMS가, 상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 제3 배터리 팩의 충전 잔여 시간은, 상기 제3 배터리 팩의 추정된 SOC가 상기 최종 목표 SOC에 도달하는데 소요되는 충전 시간으로 예측하는 단계를 포함한다.
발명의 다른 특징에 따른 배터리 시스템은, 병렬 연결된 복수의 배터리 팩, 및 상기 복수의 배터리 팩 각각의 SOC 값을 추정하고, 상기 복수의 배터리 팩에 대하여 상기 SOC가 낮은 순서대로 오더링 번호를 매기며, 상기 복수의 배터리 팩 중 릴레이가 닫혀 충전 장치에 연결된 배터리 팩을 포함하는 연결 팩 그룹 및 릴레이가 개방되어 상기 충전 장치에 연결되지 않는 배터리 팩을 포함하는 사용 팩 그룹을 결정하고, 상기 연결 팩 그룹의 제1 충전 잔여 시간을 예측하고, 상기 사용 팩 그룹의 제2 충전 잔여 시간을 산출하여, 상기 제1 충전 잔여 시간 및 상기 제2 충전 잔여 시간을 더하여 상기 복수의 배터리 팩을 최종 목표 SOC까지 충전하기 위한 최종 충전 잔여 시간을 예측하는 BMS를 포함한다.
상기 BMS는, 상기 복수의 배터리 팩 각각에 포함된 BMIC로부터 수신한 상기 복수의 배터리 셀 각각의 셀 전압, 상기 복수의 배터리 팩의 배터리 전류, 및 상기 복수의 배터리 팩의 온도 정보를 나타내는 신호에 기초하여 상기 복수의 배터리 팩 각각의 SOC를 추정한다.
상기 BMS가, 상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 기준 SOC 값 미만인 배터리 팩을 상기 연결 팩 그룹으로 설정한다.
상기 BMS가, 상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 기준 SOC 값 이상인 배터리 팩을 상기 사용 팩 그룹으로 설정한다.
상기 BMS는, 상기 연결 팩 그룹을 구성하는 n개의 배터리 팩 중 상기 오더링 번호가 가장 큰 배터리 팩이 상기 최종 목표 SOC에 도달하기까지 소요되는 시간을 상기 제1 충전 잔여 시간으로 예측하고, 상기 n은 자연수이다.
상기 BMS는, 상기 사용 팩 그룹을 구성하는 m개의 배터리 팩 각각에 대한 m개의 충전 잔여 시간을 예측하고, 상기 m개의 충전 잔여 시간을 더하여 제2 충전 잔여 시간을 산출하고, 상기 m은 자연수이다.
상기 BMS가, 상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 배터리 팩을 제외한 제1 배터리 팩의 추정된 SOC가 다음 오더링 번호에 해당하는 제2 배터리 팩의 추정된 SOC에 도달하는데 소요되는 충전 시간을 상기 제1 배터리 팩의 충전 잔여 시간으로 예측한다.
상기 BMS가, 상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 제3 배터리 팩의 충전 잔여 시간은, 상기 제3 배터리 팩의 추정된 SOC가 상기 최종 목표 SOC에 도달하는데 소요되는 충전 시간으로 예측하여, 상기 제1 배터리 팩의 충전 잔여 시간 및 상기 제3 배터리 팩의 충전 잔여 시간을 더하여 상기 제2 충전 잔여 시간을 산출한다.
2개 이상의 배터리 팩이 병렬 연결된 배터리 시스템에서, 병렬로 연결되어 있는 각 배터리 팩의 상태와 릴레이 제어에 따른 효과적인 충전 잔여 시간 예측 방법을 제공하여 효과적인 충전 잔여 시간 예측이 가능하도록 한다.
도 1은 일 실시예에 따른 배터리 시스템 및 배터리 시스템에 연결된 외부 장치의 구성을 나타낸 도면이다.
도 2는 일 실시예에 따른 충전 잔여 시간 예측 방법을 나타낸 순서도이다.
도 3은 도 2의 충전 잔여 시간 예측 방법을 설명하기 위해 복수의 배터리 팩 및 각 배터리 팩의 충전 상태를 도식적으로 나타낸 예시도이다.
도 4는, 일 실시예에 따른 충전 잔여 시간 예측 방법을 나타낸 순서도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및/또는 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
일 실시예에 따른 구성들 중 특정 제어 조건에서 다른 구성을 제어하는 구성에는, 다른 구성을 제어하기 위해 필요한 제어 알고리즘을 구체화한 명령어의 집합으로 구현된 프로그램이 설치될 수 있다. 제어 구성은 설치된 프로그램에 따라 입력 데이터 및 저장된 데이터를 처리하여 출력 데이터를 생성할 수 있다. 제어 구성은 프로그램을 저장하는 비휘발성 메모리 및 데이터를 저장하는 메모리를 포함할 수 있다.
도 1은 일 실시예에 따른 배터리 시스템 및 배터리 시스템에 연결된 외부 장치의 구성을 나타낸 도면이다.
배터리 시스템(1)은 복수의 배터리 팩(10-50), 배터리 관리 시스템(60), 및 메인 릴레이(70)를 포함한다. 도 1에서는 복수의 배터리 팩(10-50)의 개수가 5개인 것으로 도시되어 있으나, 발명이 이에 한정되지 않으며, 배터리 시스템(1)은 2개 이상의 배터리 팩을 포함할 수 있다. 배터리 관리 시스템(60)을 이하, BMS(Battery Management System)라 한다.
외부 장치(2)는 인버터, 컨버터 등의 부하 및 충전 장치를 포함할 수 있다. 메인 릴레이(70)의 일단은 배터리 시스템(1)에 연결되어 있고, 메인 릴레이(70)의 타단은 외부 장치(2)에서 적어도 하나의 구성에 연결되어 있다.
복수의 배터리 팩(10-50)은 서로 병렬 연결되어, 복수의 배터리 팩(10-50) 각각은 메인 릴레이(70)를 통해 외부 장치(2)에 대해서도 병렬 연결될 수 있다. 복수의 배터리 팩(10-50) 각각은 전체 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55) 중 대응하는 복수의 배터리 셀(예를 들어, 11-15), 복수의 릴레이(101, 201, 301, 401, 501) 중 대응하는 릴레이(예를 들어, 101), 및 복수의 팩 배터리 모니터링 집적 회로(102, 202, 302, 402, 502) 중 대응하는 팩 배터리 모니터링 집적 회로(예를 들어, 102)를 포함한다. 배터리 모니터링 집적 회로를 이하, BMIC(Battery Monitoring Integrated Circuit)라 한다.
복수의 팩 BMIC(102-502)는, 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55, 예를 들어, 11-15)에 연결되어 있고, 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55) 각각의 셀 전압, 배터리 팩(10-50)의 배터리 전류, 배터리 팩(10-50)의 온도 등에 관한 정보를 획득한다.
BMS(60)는 복수의 팩 BMIC(102-502)로부터 수신한 배터리 팩 전압, 배터리 팩 전류, 배터리 팩 온도 등에 기초하여 복수의 배터리 팩(10-50)의 충방전을 제어하고, 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55)에 대한 셀 밸런싱 동작을 제어할 수 있다.
BMS(60)는, 복수의 팩 BMIC(102-502) 및 메인 릴레이(70)에 충방전을 위한 제어 신호, 셀 밸런싱 동작을 제어하기 위한 제어 신호 등을 전송할 수 있다. 복수의 팩 BMIC(102-502) 각각은, BMS(60)로부터 수신한 대응하는 제어 신호에 기초하여 복수의 릴레이(101, 201, 301, 401, 501) 중 대응하는 릴레이의 개방과 닫힘을 제어할 수 있고, 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55) 중 대응하는 복수의 배터리 셀 각각에 대한 셀 밸런싱 동작을 제어할 수 있다.
이하, 도 2를 참조하여, BMS(60)가 복수의 팩 BMIC(102-502)로부터 배터리 팩 전압, 배터리 팩 전류, 배터리 팩 온도 및 복수의 릴레이(101-501) 각각의 개방 또는 닫힘 여부를 수신하여 배터리 시스템(1)의 충전 잔여 시간을 예측하는 방법을 설명한다.
도 2는 일 실시예에 따른 충전 잔여 시간 예측 방법을 나타낸 순서도이다.
BMS(60)는, 복수의 배터리 팩(10-50) 각각의 SOC를 추정한다(S1). BMS(60)는 복수의 팩 BMIC(102-502)로부터 수신한 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55)의 각각의 배터리 셀 전압, 복수의 배터리 팩(10-50)의 배터리 팩 전류, 및 배터리 팩 온도 등에 관한 정보에 기초하여 각 배터리 팩(10-50)의 배터리 충전 상태, 배터리 퇴화 정도를 추정할 수 있다. 배터리 충전 상태를 이하, SOC(State of Charge)라 하고, 배터리 퇴화 정도를 이하, SOH(State of Health)라 한다.
BMS(60)는, 복수의 팩 BMIC(102-502)로부터 수신한 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55)의 셀 전압, 복수의 배터리 팩(10-50)의 배터리 전류, 온도 등에 관한 정보에 기초하여 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55) 각각의 SOC를 추정하며, 복수의 배터리 팩(10-50) 각각의 SOC를 추정할 수 있다.
BMS(60)는, 복수의 배터리 셀(예를 들어, 11-15)의 SOC에 기초한 대표 SOC를 도출하여 배터리 팩(예를 들어, 10)의 SOC로 추정할 수 있다. 대표 SOC를 도출하는 방식은 최대값, 최소값, 평균값 등을 도출하는 방식이 사용될 수 있다. 배터리 팩(예를 들어, 10)의 충전 시에는, 복수의 배터리 셀(예를 들어, 11-15)의 SOC 중 최대값이 대표 SOC일 수 있다. 복수의 배터리 셀(11-15, 21-25, 31-35, 41-45, 51-55)각각의 SOC를 추정하는 방식은 전류 적산 방식, 배터리 등가 회로 모델에 기초한 SOC 추정 방식, 칼만 필터를 이용하여 전류 적산 방식과 등가 회로 모델에 기초한 SOC 추정 방식을 혼합하는 방식 등과 같이 공지된 다양한 방식 중 하나일 수 있다.
BMS(60)는 복수의 배터리 팩(10-50)에 대해서 SOC가 낮은 순서대로 숫자를 오더링(ordering)한다(S2).
도 3은 도 2의 충전 잔여 시간 예측 방법을 설명하기 위해 복수의 배터리 팩 및 각 배터리 팩의 충전 상태를 도식적으로 나타낸 예시도이다.
BMS(60)는 오더링 하기 전, 복수의 배터리 팩(10-50) 각각을 서로 구별하기 위하여 색인 번호(index number)를 복수의 배터리 팩(10-50) 각각에 부여한다. 예를 들어, 도 3(a)에서, 복수의 배터리 팩(10-50)은 좌측부터 순서대로 1, 2, 3, 4, 5의 색인 번호가 매겨진다.
도 3에는, 복수의 배터리 팩(10-50)에서 추정된 SOC가 각 배터리 팩 내부의 음영 처리된 영역의 넓이로 도식적으로 나타낼 수 있다. 도 3(a)에서, 복수의 배터리 팩(10-50)의 SOC에 따른 색인 번호 배열은, 낮은 순으로 5, 1, 3, 2, 4 이다.
BMS(60)는 S2 단계를 통해 복수의 배터리 팩(10-50)을 대응하는 SOC가 낮은 순서대로 나열하여 복수의 배터리 팩(10-50)에 대해서 오더링 번호(ordering number)를 부여할 수 있다. 오더링 번호는, SOC가 낮은 순서대로 복수의 배터리 팩(10-50)을 정렬할 때, 복수의 배터리 팩(10-50) 각각에 대해 부여되는 번호이다.
예를 들어, 도 3(b)에서 BMS(60)가 복수의 배터리 팩(10-50)을 SOC가 낮은 순서대로 정렬하면, 색인 번호 5, 1, 3, 2, 4의 순으로 정렬된다. BMS(60)는 정렬된 복수의 배터리 팩(10-50)에 순서대로 오더링 번호를 부여할 수 있다. 따라서 복수의 배터리 팩(10-50)의 오더링 번호는 좌측부터 순서대로 1, 2, 3, 4, 5로 매겨진다. 또한 도 3(b)에서 복수의 배터리 팩(10-50)의 색인 번호는 좌측부터 순서대로 5, 1, 3, 2, 4이다.
BMS(60)는 복수의 배터리 팩(10-50)의 최종 목표 SOC를 결정할 수 있다. 예를 들어, BMS(60)는 최종 목표 SOC를, 완충(fully charged) 배터리 팩의 SOC의 95%로 결정할 수 있다.
BMS(60)는 복수의 배터리 팩(10-50) 중 릴레이(101-501)가 닫혀 충전 장치에 연결된 배터리 팩을 포함하는 연결 팩 그룹 및 릴레이(101-501)가 개방되어 충전 장치에 연결되지 않은 배터리 팩을 포함하는 사용 팩 그룹을 결정할 수 있다(S3).
이하, 도 4를 참조하면, BMS(60)가 연결 팩 그룹과 사용 팩 그룹을 결정하는 단계를 설명할 수 있다.
도 4는, 일 실시예에 따른 충전 잔여 시간 예측 방법을 나타낸 순서도이다.
BMS(60)는 복수의 배터리 팩(10-50)의 SOC가 낮은 순서대로 숫자를 오더링하고(S20), 각 배터리 팩(10-50)의 SOC가 기준 SOC 미만인지 판단한다(S31). S31 단계의 판단 결과, SOC가 기준 SOC 미만인 배터리 팩은 연결 팩 그룹으로 결정한다(S32). S31 단계의 판단 결과, SOC가 기준 SOC이상인 배터리 팩은 사용 팩 그룹으로 결정한다(S33). 여기서 기준 SOC는, 초기 정보로 미리 정해질 수 있다.
도 3의 예에서, BMS(60)는 오더링 번호가 1, 2, 3인 배터리 팩(50, 10, 30)은 연결 팩 그룹, 오더링 번호가 4, 5인 배터리 팩(20, 40)은 사용 팩 그룹으로 결정할 수 있다.
연결 팩 그룹을 구성하는 배터리 팩(50, 10, 30)의 릴레이(501, 101, 301)는 BMS(60)에서 생성된 제어 신호에 의해 닫힘 상태로 제어된다. 사용 팩 그룹을 구성하는 배터리 팩(20, 40)의 릴레이(201, 401)는 BMS(60)에서 생성된 제어 신호에 의해 개방 상태로 제어된다. 릴레이를 개방 또는 닫힘을 제어하는 제어 신호는 BMS(60)에서 생성되어 배터리 팩의 해당 팩 BMIC(102-502)에 전송되고, 팩 BMIC(102-502)는 제어 신호에 따라 릴레이 구동 제어 신호를 생성하여 각 릴레이(101-501)에 공급할 수 있다.
배터리 시스템(1)의 최종 충전 잔여 시간을 예측하기 위하여 BMS(60)는 연결 팩 그룹의 충전 잔여 시간 및 사용 팩 그룹의 충전 잔여 시간을 각각 도출한다.
이하에서는, 도 3의 예를 기준으로 충전 잔여 시간 예측 단계(S4-S6)을 설명한다.
BMS(60)는 연결 팩 그룹에 대한 충전 잔여 시간 및 사용 팩 그룹에 대한 충전 잔여 시간을 예측할 수 있다.
BMS(60)는 배터리 팩의 잔여 에너지를, 충전 장치로부터 공급될 수 있는 전력으로 나누어 배터리 팩 단위의 충전 잔여 시간을 예측할 수 있다. 배터리 팩의 잔여 에너지는 충전 목표 SOC에 대응하는 에너지와 현재 추정된 배터리 팩의 SOC에 대응하는 에너지 간의 차이다. BMS(60)는 SOC별 대응하는 배터리 팩의 에너지를 테이블화하여 저장할 수 있다. 이를 나타내면 아래 [수학식 1]과 같다.
Figure PCTKR2022014182-appb-img-000001
BMS(60)가 배터리 팩 단위의 충전 잔여 시간을 선택하기 위한 충전 목표 SOC는, 각 배터리 팩(10-50)이 속한 그룹이 연결 팩 그룹인지, 또는 사용 팩 그룹인지에 기초하여 달리 결정할 수 있다.
BMS(60)는 연결 팩 그룹을 구성하는 n개의 배터리 팩(예를 들어, 50, 10, 30) 중에서 오더링 번호가 가장 큰 배터리 팩(예를 들어, 30)의 충전 잔여 시간(예를 들어, c)을 연결 팩 그룹의 충전 잔여 시간으로 예측한다(S4). 여기서, n은 자연수이다. 도 3의 예에서, n=3이다.
BMS(60)는 연결 팩 그룹에 속하는 적어도 하나의 배터리 팩 중 SOC가 가장 높은 배터리 팩이 최종 목표 SOC에 도달하기까지 소요되는 예상 시간을 연결 팩 그룹의 충전 잔여 시간으로 예측할 수 있다.
다시 말하면, BMS(60)는 연결 팩 그룹에 속하는 배터리 팩의 충전 잔여 시간 예측에 있어서, 최종 목표 SOC(예를 들어, SOC 95%)를 충전 목표 SOC인 것으로 한다.
도 3을 참조하면, BMS(60)는 연결 팩 그룹에 포함된 3 개의 배터리 팩(50, 10, 30) 중 SOC가 가장 높은 배터리 팩(30)이 최종 목표 SOC에 도달하는데 소요되는 충전 잔여 시간(c)을 연결 팩 그룹의 충전 잔여 시간으로 예측할 수 있다.
배터리 팩(50, 10, 30)은 충전 장치에 병렬로 연결되었기 때문에, 배터리 팩 하나 당 충전 전력의 1/3이 공급될 수 있다. 배터리 팩(50, 10, 30)의 충전이 시작된 이후, 충전 장치에 병렬로 연결된 배터리 팩(50, 10, 30) 중 어떤 하나의 배터리라도 목표 SOC에 도달하면 충전이 종료될 수 있다. 연결 팩 그룹의 충전 잔여 시간으로 배터리 팩(30)의 충전 잔여 시간(c)를 대표 값으로 사용하는 것은, 충전 장치에 병렬로 연결된 배터리 팩(50, 10, 30) 중 배터리 팩(30)의 충전 전 SOC가 가장 높아 배터리 팩(30)이 목표 SOC에 가장 먼저 도달할 수 있기 때문이다.
BMS(60)는 사용 팩 그룹을 구성하는 m개의 배터리 팩(예를 들어, 20, 40) 각각에 대한 m개의 충전 잔여 시간을 더하여 사용 팩 그룹의 충전 잔여 시간을 예측한다(S5). 여기서, m은 자연수이다. 도 3의 예에서, m=2이다.
BMS(60)는 사용 팩 그룹에 속하는 적어도 하나의 배터리 팩의 각각에 대한 충전 잔여 시간을 예측하고, 예측된 각 충전 잔여 시간을 합산하여 사용 팩 그룹에 대한 충전 잔여 시간을 예측할 수 있다.
도 3을 참조하면, BMS(60)는 사용 팩 그룹에 포함된 배터리 팩(20)의 충전 잔여 시간(d) 및 배터리 팩(40)의 충전 잔여 시간(e)을 합산하여 사용 팩 그룹의 충전 잔여 시간을 예측할 수 있다.
BMS(60)은, 배터리 팩(20)의 추정된 SOC가 다음 오더링 번호에 해당하는 배터리 팩(40)의 추정된 SOC(충전 목표 SOC)에 도달하는데 소요되는 충전 시간을 충전 잔여 시간(d)로 예측할 수 있다. BMS(60)는 사용 팩 그룹 중 오더링 번호가 가장 큰 배터리 팩(40)의 추정된 SOC가 최종 목표 SOC(충전 목표 SOC)에 도달하는데 소요되는 충전 시간을 충전 잔여 시간(e)으로 예측할 수 있다.
다시 말하면, BMS(60)는 사용 팩 그룹에 속하는 배터리 팩 중 오더링 번호가 가장 큰 배터리 팩을 제외한 배터리 팩의 충전 잔여 시간 예측에 있어서, 다음 오더링 번호에 해당하는 배터리 팩(40)의 추정된 SOC를 충전 목표 SOC인 것으로 한다. 또한 BMS(60)는 사용 팩 그룹에 속하는 배터리 팩 중 오더링 번호가 가장 큰 배터리 팩의 충전 잔여 시간 예측에 있어서, 최종 목표 SOC(예를 들어, SOC 95%)를 충전 목표 SOC인 것으로 한다.
사용 팩 그룹을 구성하는 배터리 팩(20, 40) 각각의 충전 잔여 시간(d, e)를 합산한 시간(d+e)은, 사용 팩 그룹을 구성하는 배터리 팩(20, 40) 중 오더링 번호가 가장 작은 배터리 팩(20)의 추정된 SOC 값을 기준으로, 최종 목표 SOC 값에 도달하는 데 예상되는 충전 시간과 동일하다.
이와 같이, 일 실시예에 따른 충전 잔여 시간 예측 방법은, 충전 장치에 연결될 수 있는 연결 팩 그룹 -배터리 팩(50, 10, 30)- 의 충전 잔여 시간과 사용 가능한 사용 팩 그룹 -배터리 팩(20, 40)- 에 대한 충전 잔여 시간을 다른 방식으로 예측할 수 있다.
BMS(60)는 연결 팩 그룹의 충전 잔여 시간 및 사용 팩 그룹의 충전 잔여 시간을 더하여 최종 충전 잔여 시간을 예측한다(S6). BMS(60)가 배터리 시스템(1)의 최종 충전 잔여 시간을 예측하는 방법을 나타내면 아래 [수학식 2]와 같다.
Figure PCTKR2022014182-appb-img-000002
여기서 CRT는 충전 잔여 시간(Charge Remaining Time)이고, ConnP는 연결 팩 그룹(Connected Battery Pack), AvailP는 사용 팩 그룹(Available Battery Pack)이다.
BMS(60)는 충전 장치로부터 연결 팩 그룹을 구성하는 배터리 팩(50, 10, 30)의 충전이 종료되면, 다시 S1 단계부터 S6 단계까지 반복할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.

Claims (14)

  1. 병렬 연결된 복수의 배터리 팩을 최종 목표 SOC까지 충전하기 위한 잔여 시간을 예측하는 방법에 있어서,
    배터리 관리 시스템(Battery Management System, BMS)이 상기 복수의 배터리 팩 각각의 SOC를 추정하는 단계;
    상기 BMS가 상기 복수의 배터리 팩에 대하여 상기 SOC가 낮은 순서대로 오더링 번호를 매기는 단계;
    상기 BMS가 상기 복수의 배터리 팩 중 릴레이가 닫혀 충전 장치에 연결된 배터리 팩을 포함하는 연결 팩 그룹 및 릴레이가 개방되어 상기 충전 장치에 연결되지 않는 배터리 팩을 포함하는 사용 팩 그룹을 결정하는 단계;
    상기 BMS가 상기 연결 팩 그룹을 구성하는 n개의 배터리 팩 중 상기 오더링 번호가 가장 큰 배터리 팩이 상기 최종 목표 SOC에 도달하기까지 소요되는 제1 충전 잔여 시간을 예측하는 단계;
    상기 BMS가 상기 사용 팩 그룹을 구성하는 m개의 배터리 팩 각각에 대한 m개의 충전 잔여 시간을 예측하고, 상기 m개의 충전 잔여 시간을 더하여 제2 충전 잔여 시간을 산출하는 단계; 및
    상기 BMS가 상기 제1 충전 잔여 시간 및 상기 제2 충전 잔여 시간을 더하여 최종 충전 잔여 시간을 예측하는 단계를 포함하고,
    상기 n 및 상기 m은 자연수인, 충전 잔여 시간 예측 방법.
  2. 제1항에 있어서,
    상기 복수의 배터리 팩 각각의 SOC를 추정하는 단계는,
    상기 BMS가, 상기 복수의 배터리 팩 각각에 포함된 BMIC로부터 수신한 상기 복수의 배터리 셀 각각의 셀 전압, 상기 복수의 배터리 팩의 배터리 전류, 및 상기 복수의 배터리 팩의 온도 정보를 나타내는 신호에 기초하여 상기 복수의 배터리 팩 각각의 SOC를 추정하는, 충전 잔여 시간 예측 방법.
  3. 제1항에 있어서,
    상기 연결 팩 그룹 및 상기 사용 팩 그룹을 결정하는 단계는,
    상기 BMS가, 상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 상기 기준 SOC 값 미만인 배터리 팩을 상기 연결 팩 그룹으로 결정하는 단계를 포함하는, 충전 잔여 시간 예측 방법.
  4. 제1항에 있어서,
    상기 연결 팩 그룹 및 상기 사용 팩 그룹을 결정하는 단계는,
    상기 BMS가, 상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 상기 기준 SOC 값 이상인 배터리 팩을 상기 사용 팩 그룹으로 결정하는 단계를 포함하는, 충전 잔여 시간 예측 방법.
  5. 제1항에 있어서,
    상기 제2 충전 잔여 시간을 산출하는 단계는,
    상기 BMS가, 상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 배터리 팩을 제외한 제1 배터리 팩의 충전 잔여 시간은, 상기 제1 배터리 팩 각각의 추정된 SOC가 다음 오더링 번호에 해당하는 제2 배터리 팩의 추정된 SOC에 도달하는데 소요되는 충전 시간으로 예측하는 단계를 포함하는, 충전 잔여 시간 예측 방법.
  6. 제1항에 있어서,
    상기 제2 충전 잔여 시간을 산출하는 단계는,
    상기 BMS가, 상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 제3 배터리 팩의 충전 잔여 시간은, 상기 제3 배터리 팩의 추정된 SOC가 상기 최종 목표 SOC에 도달하는데 소요되는 충전 시간으로 예측하는 단계를 포함하는, 충전 잔여 시간 예측 방법.
  7. 병렬 연결된 복수의 배터리 팩; 및
    상기 복수의 배터리 팩 각각의 SOC 값을 추정하고, 상기 복수의 배터리 팩에 대하여 상기 SOC가 낮은 순서대로 오더링 번호를 매기며, 상기 복수의 배터리 팩 중 릴레이가 닫혀 충전 장치에 연결된 배터리 팩을 포함하는 연결 팩 그룹 및 릴레이가 개방되어 상기 충전 장치에 연결되지 않는 배터리 팩을 포함하는 사용 팩 그룹을 결정하고, 상기 연결 팩 그룹의 제1 충전 잔여 시간을 예측하고, 상기 사용 팩 그룹의 제2 충전 잔여 시간을 산출하여, 상기 제1 충전 잔여 시간 및 상기 제2 충전 잔여 시간을 더하여 상기 복수의 배터리 팩을 최종 목표 SOC까지 충전하기 위한 최종 충전 잔여 시간을 예측하는 BMS를 포함하는, 배터리 시스템.
  8. 제7항에 있어서,
    상기 BMS는,
    상기 복수의 배터리 팩 각각에 포함된 BMIC로부터 수신한 상기 복수의 배터리 셀 각각의 셀 전압, 상기 복수의 배터리 팩의 배터리 전류, 및 상기 복수의 배터리 팩의 온도 정보를 나타내는 신호에 기초하여 상기 복수의 배터리 팩 각각의 SOC를 추정하는, 배터리 시스템.
  9. 제7항에 있어서,
    상기 BMS가,
    상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 기준 SOC 값 미만인 배터리 팩을 상기 연결 팩 그룹으로 설정하는, 배터리 시스템.
  10. 제7항에 있어서,
    상기 BMS가,
    상기 복수의 배터리 팩 중 상기 추정된 SOC 값이 기준 SOC 값 이상인 배터리 팩을 상기 사용 팩 그룹으로 설정하는, 배터리 시스템.
  11. 제7항에 있어서,
    상기 BMS는,
    상기 연결 팩 그룹을 구성하는 n개의 배터리 팩 중 상기 오더링 번호가 가장 큰 배터리 팩이 상기 최종 목표 SOC에 도달하기까지 소요되는 시간을 상기 제1 충전 잔여 시간으로 예측하고, 상기 n은 자연수인, 배터리 시스템.
  12. 제7항에 있어서,
    상기 BMS는,
    상기 사용 팩 그룹을 구성하는 m개의 배터리 팩 각각에 대한 m개의 충전 잔여 시간을 예측하고, 상기 m개의 충전 잔여 시간을 더하여 제2 충전 잔여 시간을 산출하고, 상기 m은 자연수인, 배터리 시스템.
  13. 제12항에 있어서,
    상기 BMS가,
    상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 배터리 팩을 제외한 제1 배터리 팩의 추정된 SOC가 다음 오더링 번호에 해당하는 제2 배터리 팩의 추정된 SOC에 도달하는데 소요되는 충전 시간을 상기 제1 배터리 팩의 충전 잔여 시간으로 예측하는, 배터리 시스템.
  14. 제13항에 있어서,
    상기 BMS가,
    상기 m개의 배터리 팩 중 오더링 번호가 가장 큰 제3 배터리 팩의 충전 잔여 시간은, 상기 제3 배터리 팩의 추정된 SOC가 상기 최종 목표 SOC에 도달하는데 소요되는 충전 시간으로 예측하여, 상기 제1 배터리 팩의 충전 잔여 시간 및 상기 제3 배터리 팩의 충전 잔여 시간을 더하여 상기 제2 충전 잔여 시간을 산출하는, 배터리 시스템.
PCT/KR2022/014182 2021-10-18 2022-09-22 병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법 WO2023068569A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22883793.6A EP4257996A4 (en) 2021-10-18 2022-09-22 PARALLEL BATTERY SYSTEM AND METHOD FOR PREDICTING REMAINING CHARGING TIME THEREOF
US18/271,136 US20240304879A1 (en) 2021-10-18 2022-09-22 Parallel battery system and method of predicting remaining charge time of parallel battery system
JP2023539168A JP7568329B2 (ja) 2021-10-18 2022-09-22 並列バッテリシステムおよび並列バッテリシステムの充電残余時間の予測方法
CN202280009595.XA CN116829968A (zh) 2021-10-18 2022-09-22 并联电池系统及预测并联电池系统的剩余充电时间的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210138650A KR20230055210A (ko) 2021-10-18 2021-10-18 병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법
KR10-2021-0138650 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023068569A1 true WO2023068569A1 (ko) 2023-04-27

Family

ID=86059412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014182 WO2023068569A1 (ko) 2021-10-18 2022-09-22 병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법

Country Status (6)

Country Link
US (1) US20240304879A1 (ko)
EP (1) EP4257996A4 (ko)
JP (1) JP7568329B2 (ko)
KR (1) KR20230055210A (ko)
CN (1) CN116829968A (ko)
WO (1) WO2023068569A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118746762A (zh) * 2024-08-02 2024-10-08 比亚迪股份有限公司 电池剩余充放电时间确定方法、设备及储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692617B2 (ja) * 1996-05-27 2005-09-07 ソニー株式会社 充電時間演算方法およびバッテリパック
JP5979235B2 (ja) * 2012-09-21 2016-08-24 日産自動車株式会社 充電制御装置及び充電時間演算方法
KR20190083897A (ko) * 2018-01-05 2019-07-15 현대자동차주식회사 친환경 차량 배터리의 충전시간 예측 방법
JP2020036393A (ja) * 2018-08-27 2020-03-05 ヤマハ発動機株式会社 充電所要時間推定方法、充電所要時間推定装置および電動車両
KR20200025495A (ko) * 2018-08-30 2020-03-10 주식회사 엘지화학 이차 전지의 충전 시간 추정 장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890168B2 (ja) 1999-08-03 2007-03-07 株式会社東京アールアンドデー 電動装置及びその電池ユニットの充放電方法
SE534891C2 (sv) * 2009-06-09 2012-02-07 Scania Cv Ab Fastställande av laddningstid
JP6201763B2 (ja) 2013-01-22 2017-09-27 株式会社Gsユアサ 蓄電ユニットの接続情報取得装置
US9457682B2 (en) * 2013-08-30 2016-10-04 GM Global Technology Operations LLC Method for predicting charging process duration
JP6584798B2 (ja) 2015-03-12 2019-10-02 株式会社日立製作所 蓄電システム及び蓄電池電車
KR102415122B1 (ko) 2015-08-20 2022-06-30 삼성에스디아이 주식회사 배터리 시스템
WO2017154115A1 (ja) 2016-03-08 2017-09-14 株式会社東芝 蓄電池装置、蓄電池システム、方法及び制御プログラム
US11025072B2 (en) 2018-10-17 2021-06-01 Ess Tech, Inc. System and method for operating an electrical energy storage system
US20200309857A1 (en) * 2019-03-27 2020-10-01 Enersys Delaware Inc. Methods, systems, and devices for estimating and predicting battery properties
CN111890986B (zh) * 2020-07-24 2022-10-11 重庆长安汽车股份有限公司 一种基于可自更新数据插值估算动力电池剩余充电时间的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692617B2 (ja) * 1996-05-27 2005-09-07 ソニー株式会社 充電時間演算方法およびバッテリパック
JP5979235B2 (ja) * 2012-09-21 2016-08-24 日産自動車株式会社 充電制御装置及び充電時間演算方法
KR20190083897A (ko) * 2018-01-05 2019-07-15 현대자동차주식회사 친환경 차량 배터리의 충전시간 예측 방법
JP2020036393A (ja) * 2018-08-27 2020-03-05 ヤマハ発動機株式会社 充電所要時間推定方法、充電所要時間推定装置および電動車両
KR20200025495A (ko) * 2018-08-30 2020-03-10 주식회사 엘지화학 이차 전지의 충전 시간 추정 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257996A4 *

Also Published As

Publication number Publication date
EP4257996A1 (en) 2023-10-11
CN116829968A (zh) 2023-09-29
US20240304879A1 (en) 2024-09-12
EP4257996A4 (en) 2024-10-16
KR20230055210A (ko) 2023-04-25
JP2024500999A (ja) 2024-01-10
JP7568329B2 (ja) 2024-10-16

Similar Documents

Publication Publication Date Title
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2021141255A1 (ko) 시뮬레이션 시스템 및 데이터 분산 방법
WO2016056845A1 (ko) 배터리 관리 모듈의 통신 id 할당 방법 및 시스템
WO2012165771A2 (ko) 모듈화된 bms 연결 구조를 포함하는 전력 저장 시스템 및 그 제어 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2015034262A1 (ko) 멀티 bms에 대한 통신 식별자 할당 시스템 및 방법
WO2013051828A2 (ko) 배터리 관리 시스템 및 배터리 관리 방법
WO2023068569A1 (ko) 병렬 배터리 시스템 및 병렬 배터리 시스템의 충전 잔여 시간 예측 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2023136455A1 (ko) 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템
WO2022097931A1 (ko) 배터리 관리 장치 및 방법
WO2023101189A1 (ko) 셀 밸런싱 방법 및 그 방법을 제공하는 배터리 시스템
WO2018088685A1 (ko) 배터리 팩
WO2023136512A1 (ko) 배터리 충전 심도 산출 장치 및 그것의 동작 방법
WO2022265277A1 (ko) 배터리 관리 장치 및 방법
WO2022149770A1 (ko) 방전 전압 그래프 예측 방법 및 이를 이용한 배터리 시스템
WO2019098528A1 (ko) 배터리 파워 한계 값 제어 방법
WO2023101113A1 (ko) 배터리 진단 방법 및 그 장치
WO2022097884A1 (ko) 통신 id 할당 방법 및 그 방법을 제공하는 시스템
WO2022085950A1 (ko) 배터리 장치 및 저항 상태 추정 방법
WO2021256817A1 (ko) 무선 충전을 위한 배터리 관리 시스템 및 배터리 랙
WO2023106582A1 (ko) 배터리 수명 예측 장치 및 그것의 동작 방법
WO2023146156A1 (ko) 배터리 관리 장치 및 그의 동작 방법
WO2023249346A1 (ko) 배터리 스와핑 시스템 및 이의 동작 방법
WO2023038262A1 (ko) 배터리 셀의 용량 산출 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539168

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18271136

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009595.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022883793

Country of ref document: EP

Effective date: 20230707

NENP Non-entry into the national phase

Ref country code: DE