WO2023068395A1 - 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스 - Google Patents

습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스 Download PDF

Info

Publication number
WO2023068395A1
WO2023068395A1 PCT/KR2021/014601 KR2021014601W WO2023068395A1 WO 2023068395 A1 WO2023068395 A1 WO 2023068395A1 KR 2021014601 W KR2021014601 W KR 2021014601W WO 2023068395 A1 WO2023068395 A1 WO 2023068395A1
Authority
WO
WIPO (PCT)
Prior art keywords
wet etching
glass
etching solution
solution composition
less
Prior art date
Application number
PCT/KR2021/014601
Other languages
English (en)
French (fr)
Inventor
이상로
이가라시카츠시
Original Assignee
이상로
이가라시카츠시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상로, 이가라시카츠시 filed Critical 이상로
Priority to CN202180034268.5A priority Critical patent/CN116323862A/zh
Priority to KR1020217039711A priority patent/KR20230057910A/ko
Priority to PCT/KR2021/014601 priority patent/WO2023068395A1/ko
Priority to US17/641,410 priority patent/US20240045108A1/en
Priority to TW111127322A priority patent/TW202317497A/zh
Publication of WO2023068395A1 publication Critical patent/WO2023068395A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0085Drying; Dehydroxylation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound

Definitions

  • the present invention relates to a wet etching method for glass, in which nanopatterns are formed on the surface of the glass by wet etching to improve light transmittance and lower reflectance of the glass.
  • the etching process can be divided into wet etching and dry etching.
  • Wet etching is generally performed through a chemical reaction between an etching solution having a property of corroding and dissolving a base material and a base material to be etched.
  • Dry etching is performed using a reaction by gas plasma or activated gas.
  • the dry etching described above is used to form a pattern having a width (width, thickness) of several to several tens of nm.
  • a width width, thickness
  • dry etching is expensive, process management is difficult, and mass production is difficult.
  • dry etching is difficult to apply to curved glass and large-area glass due to process characteristics.
  • the inventor has conducted research and development based on these technical circumstances and has applied for Korean Registered Patent No. 10-1842083, 'Protrusion Forming Method'. According to the prior art, the effect of improving the transmittance and lowering the reflectance could be obtained. However, problems in stability, reproducibility, and etching uniformity of the etching reaction remained.
  • An object of the present invention is to provide glass having high transmittance/low reflectance.
  • An object of the present invention is to enable high transmittance/low reflectance treatment for the surface of various glasses.
  • An object of the present invention is to provide glass with high transmittance/low reflectance with improved etching stability, reproducibility, and etching uniformity.
  • the wet etching method of the present invention includes cleaning the glass; Wet-etching the cleaned glass to form a nanoscale pattern; and washing and drying the patterned glass.
  • the wet etching solution used in the wet etching step may include hydrofluoric acid and a surfactant.
  • the wet etching may be performed by a dipping method.
  • the nanoscale pattern may be formed on one side or both sides of the glass.
  • the nanoscale pattern may have a range of 1-100 nanometers.
  • a protrusion protruding from the surface of the glass may be included.
  • a surface of the glass including the protrusion may have a moth-eye structure.
  • the nanoscale structures may include protrusions.
  • the protrusion may have a structure in which a thickness is greater than a depth.
  • the protrusion may have a thickness of 1-50 nanometers.
  • the protrusion may have a depth of 1-50 nanometers.
  • the thickness of the protrusion may be 5-30 nanometers.
  • the protrusion may have a depth of 5-30 nanometers.
  • the wet etching solution composition includes - hydrofluoric acid and a surfactant and the remainder is composed of water, - contains hydrofluoric acid and a surfactant, contains at least one of oxalic acid and acetic acid and the remainder is composed of water, or - containing hydrofluoric acid and a surfactant, including at least one of oxalic acid and acetic acid, and not including at least one of NH 4 F, HNO 3 , H 3 PO 4 , and HCl, and the rest being composed of water, or - hydrofluoric acid and a surfactant Including, including at least one of oxalic acid and acetic acid, NH 4 F, HNO 3 , H 3 PO 4 , and not including all of HCl, the remainder being composed of water, containing hydrofluoric acid and a surfactant, oxalic acid and acetic acid and the remainder is composed of water, or contains hydrofluoric acid and
  • the hydrofluoric acid may be included in an amount greater than 0 wt% and less than 5.0 wt%.
  • It may contain more than 0wt% and less than 5.0wt% of the oxalic acid.
  • It may contain more than 0wt% and less than 10.0wt% of the acetic acid.
  • the surfactant may be included in an amount greater than 0wt% and less than 1.0wt%.
  • a temperature at which the wet etching is performed may be in the range of 30-70°C.
  • the time for performing the wet etching may range from 1 to 7 minutes.
  • the glass may be used for flat panel displays including mobile devices and various optical devices.
  • the wet etching solution composition of the present invention is a wet etching solution composition for etching glass, wherein the wet etching solution composition contains more than 0wt% and less than 5.0wt% of hydrofluoric acid, and more than 0wt% of surfactant. It contains less than 1.0wt%, and the remaining component of the wet etching solution composition may be composed of water.
  • the composition may include greater than 0wt% and less than 5.0wt% of oxalic acid.
  • the composition may include greater than 0wt% and less than 10.0wt% of acetic acid.
  • the composition may include greater than 0 wt% and less than 5.0 wt% oxalic acid, and greater than 0 wt% and less than 10.0 wt% acetic acid.
  • the composition may contain more acetic acid than oxalic acid.
  • the composition may not include at least one of NH 4 F, HNO 3 , H 3 PO 4 , and HCl.
  • the composition may contain neither NH 4 F, HNO 3 , H 3 PO 4 , nor HCl.
  • the patterned glass according to the present invention includes a pattern having nanoscale surface protrusions provided by a wet etching method and can realize high transmittance/low reflectance, and thus can be used for flat panel display front panels, lenses or windows of optical devices, or protection. It may be a patterned glass applicable to the cover.
  • a thickness of the protrusion may be greater than a depth of the protrusion.
  • the protrusion may have a thickness of 1-50 nanometers.
  • the protrusion may have a depth of 1-50 nanometers.
  • the glass may be patterned on both sides or on one side.
  • High transmittance/low reflectance glass according to the present invention can be provided.
  • the user can reduce the decrease in visibility of the display due to the reflection of external light by using the glass of the present invention.
  • the present invention there is an advantage in that high transmittance/low reflectance treatment can be performed on the surface of glass manufactured with various compositions managed confidentially by the manufacturer.
  • the quality of a mobile device can be expected to be improved by improving the visibility of the display.
  • FIG. 1 is a flowchart illustrating a wet etching method of glass according to an embodiment.
  • 2 to 6 are graphs showing the results obtained by repeating the wet etching method according to the first to fifth embodiments, respectively.
  • FIG. 7 is a graph showing a change in transmittance according to dipping time.
  • FIG 8 is a photograph of the surface (a) and cross-section (b) of the surface of the glass on which the wet etching method of the embodiment was performed.
  • FIG. 9 and 10 are views explaining the action of the moth-eye structure applied to the embodiment.
  • FIG. 9 shows the principle of operation of the moth-eye structure
  • FIG. 10 shows the transmittance improvement by the moth-eye structure in Example 4. /A drawing explaining the action of reducing the reflectance.
  • FIG. 11 is a photograph illustrating a high transmission / low reflection effect of glass on which a nanoscale pattern is formed according to an embodiment.
  • FIG. 1 is a flowchart illustrating a wet etching method of glass according to an embodiment.
  • the wet etching method for glass includes cleaning the glass substrate (S1), forming nanopatterns on the glass substrate through wet etching (S2), and cleaning and drying the patterned glass. Step (S3) may be included.
  • the cleaning step (S1) foreign substances such as organic substances present on the glass substrate may be removed.
  • the etching process by the etching solution in the pattern forming step (S2) can be performed uniformly with respect to the entire glass substrate.
  • IPA Isopropyl Alcohol
  • ethanol may be used in the washing step (S1). After cleaning the glass substrate with IPA (Isopropyl Alcohol) or ethanol, it may be cleaned with water.
  • ultrasonic waves may be used or the glass substrate may be cleaned using a brush.
  • the patterning step (S2) may be performed by a dipping method in which the glass substrate is immersed in a wet etching solution or a spray method in which a wet etching solution is sprayed onto the glass substrate.
  • nanopatterns may be provided on the glass substrate.
  • the pattern may be formed on both sides or one side of the glass substrate by the dipping method. In the case of a cross section, masking may be used.
  • the wet etching solution composition may include an appropriate amount of hydrofluoric acid and a surfactant.
  • the wet etching solution composition may include an appropriate amount of at least one of oxalic acid and acetic acid.
  • the wet etching solution composition may not contain at least one of NH 4 F, HNO 3 , H 3 PO 4 , and HCl. NH 4 F, HNO 3 , H 3 PO 4 , and HCl may not all be included in the wet etching solution composition. At this time, the remainder of the composition may consist of water.
  • a nanoscale patterned structure in which irregularities are repeatedly implemented may be provided.
  • the patterned structure may include nanoscale repetitive protrusions.
  • the nanoscale may refer to units of 1-100 nanometers.
  • the protrusion may protrude from the surface of the glass.
  • the protrusion may protrude in a height direction orthogonal to the surface of the glass.
  • the patterned structure is a nanoscale moth's eye structure, and can reduce light reflectance and sufficiently improve transmittance at the interface between glass and other media.
  • the light may exemplify visible light.
  • the glass may be used as a cover glass for a mobile device.
  • the user of the mobile device can increase the visibility of display information of the mobile device by the high transmittance/low reflectance effect of the cover glass.
  • the use of glass is not limited to mobile devices, but a preferred example is tempered glass for mobile devices. It is assumed that at least one of sodium and potassium is dispersed in the tempered glass.
  • the glass In the step of cleaning the glass (S3), the glass may be cleaned and dried. In this step, after the step (S2) of forming a pattern through wet etching, remaining acidic etching solution may be removed.
  • Table 1 is a table showing the composition of the wet etching solution.
  • the wet etching solution composition of one embodiment may include more than 0wt% and less than 5.0wt% of hydrofluoric acid.
  • the wet etching solution composition of one embodiment may include more than 0wt% and less than 5.0wt% of oxalic acid.
  • the wet etching solution composition of one embodiment may include more than 0wt% and less than 10.0wt% of acetic acid.
  • the wet etching solution composition of one embodiment may include more than 0wt% and less than 1.0wt% of a surfactant. Residual components of the pre-etching solution may include water.
  • the wet etching solution composition of one embodiment may include hydrofluoric acid in an amount of more than 0 wt% and less than 5.0 wt%, and a surfactant in an amount of more than 0 wt% and less than 1.0 wt%.
  • the rest of the composition of the entire etching solution may include water.
  • oxides of sodium and potassium are homogeneously dispersed in the inside and surface of various commercially available glasses at a level suitable for making nanoscale irregularities. Through this, it is speculated that nanoscale structures can be formed on the surface of glass by including hydrofluoric acid.
  • the wet etching solution composition of one embodiment may include hydrofluoric acid in an amount of more than 0 wt% and less than 5.0 wt%, oxalic acid in an amount of more than 0 wt% and less than 5.0 wt%, and a surfactant in an amount of more than 0 wt% and less than 1.0 wt%.
  • the rest of the composition of the entire etching solution may include water.
  • the wet etching solution composition of one embodiment may include hydrofluoric acid in an amount of more than 0 wt% and less than 5.0 wt%, acetic acid in an amount of more than 0 wt% and less than 10.0 wt%, and a surfactant in an amount of more than 0 wt% and less than 1.0 wt%.
  • the rest of the composition of the entire etching solution may include water.
  • the wet etching solution composition of one embodiment includes hydrofluoric acid in an amount greater than 0wt% and less than 5.0wt%, oxalic acid in an amount greater than 0wt% and less than 5.0wt%, acetic acid in an amount greater than 0wt% and less than 10.0wt%, and greater than 0wt% and less than 1.0wt%. It may contain at least one of the surfactants of.
  • the rest of the composition of the entire etching solution may include water. In this case, when oxalic acid and acetic acid are included together, more acetic acid may be included.
  • Stability and reproducibility of the etching reaction can be improved by including an appropriate amount of at least one of the oxalic acid and acetic acid.
  • An appropriate amount of at least one of the oxalic acid and acetic acid may be greater than 0wt% and less than 5.0wt%.
  • the wet etching solution composition of one embodiment contains hydrofluoric acid in an amount of more than 0 wt% and less than 5.0 wt%, oxalic acid in an amount of more than 0 wt% and less than 5.0 wt%, and acetic acid in an amount of more than 0 wt% and less than 10.0 wt%, ,
  • the surfactant may be included in an amount greater than 0 wt% and less than 1.0 wt%.
  • the rest of the composition of the entire etching solution may include water.
  • the wet etching solution composition of the embodiment necessarily includes hydrofluoric acid, and the content thereof may be greater than 0 wt% and less than 5.0 wt%.
  • the hydrofluoric acid may form a nanoscale structure in glass according to Chemical Formulas 1, 2, and 3.
  • the hydrofluoric acid may react with oxides of sodium and potassium present in glass to form NaF and KF. Since both NaF and KF are water soluble, they exist dissolved in the etching solution.
  • SiO 2 which is the main component of glass, may also react with HF to generate H 2 SiF 6 as shown in Chemical Formula 3. Since the reaction rate of Chemical Formula 3 is significantly lower than the reaction rates of Chemical Formulas 1 and 2, it is understood that nanoscale uneven structures are formed due to the difference in reaction rates.
  • the H 2 SiF 6 is also water soluble, it is dissolved in the etching solution after the reaction and exists.
  • the formation of nanostructures due to the difference in reaction rate between Chemical Formula 1 and Chemical Formula 2 and Chemical Formula 3 may constitute one feature of the present invention.
  • the nanoscale may correspond to both the thickness and depth of the irregularities.
  • the wet etching solution composition of the embodiment may include a surfactant.
  • Surfactants have a role in keeping the corrosive materials well separated from the surface of the glass substrate, a role in which the surfactant forms bubbles to adsorb the corrosive materials well, and a role in making the active ingredients of the wet etching solution come into good contact with the fine surface of the glass substrate. can be performed.
  • a nanoscale structure can be uniformly and smoothly provided over the entire surface of the glass through the surfactant.
  • the wet etching solution composition of the embodiment may not include NH 4 F, HNO 3 , H 3 PO 4 , and HCl. It was expected that NH 4 F, HNO 3 , H 3 PO 4 , and HCl would play a major role in the formation of nanoscale structures, but it could be confirmed that they cause problems in stabilization and reproducibility of the process and uniformity of nanostructures. there was. It can be assumed that the NH 4 F, HNO 3 , H 3 PO 4 , and HCl are due to poor reactivity with surfactants.
  • the composition of the wet etching solution may be affected by the reaction time and reaction temperature.
  • the inventors were able to obtain various examples that can be applied as products by performing countless repeated experiments.
  • Various types of glass are used, and each glass manufacturer does not disclose the components and processing methods of its own glass. Accordingly, the inventor confirmed the performance of the wet etching solution composition through repeated experiments.
  • An example of the glass is glass used as a front cover of a mobile device.
  • the wet etching solution composition used at this time contains more than 0wt% and less than 5.0wt% of hydrofluoric acid, more than 0wt% and less than 5.0wt% of oxalic acid, more than 0wt% and less than 10.0wt% of acetic acid, and a surfactant It may contain more than 0wt% and less than 1.0wt%.
  • the rest of the composition of the entire etching solution may include water.
  • the glass can be etched on both sides.
  • Transmittance of the patterned glass before and after patterning was measured by performing the wet etching method according to the above examples.
  • Example 1 of the wet etching method of FIG. 2 it can be seen that the transmittance at 550 nm is improved by 5% from 92% to 97%.
  • Example 2 of the wet etching method of FIG. 3 it can be seen that the transmittance at 550 nm is improved by 4% from 92% to 96%.
  • Example 3 of the wet etching method of FIG. 4 it can be seen that the transmittance at 550 nm is improved by 4% from 91.5% to 95.5%.
  • Example 4 of the wet etching method of FIG. 5 it can be seen that the transmittance at 550 nm is improved by 6% from 92% to 98%.
  • Example 5 of the wet etching method of FIG. 6 it can be seen that the transmittance at 550 nm is improved by 4.3% from 91.7% to 96%.
  • the transmittance of the glass subjected to the wet etching method of the embodiment is all improved.
  • the reflectance is lowered, so that information visibility of the mobile device user can be improved and eye fatigue can be reduced.
  • Example 7 is a graph showing a change in transmittance according to dipping time in Example 5.
  • the longer the dipping time the better the transmittance of the sample.
  • the transmittance peaks at 96% at 4 minutes. If the dipping time is insufficient, the etching reaction may be insufficient, and thus the formation of the nanostructure may not be sufficient, resulting in insufficient improvement in transmittance.
  • the transmittance may decrease again. This is because the oxides of sodium and potassium present on the surface of the glass are consumed by the reactions of Chemical Formulas 1 and 2, and then SiO 2 forming protrusions is etched by the reaction of Chemical Formula 3. Accordingly, eventually, it can be understood as a phenomenon that occurs when the SiO 2 protrusions constituting the concavo-convex become smaller and the depth of the concavo-convex part decreases. That is, this is because the depth of the concave portion decreases again as the height of the already formed protrusion decreases. In other words, it may be a phenomenon caused by a lack of a protrusion role as shown in FIG. 9 .
  • the wet etching temperature may be 60°C. Referring to Figure 7 (Example 5), it can be seen that the dipping time should be within 7 minutes.
  • FIG. 8 is a photograph of a surface (a) and a cross-section (b) of a glass subjected to a wet etching method according to an embodiment.
  • the protrusions have a thickness of several nanometers to several tens of nanometers.
  • the depth of the protrusion is formed from several nanometers to several tens of nanometers.
  • the nanoscale mentioned in the examples may correspond to both the thickness and depth of the irregularities.
  • the irregularities may include protrusions and grooves.
  • the protrusion may have a thickness of 1-50 nanometers.
  • the protrusion may preferably have a thickness of 5-30 nanometers.
  • the depth of the protrusion may be provided as 1-50 nanometers.
  • the thickness of the protrusion is 5-30 nanometers, the depth of the protrusion may be provided as 5-30 nanometers.
  • Nanoscale structures within the range of several tens of nanometers from the above numbers exhibit high transmittance/low reflectance effects according to the principle shown in FIG. 9 .
  • the protrusion may have a thickness (width or width) greater than a depth.
  • a moth eye structure having protrusions having a depth of several hundred nanometers (100-500 nanometers) and a thickness of several tens of nanometers (1-99 nanometers) is vulnerable to repeated external impacts. Therefore, the reflectance of the glass shows a severe change with time, and the effect of improving the reflectance is lowered. As a result, it may be difficult to use glass used in an environment with severe contact and exposure to the external environment.
  • FIG. 9 and 10 are views explaining the action of the moth-eye structure applied to the embodiment.
  • FIG. 9 shows the principle of operation of the moth-eye structure
  • FIG. 10 shows the transmittance improvement by the moth-eye structure in Example 4. and a view explaining the action of reducing the reflectance.
  • Reflection of light is caused by a difference in refractive index at the interface between different media through which light passes.
  • refractive index there is a difference in refractive index for light incident on the glass at the interface between air and glass having nanostructures formed thereon.
  • the refractive index of air gradually increases from 1.0 to 1.5 of glass. For this reason, as the reflectance decreases, the transmittance also increases.
  • reflected light can be significantly reduced compared to when no pattern is formed (a).
  • the nanoscale pattern may be provided on both sides of the glass. If only the end face of the glass is needed, masking may be applied to one face to exclude the etching reaction, followed by dipping.
  • FIG. 11 is a photograph illustrating a high transmittance/low reflectance effect of a glass on which a nanoscale pattern is formed according to an embodiment.
  • MENS means moth eye nano-structure.
  • the glass having high transmittance/low reflectance according to the present invention can be preferably used as a cover glass for a mobile device. However, it is not limited thereto and may be applied to various other fields.
  • FPD flat panel display
  • DID digital information display
  • CID Center Information Display
  • RSE Rear Seat Entertainment
  • UVLED OLED
  • OLED organic light-emitting diode
  • the present invention it is possible to implement high transmittance/low reflectance for various glasses by a wet etching method. Through this, not only can the performance of various electronic devices including various displays and optical components be improved, but also user convenience can be improved.
  • the present invention it is possible to obtain glass having high transmittance/low reflectance with improved etching stability, reproducibility, and etching uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명의 습식식각방법은, 글래스을 세정하는 것; 세정된 글래스을 습식식각하여 나노스케일의 패턴을 형성하는 것; 및 나노패터닝된 글래스를 세정 및 건조하는 것을 포함하고, 상기 습식식각단계에서 사용하는 습식식각용액은 불산과 계면활성제, 및 옥살산과 아세트산을 포함할 수 있다. 본 발명에 따르면 고투과율/저반사율의 글래스를 제공할 수 있다. 이 글래스는 모바일 기기를 포함한 디스플레이 및 광학기기에 활용될 수 있다.

Description

습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스
본 발명은 습식식각하여 글래스 표면에 나노패턴을 형성하여 글래스의 광투과율을 향상시키고 반사율을 낮추는, 글래스의 습식식각방법에 관한 것이다.
식각공정은 습식식각과 건식식각으로 구분할 수 있다. 습식식각은 일반적으로 모재를 부식 및 용해시키는 성질을 가지는 식각용액과, 식각의 대상이 되는 모재의 화학 반응을 통해 이루어진다. 건식식각은 기체 플라즈마나 활성화된 기체에 의한 반응을 이용하여 이루어진다.
종래 모재의 표면처리방법에 있어서, 수~수십nm의 너비(폭, 두께)를 가지는 패턴을 형성하기 위해서는 전술한 건식 식각을 사용한다. 그러나, 건식 식각은 습식 식각에 비해 고비용이며 공정 관리가 어렵고 대량 생산이 어렵다. 또한 건식 식각은 곡면 유리 및 대면적 유리에 적용하기에는 공정 특성상 어려움이 있다.
이에 반하여, 종래의 습식식각은 건식식각에 비해 공정관리가 쉽고 대량생산에 용이하다. 그러나, 습식식각을 통해 형성된 패턴은 평균 3마이크로미터 이상의 너비를 가진다. 이러한 패턴은 반사율을 낮출 수는 있으나 투과율이 현저하게 감소하는 단점이 있다. 이에 따라서 투과율을 유지하며 반사율을 낮출 수 있는 미세한 나노 패턴의 필요성이 대두되어 왔다. 그러나, 빛의 반사율 또는 투과율을 조절할 수 있는 정도의 나노스케일에 이르는 패턴을 습식식각방법으로 구현하기가 어려워, 종래에는 습식식각을 이용하여 빛에 대한 고투과율/저반사율의 글래스를 제공하는 것은 거의 수행되지 못하였다.
발명자는 이러한 기술적 사정에 근거하여 연구개발을 수행하여 대한민국등록특허 10-1842083호, '돌기 형성 방법'을 출원한 바가 있다. 상기 종래기술에 따르면 투과율이 향상되고 반사율이 낮아지는 효과를 얻을 수 있었다. 그러나, 식각반응의 안정성, 재현성, 및 식각 균일성에서 문제가 여전하였다.
이에 발명자는 추가로 연구개발을 계속하여 본 발명에 이르게 되었다.
본 발명은 고투과율/저반사율의 글래스를 제공하는 것을 목적으로 한다.
본 발명은 다양한 글래스의 표면에 대한 고투과율/저반사율 처리를 가능하게 하는 것을 목적으로 한다.
본 발명은 식각반응의 안정성, 재현성, 및 식각 균일성이 개선되는 고투과율/저반사율의 글래스를 제공하는 것을 목적으로 한다.
본 발명의 습식식각방법은, 글래스을 세정하는 것; 세정된 글래스를 습식식각하여 나노스케일의 패턴을 형성하는 것; 및 패터닝된 글래스를 세정 및 건조하는 것을 포함한다.
상기 습식식각단계에서 사용하는 습식식각용액은 불산과 계면활성제를 포함할 수 있다.
상기 습식식각은 딥핑방법으로 수행될 수 있다.
상기 글래스의 일면 또는 양면에 상기 나노스케일의 패턴이 형성될 수 있다.
상기 나노스케일의 패턴은 1-100나노미터의 범위를 가질 수 있다.
상기 글래스의 표면에서 돌출하는 돌기를 포함할 수 있다.
상기 돌기를 포함하여 상기 글래스의 표면은 모스아이 구조물을 가질 수 있다.
상기 나노스케일의 구조물은 돌기를 포함할 수 있다.
상기 돌기는 두께가 깊이보다 큰 구조를 가질 수 있다.
상기 돌기의 두께는 1-50나노미터일 수 있다.
상기 돌기의 깊이는 1-50나노미터로 제공될 수 있다.
상기 돌기의 두께는 5-30나노미터일 수 있다.
상기 돌기의 깊이는 5-30나노미터로 제공될 수 있다.
상기 습식식각단계에서 습식식각용액조성물은, -불산 및 계면활성제를 포함하고 나머지는 물로 조성하거나, -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산 중의 적어도 하나를 포함하고 나머지는 물로 조성하거나, -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산 중의 적어도 하나를 포함하고, NH4F, HNO3, H3PO4, 및 HCl 중의 적어도 하나를 포함하지 않고 나머지는 물로 조성하거나, -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산 중의 적어도 하나를 포함하고, NH4F, HNO3, H3PO4, 및 HCl 모두를 포함하지 않고 나머지는 물로 조성하거나, 불산 및 계면활성제를 포함하고, 옥살산 및 아세트산을 더 포함하고 나머지는 물로 조성하거나, 불산 및 계면활성제를 포함하고, 옥살산 및 아세트산을 더 포함하고, NH4F, HNO3, H3PO4, 및 HCl 모두를 포함하지 않고 나머지는 물로 조성할 수 있다.
상기 불산은 0wt%초과 5.0wt%미만으로 포함할 수 있다.
상기 옥살산 0wt%초과 5.0wt%미만으로 포함할 수 있다.
상기 아세트산 0wt%초과 10.0wt%미만으로 포함할 수 있다.
상기 계면활성제는 0wt%초과 1.0wt%미만으로 포함할 수 있다.
상기 습식식각이 수행되는 온도는 30-70℃의 범위일 수 있다.
상기 습식식각이 수행되는 시간은 1-7분의 범위일 수 있다
상기 글래스는 모바일 기기를 포함한 평판디스플레이 및 다양한 광학기기에 이용될 수 있다.
다른 측면에 따른 본 발명의 습식식각용액조성물은, 글래스를 식각하기 위한 습식식각용액조성물이고, 상기 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함하고, 상기 습식식각용액조성물의 잔여성분은 물로 조성될 수 있다.
상기 조성물은 옥살산을 0wt%를 초과하고 5.0wt%미만으로 포함할 수 있다.
상기 조성물은 아세트산을 0wt%를 초과하고 10.0wt%미만으로 포함할 수 있다.
상기 조성물은 0wt%초과 5.0wt%미만의 옥살산, 및 0wt%초과 10.0wt%미만의 아세트산을 포함할 수 있다.
상기 조성물은, 상기 옥살산보다 상기 아세트산이 더 많이 포함될 수 있다.
상기 조성물은 NH4F, HNO3, H3PO4, 및 HCl 중의 적어도 하나를 포함하지 않을 수 있다.
상기 조성물은 NH4F, HNO3, H3PO4, 및 HCl를 모두 포함하지 않을 수 있다.
본 발명에 따른 패터닝된 글래스는, 습식식각방법으로 제공되는 나노스케일의 표면 돌기를 가지는 패턴을 포함하여 고투과율/저반사율의 구현이 가능하여, 평판 디스플레이 전면패널, 광학기기의 렌즈 또는 윈도우 또는 보호커버에 적용이 가능한 패터닝된 글래스일 수 있다.
상기 돌기의 두께가 상기 돌기의 깊이보다 크게 제공될 수 있다.
상기 돌기의 두께는 1-50나노미터일 수 있다.
상기 돌기의 깊이는 1-50나노미터로 제공될 수 있다.
상기 글래스는 양면 또는 단면이 패터닝되어 있을 수 있다.
본 발명에 따른 고투과율/저반사율의 글래스를 제공할 수 있다. 사용자는 본 발명의 글래스를 사용하여 외광의 반사로 인한 디스플레이의 시인성 저감을 줄일 수 있다.
본 발명에 따르면 제조업체의 대외비로 관리되는 다양한 조성으로 제조된 글래스의 표면에 대한 고투과율/저반사율 처리가 가능한 장점이 있다. 본 발명은 특히 모바일 기기의 디스플레이에 대하여 고투과율/저반사율의 구현에 의한 시인성 향상이 가능한 효과가 있음을 실험으로 확인하였다.
본 발명에 따르면, 디스플레이의 이와 같은 시인성 향상을 통한 모바일 기기의 품질향상을 기대할 수 있다.
도 1은 실시예에 따른 글래스의 습식식각방법을 설명하는 흐름도.
도 2 내지 도 6은 각각 제 1 내지 제 5 실시예에 따른 습식식각방법을 반복하여 수행한 결과를 나타내는 그래프.
도 7은 딥핑(dipping)시간에 따른 투과율의 변화를 나타내는 그래프.
도 8은 실시예의 습식식각방법이 수행된 글래스의 표면(a)과 표면의 단면(b)사진.
도 9와 도 10은 실시예에 적용되는 나방눈 구조물의 작용을 설명하는 도면으로서, 도 9는 나방눈 구조물의 작용원리를 보이고, 도 10은 상기 실시예 4에 대한 나방눈 구조물에 의한 투과율향상/반사율감소의 작용을 설명하는 도면.
도 11은 실시예에 따른 나노스케일의 패턴이 형성되는 글래스의 고투과/저반사 효과를 설명하는 사진.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나, 본 발명의 사상은 이하의 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 제안할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함될 수 있다.
도 1은 실시예에 따른 글래스의 습식식각방법을 설명하는 흐름도이다.
도 1을 참조하면, 글래스의 습식식각방법은, 글래스 기판을 세정하는 단계(S1), 습식식각을 통해 글래스 기판 상에 나노패턴을 형성하는 단계(S2), 및 패터닝된 글래스를 세정 및 건조하는 단계(S3)를 포함할 수 있다.
상기 세정단계(S1)에서는 글래스 기판에 존재하는 유기물 등의 이물질을 제거할 수 있다. 상기 세정단계(S1)에 의해서, 상기 패턴형성단계(S2)에서 식각용액에 의한 식각처리가 전체 글래스 기판에 대하여 균일하게 이루어지도록 할 수 있다. 상기 세정단계(S1)에는 IPA(Isopropyl Alcohol) 또는 에탄올을 사용할 수 있다. IPA(Isopropyl Alcohol) 또는 에탄올로 유리 기판을 세정한 후에는 물로 세정할 수 있다. 세정 방식으로는 초음파를 이용하거나, 브러쉬를 이용하여 유리 기판을 세정할 수 있다.
상기 패터닝 단계(S2)는 습식식각용액 속에 글래스 기판을 담그는 딥핑(dipping)방법 또는 글래스 기판에 습식식각용액을 분사하는 스프레이(spray) 방식 등으로 수행할 수 있다. 상기 패터닝 단계(S2)에 의해서는 글래스 기판 상에 나노패턴이 제공될 수 있다. 상기 딥핑방법에 의해서 글래스 기판의 양면 또는 단면에 상기 패턴을 형성할 수 있다. 단면인 경우에는 마스킹을 이용하여 수행할 수 있다.
이때, 습식식각용액조성물은, 불산 및 계면활성제를 적정량 포함할 수 있다. 상기 습식식각용액조성물은 옥살산, 아세트산 중의 적어도 하나를 적정량 포함할 수 있다. 상기 습식식각용액조성물에는 NH4F, HNO3, H3PO4, 및 HCl 중의 적어도 하나를 포함하지 않을 수 있다. 상기 습식식각용액조성물에는 NH4F, HNO3, H3PO4, 및 HCl 모두를 포함하지 않을 수 있다. 이때 조성물의 나머지는 물로 이루어질 수 있다.
상기 패터닝 단계에 따르면, 요철이 반복하여 구현되는 나노스케일의 패터닝된 구조물을 제공할 수 있다. 상기 패터닝된 구조물은 나노스케일의 반복적인 돌기를 포함할 수 있다. 상기 나노스케일은 1-100나노미터의 단위를 언급할 수 있다. 상기 돌기는 상기 글래스의 표면에서 돌출할 수 있다. 상기 돌기는 상기 글래스의 표면에서 직교하는 높이 방향으로 돌출할 수 있다.
상기 패터닝된 구조물은 나노스케일의 나방눈 구조물로서, 글래스와 다른 매질과의 경계면에서 빛의 반사율을 낮출 수 있으며, 투과율을 충분히 향상시킬 수 있다. 상기 빛은 가시광선을 예시할 수 있다.
상기 글래스는 모바일 기기의 커버글래스로 사용될 수 있다. 이 경우 모바일 기기의 사용자는 커버글래스의 고투과율/저반사율 효과에 의해서 모바일 기기의 표시 정보의 가시성을 높일 수 있다. 물론, 글래스의 사용예는 모바일 기기에 제한되지는 않지만, 바람직한 예로 모바일 기기의 강화 글래스를 예로 들 수 있다. 상기 강화 글래스에는 나트륨과 칼륨 중의 적어도 하나가 분산되어 있을 것으로 추측된다.
상기 글래스를 세정하는 단계(S3)에서는, 글래스를 세정 및 건조할 수 있다. 이 단계에서 습식식각을 통해 패턴을 형성하는 단계(S2)를 거친 후 잔류하는 산성의 식각용액을 제거할 수 있다.
표 1은 상기 습식식각용액의 조성물을 보이는 테이블이다.
습식식각용액조정물성분 함량(wt%)
HF 0< and <5.0
NH4F -
HNO3 -
H3PO4 -
HCl -
C2H2O4(옥살산) 0< and <5.0
CH3COOH(아세트산) 0< and <10.0
Surfactant(계면활성제) 0< and <1.0
H2O Balance
표 1을 참조하여 설명한다.
일 실시예의 습식식각용액조성물은, 불산을 0wt%를 초과하고, 5.0wt%미만으로 포함할 수 있다. 일 실시예의 습식식각용액조성물은, 옥살산을 0wt%를 초과하고, 5.0wt%미만으로 포함할 수 있다. 일 실시예의 습식식각용액조성물은, 아세트산을 0wt%를 초과하고, 10.0wt%미만으로 포함할 수 있다. 일 실시예의 습식식각용액조성물은, 계면활성제를 0wt% 초과하고, 1.0wt%미만으로 포함할 수 있다. 전제 식각용액의 잔여성분으로는 물을 포함할 수 있다.
일 실시예의 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함할 수 있다. 전제 식각용액의 나머지 조성은 물을 포함할 수 있다. 발명자는 시판 중인 다양한 글래스의 내부 및 표면에는 나트륨과 칼륨의 산화물이 나노스케일 요철을 만들기에 적합한 수준으로 균질하게 분산하는 것으로 추측한다. 이를 통하여 불산을 포함시키는 것에 의해서 나노스케일의 구조물을 글래스의 표면에 형성할 수 있는 것을 추측한다.
일 실시예의 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 옥살산을 0wt%초과 5.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함할 수 있다. 전제 식각용액의 나머지 조성은 물을 포함할 수 있다.
일 실시예의 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 아세트산을 0wt%초과 10.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함할 수 있다. 전제 식각용액의 나머지 조성은 물을 포함할 수 있다.
일 실시예의 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 0wt%초과 5.0wt%미만의 옥살산, 0wt%초과 10.0wt%미만의 아세트산, 및 0wt%초과 1.0wt%미만의 계면활성제 중에서 적어도 하나를 포함할 수 있다. 전제 식각용액의 나머지 조성은 물을 포함할 수 있다. 이때, 옥살산과 아세트산이 함께 포함되는 경우에는 아세트산이 더 많이 포함될 수 있다.
상기 옥살산, 및 아세트산 중의 적어도 하나를 적정량 포함하는 것에 의해서, 식각반응의 안정성, 재현성을 향상시킬 수 있다. 상기 옥살산, 및 아세트산 중의 적어도 하나의 적정량은 0wt%초과 5.0wt%미만일 수 있다.
바람직하게, 일 실시예의 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 옥살산을 0wt%초과 5.0wt%미만으로 포함하고, 아세트산을 0wt%초과 10.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함할 수 있다. 전제 식각용액의 나머지 조성은 물을 포함할 수 있다.
실시예의 습식식각용액조성물은 불산을 반드시 포함하고, 그 함량은 0wt%초과 5.0wt%미만으로 포함할 수 있다.
상기 불산은 화학식 1, 화학식 2, 및 화학식 3에 의해서 글래스에 나노스케일의 구조물을 형성할 수 있다.
Figure PCTKR2021014601-appb-img-000001
Figure PCTKR2021014601-appb-img-000002
Figure PCTKR2021014601-appb-img-000003
상기 화학식을 참조하면, 상기 불산은 글래스에 존재하는 나트륨과 칼륨의 산화물과 반응하여 NaF, 및 KF를 형성할 수 있다. 상기 NaF와 KF는 모두 수용성이기 때문에 식각용액에 용해되어 존재한다.
글래스의 주성분인 SiO2도 화학식 3과 같이 HF와 반응하여 H2SiF6를 생성할 수 있다. 상기 화학식 3의 반응속도는 화학식 1과 화학식 2의 반응속도에 비하여 현저하게 낮기 때문에, 그 반응속도의 차이에 의하여 나노스케일의 요철구조물이 형성되는 것으로 이해된다.
상기 H2SiF6도 수용성이기 때문에 반응 후 식각용액에 용해되어 존재하게 된다. 상기 화학식 1, 및 화학식 2와 화학식 3의 반응속도차이에 의한 나노구조물 형성이 본 발명의 일 특징을 이룰 수 있다. 여기서 나노스케일은 요철의 두께 및 깊이 모두에 해당할 수 있다.
실시예의 습식식각용액조성물은 계면활성제를 포함할 수 있다. 계면활성제는 글래스 기판의 표면으로부터 부식물이 잘 떨어지도록 하는 역할, 계면활성제가 기포를 형성하여 상기 부식물을 잘 흡착하는 역할, 및 습식식각용액의 작용성분이 글래스 기판의 미세표면에 잘 접촉하도록 하는 역할을 수행할 수 있다. 상기 계면활성제를 통하여 나노스케일의 구조물을 글래스의 전체면에 대하여 균일하고 원활하게 제공할 수 있다.
실시예의 습식식각용액조성물은 NH4F, HNO3, H3PO4, 및 HCl를 포함하지 않을 수 있다. 상기 NH4F, HNO3, H3PO4, 및 HCl 등이 나노스케일 구조물의 형성에 큰 역할을 할 것으로 기대하였으나, 공정의 안정화와 재현성 및 나노구조물의 균일성 등에 있어서 문제를 일으키는 것을 확인할 수 있었다. 상기 NH4F, HNO3, H3PO4, 및 HCl 등은 계면활성제와의 반응성이 좋지 않은 것에 기인한 것으로 추측할 수 있다.
상기 습식식각용액조성물은 반응시간과 반응온도에 영향을 받을 수 있다. 발명자는 헤아릴 수 없는 반복실험을 수행하여 제품으로서 적용이 가능한 다양한 실시예를 얻을 수 있었다. 글래스는 다양한 글래스를 사용하였으며, 각 글래스 제조사는 자기 글래스의 성분 및 가공방법을 공개하지 않는다. 이에 따라 발명자는 반복실험을 통하여 상기 습식식각용액조성물의 성능을 확인하였다. 상기 글래스는 모바일 기기의 전면 커버로 사용되는 글래스를 그 일 예로 하였다.
습식식각방법의 실시예 1
-S제조사의 A글래스, 딥핑식각, 온도 30-40℃, 식각시간 1-2분
습식식각방법의 실시예 2
-S제조사의 B글래스, 딥핑식각, 온도 60-65℃, 식각시간 1.5-2분
습식식각방법의 실시예 3
-X제조사의 A글래스, 딥핑식각, 온도 65-70℃, 식각시간 2-4분
습식식각방법의 실시예 4
-C제조사의 A글래스, 딥핑식각, 온도 65-70℃, 식각시간 3-5분
습식식각방법의 실시예 5
-S제조사의 C글래스, 딥핑식각, 온도 40-45℃, 식각시간 3.5-5분
이때 사용한 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 옥살산을 0wt%초과 5.0wt%미만으로 포함하고, 아세트산을 0wt%초과 10.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함할 수 있다. 전제 식각용액의 나머지 조성은 물을 포함할 수 있다.
식각용액에 딥핑되므로, 글래스는 양면에 식각처리가 될 수 있다.
상기 각 실시예에 따른 습식식각방법을 수행하여 패터닝된 글래스의, 패터닝전(Before), 패터닝 후(After)의 투과율을 측정하였다.
도 2 내지 도 6은 제 1 내지 제 5 실시예에 따른 습식식각방법을 반복하여 수행한 결과를 각 그래프로 나타내었다.
실시예에 따르면, 도 2의 습식식각방법의 실시예 1에서는 550nm에서 투과율이 92%에서 97%로 5% 향상된 것을 볼 수 있다. 도 3의 습식식각방법의 실시예 2에서는 550nm에서 투과율이 92%에서 96%로 4% 향상된 것을 볼 수 있다. 도 4의 습식식각방법의 실시예 3에서는 550nm에서 투과율이 91.5%에서 95.5%로 4% 향상된 것을 볼 수 있다. 도 5의 습식식각방법의 실시예 4에서는 550nm에서 투과율이 92%에서 98%로 6% 향상된 것을 볼 수 있다. 도 6의 습식식각방법의 실시예 5에서는 550nm에서 투과율이 91.7%에서 96%로 4.3% 향상된 것을 볼 수 있다.
위에서 본 바와 같이 실시예의 습식식각방법이 수행된 글래스는 투과율이 모두 향상되는 것을 확인할 수 있다. 이를 통하여 예를 들어 투과율이 향상되면 반사율이 낮아지기 때문에, 모바일 기기 사용자의 정보 시인성을 향상시킬 수 있고, 눈의 피로감을 감소시킬 수 있는 효과가 있는 것이다.
도 7은 실시예 5의 딥핑(dipping)시간에 따른 투과율의 변화를 나타내는 그래프이다.
도 7을 참조하면, 딥핑시간이 긴 샘플일수록 투과율이 향상된다. 그러나, 투과율은 4분에서 96%의 정점을 이룬다. 딥핑시간이 부족하면 식각반응이 부족하게 되어 나노구조물 형성이 충분하지 못함에 따라 투과율 향상이 부족할 수 있다.
상기 딥핑시간이 4분을 초과하여 더 길어지면 투과율이 다시 감소할 수 있다. 이는 글래스 표면부위에 있는 존재하는 나트륨과 칼륨의 산화물이, 상기 화학식 1, 및 화학식 2의 반응에 의하여 소진된 후에, 돌기를 형성하고 있는 SiO2가 화학식 3에 의한 반응으로 식각되기 때문이다. 이에 따라서 결국, 요철을 이루는 SiO2 돌기가 작아지고 요(凹,Valley)부분의 깊이가 감소하여 일어나는 현상으로 이해할 수 있다. 즉, 이미 형성된 돌기의 높이가 줄어듬에 따라 요(凹,Valley)부분의 깊이가 다시 낮아지기 때문이다. 다시 말하면, 도 9에서와 같은 돌기 역할의 부족으로 일어나는 현상일 수 있다. 실시예에서 습식식각온도는 60℃로 할 수 있다. 도 7(실시예 5)을 참조하면, 딥핑시간을 7분 이내로 해야함을 알 수 있다.
도 8은 실시예의 습식식각방법이 수행된 글래스의 표면(a)과 표면의 단면(b)사진이다.
도 8을 참조하면, 도 8(a)에서 돌기의 두께는 수 나노미터에서 수십 나노미터로 형성된 것을 볼 수 있다. 도 8(b)에서 돌기의 깊이는 수 나노미터에서 수십 나노미터로 형성된 것을 볼 수 있다.
도 8을 참조하면, 실시예에서 언급한 상기 나노스케일은 요철의 두께 및 깊이 모두에 해당할 수 있다. 상기 요철은 돌기와 홈부로 이루어질 수 있다. 상기 돌기의 두께는 1-50나노미터로 제공될 수 있다. 상기 돌기의 두께는 바람직하게 5-30나노미터로 제공될 수 있다. 상기 돌기의 두께는 1-50나노미터일 때, 상기 돌기의 깊이는 1-50나노미터로 제공될 수 있다. 상기 돌기의 두께가 5-30나노미터일 때, 상기 돌기의 깊이는 5-30나노미터로 제공될 수 있다. 위와 같은 수에서 수십 나노미터 범위 내의 나노스케일의 구조물이 도 9와 같은 원리에 의하여 고투과율/저반사율을 효과를 나타내게 된다.
상기 돌기는 두께(너비 또는 폭)가 깊이보다 클 수 있다. 이를 통하여 터치패널에 반복적으로 외부물체가 접촉하더라도 반사율의 성능저하가 발생하지 않을 수 있다. 예를 들어, 접촉에 의해서 돌기의 파손 및 붕괴가 발생하지 않을 수 있다.
비교예로서, 수백나노미터(100-500나노미터)의 깊이, 수십나노미터(1-99나노미터)의 두께를 가지는 돌기물을 가지는 나방눈 구조물은 반복적인 외부충격에 취약하다. 그러므로, 글래스의 반사율을 경시변화를 심하게 보여서 반사율개선효과가 저하된다. 결국 외부환경에 대한 접촉 및 노출이 심한 환경에 사용되는 글래스로는 사용하기가 어려울 수 있다.
도 9와 도 10은 실시예에 적용되는 나방눈 구조물의 작용을 설명하는 도면으로서, 도 9는 나방눈 구조물의 작용원리를 보이고, 도 10은 상기 실시예 4에 대한 나방눈 구조물에 의한 투과율 향상 및 반사율 감소의 작용을 설명하는 도면이다.
빛의 반사는 빛이 통과하는 상이한 매질의 경계면에서 굴절율(Refractive index) 차이에 의하여 일어나게 된다. 도 9를 참조하면, 공기와 표면에 나노구조물이 형성되어 있는 글래스의 경계면에서 글래스로 입사되는 빛에 대한 굴절율 차이가 있다. 다시 말하면, 공기의 굴절율 1.0에서 글래스의 굴절율 1.5로 점진적으로 증가한다. 이때문에 반사율이 낮아지게 됨에 따라 투과율도 증가되는 것이다.
도 10을 참조하면, 나노스케일의 패턴이 형성된 경우(b)에는 패턴이 형성되지 않은 경우(a)에 비하여, 반사되는 광이 현저히 줄어들 수 있다. 상기 나노스케일의 패턴은 글래스의 양면에 모두 제공될 수 있다. 글래스의 단면에만 필요한 경우에는 일면에 식각반응을 배제하기 위한 마스킹을 하고 딥핑할 수 있다.
도 11은 실시예에 따른 나노스케일의 패턴이 형성된 글래스의 고투과율/저반사율 효과를 설명하는 사진이다.
도 11은 태양광 하에서 촬영한 사진이다. 이를 참조하면, 고투과/저반사 효과에 의해 나노패터닝된 부분의 밑면 이미지가 훨씬 선명하게 보이는 것을 확인할 수 있다. 또한 모바일 기기의 커버 글래스에 나노패터닝된 부분의 화면도 선명하게 보이는 것을 확인할 수 있다. 도면에서 MENS는 나방눈 나노 구조(Moth Eye Nano-Structure)를 의미한다.
본 발명에 따르는 고투과율/저반사율을 가지는 글래스는, 모바일 기기의 커버글래스로 바람직하게 사용될 수 있다. 그러나, 이에 제한되지 아니하고, 그 외의 다양한 분야에 적용될 수 있다.
예를 들어, 평판디스플레이(FPD:Flat Panel Display)의 최외각 커버에 적용되는 것으로서, 구체적으로, Tablet PC, TV, CCTV, 모니터, 키오스크, ATM, 및 DID(Digital Information Display) 등의 전면패널에 적용될 수 있다. 또한, 자동차의 CID(Center Information Display), Navigation, RSE(Rear Seat Entertainment)에 적용될 수 있다. 또한, 카메라, 망원경, 현미경의 렌즈 또는 윈도우에 적용될 수 있다. 또한, UVLED, OLED 등의 보호커버(Encapsulating cover)로 적용될 수 있다. 그 외에도, 전자칠판, 전시대 유리, View port, 액자, 군사용 광학기기, 및 태양전지 등에도 적용될 수 있다.
본 발명에 의해서 다양한 글래스에 대하여 습식식각방법으로 고투과율/저반사율을 구현할 수 있다. 이를 통하여 각종 디스플레이 및 광학부품이 포함되는 다양한 전자기기의 성능향상을 꾀할 수 있을 뿐 아니라, 사용자의 편의성을 향상시킬 수 있다.
본 발명에 따르면, 식각반응의 안정성, 재현성, 및 식각 균일성이 개선되는 고투과율/저반사율의 글래스를 얻을 수 있다.

Claims (20)

  1. 글래스을 세정하는 것;
    세정된 글래스을 습식식각하여 나노스케일의 패턴을 형성하는 것; 및
    나노패터닝된 글래스를 세정 및 건조하는 것이 포함되고,
    상기 습식식각단계에서 사용하는 습식식각용액은 불산과 계면활성제를 포함하는 글래스의 나노습식식각방법.
  2. 제 1 항에 있어서,
    상기 습식식각은 딥핑방법으로 수행되어, 상기 글래스의 양면 또는 단면에 상기 나노스케일의 패턴이 형성되는 글래스의 나노습식식각방법.
  3. 제 1 항에 있어서,
    상기 나노스케일의 패턴은 1-100나노미터의 범위를 가지고,
    상기 글래스의 표면에서 돌출하는 돌기를 포함하는 모스아이 구조물인 글래스의 나노습식식각방법.
  4. 제 3 항에 있어서
    상기 돌기의 두께는 1-50나노미터이고, 상기 돌기의 깊이는 1-50나노미터로 제공되는 글래스의 나노습식식각방법.
  5. 제 3 항에 있어서,
    상기 돌기의 두께는 5-30나노미터이고, 상기 돌기의 깊이는 5-30나노미터로 제공되는 글래스의 나노습식식각방법.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 돌기는 두께가 깊이보다 큰 글래스의 나노습식식각방법.
  7. 제 1 항에 있어서,
    상기 습식식각단계에서 습식식각용액조성물은,
    -불산 및 계면활성제를 포함하고 나머지는 물로 조성하거나,
    -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산 중의 적어도 하나를 포함하고 나머지는 물로 조성하거나,
    -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산 중의 적어도 하나를 포함하고, NH4F, HNO3, H3PO4, 및 HCl 중의 적어도 하나를 포함하지 않고 나머지는 물로 조성하거나,
    -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산 중의 적어도 하나를 포함하고, NH4F, HNO3, H3PO4, 및 HCl 모두를 포함하지 않고 나머지는 물로 조성하거나,
    -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산을 더 포함하고 나머지는 물로 조성하거나,
    -불산 및 계면활성제를 포함하고, 옥살산 및 아세트산을 더 포함하고, NH4F, HNO3, H3PO4, 및 HCl 모두를 포함하지 않고 나머지는 물로 조성하는,
    글래스의 나노습식식각방법.
  8. 제 7 항에 있어서,
    상기 불산은 0wt%초과 5.0wt%미만으로 포함하거나,
    상기 옥살산 0wt%초과 5.0wt%미만으로 포함하거나,
    상기 아세트산 0wt%초과 10.0wt%미만으로 포함하거나,
    상기 계면활성제는 0wt%초과 1.0wt%미만으로 포함하는 글래스의 나노습식식각방법.
  9. 제 1 항 내지 제 8 항 중의 어느 한 항에 있어서,
    습식식각온도는 30-70℃이고, 식각시간은 1-7분인 글래스의 나노습식식각방법.
  10. 제 1 항 내지 제 8 항 중의 어느 한 항의 글래스 나노습식식각방법으로 제조된 글래스.
  11. 글래스를 식각하기 위한 습식식각용액조성물이고,
    상기 습식식각용액조성물은, 불산을 0wt%초과 5.0wt%미만으로 포함하고, 계면활성제를 0wt%초과 1.0wt%미만으로 포함하고, 상기 습식식각용액조성물의 잔여성분은 물로 조성되는 습식식각용액조성물.
  12. 제 11 항에 있어서,
    옥살산을 0wt%를 초과하고 5.0wt%미만으로 포함하는 습식식각용액조성물.
  13. 제 11 항에 있어서,
    아세트산을 0wt%를 초과하고 10.0wt%미만으로 포함하는 습식식각용액조성물.
  14. 제 11 항에 있어서,
    0wt%초과 5.0wt%미만의 옥살산, 및 0wt%초과 10.0wt%미만의 아세트산을 포함하는 습식식각용액조성물.
  15. 제 14 항에 있어서,
    상기 옥살산보다 상기 아세트산이 더 많이 포함되는 습식식각용액조성물.
  16. 제 11 항에 있어서,
    NH4F, HNO3, H3PO4, 및 HCl 중의 적어도 하나를 포함하지 않는 습식식각용액조성물.
  17. 제 11 항에 있어서,
    NH4F, HNO3, H3PO4, 및 HCl를 모두 포함하지 않는 습식식각용액조성물.
  18. 습식식각방법으로 제공되는 나노스케일의 표면 돌기를 가지는 패턴을 포함하여 고투과율/저반사율의 구현이 가능하여, 평판 디스플레이 전면패널, 광학기기의 렌즈 또는 윈도우 또는 보호커버에 적용이 가능한 나노패터닝된 글래스이고,
    상기 돌기의 두께가 상기 돌기의 깊이보다 큰, 습식식각방법으로 나노패터닝된 글래스.
  19. 제 18 항에 있어서
    상기 돌기의 두께는 1-50나노미터이고, 상기 돌기의 깊이는 1-50나노미터로 제공되는, 습식식각방법으로 나노패터닝된 글래스.
  20. 제 18 항에 있어서,
    상기 글래스는 양면 또는 단면이 패터닝된, 습식식각방법으로 나노패터닝된 글래스.
PCT/KR2021/014601 2021-10-19 2021-10-19 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스 WO2023068395A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180034268.5A CN116323862A (zh) 2021-10-19 2021-10-19 湿法蚀刻溶液组合物、玻璃的湿法蚀刻方法和通过湿法蚀刻方法获得的图案化玻璃
KR1020217039711A KR20230057910A (ko) 2021-10-19 2021-10-19 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스
PCT/KR2021/014601 WO2023068395A1 (ko) 2021-10-19 2021-10-19 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스
US17/641,410 US20240045108A1 (en) 2021-10-19 2021-10-19 Wet etching solution composition, wet etching method of glass, and patterned glass by the wet etching method
TW111127322A TW202317497A (zh) 2021-10-19 2022-07-21 濕式蝕刻溶液組合物、玻璃的濕式蝕刻方法和通過濕式蝕刻方法獲得的圖案化玻璃

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/014601 WO2023068395A1 (ko) 2021-10-19 2021-10-19 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스

Publications (1)

Publication Number Publication Date
WO2023068395A1 true WO2023068395A1 (ko) 2023-04-27

Family

ID=86058177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014601 WO2023068395A1 (ko) 2021-10-19 2021-10-19 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스

Country Status (5)

Country Link
US (1) US20240045108A1 (ko)
KR (1) KR20230057910A (ko)
CN (1) CN116323862A (ko)
TW (1) TW202317497A (ko)
WO (1) WO2023068395A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080071708A (ko) * 2007-01-31 2008-08-05 이기정 기판의 식각 방법 및 장치
KR20120044408A (ko) * 2010-10-28 2012-05-08 노바테크인더스트리 주식회사 고효율 광 추출이 가능한 유리 기판 및 그 제조방법
KR20150114059A (ko) * 2014-03-31 2015-10-12 삼성디스플레이 주식회사 유리 강화용 조성물 및 이를 이용한 터치 스크린 글래스의 제조 방법
KR20170096724A (ko) * 2016-02-17 2017-08-25 강원대학교산학협력단 카르복시산을 포함하는 유리기판용 식각액
KR101842083B1 (ko) * 2016-08-08 2018-03-29 (주)에스이피 돌기 형성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080071708A (ko) * 2007-01-31 2008-08-05 이기정 기판의 식각 방법 및 장치
KR20120044408A (ko) * 2010-10-28 2012-05-08 노바테크인더스트리 주식회사 고효율 광 추출이 가능한 유리 기판 및 그 제조방법
KR20150114059A (ko) * 2014-03-31 2015-10-12 삼성디스플레이 주식회사 유리 강화용 조성물 및 이를 이용한 터치 스크린 글래스의 제조 방법
KR20170096724A (ko) * 2016-02-17 2017-08-25 강원대학교산학협력단 카르복시산을 포함하는 유리기판용 식각액
KR101842083B1 (ko) * 2016-08-08 2018-03-29 (주)에스이피 돌기 형성 방법

Also Published As

Publication number Publication date
KR20230057910A (ko) 2023-05-02
US20240045108A1 (en) 2024-02-08
CN116323862A (zh) 2023-06-23
TW202317497A (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
WO2012036453A2 (ko) 반사방지층이 코팅된 투명도전성 시트 및 이의 제조 방법
WO2014027825A1 (ko) 초발수성 코팅용액 조성물 및 코팅 조성물의 제조방법
WO2023068395A1 (ko) 습식식각용액조성물, 및 글래스의 습식식각방법, 및 그 습식식각방법으로 패터닝된 글래스
WO2012177017A2 (ko) 금속 배선 식각액 및 이를 이용한 액정 표시 장치의 제조 방법
WO2015080422A1 (ko) 기판의 제조방법, 기판, 유기 전계 발광소자의 제조방법 및 유기 전계 발광소자
WO2011136594A2 (ko) 구리와 티타늄을 포함하는 금속막용 식각액 조성물
WO2012177102A2 (ko) 탄소나노튜브필름 제조 방법
KR100731945B1 (ko) 도전성 산화 주석 막의 패터닝 방법
WO2018124666A1 (ko) 글라스 에칭 조성물 및 방현 글라스 제조방법
WO2018030703A1 (ko) 나노돌기 표면 형성 방법 및 그 방법에 의해 형성된 나노돌기 표면을 갖는 모재
WO2011016631A2 (ko) 전도성 기판 및 이의 제조 방법
WO2010123196A1 (en) Thin film type solar cell, and method for manufacturing the same
WO2009151284A2 (ko) 이중 하드마스크막을 이용한 씨모스이미지센서 제조 방법
WO2017176038A1 (ko) Basno3 박막 및 이의 저온 제조 방법
WO2013089338A1 (ko) 결정성 실리콘 웨이퍼의 텍스쳐 에칭액 조성물 및 텍스쳐 에칭방법
WO2016089073A9 (ko) 나노구조 및 그 제조방법
WO2010143794A1 (ko) 도핑 기능을 갖는 에칭 페이스트 및 이를 이용한 태양전지의 선택적 에미터 형성방법
CN101995777A (zh) 用于剥离滤色片的组合物以及使用其再生滤色片的方法
WO2017014566A1 (ko) 렌즈 및 이를 포함하는 렌즈 어셈블리
WO2017069560A1 (ko) 실리콘 텍스쳐링 조성물 및 이의 제조방법
WO2014112724A1 (ko) 편광자의 제조 방법
CN1417600A (zh) 制备铌酸锂光波导的钛扩散方法及装置
KR100503268B1 (ko) 에테르와 케톤을 함유하는 에지 비드 제거용 세정 용액 및이를 이용한 세정 방법
JPH06321581A (ja) 液晶パネル用ガラス板の再生方法
WO2011129613A2 (ko) 탄소나노튜브 필름 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961484

Country of ref document: EP

Kind code of ref document: A1