WO2023068012A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2023068012A1
WO2023068012A1 PCT/JP2022/036594 JP2022036594W WO2023068012A1 WO 2023068012 A1 WO2023068012 A1 WO 2023068012A1 JP 2022036594 W JP2022036594 W JP 2022036594W WO 2023068012 A1 WO2023068012 A1 WO 2023068012A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
ripple
ripple current
voltage
Prior art date
Application number
PCT/JP2022/036594
Other languages
English (en)
French (fr)
Inventor
世裕 笠原
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023068012A1 publication Critical patent/WO2023068012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the present invention relates to a motor control device that detects a phase current using a current detection element connected to the DC side of an inverter circuit and drives a motor.
  • a conventional motor control device for driving a motor for example, performs PWM (Pulse Width Modulation) control of the switching elements of each UVW phase of a three-phase inverter circuit.
  • PWM Pulse Width Modulation
  • a current detection element a shunt resistor or a hall element
  • detect the current on the DC side of the inverter circuit for example, a current detection element (a shunt resistor or a hall element) is provided to detect the current on the DC side of the inverter circuit.
  • the phase currents of the maximum and minimum phases of UVW are detected by setting the current detection timing according to the energization pattern of the PWM signal. detected, and finally obtained the phase current of each phase. Further, when the current detection time cannot be secured, current detection is made possible by shifting the phase of the PWM signal (pulse shift) (see, for example, Patent Documents 1 and 2).
  • the detected current has an error with respect to the sinusoidal phase current (ideal current) that flows when an ideal sinusoidal voltage is applied.
  • This error is called a ripple current, and since the magnitude of this ripple current varies depending on the timing of detection, a different error (ripple current) is included in the detected current each time the current is detected.
  • the present invention has been made to solve such conventional technical problems. It is to provide a motor control device capable of
  • a motor control device of the present invention includes an inverter circuit composed of a plurality of switching elements, and a control section that generates an energization pattern for switching the switching elements.
  • a current detection element that is connected to the DC side of an inverter circuit and generates a signal corresponding to the current value, and a motor current based on the signal generated by the current detection element.
  • a phase current detector that detects the phase current of the phase current
  • a predicted ripple current calculator that predicts the ripple current included in the phase current detected by the phase current detector, and a ripple current predicted by the predicted ripple current calculator.
  • a phase current correction unit for correcting the phase current detected by the phase current detection unit based on the phase current correction unit, and the control unit generates an energization pattern based on the phase current corrected by the phase current correction unit.
  • the predicted ripple current calculation unit includes an energization pattern, a predetermined reference point for an ideal current, detection timing of the phase current detection unit, and ripple current per unit time. is characterized by predicting the ripple current based on the amount of change in
  • the predicted ripple current calculation unit includes the energization pattern, the beginning of the carrier cycle, the detection timing of the phase current detection unit, and the ripple current per unit time. It is characterized by predicting the ripple current based on the amount of change.
  • the predicted ripple current calculation unit calculates the amount of change in the ripple current per unit time according to the pattern of the line voltage within the carrier cycle. It is characterized by calculating.
  • a motor control device according to the second to fourth aspects of the invention, wherein the predicted ripple current calculation unit calculates the ripple current per unit time from the DC voltage, the phase voltage, and the inductance of the circuit including the motor. It is characterized by calculating the amount of change.
  • a motor control apparatus according to the first aspect of the present invention, wherein the predictive ripple current calculating section prepares a data table of ripple currents set in advance corresponding to the DC voltage, the phase voltage, and the rotor position of the motor. and extracting ripple current from a data table based on DC voltage, phase voltage, and rotor position.
  • a motor control device in which the current detection element is connected to the DC bus in each of the above inventions, and the phase current detection section detects the phase current of the motor based on the signal generated by the current detection element and the energization pattern. It is characterized by detecting current.
  • an inverter circuit configured from a plurality of switching elements and a control section that generates an energization pattern for switching the switching elements are provided, and the switching elements are switched according to the energization pattern to convert a DC voltage to an AC voltage.
  • a motor control device that drives a motor by converting to to detect the phase current of the motor based on
  • the predicted ripple current calculator predicts a ripple current included in the phase current detected by the phase current detector, and the phase current corrector calculates the phase current based on the ripple current predicted by the predicted ripple current calculator.
  • the phase current detected by the detection unit is corrected, and the control unit generates an energization pattern based on the phase current corrected by the phase current correction unit.
  • Detected current is corrected to an ideal current or a value close to it by a phase current correction unit, and based on the corrected phase current, a control unit generates an energization pattern for switching switching elements of an inverter circuit.
  • the predicted ripple current calculator obtains the ripple current contained in the phase current by prediction. By predicting the ripple current based on the detection timing of the detector and the amount of change in the ripple current per unit time, it is possible to accurately predict the ripple current and accurately correct the detected current.
  • the predictive ripple current calculating section uses the energization pattern, the beginning of the carrier cycle, the detection timing of the phase current detecting section, and the unit time
  • the ripple current may be predicted based on the amount of change in the ripple current per hit.
  • the predicted ripple current calculation unit It is preferable to calculate the amount of change in ripple current per unit time according to the pattern.
  • the amount of change in the ripple current varies depending on the DC voltage, the phase voltage, and the inductance of the circuit including the motor. It is preferable to calculate the amount of change in the ripple current of . These make it possible to predict and calculate the ripple current with high accuracy.
  • the data table may be used to predict the ripple current.
  • the predictive ripple current calculation unit is made to hold in advance a data table of the ripple current set corresponding to the DC voltage, the phase voltage, and the rotor position of the motor as in the sixth aspect of the invention.
  • the ripple current will be extracted (predicted) from the data table based on voltage, phase voltage and rotor position.
  • the current detection element is connected to the DC bus as in the seventh invention, and the phase current detection section detects the phase current of the motor based on the signal generated by the current detection element and the conduction pattern. This is extremely effective in the case of so-called one-shunt current detection.
  • FIG. 1 is an electric circuit diagram of a motor control device according to one embodiment of the present invention
  • FIG. FIG. 2 is a functional block diagram of the motor control device of FIG. 1
  • FIG. 3 is a diagram showing an energization pattern (PWM signal) in one carrier cycle and maximum-phase and minimum-phase ripple currents output by the control unit in FIG. 2
  • FIG. 3 is a diagram for explaining the relationship between an ideal current that flows when an ideal sinusoidal voltage is applied to a motor and a current that flows due to a voltage actually applied by an energization pattern (PWM signal)
  • FIG. 5 is a diagram for explaining a method of obtaining the slope of the ripple current in FIG. 4 (amount of change in ripple current per unit time)
  • FIG. 6 is a circuit diagram for explaining a method of obtaining the slope of the ripple current in FIG. 5
  • FIG. 4 is a diagram showing seven phase regions within one carrier period of FIG. 3;
  • FIG. 1 is an electric circuit diagram of a motor control device 1 of one embodiment to which the present invention is applied
  • FIG. 2 is a functional block diagram of the motor control device 1. As shown in FIG.
  • the motor control device 1 of the embodiment includes an inverter circuit 4 and a control board 6, and converts a DC voltage (hereinafter referred to as an HV voltage VHV ) supplied from a vehicle HV battery 7, which is a DC power source, to a predetermined frequency.
  • the motor 8 is driven by converting it into a three-phase AC voltage and applying it to the motor 8 .
  • the motor 8 driven and controlled by the motor control device 1 of the embodiment drives a compression mechanism of an in-vehicle electric compressor (not shown), and is an interior permanent magnet synchronous motor (IPMSM).
  • IPMSM interior permanent magnet synchronous motor
  • PMSM Permanent Magnet Synchronous Motor
  • This motor 8 (IPMSM in this embodiment) has a stator in which UVW axis windings 2U, 2V, and 2W (FIG. 2) are wound around teeth by concentrated winding, and a predetermined air gap inside the stator. It consists of a rotor embedded with permanent magnets arranged and forming the magnetic poles.
  • the inverter circuit 4 is a circuit that converts the HV voltage V HV (for example, 350 V) of the HV battery 7 into a three-phase AC voltage and applies it to the motor 8 .
  • This inverter circuit 4 has a U-phase half-bridge circuit 11U, a V-phase half-bridge circuit 11V, and a W-phase half-bridge circuit 11W. 12B, 12C and lower arm switching elements 12D, 12E, 12F are individually provided. Further, a flywheel diode 13 is connected in antiparallel to each of the switching elements 12A to 12F.
  • the upper end sides of the upper arm switching elements 12A to 12C of the inverter circuit 4 are connected to the DC bus 10 on the positive electrode side of the HV battery 7 .
  • the lower end sides of the lower arm switching elements 12D to 12F of the inverter circuit 4 are connected to the DC bus 15 on the negative electrode side of the HV battery 7 .
  • these switching elements 12A to 12F are composed of insulated gate bipolar transistors (IGBTs) or the like incorporating a MOS structure in the gate portion.
  • IGBTs insulated gate bipolar transistors
  • the upper arm switching element 12A and the lower arm switching element 12D of the U-phase half bridge circuit 11U are connected in series
  • the upper arm switching element 12B and the lower arm switching element 12E of the V-phase half bridge circuit 11V are connected in series
  • An upper arm switching element 12C and a lower arm switching element 12F of the W-phase half bridge circuit 11W are connected in series.
  • a connection point P1 (U-phase voltage V u ) between the upper arm switching element 12A and the lower arm switching element 12D of the U-phase half-bridge circuit 11U is connected to the U-phase winding 2U of the motor 8, and the V-phase half-bridge circuit 11U is connected to the U-phase winding 2U.
  • a connection point P2 (V-phase voltage V v ) between the upper arm switching element 12B and the lower arm switching element 12E of the circuit 11V is connected to the V-phase winding 2V of the motor 8, and the upper arm switching of the W-phase half bridge circuit 11W is connected.
  • connection point P3 (W-phase voltage V w ) between the element 12C and the lower arm switching element 12F is connected to the W-phase winding 2W of the motor 8 .
  • the inverter circuit 4 switches the HV voltage V HV (DC voltage) input from the HV battery 7 by ON-OFF operation of these switching elements 12A to 12F, converts it into a three-phase AC voltage, and converts it into a three-phase AC voltage. applied to
  • a signal corresponding to the value of the DC current (phase current: shunt current) flowing through the inverter circuit 4 is applied to the DC bus 15 on the negative electrode side between the HV battery 7 and the inverter circuit 4 (the DC side of the inverter circuit 4).
  • a generated current sensing element 16 is connected.
  • this current detection element 16 is connected to the DC bus 15 in the embodiment, it may be connected to the DC bus 10 on the positive electrode side.
  • the current detection element 16 can be composed of a shunt resistor or a Hall element, but in the embodiment, it is composed of a shunt resistor.
  • FIG. 2 shows functional blocks (mainly functions of the microcomputer) of the control board 6 of the motor control device 1.
  • the motor control device 1 includes a control unit 21, a phase current correction unit 22, a DC voltage detection unit 23, a phase current detection unit 24, and a predicted ripple as functions of a microcomputer mounted on the control board 6.
  • a current calculator 26 is provided.
  • phase current detector 24 detects the phase current (U-phase current i U , V-phase current i V , W-phase current i W ) are detected and output.
  • the upper arm switching element 12A of the U-phase half bridge circuit 11U is turned ON, and the lower arm switching element 12E and the lower arm switching element 12F of the W-phase half bridge circuit 11W are turned ON.
  • the U-phase current iU flows from the switching element 12A to the U-phase winding 2U of the motor 8
  • the V-phase current iV flows from the flywheel diode 13 connected in parallel to the switching element 12E to the motor 8.
  • the W-phase current i W flows through the V-phase winding 2V and the W-phase current i W flows out from the W-phase winding 2W of the motor 8 to the switching element 12F.
  • the U-phase current iU flows through the current detection element 16 and can be detected.
  • the upper arm switching element 12A of the U-phase half bridge circuit 11U and the upper arm switching element 12B of the V-phase half bridge circuit 11V are turned ON, and the lower arm switching element 12F of the W-phase half bridge circuit 11W is turned ON.
  • U-phase current iU and V-phase current iV flow from switching elements 12A and 12B to U-phase and V-phase windings 2U and 2V of motor 8, respectively, and W-phase current iW flows through motor 8 flows out from the W-phase winding 2W to the switching element 12F.
  • the W-phase current i W flows through the current detection element 16 and can be detected.
  • phase currents (detected currents) i U , i V , and i W detected by the phase current detection unit 24 include ripple currents (ripple currents ⁇ i rpli , ⁇ i rplk described later) that are errors from the ideal currents. included, which will be discussed in more detail later.
  • the DC voltage detector 23 detects and outputs the HV voltage VHV of the HV battery 7 . Then, the HV voltage VHV detected and output by the DC voltage detection unit 23 and the energization pattern (PWM signal) calculated and output by the control unit 21 as described later are input to the predicted ripple current calculation unit 26. be.
  • Predicted ripple current calculator 26 The predicted ripple current calculation unit 26 calculates the maximum phase ripple current ⁇ i rpli and the minimum phase ripple current ⁇ i rplk based on the HV voltage V HV , the conduction pattern, the inductance of the circuit, and the like. Predict and output ⁇ i rpli and ⁇ i rplk . These ripple currents ⁇ i rpli and ⁇ i rplk are included in the phase currents output by the phase current detector 24 . Predictive control of rplk will be detailed later.
  • the current i U , the V-phase current i V , and the W-phase current i W (phase current) are input to the phase current correction section 22 .
  • phase current correction unit 22 corrects the U phase detected by the phase current detection unit 24 based on the maximum phase ripple current ⁇ i rpli and the minimum phase ripple current ⁇ i rplk calculated (predicted) by the predicted ripple current calculation unit 26.
  • the current i U , the V-phase current i V , and the W-phase current i W (phase current) are corrected and output. For example, when the U phase is the maximum phase, the ripple current ⁇ i rpli is subtracted from the U phase current i U and output as the corrected U phase current i U ′.
  • the ripple current ⁇ i rplk is subtracted from the W phase current i W and output as the corrected U phase current i W ′.
  • Control unit 21 The control unit 21 of the embodiment estimates the electrical angular velocity of the motor 8 from the phase currents i U ', i V ', i W ' corrected by the phase current correcting unit 22, and calculates the estimated electrical angular velocity and the electrical angular velocity command value.
  • An energization pattern (PWM signal) for switching the switching elements 12A to 12F of the inverter circuit 4 is generated based on the d-axis current and the q-axis current obtained from , and output to the inverter circuit 4 .
  • PWM signal for switching the switching elements 12A to 12F of the inverter circuit 4 is generated based on the d-axis current and the q-axis current obtained from , and output to the inverter circuit 4 .
  • the motor 8 is driven by position sensorless vector control.
  • FIG. 3 shows an energization pattern (PWM signal) in one carrier period.
  • the uppermost stage is the maximum phase i
  • the lower is the intermediate phase j
  • the lower is the minimum phase k.
  • 12D to 12F are OFF
  • the lower arm switching elements 12D to 12F are ON while the upper arm switching elements 12A to 12C are OFF.
  • the phase in which the upper arm switching elements 12A to 12C are ON is the longest phase i
  • the shortest phase is the minimum phase k
  • the intermediate phase is the intermediate phase j.
  • the W phase is the minimum phase k
  • the intermediate V phase is the intermediate phase.
  • FIG. 3 shows, for example, the energization pattern described above.
  • each half bridge circuit 11U to 11W whenever the upper arm switching elements 12A to 12C are ON, the lower arm switching elements 12D to 12F are OFF and the lower arm switching elements 12D to 12F are ON. When the switch is on, the upper arm switching elements 12A to 12C are always off. In order to prevent a short circuit in each of the half bridge circuits 11U to 11W, a dead time is actually provided in the ON-OFF timing of the upper and lower arm switching elements 12A to 12F.
  • the current i i of the maximum phase i (in the case of FIG. 3, the U phase current i U ) can be detected as described above, and from t jon
  • the current i k of the minimum phase k (the W-phase current i W in FIG. 3) can be detected at the current detection timing t ad2 during the period until the minimum phase k rises.
  • the ripple current i rpl is the sum of the sinusoidal phase current that flows when an ideal sinusoidal voltage is applied (hereinafter referred to as the ideal current i ideal ) and the voltage actually applied by the PWM output (pulse-like
  • the current i real is the difference (error: i real ⁇ i ideal ) from the current i real flowing due to the applied voltage), and the phase currents (detection currents) i U , i V , and i W described above are this current i real . That is, the phase currents (detected currents) i U , i V , and i W contain the ripple current i rpl as an error from the ideal current i ideal (FIG. 4).
  • the difference between the voltage v real actually applied by the PWM output and the ideal voltage v ideal can be expressed by the following formula (II) using the ripple current i rpl .
  • L in the formula (II) is the inductance of the single-phase circuit shown in FIG.
  • di rpl / dt is the amount of change (hereinafter referred to as the slope ) of the ripple current i rpl per unit time.
  • the maximum phase ripple ⁇ i rpli is the difference (error: i i ⁇ i i ') between the maximum phase current i i ' at the beginning of the carrier cycle and the detected maximum phase current i i
  • the minimum The phase ripple ⁇ i rplk is the difference (error: i k ⁇ i k ') between the minimum phase current i k ' at the beginning of the carrier period and the minimum phase detected current i k .
  • one carrier period shown in FIG. 3 is classified into seven phase regions F1 to F7 shown in FIG. 7 according to combinations of ON-OFF states of respective phases. Further, each line voltage in one carrier cycle is divided into three types of line voltage patterns Pt1 to Pt3 with respect to the energization pattern (PWM signal). It corresponds to patterns Pt1 to Pt3.
  • ⁇ Line voltage pattern Pt1 Phase regions F1, F4, F7
  • ⁇ Line voltage pattern Pt2 Phase regions F2, F6
  • Pt3 phase regions F3, F5
  • L i , L j , and L k are the inductances of the maximum phase, intermediate phase, and minimum phase, respectively. These inductances L i , L j , L k are the inductances of the paths from the connection points P1, P2, P3 to the neutral point P C (the inductances of the circuit including the motor 8). Also, VHV is the aforementioned HV voltage (DC voltage). Furthermore, V i , V j , and V k are the effective voltages (phase voltages) of the maximum phase, intermediate phase, and minimum phase, respectively. This effective voltage is obtained from the command value, but the command value itself may be employed (same below).
  • the slope di rpli /dt of the maximum phase ripple current ⁇ i rpli in the line voltage pattern Pt2 and the slope di rplk /dt of the minimum phase ripple current ⁇ i rplk are obtained from the following formulas (V) and (VI ).
  • the first term on the right side of the formula (VIII) is the gradient of the maximum phase ripple current in the line voltage pattern Pt1 (formula (III)). ) is the amount of change in the ripple current ⁇ irpli from the beginning (0) to the rise of the maximum phase i (U phase) (t ion ).
  • the second term on the right side is the slope of the ripple current (formula (V)) in the line voltage pattern Pt2, which is obtained by multiplying this slope by the time from t ion to the current detection timing t ad1 (t ad1 ⁇ t ion ). is the change amount of the ripple current ⁇ i rpli from t ion to the current detection timing t ad1 . Then, the sum of the first and second terms is calculated as the final value of the maximum phase ripple current ⁇ irpli .
  • the first term on the right side of the formula (IX) is the gradient of the ripple current of the minimum phase in the line voltage pattern Pt1 (formula (IV)), and this gradient corresponds to the top (0) of the carrier cycle to the maximum phase i (U phase ) is the amount of change in the ripple current ⁇ i rplk from the top (0) to the rise of the maximum phase i (U phase) (t ion ).
  • the second term on the right side is the slope of the ripple current of the minimum phase in the line voltage pattern Pt2 (formula (VI)), and this slope is the time from t ion to the rising time (t jon ) of the intermediate phase j (V phase).
  • Multiplied by time (t jon -t ion ) is the change in ripple current ⁇ i rplk from t ion to t jon .
  • the third term on the right side is the gradient of the minimum phase ripple current (formula (VII)) in the line voltage pattern Pt3 .
  • the result of multiplication is the amount of change in ripple current ⁇ i rplk from t jon to current detection timing t ad2 .
  • the sum of the first, second and third terms is calculated as the final value of the ripple current ⁇ i rplk of the minimum phase.
  • the U-phase current i U , the V-phase current i V , and the W-phase current i W are corrected to the ideal currents or values close thereto, and the corrected phase currents i U ′, i V ', i W ' are input to the control unit 21 .
  • control unit 21 estimates the electrical angular velocity of the motor 8 from the phase currents i U ', i V ', i W ' corrected by the phase current correcting unit 22 as described above, and the estimated electrical angular velocity and the electrical angular velocity command
  • An energization pattern (PWM signal) for switching the switching elements 12A to 12F of the inverter circuit 4 is generated based on the d-axis current and the q-axis current obtained from the values, and is output to the inverter circuit 4.
  • phase currents (detected currents) i U , i V , and i W including the ripple current detected by the phase current detection unit 24 are corrected by the phase current correction unit 22 to the ideal currents or Corrected to a value close to that, based on the corrected phase currents i U ', i V ', i W ', the control unit 21 switches the switching elements 12A to 12F of the inverter circuit 4
  • An energization pattern (PWM signal) will be able to generate
  • the predicted ripple current calculator 26 obtains the ripple current contained in the phase current by prediction. time t ion , time t jon until the intermediate phase j (V phase) rises), a predetermined reference point (the beginning of the carrier cycle in the embodiment) of the ideal current, and the detection timing t ad1 of the phase current detector 24 , t ad2 and the amount of change (inclination) of the ripple current per unit time, the ripple current can be accurately predicted and the detected current can be accurately corrected.
  • the predicted ripple current calculator 26 calculates the line voltage patterns Pt1 to Pt1 to The amount of change (slope) of the ripple current per unit time is calculated according to Pt3.
  • the amount of change in the ripple current is the HV voltage V HV (DC voltage), the phase voltages (V i , V j , V k ), and the inductances (L i , L j , L k ) of the circuit including the motor 8. Therefore, in the embodiment, the predicted ripple current calculator 26 calculates the amount of change (slope) of the ripple current per unit time from these values. These make it possible to predict and calculate the ripple current with high accuracy.
  • the current detection element 16 is connected to the DC bus 15 as in the embodiment, and the phase current detection section 24 detects the current of the motor 8 based on the signal generated by the current detection element 16 and the conduction pattern (PWM signal). This is extremely effective in the case of so-called one-shunt current detection for detecting phase currents iU , iV , and iW .
  • the top of the carrier cycle is set as the reference point of the ideal current, and the ripple current is predicted based on the time from the top to the detection timing of the phase current detector 24.
  • the present invention is not limited to this.
  • the center of the carrier cycle can be regarded as the ideal current
  • the center may be used as the reference point.
  • the ripple current is predicted and calculated using a formula, but the ripple current may be predicted using a data table.
  • a position sensor such as a Hall IC or a rotary encoder is arranged on the rotor of the motor 8 to detect the rotor position.
  • HV voltage V HV DC voltage
  • phase voltages V U , V V , V W or Vi , V j , V k
  • rotor position of motor 8 are supplied to predictive ripple current calculator 26 .
  • V HV DC voltage
  • phase voltages V U , V V , V W or Vi , V j , V k
  • the saliency of the embedded magnet rotor is taken into consideration for the inductance (L i , L j , L k ) of each phase. good too.
  • the present invention is effective when, for example, the current detection timing is shifted.
  • the present invention is applied to the motor control device 1 that drives and controls the motor 8 of the electric compressor, but the present invention is not limited to this and is effective for drive control of motors of various devices.
  • motor controller 4 inverter circuit 7 HV battery (DC power supply) 8 motor 12A to 12F switching element 15 DC bus 16 current detection element 21 control section 22 phase current correction section 24 phase current detection section 26 predicted ripple current calculation section

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】理想電流からの誤差分であるリップル電流が含まれる検出電流を精度良く補正して、制御性を向上させることができるモータ制御装置を提供する。 【解決手段】インバータ回路4の直流側に接続され、電流値に対応する信号を発生する電流検出素子16と、電流検出素子が発生した信号に基づいてモータ8の相電流を検出する相電流検出部24と、相電流検出部が検出した相電流に含まれるリップル電流を予測する予測リップル電流算出部26と、予測リップル電流算出部により予測されたリップル電流に基づいて相電流検出部が検出した相電流を補正する相電流補正部22を備え、制御部21は、相電流補正部にて補正された相電流に基づいて通電パターンを生成する。

Description

モータ制御装置
 本発明は、インバータ回路の直流側に接続された電流検出素子を用いて相電流を検出し、モータを駆動するモータ制御装置に関するものである。
 従来よりモータを駆動するためのモータ制御装置は、例えば三相のインバータ回路のUVW各相のスイッチング素子をPWM(Pulse Width Modulation:パルス幅変調)制御するものであるが、制御に用いる相電流を検出するために、インバータ回路の直流側の電流を検出する電流検出素子(シャント抵抗やホール素子)を設けている。
 特に、1シャント電流検出方式と云われる一つのシャント抵抗を用いる場合には、PWM信号による通電パターンに応じて電流検出タイミングを設定することで、UVWのうちの最大相と最小相の相電流を検出し、最終的に各相の相電流を求めていた。また、電流検出時間を確保できない場合には、PWM信号の位相をシフト(パルスシフト)することで、電流検出を可能としていた(例えば、特許文献1、特許文献2参照)。
特許第5951208号公報 特開2010-88260号公報
 しかしながら、電流検出タイミングとパルスシフト等により、検出した電流は、理想的な正弦波の電圧が印加された際に流れる正弦波の相電流(理想電流)に対して誤差を持つ。この誤差はリップル電流と云われるものであるが、このリップル電流の大きさは検出するタイミングによって異なるため、電流を検出する毎に異なる誤差(リップル電流)が検出電流に含まれることになる。
 この問題は、例えばセンサレス制御でロータ位置を推定する場合等に影響を及ぼし、制御性が悪化してしまうため、前述した特許文献1では同じ通電パターン(PWMパターン)を二回出力し、同相の電流を異なるタイミングで2回検出して、それらの差から変化度合いを算出して誤差を補正していたが、相毎に異なる波形のキャリアを用いたり、電流制御よりも電流検出の周期を早くしなければならないなど、制御が複雑化する欠点がある。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、理想電流からの誤差分であるリップル電流が含まれる検出電流を精度良く補正して、制御性を向上させることができるモータ制御装置を提供するものである。
 本発明のモータ制御装置は、複数のスイッチング素子から構成されたインバータ回路と、スイッチング素子をスイッチングする通電パターンを生成する制御部を備え、スイッチング素子を通電パターンにてスイッチングすることにより、直流電圧を交流電圧に変換してモータを駆動するものであって、インバータ回路の直流側に接続され、電流値に対応する信号を発生する電流検出素子と、この電流検出素子が発生した信号に基づいてモータの相電流を検出する相電流検出部と、この相電流検出部が検出した相電流に含まれるリップル電流を予測する予測リップル電流算出部と、この予測リップル電流算出部により予測されたリップル電流に基づいて相電流検出部が検出した相電流を補正する相電流補正部を備え、制御部は、相電流補正部にて補正された相電流に基づいて通電パターンを生成することを特徴とする。
 請求項2の発明のモータ制御装置は、上記発明において予測リップル電流算出部は、通電パターンと、理想電流となる所定の基準点と、相電流検出部の検出タイミングと、単位時間当たりのリップル電流の変化量に基づいてリップル電流を予測することを特徴とする。
 請求項3の発明のモータ制御装置は、請求項1の発明において予測リップル電流算出部は、通電パターンと、キャリア周期の先頭と、相電流検出部の検出タイミングと、単位時間当たりのリップル電流の変化量に基づいてリップル電流を予測することを特徴とする。
 請求項4の発明のモータ制御装置は、請求項2又は請求項3の発明において予測リップル電流算出部は、キャリア周期内の線間電圧のパターンに応じて単位時間当たりのリップル電流の変化量を算出することを特徴とする。
 請求項5の発明のモータ制御装置は、請求項2乃至請求項4の発明において予測リップル電流算出部は、直流電圧と、相電圧と、モータを含む回路のインダクタンスから単位時間当たりのリップル電流の変化量を算出することを特徴とする。
 請求項6の発明のモータ制御装置は、請求項1の発明において予測リップル電流算出部は、直流電圧と、相電圧と、モータのロータ位置に対応して予め設定されたリップル電流のデータテーブルを有し、直流電圧と、相電圧と、ロータ位置に基づいてデータテーブルからリップル電流を抽出することを特徴とする。
 請求項7の発明のモータ制御装置は、上記各発明において電流検出素子は、直流母線に接続されており、相電流検出部は、電流検出素子が発生した信号と通電パターンに基づいてモータの相電流を検出することを特徴とする。
 本発明によれば、複数のスイッチング素子から構成されたインバータ回路と、スイッチング素子をスイッチングする通電パターンを生成する制御部を備え、スイッチング素子を通電パターンにてスイッチングすることにより、直流電圧を交流電圧に変換してモータを駆動するモータ制御装置において、インバータ回路の直流側に接続された電流検出素子は、電流値に対応する信号を発生し、相電流検出部は、電流検出素子が発生した信号に基づいてモータの相電流を検出する。そして、予測リップル電流算出部は、相電流検出部が検出した相電流に含まれるリップル電流を予測すると共に、相電流補正部は、予測リップル電流算出部により予測されたリップル電流に基づいて相電流検出部が検出した相電流を補正し、更に制御部は、相電流補正部にて補正された相電流に基づいて通電パターンを生成するので、相電流検出部が検出したリップル電流を含む相電流(検出電流)を、相電流補正部により理想電流、若しくは、それに近い値に補正し、その補正された相電流に基づいて制御部が、インバータ回路のスイッチング素子をスイッチングする通電パターンを生成することができるようになる。
 これにより、リップル電流の影響を解消、若しくは、抑制して、モータの制御性を改善することが可能となる。この場合、予測リップル電流算出部は相電流に含まれるリップル電流を予測により求めるものであるが、例えば、請求項2の発明の如く通電パターンと、理想電流となる所定の基準点と、相電流検出部の検出タイミングと、単位時間当たりのリップル電流の変化量に基づいてリップル電流を予測することにより、的確にリップル電流を予測して、検出電流を精度良く補正することが可能となる。
 尚、キャリア周期の先頭ではリップル電流は零になるので、請求項3の発明の如く予測リップル電流算出部が、通電パターンと、キャリア周期の先頭と、相電流検出部の検出タイミングと、単位時間当たりのリップル電流の変化量に基づいてリップル電流を予測するようにしてもよい。
 また、単位時間当たりのリップル電流の変化量は、キャリア周期内の各線間の電圧のパターン毎に変わるので、予測リップル電流算出部は、請求項4の発明の如くキャリア周期内の線間電圧のパターンに応じて単位時間当たりのリップル電流の変化量を算出するとよい。
 以上において、リップル電流の変化量は、直流電圧と、相電圧と、モータを含む回路のインダクタンスにより変化するので、予測リップル電流算出部は、請求項5の発明の如くそれらの値から単位時間当たりのリップル電流の変化量を算出するとよい。これらにより、精度良くリップル電流を予測演算することが可能となる。
 一方、上記のようにリップル電流を算出すること以外に、データテーブルを用いてリップル電流を予測してもよい。その場合は、請求項6の発明の如く予測リップル電流算出部に、直流電圧と、相電圧と、モータのロータ位置に対応して設定されたリップル電流のデータテーブルを予め保有させておき、直流電圧と、相電圧と、ロータ位置に基づいてデータテーブルからリップル電流を抽出(予測)することになる。
 そして、上記各発明は請求項7の発明の如く電流検出素子を直流母線に接続して、相電流検出部が当該電流検出素子が発生した信号と通電パターンに基づき、モータの相電流を検出する所謂1シャント電流検出の場合に極めて有効となる。
本発明の一実施例のモータ制御装置の電気回路図である。 図1のモータ制御装置の機能ブロック図である。 図2の制御部が出力する1キャリア周期の通電パターン(PWM信号)と最大相、最小相のリップル電流を示す図である。 理想的な正弦波の電圧がモータに印加された際に流れる理想電流と通電パターン(PWM信号)によって実際に印加される電圧によって流れる電流の関係を説明する図である。 図4のリップル電流の傾き(単位時間当たりのリップル電流の変化量)を求める方法を説明する図である。 図5のリップル電流の傾きを求める方法を説明するための回路図である。 図3の1キャリア周期内における7つの位相領域を示す図である。
 以下、本発明の実施の形態について、図面に基づいて詳細に説明する。図1は、本発明を適用した一実施例のモータ制御装置1の電気回路図、図2はモータ制御装置1の機能ブロック図である。
 (1)モータ制御装置1
 実施例のモータ制御装置1は、インバータ回路4と、制御基板6を備え、直流電源である車両のHVバッテリ7から供給された直流電圧(以下、HV電圧VHVと称する)を所定の周波数の三相交流電圧に変換してモータ8に印加し、当該モータ8を駆動する構成とされている。
 また、実施例のモータ制御装置1が駆動制御するモータ8は、図示しない車載用の電動圧縮機の圧縮機構を駆動するものであり、永久磁石埋込型同期モータ(IPMSM:Interior Permanent Magnet Synchronous Motor)に代表される永久磁石同期モータ(PMSM:Permanent Magnet Synchronous Motor)により構成されている。このモータ8(実施例ではIPMSM)はUVW軸の巻線2U、2V、2W(図2)が集中巻きでティースに巻装されたステータと、このステータの内側に所定のエアギャップを有して配置され、磁極を構成する永久磁石が埋め込まれたロータから構成されている。
(2)インバータ回路4
 インバータ回路4は、HVバッテリ7のHV電圧VHV(例えば、350V)を三相交流電圧に変換してモータ8に印加する回路である。このインバータ回路4は、U相ハーフブリッジ回路11U、V相ハーフブリッジ回路11V、W相ハーフブリッジ回路11Wを有しており、各相のハーフブリッジ回路11U~11Wは、それぞれ上アームスイッチング素子12A、12B、12Cと、下アームスイッチング素子12D、12E、12Fを個別に有している。更に、各スイッチング素子12A~12Fには、それぞれフライホイールダイオード13が逆並列に接続されている。
 そして、インバータ回路4の上アームスイッチング素子12A~12Cの上端側は、HVバッテリ7の正極側の直流母線10に接続されている。一方、インバータ回路4の下アームスイッチング素子12D~12Fの下端側は、HVバッテリ7の負極側の直流母線15に接続されている。
 これら複数のスイッチング素子12A~12Fは、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)等から構成されている。また、U相ハーフブリッジ回路11Uの上アームスイッチング素子12Aと下アームスイッチング素子12Dが直列に接続され、V相ハーフブリッジ回路11Vの上アームスイッチング素子12Bと下アームスイッチング素子12Eが直列に接続され、W相ハーフブリッジ回路11Wの上アームスイッチング素子12Cと下アームスイッチング素子12Fが直列に接続されている。
 そして、U相ハーフブリッジ回路11Uの上アームスイッチング素子12Aと下アームスイッチング素子12Dの接続点P1(U相電圧Vu)は、モータ8のU相の巻線2Uに接続され、V相ハーフブリッジ回路11Vの上アームスイッチング素子12Bと下アームスイッチング素子12Eの接続点P2(V相電圧Vv)は、モータ8のV相の巻線2Vに接続され、W相ハーフブリッジ回路11Wの上アームスイッチング素子12Cと下アームスイッチング素子12Fの接続点P3(W相電圧Vw)は、モータ8のW相の巻線2Wに接続されている。そして、インバータ回路4は、これらのスイッチング素子12A~12FのON-OFF動作によって、HVバッテリ7から入力されたHV電圧VHV(直流電圧)をスイッチングし、三相交流電圧に変換してモータ8に印加する。
 (3)電流検出素子16
 また、HVバッテリ7とインバータ回路4の間の負極側の直流母線15(インバータ回路4の直流側)には、インバータ回路4に流れる直流電流(相電流:シャント電流)の値に対応する信号を発生する電流検出素子16が接続されている。この電流検出素子16は実施例では直流母線15に接続されているが、正極側の直流母線10に接続してもよい。また、電流検出素子16はシャント抵抗やホール素子にて構成可能であるが、実施例ではシャント抵抗にて構成されているものとする。
 (4)制御基板6
 一方、実施例のモータ制御装置1の制御基板6には、プロセッサを有するマイクロコンピュータ及び制御回路が実装されており、更にそれら素子の電源となるLVバッテリ14が制御基板6に接続されている(図1)。図2はこのモータ制御装置1の制御基板6の機能ブロック(主としてマイクロコンピュータの機能)を示している。図2において、モータ制御装置1は、制御基板6に実装されたマイクロコンピュータの機能として制御部21と、相電流補正部22と、直流電圧検出部23と、相電流検出部24と、予測リップル電流算出部26を備えている。
 (4-1)相電流検出部24
 相電流検出部24は、電流検出素子16が発生した信号(直流電流の値に対応する信号)と、各スイッチング素子12A~12Fをスイッチングする通電パターンに基づいてモータ8の相電流(U相電流iU、V相電流iV、W相電流iW)を検出し、出力する。
 例えば、1キャリア周期内でU相ハーフブリッジ回路11Uの上アームスイッチング素子12AがON、V相ハーフブリッジ回路11Vの下アームスイッチング素子12EとW相ハーフブリッジ回路11Wの下アームスイッチング素子12FがONしている通電パターンでは、U相電流iUはスイッチング素子12Aからモータ8のU相の巻線2Uに流れ、V相電流iVはスイッチング素子12Eに並列接続されたフライホイールダイオード13からモータ8のV相の巻線2Vに流れ、W相電流iWはモータ8のW相の巻線2Wからスイッチング素子12Fに流れ出る。この場合、電流検出素子16にはU相電流iUが流れて検出可能となる。
 他方、1キャリア周期内でU相ハーフブリッジ回路11Uの上アームスイッチング素子12AとV相ハーフブリッジ回路11Vの上アームスイッチング素子12BがON、W相ハーフブリッジ回路11Wの下アームスイッチング素子12FがONしている通電パターンでは、U相電流iUとV相電流iVはスイッチング素子12A、12Bからそれぞれモータ8のU相とV相の巻線2U、2Vに流れ、W相電流iWはモータ8のW相の巻線2Wからスイッチング素子12Fに流れ出る。この場合、電流検出素子16にはW相電流iWが流れて検出可能となる。
 このように求めたU相電流iUとW相電流iWから、残りのV相電流iVは巻線2U、2V、2Wの中性点PCにおいて、キルヒホッフの電流の法則を適用することで求められる。尚、相電流検出部24が検出する各相電流(検出電流)iU、iV、iWには、理想電流からの誤差分となるリップル電流(後述するリップル電流Δirpli、Δirplk)が含まれているが、これについては後に詳述する。
 (4-2)直流電圧検出部23
 直流電圧検出部23は、HVバッテリ7のHV電圧VHVを検出し、出力する。そして、この直流電圧検出部23で検出され、出力されたHV電圧VHVと、制御部21が後述する如く算出して出力する通電パターン(PWM信号)は、予測リップル電流算出部26に入力される。
 (4-3)予測リップル電流算出部26
 予測リップル電流算出部26は、HV電圧VHVや通電パターン、及び、回路のインダクタンス等に基づいて最大相のリップル電流Δirpliと、最小相のリップル電流Δirplkを算出することで、これらリップル電流Δirpli、Δirplkを予測し、出力する。これらリップル電流Δirpli、Δirplkは、相電流検出部24が出力する相電流に含まれるものであるが、予測リップル電流算出部26における最大相のリップル電流Δirpliと、最小相のリップル電流Δirplkの予測制御については後に詳述する。
 この予測リップル電流算出部26で算出(予測)され、出力された最大相のリップル電流Δirpli、及び、最小相のリップル電流Δirplkと、相電流検出部24で検出され、出力されたU相電流iU、V相電流iV、W相電流iW(相電流)は、相電流補正部22に入力される。
 (4-4)相電流補正部22
 相電流補正部22は、予測リップル電流算出部26により算出(予測)された最大相のリップル電流Δirpli、及び、最小相のリップル電流Δirplkに基づき、相電流検出部24が検出したU相電流iU、V相電流iV、W相電流iW(相電流)を補正して出力する。例えば、U相が最大相である場合、U相電流iUからリップル電流Δirpliを差し引き、補正後のU相電流iU’として出力する。同様にW相が最小相である場合、W相電流iWからリップル電流Δirplkを差し引き、補正後のU相電流iW’として出力する。尚、中間相であるV相については、キルヒホッフの電流の法則により、補正後のV相電流iV’=-iU’-iW’で算出し、出力する。そして、算出された補正後の相電流iU’、iV’、iW’は制御部21に入力される。
 (4-5)制御部21
 実施例の制御部21は、相電流補正部22で補正された相電流iU’、iV’、iW’からモータ8の電気角速度を推定し、推定された電気角速度と電気角速度指令値から得られるd軸電流、q軸電流に基づいてインバータ回路4の各スイッチング素子12A~12Fをスイッチングするための通電パターン(PWM信号)を生成し、インバータ回路4に出力する。これにより、位置センサレスベクトル制御にてモータ8を駆動する。
 (5)リップル電流Δirpli、Δirplkの予測制御
 次に、図3~図7を参照しながら実施例のモータ制御装置1の予測リップル電流算出部26によるリップル電流Δirpli、Δirplkの予測制御について説明する。図3は、或る1キャリア周期における通電パターン(PWM信号)を示している。図中において、最上段が最大相i、その下が中間相j、その下が最小相kの通電パターンであり、立ち上がっている期間に上アームスイッチング素子12A~12CがONし、下アームスイッチング素子12D~12FはOFFしており、立ち下がっている期間に下アームスイッチング素子12D~12FがONし、上アームスイッチング素子12A~12CはOFFしている。
 即ち、上アームスイッチング素子12A~12CがONしている期間が最も長い相が最大相i、最も短い相が最小相k、中間の相が中間相jとなる。例えば、U相ハーフブリッジ回路11Uの上アームスイッチング素子12AがONしている期間が最も長い場合は、U相が最大相iとなり、W相ハーフブリッジ回路11Wの上アームスイッチング素子12CがONしている期間が最も短い場合は、W相が最小相kとなり、中間のV相が中間相になる。図3は、例えば上記の通電パターンであるものとする。
 尚、各ハーフブリッジ回路11U~11Wにおいては、上アームスイッチング素子12A~12CがONしているときには必ず、下アームスイッチング素子12D~12FはOFFしており、下アームスイッチング素子12D~12FがONしているときには、必ず上アームスイッチング素子12A~12CはOFFしている。また、各ハーフブリッジ回路11U~11Wでは短絡を防止するため、実際には上下アームスイッチング素子12A~12FのON-OFFタイミングにデッドタイムが設けられる。
 また、図3においてキャリア周期の先頭(0)から最大相i(U相)が立ち上がるまでの時間をtion、中間相j(V相)が立ち上がるまでの時間をtjonとすると、最大相iのみが立ち上がっているtionとtjonの間の期間における電流検出タイミングtad1で前述したように最大相iの電流ii(図3の場合U相電流iU)を検出でき、tjonから最小相kが立ち上がるまでの期間における電流検出タイミングtad2で前述したように最小相kの電流ik(図3の場合W相電流iW)を検出することができる。
 (5-1)リップル電流irpl
 そして、図3の最下段に最小相のリップル電流Δirplkを示し、その上には最大相のリップル電流Δirpliを示している。このリップル電流(irplと総称する)について、図4を参照しながら説明する。リップル電流irplとは、理想的な正弦波の電圧が印加された際に流れる正弦波相電流(以下、理想電流iidealと称する)と、PWM出力によって実際に印加される電圧(パルス状の印加電圧)によって流れる電流irealとの差(誤差:ireal-iideal)であり、前述した各相電流(検出電流)iU、iV、iWが、この電流irealである。即ち、相電流(検出電流)iU、iV、iWにはリップル電流irplが理想電流iidealからの誤差分として含まれることになる(図4)。
 (5-2)リップル電流(irpl)予測の原理
 次に、このリップル電流irplを予測する原理について、図5、図6を参照しながら説明する。先ず、図6のような単相の回路の場合を考える。1キャリア周期の間の実効電圧(正弦波交流)の変化が十分小さい場合、その間の理想電圧videal(図5中の破線)は指令電圧vcom(図5中の水平な実線)とおけるので、PWM出力によって実際に印加される電圧vreal(図5中のパルス状の印加電圧の高さ)と、理想電圧videalとの差Δvは、下記数式(I)となる。
 Δv=vreal-vcom  ・・・(I)
 従って、PWM出力によって実際に印加される電圧vrealと理想電圧videalとの差はリップル電流irplにより下記数式(II)で表せる。尚、数式(II)中のLは図6に示す単相の回路のインダクタンスである。また、dirpl/dtはリップル電流irplの単位時間当たりの変化量(以下、傾きと称する)であり、通電パターンが一定でvrealが一定とみなせれば、リップル電流irplの傾きも一定とみなすことができる。
Figure JPOXMLDOC01-appb-M000001
 (5-3)リップル電流Δirpli、Δirplkの予測演算
 これを実施例の図3に示すような三相のモータ8の場合について考えると、キャリア周期の先頭ではリップル電流は零になるので、この先頭を理想電流となる基準点として考えることができる。そして、キャリア周期の先頭における最大相の電流(推定値)をii’、最小相の電流(推定値)をik’、最大相の検出電流をii、最小相の検出電流をikとすると、最大相のリップルΔirpliは、キャリア周期の先頭における最大相の電流ii’と、最大相の検出電流をiiとの差(誤差:ii-ii’)であり、最小相のリップルΔirplkは、キャリア周期の先頭における最小相の電流ik’と、最小相の検出電流をikとの差(誤差:ik-ik’)である。
 また、図3に示した1キャリア周期は、各相のON-OFF状態の組み合わせから図7に示す七つの位相領域F1~F7に区別される。更に、1キャリア周期の各線間の電圧は、通電パターン(PWM信号)に対し、三種類の線間電圧パターンPt1~Pt3に分けられ、各位相領域F1~F7は、下記のように各線間電圧パターンPt1~Pt3に対応する。
 ・線間電圧パターンPt1:位相領域F1、F4、F7
 ・線間電圧パターンPt2:位相領域F2、F6
 ・線間電圧パターンPt3:位相領域F3、F5
 単位時間当たりのリップル電流Δirpli、Δirplkの変化量は、1キャリア周期内の各線間電圧のパターン毎に変わるので、上記線間電圧パターンPt1~Pt3毎に単位時間当たりのリップル電流Δirpli、Δirplkの変化量(傾き)を算出する。
 今、相互インダクタンスの影響を無視、モータ8の中性点PCに流れ込む電流の合計は0(寄生容量の影響を無視、中性点に電荷はたまらない、漏れ電流は0)とすると、線間電圧パターンPt1での最大相のリップル電流Δirpliの傾きdirpli/dtと、最小相のリップル電流Δirplkの傾きdirplk/dtは、それぞれ下記数式(III)、(IV)のように求められる。
Figure JPOXMLDOC01-appb-M000002
 尚、Li、Lj、Lkは、それぞれ最大相、中間相、最小相のインダクタンスである。これらインダクタンスLi、Lj、Lkは各接続点P1、P2、P3から中性点PCまでの経路のインダクタンスである(モータ8を含む回路のインダクタンス)。また、VHVは前述したHV電圧(直流電圧)である。更に、Vi、Vj、Vkはそれぞれ最大相、中間相、最小相の実効電圧(相電圧)である。この実効電圧は指令値から求められるが、指令値そのものを採用してもよい(以下、同じ)。
 また、同様に線間電圧パターンPt2での最大相のリップル電流Δirpliの傾きdirpli/dtと、最小相のリップル電流Δirplkの傾きdirplk/dtは、それぞれ下記数式(V)、(VI)のように求められる。
Figure JPOXMLDOC01-appb-M000003
 更に、同様に線間電圧パターンPt3での最小相のリップル電流Δirplkの傾きdirplk/dtは、下記数式(VII)のように求められる。
Figure JPOXMLDOC01-appb-M000004
 図3における最大相のリップル電流Δirpliと、最小相のリップル電流Δirplkは、図3のキャリア周期の先頭(0)から電流検出タイミングtad1、tad2までのリップル電流の変化量(傾き)であるから、通電パターン(PWM信号:tion、tjon)と、キャリアの先頭(基準点)と、各電流検出タイミングtad1、tad2と、数式(III)~(VII)で求めた最大相のリップル電流Δirpliの傾きdirpli/dtと、最小相のリップル電流Δirplkの傾きdirplk/dtから、下記数式(VIII)、(IX)のように算出(予測演算)することができる。
Figure JPOXMLDOC01-appb-M000005
 尚、数式(VIII)、(IX)で使用する傾きを前述した線間電圧パターンPt1~Pt3との関係で示すと下記のようになる。
Figure JPOXMLDOC01-appb-M000006
 数式(VIII)の右辺の第1項は線間電圧パターンPt1における最大相のリップル電流の傾き(数式(III))であり、この傾きにキャリア周期の先頭(0)から最大相i(U相)が立ち上がるまでの時間tionを乗算したものが、先頭(0)から最大相i(U相)が立ち上がるまで(tion)のリップル電流Δirpliの変化量である。右辺の第2項は線間電圧パターンPt2におけるリップル電流の傾き(数式(V))であり、この傾きにtionから電流検出タイミングtad1までの時間(tad1-tion)を乗算したものが、tionから電流検出タイミングtad1までのリップル電流Δirpliの変化量である。そして、それら第1項と第2項を加算したものが最大相のリップル電流Δirpliの最終的な値として算出される。
 数式(IX)の右辺の第1項は線間電圧パターンPt1における最小相のリップル電流の傾き(数式(IV))であり、この傾きにキャリア周期の先頭(0)から最大相i(U相)が立ち上がるまでの時間tionを乗算したものが、先頭(0)から最大相i(U相)が立ち上がるまで(tion)のリップル電流Δirplkの変化量である。右辺の第2項は線間電圧パターンPt2における最小相のリップル電流の傾き(数式(VI))であり、この傾きにtionから中間相j(V相)が立ち上がる時間(tjon)までの時間(tjon-tion)を乗算したものが、tionからtjonまでのリップル電流Δirplkの変化量である。右辺の第3項は線間電圧パターンPt3における最小相のリップル電流の傾き(数式(VII))であり、この傾きにtjonから電流検出タイミングtad2までの時間(tad2-tjon)を乗算したものが、tjonから電流検出タイミングtad2までのリップル電流Δirplkの変化量である。そして、それら第1項、第2項、第3項を加算したものが最小相のリップル電流Δirplkの最終的な値として算出される。
 (6)リップル電流Δirpli、Δirplkを考慮したモータ8の制御
 このようにして予測リップル電流算出部26で算出され、予測された最大相のリップル電流Δirpliと、最小相のリップル電流Δirplkは、前述した如く相電流補正部22に入力される。相電流補正部22では、相電流検出部24が検出したU相電流iU、V相電流iV、W相電流iW(相電流)から、前述した如く最大相のリップル電流Δirpli、最小相のリップル電流Δirplkを差し引くことで、U相電流iU、V相電流iV、W相電流iWを補正する。これによって、U相電流iU、V相電流iV、W相電流iWは、理想電流、若しくは、それに近い値に補正されることになり、これら補正後の相電流iU’、iV’、iW’は制御部21に入力される。
 そして、制御部21は前述した如く相電流補正部22で補正された相電流iU’、iV’、iW’からモータ8の電気角速度を推定し、推定された電気角速度と電気角速度指令値から得られるd軸電流、q軸電流に基づいてインバータ回路4の各スイッチング素子12A~12Fをスイッチングするための通電パターン(PWM信号)を生成し、インバータ回路4に出力することになる。
 以上詳述した如く本発明によれば、相電流検出部24が検出したリップル電流を含む相電流(検出電流)iU、iV、iWを、相電流補正部22により理想電流、若しくは、それに近い値に補正し、その補正された相電流iU’、iV’、iW’に基づいて制御部21が、インバータ回路4のスイッチング素子12A~12Fをスイッチングする通電パターン(PWM信号)を生成することができるようになる。
 これにより、リップル電流の影響を解消、若しくは、抑制して、モータ8の制御性を改善することができるようになる。この場合、予測リップル電流算出部26は相電流に含まれるリップル電流を予測により求めるので、上記実施例の如く通電パターン(キャリア周期の先頭(0)から最大相i(U相)が立ち上がるまでの時間tion、中間相j(V相)が立ち上がるまでの時間tjon)と、理想電流となる所定の基準点(実施例ではキャリア周期の先頭)と、相電流検出部24の検出タイミングtad1、tad2と、単位時間当たりのリップル電流の変化量(傾き)に基づいてリップル電流を予測することにより、的確にリップル電流を予測して、検出電流を精度良く補正することが可能となる。
 また、単位時間当たりのリップル電流の変化量は、1キャリア周期内の各線間電圧のパターン毎に変わるので、実施例では予測リップル電流算出部26は、1キャリア周期内の線間電圧パターンPt1~Pt3に応じて単位時間当たりのリップル電流の変化量(傾き)を算出している。
 また、リップル電流の変化量は、HV電圧VHV(直流電圧)と、相電圧(Vi、Vj、Vk)と、モータ8を含む回路のインダクタンス(Li、Lj、Lk)より変化するので、実施例では予測リップル電流算出部26が、それらの値から単位時間当たりのリップル電流の変化量(傾き)を算出している。これらにより、精度良くリップル電流を予測演算することが可能となる。
 そして、本発明は実施例の如く電流検出素子16を直流母線15に接続して、相電流検出部24が当該電流検出素子16が発生した信号と通電パターン(PWM信号)に基づいてモータ8の相電流iU、iV、iWを検出する所謂1シャント電流検出の場合に極めて有効となる。
 尚、上述した実施例ではキャリア周期の先頭を理想電流となる基準点とし、先頭から相電流検出部24の検出タイミングまでの時間に基づいてリップル電流を予測するようにしたが、それに限らず、例えばキャリア周期の中央が理想電流と見なせる制御方式の場合には、中央を基準点としてもよい。
 また、実施例では数式を用いてリップル電流を予測演算するようにしたが、データテーブルを用いてリップル電流を予測するようにしてもよい。その場合は、モータ8のロータに、例えばホールICやロータリエンコーダ等の位置センサを配置してロータ位置を検出する。そして、予測リップル電流算出部26に、HV電圧VHV(直流電圧)と、相電圧(VU、VV、VW、又は、Vi、Vj、Vk)と、モータ8のロータ位置に対応して設定されたリップル電流のデータテーブルを予め書き込んでおき、HV電圧VHV(直流電圧)と、相電圧(VU、VV、VW、又は、Vi、Vj、Vk)と、位置センサが検出したロータ位置に基づいてデータテーブルからリップル電流を抽出することで、当該リップル電流を予測する。
 また、実施例では各相のインダクタンス(Li、Lj、Lk)について、埋め込み磁石型ロータの突極性を考慮したが、それに限らず、インダクタンスを固定値Lとしてリップルの予測演算に用いてもよい。
 また、実施例では所謂1シャント電流検出の場合で説明したが、請求項7の発明以外では電流検出素子をU、V、Wの各相に挿入して検出する所謂3シャント電流検出の場合においても、例えば電流検出タイミングをずらす場合等に本発明は有効である。
 更に、実施例では電動圧縮機のモータ8を駆動制御するモータ制御装置1に本発明を適用したが、それに限らず、各種機器のモータの駆動制御に本発明は有効である。
 1 モータ制御装置
 4 インバータ回路
 7 HVバッテリ(直流電源)
 8 モータ
 12A~12F スイッチング素子
 15 直流母線
 16 電流検出素子
 21 制御部
 22 相電流補正部
 24 相電流検出部
 26 予測リップル電流算出部

Claims (7)

  1.  複数のスイッチング素子から構成されたインバータ回路と、前記スイッチング素子をスイッチングする通電パターンを生成する制御部を備え、前記スイッチング素子を前記通電パターンにてスイッチングすることにより、直流電圧を交流電圧に変換してモータを駆動するモータ制御装置において、
     前記インバータ回路の直流側に接続され、電流値に対応する信号を発生する電流検出素子と、
     該電流検出素子が発生した信号に基づいて前記モータの相電流を検出する相電流検出部と、
     該相電流検出部が検出した相電流に含まれるリップル電流を予測する予測リップル電流算出部と、
     該予測リップル電流算出部により予測されたリップル電流に基づいて前記相電流検出部が検出した相電流を補正する相電流補正部を備え、
     前記制御部は、前記相電流補正部にて補正された相電流に基づいて前記通電パターンを生成することを特徴とするモータ制御装置。
  2.  前記予測リップル電流算出部は、前記通電パターンと、理想電流となる所定の基準点と、前記相電流検出部の検出タイミングと、単位時間当たりのリップル電流の変化量に基づいて前記リップル電流を予測することを特徴とする請求項1に記載のモータ制御装置。
  3.  前記予測リップル電流算出部は、前記通電パターンと、キャリア周期の先頭と、前記相電流検出部の検出タイミングと、単位時間当たりのリップル電流の変化量に基づいて前記リップル電流を予測することを特徴とする請求項1に記載のモータ制御装置。
  4.  前記予測リップル電流算出部は、キャリア周期内の線間電圧のパターンに応じて前記単位時間当たりのリップル電流の変化量を算出することを特徴とする請求項2又は請求項3に記載のモータ制御装置。
  5.  前記予測リップル電流算出部は、前記直流電圧と、相電圧と、前記モータを含む回路のインダクタンスから前記単位時間当たりのリップル電流の変化量を算出することを特徴とする請求項2乃至請求項4のうちの何れかに記載のモータ制御装置。
  6.  前記予測リップル電流算出部は、前記直流電圧と、相電圧と、前記モータのロータ位置に対応して予め設定された前記リップル電流のデータテーブルを有し、前記直流電圧と、前記相電圧と、前記ロータ位置に基づいて前記データテーブルから前記リップル電流を抽出することを特徴とする請求項1に記載のモータ制御装置。
  7.  前記電流検出素子は、直流母線に接続されており、
     前記相電流検出部は、前記電流検出素子が発生した信号と前記通電パターンに基づいて前記モータの相電流を検出することを特徴とする請求項1乃至請求項6のうちの何れかに記載のモータ制御装置。
PCT/JP2022/036594 2021-10-20 2022-09-29 モータ制御装置 WO2023068012A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-171940 2021-10-20
JP2021171940A JP2023061796A (ja) 2021-10-20 2021-10-20 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2023068012A1 true WO2023068012A1 (ja) 2023-04-27

Family

ID=86058140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036594 WO2023068012A1 (ja) 2021-10-20 2022-09-29 モータ制御装置

Country Status (2)

Country Link
JP (1) JP2023061796A (ja)
WO (1) WO2023068012A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066340A (ja) * 2011-09-20 2013-04-11 Toshiba Corp モータ制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066340A (ja) * 2011-09-20 2013-04-11 Toshiba Corp モータ制御装置

Also Published As

Publication number Publication date
JP2023061796A (ja) 2023-05-02

Similar Documents

Publication Publication Date Title
CN107148739B (zh) 电力变换装置和应用该电力变换装置的车辆驱动系统
JP4956123B2 (ja) モータ制御装置
JP5831444B2 (ja) 回転機の制御装置
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
JP5862125B2 (ja) 電力変換装置の制御装置
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
EP2192683A2 (en) Phase current estimation device of motor and magnetic pole position estimation device of motor
JP2008067556A (ja) モータ制御装置
JP5223109B2 (ja) 永久磁石形同期電動機の制御装置
JP2019129573A (ja) 交流電動機の制御装置
JP6805035B2 (ja) 集積回路
US20130187588A1 (en) Motor drive system and control method thereof
US20130026960A1 (en) Brushless-motor drive apparatus
JP2017046406A (ja) 回転位置検出装置及び回転位置検出方法
JP5951208B2 (ja) モータ制御装置
JP2010268629A (ja) インバータ装置
US20110062904A1 (en) Alternating current motor control system
KR101927246B1 (ko) 전동기 위치 검출부 및 브러쉬리스 전동기 시스템
US11677309B2 (en) Inverter device
JP2010068581A (ja) 電動機駆動装置
JP2017093073A (ja) 電力変換装置
JP2019057981A (ja) モータ制御用集積回路
WO2023068012A1 (ja) モータ制御装置
WO2022130480A1 (ja) 電力変換装置
CN111034013B (zh) 三相同步电动机的控制装置和使用其的电动助力转向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22883320

Country of ref document: EP

Kind code of ref document: A1