WO2023067977A1 - Illumination system, control device, non-transitory computer-readable medium, and computer program - Google Patents

Illumination system, control device, non-transitory computer-readable medium, and computer program Download PDF

Info

Publication number
WO2023067977A1
WO2023067977A1 PCT/JP2022/035226 JP2022035226W WO2023067977A1 WO 2023067977 A1 WO2023067977 A1 WO 2023067977A1 JP 2022035226 W JP2022035226 W JP 2022035226W WO 2023067977 A1 WO2023067977 A1 WO 2023067977A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
light
illuminated
control device
area
Prior art date
Application number
PCT/JP2022/035226
Other languages
French (fr)
Japanese (ja)
Inventor
靖礼 加藤
清隆 望月
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023067977A1 publication Critical patent/WO2023067977A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/15Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted under L-shaped cut-off lines, i.e. vertical and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/20Electroluminescent [EL] light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present disclosure relates to a lighting system that is mounted on a mobile object and that illuminates an area to be illuminated located in front of the mobile object.
  • the present disclosure also relates to a control device mounted on the mobile body, a computer program executable by a processing unit mounted on the control device, and a non-transitory computer-readable medium storing the computer program.
  • Patent Literature 1 discloses a device that is mounted on a vehicle as an example of a moving body and that illuminates an area to be illuminated located in front of the vehicle.
  • the device is configured to distribute a so-called low beam to a portion of the illuminated area which is located at a relatively short distance from the vehicle.
  • the light distribution pattern formed by the low beam has an upper end shape that defines the boundary between the illuminated area and the non-illuminated area so as not to give glare to vehicles positioned ahead. This shape is called the cutoff line.
  • the device is configured to distribute a so-called high beam to at least a portion of the illuminated area above the cutoff line.
  • the light is distributed to a portion of the illuminated area that is located relatively far from the vehicle, and forward visibility can be improved.
  • the device forms a relatively low-intensity area in a part of the light distribution pattern formed by the high beam. Thus, glare is not given to the object to be illuminated.
  • a first embodiment provided by the present disclosure to meet the first demand is a lighting system that is mounted on a moving object and illuminates an area to be illuminated located in front of the moving object, a first optical system including a spatial light modulator having at least one light source, and forming a low beam pattern having a cut-off line at the upper end in the area to be illuminated using light emitted from the spatial light modulator; , forming a first low-luminance region having a relatively low luminous intensity within the low beam pattern based on detection information indicating the position of a specific object to be illuminated detected within the region to be illuminated, and forming the object and the object to be illuminated; a control device for controlling the operation of the spatial light modulator so as to change at least one of the position and size of the first low-luminance region according to the position relative to the moving object; It has
  • a second embodiment provided by the present disclosure to meet the first demand is a control device mounted on a mobile body, A processing unit that emits light to a spatial light modulator having at least one light source, and uses the light to form a low beam pattern having a cutoff line at the upper end in an illuminated area located in front of the moving object. and, a receiving unit that receives detection information indicating the position of a specific object to be illuminated detected within the illuminated area; and The processing unit forms a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and the first low-luminance region according to the relative position between the object to be illuminated and the moving object. Operation of the spatial light modulator is controlled to vary at least one of the location and size of the low intensity region.
  • a third embodiment provided by the present disclosure to meet the first demand is a non-transitory computer-readable medium storing a computer program executable by a processing unit of a control device mounted on a mobile object.
  • the control device A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light, Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area; forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; The operation of the spatial light modulator is controlled so as to vary at least one of and magnitude.
  • a fourth embodiment provided by the present disclosure to meet the first demand is a computer program executable by a processing unit of a control device mounted on a mobile body, comprising: By being executed, the control device A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light, Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area; forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; The operation of the spatial light modulator is controlled so as to vary at least one of and magnitude.
  • the shape of the low beam pattern is predetermined so as not to give glare to the illuminated object positioned in front of the moving object.
  • the object to be illuminated which avoids glare, may enter the low beam pattern.
  • the shape of the cut-off line is changed through the formation of the first low-luminance region, or the light distribution state of the low-beam pattern is changed. Control to change is possible. As a result, the degree of suppression of glare that can be given to the object to be illuminated can be increased.
  • a fifth aspect provided by the present disclosure to meet the second demand is a lighting system that is mounted on a moving body and illuminates an area to be illuminated located in front of the moving body, a first optical system that includes at least one light source and uses light emitted from the light source to form a first light distribution pattern in the area to be illuminated; A spatial light modulator having at least one light source is included, and light emitted from the spatial light modulator is used to form a second light distribution pattern that at least partially overlaps with the first light distribution pattern.
  • a second optical system that a control device for controlling the operation of the spatial light modulator so as to form a low luminous intensity region having relatively low luminous intensity in a region where the first light distribution pattern and the second light distribution pattern overlap; It has
  • a sixth aspect provided by the present disclosure to meet the second demand is a control device mounted on a mobile object, A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. a processing unit that forms a second light distribution pattern using light emitted from the spatial light modulator so that at least a part of the pattern overlaps, The processing unit controls the operation of the spatial light modulator so as to form a low luminous intensity region with relatively low luminous intensity in the region where the first light distribution pattern and the second light distribution pattern overlap. do.
  • a seventh aspect provided by the present disclosure to meet the second demand is a non-transitory computer-readable medium storing a computer program executable by a processing unit of a control device mounted on a mobile object.
  • the control device A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. forming a second light distribution pattern using light emitted from the spatial light modulator so that at least a portion of the pattern overlaps; The operation of the spatial light modulator is controlled so as to form a low luminous intensity area with relatively low luminous intensity in the area where the first light distribution pattern and the second light distribution pattern overlap.
  • An eighth aspect example provided by the present disclosure to meet the second demand is a computer program executable by a processing unit of a control device mounted on a mobile object, By being executed, the control device A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. forming a second light distribution pattern using light emitted from the spatial light modulator so that at least a portion of the pattern overlaps; The operation of the spatial light modulator is controlled so as to form a low luminous intensity area with relatively low luminous intensity in the area where the first light distribution pattern and the second light distribution pattern overlap.
  • the light intensity is relatively low in the region where the light intensity is increased by overlapping the first light distribution pattern and the second light distribution pattern. Regions can be formed locally. That is, it is possible to set a low luminous intensity area in which the degree of suppression of glare is locally enhanced while forming a light distribution area with enhanced visibility to a long distance. Since the position and size of the low luminous intensity region can be easily changed by using the spatial light modulator, the degree of freedom in light distribution design in the illumination system can be increased.
  • FIG. 1 illustrates a functional configuration of a lighting system according to a first embodiment
  • 2 illustrates a vehicle in which the lighting system of FIG. 1 is mounted
  • 2 shows an example of the configuration of the spatial light modulator of FIG. 1
  • 4 illustrates a low beam pattern formed by the spatial light modulator of FIG. 3
  • 2 shows an example of the operation of the lighting system of FIG. 1
  • Figure 2 shows another example of the operation of the lighting system of Figure 1
  • 2 shows another example of the configuration of the spatial light modulator of FIG. 1
  • 8 illustrates a low beam pattern formed by the spatial light modulator of FIG. 7
  • Figure 2 shows another example of the operation of the lighting system of Figure 1
  • Figure 2 shows another example of the operation of the lighting system of Figure 1
  • the functional configuration of the lighting system according to the second embodiment is illustrated.
  • FIG. 12 shows an example of the configuration of the spatial light modulator of FIG. 11; 13 illustrates a second light distribution pattern formed by the spatial light modulator of FIG. 12; 12 illustrates an example of the operation of the lighting system of FIG. 11; Figure 12 shows another example of the operation of the lighting system of Figure 11; Figure 12 shows another example of the operation of the lighting system of Figure 11;
  • FIG. 1 illustrates the functional configuration of a lighting system 101 according to the first embodiment.
  • FIG. 2 illustrates a vehicle 20 in which the lighting system 101 is installed.
  • the lighting system 101 is configured to illuminate an illuminated area A positioned ahead of the vehicle 20 .
  • the shape of vehicle 20 is exemplary only.
  • Vehicle 20 is an example of a mobile object.
  • At least part of the lighting system 101 is mounted on each of the left headlight unit 21 and the right headlight unit 22 .
  • the left headlight unit 21 is mounted on the left front corner of the vehicle 20 .
  • the right headlamp unit 22 is mounted in the right front corner of the vehicle 20 .
  • Each of the left headlamp unit 21 and the right headlamp unit 22 includes a housing and a translucent cover that define a lamp chamber. The translucent cover forms part of the outer surface of vehicle 20 .
  • the illumination system 101 includes a first optical system 11 as illustrated in FIG.
  • the first optical system 11 is arranged in the above lamp chamber.
  • the first optical system 11 has a spatial light modulator 111 .
  • the first optical system 11 appropriately includes optical components necessary to form a low beam pattern LP on the illuminated area A using light emitted from the light source 111a provided in the spatial light modulator 111. Examples of optical components include lenses, reflectors, mirrors, shades, and the like.
  • the spatial light modulator 111 includes a plurality of light sources 111a.
  • the plurality of light sources 111a are arranged in a matrix.
  • Each light source 111a is implemented by a semiconductor light emitting device. Examples of semiconductor light emitting devices include light emitting diodes (LEDs), laser diodes (LDs), and EL devices.
  • the brightness of each light source 111a is configured to be controlled independently of the other light sources 111a.
  • FIG. 4 illustrates a low beam pattern LP formed in front of the vehicle 20 by the spatial light modulator 111 illustrated in FIG.
  • Symbol H represents a horizontal reference line in the first optical system 11 .
  • a symbol V represents a vertical reference line in the first optical system 11 .
  • the horizontal reference line and the vertical reference line are orthogonal. The intersection of the horizontal reference line and the vertical reference line corresponds to the optical axis of the first optical system 11 .
  • the low-beam pattern LP is a light distribution pattern formed in a portion of the illuminated area A located relatively close to the vehicle 20 .
  • the shape of the cutoff line CL that defines the boundary between the illuminated area and the non-illuminated area at the upper end of the low beam pattern LP is determined so as not to give glare to another vehicle 30 positioned in front of the vehicle 20 .
  • the low beam pattern LP includes a plurality of first sub-areas SA1. Each first sub-area SA1 is associated with one of the plurality of light sources 111a included in the spatial light modulator 111.
  • FIG. The shape of the low beam pattern LP illustrated in FIG. 4 corresponds to a state in which all the light sources 111a are turned on.
  • the lighting system 101 includes a control device 14 .
  • Controller 14 is configured to control the operation of spatial light modulator 111 .
  • the control device 14 may be arranged in the lamp chamber, or may be supported on the outer surface of the housing that defines the lamp chamber. Alternatively, the control device 14 can be arranged at an appropriate location on the vehicle 20 independently of the headlight unit.
  • the control device 14 has a reception unit 141 .
  • the reception unit 141 is configured as a hardware interface that receives detection information DT through a communication network mounted on the vehicle 20 .
  • the detection information DT is information indicating the position of a specific illuminated object that avoids glare detected in the illuminated area A by a sensor mounted on the vehicle 20 .
  • specific objects to be illuminated include other vehicles and pedestrians.
  • sensors include LiDAR (Light Detection and Ranging) sensors, cameras, millimeter wave radars, and the like.
  • the detection information DT may be in the form of analog data or in the form of digital data. If the detection information DT is in the form of analog data, the reception unit 141 has an appropriate conversion circuit including an A/D converter.
  • the control device 14 includes a processing section 142 and an output section 143 .
  • the processing unit 142 is configured to output a first control signal CT1 for controlling the operation of the spatial light modulator 111 from the output unit 143 based on the detection information DT received by the receiving unit 141 .
  • the output unit 143 is configured as a hardware interface.
  • the first control signal CT1 may be an analog signal or a digital signal. If the first control signal CT1 is an analog signal, the output section 143 comprises a suitable conversion circuit including a D/A converter.
  • the first control signal CT1 includes information designating the brightness of each light source 111a.
  • the light source 111a performs a light-off operation.
  • the spatial light modulator 111 controls the brightness of each light source 111a based on the first control signal CT1.
  • a PWM dimming method, a DC dimming method, or the like can be appropriately adopted.
  • the shape of the low beam pattern LP is predetermined so as not to give glare to the other vehicle 30 positioned in front of the vehicle 20. road, etc.), a situation may occur in which the other vehicle 30 enters the low beam pattern LP.
  • the other vehicle 30 enters the low beam pattern LP.
  • another vehicle 30 is traveling on an uphill road that curves to the right.
  • another vehicle 30 enters the illumination area of the low beam pattern LP illustrated in FIG. 4, which may give glare to the occupants of the vehicle.
  • the processing unit 142 of the control device 14 operates the spatial light modulator 111 so as to form a first low-luminance area LA1 having a relatively low luminous intensity in the low-beam pattern LP according to the detection information DT received by the receiving unit 141. is configured to output from the output unit 143 a first control signal CT1 for controlling the .
  • the processing unit 142 is configured to determine whether the position of the other vehicle 30 indicated by the detection information DT is within the illumination area of the low beam pattern LP. Since the positional relationship between the vehicle 20 and each first sub-area SA1 in the low beam pattern LP is known, information indicating the positional relationship can be stored in advance in a storage unit (not shown).
  • the storage unit can be realized by a semiconductor memory or a hard disk device.
  • the processing unit 142 can make the determination by collating the position of the other vehicle 30 with respect to the vehicle 20 specified through the detection information DT with the positional relationship information stored in the storage unit.
  • the processing unit 142 When it is determined that the other vehicle 30 is within the illumination area, the processing unit 142 outputs the first control signal CT1 to turn off at least one light source 111a so that at least part of the other vehicle 30 is included in the non-illumination area. is output from the output unit 143 .
  • the first low-luminance area LA1 is formed by configuring the first control signal CT1 to turn off the light sources 111a corresponding to the shaded first sub-area SA1. ing.
  • the first low-luminance area LA1 is defined such that at least that portion is included in the non-illumination area.
  • the first control signal CT1 does not have to turn off the light source 111a as long as an area with relatively low luminous intensity can be formed.
  • the term "non-illuminated area" used in this specification includes an area illuminated by the light source 111a that is lit at a brightness that does not give glare to the object to be illuminated. That is, the first low-luminance area LA1 may also be formed by reducing the luminance of at least one light source 111a.
  • the relative position between the vehicle 20 and the other vehicle 30 can change from moment to moment depending on the relative speed of the two and road surface conditions.
  • Detection information DT reflecting such a situation is input to the control device 14 at a predetermined cycle and received by the receiving unit 141 .
  • the processing unit 142 is configured to change at least one of the position and size of the first low-luminance area LA1 according to the relative positions of the vehicle 20 and the other vehicle 30 specified through the detection information DT. At least one of the position and size of the first low-luminance area LA1 is changed by outputting a first control signal CT1 that changes at least one of the number of light sources 111a whose brightness is reduced or extinguished.
  • the relative positions of the vehicle 20 and the other vehicle 30 are different from the situation illustrated in FIG.
  • the processing unit 142 of the control device 14 changes the position of the first low-luminance area LA1 so that at least a portion that can give glare to the other vehicle 30 under this situation is included in the non-illuminated area.
  • the shape of the cutoff line CL is changed through the formation of the first low-luminance area LA1. Control such as changing the light distribution state of the low beam pattern LP is possible. As a result, the degree of suppression of glare that can be given to the object to be illuminated can be increased.
  • FIG. 7 shows another example of the configuration of the spatial light modulator 111.
  • the number and arrangement of the plurality of light sources 111a according to this example are determined so that the low beam pattern LP of the initial shape is formed by extinguishing or reducing the luminance of some of them as illustrated in FIG. ing.
  • the degree of freedom regarding the position and shape of the first low-luminance area LA1 it is possible to increase the degree of freedom regarding the position and shape of the first low-luminance area LA1.
  • the degree of freedom of deformation of the cutoff line CL in the region located on the right side of the vertical reference line V can be increased.
  • the illumination system 101 may comprise a second optical system 12, as illustrated in FIG.
  • the second optical system 12 has an auxiliary low beam light source 121 .
  • the auxiliary low beam light source 121 may be a lamp light source or a semiconductor light emitting device.
  • the control of turning on/off the auxiliary low-beam light source 121 may be performed by the control device 14 or may be performed by another control device (not shown).
  • the second optical system 12 appropriately includes optical components necessary for forming the auxiliary low beam pattern SLP in the illuminated area A using the light emitted from the auxiliary low beam light source 121 .
  • optical components include lenses, reflectors, mirrors, shades, and the like. It is preferable to use an optical component having a stronger light diffusing property than that of the first optical system 11 .
  • FIG. 9 illustrates an auxiliary low beam pattern SLP formed in front of the vehicle 20 by the second optical system 12.
  • the auxiliary low beam pattern SLP is formed so as to at least partially overlap a portion of the low beam pattern LP located below the cutoff line CL.
  • the lighting resources of the first optical system 11 can be preferentially allocated to the light distribution control for suppressing glare without impairing the low-beam illumination.
  • the illumination system 101 may comprise a third optical system 13, as illustrated in FIG.
  • the third optical system 13 has a high beam light source 131 .
  • the high beam light source 131 has a plurality of light sources arranged in the left-right direction of the vehicle 20 .
  • Each light source may be a lamp light source, but is preferably a semiconductor light emitting device.
  • the third optical system 13 appropriately includes optical components necessary for forming the high beam pattern HP on the illuminated area A using the light emitted from the high beam light source 131 . Examples of optical components include lenses, reflectors, mirrors, shades, and the like.
  • FIG. 10 illustrates a high beam pattern HP formed in front of the vehicle 20 by the third optical system 13.
  • the high beam pattern HP is formed so as to illuminate at least a portion of the illuminated area A above the cutoff line CL of the low beam pattern LP.
  • the high beam pattern HP includes a plurality of second sub-areas SA2. Each second sub-area SA2 is associated with one of the plurality of light sources included in high beam light source 131 .
  • the control device 14 is configured to output a second control signal CT2 for controlling the operation of the high beam light source 131 from the output section 143.
  • the second control signal CT2 may be an analog signal or a digital signal. If the second control signal CT2 is an analog signal, the output section 143 has a suitable conversion circuit including a D/A converter.
  • the second control signal CT2 includes information designating the luminance of each of the plurality of light sources included in the high beam light source 131. When zero luminance is specified, the light source performs a light-off operation.
  • the high beam light source 131 controls the brightness of each light source based on the second control signal CT2. As a method for controlling luminance, a PWM dimming method, a DC dimming method, or the like can be appropriately adopted.
  • the processing unit 142 converts the second low-luminance area LA2, which at least partially overlaps with the first low-luminance area LA1 formed in the low-beam pattern LP by the spatial light modulator 111 and has relatively low luminance, into a high-beam pattern.
  • a second control signal CT2 for controlling the high beam light source 131 so as to form the pattern HP is output from the output section 143 .
  • the processing unit 142 compares the position of the first sub-area SA1 involved in the formation of the first low-luminance area LA1 specified when the first control signal CT1 is output with the positional relationship information stored in the storage unit.
  • a second sub-area SA2 can be determined that participates in the formation of the second low intensity area LA2.
  • the second low-luminance area LA2 is formed by configuring the second control signal CT2 to turn off the light sources corresponding to the shaded second sub-area SA2.
  • the processing unit 142 of the control device 14 having various functions described so far can be realized by a general-purpose microprocessor operating in cooperation with a general-purpose memory.
  • a CPU, MPU, and GPU can be exemplified as a general-purpose microprocessor.
  • Examples of general-purpose memory include ROM and RAM.
  • the ROM can store a computer program that implements the function.
  • ROM is an example of a non-transitory computer-readable medium that stores computer programs.
  • the general-purpose microprocessor designates at least part of the computer program stored in the ROM, develops it on the RAM, and cooperates with the RAM to execute the above-described processing.
  • the above computer program may be preinstalled in a general-purpose memory, or may be downloaded from an external server device (not shown) via a wireless communication network (not shown) and then installed in the general-purpose memory.
  • the external server device is an example of a non-transitory computer-readable medium storing the computer program.
  • the processing unit 142 may be implemented by a dedicated integrated circuit such as a microcontroller, ASIC, or FPGA that can execute the above computer programs.
  • the computer program is pre-installed in a non-volatile memory included in the dedicated integrated circuit.
  • the memory is an example of a non-transitory computer-readable medium that stores a computer program.
  • Processing unit 142 may also be implemented by a combination of a general-purpose microprocessor and a dedicated integrated circuit.
  • FIG. 11 illustrates the functional configuration of the lighting system 102 according to the second embodiment.
  • the lighting system 102 is mounted on the vehicle 20 illustrated in FIG. 2 in the same manner as the lighting system 101 according to the first embodiment, and is configured to illuminate an illuminated area A located in front of the vehicle 20. .
  • the illumination system 102 includes a first optical system 15, as illustrated in FIG.
  • the first optical system 15 is arranged in the lamp chamber.
  • the first optical system 15 has at least one light source 151 .
  • the light source 151 may be a lamp light source or a semiconductor light emitting device. Examples of semiconductor light emitting devices include light emitting diodes (LEDs), laser diodes (LDs), and EL devices.
  • the first optical system 15 appropriately includes optical components necessary for forming the first light distribution pattern P1 in the illuminated area A using the light emitted from the light source 151.
  • optical components include lenses, reflectors, mirrors, shades, and the like.
  • the illumination system 102 has a second optical system 16 .
  • the second optical system 16 is arranged inside the lamp chamber.
  • the second optical system 16 has a spatial light modulator 161 .
  • the second optical system 16 appropriately includes optical components necessary to form the second light distribution pattern P2 using the light emitted from the light source 161a provided in the spatial light modulator 161.
  • FIG. Examples of optical components include lenses, reflectors, mirrors, shades, and the like.
  • the second light distribution pattern P2 is formed in the illuminated region A so as to at least partially overlap the first light distribution pattern P1.
  • the spatial light modulator 161 includes a plurality of light sources 161a.
  • the plurality of light sources 161a are arranged in a matrix.
  • Each light source 161a is realized by a semiconductor light emitting device.
  • the brightness of each light source 161a is configured to be controlled independently of the other light sources 161a.
  • FIG. 13 illustrates the second light distribution pattern P2 formed in front of the vehicle 20 by the spatial light modulator 161 illustrated in FIG.
  • Symbol H represents a horizontal reference line in the second optical system 16 .
  • a symbol V represents a vertical reference line in the second optical system 16 .
  • the horizontal reference line and the vertical reference line are orthogonal. The intersection of the horizontal reference line and vertical reference line corresponds to the optical axis of the second optical system 16 .
  • the second light distribution pattern P2 includes a plurality of sub-areas SA. Each sub-area SA is associated with one of the plurality of light sources 161a included in the spatial light modulator 161.
  • FIG. The shape of the second light distribution pattern P2 illustrated in FIG. 13 corresponds to a state in which all the light sources 161a are turned on.
  • the lighting system 102 includes a control device 17.
  • Controller 17 is configured to control the operation of each of light source 151 and spatial light modulator 161 .
  • the control device 17 may be arranged in the lamp chamber, or may be supported on the outer surface of the housing that defines the lamp chamber. Alternatively, the control device 17 can be arranged at an appropriate location on the vehicle 20 independently of the headlight unit.
  • the control device 17 includes a reception unit 171 .
  • the reception unit 171 is configured as a hardware interface that receives the instruction information IS through a communication network mounted on the vehicle 20 .
  • the instruction information IS includes information indicating whether or not to form the first light distribution pattern P1.
  • the instruction information IS may be generated based on an instruction input by an occupant of the vehicle 20, or may be generated based on a detection result of the surrounding environment by a sensor mounted on the vehicle 20.
  • FIG. Examples of sensors include LiDAR (Light Detection and Ranging) sensors, cameras, millimeter wave radars, and the like.
  • the instruction information IS may be in the form of analog data or digital data. If the instruction information IS is in the form of analog data, the reception unit 171 has an appropriate conversion circuit including an A/D converter.
  • the control device 17 includes a processing section 172 and an output section 173 .
  • the processing unit 172 is configured to output, from the output unit 173, a first control signal CT1 for switching on/off of the light source 151 based on the instruction information IS received by the receiving unit 171.
  • the output unit 173 is configured as a hardware interface.
  • the first control signal CT1 may be an analog signal or a digital signal. If the first control signal CT1 is an analog signal, the output section 173 comprises a suitable conversion circuit including a D/A converter.
  • FIG. 14 illustrates a state in which the first light distribution pattern P1 is formed by turning on the light source 151.
  • the first light distribution pattern P1 and the second light distribution pattern P2 have a partially overlapping region. Since the light emitted from the first optical system 15 and the light emitted from the second optical system 16 overlap in this area, the luminous intensity increases.
  • the processing unit 172 of the control device 17 is configured to output from the output unit 173 the second control signal CT2 for controlling the operation of the spatial light modulator 161 .
  • the second control signal CT2 may be an analog signal or a digital signal. If the second control signal CT2 is an analog signal, the output section 173 has an appropriate conversion circuit including a D/A converter.
  • the second control signal CT2 includes information designating the brightness of each light source 161a.
  • the light source 161a performs a light-off operation.
  • the spatial light modulator 161 controls the brightness of each light source 161a based on the second control signal CT2.
  • a PWM dimming method, a DC dimming method, or the like can be appropriately adopted.
  • the processing unit 172 generates a second control signal for controlling the spatial light modulator 161 so as to form a low luminous intensity area LA having relatively low luminous intensity in the area where the first light distribution pattern P1 and the second light distribution pattern P2 overlap. It is configured to output CT2 from the output unit 173 . Specifically, the processing unit 172 outputs a second control signal CT2 that turns off at least one of the plurality of light sources 161a of the spatial light modulator 161 associated with the position where the low luminous intensity area LA is to be formed. Output from 173.
  • the low luminous intensity area LA is formed by configuring the second control signal CT2 to turn off the light sources 161a corresponding to the shaded sub-area SA.
  • the second control signal CT2 does not have to turn off the light source 161a as long as an area with relatively low luminous intensity can be formed. That is, the low luminance area LA may be formed by reducing the luminance of at least one light source 161a.
  • the second control signal CT2 may be configured such that the low-luminance area LA is automatically formed when the first light distribution pattern P1 is turned on, or an instruction to form the low-luminance area LA included in the instruction information IS. may be configured to be based on
  • the above configuration it is possible to locally form a region with relatively low luminous intensity in the region where luminous intensity is increased by overlapping the first light distribution pattern P1 and the second light distribution pattern P2. That is, it is possible to form a light distribution area with enhanced visibility to a long distance and set a low luminous intensity area LA in which the degree of glare suppression is locally enhanced within the light distribution area. Since the position and size of the low luminous intensity area LA can be easily changed by using the spatial light modulator 161, the degree of freedom of light distribution design in the illumination system 102 can be increased.
  • the region where the first light distribution pattern P1 and the second light distribution pattern P2 overlap includes the optical axis of the second optical system 16 (the intersection of the horizontal reference line H and the vertical reference line V). I'm in.
  • the low luminous intensity area LA is formed so as to include the optical axis of the second optical system 16 .
  • the luminous intensity of the light distribution pattern tends to be high near the optical axis of the optical system. Therefore, the sum of the luminous intensity also tends to increase due to the overlapping of the first light distribution pattern P1 and the second light distribution pattern P2.
  • the low luminous intensity area LA By forming the low luminous intensity area LA in such an area, the local glare suppressing effect can be enhanced.
  • the low luminous intensity area LA may be formed so as to include the optical axis (not shown) of the first light distribution pattern P1, or the optical axis of the first light distribution pattern P1 and the light of the second light distribution pattern P2. It may be formed to include both axes.
  • the controller 14 converts the low beam pattern LP illustrated in FIG. It can be configured so that it can be formed as P2.
  • the low beam pattern LP is a light distribution pattern that is intended to be formed in a portion of the illuminated area A that is relatively close to the vehicle 20 .
  • the shape of the cutoff line CL that defines the boundary between the illuminated area and the non-illuminated area at the upper end of the low beam pattern LP is determined so as not to give glare to another vehicle 30 positioned in front of the vehicle 20 .
  • the low beam pattern LP is formed by configuring the second control signal CT2 to turn off the light sources 161a corresponding to the hatched sub-areas SA.
  • the light source 161a associated with the sub-area SA positioned closer to the information than the cutoff line CL does not necessarily need to be turned off.
  • a region illuminated by the light source 161a illuminated at a brightness that does not give glare to other vehicles 30 and pedestrians positioned in front of the vehicle 20 is also included in the meaning of the above-mentioned "non-illuminated region”.
  • the control device 17 appropriately changes the configuration of the second control signal CT2 to form the first state in which the low beam pattern LP having the cutoff line CL at the upper end is formed as the second light distribution pattern P2, and the cutoff line CL It is configured to be switchable between a second state in which the second light distribution pattern P2 is formed so that light is distributed also to a portion located above.
  • the second state can be regarded as a state in which so-called high beam light distribution is performed.
  • the switching between the first state and the second state may be performed in conjunction with turning on/off the light source 151 forming the first light distribution pattern P1, or may be performed based on an instruction included in the instruction information IS.
  • the second optical system 16 can be divided into a low beam distribution optical system and a high beam distribution optical system, taking advantage of the spatial light modulator 161 having a high degree of freedom in changing the shape of the light distribution pattern. Available for both. Therefore, it is possible to prevent the lighting system 102 from becoming large and complicated.
  • the first light distribution pattern P1 is formed so as to overlap a region located above the portion that can be the cutoff line CL in the second light distribution pattern P2. be. Therefore, when the second light distribution pattern P2 is used for high-beam light distribution, visibility at a distance can be further improved.
  • the processing unit 172 of the control device 17 having various functions described so far can be realized by a general-purpose microprocessor operating in cooperation with a general-purpose memory.
  • a CPU, MPU, and GPU can be exemplified as a general-purpose microprocessor.
  • Examples of general-purpose memory include ROM and RAM.
  • the ROM can store a computer program that implements the function.
  • ROM is an example of a non-transitory computer-readable medium that stores computer programs.
  • the general-purpose microprocessor designates at least part of the computer program stored in the ROM, develops it on the RAM, and cooperates with the RAM to execute the above-described processing.
  • the above computer program may be preinstalled in a general-purpose memory, or may be downloaded from an external server device (not shown) via a wireless communication network (not shown) and then installed in the general-purpose memory.
  • the external server device is an example of a non-transitory computer-readable medium storing the computer program.
  • the processing unit 172 may be implemented by a dedicated integrated circuit such as a microcontroller, ASIC, or FPGA that can execute the above computer programs.
  • the computer program is pre-installed in a non-volatile memory included in the dedicated integrated circuit.
  • the memory is an example of a non-transitory computer-readable medium that stores a computer program.
  • Processing unit 172 may also be implemented by a combination of a general-purpose microprocessor and a dedicated integrated circuit.
  • the spatial light modulator 111 has a plurality of light sources 111a arranged in a matrix.
  • the control device 14 forms the first low-luminance area LA1 by reducing the brightness of at least one of the plurality of light sources 111a.
  • the first low-luminance area LA1 is formed by forming a low-beam pattern LP while changing the traveling direction of light emitted from at least one light source with a scanning optical system, and reducing the luminance of the light source at a desired position.
  • a digital micromirror device may be used instead of the scanning optical system.
  • at least one pixel of the liquid crystal device may be associated with a plurality of first sub-areas SA1 included in the low beam pattern LP, and the luminance of the pixel may be reduced to form the first low-luminance area LA1.
  • the system of the liquid crystal device may be a transmissive type or a reflective type.
  • each of the second optical system 12 and the third optical system 13 may be arranged in the same lamp chamber as the first optical system 11, or may be arranged in a separate lamp chamber. may be
  • the spatial light modulator 161 has a plurality of light sources 161a arranged in a matrix.
  • the control device 17 forms the low luminous intensity area LA by reducing the luminance of at least one of the plurality of light sources 161a. With such a configuration, it is possible to obtain a high degree of control freedom regarding the position and shape of the low-luminance area LA with a relatively simple optical system. .
  • the low-luminance area LA can be formed by forming a low-beam pattern LP while changing the traveling direction of light emitted from at least one light source with a scanning optical system, and reducing the luminance of the light source at a desired position.
  • a digital micromirror device may be used instead of the scanning optical system.
  • at least one pixel of the liquid crystal device may be associated with a plurality of sub-areas SA included in the low-beam pattern LP, and the low-luminance area LA may be formed by reducing the brightness of the pixel.
  • the system of the liquid crystal device may be a transmissive type or a reflective type.
  • the lighting system 101 according to the first embodiment and the lighting system 102 according to the second embodiment are mounted on a vehicle 20 having four wheels.
  • lighting system 101 and lighting system 102 may also be mounted on a two-wheeled motor vehicle or a three-wheeled motor vehicle.
  • the type of the motorcycle or three-wheeled vehicle may be a straddle type, a scooter type, or a standing type.
  • Motorcycles and three-wheeled vehicles are also examples of moving objects.
  • Lighting system 101 and lighting system 102 may be mounted on a tram vehicle with four or more wheels, or the like.
  • a street rail vehicle is also an example of a mobile object.
  • the number of lighting systems 101 and lighting systems 102 mounted on the front portion of the moving body can be appropriately determined according to the specifications of the moving body.
  • Japanese Patent Application No. 2021-171560 filed on October 20, 2021 and Japanese Patent Application No. 2021-171561 filed on October 20, 2021 Content is incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A first optical system (11) comprises a spatial light modulator (111) equipped with at least one light source (111a), and forms a low beam pattern (LP), which has a cut-off line (CL) at an upper end thereof, in an illumination target area (A) by using light emitted from the spatial light modulator (111). A control device (14) controls the operation of the spatial light modulator (111) in such a manner as to cause a first low-luminosity area having a relatively low luminosity to be formed within the low beam pattern (LP) on the basis of detection information (DT) indicative of the position of a specific illumination target body detected within the illumination target area (A) and also to cause the position and/or the size of the first low-luminosity area to change according to the relative position thereof with respect to said illumination target body.

Description

照明システム、制御装置、非一時的なコンピュータ可読媒体、およびコンピュータプログラムLighting system, controller, non-transitory computer readable medium, and computer program
 本開示は、移動体に搭載されて当該移動体よりも前方に位置する被照明領域を照明する照明システムに関連する。本開示は、当該移動体に搭載される制御装置、当該制御装置に搭載される処理部により実行可能なコンピュータプログラム、および当該コンピュータプログラムが記憶された非一時的なコンピュータ可読媒体にも関連する。 The present disclosure relates to a lighting system that is mounted on a mobile object and that illuminates an area to be illuminated located in front of the mobile object. The present disclosure also relates to a control device mounted on the mobile body, a computer program executable by a processing unit mounted on the control device, and a non-transitory computer-readable medium storing the computer program.
 特許文献1は、移動体の一例としての車両に搭載されて当該車両よりも前方に位置する被照明領域を照明する装置を開示している。当該装置は、被照明領域のうち当該車両から比較的近距離に位置する部分へいわゆるロービームを配光するように構成されている。ロービームにより形成される配光パターンは、前方に位置する車両にグレアを与えないように、照明領域と非照明領域の境界を画定する上端の形状が定められている。この形状は、カットオフラインと称される。 Patent Literature 1 discloses a device that is mounted on a vehicle as an example of a moving body and that illuminates an area to be illuminated located in front of the vehicle. The device is configured to distribute a so-called low beam to a portion of the illuminated area which is located at a relatively short distance from the vehicle. The light distribution pattern formed by the low beam has an upper end shape that defines the boundary between the illuminated area and the non-illuminated area so as not to give glare to vehicles positioned ahead. This shape is called the cutoff line.
 当該装置は、被照明領域における少なくともカットオフラインよりも上方に位置する部分へ、いわゆるハイビームを配光するように構成されている。これにより、被照明領域のうち当該車両から比較的遠方に位置する部分まで配光がなされ、前方の視認性を高めることができる。当該装置は、車両や歩行者などの特定の被照明体が被照明領域内に検出されると、ハイビームにより形成される配光パターンの一部に相対的に光度の低い低光度領域を形成することにより、当該被照明体にグレアを与えないようにしている。 The device is configured to distribute a so-called high beam to at least a portion of the illuminated area above the cutoff line. As a result, the light is distributed to a portion of the illuminated area that is located relatively far from the vehicle, and forward visibility can be improved. When a specific illuminated object such as a vehicle or a pedestrian is detected in the illuminated area, the device forms a relatively low-intensity area in a part of the light distribution pattern formed by the high beam. Thus, glare is not given to the object to be illuminated.
国際公開第2016/104319号明細書International Publication No. 2016/104319
 被照明領域内に位置する被照明体に与えうるグレアの抑制度を高めることが求められている(第一の要求)。  There is a demand to increase the degree of suppression of glare that can be given to an object to be illuminated located within the illuminated area (first requirement).
 照明システムにおける配光設計の自由度を高めることが求められている(第二の要求)。  There is a demand to increase the degree of freedom in light distribution design in lighting systems (second requirement).
 第一の要求に応えるために本開示により提供される第一の態様例は、移動体に搭載されて当該移動体よりも前方に位置する被照明領域を照明する照明システムであって、
 少なくとも一つの光源を備えた空間光変調器を含んでおり、当該空間光変調器から出射された光を用いて上端にカットオフラインを有するロービームパターンを前記被照明領域に形成する第一光学系と、
 前記被照明領域内に検出された特定の被照明体の位置を示す検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ当該被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する制御装置と、
を備えている。
A first embodiment provided by the present disclosure to meet the first demand is a lighting system that is mounted on a moving object and illuminates an area to be illuminated located in front of the moving object,
a first optical system including a spatial light modulator having at least one light source, and forming a low beam pattern having a cut-off line at the upper end in the area to be illuminated using light emitted from the spatial light modulator; ,
forming a first low-luminance region having a relatively low luminous intensity within the low beam pattern based on detection information indicating the position of a specific object to be illuminated detected within the region to be illuminated, and forming the object and the object to be illuminated; a control device for controlling the operation of the spatial light modulator so as to change at least one of the position and size of the first low-luminance region according to the position relative to the moving object;
It has
 第一の要求に応えるために本開示により提供される第二の態様例は、移動体に搭載される制御装置であって、
 少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成する処理部と、
 前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付ける受付部と、
を備えており、
 前記処理部は、前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する。
A second embodiment provided by the present disclosure to meet the first demand is a control device mounted on a mobile body,
A processing unit that emits light to a spatial light modulator having at least one light source, and uses the light to form a low beam pattern having a cutoff line at the upper end in an illuminated area located in front of the moving object. and,
a receiving unit that receives detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
and
The processing unit forms a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and the first low-luminance region according to the relative position between the object to be illuminated and the moving object. Operation of the spatial light modulator is controlled to vary at least one of the location and size of the low intensity region.
 第一の要求に応えるために本開示により提供される第三の態様例は、移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムが記憶された非一時的なコンピュータ可読媒体であって、
 前記コンピュータプログラムが実行されることにより、前記制御装置は、
  少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成し、
  前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付け、
  前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する。
A third embodiment provided by the present disclosure to meet the first demand is a non-transitory computer-readable medium storing a computer program executable by a processing unit of a control device mounted on a mobile object. There is
By executing the computer program, the control device
A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light,
Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; The operation of the spatial light modulator is controlled so as to vary at least one of and magnitude.
 第一の要求に応えるために本開示により提供される第四の態様例は、移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムであって、
 実行されることにより、前記制御装置は、
  少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成し、
  前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付け、
  前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する。
A fourth embodiment provided by the present disclosure to meet the first demand is a computer program executable by a processing unit of a control device mounted on a mobile body, comprising:
By being executed, the control device
A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light,
Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; The operation of the spatial light modulator is controlled so as to vary at least one of and magnitude.
 ロービームパターンの形状は、移動体の前方に位置する被照明体にグレアを与えないように予め定められている。しかしながら、移動体と被照明体の相対位置や路面状態(勾配、曲路など)によっては、グレアを忌避する被照明体がロービームパターン内に進入してしまう事態が生じうる。第一から第四の態様例の各々に係る構成によれば、そのような事態が生じた場合において、第一低光度領域の形成を通じてカットオフラインの形状を変更したりロービームパターンの配光状態を変更したりする制御が可能とされる。これにより、当該被照明体に与えうるグレアの抑制度を高めることができる。 The shape of the low beam pattern is predetermined so as not to give glare to the illuminated object positioned in front of the moving object. However, depending on the relative positions of the moving object and the object to be illuminated and road conditions (slope, curved road, etc.), the object to be illuminated, which avoids glare, may enter the low beam pattern. According to the configuration according to each of the first to fourth embodiments, when such a situation occurs, the shape of the cut-off line is changed through the formation of the first low-luminance region, or the light distribution state of the low-beam pattern is changed. Control to change is possible. As a result, the degree of suppression of glare that can be given to the object to be illuminated can be increased.
 第二の要求に応えるために本開示により提供される第五の態様例は、移動体に搭載されて当該移動体よりも前方に位置する被照明領域を照明する照明システムであって、
 少なくとも一つの光源を含んでおり、当該光源から出射された光を用いて前記被照明領域に第一配光パターンを形成する第一光学系と、
 少なくとも一つの光源を備えた空間光変調器を含んでおり、当該空間光変調器から出射された光を用いて前記第一配光パターンと少なくとも一部が重なるように第二配光パターンを形成する第二光学系と、
 前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する制御装置と、
を備えている。
A fifth aspect provided by the present disclosure to meet the second demand is a lighting system that is mounted on a moving body and illuminates an area to be illuminated located in front of the moving body,
a first optical system that includes at least one light source and uses light emitted from the light source to form a first light distribution pattern in the area to be illuminated;
A spatial light modulator having at least one light source is included, and light emitted from the spatial light modulator is used to form a second light distribution pattern that at least partially overlaps with the first light distribution pattern. a second optical system that
a control device for controlling the operation of the spatial light modulator so as to form a low luminous intensity region having relatively low luminous intensity in a region where the first light distribution pattern and the second light distribution pattern overlap;
It has
 第二の要求に応えるために本開示により提供される第六の態様例は、移動体に搭載される制御装置であって、
 少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、別の光源から出射された光を用いて前記移動体よりも前方に位置する被照明領域に形成された第一配光パターンと少なくとも一部が重なるように、当該空間光変調器から出射された光を用いて第二配光パターンを形成する処理部を備えており、
 前記処理部は、前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する。
A sixth aspect provided by the present disclosure to meet the second demand is a control device mounted on a mobile object,
A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. a processing unit that forms a second light distribution pattern using light emitted from the spatial light modulator so that at least a part of the pattern overlaps,
The processing unit controls the operation of the spatial light modulator so as to form a low luminous intensity region with relatively low luminous intensity in the region where the first light distribution pattern and the second light distribution pattern overlap. do.
 第二の要求に応えるために本開示により提供される第七の態様例は、移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムが記憶された非一時的なコンピュータ可読媒体であって、
 前記コンピュータプログラムが実行されることにより、前記制御装置は、
  少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、別の光源から出射された光を用いて前記移動体よりも前方に位置する被照明領域に形成された第一配光パターンと少なくとも一部が重なるように、当該空間光変調器から出射された光を用いて第二配光パターンを形成し、
  前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する。
A seventh aspect provided by the present disclosure to meet the second demand is a non-transitory computer-readable medium storing a computer program executable by a processing unit of a control device mounted on a mobile object. There is
By executing the computer program, the control device
A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. forming a second light distribution pattern using light emitted from the spatial light modulator so that at least a portion of the pattern overlaps;
The operation of the spatial light modulator is controlled so as to form a low luminous intensity area with relatively low luminous intensity in the area where the first light distribution pattern and the second light distribution pattern overlap.
 第二の要求に応えるために本開示により提供される第八の態様例は、移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムであって、
 実行されることにより、前記制御装置は、
  少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、別の光源から出射された光を用いて前記移動体よりも前方に位置する被照明領域に形成された第一配光パターンと少なくとも一部が重なるように、当該空間光変調器から出射された光を用いて第二配光パターンを形成し、
  前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する。
An eighth aspect example provided by the present disclosure to meet the second demand is a computer program executable by a processing unit of a control device mounted on a mobile object,
By being executed, the control device
A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. forming a second light distribution pattern using light emitted from the spatial light modulator so that at least a portion of the pattern overlaps;
The operation of the spatial light modulator is controlled so as to form a low luminous intensity area with relatively low luminous intensity in the area where the first light distribution pattern and the second light distribution pattern overlap.
 第五の態様例から第八の態様例の各々に係る構成によれば、第一配光パターンと第二配光パターンを重ねることによって光度が高められた領域内に、相対的に光度の低い領域を局所的に形成できる。すなわち、遠方までの視認性が高められた配光領域を形成しつつも、当該配光領域内にグレアの抑制度が局所的に高められた低光度領域を設定できる。低光度領域の位置や大きさは空間光変調器を用いることにより容易に変更可能であるので、照明システムにおける配光設計の自由度を高めることができる。 According to the configuration according to each of the fifth to eighth aspect examples, the light intensity is relatively low in the region where the light intensity is increased by overlapping the first light distribution pattern and the second light distribution pattern. Regions can be formed locally. That is, it is possible to set a low luminous intensity area in which the degree of suppression of glare is locally enhanced while forming a light distribution area with enhanced visibility to a long distance. Since the position and size of the low luminous intensity region can be easily changed by using the spatial light modulator, the degree of freedom in light distribution design in the illumination system can be increased.
第一実施形態に係る照明システムの機能構成を例示している。1 illustrates a functional configuration of a lighting system according to a first embodiment; 図1の照明システムが搭載される車両を例示している。2 illustrates a vehicle in which the lighting system of FIG. 1 is mounted; 図1の空間光変調器の構成の一例を示している。2 shows an example of the configuration of the spatial light modulator of FIG. 1; 図3の空間光変調器により形成されるロービームパターンを例示している。4 illustrates a low beam pattern formed by the spatial light modulator of FIG. 3; 図1の照明システムの動作の一例を示している。2 shows an example of the operation of the lighting system of FIG. 1; 図1の照明システムの動作の別例を示している。Figure 2 shows another example of the operation of the lighting system of Figure 1; 図1の空間光変調器の構成の別例を示している。2 shows another example of the configuration of the spatial light modulator of FIG. 1; 図7の空間光変調器により形成されるロービームパターンを例示している。8 illustrates a low beam pattern formed by the spatial light modulator of FIG. 7; 図1の照明システムの動作の別例を示している。Figure 2 shows another example of the operation of the lighting system of Figure 1; 図1の照明システムの動作の別例を示している。Figure 2 shows another example of the operation of the lighting system of Figure 1; 第二実施形態に係る照明システムの機能構成を例示している。The functional configuration of the lighting system according to the second embodiment is illustrated. 図11の空間光変調器の構成の一例を示している。12 shows an example of the configuration of the spatial light modulator of FIG. 11; 図12の空間光変調器により形成される第二配光パターンを例示している。13 illustrates a second light distribution pattern formed by the spatial light modulator of FIG. 12; 図11の照明システムの動作の一例を示している。12 illustrates an example of the operation of the lighting system of FIG. 11; 図11の照明システムの動作の別例を示している。Figure 12 shows another example of the operation of the lighting system of Figure 11; 図11の照明システムの動作の別例を示している。Figure 12 shows another example of the operation of the lighting system of Figure 11;
 添付の図面を参照しつつ、実施形態の例について以下詳細に説明する。以下の説明に用いられる各図面では、各部材を認識可能な大きさとするために、必要に応じて縮尺を変更している。 Examples of embodiments will be described in detail below with reference to the accompanying drawings. In each drawing used for the following description, the scale is changed as necessary to make each member recognizable.
 図1は、第一実施形態に係る照明システム101の機能構成を例示している。図2は、照明システム101が搭載される車両20を例示している。照明システム101は、車両20よりも前方に位置する被照明領域Aを照明するように構成されている。車両20の形状は例示に過ぎない。車両20は、移動体の一例である。 FIG. 1 illustrates the functional configuration of a lighting system 101 according to the first embodiment. FIG. 2 illustrates a vehicle 20 in which the lighting system 101 is installed. The lighting system 101 is configured to illuminate an illuminated area A positioned ahead of the vehicle 20 . The shape of vehicle 20 is exemplary only. Vehicle 20 is an example of a mobile object.
 照明システム101の少なくとも一部は、左前照灯ユニット21と右前照灯ユニット22の各々に搭載される。左前照灯ユニット21は、車両20の左前隅部に搭載されている。右前照灯ユニット22は、車両20の右前隅部に搭載されている。左前照灯ユニット21と右前照灯ユニット22の各々は、灯室を区画するハウジングと透光カバーを備えている。透光カバーは、車両20の外面の一部を形成している。 At least part of the lighting system 101 is mounted on each of the left headlight unit 21 and the right headlight unit 22 . The left headlight unit 21 is mounted on the left front corner of the vehicle 20 . The right headlamp unit 22 is mounted in the right front corner of the vehicle 20 . Each of the left headlamp unit 21 and the right headlamp unit 22 includes a housing and a translucent cover that define a lamp chamber. The translucent cover forms part of the outer surface of vehicle 20 .
 図1に例示されるように、照明システム101は、第一光学系11を備えている。第一光学系11は、上記の灯室内に配置されている。第一光学系11は、空間光変調器111を備えている。第一光学系11は、空間光変調器111が備えている光源111aから出射された光を用いて被照明領域AにロービームパターンLPを形成するために必要な光学部品を適宜に備えている。光学部品の例としては、レンズ、リフレクタ、ミラー、シェードなどが挙げられる。 The illumination system 101 includes a first optical system 11 as illustrated in FIG. The first optical system 11 is arranged in the above lamp chamber. The first optical system 11 has a spatial light modulator 111 . The first optical system 11 appropriately includes optical components necessary to form a low beam pattern LP on the illuminated area A using light emitted from the light source 111a provided in the spatial light modulator 111. Examples of optical components include lenses, reflectors, mirrors, shades, and the like.
 図3に例示されるように、本例に係る空間光変調器111は、複数の光源111aを備えている。複数の光源111aは、マトリクス状に配列されている。各光源111aは、半導体発光素子により実現されている。半導体発光素子の例としては、発光ダイオード(LED)、レーザダイオード(LD)、EL素子などが挙げられる。各光源111aの輝度は、他の光源111aから独立して制御されうるように構成されている。 As illustrated in FIG. 3, the spatial light modulator 111 according to this example includes a plurality of light sources 111a. The plurality of light sources 111a are arranged in a matrix. Each light source 111a is implemented by a semiconductor light emitting device. Examples of semiconductor light emitting devices include light emitting diodes (LEDs), laser diodes (LDs), and EL devices. The brightness of each light source 111a is configured to be controlled independently of the other light sources 111a.
 図4は、図3に例示された空間光変調器111により車両20の前方に形成されるロービームパターンLPを例示している。符号Hは、第一光学系11における水平基準線を表している。符号Vは、第一光学系11における垂直基準線を表している。水平基準線と垂直基準線とは直交している。水平基準線と垂直基準線の交点は、第一光学系11における光軸に対応している。 FIG. 4 illustrates a low beam pattern LP formed in front of the vehicle 20 by the spatial light modulator 111 illustrated in FIG. Symbol H represents a horizontal reference line in the first optical system 11 . A symbol V represents a vertical reference line in the first optical system 11 . The horizontal reference line and the vertical reference line are orthogonal. The intersection of the horizontal reference line and the vertical reference line corresponds to the optical axis of the first optical system 11 .
 ロービームパターンLPは、被照明領域Aのうち車両20から比較的近距離に位置する部分に形成される配光パターンである。ロービームパターンLPの上端において照明領域と非照明領域の境界を画定するカットオフラインCLの形状は、車両20の前方に位置する他車両30にグレアを与えないように定められている。 The low-beam pattern LP is a light distribution pattern formed in a portion of the illuminated area A located relatively close to the vehicle 20 . The shape of the cutoff line CL that defines the boundary between the illuminated area and the non-illuminated area at the upper end of the low beam pattern LP is determined so as not to give glare to another vehicle 30 positioned in front of the vehicle 20 .
 ロービームパターンLPは、複数の第一サブ領域SA1を含んでいる。各第一サブ領域SA1は、空間光変調器111が備える複数の光源111aの一つに対応付けられている。図4に例示されたロービームパターンLPの形状は、全ての光源111aが点灯された状態に対応している。 The low beam pattern LP includes a plurality of first sub-areas SA1. Each first sub-area SA1 is associated with one of the plurality of light sources 111a included in the spatial light modulator 111. FIG. The shape of the low beam pattern LP illustrated in FIG. 4 corresponds to a state in which all the light sources 111a are turned on.
 図1に例示されるように、照明システム101は、制御装置14を備えている。制御装置14は、空間光変調器111の動作を制御するように構成されている。制御装置14は、灯室内に配置されてもよいし、灯室を区画するハウジングの外面に支持されてもよい。あるいは、制御装置14は、前照灯ユニットから独立して車両20における適宜の箇所に配置されうる。 As illustrated in FIG. 1 , the lighting system 101 includes a control device 14 . Controller 14 is configured to control the operation of spatial light modulator 111 . The control device 14 may be arranged in the lamp chamber, or may be supported on the outer surface of the housing that defines the lamp chamber. Alternatively, the control device 14 can be arranged at an appropriate location on the vehicle 20 independently of the headlight unit.
 具体的には、制御装置14は、受付部141を備えている。受付部141は、車両20に搭載された通信ネットワークを通じて検出情報DTを受け付けるハードウェアインタフェースとして構成されている。検出情報DTは、車両20に搭載されたセンサにより被照明領域A内に検出されたグレアを忌避する特定の被照明体の位置を示す情報である。特定の被照明体の例としては、他車両や歩行者などが挙げられる。センサの例としては、LiDAR(Light Detection and Ranging)センサ、カメラ、ミリ波レーダなどが挙げられる。 Specifically, the control device 14 has a reception unit 141 . The reception unit 141 is configured as a hardware interface that receives detection information DT through a communication network mounted on the vehicle 20 . The detection information DT is information indicating the position of a specific illuminated object that avoids glare detected in the illuminated area A by a sensor mounted on the vehicle 20 . Examples of specific objects to be illuminated include other vehicles and pedestrians. Examples of sensors include LiDAR (Light Detection and Ranging) sensors, cameras, millimeter wave radars, and the like.
 検出情報DTは、アナログデータの形態であってもよいし、デジタルデータの形態であってもよい。検出情報DTがアナログデータの形態である場合、受付部141は、A/Dコンバータを含む適宜の変換回路を備える。 The detection information DT may be in the form of analog data or in the form of digital data. If the detection information DT is in the form of analog data, the reception unit 141 has an appropriate conversion circuit including an A/D converter.
 制御装置14は、処理部142と出力部143を備えている。処理部142は、受付部141により受け付けられた検出情報DTに基づいて、空間光変調器111の動作を制御する第一制御信号CT1を出力部143から出力するように構成されている。出力部143は、ハードウェアインタフェースとして構成されている。 The control device 14 includes a processing section 142 and an output section 143 . The processing unit 142 is configured to output a first control signal CT1 for controlling the operation of the spatial light modulator 111 from the output unit 143 based on the detection information DT received by the receiving unit 141 . The output unit 143 is configured as a hardware interface.
 第一制御信号CT1は、アナログ信号であってもよいし、デジタル信号であってもよい。第一制御信号CT1がアナログ信号である場合、出力部143は、D/Aコンバータを含む適宜の変換回路を備える。 The first control signal CT1 may be an analog signal or a digital signal. If the first control signal CT1 is an analog signal, the output section 143 comprises a suitable conversion circuit including a D/A converter.
 具体的には、第一制御信号CT1は、各光源111aの輝度を指定する情報を含んでいる。輝度ゼロが指定された場合、その光源111aは消灯動作を行なう。空間光変調器111は、第一制御信号CT1に基づいて、各光源111aの輝度を制御する。輝度を制御する手法は、PWM調光方式、直流調光方式などが適宜に採用されうる。 Specifically, the first control signal CT1 includes information designating the brightness of each light source 111a. When zero luminance is specified, the light source 111a performs a light-off operation. The spatial light modulator 111 controls the brightness of each light source 111a based on the first control signal CT1. As a method for controlling luminance, a PWM dimming method, a DC dimming method, or the like can be appropriately adopted.
 前述の通り、ロービームパターンLPの形状は車両20の前方に位置する他車両30にグレアを与えないように予め定められているものの、車両20と他車両30の相対位置や路面状態(勾配、曲路など)によっては、他車両30がロービームパターンLP内に進入してしまう事態が生じうる。図5に示される例においては、右方へカーブする上り勾配の道路を他車両30が走行している。この状況では図4に例示されたロービームパターンLPの照明領域内に他車両30が進入するので、当該車両の乗員にグレアを与える場合がありうる。 As described above, the shape of the low beam pattern LP is predetermined so as not to give glare to the other vehicle 30 positioned in front of the vehicle 20. road, etc.), a situation may occur in which the other vehicle 30 enters the low beam pattern LP. In the example shown in FIG. 5, another vehicle 30 is traveling on an uphill road that curves to the right. In this situation, another vehicle 30 enters the illumination area of the low beam pattern LP illustrated in FIG. 4, which may give glare to the occupants of the vehicle.
 制御装置14の処理部142は、受付部141により受け付けられた検出情報DTに応じて、ロービームパターンLP内に相対的に光度の低い第一低光度領域LA1を形成させるように空間光変調器111を制御する第一制御信号CT1を出力部143から出力するように構成されている。 The processing unit 142 of the control device 14 operates the spatial light modulator 111 so as to form a first low-luminance area LA1 having a relatively low luminous intensity in the low-beam pattern LP according to the detection information DT received by the receiving unit 141. is configured to output from the output unit 143 a first control signal CT1 for controlling the .
 例えば、処理部142は、検出情報DTにより示される他車両30の位置がロービームパターンLPの照明領域内であるかを判断するように構成される。車両20とロービームパターンLP内の各第一サブ領域SA1の位置関係は既知であるので、当該位置関係を示す情報が不図示の記憶部に予め格納されうる。記憶部は、半導体メモリやハードディスク装置により実現されうる。処理部142は、検出情報DTを通じて特定される車両20に対する他車両30の位置を記憶部に格納された位置関係情報と照合することにより、当該判断をなしうる。 For example, the processing unit 142 is configured to determine whether the position of the other vehicle 30 indicated by the detection information DT is within the illumination area of the low beam pattern LP. Since the positional relationship between the vehicle 20 and each first sub-area SA1 in the low beam pattern LP is known, information indicating the positional relationship can be stored in advance in a storage unit (not shown). The storage unit can be realized by a semiconductor memory or a hard disk device. The processing unit 142 can make the determination by collating the position of the other vehicle 30 with respect to the vehicle 20 specified through the detection information DT with the positional relationship information stored in the storage unit.
 他車両30が当該照明領域内であると判断されると、処理部142は、他車両30の少なくとも一部が非照明領域に含まれるように少なくとも一つの光源111aを消灯させる第一制御信号CT1を出力部143から出力する。 When it is determined that the other vehicle 30 is within the illumination area, the processing unit 142 outputs the first control signal CT1 to turn off at least one light source 111a so that at least part of the other vehicle 30 is included in the non-illumination area. is output from the output unit 143 .
 図5に示される例においては、斜線が付された第一サブ領域SA1に対応する光源111aを消灯させるように第一制御信号CT1が構成されることにより、第一低光度領域LA1が形成されている。 In the example shown in FIG. 5, the first low-luminance area LA1 is formed by configuring the first control signal CT1 to turn off the light sources 111a corresponding to the shaded first sub-area SA1. ing.
 なお、他車両30の全体が照明領域内に位置していることが要件とされていなくてもよい。例えば、他車両30にグレアを与えうる部分が照明領域に位置していることが要件とされうる。第一低光度領域LA1は、少なくとも当該部分が非照明領域に含まれるように定められる。 It should be noted that it does not have to be a requirement that the entire other vehicle 30 be positioned within the illumination area. For example, it may be required that a portion that may give glare to the other vehicle 30 is located in the lighting area. The first low-luminance area LA1 is defined such that at least that portion is included in the non-illumination area.
 相対的に光度の低い領域を形成できるのであれば、第一制御信号CT1は、光源111aを消灯させなくてもよい。本明細書で用いられる「非照明領域」という語は、被照明体にグレアを与えない程度の輝度で点灯された光源111aにより照明される領域も含む意味である。すなわち、少なくとも一つの光源111aの輝度が低下されることによっても、第一低光度領域LA1が形成されうる。 The first control signal CT1 does not have to turn off the light source 111a as long as an area with relatively low luminous intensity can be formed. The term "non-illuminated area" used in this specification includes an area illuminated by the light source 111a that is lit at a brightness that does not give glare to the object to be illuminated. That is, the first low-luminance area LA1 may also be formed by reducing the luminance of at least one light source 111a.
 車両20と他車両30との相対位置は、両者の相対速度や路面状態により刻一刻と変化しうる。そうした状況が反映された検出情報DTは、所定の周期で制御装置14に入力され、受付部141により受け付けられる。処理部142は、検出情報DTを通じて特定される車両20と他車両30との相対位置に応じて、第一低光度領域LA1の位置と大きさの少なくとも一方を変化させるように構成されている。第一低光度領域LA1の位置と大きさの少なくとも一方の変更は、消灯あるいは輝度低減される光源111aとその数の少なくとも一方を変更する第一制御信号CT1を出力することによってなされる。 The relative position between the vehicle 20 and the other vehicle 30 can change from moment to moment depending on the relative speed of the two and road surface conditions. Detection information DT reflecting such a situation is input to the control device 14 at a predetermined cycle and received by the receiving unit 141 . The processing unit 142 is configured to change at least one of the position and size of the first low-luminance area LA1 according to the relative positions of the vehicle 20 and the other vehicle 30 specified through the detection information DT. At least one of the position and size of the first low-luminance area LA1 is changed by outputting a first control signal CT1 that changes at least one of the number of light sources 111a whose brightness is reduced or extinguished.
 図6に例示される状況においては、車両20と他車両30との相対位置が図5に例示される状況と異なっている。制御装置14の処理部142は、この状況下で少なくとも他車両30にグレアを与えうる部分が非照明領域に含まれるように、第一低光度領域LA1の位置を変更している。  In the situation illustrated in FIG. 6, the relative positions of the vehicle 20 and the other vehicle 30 are different from the situation illustrated in FIG. The processing unit 142 of the control device 14 changes the position of the first low-luminance area LA1 so that at least a portion that can give glare to the other vehicle 30 under this situation is included in the non-illuminated area.
 上記のような構成によれば、グレアを忌避する特定の被照明体が予期せずロービームパターンLP内に進入した場合に、第一低光度領域LA1の形成を通じてカットオフラインCLの形状を変更したりロービームパターンLPの配光状態を変更したりする制御が可能とされる。これにより、当該被照明体に与えうるグレアの抑制度を高めることができる。 According to the configuration as described above, when a specific object to be illuminated that avoids glare unexpectedly enters the low beam pattern LP, the shape of the cutoff line CL is changed through the formation of the first low-luminance area LA1. Control such as changing the light distribution state of the low beam pattern LP is possible. As a result, the degree of suppression of glare that can be given to the object to be illuminated can be increased.
 図7は、空間光変調器111の構成の別例を示している。本例に係る複数の光源111aの数と配置は、図8に例示されるようにそれらの一部が消灯あるいは輝度低減されることにより、初期形状のロービームパターンLPが形成されるように定められている。 FIG. 7 shows another example of the configuration of the spatial light modulator 111. FIG. The number and arrangement of the plurality of light sources 111a according to this example are determined so that the low beam pattern LP of the initial shape is formed by extinguishing or reducing the luminance of some of them as illustrated in FIG. ing.
 このような構成によれば、第一低光度領域LA1が形成される位置とその形状についての自由度を高めることができる。特に垂直基準線Vよりも右側に位置する領域におけるカットオフラインCLの変形自由度を高めることができる。 According to such a configuration, it is possible to increase the degree of freedom regarding the position and shape of the first low-luminance area LA1. In particular, the degree of freedom of deformation of the cutoff line CL in the region located on the right side of the vertical reference line V can be increased.
 図1に例示されるように、照明システム101は、第二光学系12を備えうる。第二光学系12は、補助ロービーム光源121を備えている。補助ロービーム光源121は、ランプ光源であってもよいし、半導体発光素子であってもよい。補助ロービーム光源121の点消灯制御は、制御装置14によりなされてもよいし、図示しない他の制御装置によりなされてもよい。 The illumination system 101 may comprise a second optical system 12, as illustrated in FIG. The second optical system 12 has an auxiliary low beam light source 121 . The auxiliary low beam light source 121 may be a lamp light source or a semiconductor light emitting device. The control of turning on/off the auxiliary low-beam light source 121 may be performed by the control device 14 or may be performed by another control device (not shown).
 第二光学系12は、補助ロービーム光源121から出射された光を用いて被照明領域Aに補助ロービームパターンSLPを形成するために必要な光学部品を適宜に備えている。光学部品の例としては、レンズ、リフレクタ、ミラー、シェードなどが挙げられる。第一光学系11と比較して光拡散性が強い光学部品が用いられることが好ましい。 The second optical system 12 appropriately includes optical components necessary for forming the auxiliary low beam pattern SLP in the illuminated area A using the light emitted from the auxiliary low beam light source 121 . Examples of optical components include lenses, reflectors, mirrors, shades, and the like. It is preferable to use an optical component having a stronger light diffusing property than that of the first optical system 11 .
 図9は、第二光学系12によって車両20の前方に形成される補助ロービームパターンSLPを例示している。補助ロービームパターンSLPは、ロービームパターンLPのカットオフラインCLよりも下方に位置する部分と少なくとも一部が重なるように形成される。 FIG. 9 illustrates an auxiliary low beam pattern SLP formed in front of the vehicle 20 by the second optical system 12. FIG. The auxiliary low beam pattern SLP is formed so as to at least partially overlap a portion of the low beam pattern LP located below the cutoff line CL.
 このような構成によれば、第一光学系11にカットオフラインCLの形状制御可能性を付与する代わりに配光範囲に制約を受けるような場合において、ロービームパターンLPの照明面積や光量の不足を補うことができる。これにより、ロービームによる照明性を損なうことなく、第一光学系11による照明リソースをグレア抑制のための配光制御に優先的に振り向けることができる。 According to such a configuration, in the case where the light distribution range is restricted instead of giving the first optical system 11 the shape controllability of the cutoff line CL, the shortage of the illumination area and the light amount of the low beam pattern LP can be prevented. can compensate. As a result, the lighting resources of the first optical system 11 can be preferentially allocated to the light distribution control for suppressing glare without impairing the low-beam illumination.
 第二光学系12に加えてあるいは代えて、図1に例示されるように、照明システム101は、第三光学系13を備えうる。第三光学系13は、ハイビーム光源131を備えている。ハイビーム光源131は、車両20の左右方向に配列された複数の光源を備えている。各光源は、ランプ光源であってもよいが、半導体発光素子であることが好ましい。第三光学系13は、ハイビーム光源131から出射された光を用いて被照明領域AにハイビームパターンHPを形成するために必要な光学部品を適宜に備えている。光学部品の例としては、レンズ、リフレクタ、ミラー、シェードなどが挙げられる。 In addition to or instead of the second optical system 12, the illumination system 101 may comprise a third optical system 13, as illustrated in FIG. The third optical system 13 has a high beam light source 131 . The high beam light source 131 has a plurality of light sources arranged in the left-right direction of the vehicle 20 . Each light source may be a lamp light source, but is preferably a semiconductor light emitting device. The third optical system 13 appropriately includes optical components necessary for forming the high beam pattern HP on the illuminated area A using the light emitted from the high beam light source 131 . Examples of optical components include lenses, reflectors, mirrors, shades, and the like.
 図10は、第三光学系13によって車両20の前方に形成されるハイビームパターンHPを例示している。ハイビームパターンHPは、被照明領域Aにおける少なくともロービームパターンLPのカットオフラインCLよりも上方に位置する部分を照明するように形成される。ハイビームパターンHPは、複数の第二サブ領域SA2を含んでいる。各第二サブ領域SA2は、ハイビーム光源131が備える複数の光源の一つに対応付けられている。 FIG. 10 illustrates a high beam pattern HP formed in front of the vehicle 20 by the third optical system 13. FIG. The high beam pattern HP is formed so as to illuminate at least a portion of the illuminated area A above the cutoff line CL of the low beam pattern LP. The high beam pattern HP includes a plurality of second sub-areas SA2. Each second sub-area SA2 is associated with one of the plurality of light sources included in high beam light source 131 .
 図1に例示されるように、制御装置14は、ハイビーム光源131の動作を制御する第二制御信号CT2を出力部143から出力するように構成されている。第二制御信号CT2は、アナログ信号であってもよいし、デジタル信号であってもよい。第二制御信号CT2がアナログ信号である場合、出力部143は、D/Aコンバータを含む適宜の変換回路を備える。 As illustrated in FIG. 1, the control device 14 is configured to output a second control signal CT2 for controlling the operation of the high beam light source 131 from the output section 143. The second control signal CT2 may be an analog signal or a digital signal. If the second control signal CT2 is an analog signal, the output section 143 has a suitable conversion circuit including a D/A converter.
 第二制御信号CT2は、ハイビーム光源131に含まれる複数の光源の各々の輝度を指定する情報を含んでいる。輝度ゼロが指定された場合、その光源は消灯動作を行なう。ハイビーム光源131は、第二制御信号CT2に基づいて、各光源の輝度を制御する。輝度を制御する手法は、PWM調光方式、直流調光方式などが適宜に採用されうる。 The second control signal CT2 includes information designating the luminance of each of the plurality of light sources included in the high beam light source 131. When zero luminance is specified, the light source performs a light-off operation. The high beam light source 131 controls the brightness of each light source based on the second control signal CT2. As a method for controlling luminance, a PWM dimming method, a DC dimming method, or the like can be appropriately adopted.
 具体的には、処理部142は、空間光変調器111によりロービームパターンLP内に形成された第一低光度領域LA1と少なくとも一部が重なり相対的に光度が低い第二低光度領域LA2をハイビームパターンHP内に形成させるようにハイビーム光源131を制御する第二制御信号CT2を、出力部143から出力するように構成されている。 Specifically, the processing unit 142 converts the second low-luminance area LA2, which at least partially overlaps with the first low-luminance area LA1 formed in the low-beam pattern LP by the spatial light modulator 111 and has relatively low luminance, into a high-beam pattern. A second control signal CT2 for controlling the high beam light source 131 so as to form the pattern HP is output from the output section 143 .
 例えば、ロービームパターンLPに含まれる複数の第一サブ領域SA1とハイビームパターンHPに含まれる複数の第二サブ領域SA2との位置関係は既知であるので、当該位置関係を示す情報が不図示の記憶部に予め格納されうる。処理部142は、第一制御信号CT1の出力に際して特定される第一低光度領域LA1の形成に関与する第一サブ領域SA1の位置を記憶部に格納された位置関係情報と照合することにより、第二低光度領域LA2の形成に関与する第二サブ領域SA2を決定できる。 For example, since the positional relationship between the plurality of first sub-regions SA1 included in the low beam pattern LP and the plurality of second sub-regions SA2 included in the high beam pattern HP is known, information indicating the positional relationship is stored in a memory (not shown). can be pre-stored in the part. The processing unit 142 compares the position of the first sub-area SA1 involved in the formation of the first low-luminance area LA1 specified when the first control signal CT1 is output with the positional relationship information stored in the storage unit. A second sub-area SA2 can be determined that participates in the formation of the second low intensity area LA2.
 図10に示される例においては、斜線が付された第二サブ領域SA2に対応する光源を消灯させるように第二制御信号CT2が構成されることにより、第二低光度領域LA2が形成されている。 In the example shown in FIG. 10, the second low-luminance area LA2 is formed by configuring the second control signal CT2 to turn off the light sources corresponding to the shaded second sub-area SA2. there is
 このような構成によれば、ハイビーム配光の実行時においても、ロービームパターンLP内に形成された第一低光度領域LA1によるグレアの抑制効果を損なわないようにできる。 According to such a configuration, it is possible to prevent the glare suppressing effect of the first low-luminance area LA1 formed in the low-beam pattern LP from being impaired even when high-beam light distribution is performed.
 これまで説明した様々な機能を有する制御装置14の処理部142は、汎用メモリと協働して動作する汎用マイクロプロセッサにより実現されうる。汎用マイクロプロセッサとしては、CPU、MPU、GPUが例示されうる。汎用メモリとしては、ROMやRAMが例示されうる。この場合、ROMには、当該機能を実現するコンピュータプログラムが記憶されうる。ROMは、コンピュータプログラムを記憶している非一時的なコンピュータ可読媒体の一例である。汎用マイクロプロセッサは、ROM上に記憶されたコンピュータプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上述した処理を実行する。上記のコンピュータプログラムは、汎用メモリにプリインストールされてもよいし、不図示の無線通信ネットワークを介して不図示の外部サーバ装置からダウンロードされた後、汎用メモリにインストールされてもよい。この場合、当該外部サーバ装置は、コンピュータプログラムを記憶している非一時的なコンピュータ可読媒体の一例である。 The processing unit 142 of the control device 14 having various functions described so far can be realized by a general-purpose microprocessor operating in cooperation with a general-purpose memory. A CPU, MPU, and GPU can be exemplified as a general-purpose microprocessor. Examples of general-purpose memory include ROM and RAM. In this case, the ROM can store a computer program that implements the function. ROM is an example of a non-transitory computer-readable medium that stores computer programs. The general-purpose microprocessor designates at least part of the computer program stored in the ROM, develops it on the RAM, and cooperates with the RAM to execute the above-described processing. The above computer program may be preinstalled in a general-purpose memory, or may be downloaded from an external server device (not shown) via a wireless communication network (not shown) and then installed in the general-purpose memory. In this case, the external server device is an example of a non-transitory computer-readable medium storing the computer program.
 処理部142は、マイクロコントローラ、ASIC、FPGAなどの上記のコンピュータプログラムを実行可能な専用集積回路によって実現されてもよい。この場合、当該専用集積回路に含まれる不揮発性メモリに上記のコンピュータプログラムがプリインストールされる。当該メモリは、コンピュータプログラムを記憶している非一時的なコンピュータ可読媒体の一例である。処理部142は、汎用マイクロプロセッサと専用集積回路の組合せによっても実現されうる。 The processing unit 142 may be implemented by a dedicated integrated circuit such as a microcontroller, ASIC, or FPGA that can execute the above computer programs. In this case, the computer program is pre-installed in a non-volatile memory included in the dedicated integrated circuit. The memory is an example of a non-transitory computer-readable medium that stores a computer program. Processing unit 142 may also be implemented by a combination of a general-purpose microprocessor and a dedicated integrated circuit.
 図11は、第二実施形態に係る照明システム102の機能構成を例示している。照明システム102は、第一実施形態に係る照明システム101と同様に図2に例示される車両20に搭載され、車両20よりも前方に位置する被照明領域Aを照明するように構成されている。 FIG. 11 illustrates the functional configuration of the lighting system 102 according to the second embodiment. The lighting system 102 is mounted on the vehicle 20 illustrated in FIG. 2 in the same manner as the lighting system 101 according to the first embodiment, and is configured to illuminate an illuminated area A located in front of the vehicle 20. .
 図11に例示されるように、照明システム102は、第一光学系15を備えている。第一光学系15は、上記の灯室内に配置されている。第一光学系15は、少なくとも一つの光源151を備えている。光源151は、ランプ光源であってもよいし、半導体発光素子であってもよい。半導体発光素子の例としては、発光ダイオード(LED)、レーザダイオード(LD)、EL素子などが挙げられる。 The illumination system 102 includes a first optical system 15, as illustrated in FIG. The first optical system 15 is arranged in the lamp chamber. The first optical system 15 has at least one light source 151 . The light source 151 may be a lamp light source or a semiconductor light emitting device. Examples of semiconductor light emitting devices include light emitting diodes (LEDs), laser diodes (LDs), and EL devices.
 第一光学系15は、光源151から出射された光を用いて被照明領域Aに第一配光パターンP1を形成するために必要な光学部品を適宜に備えている。光学部品の例としては、レンズ、リフレクタ、ミラー、シェードなどが挙げられる。 The first optical system 15 appropriately includes optical components necessary for forming the first light distribution pattern P1 in the illuminated area A using the light emitted from the light source 151. Examples of optical components include lenses, reflectors, mirrors, shades, and the like.
 照明システム102は、第二光学系16を備えている。第二光学系16は、上記の灯室内に配置されている。第二光学系16は、空間光変調器161を備えている。第二光学系16は、空間光変調器161が備えている光源161aから出射された光を用いて第二配光パターンP2を形成するために必要な光学部品を適宜に備えている。光学部品の例としては、レンズ、リフレクタ、ミラー、シェードなどが挙げられる。第二配光パターンP2は、第一配光パターンP1と少なくとも一部が重なるように被照明領域Aに形成される。 The illumination system 102 has a second optical system 16 . The second optical system 16 is arranged inside the lamp chamber. The second optical system 16 has a spatial light modulator 161 . The second optical system 16 appropriately includes optical components necessary to form the second light distribution pattern P2 using the light emitted from the light source 161a provided in the spatial light modulator 161. FIG. Examples of optical components include lenses, reflectors, mirrors, shades, and the like. The second light distribution pattern P2 is formed in the illuminated region A so as to at least partially overlap the first light distribution pattern P1.
 図12に例示されるように、本例に係る空間光変調器161は、複数の光源161aを備えている。複数の光源161aは、マトリクス状に配列されている。各光源161aは、半導体発光素子により実現されている。各光源161aの輝度は、他の光源161aから独立して制御されうるように構成されている。 As illustrated in FIG. 12, the spatial light modulator 161 according to this example includes a plurality of light sources 161a. The plurality of light sources 161a are arranged in a matrix. Each light source 161a is realized by a semiconductor light emitting device. The brightness of each light source 161a is configured to be controlled independently of the other light sources 161a.
 図13は、図12に例示された空間光変調器161により車両20の前方に形成される第二配光パターンP2を例示している。符号Hは、第二光学系16における水平基準線を表している。符号Vは、第二光学系16における垂直基準線を表している。水平基準線と垂直基準線とは直交している。水平基準線と垂直基準線の交点は、第二光学系16における光軸に対応している。 FIG. 13 illustrates the second light distribution pattern P2 formed in front of the vehicle 20 by the spatial light modulator 161 illustrated in FIG. Symbol H represents a horizontal reference line in the second optical system 16 . A symbol V represents a vertical reference line in the second optical system 16 . The horizontal reference line and the vertical reference line are orthogonal. The intersection of the horizontal reference line and vertical reference line corresponds to the optical axis of the second optical system 16 .
 第二配光パターンP2は、複数のサブ領域SAを含んでいる。各サブ領域SAは、空間光変調器161が備える複数の光源161aの一つに対応付けられている。図13に例示された第二配光パターンP2の形状は、全ての光源161aが点灯された状態に対応している。 The second light distribution pattern P2 includes a plurality of sub-areas SA. Each sub-area SA is associated with one of the plurality of light sources 161a included in the spatial light modulator 161. FIG. The shape of the second light distribution pattern P2 illustrated in FIG. 13 corresponds to a state in which all the light sources 161a are turned on.
 図11に例示されるように、照明システム102は、制御装置17を備えている。制御装置17は、光源151と空間光変調器161の各々の動作を制御するように構成されている。制御装置17は、灯室内に配置されてもよいし、灯室を区画するハウジングの外面に支持されてもよい。あるいは、制御装置17は、前照灯ユニットから独立して車両20における適宜の箇所に配置されうる。 As illustrated in FIG. 11, the lighting system 102 includes a control device 17. Controller 17 is configured to control the operation of each of light source 151 and spatial light modulator 161 . The control device 17 may be arranged in the lamp chamber, or may be supported on the outer surface of the housing that defines the lamp chamber. Alternatively, the control device 17 can be arranged at an appropriate location on the vehicle 20 independently of the headlight unit.
 具体的には、制御装置17は、受付部171を備えている。受付部171は、車両20に搭載された通信ネットワークを通じて指示情報ISを受け付けるハードウェアインタフェースとして構成されている。指示情報ISは、第一配光パターンP1の形成要否を示す情報を含んでいる。指示情報ISは、車両20の乗員による指示入力に基づいて生成されてもよいし、車両20に搭載されたセンサによる周辺環境の検出結果に基づいて生成されてもよい。センサの例としては、LiDAR(Light Detection and Ranging)センサ、カメラ、ミリ波レーダなどが挙げられる。 Specifically, the control device 17 includes a reception unit 171 . The reception unit 171 is configured as a hardware interface that receives the instruction information IS through a communication network mounted on the vehicle 20 . The instruction information IS includes information indicating whether or not to form the first light distribution pattern P1. The instruction information IS may be generated based on an instruction input by an occupant of the vehicle 20, or may be generated based on a detection result of the surrounding environment by a sensor mounted on the vehicle 20. FIG. Examples of sensors include LiDAR (Light Detection and Ranging) sensors, cameras, millimeter wave radars, and the like.
 指示情報ISは、アナログデータの形態であってもよいし、デジタルデータの形態であってもよい。指示情報ISがアナログデータの形態である場合、受付部171は、A/Dコンバータを含む適宜の変換回路を備える。 The instruction information IS may be in the form of analog data or digital data. If the instruction information IS is in the form of analog data, the reception unit 171 has an appropriate conversion circuit including an A/D converter.
 制御装置17は、処理部172と出力部173を備えている。処理部172は、受付部171により受け付けられた指示情報ISに基づいて、光源151の点消灯を切り替える第一制御信号CT1を出力部173から出力するように構成されている。すなわち、指示情報ISが第一配光パターンP1の形成の必要を示していれば、光源151を点灯させる第一制御信号CT1が出力される。指示情報ISが第一配光パターンP1の形成の不要を示していれば、光源151を消灯させる第一制御信号CT1が出力される。 The control device 17 includes a processing section 172 and an output section 173 . The processing unit 172 is configured to output, from the output unit 173, a first control signal CT1 for switching on/off of the light source 151 based on the instruction information IS received by the receiving unit 171. FIG. That is, if the instruction information IS indicates the necessity of forming the first light distribution pattern P1, the first control signal CT1 for turning on the light source 151 is output. If the instruction information IS indicates that the formation of the first light distribution pattern P1 is unnecessary, the first control signal CT1 for turning off the light source 151 is output.
 出力部173は、ハードウェアインタフェースとして構成されている。第一制御信号CT1は、アナログ信号であってもよいし、デジタル信号であってもよい。第一制御信号CT1がアナログ信号である場合、出力部173は、D/Aコンバータを含む適宜の変換回路を備える。 The output unit 173 is configured as a hardware interface. The first control signal CT1 may be an analog signal or a digital signal. If the first control signal CT1 is an analog signal, the output section 173 comprises a suitable conversion circuit including a D/A converter.
 図14は、光源151が点灯されることによって第一配光パターンP1が形成された状態を例示している。第一配光パターンP1と第二配光パターンP2は、部分的に重なる領域を有している。当該領域においては第一光学系15から出射された光と第二光学系16から出射された光が重なるので、光度が高くなる。 FIG. 14 illustrates a state in which the first light distribution pattern P1 is formed by turning on the light source 151. FIG. The first light distribution pattern P1 and the second light distribution pattern P2 have a partially overlapping region. Since the light emitted from the first optical system 15 and the light emitted from the second optical system 16 overlap in this area, the luminous intensity increases.
 図11に例示されるように、制御装置17の処理部172は、空間光変調器161の動作を制御する第二制御信号CT2を出力部173から出力するように構成されている。第二制御信号CT2は、アナログ信号であってもよいし、デジタル信号であってもよい。第二制御信号CT2がアナログ信号である場合、出力部173は、D/Aコンバータを含む適宜の変換回路を備える。 As illustrated in FIG. 11 , the processing unit 172 of the control device 17 is configured to output from the output unit 173 the second control signal CT2 for controlling the operation of the spatial light modulator 161 . The second control signal CT2 may be an analog signal or a digital signal. If the second control signal CT2 is an analog signal, the output section 173 has an appropriate conversion circuit including a D/A converter.
 第二制御信号CT2は、各光源161aの輝度を指定する情報を含んでいる。輝度ゼロが指定された場合、その光源161aは消灯動作を行なう。空間光変調器161は、第二制御信号CT2に基づいて、各光源161aの輝度を制御する。輝度を制御する手法は、PWM調光方式、直流調光方式などが適宜に採用されうる。 The second control signal CT2 includes information designating the brightness of each light source 161a. When zero luminance is specified, the light source 161a performs a light-off operation. The spatial light modulator 161 controls the brightness of each light source 161a based on the second control signal CT2. As a method for controlling luminance, a PWM dimming method, a DC dimming method, or the like can be appropriately adopted.
 処理部172は、第一配光パターンP1と第二配光パターンP2が重なる領域内に相対的に光度の低い低光度領域LAを形成させるように空間光変調器161を制御する第二制御信号CT2を出力部173から出力するように構成されている。具体的には、処理部172は、低光度領域LAを形成しようとする位置に対応付けられた空間光変調器161の複数の光源161aの少なくとも一つを消灯させる第二制御信号CT2を出力部173から出力する。 The processing unit 172 generates a second control signal for controlling the spatial light modulator 161 so as to form a low luminous intensity area LA having relatively low luminous intensity in the area where the first light distribution pattern P1 and the second light distribution pattern P2 overlap. It is configured to output CT2 from the output unit 173 . Specifically, the processing unit 172 outputs a second control signal CT2 that turns off at least one of the plurality of light sources 161a of the spatial light modulator 161 associated with the position where the low luminous intensity area LA is to be formed. Output from 173.
 図15に示される例においては、斜線が付されたサブ領域SAに対応する光源161aを消灯させるように第二制御信号CT2が構成されることにより、低光度領域LAが形成されている。 In the example shown in FIG. 15, the low luminous intensity area LA is formed by configuring the second control signal CT2 to turn off the light sources 161a corresponding to the shaded sub-area SA.
 相対的に光度の低い領域を形成できるのであれば、第二制御信号CT2は、光源161aを消灯させなくてもよい。すなわち、少なくとも一つの光源161aの輝度が低下されることによっても、低光度領域LAが形成されうる。 The second control signal CT2 does not have to turn off the light source 161a as long as an area with relatively low luminous intensity can be formed. That is, the low luminance area LA may be formed by reducing the luminance of at least one light source 161a.
 第二制御信号CT2は、第一配光パターンP1の点灯時には自動的に低光度領域LAの形成がなされるように構成されてもよいし、指示情報ISに含まれる低光度領域LAの形成指示に基づくように構成されてもよい。 The second control signal CT2 may be configured such that the low-luminance area LA is automatically formed when the first light distribution pattern P1 is turned on, or an instruction to form the low-luminance area LA included in the instruction information IS. may be configured to be based on
 上記のような構成によれば、第一配光パターンP1と第二配光パターンP2を重ねることによって光度が高められた領域内に、相対的に光度の低い領域を局所的に形成できる。すなわち、遠方までの視認性が高められた配光領域を形成しつつも、当該配光領域内にグレアの抑制度が局所的に高められた低光度領域LAを設定できる。低光度領域LAの位置や大きさは空間光変調器161を用いることにより容易に変更可能であるので、照明システム102における配光設計の自由度を高めることができる。 According to the above configuration, it is possible to locally form a region with relatively low luminous intensity in the region where luminous intensity is increased by overlapping the first light distribution pattern P1 and the second light distribution pattern P2. That is, it is possible to form a light distribution area with enhanced visibility to a long distance and set a low luminous intensity area LA in which the degree of glare suppression is locally enhanced within the light distribution area. Since the position and size of the low luminous intensity area LA can be easily changed by using the spatial light modulator 161, the degree of freedom of light distribution design in the illumination system 102 can be increased.
 図15に例示されるように、第一配光パターンP1と第二配光パターンP2が重なる領域は、第二光学系16の光軸(水平基準線Hと垂直基準線Vの交点)を含んでいる。低光度領域LAは、第二光学系16の光軸を含むように形成されている。 As illustrated in FIG. 15, the region where the first light distribution pattern P1 and the second light distribution pattern P2 overlap includes the optical axis of the second optical system 16 (the intersection of the horizontal reference line H and the vertical reference line V). I'm in. The low luminous intensity area LA is formed so as to include the optical axis of the second optical system 16 .
 光学系の光軸付近は、一般的に配光パターンの光度が高くなる傾向にある。したがって、第一配光パターンP1と第二配光パターンP2が重なることによる光度の総和もまた高くなる傾向にある。そのような領域に低光度領域LAを形成することにより、局所的なグレア抑制効果を顕著にすることができる。 In general, the luminous intensity of the light distribution pattern tends to be high near the optical axis of the optical system. Therefore, the sum of the luminous intensity also tends to increase due to the overlapping of the first light distribution pattern P1 and the second light distribution pattern P2. By forming the low luminous intensity area LA in such an area, the local glare suppressing effect can be enhanced.
 したがって、低光度領域LAは、第一配光パターンP1の光軸(不図示)を含むように形成されてもよいし、第一配光パターンP1の光軸と第二配光パターンP2の光軸の双方を含むように形成されてもよい。 Therefore, the low luminous intensity area LA may be formed so as to include the optical axis (not shown) of the first light distribution pattern P1, or the optical axis of the first light distribution pattern P1 and the light of the second light distribution pattern P2. It may be formed to include both axes.
 制御装置14は、第一配光パターンP1が形成されていない状況下で空間光変調器161における特定の光源161aを消灯させることにより、図16に例示されるロービームパターンLPを第二配光パターンP2として形成できるように構成されうる。 The controller 14 converts the low beam pattern LP illustrated in FIG. It can be configured so that it can be formed as P2.
 ロービームパターンLPは、被照明領域Aのうち車両20から比較的近距離に位置する部分に形成されることを意図した配光パターンである。ロービームパターンLPの上端において照明領域と非照明領域の境界を画定するカットオフラインCLの形状は、車両20の前方に位置する他車両30にグレアを与えないように定められている。 The low beam pattern LP is a light distribution pattern that is intended to be formed in a portion of the illuminated area A that is relatively close to the vehicle 20 . The shape of the cutoff line CL that defines the boundary between the illuminated area and the non-illuminated area at the upper end of the low beam pattern LP is determined so as not to give glare to another vehicle 30 positioned in front of the vehicle 20 .
 図16に示される例においては、斜線が付されたサブ領域SAに対応する光源161aを消灯させるように第二制御信号CT2が構成されることにより、ロービームパターンLPが形成されている。 In the example shown in FIG. 16, the low beam pattern LP is formed by configuring the second control signal CT2 to turn off the light sources 161a corresponding to the hatched sub-areas SA.
 なお、カットオフラインCLよりも情報に位置するサブ領域SAに対応付けられた光源161aは、必ずしも消灯されることを要しない。車両20の前方に位置する他車両30や歩行者にグレアを与えない程度の輝度で点灯された光源161aにより照明される領域もまた、上記の「非照明領域」の意味に含まれる。 It should be noted that the light source 161a associated with the sub-area SA positioned closer to the information than the cutoff line CL does not necessarily need to be turned off. A region illuminated by the light source 161a illuminated at a brightness that does not give glare to other vehicles 30 and pedestrians positioned in front of the vehicle 20 is also included in the meaning of the above-mentioned "non-illuminated region".
 すなわち、制御装置17は、第二制御信号CT2の構成を適宜に変更することにより、上端にカットオフラインCLを有するロービームパターンLPを第二配光パターンP2として形成する第一状態と、カットオフラインCLよりも上方に位置する部分にも配光がなされるように第二配光パターンP2を形成する第二状態とを切り替え可能に構成される。この場合、第二状態は、いわゆるハイビーム配光がなされている状態とみなされうる。第一状態と第二状態の間の切り替えは、第一配光パターンP1を形成する光源151の点消灯に連動して行なわれてもよいし、指示情報ISに含まれる指示に基づいて行なわれてもよい。 That is, the control device 17 appropriately changes the configuration of the second control signal CT2 to form the first state in which the low beam pattern LP having the cutoff line CL at the upper end is formed as the second light distribution pattern P2, and the cutoff line CL It is configured to be switchable between a second state in which the second light distribution pattern P2 is formed so that light is distributed also to a portion located above. In this case, the second state can be regarded as a state in which so-called high beam light distribution is performed. The switching between the first state and the second state may be performed in conjunction with turning on/off the light source 151 forming the first light distribution pattern P1, or may be performed based on an instruction included in the instruction information IS. may
 このような構成によれば、配光パターンの形状変更に関して高い自由度を有する空間光変調器161の利点を生かし、第二光学系16をロービーム配光用光学系とハイビーム配光用光学系の双方に利用できる。したがって、照明システム102の大型化や複雑化を抑制できる。 According to such a configuration, the second optical system 16 can be divided into a low beam distribution optical system and a high beam distribution optical system, taking advantage of the spatial light modulator 161 having a high degree of freedom in changing the shape of the light distribution pattern. Available for both. Therefore, it is possible to prevent the lighting system 102 from becoming large and complicated.
 なお、図14と図16の対比から明らかなように、第一配光パターンP1は、第二配光パターンP2においてカットオフラインCLになりうる部分よりも上方に位置する領域と重なるように形成される。したがって、第二配光パターンP2がハイビーム配光に利用される場合における遠方の視認性をより高めることができる。 As is clear from the comparison between FIG. 14 and FIG. 16, the first light distribution pattern P1 is formed so as to overlap a region located above the portion that can be the cutoff line CL in the second light distribution pattern P2. be. Therefore, when the second light distribution pattern P2 is used for high-beam light distribution, visibility at a distance can be further improved.
 これまで説明した様々な機能を有する制御装置17の処理部172は、汎用メモリと協働して動作する汎用マイクロプロセッサにより実現されうる。汎用マイクロプロセッサとしては、CPU、MPU、GPUが例示されうる。汎用メモリとしては、ROMやRAMが例示されうる。この場合、ROMには、当該機能を実現するコンピュータプログラムが記憶されうる。ROMは、コンピュータプログラムを記憶している非一時的なコンピュータ可読媒体の一例である。汎用マイクロプロセッサは、ROM上に記憶されたコンピュータプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上述した処理を実行する。上記のコンピュータプログラムは、汎用メモリにプリインストールされてもよいし、不図示の無線通信ネットワークを介して不図示の外部サーバ装置からダウンロードされた後、汎用メモリにインストールされてもよい。この場合、当該外部サーバ装置は、コンピュータプログラムを記憶している非一時的なコンピュータ可読媒体の一例である。 The processing unit 172 of the control device 17 having various functions described so far can be realized by a general-purpose microprocessor operating in cooperation with a general-purpose memory. A CPU, MPU, and GPU can be exemplified as a general-purpose microprocessor. Examples of general-purpose memory include ROM and RAM. In this case, the ROM can store a computer program that implements the function. ROM is an example of a non-transitory computer-readable medium that stores computer programs. The general-purpose microprocessor designates at least part of the computer program stored in the ROM, develops it on the RAM, and cooperates with the RAM to execute the above-described processing. The above computer program may be preinstalled in a general-purpose memory, or may be downloaded from an external server device (not shown) via a wireless communication network (not shown) and then installed in the general-purpose memory. In this case, the external server device is an example of a non-transitory computer-readable medium storing the computer program.
 処理部172は、マイクロコントローラ、ASIC、FPGAなどの上記のコンピュータプログラムを実行可能な専用集積回路によって実現されてもよい。この場合、当該専用集積回路に含まれる不揮発性メモリに上記のコンピュータプログラムがプリインストールされる。当該メモリは、コンピュータプログラムを記憶している非一時的なコンピュータ可読媒体の一例である。処理部172は、汎用マイクロプロセッサと専用集積回路の組合せによっても実現されうる。 The processing unit 172 may be implemented by a dedicated integrated circuit such as a microcontroller, ASIC, or FPGA that can execute the above computer programs. In this case, the computer program is pre-installed in a non-volatile memory included in the dedicated integrated circuit. The memory is an example of a non-transitory computer-readable medium that stores a computer program. Processing unit 172 may also be implemented by a combination of a general-purpose microprocessor and a dedicated integrated circuit.
 これまで説明した各構成は、本開示の理解を容易にするための例示にすぎない。各構成は、適宜の変更や他の構成との組合せがなされうる。 Each configuration described so far is merely an example to facilitate understanding of the present disclosure. Each configuration can be appropriately modified or combined with other configurations.
 第一実施形態に係る照明システム101においては、空間光変調器111は、マトリクス状に配置された複数の光源111aを備えている。制御装置14は、複数の光源111aの少なくとも一つの輝度を低下させることにより第一低光度領域LA1を形成している。このような構成によれば、比較的簡易な光学系で第一低光度領域LA1の位置と形状に係る高い制御自由度を得ることができるので、第一光学系11の大型化や複雑化を抑制できる。 In the lighting system 101 according to the first embodiment, the spatial light modulator 111 has a plurality of light sources 111a arranged in a matrix. The control device 14 forms the first low-luminance area LA1 by reducing the brightness of at least one of the plurality of light sources 111a. With such a configuration, it is possible to obtain a high degree of control freedom regarding the position and shape of the first low-luminance area LA1 with a relatively simple optical system. can be suppressed.
 しかしながら、第一低光度領域LA1を形成可能であれば、他の空間変調方式が適宜に採用されうる。一例として、少なくとも一つの光源から出射された光の進行方向を走査光学系で変更しつつロービームパターンLPを形成し、所望の位置で光源の輝度を低下させることにより第一低光度領域LA1が形成されうる。走査光学系に代えてデジタルマイクロミラー素子が用いられてもよい。別例として、液晶装置の少なくとも一つの画素をロービームパターンLPに含まれる複数の第一サブ領域SA1に対応付け、当該画素の輝度を低下させることによって第一低光度領域LA1を形成してもよい。液晶装置の方式は、透過型であってもよいし、反射型であってもよい。 However, as long as the first low-luminance area LA1 can be formed, other spatial modulation schemes can be adopted as appropriate. As an example, the first low-luminance area LA1 is formed by forming a low-beam pattern LP while changing the traveling direction of light emitted from at least one light source with a scanning optical system, and reducing the luminance of the light source at a desired position. can be A digital micromirror device may be used instead of the scanning optical system. As another example, at least one pixel of the liquid crystal device may be associated with a plurality of first sub-areas SA1 included in the low beam pattern LP, and the luminance of the pixel may be reduced to form the first low-luminance area LA1. . The system of the liquid crystal device may be a transmissive type or a reflective type.
 第一実施形態に係る照明システム101においては、第二光学系12と第三光学系13の各々は、第一光学系11と同じ灯室内に配置されてもよいし、別の灯室内に配置されてもよい。 In the illumination system 101 according to the first embodiment, each of the second optical system 12 and the third optical system 13 may be arranged in the same lamp chamber as the first optical system 11, or may be arranged in a separate lamp chamber. may be
 第二実施形態に係る照明システム102においては、空間光変調器161は、マトリクス状に配置された複数の光源161aを備えている。制御装置17は、複数の光源161aの少なくとも一つの輝度を低下させることにより低光度領域LAを形成している。このような構成によれば、比較的簡易な光学系で低光度領域LAの位置と形状に係る高い制御自由度を得ることができるので、第二光学系16の大型化や複雑化を抑制できる。 In the illumination system 102 according to the second embodiment, the spatial light modulator 161 has a plurality of light sources 161a arranged in a matrix. The control device 17 forms the low luminous intensity area LA by reducing the luminance of at least one of the plurality of light sources 161a. With such a configuration, it is possible to obtain a high degree of control freedom regarding the position and shape of the low-luminance area LA with a relatively simple optical system. .
 しかしながら、低光度領域LAを形成可能であれば、他の空間変調方式が適宜に採用されうる。一例として、少なくとも一つの光源から出射された光の進行方向を走査光学系で変更しつつロービームパターンLPを形成し、所望の位置で光源の輝度を低下させることにより低光度領域LAが形成されうる。走査光学系に代えてデジタルマイクロミラー素子が用いられてもよい。別例として、液晶装置の少なくとも一つの画素をロービームパターンLPに含まれる複数のサブ領域SAに対応付け、当該画素の輝度を低下させることによって低光度領域LAを形成してもよい。液晶装置の方式は、透過型であってもよいし、反射型であってもよい。 However, other spatial modulation schemes can be appropriately employed as long as the low luminous intensity area LA can be formed. As an example, the low-luminance area LA can be formed by forming a low-beam pattern LP while changing the traveling direction of light emitted from at least one light source with a scanning optical system, and reducing the luminance of the light source at a desired position. . A digital micromirror device may be used instead of the scanning optical system. Alternatively, at least one pixel of the liquid crystal device may be associated with a plurality of sub-areas SA included in the low-beam pattern LP, and the low-luminance area LA may be formed by reducing the brightness of the pixel. The system of the liquid crystal device may be a transmissive type or a reflective type.
 第一実施形態に係る照明システム101と第二実施形態に係る照明システム102は、四つの車輪を備えた車両20に搭載されている。しかしながら、照明システム101と照明システム102は、自動二輪車両や自動三輪車両にも搭載されうる。自動二輪車両や自動三輪車両の形式は、鞍乗型、スクータ型、立ち乗り型のいずれであってもよい。自動二輪車両や自動三輪車両もまた移動体の一例である。照明システム101と照明システム102は、四つ以上の車輪を備えた路面鉄道車両などに搭載されてもよい。路面鉄道車両もまた移動体の一例である。移動体の前部に搭載される照明システム101と照明システム102の数は、移動体の仕様に応じて適宜に定められうる。 The lighting system 101 according to the first embodiment and the lighting system 102 according to the second embodiment are mounted on a vehicle 20 having four wheels. However, lighting system 101 and lighting system 102 may also be mounted on a two-wheeled motor vehicle or a three-wheeled motor vehicle. The type of the motorcycle or three-wheeled vehicle may be a straddle type, a scooter type, or a standing type. Motorcycles and three-wheeled vehicles are also examples of moving objects. Lighting system 101 and lighting system 102 may be mounted on a tram vehicle with four or more wheels, or the like. A street rail vehicle is also an example of a mobile object. The number of lighting systems 101 and lighting systems 102 mounted on the front portion of the moving body can be appropriately determined according to the specifications of the moving body.
 本開示の一部を構成するものとして、2021年10月20日に提出された日本国特許出願2021-171560号、および2021年10月20日に提出された日本国特許出願2021-171561号の内容が援用される。 As part of the present disclosure, Japanese Patent Application No. 2021-171560 filed on October 20, 2021 and Japanese Patent Application No. 2021-171561 filed on October 20, 2021 Content is incorporated.

Claims (14)

  1.  移動体に搭載されて当該移動体よりも前方に位置する被照明領域を照明する照明システムであって、
     少なくとも一つの光源を備えた空間光変調器を含んでおり、当該空間光変調器から出射された光を用いて上端にカットオフラインを有するロービームパターンを前記被照明領域に形成する第一光学系と、
     前記被照明領域内に検出された特定の被照明体の位置を示す検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ当該被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する制御装置と、
    を備えている、
    照明システム。
    A lighting system that is mounted on a moving body and illuminates an area to be illuminated located in front of the moving body,
    a first optical system including a spatial light modulator having at least one light source, and forming a low beam pattern having a cut-off line at the upper end in the area to be illuminated using light emitted from the spatial light modulator; ,
    forming a first low-luminance region having a relatively low luminous intensity within the low beam pattern based on detection information indicating the position of a specific object to be illuminated detected within the region to be illuminated, and forming the object and the object to be illuminated; a control device for controlling the operation of the spatial light modulator so as to change at least one of the position and size of the first low-luminance region according to the position relative to the moving object;
    is equipped with
    lighting system.
  2.  補助ロービーム光源を含んでおり、当該補助ロービーム光源から出射された光を用いて前記ロービームパターンにおける前記カットオフラインよりも下方に位置する部分と少なくとも一部が重なるように補助ロービームパターンを形成する第二光学系を備えている、
    請求項1に記載の照明システム。
    A second low-beam pattern including an auxiliary low-beam light source, and using light emitted from the auxiliary low-beam light source to form an auxiliary low-beam pattern such that at least a portion of the low-beam pattern overlaps a portion of the low-beam pattern located below the cutoff line. with optics,
    10. The lighting system of claim 1.
  3.  ハイビーム光源を含んでおり、当該ハイビーム光源から出射された光を用いて前記被照明領域における少なくとも前記カットオフラインよりも上方に位置する部分を照明するようにハイビームパターンを形成する第三光学系を備えており、
     前記制御装置は、少なくとも一部が前記第一低光度領域と重なり相対的に光度が低い第二低光度領域を、前記ハイビームパターン内に形成させるように前記第三光学系を制御する、
    請求項1または2に記載の照明システム。
    a third optical system that includes a high beam light source and uses light emitted from the high beam light source to form a high beam pattern so as to illuminate at least a portion of the region to be illuminated above the cutoff line; and
    The control device controls the third optical system so as to form a second low-luminance region, which at least partially overlaps with the first low-luminance region and has relatively low luminosity, within the high beam pattern.
    3. A lighting system according to claim 1 or 2.
  4.  前記空間光変調器は、マトリクス状に配置された複数の光源を備えており、
     前記制御装置は、前記複数の光源の少なくとも一つの輝度を低下させることにより前記第一低光度領域を形成する、
    請求項1から3のいずれか一項に記載の照明システム。
    The spatial light modulator comprises a plurality of light sources arranged in a matrix,
    The control device forms the first low-luminance region by reducing the brightness of at least one of the plurality of light sources.
    4. A lighting system according to any one of claims 1-3.
  5.  移動体に搭載される制御装置であって、
     少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成する処理部と、
     前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付ける受付部と、
    を備えており、
     前記処理部は、前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する、
    制御装置。
    A control device mounted on a mobile object,
    A processing unit that emits light to a spatial light modulator having at least one light source, and uses the light to form a low beam pattern having a cutoff line at the upper end in an illuminated area located in front of the moving object. and,
    a receiving unit that receives detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
    and
    The processing unit forms a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and the first low-luminance region according to the relative position between the object to be illuminated and the moving object. controlling operation of the spatial light modulator to vary at least one of the location and size of the low intensity region;
    Control device.
  6.  移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムが記憶された非一時的なコンピュータ可読媒体であって、
     前記コンピュータプログラムが実行されることにより、前記制御装置は、
      少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成し、
      前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付け、
      前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する、
    非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a computer program executable by a processing unit of a control device mounted on a mobile body,
    By executing the computer program, the control device
    A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light,
    Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
    forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; controlling operation of the spatial light modulator to vary at least one of and magnitude of
    A non-transitory computer-readable medium.
  7.  移動体に搭載されて当該移動体よりも前方に位置する被照明領域を照明する照明システムであって、
     少なくとも一つの光源を含んでおり、当該光源から出射された光を用いて前記被照明領域に第一配光パターンを形成する第一光学系と、
     少なくとも一つの光源を備えた空間光変調器を含んでおり、当該空間光変調器から出射された光を用いて前記第一配光パターンと少なくとも一部が重なるように第二配光パターンを形成する第二光学系と、
     前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する制御装置と、
    を備えている、
    照明システム。
    A lighting system that is mounted on a moving body and illuminates an area to be illuminated located in front of the moving body,
    a first optical system that includes at least one light source and uses light emitted from the light source to form a first light distribution pattern in the area to be illuminated;
    A spatial light modulator having at least one light source is included, and light emitted from the spatial light modulator is used to form a second light distribution pattern that at least partially overlaps with the first light distribution pattern. a second optical system that
    a control device for controlling the operation of the spatial light modulator so as to form a low luminous intensity region having relatively low luminous intensity in a region where the first light distribution pattern and the second light distribution pattern overlap;
    is equipped with
    lighting system.
  8.  前記低光度領域は、前記第一光学系の光軸と前記第二光学系の光軸の少なくとも一方と重なる位置に形成される、
    請求項7に記載の照明システム。
    The low-luminance region is formed at a position overlapping at least one of the optical axis of the first optical system and the optical axis of the second optical system,
    8. A lighting system according to claim 7.
  9.  前記制御装置は、上端にカットオフラインを有するロービームパターンを前記第二配光パターンとして形成する第一状態と、当該カットオフラインよりも上方に位置する部分にも配光がなされるように前記第二配光パターンを形成する第二状態とのいずれかをとるように前記空間光変調器を制御可能であり、
     前記第一配光パターンは、前記カットオフラインよりも上方に位置する部分と少なくとも一部が重なるように形成される、
    請求項7または8に記載の照明システム。
    The control device has a first state in which a low beam pattern having a cutoff line at the upper end is formed as the second light distribution pattern, and a second state in which light is distributed to a portion located above the cutoff line. the spatial light modulator is controllable to take either a second state that forms a light distribution pattern;
    The first light distribution pattern is formed so as to at least partially overlap with a portion located above the cutoff line.
    9. A lighting system according to claim 7 or 8.
  10.  前記空間光変調器は、マトリクス状に配置された複数の光源を含んでおり、
     前記制御装置は、前記複数の光源の少なくとも一つの輝度を低下させることにより前記低光度領域を形成する、
    請求項7から9のいずれか一項に記載の照明システム。
    The spatial light modulator includes a plurality of light sources arranged in a matrix,
    The control device forms the low-luminance region by reducing the brightness of at least one of the plurality of light sources.
    10. A lighting system according to any one of claims 7-9.
  11.  移動体に搭載される制御装置であって、
     少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、別の光源から出射された光を用いて前記移動体よりも前方に位置する被照明領域に形成された第一配光パターンと少なくとも一部が重なるように、当該空間光変調器から出射された光を用いて第二配光パターンを形成する処理部を備えており、
     前記処理部は、前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する、
    制御装置。
    A control device mounted on a mobile body,
    A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. a processing unit that forms a second light distribution pattern using light emitted from the spatial light modulator so that at least a part of the pattern overlaps,
    The processing unit controls the operation of the spatial light modulator so as to form a low luminous intensity region with relatively low luminous intensity in the region where the first light distribution pattern and the second light distribution pattern overlap. do,
    Control device.
  12.  移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムが記憶された非一時的なコンピュータ可読媒体であって、
     前記コンピュータプログラムが実行されることにより、前記制御装置は、
      少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成し、
      前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付け、
      前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する、
    非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a computer program executable by a processing unit of a control device mounted on a mobile body,
    By executing the computer program, the control device
    A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light,
    Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
    forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; controlling operation of the spatial light modulator to vary at least one of and magnitude of
    A non-transitory computer-readable medium.
  13.  移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムであって、
     実行されることにより、前記制御装置は、
      少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、当該光を用いて上端にカットオフラインを有するロービームパターンを前記移動体よりも前方に位置する被照明領域に形成し、
      前記被照明領域内に検出された特定の被照明体の位置を示す検出情報を受け付け、
      前記検出情報に基づいて前記ロービームパターン内に相対的に光度の低い第一低光度領域を形成させ、かつ前記被照明体と前記移動体との相対位置に応じて前記第一低光度領域の位置と大きさの少なくとも一方を変化させるように、前記空間光変調器の動作を制御する、
    コンピュータプログラム。
    A computer program executable by a processing unit of a control device mounted on a mobile object,
    By being executed, the control device
    A spatial light modulator having at least one light source emits light to form a low beam pattern having a cut-off line at the upper end in an illuminated region located in front of the moving object using the light,
    Receiving detection information indicating the position of a specific object to be illuminated detected within the illuminated area;
    forming a first low-luminance region having relatively low luminosity in the low-beam pattern based on the detection information, and positioning the first low-luminance region according to a relative position between the object to be illuminated and the moving object; controlling operation of the spatial light modulator to vary at least one of and magnitude of
    computer program.
  14.  移動体に搭載される制御装置の処理部により実行可能なコンピュータプログラムであって、
     実行されることにより、前記制御装置は、
      少なくとも一つの光源を備えた空間光変調器に光を出射させることにより、別の光源から出射された光を用いて前記移動体よりも前方に位置する被照明領域に形成された第一配光パターンと少なくとも一部が重なるように、当該空間光変調器から出射された光を用いて第二配光パターンを形成し、
      前記第一配光パターンと前記第二配光パターンとが重なっている領域内に相対的に光度の低い低光度領域を形成させるように、前記空間光変調器の動作を制御する、
    コンピュータプログラム。
    A computer program executable by a processing unit of a control device mounted on a mobile object,
    By being executed, the control device
    A first light distribution formed in an area to be illuminated located in front of the moving body by using light emitted from another light source by emitting light from a spatial light modulator having at least one light source. forming a second light distribution pattern using light emitted from the spatial light modulator so that at least a portion of the pattern overlaps;
    controlling the operation of the spatial light modulator so as to form a low luminous intensity region with relatively low luminous intensity in the region where the first light distribution pattern and the second light distribution pattern overlap;
    computer program.
PCT/JP2022/035226 2021-10-20 2022-09-21 Illumination system, control device, non-transitory computer-readable medium, and computer program WO2023067977A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021171560 2021-10-20
JP2021-171561 2021-10-20
JP2021171561 2021-10-20
JP2021-171560 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023067977A1 true WO2023067977A1 (en) 2023-04-27

Family

ID=86059053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035226 WO2023067977A1 (en) 2021-10-20 2022-09-21 Illumination system, control device, non-transitory computer-readable medium, and computer program

Country Status (1)

Country Link
WO (1) WO2023067977A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300105A (en) * 2007-05-30 2008-12-11 Koito Mfg Co Ltd Vehicular headlight
US20160368414A1 (en) * 2014-12-19 2016-12-22 Sl Corporation Adaptive driving beam headlamp for vehicle
EP3401163A1 (en) * 2017-04-12 2018-11-14 LG Electronics Inc. Lamp for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300105A (en) * 2007-05-30 2008-12-11 Koito Mfg Co Ltd Vehicular headlight
US20160368414A1 (en) * 2014-12-19 2016-12-22 Sl Corporation Adaptive driving beam headlamp for vehicle
EP3401163A1 (en) * 2017-04-12 2018-11-14 LG Electronics Inc. Lamp for vehicle

Similar Documents

Publication Publication Date Title
US9878655B2 (en) Vehicle lamp
JP5869223B2 (en) Vehicle headlamp
EP2275305B1 (en) Automotive headlamp apparatus
JP4995748B2 (en) Vehicle headlamp device and control method for vehicle headlamp device
JP5199798B2 (en) Vehicle headlamp device
US20150042226A1 (en) Vehicular lighting apparatus
WO2016203911A1 (en) Vehicle headlamp control apparatus
JP2013161568A (en) Vehicle headlamp, and vehicle headlamp device
US11077786B2 (en) Motor vehicle adaptive front lighting system and method
JP5222743B2 (en) Vehicle headlamp device
JP2014000875A (en) Sub-headlight unit, headlight unit and headlight system for vehicles to turn in lean positions, and vehicle for turning in lean positions
KR101360345B1 (en) Lamp apparatus for an automobile
JP2009012553A (en) Lighting unit for vehicle
JP6142540B2 (en) Vehicle headlamp
JP2009220636A (en) Headlight device for vehicle and its control method
WO2023067977A1 (en) Illumination system, control device, non-transitory computer-readable medium, and computer program
WO2022196296A1 (en) Vehicle lamp control device, vehicle lamp control method and vehicle lamp system
JP6142541B2 (en) Vehicle headlamp
JP2010143483A (en) Vehicle headlight device and method for controlling the same
JP2017013737A (en) Light distribution control device of lamp
JP6752528B2 (en) Headlights for driving vehicles
CN113165571A (en) Light module system and method for controlling a light module system
US20240092248A1 (en) Vehicle lighting device
WO2024127894A1 (en) Vehicle lamp fitting
JP7488969B2 (en) Lamp lighting control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555062

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE