WO2023067724A1 - Power conversion device, electric motor drive device, and refrigeration cycle application apparatus - Google Patents

Power conversion device, electric motor drive device, and refrigeration cycle application apparatus Download PDF

Info

Publication number
WO2023067724A1
WO2023067724A1 PCT/JP2021/038757 JP2021038757W WO2023067724A1 WO 2023067724 A1 WO2023067724 A1 WO 2023067724A1 JP 2021038757 W JP2021038757 W JP 2021038757W WO 2023067724 A1 WO2023067724 A1 WO 2023067724A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power supply
power
value
command value
Prior art date
Application number
PCT/JP2021/038757
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 豊留
和徳 畠山
翔英 堤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023554150A priority Critical patent/JPWO2023067724A1/ja
Priority to PCT/JP2021/038757 priority patent/WO2023067724A1/en
Publication of WO2023067724A1 publication Critical patent/WO2023067724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device that supplies AC power to a motor that drives a load, a motor drive device, and a refrigeration cycle application device.
  • a power conversion device consists of a converter that rectifies the power supply voltage applied from an AC power supply, a capacitor that is connected to the output end of the converter, and an inverter that converts the DC voltage output from the capacitor into an AC voltage and applies it to the electric motor. Prepare.
  • Patent Document 1 discloses a technique for suppressing an increase in vibration by appropriately compensating for torque pulsation, which is a pulsating component of the load torque, according to the state of the electric motor that drives the compressor.
  • Patent Document 1 does not consider power supply harmonics. For this reason, if the technique of Patent Document 1 is used to generate a compensating component for the torque ripple of the electric motor at a frequency that is asynchronous with the power supply frequency, the power supply current will be in an unbalanced state between the positive and negative polarities of the power supply current. Power supply harmonics may increase and some order components of power supply harmonics may exceed standard values. Therefore, some measures are required so that the order components of power supply harmonics do not exceed the standard value.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device that can operate so that the order component of power source harmonics does not exceed a standard value while compensating for torque pulsation of an electric motor. .
  • the power conversion device is a power conversion device that supplies AC power to a motor that drives a load.
  • a power conversion device includes a converter that rectifies a power supply voltage applied from an AC power supply, and an inverter that is connected to an output end of the converter.
  • the vibration suppression control for suppressing the vibration of the load is performed, the driving frequency of the electric motor is continuously adjusted to the frequency of the power supply voltage, which is 0.5 to 0.75th order and 1.25 to 1.25th order of the power supply frequency. It is driven so as not to fall within the range of the 6th order.
  • the power converter according to the present disclosure it is possible to operate such that the harmonic order component of the power source does not exceed the standard value while compensating for the torque pulsation of the electric motor.
  • FIG. 1 is a diagram showing a configuration example of a power converter according to Embodiment 1;
  • FIG. FIG. 2 is a diagram showing a configuration example of an inverter included in the power converter according to Embodiment 1;
  • FIG. 4 is a diagram showing an operation state of the electric motor drive device according to Embodiment 1 when vibration suppression control is not performed;
  • FIG. 5 is a diagram showing an operation state when vibration suppression control is performed in the electric motor drive device according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of a control device included in the power conversion device according to Embodiment 1; A diagram for explaining the reason why power supply harmonics increase when general vibration suppression control is performed.
  • FIG. 4 is a diagram showing frequency components of power source harmonics that pose a problem when vibration suppression control is performed in Embodiment 1.
  • FIG. FIG. 3 is a block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of a compensation value calculation section included in the voltage command value calculation section according to Embodiment 1;
  • FIG. 3 is a block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of a compensation value calculation section included in the voltage command value calculation section according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of an operation control unit included in the control device according to Embodiment 1;
  • Flowchart for explaining the operation of the frequency command determining unit according to the first embodiment 4 is a block diagram showing a configuration example of a speed control unit and a ⁇ -axis current command value generation unit included in the voltage command value calculation unit according to the first embodiment;
  • FIG. 4 is a diagram showing simulation results comparing even-order components of power supply harmonics that can occur when vibration suppression control is applied to the maximum in the electric motor drive device according to Embodiment 1, with standard values;
  • FIG. 2 is a diagram showing an example of a hardware configuration that implements a control device included in the power conversion device according to Embodiment 1;
  • connection includes both direct connection between constituent elements and indirect connection between constituent elements via other constituent elements. I'm in.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 2 according to Embodiment 1.
  • FIG. 2 is a diagram showing a configuration example of the inverter 30 included in the power conversion device 2 according to Embodiment 1.
  • the power converter 2 is connected to the AC power supply 1 and the compressor 8 .
  • the compressor 8 is an example of a load that has a characteristic that the load torque periodically fluctuates when it is driven.
  • the compressor 8 has an electric motor 7 .
  • An example of the motor 7 is a three-phase permanent magnet synchronous motor.
  • the power converter 2 converts the power supply voltage applied from the AC power supply 1 into an AC voltage having a desired amplitude and phase, and applies the AC voltage to the electric motor 7 .
  • Power converter 2 includes reactor 4 , converter 10 , capacitor 20 , inverter 30 , voltage detector 82 , current detectors 83 and 84 , and controller 100 .
  • An electric motor driving device 50 is configured by the power conversion device 2 and the electric motor 7 included in the compressor 8 .
  • the converter 10 has four diodes D1, D2, D3 and D4. Four diodes D1 to D4 are bridge-connected to form a rectifier circuit.
  • Converter 10 rectifies the power supply voltage applied from AC power supply 1 by means of a rectifier circuit composed of four diodes D1 to D4.
  • one end on the input side is connected to AC power supply 1 via reactor 4 , and the other end on the input side is connected to AC power supply 1 .
  • the output side is connected to the capacitor 20 .
  • the reactor 4 may be connected between the converter 10 and the capacitor 20 , that is, connected to the output side of the converter 10 .
  • the converter 10 may have a rectifying function as well as a boosting function for boosting the rectified voltage.
  • a converter having a boosting function can be configured with one or more transistor elements or one or more switching elements in which a transistor element and a diode are connected in anti-parallel in addition to or instead of a diode. Note that the arrangement and connection of transistor elements or switching elements in a converter having a boosting function are well known, and description thereof will be omitted here.
  • the capacitor 20 is connected to the output end of the converter 10 via DC buses 22a and 22b.
  • the DC bus 22a is a positive side DC bus
  • the DC bus 22b is a negative side DC bus.
  • Capacitor 20 smoothes the rectified voltage applied from converter 10 .
  • Examples of the capacitor 20 include an electrolytic capacitor, a film capacitor, and the like.
  • the inverter 30 is connected to the output end of the converter 10 via DC buses 22a and 22b, and is connected to both ends of the capacitor 20.
  • the inverter 30 converts the DC voltage smoothed by the capacitor 20 into AC voltage for the compressor 8 and applies it to the electric motor 7 of the compressor 8 .
  • the voltage applied to the electric motor 7 is a three-phase AC voltage with variable frequency and voltage value.
  • the inverter 30 includes an inverter main circuit 310 and a drive circuit 350, as shown in FIG.
  • the inverter main circuit 310 includes switching elements 311-316. Freewheeling rectifying elements 321 to 326 are connected in anti-parallel to the switching elements 311 to 316, respectively.
  • the switching elements 311 to 316 are assumed to be IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), etc., but elements capable of switching If so, you can use whatever you want.
  • the switching elements 311 to 316 are MOSFETs, the MOSFETs have parasitic diodes due to their structure, so that the same effect can be obtained without connecting the freewheeling rectifying elements 321 to 326 in anti-parallel.
  • switching elements 311 to 316 not only silicon (Si) but also wide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), and diamond may be used. By forming switching elements 311 to 316 using a wide bandgap semiconductor, loss can be further reduced.
  • the drive circuit 350 generates drive signals Sr1-Sr6 based on PWM (Pulse Width Modulation) signals Sm1-Sm6 output from the control device 100.
  • PWM Pulse Width Modulation
  • the drive circuit 350 controls on/off of the switching elements 311-316 by the drive signals Sr1-Sr6.
  • the inverter 30 can apply the frequency-variable and voltage-variable three-phase AC voltage to the electric motor 7 via the output lines 331 to 333 .
  • the PWM signals Sm1 to Sm6 are signals having a signal level of a logic circuit, for example, a magnitude of 0V to 5V.
  • the PWM signals Sm1 to Sm6 are signals having the ground potential of the control device 100 as a reference potential.
  • the driving signals Sr1 to Sr6 are signals having voltage levels necessary to control the switching elements 311 to 316, eg, -15V to +15V.
  • the drive signals Sr1 to Sr6 are signals having the potential of the negative terminal, that is, the emitter terminal of the corresponding switching element as a reference potential.
  • the voltage detection unit 82 detects the voltage across the capacitor 20 to detect the bus voltage Vdc.
  • the bus voltage Vdc is the voltage between the DC buses 22a and 22b.
  • the voltage detection unit 82 includes, for example, a voltage dividing circuit that divides the voltage with series-connected resistors.
  • the voltage detection unit 82 converts the detected bus voltage Vdc into a voltage suitable for processing in the control device 100 using a voltage dividing circuit, for example, a voltage of 5 V or less, and outputs it to the control device 100 as a voltage detection signal that is an analog signal.
  • the voltage detection signal output from the voltage detection unit 82 to the control device 100 is converted from an analog signal to a digital signal by an AD (Analog to Digital) conversion unit (not shown) in the control device 100, and is subjected to internal processing in the control device 100. Used.
  • AD Analog to Digital
  • the current detection unit 83 detects the power supply current Iin, which is the current flowing between the AC power supply 1 and the converter 10 .
  • Current detection unit 83 outputs the detected power supply current Iin to control device 100 as a current detection signal, which is an analog signal.
  • a current detection signal output from the current detection unit 83 to the control device 100 is converted from an analog signal to a digital signal by an AD conversion unit (not shown) in the control device 100 and used for internal processing in the control device 100 .
  • the current detector 84 has a shunt resistor inserted in the DC bus 22b.
  • a current detector 84 detects the capacitor output current idc using a shunt resistor.
  • a capacitor output current idc is an input current to the inverter 30 , that is, a current output from the capacitor 20 to the inverter 30 .
  • the current detection unit 84 outputs the detected capacitor output current idc to the control device 100 as a current detection signal, which is an analog signal.
  • a current detection signal output from the current detection unit 84 to the control device 100 is converted from an analog signal to a digital signal by an AD conversion unit (not shown) in the control device 100 and used for internal processing in the control device 100 .
  • the control device 100 controls the operation of the inverter 30 by generating the PWM signals Sm1 to Sm6 described above. Specifically, the control device 100 changes the angular frequency ⁇ e and the voltage value of the output voltage of the inverter 30 based on the PWM signals Sm1 to Sm6.
  • the angular frequency ⁇ e of the output voltage of the inverter 30 determines the rotational angular velocity of the electric motor 7 in electrical angle.
  • this rotational angular velocity is also represented by the same symbol ⁇ e.
  • the rotational angular velocity ⁇ m of the electric motor 7 in the mechanical angle is equal to the rotational angular velocity ⁇ e of the electric motor 7 in the electrical angle divided by the pole logarithm P. Therefore, there is a relationship represented by the following equation (1) between the rotational angular velocity ⁇ m of the electric motor 7 in mechanical angle and the angular frequency ⁇ e of the output voltage of the inverter 30 .
  • the rotational angular velocity is sometimes simply referred to as "rotational velocity”
  • the angular frequency is simply referred to as "frequency”.
  • FIG. 3 is a diagram showing an operation state of the electric motor drive device 50 according to Embodiment 1 when vibration suppression control is not performed.
  • FIG. 4 is a diagram showing a state of operation when vibration suppression control is performed in electric motor drive device 50 according to the first embodiment.
  • the electric motor drive device 50 is an air conditioner, for example, in order to reduce the vibration of the compressor 8, the torque pulsation of the electric motor 7 is compensated, and the rotation speed fluctuation of the electric motor 7 is controlled to be small. to be done.
  • the vibration of the compressor 8 becomes smaller. For this reason, control for reducing rotation speed fluctuations is generally called "vibration suppression control.”
  • FIG. 3 and 4 show the load torque of the compressor 8, the output torque of the electric motor 7, the rotation speed of the electric motor 7, and the control device in one rotation of the mechanical angle of the electric motor 7 when the compressor 8 is a single rotary compressor.
  • a relationship of torque current compensation values at 100 is shown.
  • FIG. 3 shows a state in which the control device 100 controls the output torque of the electric motor 7 to be constant.
  • FIG. 4 shows a state in which the control device 100 controls the torque current compensation value so that the output torque of the electric motor 7 matches the load torque of the compressor 8, thereby controlling the rotational speed to be constant.
  • the control device 100 controls the output torque of the electric motor 7 to be constant, the rotational speed fluctuates due to the difference between the output torque of the electric motor 7 and the load torque of the compressor 8 .
  • the compressor 8 generates vibration, noise, and the like. If the variation in rotational speed becomes extremely large, the electric motor 7 may step out and stop.
  • the control device 100 has a function of vibration suppression control for controlling the output torque of the electric motor 7 to match the load torque of the compressor 8 . Details of the vibration suppression control will be described later.
  • FIG. 5 is a block diagram showing a configuration example of the control device 100 included in the power conversion device 2 according to Embodiment 1.
  • the control device 100 includes an operation control section 102 and an inverter control section 110 .
  • the inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, a ⁇ -axis current command value generation unit 113, a voltage command value calculation unit 115, an electrical phase calculation unit 116, a two-phase A three-phase converter 117 and a PWM signal generator 118 are provided.
  • the operation control unit 102 receives command information Qe from the outside.
  • the operation control unit 102 generates a frequency command value ⁇ e* based on the command information Qe.
  • the frequency command value ⁇ e* can be obtained by multiplying the rotational speed command value ⁇ m*, which is the command value of the rotational speed of the electric motor 7 at the mechanical angle, by the number of pole pairs P, as shown in the following equation (2). can.
  • the control device 100 controls the operation of each part of the air conditioner based on the command information Qe.
  • the command information Qe is, for example, a temperature detected by a temperature sensor (not shown), information indicating a set temperature instructed from a remote controller (not shown), operation mode selection information, operation start/end instruction information, and the like. be.
  • the operation modes are, for example, heating, cooling, and dehumidification.
  • the operation control unit 102 also receives a frequency command value change flag ⁇ e*_c_flag from the voltage command value calculation unit 115 .
  • the frequency command value change flag ⁇ e*_c_flag is a logical value, and is a flag attached with information indicating whether or not the frequency command value ⁇ e* needs to be changed.
  • the operation control unit 102 changes the value of the frequency command value ⁇ e* generated based on the command information Qe according to the value of the frequency command value change flag ⁇ e*_c_flag, if necessary. Details of the frequency command value change flag ⁇ e*_c_flag and how to change the value of the frequency command value ⁇ e* will be described later.
  • the current restoration unit 111 restores the phase currents iu, iv, and iw flowing through the electric motor 7 based on the capacitor output current idc detected by the current detection unit 84 .
  • the current restoration unit 111 samples the detected value of the capacitor output current idc detected by the current detection unit 84 at timing determined based on the PWM signals Sm1 to Sm6 generated by the PWM signal generation unit 118.
  • the currents iu, iv, iw can be restored.
  • current detectors may be provided on the output lines 331 to 333 to directly detect the phase currents iu, iv, and iw and input them to the three-to-two-phase converter 112 . In this configuration, the current restoration section 111 is unnecessary.
  • the three-phase to two-phase conversion unit 112 converts the phase currents iu, iv, and iw restored by the current restoration unit 111 into the ⁇ axis, which is the excitation current, using the electric phase ⁇ e generated by the electric phase calculation unit 116, which will be described later.
  • the current i ⁇ and the ⁇ -axis current i ⁇ , which is the torque current, are converted into ⁇ - ⁇ axis current values.
  • a ⁇ -axis current command value generation unit 113 generates a ⁇ -axis current command value i ⁇ *, which is an exciting current command value, based on the ⁇ -axis current i ⁇ . More specifically, the ⁇ -axis current command value generation unit 113 obtains the current phase angle at which the output torque of the electric motor 7 is equal to or higher than the set value or the maximum value based on the ⁇ -axis current i ⁇ , and the calculated current phase angle is Based on this, the ⁇ -axis current command value i ⁇ * is calculated. Note that the motor current flowing through the electric motor 7 may be used instead of the output torque of the electric motor 7 . In this case, the ⁇ -axis current command value i ⁇ * is calculated based on the current phase angle at which the motor current flowing through the motor 7 is the set value or less or the minimum value.
  • FIG. 5 shows a configuration in which the ⁇ -axis current command value i ⁇ * is obtained based on the ⁇ -axis current i ⁇ , it is not limited to this configuration.
  • the ⁇ -axis current command value i ⁇ * may be obtained based on the ⁇ -axis current i ⁇ instead of the ⁇ -axis current i ⁇ .
  • the ⁇ -axis current command value generator 113 may determine the ⁇ -axis current command value i ⁇ * by flux-weakening control.
  • the voltage command value calculation unit 115 calculates the frequency command value ⁇ e* obtained from the operation control unit 102, the ⁇ -axis current i ⁇ and the ⁇ -axis current i ⁇ obtained from the three-phase to two-phase conversion unit 112, and the ⁇ -axis current command value generation unit. Based on the ⁇ -axis current command value i ⁇ * acquired from 113, the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * are generated.
  • the voltage command value calculation unit 115 estimates the frequency estimation value ⁇ est based on the ⁇ -axis voltage command value V ⁇ *, the ⁇ -axis voltage command value V ⁇ *, the ⁇ -axis current i ⁇ , and the ⁇ -axis current i ⁇ . . Furthermore, the voltage command value calculation unit 115 generates the above-described frequency command value change flag ⁇ e*_c_flag based on the ⁇ -axis current i ⁇ , the ⁇ -axis current i ⁇ , and the power supply current Iin obtained from the current detection unit 83. .
  • the electrical phase calculator 116 calculates the electrical phase ⁇ e by integrating the frequency estimation value ⁇ est acquired from the voltage command value calculator 115 .
  • the two-to-three phase conversion unit 117 converts the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * acquired from the voltage command value calculation unit 115, that is, the voltage command values in the two-phase coordinate system, to the electric phase calculation unit 116. are converted into three-phase voltage command values Vu*, Vv*, Vw*, which are output voltage command values in a three-phase coordinate system, using the electric phase ⁇ e obtained from .
  • the PWM signal generator 118 compares the three-phase voltage command values Vu*, Vv*, Vw* acquired from the two-to-three-phase converter 117 with the bus voltage Vdc detected by the voltage detector 82. PWM signals Sm1 to Sm6 are generated. The PWM signal generator 118 can also stop the electric motor 7 by not outputting the PWM signals Sm1 to Sm6.
  • FIG. 6 is a diagram for explaining the reason why power supply harmonics increase when general vibration suppression control is performed.
  • vibration suppression control is performed.
  • the inverter 30 is controlled by generating a torque current compensation value so that the output torque of the electric motor 7 follows the torque pulsation of the compressor 8 .
  • this control is simply performed, as explained in the section [Problem to be Solved by the Invention], the power supply current Iin becomes unbalanced between its positive and negative polarities, resulting in power supply harmonics. increases, and some order components of power supply harmonics exceed standard values.
  • FIG. 6 shows the waveforms of the power supply voltage Vin, the power supply current Iin, and the capacitor output current idc in order from the top.
  • the horizontal axis of FIG. 6 represents time.
  • the peak value of the positive side waveform and the peak value of the negative side waveform of the power supply current Iin are different, that is, the peak value is unbalanced between the positive and negative polarities of the power supply current Iin. It is shown.
  • pulsation occurs in the capacitor output current idc as shown in the lower part.
  • the power supply current Iin contains many harmonic components.
  • the control device 100 included in the power conversion device 2 according to Embodiment 1 performs control to operate the power conversion device 2 so that the order component of the power supply harmonic does not exceed the standard value when the vibration suppression control is performed.
  • the driving frequency is the frequency corresponding to the rotational speed of the electric motor 7 in terms of mechanical angle.
  • the drive frequency is synonymous with the mechanical angular frequency of the electric motor 7 controlled by the control device 100 . If the unit of the mechanical angular frequency is "Hz" and the unit of the rotation speed of the electric motor 7 in mechanical angle is "rps", both values are equal.
  • each frequency component in the above formulas (3-1) to (3-12) is a frequency component calculated according to each calculation formula.
  • the above equation (3-1) is a frequency component obtained by subtracting the absolute value of the value obtained by subtracting the drive frequency from the power supply 1f from the power supply 1f and further subtracting the subtracted value from the power supply 1f.
  • FIG. 7 shows, of the dominant frequency components in the power supply current Iin, the frequency components of the power supply harmonics that pose a problem during the execution of the vibration suppression control, classified by order. That is, FIG. 7 is a diagram showing frequency components of power supply harmonics that pose a problem when vibration suppression control is performed in the first embodiment.
  • each n-th order (n is an integer of 2 or more) order component is shown as including 11 harmonic components from (n-1).5th order to n.5th order.
  • the frequencies corresponding to the (n-1).5 order to n.5 order are 1.5th order (75 [Hz]), 1.6th order (80 [Hz] ), . . . , 2.0th order (100 [Hz]), .
  • a numerical string "80, 120 (90, 110)" is described as the secondary component of the rotational speed of 30 [rps].
  • Numerical values without parentheses are the components generated by the driving frequency ⁇ 1, i.e., the frequency that is 1 times the driving frequency, and the numerical values with parentheses are the driving frequency ⁇ 2, i.e., the frequency that is 2 times the driving frequency. It shows that it is a component generated by It should be noted that the component generated by the frequency twice the driving frequency is smaller than the component generated by the frequency one times the driving frequency.
  • 120 [Hz] is can get. Also, the numerical value "90" in parentheses is the component generated by the above formula (3-8).
  • the compressor 8 is, for example, a single rotary compressor
  • one pulsation occurs during one cycle of the mechanical angle as described above.
  • the rotation speed of the electric motor 7 may momentarily decrease to 0 [rps].
  • Driving in such a low speed range is difficult. Since the magnitude of the power supply current Iin itself is small in the low speed range, it can be considered that the order components of the power supply harmonics hardly exceed the standard value of the power supply harmonics.
  • the power supply current Iin becomes larger than in the low speed range.
  • the 2nd to 6th order components of the rotation speed at 30 and 35 [rps] in the table of FIG. 7 it can be seen that the dominant components of the power supply current Iin are biased toward even numbers. That is, when the rotation speed of the electric motor 7 is 30, 35 [rps], it can be seen that even-order harmonic components become severe.
  • the power supply frequency is 50 [Hz]
  • the rotation speeds of 30 and 35 [rps] correspond to the 0.6th and 0.7th orders of the power supply frequency.
  • the rotational speed of the electric motor 7 is 25, 75 [rps], which is between the multiple components of the power supply frequency, the magnitude of the power supply harmonics is large for both odd and even orders, and the order components of the power supply harmonics Harmonics may exceed standard values.
  • the rotational speeds of 25 and 75 [rps] correspond to the 0.5th and 1.5th power frequencies.
  • the dominant component of the power supply current Iin is biased to the even order, similar to the rotational speeds of 30 and 35 [rps]. That is, it can be seen that even-order harmonic components become severe even when the rotation speed of the electric motor 7 is 65 and 70 [rps].
  • the rotational speeds of 65 and 70 [rps] correspond to the 1.3rd and 1.4th power frequencies.
  • 0.5 to 0.8 and 1.3 to 1.7 of the power frequency are 25 to 40 [Hz] and 65 to 85 [Hz] corresponds to Further, when the power frequency is 60 [Hz], 0.5 to 0.8 and 1.3 to 1.7 of the power frequency are 30 to 48 [Hz] and 78 to 102 [Hz] corresponds to
  • FIG. 8 is a block diagram showing a configuration example of the voltage command value calculation unit 115 included in the control device 100 according to the first embodiment.
  • voltage command value calculation unit 115 includes frequency estimation unit 501, subtraction units 502, 509, and 510, speed control unit 503, vibration suppression control unit 800, and power harmonic standard conformance determination unit. 506 , a ⁇ -axis current control section 511 and a ⁇ -axis current control section 512 .
  • Frequency estimator 501 estimates the frequency of the voltage applied to electric motor 7 based on ⁇ -axis current i ⁇ , ⁇ -axis current i ⁇ , ⁇ -axis voltage command value V ⁇ *, and ⁇ -axis voltage command value V ⁇ *. and outputs the estimated frequency as the frequency estimation value ⁇ est.
  • the subtraction unit 502 calculates the difference ( ⁇ e* ⁇ est) between the frequency command value ⁇ e* and the frequency estimation value ⁇ est estimated by the frequency estimation unit 501 .
  • a speed control unit 503 generates a ⁇ -axis current command value i ⁇ *, which is a torque current command value in a rotating coordinate system. More specifically, the speed control unit 503 performs proportional integral calculation, that is, PI (Proportional Integral) control, on the difference ( ⁇ e* ⁇ est) calculated by the subtraction unit 502 to obtain the difference ( ⁇ e* ⁇ .omega.est) close to zero is calculated.
  • PI Proportional Integral
  • the vibration suppression control unit 800 suppresses the vibration of the compressor 8 as a load based on the ⁇ -axis current command value i ⁇ * obtained from the speed control unit 503 and the frequency estimated value ⁇ est obtained from the frequency estimation unit 501. Vibration suppression control is performed. To realize this function, the vibration suppression control section 800 includes a ⁇ -axis current command value generation section 504 and a compensation value calculation section 505 .
  • a compensation value calculation unit 505 generates a ⁇ -axis current compensation value i ⁇ _trq*, which is a compensation value for vibration suppression control, based on the estimated frequency value ⁇ est. Specifically, the compensation value calculation unit 505 generates the ⁇ -axis current compensation value i ⁇ _trq* so that the output torque of the electric motor 7 follows the periodic variation of the load torque of the compressor 8 .
  • the ⁇ -axis current compensation value i ⁇ _trq* is a control amount component for suppressing the pulsation component of the frequency estimation value ⁇ est, particularly the pulsation component with the frequency ⁇ mn.
  • the pulsating component of the estimated frequency value ⁇ est particularly the pulsating component having a frequency of ⁇ mn
  • m is a parameter related to the amount of direct current
  • n is a parameter that indicates the compressor 8 that is the load driven by the electric motor 7 .
  • n is 1 when the compressor 8 is a single rotary compressor, and 2 when it is a twin rotary compressor. This n may be 3 or more.
  • the ⁇ -axis current compensation value i ⁇ _trq* may be called a “torque current compensation value” or simply a “compensation value”.
  • a ⁇ -axis current command value generation unit 504 generates a ⁇ -axis current command value i ⁇ ** based on the ⁇ -axis current command value i ⁇ * and the ⁇ -axis current compensation value i ⁇ _trq*.
  • the ⁇ -axis current command value i ⁇ ** is a torque current command value compensated by the ⁇ -axis current compensation value i ⁇ _trq*.
  • the ⁇ -axis current command value i ⁇ * is referred to as the “first ⁇ -axis current command value”.
  • the .delta.-axis current command value i.delta.** is called a "second .delta.-axis current command value.”
  • the power supply harmonic standard conformity determination unit 506 determines the frequency command Generate a value change flag ⁇ e*_c_flag.
  • the frequency command value change flag ⁇ e*_c_flag is a flag attached with information indicating whether or not the frequency command value ⁇ e* needs to be changed.
  • the "power harmonic standard conformity determination unit” may be simply referred to as the "conformity determination unit”
  • the frequency command value change flag ⁇ e*_c_flag may be simply referred to as the "flag”.
  • a subtraction unit 509 calculates the difference (i ⁇ *-i ⁇ ) of the ⁇ -axis current i ⁇ with respect to the ⁇ -axis current command value i ⁇ *.
  • Subtraction unit 510 calculates a difference (i ⁇ **-i ⁇ ) between ⁇ -axis current command value i ⁇ ** and ⁇ -axis current i ⁇ .
  • the ⁇ -axis current control unit 511 performs a proportional integral operation on the difference (i ⁇ * ⁇ i ⁇ ) calculated by the subtraction unit 509 to bring the difference (i ⁇ * ⁇ i ⁇ ) closer to zero. to generate The ⁇ -axis current control unit 511 generates such a ⁇ -axis voltage command value V ⁇ * to perform control so that the ⁇ -axis current i ⁇ matches the ⁇ -axis current command value i ⁇ *.
  • a ⁇ -axis current control unit 512 performs a proportional integral operation on the difference (i ⁇ **-i ⁇ ) calculated by the subtraction unit 510 to obtain a ⁇ -axis voltage command value that brings the difference (i ⁇ **-i ⁇ ) closer to zero. Generate V ⁇ *.
  • the ⁇ -axis current control unit 512 generates such a ⁇ -axis voltage command value V ⁇ * to perform control so that the ⁇ -axis current i ⁇ matches the ⁇ -axis current command value i ⁇ **.
  • the ⁇ -axis current command value i ⁇ ** input to the ⁇ -axis current control unit 512 includes the ⁇ -axis current compensation value i ⁇ _trq* acquired from the compensation value calculation unit 505 .
  • the ⁇ -axis current control unit 512 controls the inverter 30 based on the ⁇ -axis voltage command value V ⁇ * generated based on the ⁇ -axis current compensation value i ⁇ _trq*, thereby suppressing the pulsation of the capacitor output current idc. can be done.
  • FIG. 9 is a block diagram showing a configuration example of compensation value calculation section 505 included in voltage command value calculation section 115 according to the first embodiment.
  • the compensation value calculator 505 includes a calculator 550, a cosine calculator 551, a sine calculator 552, multipliers 553 and 554, low-pass filters 555 and 556, subtractors 557 and 558, a frequency controller 559, 560 , multipliers 561 and 562 , and an adder 563 .
  • the calculation unit 550 integrates the estimated frequency value ⁇ est and divides it by the pole logarithm P to calculate the mechanical angle phase ⁇ mn indicating the rotational position of the electric motor 7 .
  • a cosine calculator 551 calculates a cosine value cos ⁇ mn based on the mechanical angle phase ⁇ mn.
  • the sine calculator 552 calculates a sine value sin ⁇ mn based on the mechanical angle phase ⁇ mn.
  • the multiplier 553 multiplies the frequency estimation value ⁇ est by the cosine value cos ⁇ mn to calculate the cosine component ⁇ est ⁇ cos ⁇ mn of the frequency estimation value ⁇ est.
  • the multiplier 554 multiplies the frequency estimation value ⁇ est by the sine value sin ⁇ mn to calculate the sine component ⁇ est ⁇ sin ⁇ mn of the frequency estimation value ⁇ est.
  • the cosine component ⁇ est ⁇ cos ⁇ mn and the sine component ⁇ est ⁇ sin ⁇ mn calculated by the multipliers 553 and 554 include a pulsation component with a frequency of ⁇ mn and a pulsation component with a frequency higher than ⁇ mn, that is, a harmonic component. ing.
  • the low-pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1/(1+s ⁇ Tf). where s is the Laplacian operator. Tf is a time constant, and is determined to remove pulsation components with frequencies higher than the frequency ⁇ mn. Note that "removal” includes the case where part of the pulsation component is attenuated, that is, reduced.
  • the time constant Tf is set by the operation control unit 102 based on the speed command value, and may be notified to the low-pass filters 555 and 556 by the operation control unit 102, or may be held by the low-pass filters 555 and 556. .
  • a first-order lag filter is an example, and a moving average filter or the like may be used, and the type of filter is not limited as long as the pulsation component on the high frequency side can be removed.
  • a low-pass filter 555 performs low-pass filtering on the cosine component ⁇ est ⁇ cos ⁇ mn, removes pulsation components with a frequency higher than the frequency ⁇ mn, and outputs a low-frequency component ⁇ est_c.
  • the low-frequency component ⁇ est_c is a DC quantity representing a cosine component with a frequency of ⁇ mn among the pulsating components of the estimated frequency value ⁇ est.
  • a low-pass filter 556 performs low-pass filtering on the sine component ⁇ est ⁇ sin ⁇ mn, removes pulsation components with a frequency higher than the frequency ⁇ mn, and outputs a low-frequency component ⁇ est_s.
  • the low-frequency component ⁇ est_s is a DC quantity representing a sinusoidal component with a frequency ⁇ mn among the pulsating components of the frequency estimation value ⁇ est.
  • the subtraction unit 557 calculates the difference ( ⁇ est_c ⁇ 0) between the low frequency component ⁇ est_c output from the low-pass filter 555 and zero.
  • the subtraction unit 558 calculates the difference ( ⁇ est_s ⁇ 0) between the low frequency component ⁇ est_s output from the low-pass filter 556 and zero.
  • the frequency control unit 559 performs proportional integral calculation on the difference ( ⁇ est_c ⁇ 0) calculated by the subtraction unit 557 to calculate the cosine component i ⁇ _trq_c of the current command value that brings the difference ( ⁇ est_c ⁇ 0) close to zero. By generating the cosine component i ⁇ _trq_c in this manner, the frequency control unit 559 performs control to match the low frequency component ⁇ est_c to zero.
  • the frequency control unit 560 performs proportional integral calculation on the difference ( ⁇ est_s ⁇ 0) calculated by the subtraction unit 558 to calculate the sine component i ⁇ _trq_s of the current command value that brings the difference ( ⁇ est_s ⁇ 0) close to zero.
  • the frequency control unit 560 generates the sine component i ⁇ _trq_s in this way, thereby performing control to match the low frequency component ⁇ est_s to zero.
  • the multiplier 561 multiplies the cosine component i ⁇ _trq_c output from the frequency control unit 559 by the cosine value cos ⁇ mn to generate i ⁇ _trq_c ⁇ cos ⁇ mn.
  • i ⁇ _trq_c ⁇ cos ⁇ mn is an AC component with frequency n ⁇ est.
  • the multiplier 562 multiplies the sine component i ⁇ _trq_s output from the frequency control unit 560 by the sine value sin ⁇ mn to generate i ⁇ _trq_s ⁇ sin ⁇ mn.
  • i ⁇ _trq_s ⁇ sin ⁇ mn is an AC component with frequency n ⁇ est.
  • the addition unit 563 obtains the sum of i ⁇ _trq_c ⁇ cos ⁇ mn output from the multiplication unit 561 and i ⁇ _trq_s ⁇ sin ⁇ mn output from the multiplication unit 562 .
  • Compensation value calculator 505 outputs the value obtained by adder 563 as ⁇ -axis current compensation value i ⁇ _trq*.
  • FIG. 10 is a block diagram showing a configuration example of power supply harmonic standard conformity determination section 506 provided in voltage command value calculation section 115 according to the first embodiment.
  • the power harmonic standard conformance determination unit 506 includes a power harmonic standard value calculation unit 701 , an order component calculation unit 702 , and a determination unit 703 .
  • Power supply harmonic standard value calculation unit 701 calculates power supply harmonic standard value Iin_lim_n based on ⁇ -axis current i ⁇ , ⁇ -axis current i ⁇ , ⁇ -axis voltage command value V ⁇ *, and ⁇ -axis voltage command value V ⁇ *. Calculate.
  • the power harmonic standard value Iin_lim_n is a threshold for determining whether a specific frequency component satisfies the power harmonic standard.
  • the power harmonic standard value Iin_lim_n is input to the determination unit 703 .
  • the order component calculation unit 702 calculates the order component Iin_n, which is a harmonic component of a specific order included in the power supply current Iin.
  • the order component Iin_n calculated by the order component calculation unit 702 is for comparison with the power harmonic standard value Iin_lim_n calculated by the power harmonic standard value calculation unit 701, and the order of each harmonic component is the same. .
  • the order component Iin_n is input to the determination section 703 .
  • FIG. 11 is a flowchart for explaining the operation of the determination unit 703 according to Embodiment 1.
  • the determination unit 703 receives the power harmonic normalized value Iin_lim_n from the power harmonic normalized value calculator 701 and the order component Iin_n from the order component calculator 702 (step S11).
  • the determination unit 703 compares the one or more specific order components Iin_n with the corresponding power supply harmonic standard value Iin_lim_n (step S12), and determines all the order components Iin_n for the one or more specific order components Iin_n. , it is determined whether or not Iin_n ⁇ Iin_lim_n holds (step S13).
  • the power harmonic standard value calculation unit 701 sets the frequency command value change flag ⁇ e*_c_flag to a logical value of 0 (step S14), The set frequency command value change flag ⁇ e*_c_flag is output (step S16).
  • step S13 if Iin_n ⁇ Iin_lim_n does not hold for all order components Iin_n (step S13, No), that is, if Iin_n ⁇ Iin_lim_n holds for at least one order component Iin_n, the frequency command value change flag ⁇ e*_c_flag is set to A logical value of 1 is set (step S15), and the set frequency command value change flag ⁇ e*_c_flag is output (step S16).
  • the logical value 1 here is information that instructs to change the frequency command value ⁇ e*.
  • a logical value of 0 is set when Iin_n ⁇ Iin_lim_n holds for all order components Iin_n, and a logical value of 1 is set when in_lim_n ⁇ Iin_lim_n holds for at least one order component Iin_n. set, but not limited to this process.
  • a logical value of 1 may be set when Iin_n ⁇ Iin_lim_n holds for all order components Iin_n, and a logical value of 0 may be set where in_n ⁇ Iin_lim_n holds for at least one order component Iin_n. That is, any logical value may be set as long as the two can be distinguished.
  • FIG. 12 is a block diagram showing a configuration example of power harmonic standard value calculation section 701 included in power harmonic standard conformity determining section 506 according to the first embodiment.
  • the power harmonic standard value calculator 701 includes a motor power calculator 751 , a current harmonic limit value calculator 752 , and a coefficient multiplier 753 .
  • the motor power calculator 751 calculates the motor power W using the following equation (4).
  • a current harmonic limit value calculation unit 752 calculates a current harmonic limit value based on the motor power W.
  • the coefficient multiplier 753 multiplies the current harmonic limit value calculated by the current harmonic limit value calculation unit 752 by a coefficient K1 that determines how much margin is taken into account.
  • the calculation result by the coefficient multiplier 753 is output as the above-described power supply harmonic standard value Iin_lim_n.
  • FIG. 13 is a diagram for explaining calculation processing of current harmonic limit value calculation section 752 included in power supply harmonic standard value calculation section 701 according to the first embodiment.
  • FIG. 13 shows a table showing the procedure for calculating limit values applied to air conditioners exceeding 600 W specified in JIS_C_61000-3-2. Specifically, on the left side of FIG. 13, the calculation formula for the maximum allowable harmonic current of odd-order harmonics from the 3rd to the 39th order and the maximum allowable harmonic current of the even-order harmonics from the 2nd to 40th orders are shown. is shown.
  • the fifth-order maximum allowable harmonic current is obtained by substituting the motor power W calculated using the above formula (4) into the formula "1.14 + 0.00070 (W-600)" and calculating the current harmonic limit value. calculate.
  • the numerical value "1.14" in the formula is converted using the conversion formula shown in the right frame based on the rated voltage of the equipment. As shown in the calculation example, “2.62” is used instead of "1.14" when the rated voltage is 100V, and "1.14" is used when the rated voltage is 200V. Use “1.31” instead of Moreover, when the rated voltage is 200V, 230V, and 240V, "1.14" is used as it is.
  • FIG. 13 is an example, and the calculation of the current harmonic limit value is not limited to this example.
  • the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * the d-axis voltage command value Vd*, the q-axis voltage command value Vq*, the d-axis current id and the q-axis current iq are used for calculation. good too.
  • an LPF Low Pass Filter
  • harmonic components of the 2nd to 40th orders are calculated, but in addition to these harmonic components, harmonic components exceeding the 40th order may also be calculated.
  • FIG. 14 is a block diagram showing a configuration example of the order component calculation section 702 included in the power harmonic standard conformity determination section 506 according to the first embodiment.
  • the order component calculation section 702 includes a first calculation block 702-1 and a second calculation block 702-2.
  • the detected value of the power supply current Iin is multiplied by the cosine value cos ⁇ x and the sine value sin ⁇ x of the phase angle ⁇ x synchronized with the frequency of the harmonic component, and passed through a low-pass filter to obtain the quadrature component Iin_c, Iin_s is computed. Furthermore, the square root of the orthogonal components Iin_c and Iin_s is calculated, and by multiplying by 1/ ⁇ 2, the effective value Iin_x of the order (n ⁇ 1).5 to n.5 is calculated.
  • each effective value Iin_x of the (n-1).5th to n.5th order is squared, and the square root of the sum of the squared values is calculated.
  • the order component Iin_n is calculated.
  • the (n-1).5 order and n.5 order components located at both ends of the 11 harmonic components are multiplied by 1/2 because they overlap between adjacent orders. is added from
  • calculation example in FIG. 14 is an example, and the calculation of the order component Iin_n is not limited to this example.
  • the calculation may be performed by further dividing the harmonic components of each order. Further, similar to the calculation of the current harmonic limit value, calculation of harmonic components exceeding the 40th order may be performed.
  • FIG. 15 is a block diagram showing a configuration example of the operation control section 102 included in the control device 100 according to Embodiment 1.
  • Operation control unit 102 includes frequency command determination unit 760 .
  • the frequency command determination unit 760 performs control to change the frequency command value ⁇ e*, if necessary, according to the value of the frequency command value change flag ⁇ e*_c_flag.
  • FIG. 16 is a flowchart for explaining the operation of the frequency command determination unit 760 according to Embodiment 1.
  • FIG. Frequency command determination unit 760 receives frequency command value change flag ⁇ e*_c_flag from voltage command value calculation unit 115 (step S21). The frequency command determination unit 760 confirms the content of the frequency command value change flag ⁇ e*_c_flag (step S22). When the frequency command value change flag ⁇ e*_c_flag is logical value 1 (step S22, Yes), the frequency command determination unit 760 changes the frequency command value ⁇ e* (step S23).
  • step S22, No if the frequency command value change flag ⁇ e*_c_flag is not logical 1 (step S22, No), that is, if the frequency command value change flag ⁇ e*_c_flag is logical 0, the frequency command determination unit 760 determines the frequency command The current frequency command value ⁇ e* is maintained without changing the value ⁇ e* (step S24).
  • the frequency command determination unit 760 outputs the frequency command value ⁇ e* changed in step S23 or the frequency command value ⁇ e* maintained in step S24 to the voltage command value calculation unit 115 (step S25).
  • any method may be used to change the frequency command value ⁇ e* in step S23.
  • the frequency command value ⁇ e* may be changed by a preset step width.
  • the frequency command value ⁇ e* should be changed so as not to continue the operation within the range of the drive frequency to be avoided.
  • FIG. 17 is a block diagram showing a configuration example of speed control section 503 and ⁇ -axis current command value generation section 504 included in voltage command value calculation section 115 according to the first embodiment. Note that FIG. 17 also includes the preceding subtraction unit 502 .
  • the speed control unit 503 generates the ⁇ -axis current command value i ⁇ * in the rotating coordinate system described above.
  • speed control section 503 includes proportional control section 611 , integral control section 612 , and addition section 613 .
  • the proportional control unit 611 performs proportional control on the difference ( ⁇ e* ⁇ est) between the frequency command value ⁇ e* and the frequency estimated value ⁇ est obtained from the subtraction unit 502, and outputs a proportional term i ⁇ _p*.
  • the integral control unit 612 performs integral control on the difference ( ⁇ e* ⁇ est) between the frequency command value ⁇ e* and the frequency estimated value ⁇ est obtained from the subtraction unit 502, and outputs an integral term i ⁇ _i*.
  • the addition unit 613 adds the proportional term i ⁇ _p* obtained from the proportional control unit 611 and the integral term i ⁇ _i* obtained from the integral control unit 612 to generate the ⁇ -axis current command value i ⁇ *.
  • the ⁇ -axis current command value generating section 504 includes a limiting section 504a and a vibration suppressing section 504b.
  • the restriction unit 504a includes a storage unit 631, a selection unit 632, and a limiter 633.
  • the storage unit 631 stores limiter values i ⁇ _lim1 and i ⁇ _lim2. That is, the limiter 504a has limiter values i ⁇ _lim1 and i ⁇ _lim2.
  • the selection unit 632 selects one of the limiter values i ⁇ _lim1 and i ⁇ _lim2 stored in the storage unit 631 and sets it as the limiter value i ⁇ _lim.
  • the limiter 633 limits the ⁇ -axis current command value i ⁇ * generated by the speed control unit 503 with the limiter value i ⁇ _lim and outputs the ⁇ -axis current command value i ⁇ _lim*.
  • the limiter value i ⁇ _lim1 is based on the assumption that the current value of the electric motor 7 is limited when the rotation speed of the electric motor 7 is in the low speed range.
  • This limiter value i ⁇ _lim1 can be defined based on the current limit value for the phase current of the electric motor 7 and the ⁇ -axis current i ⁇ .
  • the limiter value i ⁇ _lim2 is based on the assumption that the limit is applied based on the voltage value of the electric motor 7 when the rotation speed of the electric motor 7 is in the middle to high speed range.
  • the limiter value i ⁇ _lim2 can be defined based on the limit value of the ⁇ -axis voltage, the ⁇ -axis and ⁇ -axis inductances of the rotating coordinate system, the ⁇ -axis current i ⁇ , the ⁇ -axis magnetic flux linkage of the motor 7, and the angular frequency ⁇ e.
  • the limiting unit 504a may store the limiter values i ⁇ _lim1 and i ⁇ _lim2 calculated by itself in the storage unit 631, or acquire them from the outside, for example, the operation control unit 102, and store them in the storage unit 631. may be stored.
  • the vibration suppression unit 504b uses the ⁇ -axis current command value i ⁇ _lim*, the limiter value i ⁇ _lim, and the ⁇ -axis current compensation value i ⁇ _trq* to generate the ⁇ -axis current command value i ⁇ **.
  • the vibration suppression unit 504 b includes a subtraction unit 641 , a limiter 643 and an addition unit 644 .
  • the subtraction unit 641 calculates the difference between the limiter value i ⁇ _lim obtained from the limiting unit 504a and the ⁇ -axis current command value i ⁇ _lim*, and calculates the limiter value i ⁇ _trq_lim for the ⁇ -axis current compensation value i ⁇ _trq*.
  • the limiter 643 limits the ⁇ -axis current compensation value i ⁇ _trq* with the limiter value i ⁇ _trq_lim and outputs it as the ⁇ -axis current compensation value i ⁇ _trq_lim* after the limiter.
  • the adder 644 adds the ⁇ -axis current command value i ⁇ _lim* and the ⁇ -axis current compensation value i ⁇ _trq_lim* after the limiter to generate the ⁇ -axis current command value I ⁇ **.
  • the ⁇ -axis current command value generating section 504 has a limiting section 504a at the front end and a vibration suppressing section 504b at the rear stage.
  • the ⁇ -axis current command value generator 504 can secure a ⁇ -axis current command that can follow the speed command, and can use the surplus as a ⁇ -axis current command for vibration suppression control.
  • FIG. 18 is a flow chart for explaining the operations of the speed control unit 503 and the limiting unit 504a according to the first embodiment.
  • the speed control unit 503 generates a ⁇ -axis current command value i ⁇ * from the difference ( ⁇ e* ⁇ est) between the frequency command value ⁇ e* and the frequency estimated value ⁇ est (step S31). If the limiter value i ⁇ _lim is smaller than the ⁇ -axis current command value i ⁇ * (step S32, No), the limiting unit 504a reduces the integral term i ⁇ _i* of the integral control unit 612 (step S33).
  • step S32 when the limiter value i ⁇ _lim is equal to or greater than the ⁇ -axis current command value i ⁇ * (step S32: Yes), the limiter 633 of the limiter 504a does not instruct the integral control unit 612, and the speed control unit 503 outputs The ⁇ -axis current command value i ⁇ * is output as the ⁇ -axis current command value i ⁇ _lim* after the limiter (step S34).
  • FIG. 19 is a diagram showing a simulation result comparing even-order components of power supply harmonics that can occur when vibration suppression control is applied to the maximum in the electric motor drive device 50 according to the first embodiment, with standard values. be.
  • FIG. 19 shows the amplitude values of the second harmonic component, the fourth harmonic component, and the sixth harmonic component, and the corresponding standard values, in order from the top.
  • the horizontal axis of FIG. 19 represents the rotational speed.
  • the rotational speed of 20 [rps] in the fourth harmonic component is set as the reference value, that is, "1".
  • the standard value of other rotational speeds in the fourth harmonic component, the standard values of the second harmonic component and the sixth harmonic component are values based on this reference value. Therefore, the numerical values on the vertical axis are different for each harmonic component.
  • the fourth harmonic is the most severe condition for the order component to exceed the standard value. Focusing on the waveform in the middle part of FIG. 19, let A, B, C, and D be rotational speeds whose order components exceed standard values. These values are the following values, as also shown in FIG.
  • the preferable range of the driving frequency to be avoided is the following range.
  • the driving frequency of the electric motor is continuously the frequency of the power supply voltage. It is driven so as not to be within the range of 0.5 to 0.75 and 1.25 to 1.6 of the mains frequency.
  • the power conversion device can compensate for torque pulsation of the electric motor and operate the electric motor so that the order component of the harmonics of the power supply does not exceed the standard value.
  • the control device allows the driving frequency of the electric motor to be within the range of 0.5 to 0.75 or 1.25 to 1.6 of the power supply frequency.
  • the frequency command value corresponding to the drive frequency is changed so that the drive frequency takes a value outside those ranges.
  • the conformity to the power supply harmonic standard is automatically controlled by the control device. It is possible to obtain a motor drive device that is inexpensive, highly reliable, and has a small development load.
  • the reduction of power source harmonics also increases the power factor of the power source, so there is no need to flow wasteful current.
  • the efficiency of the converter can be increased, and the current flowing through the inverter and the motor can be reduced, so that a highly efficient motor driving device can be obtained.
  • the vibration suppression control unit that performs vibration suppression control includes a conformance determination unit that generates a flag that determines whether the power supply current flowing between the AC power supply and the converter satisfies the power supply harmonic standard; and an operation control unit that changes the frequency command value according to the value of the flag, if necessary.
  • the flags in the above control are the power harmonic standard value, which is a threshold for determining whether a specific harmonic component of the power current satisfies the power harmonic standard, and the harmonic order calculated based on the power current. It may be generated based on the result of comparison with the component.
  • This flag may be accompanied by information instructing to change the frequency command value when at least one order component exceeds the power supply harmonic standard value. By using such a flag, the operation control section can easily determine whether or not the frequency command value can be changed.
  • FIG. 20 is a diagram showing an example of a hardware configuration that implements the control device 100 included in the power conversion device 2 according to Embodiment 1. As shown in FIG. The control device 100 is implemented by a processor 201 and memory 202 .
  • the processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or a system LSI (Large Scale Integration).
  • the memory 202 may be RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), non-volatile or non-volatile memory such as can be exemplified. Also, the memory 202 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • FIG. 21 is a diagram showing a configuration example of a refrigeration cycle equipment 900 according to Embodiment 2.
  • a refrigerating cycle applied equipment 900 according to the second embodiment includes the power converter 2 described in the first embodiment.
  • the refrigerating cycle applied equipment 900 according to Embodiment 2 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters.
  • constituent elements having functions similar to those of the first embodiment are assigned the same reference numerals as those of the first embodiment.
  • a refrigerating cycle application device 900 includes a compressor 901 incorporating the electric motor 7 according to Embodiment 1, a four-way valve 902, an indoor heat exchanger 906, an expansion valve 908, and an outdoor heat exchanger 910 with a refrigerant pipe 912. attached through
  • a compression mechanism 904 for compressing refrigerant and an electric motor 7 for operating the compression mechanism 904 are provided inside the compressor 901 .
  • the refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 .
  • Compression mechanism 904 is driven by electric motor 7 whose speed is controlled.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
  • the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 reduces the pressure of the refrigerant to expand it.

Abstract

A power conversion device (2) comprises a converter (10) for rectifying the power supply voltage applied from an AC power supply (1) and an inverter (30) connected to the output end of the converter (10), and supplies AC power to an electric motor (7) for driving a compressor (8). When performing vibration suppression control for suppressing the vibration of the compressor (8), the electric motor (7) is driven so that the drive frequency of the electric motor (7) does not continuously fall in the ranges of 0.5 to 0.75th order and 1.25 to 1.6th order of power supply frequency that is the frequency of the power supply voltage.

Description

電力変換装置、電動機駆動装置及び冷凍サイクル適用機器Power conversion device, motor drive device and refrigeration cycle application equipment
 本開示は、負荷を駆動する電動機に交流電力を供給する電力変換装置、電動機駆動装置及び冷凍サイクル適用機器に関する。 The present disclosure relates to a power conversion device that supplies AC power to a motor that drives a load, a motor drive device, and a refrigeration cycle application device.
 電力変換装置は、交流電源から印加される電源電圧を整流するコンバータと、コンバータの出力端に接続されるコンデンサと、コンデンサから出力される直流電圧を交流電圧に変換して電動機に印加するインバータとを備える。 A power conversion device consists of a converter that rectifies the power supply voltage applied from an AC power supply, a capacitor that is connected to the output end of the converter, and an inverter that converts the DC voltage output from the capacitor into an AC voltage and applies it to the electric motor. Prepare.
 下記特許文献1には、圧縮機を駆動する電動機の状態に応じて、負荷トルクの脈動成分であるトルク脈動を適切に補償することで振動の増加を抑制する技術が開示されている。 Patent Document 1 below discloses a technique for suppressing an increase in vibration by appropriately compensating for torque pulsation, which is a pulsating component of the load torque, according to the state of the electric motor that drives the compressor.
特開2016-082637号公報JP 2016-082637 A
 冷凍サイクル適用機器の応用製品の1つである空気調和機においては、電源電流に含まれる高調波成分である電源高調波による障害を抑制するため、電源高調波に関する規制が定められている。例えば、日本国内においては、日本工業規格(JIS)によって電源高調波に対して制限値である規格値が定められている。 In air conditioners, which are one of the applied products of refrigeration cycle equipment, regulations on power supply harmonics are stipulated in order to suppress damage caused by power supply harmonics, which are harmonic components contained in the power supply current. For example, in Japan, the Japanese Industrial Standards (JIS) stipulate standard values, which are limiting values for power source harmonics.
 しかしながら、特許文献1に記載の技術では、電源高調波に関する考慮がなされていない。このため、特許文献1の技術を使用して、電源周波数と非同期の周波数で電動機のトルク脈動の補償成分を発生させると、電源電流がその極性の正と負との間でアンバランス状態となり、電源高調波が増加して、電源高調波の一部の次数成分が規格値を超えるおそがある。従って、電源高調波の次数成分が規格値を超えないように、何らかの対応が求められる。 However, the technology described in Patent Document 1 does not consider power supply harmonics. For this reason, if the technique of Patent Document 1 is used to generate a compensating component for the torque ripple of the electric motor at a frequency that is asynchronous with the power supply frequency, the power supply current will be in an unbalanced state between the positive and negative polarities of the power supply current. Power supply harmonics may increase and some order components of power supply harmonics may exceed standard values. Therefore, some measures are required so that the order components of power supply harmonics do not exceed the standard value.
 本開示は、上記に鑑みてなされたものであって、電動機のトルク脈動を補償しつつ、電源高調波の次数成分が規格値を超えないように動作できる電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device that can operate so that the order component of power source harmonics does not exceed a standard value while compensating for torque pulsation of an electric motor. .
 上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、負荷を駆動する電動機に交流電力を供給する電力変換装置である。電力変換装置は、交流電源から印加される電源電圧を整流するコンバータと、コンバータの出力端に接続されるインバータとを備える。電動機は、負荷の振動を抑制する振動抑制制御の実施時に、電動機の駆動周波数が、継続的に電源電圧の周波数である電源周波数の0.5から0.75次、及び1.25から1.6次の範囲内とはならないように駆動される。 In order to solve the above-described problems and achieve the purpose, the power conversion device according to the present disclosure is a power conversion device that supplies AC power to a motor that drives a load. A power conversion device includes a converter that rectifies a power supply voltage applied from an AC power supply, and an inverter that is connected to an output end of the converter. When the vibration suppression control for suppressing the vibration of the load is performed, the driving frequency of the electric motor is continuously adjusted to the frequency of the power supply voltage, which is 0.5 to 0.75th order and 1.25 to 1.25th order of the power supply frequency. It is driven so as not to fall within the range of the 6th order.
 本開示に係る電力変換装置によれば、電動機のトルク脈動を補償しつつ、電源高調波の次数成分が規格値を超えないように動作できるという効果を奏する。 According to the power converter according to the present disclosure, it is possible to operate such that the harmonic order component of the power source does not exceed the standard value while compensating for the torque pulsation of the electric motor.
実施の形態1に係る電力変換装置の構成例を示す図1 is a diagram showing a configuration example of a power converter according to Embodiment 1; FIG. 実施の形態1に係る電力変換装置が備えるインバータの構成例を示す図FIG. 2 is a diagram showing a configuration example of an inverter included in the power converter according to Embodiment 1; 実施の形態1に係る電動機駆動装置における振動抑制制御無しのときの動作の状態を示す図FIG. 4 is a diagram showing an operation state of the electric motor drive device according to Embodiment 1 when vibration suppression control is not performed; 実施の形態1に係る電動機駆動装置における振動抑制制御有りのときの動作の状態を示す図FIG. 5 is a diagram showing an operation state when vibration suppression control is performed in the electric motor drive device according to Embodiment 1; 実施の形態1に係る電力変換装置が備える制御装置の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of a control device included in the power conversion device according to Embodiment 1; 一般的な振動抑制制御の実施時に電源高調波が増加する理由の説明に供する図A diagram for explaining the reason why power supply harmonics increase when general vibration suppression control is performed. 実施の形態1における振動抑制制御の実施時において問題となる電源高調波の周波数成分を示す図FIG. 4 is a diagram showing frequency components of power source harmonics that pose a problem when vibration suppression control is performed in Embodiment 1. FIG. 実施の形態1に係る制御装置が備える電圧指令値演算部の構成例を示すブロック図FIG. 3 is a block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to Embodiment 1; 実施の形態1に係る電圧指令値演算部が備える補償値演算部の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of a compensation value calculation section included in the voltage command value calculation section according to Embodiment 1; 実施の形態1に係る電圧指令値演算部が備える電源高調波規格適合判定部の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of a power supply harmonic standard conformance determination unit included in the voltage command value calculation unit according to the first embodiment; 実施の形態1に係る判定部の動作説明に供するフローチャート4 is a flow chart for explaining the operation of the determination unit according to the first embodiment; 実施の形態1に係る電源高調波規格適合判定部が備える電源高調波規格値演算部の構成例を示すブロック図4 is a block diagram showing a configuration example of a power harmonic standard value calculation unit included in the power harmonic standard conformity determination unit according to the first embodiment; FIG. 実施の形態1に係る電源高調波規格値演算部が備える電流高調波限度値演算部の演算処理の説明に供する図FIG. 4 is a diagram for explaining calculation processing of a current harmonic limit value calculation unit included in the power supply harmonic standard value calculation unit according to the first embodiment; 実施の形態1に係る電源高調波規格適合判定部が備える次数成分演算部の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of an order component calculation unit included in the power harmonic standard conformity determination unit according to the first embodiment; 実施の形態1に係る制御装置が備える運転制御部の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of an operation control unit included in the control device according to Embodiment 1; 実施の形態1に係る周波数指令決定部の動作説明に供するフローチャートFlowchart for explaining the operation of the frequency command determining unit according to the first embodiment 実施の形態1に係る電圧指令値演算部が備える速度制御部及びδ軸電流指令値生成部の構成例を示すブロック図4 is a block diagram showing a configuration example of a speed control unit and a δ-axis current command value generation unit included in the voltage command value calculation unit according to the first embodiment; FIG. 実施の形態1に係る速度制御部及び制限部の動作説明に供するフローチャートFlowchart for explaining operations of a speed control unit and a limit unit according to the first embodiment 実施の形態1に係る電動機駆動装置において振動抑制制御を最大限に働かせたときに発生し得る電源高調波の偶数次の次数成分を規格値と比較したシミュレーション結果を示す図FIG. 4 is a diagram showing simulation results comparing even-order components of power supply harmonics that can occur when vibration suppression control is applied to the maximum in the electric motor drive device according to Embodiment 1, with standard values; 実施の形態1に係る電力変換装置が備える制御装置を実現するハードウェア構成の一例を示す図FIG. 2 is a diagram showing an example of a hardware configuration that implements a control device included in the power conversion device according to Embodiment 1; FIG. 実施の形態2に係る冷凍サイクル適用機器の構成例を示す図A diagram showing a configuration example of a refrigeration cycle application device according to Embodiment 2
 以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置、電動機駆動装置及び冷凍サイクル適用機器について詳細に説明する。なお、以下の説明において、「接続」という文言は、構成要素同士が直接的に接続される場合と、構成要素同士が他の構成要素を介して間接的に接続される場合との双方を含んでいる。 A power conversion device, a motor drive device, and a refrigeration cycle application device according to an embodiment of the present disclosure will be described below in detail with reference to the accompanying drawings. In the following description, the term “connection” includes both direct connection between constituent elements and indirect connection between constituent elements via other constituent elements. I'm in.
実施の形態1.
 図1は、実施の形態1に係る電力変換装置2の構成例を示す図である。図2は、実施の形態1に係る電力変換装置2が備えるインバータ30の構成例を示す図である。電力変換装置2は、交流電源1及び圧縮機8に接続される。圧縮機8は、被駆動時に負荷トルクが周期的に変動する特性を有する負荷の一例である。圧縮機8は、電動機7を有する。電動機7の一例は、3相永久磁石同期電動機である。電力変換装置2は、交流電源1から印加される電源電圧を所望の振幅及び位相を有する交流電圧に変換して電動機7に印加する。電力変換装置2は、リアクタ4と、コンバータ10と、コンデンサ20と、インバータ30と、電圧検出部82と、電流検出部83,84と、制御装置100とを備える。電力変換装置2と、圧縮機8が備える電動機7とによって、電動機駆動装置50が構成される。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a power conversion device 2 according to Embodiment 1. As shown in FIG. FIG. 2 is a diagram showing a configuration example of the inverter 30 included in the power conversion device 2 according to Embodiment 1. As shown in FIG. The power converter 2 is connected to the AC power supply 1 and the compressor 8 . The compressor 8 is an example of a load that has a characteristic that the load torque periodically fluctuates when it is driven. The compressor 8 has an electric motor 7 . An example of the motor 7 is a three-phase permanent magnet synchronous motor. The power converter 2 converts the power supply voltage applied from the AC power supply 1 into an AC voltage having a desired amplitude and phase, and applies the AC voltage to the electric motor 7 . Power converter 2 includes reactor 4 , converter 10 , capacitor 20 , inverter 30 , voltage detector 82 , current detectors 83 and 84 , and controller 100 . An electric motor driving device 50 is configured by the power conversion device 2 and the electric motor 7 included in the compressor 8 .
 コンバータ10は、4つのダイオードD1,D2,D3,D4を備える。4つのダイオードD1~D4は、ブリッジ接続され、整流回路を構成する。コンバータ10は、4つのダイオードD1~D4から構成される整流回路によって、交流電源1から印加される電源電圧を整流する。コンバータ10において、入力側の一端はリアクタ4を介して交流電源1に接続され、入力側の他端は交流電源1に接続されている。また、コンバータ10において、出力側はコンデンサ20に接続されている。なお、リアクタ4は、コンバータ10とコンデンサ20との間、即ちコンバータ10の出力側に接続される構成もある。 The converter 10 has four diodes D1, D2, D3 and D4. Four diodes D1 to D4 are bridge-connected to form a rectifier circuit. Converter 10 rectifies the power supply voltage applied from AC power supply 1 by means of a rectifier circuit composed of four diodes D1 to D4. In converter 10 , one end on the input side is connected to AC power supply 1 via reactor 4 , and the other end on the input side is connected to AC power supply 1 . Also, in the converter 10 , the output side is connected to the capacitor 20 . Note that the reactor 4 may be connected between the converter 10 and the capacitor 20 , that is, connected to the output side of the converter 10 .
 コンバータ10は、整流機能と共に、整流電圧を昇圧する昇圧機能を有するものであってもよい。昇圧機能を有するコンバータは、ダイオードに加え、もしくはダイオードに代え、1以上のトランジスタ素子、もしくはトランジスタ素子とダイオードとが逆並列に接続された1以上のスイッチング素子を備えて構成することができる。なお、昇圧機能を有するコンバータにおけるトランジスタ素子又はスイッチング素子の配置、及び接続は公知であり、ここでの説明は省略する。 The converter 10 may have a rectifying function as well as a boosting function for boosting the rectified voltage. A converter having a boosting function can be configured with one or more transistor elements or one or more switching elements in which a transistor element and a diode are connected in anti-parallel in addition to or instead of a diode. Note that the arrangement and connection of transistor elements or switching elements in a converter having a boosting function are well known, and description thereof will be omitted here.
 コンデンサ20は、直流母線22a,22bを介してコンバータ10の出力端に接続される。直流母線22aは正側の直流母線であり、直流母線22bは負側の直流母線である。コンデンサ20は、コンバータ10から印加される整流電圧を平滑する。コンデンサ20としては、電解コンデンサ、フィルムコンデンサなどが例示される。 The capacitor 20 is connected to the output end of the converter 10 via DC buses 22a and 22b. The DC bus 22a is a positive side DC bus, and the DC bus 22b is a negative side DC bus. Capacitor 20 smoothes the rectified voltage applied from converter 10 . Examples of the capacitor 20 include an electrolytic capacitor, a film capacitor, and the like.
 インバータ30は、直流母線22a,22bを介してコンバータ10の出力端に接続されると共に、コンデンサ20の両端に接続される。インバータ30は、コンデンサ20によって平滑された直流電圧を圧縮機8への交流電圧に変換して、圧縮機8の電動機7に印加する。電動機7に印加される電圧は、周波数及び電圧値が可変の3相交流電圧である。 The inverter 30 is connected to the output end of the converter 10 via DC buses 22a and 22b, and is connected to both ends of the capacitor 20. The inverter 30 converts the DC voltage smoothed by the capacitor 20 into AC voltage for the compressor 8 and applies it to the electric motor 7 of the compressor 8 . The voltage applied to the electric motor 7 is a three-phase AC voltage with variable frequency and voltage value.
 インバータ30は、図2に示すように、インバータ主回路310と、駆動回路350とを備える。インバータ主回路310は、スイッチング素子311~316を備える。スイッチング素子311~316の各々には、還流用の整流素子321~326が逆並列接続されている。 The inverter 30 includes an inverter main circuit 310 and a drive circuit 350, as shown in FIG. The inverter main circuit 310 includes switching elements 311-316. Freewheeling rectifying elements 321 to 326 are connected in anti-parallel to the switching elements 311 to 316, respectively.
 インバータ主回路310において、スイッチング素子311~316としては、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などを想定しているが、スイッチングを行うことが可能な素子であれば、どのようなものを用いてもよい。なお、スイッチング素子311~316がMOSFETの場合、MOSFETは構造上、寄生ダイオードを有するため、還流用の整流素子321~326を逆並列接続しなくても同様の効果を得ることができる。 In the inverter main circuit 310, the switching elements 311 to 316 are assumed to be IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), etc., but elements capable of switching If so, you can use whatever you want. When the switching elements 311 to 316 are MOSFETs, the MOSFETs have parasitic diodes due to their structure, so that the same effect can be obtained without connecting the freewheeling rectifying elements 321 to 326 in anti-parallel.
 また、スイッチング素子311~316を形成する材料については、ケイ素(Si)だけでなく、ワイドバンドギャップ半導体である炭化ケイ素(SiC)、窒化ガリウム(GaN)、ダイヤモンド等を用いてもよい。ワイドバンドギャップ半導体を用いてスイッチング素子311~316を形成することにより、損失をより少なくすることが可能となる。 Also, as materials for forming the switching elements 311 to 316, not only silicon (Si) but also wide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), and diamond may be used. By forming switching elements 311 to 316 using a wide bandgap semiconductor, loss can be further reduced.
 駆動回路350は、制御装置100から出力されるPWM(Pulse Width Modulation)信号Sm1~Sm6に基づいて、駆動信号Sr1~Sr6を生成する。駆動回路350は、駆動信号Sr1~Sr6によってスイッチング素子311~316のオンオフを制御する。これにより、インバータ30は、周波数可変、且つ電圧可変の3相交流電圧を、出力線331~333を介して電動機7に印加することができる。 The drive circuit 350 generates drive signals Sr1-Sr6 based on PWM (Pulse Width Modulation) signals Sm1-Sm6 output from the control device 100. FIG. The drive circuit 350 controls on/off of the switching elements 311-316 by the drive signals Sr1-Sr6. As a result, the inverter 30 can apply the frequency-variable and voltage-variable three-phase AC voltage to the electric motor 7 via the output lines 331 to 333 .
 PWM信号Sm1~Sm6は、論理回路の信号レベル、例えば、0V~5Vの大きさを持つ信号である。PWM信号Sm1~Sm6は、制御装置100の接地電位を基準電位とする信号である。一方、駆動信号Sr1~Sr6は、スイッチング素子311~316を制御するのに必要な電圧レベル、例えば、-15V~+15Vの大きさを持つ信号である。駆動信号Sr1~Sr6は、それぞれ対応するスイッチング素子の負側の端子、即ちエミッタ端子の電位を基準電位とする信号である。 The PWM signals Sm1 to Sm6 are signals having a signal level of a logic circuit, for example, a magnitude of 0V to 5V. The PWM signals Sm1 to Sm6 are signals having the ground potential of the control device 100 as a reference potential. On the other hand, the driving signals Sr1 to Sr6 are signals having voltage levels necessary to control the switching elements 311 to 316, eg, -15V to +15V. The drive signals Sr1 to Sr6 are signals having the potential of the negative terminal, that is, the emitter terminal of the corresponding switching element as a reference potential.
 電圧検出部82は、コンデンサ20の両端電圧を検出することで母線電圧Vdcを検出する。母線電圧Vdcは、直流母線22a,22b間の電圧である。電圧検出部82は、例えば直列接続された抵抗で分圧する分圧回路を備える。電圧検出部82は、検出した母線電圧Vdcを、分圧回路を用いて制御装置100での処理に適した電圧、例えば5V以下の電圧に変換し、アナログ信号である電圧検出信号として制御装置100に出力する。電圧検出部82から制御装置100に出力される電圧検出信号は、制御装置100内の図示しないAD(Analog to Digital)変換部によってアナログ信号からデジタル信号に変換され、制御装置100での内部処理に用いられる。 The voltage detection unit 82 detects the voltage across the capacitor 20 to detect the bus voltage Vdc. The bus voltage Vdc is the voltage between the DC buses 22a and 22b. The voltage detection unit 82 includes, for example, a voltage dividing circuit that divides the voltage with series-connected resistors. The voltage detection unit 82 converts the detected bus voltage Vdc into a voltage suitable for processing in the control device 100 using a voltage dividing circuit, for example, a voltage of 5 V or less, and outputs it to the control device 100 as a voltage detection signal that is an analog signal. output to The voltage detection signal output from the voltage detection unit 82 to the control device 100 is converted from an analog signal to a digital signal by an AD (Analog to Digital) conversion unit (not shown) in the control device 100, and is subjected to internal processing in the control device 100. Used.
 電流検出部83は、交流電源1とコンバータ10との間に流れる電流である電源電流Iinを検出する。電流検出部83は、検出した電源電流Iinを、アナログ信号である電流検出信号として制御装置100に出力する。電流検出部83から制御装置100に出力される電流検出信号は、制御装置100内の図示しないAD変換部によってアナログ信号からデジタル信号に変換され、制御装置100での内部処理に用いられる。 The current detection unit 83 detects the power supply current Iin, which is the current flowing between the AC power supply 1 and the converter 10 . Current detection unit 83 outputs the detected power supply current Iin to control device 100 as a current detection signal, which is an analog signal. A current detection signal output from the current detection unit 83 to the control device 100 is converted from an analog signal to a digital signal by an AD conversion unit (not shown) in the control device 100 and used for internal processing in the control device 100 .
 電流検出部84は、直流母線22bに挿入されたシャント抵抗を備える。電流検出部84は、シャント抵抗を用いて、コンデンサ出力電流idcを検出する。コンデンサ出力電流idcは、インバータ30への入力電流、即ちコンデンサ20からインバータ30に出力される電流である。電流検出部84は、検出したコンデンサ出力電流idcを、アナログ信号である電流検出信号として制御装置100に出力する。電流検出部84から制御装置100に出力される電流検出信号は、制御装置100内の図示しないAD変換部によってアナログ信号からデジタル信号に変換され、制御装置100での内部処理に用いられる。 The current detector 84 has a shunt resistor inserted in the DC bus 22b. A current detector 84 detects the capacitor output current idc using a shunt resistor. A capacitor output current idc is an input current to the inverter 30 , that is, a current output from the capacitor 20 to the inverter 30 . The current detection unit 84 outputs the detected capacitor output current idc to the control device 100 as a current detection signal, which is an analog signal. A current detection signal output from the current detection unit 84 to the control device 100 is converted from an analog signal to a digital signal by an AD conversion unit (not shown) in the control device 100 and used for internal processing in the control device 100 .
 制御装置100は、前述したPWM信号Sm1~Sm6を生成してインバータ30の動作を制御する。具体的に、制御装置100は、PWM信号Sm1~Sm6に基づいて、インバータ30の出力電圧の角周波数ωe及び電圧値を変化させる。 The control device 100 controls the operation of the inverter 30 by generating the PWM signals Sm1 to Sm6 described above. Specifically, the control device 100 changes the angular frequency ωe and the voltage value of the output voltage of the inverter 30 based on the PWM signals Sm1 to Sm6.
 インバータ30の出力電圧の角周波数ωeは、電動機7の電気角での回転角速度を定めるものである。本稿では、この回転角速度も同じ符号ωeで表すことにする。電動機7の機械角での回転角速度ωmは、電動機7の電気角での回転角速度ωeを極対数Pで割ったものに等しい。従って、電動機7の機械角での回転角速度ωmと、インバータ30の出力電圧の角周波数ωeとの間には、以下の(1)式で表される関係がある。なお、本稿では、回転角速度を単に「回転速度」と称し、角周波数を単に「周波数」と称することがある。 The angular frequency ωe of the output voltage of the inverter 30 determines the rotational angular velocity of the electric motor 7 in electrical angle. In this paper, this rotational angular velocity is also represented by the same symbol ωe. The rotational angular velocity ωm of the electric motor 7 in the mechanical angle is equal to the rotational angular velocity ωe of the electric motor 7 in the electrical angle divided by the pole logarithm P. Therefore, there is a relationship represented by the following equation (1) between the rotational angular velocity ωm of the electric motor 7 in mechanical angle and the angular frequency ωe of the output voltage of the inverter 30 . In this paper, the rotational angular velocity is sometimes simply referred to as "rotational velocity", and the angular frequency is simply referred to as "frequency".
 ωm=ωe/P  …(1) ωm = ωe/P … (1)
 次に、電動機駆動装置50における振動抑制制御及びその必要性について、図3及び図4を用いて説明する。図3は、実施の形態1に係る電動機駆動装置50における振動抑制制御無しのときの動作の状態を示す図である。図4は、実施の形態1に係る電動機駆動装置50における振動抑制制御有りのときの動作の状態を示す図である。 Next, the vibration suppression control in the electric motor drive device 50 and its necessity will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a diagram showing an operation state of the electric motor drive device 50 according to Embodiment 1 when vibration suppression control is not performed. FIG. 4 is a diagram showing a state of operation when vibration suppression control is performed in electric motor drive device 50 according to the first embodiment.
 電動機駆動装置50の適用例が、例えば空気調和機である場合、圧縮機8の振動を低減するために、電動機7のトルク脈動を補償して、電動機7の回転速度変動が小さくなるように制御することが行われる。電動機7の回転速度変動が小さくなると、圧縮機8の振動が小さくなる。このため、回転速度変動を小さくする制御は、一般的に「振動抑制制御」と呼ばれる。 When the application example of the electric motor drive device 50 is an air conditioner, for example, in order to reduce the vibration of the compressor 8, the torque pulsation of the electric motor 7 is compensated, and the rotation speed fluctuation of the electric motor 7 is controlled to be small. to be done. When the rotation speed fluctuation of the electric motor 7 becomes smaller, the vibration of the compressor 8 becomes smaller. For this reason, control for reducing rotation speed fluctuations is generally called "vibration suppression control."
 図3及び図4には、圧縮機8がシングルロータリ圧縮機である場合の電動機7の機械角1回転における圧縮機8の負荷トルク、電動機7の出力トルク、電動機7の回転速度、及び制御装置100におけるトルク電流補償値の関係が示されている。図3は、制御装置100が電動機7の出力トルクを一定に制御した状態を示している。一方、図4は、制御装置100が、電動機7の出力トルクを圧縮機8の負荷トルクに一致させるようにトルク電流補償値を制御して回転速度を一定に制御した状態を示している。 3 and 4 show the load torque of the compressor 8, the output torque of the electric motor 7, the rotation speed of the electric motor 7, and the control device in one rotation of the mechanical angle of the electric motor 7 when the compressor 8 is a single rotary compressor. A relationship of torque current compensation values at 100 is shown. FIG. 3 shows a state in which the control device 100 controls the output torque of the electric motor 7 to be constant. On the other hand, FIG. 4 shows a state in which the control device 100 controls the torque current compensation value so that the output torque of the electric motor 7 matches the load torque of the compressor 8, thereby controlling the rotational speed to be constant.
 図3から分かるように、制御装置100が電動機7の出力トルクを一定に制御すると、電動機7の出力トルクと圧縮機8の負荷トルクとの差で回転速度が変動する。回転速度が変動すると、圧縮機8で振動、騒音などが発生する。回転速度の変動が極端に大きくなると、電動機7が脱調し、停止する可能性がある。 As can be seen from FIG. 3 , when the control device 100 controls the output torque of the electric motor 7 to be constant, the rotational speed fluctuates due to the difference between the output torque of the electric motor 7 and the load torque of the compressor 8 . When the rotation speed fluctuates, the compressor 8 generates vibration, noise, and the like. If the variation in rotational speed becomes extremely large, the electric motor 7 may step out and stop.
 そのため、実施の形態1に係る制御装置100には、電動機7の出力トルクを圧縮機8の負荷トルクに一致させるように制御する振動抑制制御の機能が具備されている。振動抑制制御の詳細については、後述する。 Therefore, the control device 100 according to the first embodiment has a function of vibration suppression control for controlling the output torque of the electric motor 7 to match the load torque of the compressor 8 . Details of the vibration suppression control will be described later.
 次に、制御装置100の構成について説明する。図5は、実施の形態1に係る電力変換装置2が備える制御装置100の構成例を示すブロック図である。制御装置100は、運転制御部102と、インバータ制御部110とを備える。また、インバータ制御部110は、電流復元部111と、3相2相変換部112と、γ軸電流指令値生成部113と、電圧指令値演算部115と、電気位相演算部116と、2相3相変換部117と、PWM信号生成部118とを備える。 Next, the configuration of the control device 100 will be described. FIG. 5 is a block diagram showing a configuration example of the control device 100 included in the power conversion device 2 according to Embodiment 1. As shown in FIG. The control device 100 includes an operation control section 102 and an inverter control section 110 . Further, the inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, a γ-axis current command value generation unit 113, a voltage command value calculation unit 115, an electrical phase calculation unit 116, a two-phase A three-phase converter 117 and a PWM signal generator 118 are provided.
 運転制御部102は、外部から指令情報Qeを受ける。運転制御部102は、指令情報Qeに基づいて、周波数指令値ωe*を生成する。周波数指令値ωe*は、以下の(2)式に示すように、電動機7の機械角での回転速度の指令値である回転速度指令値ωm*に極対数Pを乗算することで求めることができる。 The operation control unit 102 receives command information Qe from the outside. The operation control unit 102 generates a frequency command value ωe* based on the command information Qe. The frequency command value ωe* can be obtained by multiplying the rotational speed command value ωm*, which is the command value of the rotational speed of the electric motor 7 at the mechanical angle, by the number of pole pairs P, as shown in the following equation (2). can.
 ωe*=ωm*×P  …(2) ωe*=ωm*×P……(2)
 制御装置100は、冷凍サイクル適用機器としての空気調和機を制御する場合、指令情報Qeに基づいて、空気調和機の各部の動作を制御する。指令情報Qeは、例えば、図示しない温度センサで検出された温度、図示しない操作部であるリモコンから指示される設定温度を示す情報、運転モードの選択情報、運転開始及び運転終了の指示情報などである。運転モードとは、例えば、暖房、冷房、除湿などである。 When controlling an air conditioner as a refrigeration cycle-applied device, the control device 100 controls the operation of each part of the air conditioner based on the command information Qe. The command information Qe is, for example, a temperature detected by a temperature sensor (not shown), information indicating a set temperature instructed from a remote controller (not shown), operation mode selection information, operation start/end instruction information, and the like. be. The operation modes are, for example, heating, cooling, and dehumidification.
 また、運転制御部102は、電圧指令値演算部115から周波数指令値変更フラグωe*_c_flagを受ける。周波数指令値変更フラグωe*_c_flagは、論理値であり、周波数指令値ωe*の変更の要否を示す情報が付されたフラグである。運転制御部102は、周波数指令値変更フラグωe*_c_flagの値に応じて、要すれば、指令情報Qeに基づいて生成した周波数指令値ωe*の値を変更する。周波数指令値変更フラグωe*_c_flagの詳細、及び周波数指令値ωe*の値をどのように変更するかについては、後述する。 The operation control unit 102 also receives a frequency command value change flag ωe*_c_flag from the voltage command value calculation unit 115 . The frequency command value change flag ωe*_c_flag is a logical value, and is a flag attached with information indicating whether or not the frequency command value ωe* needs to be changed. The operation control unit 102 changes the value of the frequency command value ωe* generated based on the command information Qe according to the value of the frequency command value change flag ωe*_c_flag, if necessary. Details of the frequency command value change flag ωe*_c_flag and how to change the value of the frequency command value ωe* will be described later.
 電流復元部111は、電流検出部84で検出されたコンデンサ出力電流idcに基づいて、電動機7に流れる相電流iu,iv,iwを復元する。電流復元部111は、電流検出部84で検出されたコンデンサ出力電流idcの検出値を、PWM信号生成部118で生成されたPWM信号Sm1~Sm6に基づいて定められるタイミングでサンプリングすることによって、相電流iu,iv,iwを復元することができる。なお、出力線331~333に電流検出器を設け、相電流iu,iv,iwを直接検出して3相2相変換部112に入力してもよい。この構成の場合、電流復元部111は不要である。 The current restoration unit 111 restores the phase currents iu, iv, and iw flowing through the electric motor 7 based on the capacitor output current idc detected by the current detection unit 84 . The current restoration unit 111 samples the detected value of the capacitor output current idc detected by the current detection unit 84 at timing determined based on the PWM signals Sm1 to Sm6 generated by the PWM signal generation unit 118. The currents iu, iv, iw can be restored. Note that current detectors may be provided on the output lines 331 to 333 to directly detect the phase currents iu, iv, and iw and input them to the three-to-two-phase converter 112 . In this configuration, the current restoration section 111 is unnecessary.
 3相2相変換部112は、電流復元部111で復元された相電流iu,iv,iwを、後述する電気位相演算部116で生成された電気位相θeを用いて、励磁電流であるγ軸電流iγ、及びトルク電流であるδ軸電流iδ、即ちγ-δ軸の電流値に変換する。 The three-phase to two-phase conversion unit 112 converts the phase currents iu, iv, and iw restored by the current restoration unit 111 into the γ axis, which is the excitation current, using the electric phase θe generated by the electric phase calculation unit 116, which will be described later. The current iγ and the δ-axis current iδ, which is the torque current, are converted into γ-δ axis current values.
 γ軸電流指令値生成部113は、δ軸電流iδに基づいて、励磁電流指令値であるγ軸電流指令値iγ*を生成する。より詳細に説明すると、γ軸電流指令値生成部113は、δ軸電流iδに基づいて、電動機7の出力トルクが設定値以上もしくは最大値となる電流位相角を求め、求めた電流位相角に基づいて、γ軸電流指令値iγ*を演算する。なお、電動機7の出力トルクに代えて、電動機7に流れる電動機電流を用いてもよい。この場合、電動機7に流れる電動機電流が設定値以下もしくは最小値となる電流位相角に基づいて、γ軸電流指令値iγ*が演算される。 A γ-axis current command value generation unit 113 generates a γ-axis current command value iγ*, which is an exciting current command value, based on the δ-axis current iδ. More specifically, the γ-axis current command value generation unit 113 obtains the current phase angle at which the output torque of the electric motor 7 is equal to or higher than the set value or the maximum value based on the δ-axis current iδ, and the calculated current phase angle is Based on this, the γ-axis current command value iγ* is calculated. Note that the motor current flowing through the electric motor 7 may be used instead of the output torque of the electric motor 7 . In this case, the γ-axis current command value iγ* is calculated based on the current phase angle at which the motor current flowing through the motor 7 is the set value or less or the minimum value.
 また、図5では、δ軸電流iδに基づいてγ軸電流指令値iγ*を求める構成が示されているが、この構成に限定されない。δ軸電流iδに代え、γ軸電流iγに基づいてγ軸電流指令値iγ*を求めてもよい。また、γ軸電流指令値生成部113は、弱め磁束制御によってγ軸電流指令値iγ*を決定してもよい。 In addition, although FIG. 5 shows a configuration in which the γ-axis current command value iγ* is obtained based on the δ-axis current iδ, it is not limited to this configuration. The γ-axis current command value iγ* may be obtained based on the γ-axis current iγ instead of the δ-axis current iδ. Further, the γ-axis current command value generator 113 may determine the γ-axis current command value iγ* by flux-weakening control.
 電圧指令値演算部115は、運転制御部102から取得した周波数指令値ωe*と、3相2相変換部112から取得したγ軸電流iγ及びδ軸電流iδと、γ軸電流指令値生成部113から取得したγ軸電流指令値iγ*とに基づいて、γ軸電圧指令値Vγ*及びδ軸電圧指令値Vδ*を生成する。また、電圧指令値演算部115は、γ軸電圧指令値Vγ*と、δ軸電圧指令値Vδ*と、γ軸電流iγと、δ軸電流iδとに基づいて、周波数推定値ωestを推定する。更に、電圧指令値演算部115は、γ軸電流iγと、δ軸電流iδと、電流検出部83から取得した電源電流Iinとに基づいて、前述した周波数指令値変更フラグωe*_c_flagを生成する。 The voltage command value calculation unit 115 calculates the frequency command value ωe* obtained from the operation control unit 102, the γ-axis current iγ and the δ-axis current iδ obtained from the three-phase to two-phase conversion unit 112, and the γ-axis current command value generation unit. Based on the γ-axis current command value iγ* acquired from 113, the γ-axis voltage command value Vγ* and the δ-axis voltage command value Vδ* are generated. Also, the voltage command value calculation unit 115 estimates the frequency estimation value ωest based on the γ-axis voltage command value Vγ*, the δ-axis voltage command value Vδ*, the γ-axis current iγ, and the δ-axis current iδ. . Furthermore, the voltage command value calculation unit 115 generates the above-described frequency command value change flag ωe*_c_flag based on the γ-axis current iγ, the δ-axis current iδ, and the power supply current Iin obtained from the current detection unit 83. .
 電気位相演算部116は、電圧指令値演算部115から取得した周波数推定値ωestを積分することで、電気位相θeを演算する。 The electrical phase calculator 116 calculates the electrical phase θe by integrating the frequency estimation value ωest acquired from the voltage command value calculator 115 .
 2相3相変換部117は、電圧指令値演算部115から取得したγ軸電圧指令値Vγ*及びδ軸電圧指令値Vδ*、即ち2相座標系の電圧指令値を、電気位相演算部116から取得した電気位相θeを用いて、3相座標系の出力電圧指令値である3相電圧指令値Vu*,Vv*,Vw*に変換する。 The two-to-three phase conversion unit 117 converts the γ-axis voltage command value Vγ* and the δ-axis voltage command value Vδ* acquired from the voltage command value calculation unit 115, that is, the voltage command values in the two-phase coordinate system, to the electric phase calculation unit 116. are converted into three-phase voltage command values Vu*, Vv*, Vw*, which are output voltage command values in a three-phase coordinate system, using the electric phase θe obtained from .
 PWM信号生成部118は、2相3相変換部117から取得した3相電圧指令値Vu*,Vv*,Vw*と、電圧検出部82で検出された母線電圧Vdcとを比較することによって、PWM信号Sm1~Sm6を生成する。なお、PWM信号生成部118は、PWM信号Sm1~Sm6を出力しないようにすることによって、電動機7を停止させることも可能である。 The PWM signal generator 118 compares the three-phase voltage command values Vu*, Vv*, Vw* acquired from the two-to-three-phase converter 117 with the bus voltage Vdc detected by the voltage detector 82. PWM signals Sm1 to Sm6 are generated. The PWM signal generator 118 can also stop the electric motor 7 by not outputting the PWM signals Sm1 to Sm6.
 次に、前述した振動抑制制御の実施時において、電源高調波が増加する理由について説明する。図6は、一般的な振動抑制制御の実施時に電源高調波が増加する理由の説明に供する図である。 Next, the reason why the power supply harmonics increase when the above-described vibration suppression control is performed will be explained. FIG. 6 is a diagram for explaining the reason why power supply harmonics increase when general vibration suppression control is performed.
 まず、負荷が、例えばシングルロータリ圧縮機、スクロール圧縮機、ツインロータリ圧縮機といったトルク脈動を有する負荷である場合、振動抑制制御が行われる。一般的な振動抑制制御では、電動機7の出力トルクが圧縮機8のトルク脈動に追従するようにトルク電流補償値を発生させてインバータ30を制御することが行われる。しかしながら、この制御を単純に行うと、[発明が解決しようとする課題]の項においても説明したように、電源電流Iinがその極性の正と負との間でアンバランス状態となり、電源高調波が増加して、電源高調波の一部の次数成分が規格値を超えてしまうという問題が生ずる。 First, when the load is a load with torque pulsation such as a single rotary compressor, a scroll compressor, or a twin rotary compressor, vibration suppression control is performed. In general vibration suppression control, the inverter 30 is controlled by generating a torque current compensation value so that the output torque of the electric motor 7 follows the torque pulsation of the compressor 8 . However, if this control is simply performed, as explained in the section [Problem to be Solved by the Invention], the power supply current Iin becomes unbalanced between its positive and negative polarities, resulting in power supply harmonics. increases, and some order components of power supply harmonics exceed standard values.
 図6には、上段部から順に、電源電圧Vin、電源電流Iin及びコンデンサ出力電流idcの波形が示されている。図6の横軸は時間を表している。 FIG. 6 shows the waveforms of the power supply voltage Vin, the power supply current Iin, and the capacitor output current idc in order from the top. The horizontal axis of FIG. 6 represents time.
 図6の中段部には、電源電流Iinにおける正側の波形のピーク値と負側の波形のピーク値とが異なる様子、即ち電源電流Iinの極性の正負間でピーク値がアンバランスとなる状態が示されている。このようなアンバランスが生じると、下段部に示されるように、コンデンサ出力電流idcに脈動が生ずる。これにより、電源電流Iinには、多くの高調波成分が含まれるようになる。 In the middle part of FIG. 6, the peak value of the positive side waveform and the peak value of the negative side waveform of the power supply current Iin are different, that is, the peak value is unbalanced between the positive and negative polarities of the power supply current Iin. It is shown. When such imbalance occurs, pulsation occurs in the capacitor output current idc as shown in the lower part. As a result, the power supply current Iin contains many harmonic components.
 上述したように、電動機7のトルク脈動を補償する振動抑制制御を実施すると、電源高調波の一部の次数成分が規格値を超えるおそがある。そこで、実施の形態1に係る電力変換装置2が備える制御装置100は、振動抑制制御の実施時に電源高調波の次数成分が規格値を超えないように電力変換装置2を動作させる制御を行う。 As described above, when vibration suppression control is performed to compensate for torque pulsation of the electric motor 7, some order components of power source harmonics may exceed standard values. Therefore, the control device 100 included in the power conversion device 2 according to Embodiment 1 performs control to operate the power conversion device 2 so that the order component of the power supply harmonic does not exceed the standard value when the vibration suppression control is performed.
 次に、振動抑制制御の実施時に問題となる電源高調波の周波数成分について説明する。まず、電源電流Iinにおける支配的な交流成分を列挙すると、以下の通りである。 Next, we will explain the frequency components of power supply harmonics that pose a problem when implementing vibration suppression control. First, the dominant AC components in the power supply current Iin are listed below.
 ・電源1f、電源3f、電源5f
 ・電源1f-{電源1f-|電源1f-駆動周波数|}…(3-1)
 ・電源1f+{電源1f-|電源1f-駆動周波数|}…(3-2)
 ・電源3f-{電源1f-|電源1f-駆動周波数|}…(3-3)
 ・電源3f+{電源1f-|電源1f-駆動周波数|}…(3-4)
 ・電源5f-{電源1f-|電源1f-駆動周波数|}…(3-5)
 ・電源5f+{電源1f-|電源1f-駆動周波数|}…(3-6)
 ・電源1f-{電源1f-|電源1f-駆動周波数×2|}…(3-7)
 ・電源1f+{電源1f-|電源1f-駆動周波数×2|}…(3-8)
 ・電源3f-{電源1f-|電源1f-駆動周波数×2|}…(3-9)
 ・電源3f+{電源1f-|電源1f-駆動周波数×2|}…(3-10)
 ・電源5f-{電源1f-|電源1f-駆動周波数×2|}…(3-11)
 ・電源5f+{電源1f-|電源1f-駆動周波数×2|}…(3-12)
・Power supply 1f, power supply 3f, power supply 5f
・Power supply 1f-{power supply 1f-|power supply 1f-drive frequency|} (3-1)
・Power supply 1f + {power supply 1f-|power supply 1f-drive frequency|} (3-2)
・Power supply 3f-{power supply 1f-|power supply 1f-drive frequency|} (3-3)
・Power supply 3f + {power supply 1f-|power supply 1f-drive frequency|} (3-4)
・Power supply 5f-{power supply 1f-|power supply 1f-drive frequency|} (3-5)
・Power supply 5f + {power supply 1f-|power supply 1f-drive frequency|} (3-6)
・Power supply 1f-{power supply 1f-|power supply 1f-drive frequency×2|} (3-7)
・Power supply 1f + {power supply 1f- | power supply 1f- drive frequency x 2|} (3-8)
・Power supply 3f-{power supply 1f-|power supply 1f-drive frequency x 2|} (3-9)
・Power supply 3f + {power supply 1f-|power supply 1f-drive frequency x 2|} (3-10)
・Power supply 5f-{power supply 1f-|power supply 1f-drive frequency x 2|} (3-11)
・Power supply 5f + {power supply 1f- | power supply 1f- drive frequency x 2|} (3-12)
 上記において、駆動周波数は、電動機7の機械角での回転速度に対応する周波数である。駆動周波数は、制御装置100によって制御される電動機7の機械角周波数と同義である。なお、機械角周波数の単位を「Hz」とし、電動機7の機械角での回転速度の単位を「rps」とするとき、両者の値は等しくなる。 In the above description, the driving frequency is the frequency corresponding to the rotational speed of the electric motor 7 in terms of mechanical angle. The drive frequency is synonymous with the mechanical angular frequency of the electric motor 7 controlled by the control device 100 . If the unit of the mechanical angular frequency is "Hz" and the unit of the rotation speed of the electric motor 7 in mechanical angle is "rps", both values are equal.
 また、上記において、「電源1f」は、電源周波数の1倍、即ち電源周波数と同じ周波数の成分である。また、「電源3f」は電源周波数の3倍の成分であり、「電源5f」は電源周波数の5倍の成分である。また、上記(3-1)~(3-12)式の各周波数成分は、各々の演算式に従って演算される周波数成分である。例えば、上記(3-1)式は、電源1fから駆動周波数を引いた値の絶対値を電源1fから引き、その引き算の値を更に電源1fから引くことで求めた周波数成分である。なお、上記では、電源1f、電源3f及び電源5fに関係する交流成分のみを示しているが、これらは支配的な交流成分の一例であり、これらの例に限定されない。 Also, in the above, "power supply 1f" is one times the power supply frequency, that is, a component with the same frequency as the power supply frequency. "Power 3f" is a component three times the power frequency, and "Power 5f" is a component five times the power frequency. Further, each frequency component in the above formulas (3-1) to (3-12) is a frequency component calculated according to each calculation formula. For example, the above equation (3-1) is a frequency component obtained by subtracting the absolute value of the value obtained by subtracting the drive frequency from the power supply 1f from the power supply 1f and further subtracting the subtracted value from the power supply 1f. Although only the AC components related to the power supply 1f, the power supply 3f, and the power supply 5f are shown above, these are examples of dominant AC components, and the present invention is not limited to these examples.
 図7には、電源電流Iinにおける支配的な周波数成分のうちで、振動抑制制御の実施時において問題となる電源高調波の周波数成分が次数ごとに区分されて示されている。即ち、図7は、実施の形態1における振動抑制制御の実施時において問題となる電源高調波の周波数成分を示す図である。 FIG. 7 shows, of the dominant frequency components in the power supply current Iin, the frequency components of the power supply harmonics that pose a problem during the execution of the vibration suppression control, classified by order. That is, FIG. 7 is a diagram showing frequency components of power supply harmonics that pose a problem when vibration suppression control is performed in the first embodiment.
 図7において、表側には、電動機7の回転速度が5[rps]刻みで0から100[rps]まで記載され、表頭には、2次から6次までの電源高調波の次数成分が記載されている。なお、電源周波数は50「Hz」としている。また、各n次(nは2以上の整数)の次数成分は、(n-1).5次~n.5次までの11個の高調波成分を含むものとして示されている。例えばn=2、即ち2次の場合、(n-1).5次~n.5次に対応する周波数は、1.5次(75[Hz])、1.6次(80[Hz])、…、2.0次(100[Hz])、…、2.4次(120[Hz])、及び2.5次(125[Hz])の11個の高調波成分である。 In FIG. 7, the rotation speed of the electric motor 7 is described in increments of 5 [rps] from 0 to 100 [rps] on the front side, and the second to sixth order components of the power source harmonics are described on the front side. It is It should be noted that the power supply frequency is 50 "Hz". Also, each n-th order (n is an integer of 2 or more) order component is shown as including 11 harmonic components from (n-1).5th order to n.5th order. For example, when n=2, that is, second order, the frequencies corresponding to the (n-1).5 order to n.5 order are 1.5th order (75 [Hz]), 1.6th order (80 [Hz] ), . . . , 2.0th order (100 [Hz]), .
 ここで、図7の表の数値の意味について説明する。図7には、回転速度30[rps]の2次成分として、数値列“80,120(90,110)”が記載されている。括弧が付されていない数値は、駆動周波数×1、即ち駆動周波数の1倍の周波数によって生じる成分であり、括弧が付されている数値は、駆動周波数×2、即ち駆動周波数の2倍の周波数によって生じる成分であることを示している。なお、駆動周波数の2倍の周波数によって生じる成分は、駆動周波数の1倍の周波数によって生じる成分に比べて小さい。 Here, the meaning of the numerical values in the table of FIG. 7 will be explained. In FIG. 7, a numerical string "80, 120 (90, 110)" is described as the secondary component of the rotational speed of 30 [rps]. Numerical values without parentheses are the components generated by the driving frequency×1, i.e., the frequency that is 1 times the driving frequency, and the numerical values with parentheses are the driving frequency×2, i.e., the frequency that is 2 times the driving frequency. It shows that it is a component generated by It should be noted that the component generated by the frequency twice the driving frequency is smaller than the component generated by the frequency one times the driving frequency.
 上記の数値列において、数値“80”は、上記の(3-2)式によって生じる成分である。具体的に、電源1f=50[Hz]、駆動周波数(=回転速度)=30[Hz]の値を上記(3-2)式に代入すると、50+{50-|50-30|}=80[Hz]が得られる。また、数値“120”は、上記の(3-3)式によって生じる成分である。具体的に、電源3f=150[Hz]、駆動周波数=30[Hz]の値を上記(3-3)式に代入すると、150-{50-|50-30|}=120[Hz]が得られる。また、括弧内の数値“90”は、上記の(3-8)式によって生じる成分である。具体的に、電源1f=50[Hz]、駆動周波数×2=60[Hz]の値を上記(3-8)式に代入すると、50+{50-|50-60|}=90[Hz]が得られる。また、括弧内の数値“110”は、上記の(3-9)式によって生じる成分である。具体的に、電源3f=150[Hz]、駆動周波数×2=60[Hz]の値を上記(3-9)式に代入すると、150-{50-|50-60|}=110[Hz]が得られる。他の表中の成分も同様に説明できる。 In the above numerical sequence, the numerical value "80" is the component generated by the above formula (3-2). Specifically, when the power supply 1f = 50 [Hz] and the drive frequency (= rotation speed) = 30 [Hz] are substituted into the above equation (3-2), 50 + {50-|50-30|} = 80 [Hz] is obtained. Also, the numerical value "120" is a component generated by the above equation (3-3). Specifically, when the values of power source 3f = 150 [Hz] and drive frequency = 30 [Hz] are substituted into the above equation (3-3), 150-{50-|50-30|}=120 [Hz] is can get. Also, the numerical value "90" in parentheses is the component generated by the above formula (3-8). Specifically, when the values of power supply 1f = 50 [Hz] and drive frequency x 2 = 60 [Hz] are substituted into the above equation (3-8), 50 + {50- | 50-60 |} = 90 [Hz] is obtained. Also, the numerical value "110" in parentheses is a component generated by the above formula (3-9). Specifically, when the values of power supply 3f = 150 [Hz] and drive frequency x 2 = 60 [Hz] are substituted into the above equation (3-9), 150-{50-|50-60|} = 110 [Hz] ] is obtained. Components in other tables can be similarly described.
 圧縮機8が、例えばシングルロータリ圧縮機である場合、前述したように機械角1周期中に1回の脈動が起きる。このようなシングルロータリ圧縮機の場合、0~25[rps]のような低速域において振動抑制制御を行う場合、電動機7の回転速度が瞬間的に0[rps]まで低下するおそれがあり、このような低速域での運転は困難である。なお、低速域では電源電流Iinの大きさ自体が小さいので、電源高調波の次数成分が電源高調波の規格値を超えることは殆どないと考えてよい。 When the compressor 8 is, for example, a single rotary compressor, one pulsation occurs during one cycle of the mechanical angle as described above. In the case of such a single rotary compressor, when vibration suppression control is performed in a low speed range such as 0 to 25 [rps], the rotation speed of the electric motor 7 may momentarily decrease to 0 [rps]. Driving in such a low speed range is difficult. Since the magnitude of the power supply current Iin itself is small in the low speed range, it can be considered that the order components of the power supply harmonics hardly exceed the standard value of the power supply harmonics.
 また、25~40[rps]の中速域では、振動抑制制御を行いつつ、電動機7の回転速度の維持が可能であるが、電源電流Iinは低速域に比べて大きくなる。図7の表中の30,35[rps]における回転速度の2次から6次の成分を見ると、電源電流Iinの支配的な成分が偶数次に偏っていることが分かる。即ち、電動機7の回転速度が30,35[rps]である場合、偶数次の高調波成分が厳しくなることが分かる。なお、電源周波数が50[Hz]である場合において、30,35[rps]の回転速度は、電源周波数の0.6次、0.7次に相当する。 In addition, in the medium speed range of 25 to 40 [rps], it is possible to maintain the rotation speed of the electric motor 7 while performing vibration suppression control, but the power supply current Iin becomes larger than in the low speed range. Looking at the 2nd to 6th order components of the rotation speed at 30 and 35 [rps] in the table of FIG. 7, it can be seen that the dominant components of the power supply current Iin are biased toward even numbers. That is, when the rotation speed of the electric motor 7 is 30, 35 [rps], it can be seen that even-order harmonic components become severe. When the power supply frequency is 50 [Hz], the rotation speeds of 30 and 35 [rps] correspond to the 0.6th and 0.7th orders of the power supply frequency.
 また、電源周波数の倍数成分である50,100,150[Hz]に近い周波数成分ほど、電源高調波の大きさは小さくなる。一方、電動機7の回転速度が電源周波数の倍数成分の中間である25,75[rps]の場合、電源高調波の大きさは奇数次及び偶数次共に大きくなり、電源高調波の次数成分が電源高調波規格値を超えるおそれがある。25,75[rps]の回転速度は、電源周波数の0.5次、1.5次に相当する。 Also, the closer the frequency components are to 50, 100, and 150 [Hz], which are the multiple components of the power supply frequency, the smaller the magnitude of the power supply harmonics. On the other hand, when the rotational speed of the electric motor 7 is 25, 75 [rps], which is between the multiple components of the power supply frequency, the magnitude of the power supply harmonics is large for both odd and even orders, and the order components of the power supply harmonics Harmonics may exceed standard values. The rotational speeds of 25 and 75 [rps] correspond to the 0.5th and 1.5th power frequencies.
 また、図7の表中の65,70[rps]の回転速度に着目すると、30,35[rps]の回転速度と同様に、電源電流Iinの支配的な成分が偶数次に偏っている。即ち、電動機7の回転速度が65,70[rps]である場合も、偶数次の高調波成分が厳しくなることが分かる。65,70[rps]の回転速度は、電源周波数の1.3次、1.4次に相当する。 Also, focusing on the rotational speeds of 65 and 70 [rps] in the table of FIG. 7, the dominant component of the power supply current Iin is biased to the even order, similar to the rotational speeds of 30 and 35 [rps]. That is, it can be seen that even-order harmonic components become severe even when the rotation speed of the electric motor 7 is 65 and 70 [rps]. The rotational speeds of 65 and 70 [rps] correspond to the 1.3rd and 1.4th power frequencies.
 また、図7の表中の80,85[rps]の回転速度に着目すると、電源電流Iinの支配的な成分が偶数次ではなく奇数次に偏っていることが示されている。80,85[rps]の回転速度は、電源周波数の1.6次、1.7次に相当する。 Also, focusing on the rotation speeds of 80 and 85 [rps] in the table of FIG. 7, it is shown that the dominant component of the power supply current Iin is biased not to the even order but to the odd order. The rotational speeds of 80 and 85 [rps] correspond to the 1.6th and 1.7th power frequencies.
 以上のことから、電源電流Iinの高調波の次数成分が電源高調波規格を満たすように電動機駆動装置50を運転させたい場合、以下の駆動周波数を回避して運転する手法が考えられる。 From the above, if it is desired to operate the electric motor drive device 50 so that the harmonic order component of the power supply current Iin satisfies the power supply harmonic standard, a method of avoiding the following drive frequencies during operation can be considered.
 <回避すべき駆動周波数>
 ・電源周波数の0.5~0.8次、及び1.3~1.7次
<Driving frequency to be avoided>
・0.5 to 0.8 and 1.3 to 1.7 orders of power frequency
 例えば、電源周波数が50[Hz]である場合、電源周波数の0.5~0.8次、及び1.3~1.7次は、25~40[Hz]、及び65~85[Hz]に対応する。また、電源周波数が60[Hz]である場合、電源周波数の0.5~0.8次、及び1.3~1.7次は、30~48[Hz]、及び78~102[Hz]に対応する。 For example, when the power frequency is 50 [Hz], 0.5 to 0.8 and 1.3 to 1.7 of the power frequency are 25 to 40 [Hz] and 65 to 85 [Hz] corresponds to Further, when the power frequency is 60 [Hz], 0.5 to 0.8 and 1.3 to 1.7 of the power frequency are 30 to 48 [Hz] and 78 to 102 [Hz] corresponds to
 なお、上記で示した電源周波数の範囲については、より厳密的な意味を持たせるため、本稿の後半部において、具体的なシミュレーション結果と共に、回避すべき駆動周波数の好ましい範囲を提示する。 In addition, in order to give a more rigorous meaning to the range of power supply frequencies shown above, in the second half of this article, we will present the preferred range of drive frequencies that should be avoided along with specific simulation results.
 上記では、予め定めた駆動周波数を回避することで、電源電流Iinの高調波の次数成分が電源高調波規格を満たすようにする手法について説明したが、他の手法も考えられる。例えば、電源電流Iinの高調波の次数成分が電源高調波規格を満たしていなければ、駆動周波数を変更する制御も考えられる。以下、この手法について、詳細に説明する。 In the above description, the method of avoiding the predetermined drive frequency so that the order components of the harmonics of the power supply current Iin satisfy the power supply harmonics standard has been described, but other methods are also conceivable. For example, if the order component of the harmonics of the power supply current Iin does not satisfy the power supply harmonics standard, control to change the drive frequency is also conceivable. This method will be described in detail below.
 まず、図8は、実施の形態1に係る制御装置100が備える電圧指令値演算部115の構成例を示すブロック図である。図8に示すように、電圧指令値演算部115は、周波数推定部501と、減算部502,509,510と、速度制御部503と、振動抑制制御部800と、電源高調波規格適合判定部506と、γ軸電流制御部511と、δ軸電流制御部512とを備えている。 First, FIG. 8 is a block diagram showing a configuration example of the voltage command value calculation unit 115 included in the control device 100 according to the first embodiment. As shown in FIG. 8, voltage command value calculation unit 115 includes frequency estimation unit 501, subtraction units 502, 509, and 510, speed control unit 503, vibration suppression control unit 800, and power harmonic standard conformance determination unit. 506 , a γ-axis current control section 511 and a δ-axis current control section 512 .
 周波数推定部501は、γ軸電流iγと、δ軸電流iδと、γ軸電圧指令値Vγ*と、δ軸電圧指令値Vδ*とに基づいて、電動機7に印加される電圧の周波数を推定し、推定した周波数を周波数推定値ωestとして出力する。 Frequency estimator 501 estimates the frequency of the voltage applied to electric motor 7 based on γ-axis current iγ, δ-axis current iδ, γ-axis voltage command value Vγ*, and δ-axis voltage command value Vδ*. and outputs the estimated frequency as the frequency estimation value ωest.
 減算部502は、周波数指令値ωe*に対する、周波数推定部501で推定された周波数推定値ωestとの差分(ωe*-ωest)を算出する。 The subtraction unit 502 calculates the difference (ωe*−ωest) between the frequency command value ωe* and the frequency estimation value ωest estimated by the frequency estimation unit 501 .
 速度制御部503は、回転座標系におけるトルク電流指令値であるδ軸電流指令値iδ*を生成する。より詳細に説明すると、速度制御部503は、減算部502で算出された差分(ωe*-ωest)に対して、比例積分演算、即ちPI(Proportional Integral)制御を行って、差分(ωe*-ωest)をゼロに近付けるδ軸電流指令値iδ*を演算する。 A speed control unit 503 generates a δ-axis current command value iδ*, which is a torque current command value in a rotating coordinate system. More specifically, the speed control unit 503 performs proportional integral calculation, that is, PI (Proportional Integral) control, on the difference (ωe*−ωest) calculated by the subtraction unit 502 to obtain the difference (ωe*− .omega.est) close to zero is calculated.
 振動抑制制御部800は、速度制御部503から取得したδ軸電流指令値iδ*と、周波数推定部501から取得した周波数推定値ωestとに基づいて、負荷である圧縮機8の振動を抑制する振動抑制制御を行う。この機能を実現するため、振動抑制制御部800は、δ軸電流指令値生成部504と、補償値演算部505とを備えている。 The vibration suppression control unit 800 suppresses the vibration of the compressor 8 as a load based on the δ-axis current command value iδ* obtained from the speed control unit 503 and the frequency estimated value ωest obtained from the frequency estimation unit 501. Vibration suppression control is performed. To realize this function, the vibration suppression control section 800 includes a δ-axis current command value generation section 504 and a compensation value calculation section 505 .
 補償値演算部505は、周波数推定値ωestに基づいて、振動抑制制御の補償値であるδ軸電流補償値iδ_trq*を生成する。具体的には、補償値演算部505は、電動機7の出力トルクが圧縮機8の負荷トルクの周期的変動に追従するようにδ軸電流補償値iδ_trq*を生成する。δ軸電流補償値iδ_trq*は、周波数推定値ωestの脈動成分、特に周波数がωmnである脈動成分を抑制するための制御量の成分である。ここで、「周波数推定値ωestの脈動成分、特に周波数がωmnである脈動成分」とは、周波数推定値ωestを表す値である直流量の脈動成分、特に脈動周波数がωmnである脈動成分を意味する。なお、mは直流量に関係するパラメータであり、nは電動機7が駆動する負荷である圧縮機8を示すパラメータである。nについては、例えば、圧縮機8がシングルロータリ圧縮機である場合は1とし、ツインロータリ圧縮機である場合は2とする。このnは3以上であってもよい。なお、本稿では、δ軸電流補償値iδ_trq*を「トルク電流補償値」又は単に「補償値」と呼ぶことがある。 A compensation value calculation unit 505 generates a δ-axis current compensation value iδ_trq*, which is a compensation value for vibration suppression control, based on the estimated frequency value ωest. Specifically, the compensation value calculation unit 505 generates the δ-axis current compensation value iδ_trq* so that the output torque of the electric motor 7 follows the periodic variation of the load torque of the compressor 8 . The δ-axis current compensation value iδ_trq* is a control amount component for suppressing the pulsation component of the frequency estimation value ωest, particularly the pulsation component with the frequency ωmn. Here, "the pulsating component of the estimated frequency value ωest, particularly the pulsating component having a frequency of ωmn" means the pulsating component of the DC quantity, which is a value representing the estimated frequency value ωest, particularly the pulsating component having a pulsating frequency of ωmn. do. Note that m is a parameter related to the amount of direct current, and n is a parameter that indicates the compressor 8 that is the load driven by the electric motor 7 . For example, n is 1 when the compressor 8 is a single rotary compressor, and 2 when it is a twin rotary compressor. This n may be 3 or more. In addition, in this paper, the δ-axis current compensation value iδ_trq* may be called a “torque current compensation value” or simply a “compensation value”.
 δ軸電流指令値生成部504は、δ軸電流指令値iδ*と、δ軸電流補償値iδ_trq*とに基づいて、δ軸電流指令値iδ**を生成する。δ軸電流指令値iδ**は、δ軸電流補償値iδ_trq*によって補償されたトルク電流指令値である。なお、本稿において、δ軸電流指令値iδ*及びδ軸電流指令値iδ**を符号無しで区別する場合には、δ軸電流指令値iδ*を「第1のδ軸電流指令値」と呼び、δ軸電流指令値iδ**を「第2のδ軸電流指令値」と呼ぶ。 A δ-axis current command value generation unit 504 generates a δ-axis current command value iδ** based on the δ-axis current command value iδ* and the δ-axis current compensation value iδ_trq*. The δ-axis current command value iδ** is a torque current command value compensated by the δ-axis current compensation value iδ_trq*. In this paper, when distinguishing between the δ-axis current command value iδ* and the δ-axis current command value iδ** without a sign, the δ-axis current command value iδ* is referred to as the “first δ-axis current command value”. , and the .delta.-axis current command value i.delta.** is called a "second .delta.-axis current command value."
 電源高調波規格適合判定部506は、γ軸電流iγと、δ軸電流iδと、γ軸電圧指令値Vγ*と、δ軸電圧指令値Vδ*と、電源電流Iinとに基づいて、周波数指令値変更フラグωe*_c_flagを生成する。前述したように、周波数指令値変更フラグωe*_c_flagは、周波数指令値ωe*の変更の要否を示す情報が付されたフラグである。なお、本稿では、「電源高調波規格適合判定部」を、単に「適合判定部」と呼び、周波数指令値変更フラグωe*_c_flagを、単に「フラグ」と呼ぶことがある。 Based on the γ-axis current iγ, the δ-axis current iδ, the γ-axis voltage command value Vγ*, the δ-axis voltage command value Vδ*, and the power supply current Iin, the power supply harmonic standard conformity determination unit 506 determines the frequency command Generate a value change flag ωe*_c_flag. As described above, the frequency command value change flag ωe*_c_flag is a flag attached with information indicating whether or not the frequency command value ωe* needs to be changed. In this paper, the "power harmonic standard conformity determination unit" may be simply referred to as the "conformity determination unit", and the frequency command value change flag ωe*_c_flag may be simply referred to as the "flag".
 減算部509は、γ軸電流指令値iγ*に対するγ軸電流iγの差分(iγ*-iγ)を算出する。減算部510は、δ軸電流指令値iδ**に対するδ軸電流iδの差分(iδ**-iδ)を算出する。 A subtraction unit 509 calculates the difference (iγ*-iγ) of the γ-axis current iγ with respect to the γ-axis current command value iγ*. Subtraction unit 510 calculates a difference (iδ**-iδ) between δ-axis current command value iδ** and δ-axis current iδ.
 γ軸電流制御部511は、減算部509で算出された差分(iγ*-iγ)に対して比例積分演算を行って、差分(iγ*-iγ)をゼロに近付けるγ軸電圧指令値Vγ*を生成する。γ軸電流制御部511は、このようなγ軸電圧指令値Vγ*を生成することで、γ軸電流iγをγ軸電流指令値iγ*に一致させる制御を行う。 The γ-axis current control unit 511 performs a proportional integral operation on the difference (iγ*−iγ) calculated by the subtraction unit 509 to bring the difference (iγ*−iγ) closer to zero. to generate The γ-axis current control unit 511 generates such a γ-axis voltage command value Vγ* to perform control so that the γ-axis current iγ matches the γ-axis current command value iγ*.
 δ軸電流制御部512は、減算部510で算出された差分(iδ**-iδ)に対して比例積分演算を行って、差分(iδ**-iδ)をゼロに近付けるδ軸電圧指令値Vδ*を生成する。δ軸電流制御部512は、このようなδ軸電圧指令値Vδ*を生成することで、δ軸電流iδをδ軸電流指令値iδ**に一致させる制御を行う。前述したように、δ軸電流制御部512に入力されるδ軸電流指令値iδ**には、補償値演算部505から取得したδ軸電流補償値iδ_trq*が含まれている。従って、δ軸電流制御部512が、δ軸電流補償値iδ_trq*に基づいて生成したδ軸電圧指令値Vδ*に基づいてインバータ30を制御することで、コンデンサ出力電流idcの脈動を抑制することができる。 A δ-axis current control unit 512 performs a proportional integral operation on the difference (iδ**-iδ) calculated by the subtraction unit 510 to obtain a δ-axis voltage command value that brings the difference (iδ**-iδ) closer to zero. Generate Vδ*. The δ-axis current control unit 512 generates such a δ-axis voltage command value Vδ* to perform control so that the δ-axis current iδ matches the δ-axis current command value iδ**. As described above, the δ-axis current command value iδ** input to the δ-axis current control unit 512 includes the δ-axis current compensation value iδ_trq* acquired from the compensation value calculation unit 505 . Therefore, the δ-axis current control unit 512 controls the inverter 30 based on the δ-axis voltage command value Vδ* generated based on the δ-axis current compensation value iδ_trq*, thereby suppressing the pulsation of the capacitor output current idc. can be done.
 次に、補償値演算部505の構成について説明する。図9は、実施の形態1に係る電圧指令値演算部115が備える補償値演算部505の構成例を示すブロック図である。補償値演算部505は、演算部550と、余弦演算部551と、正弦演算部552と、乗算部553,554と、ローパスフィルタ555,556と、減算部557,558と、周波数制御部559,560と、乗算部561,562と、加算部563とを備える。 Next, the configuration of compensation value calculation section 505 will be described. FIG. 9 is a block diagram showing a configuration example of compensation value calculation section 505 included in voltage command value calculation section 115 according to the first embodiment. The compensation value calculator 505 includes a calculator 550, a cosine calculator 551, a sine calculator 552, multipliers 553 and 554, low- pass filters 555 and 556, subtractors 557 and 558, a frequency controller 559, 560 , multipliers 561 and 562 , and an adder 563 .
 演算部550は、周波数推定値ωestを積分し、極対数Pで除算することによって電動機7の回転位置を示す機械角位相θmnを算出する。余弦演算部551は、機械角位相θmnに基づいて、余弦値cosθmnを算出する。正弦演算部552は、機械角位相θmnに基づいて、正弦値sinθmnを算出する。 The calculation unit 550 integrates the estimated frequency value ωest and divides it by the pole logarithm P to calculate the mechanical angle phase θmn indicating the rotational position of the electric motor 7 . A cosine calculator 551 calculates a cosine value cos θmn based on the mechanical angle phase θmn. The sine calculator 552 calculates a sine value sin θmn based on the mechanical angle phase θmn.
 乗算部553は、周波数推定値ωestに余弦値cosθmnを乗算し、周波数推定値ωestの余弦成分ωest・cosθmnを算出する。乗算部554は、周波数推定値ωestに正弦値sinθmnを乗算し、周波数推定値ωestの正弦成分ωest・sinθmnを算出する。乗算部553,554で算出される余弦成分ωest・cosθmn及び正弦成分ωest・sinθmnには、周波数がωmnである脈動成分の他、周波数がωmnより高い周波数の脈動成分、即ち高調波成分が含まれている。 The multiplier 553 multiplies the frequency estimation value ωest by the cosine value cos θmn to calculate the cosine component ωest·cos θmn of the frequency estimation value ωest. The multiplier 554 multiplies the frequency estimation value ωest by the sine value sinθmn to calculate the sine component ωest·sinθmn of the frequency estimation value ωest. The cosine component ωest·cos θmn and the sine component ωest·sin θmn calculated by the multipliers 553 and 554 include a pulsation component with a frequency of ωmn and a pulsation component with a frequency higher than ωmn, that is, a harmonic component. ing.
 ローパスフィルタ555,556は、伝達関数が1/(1+s・Tf)で表される一次遅れフィルタである。ここで、sはラプラス演算子である。Tfは時定数であり、周波数ωmnよりも高い周波数の脈動成分を除去するように定められる。なお、「除去」には、脈動成分の一部が減衰、即ち低減される場合が含まれるものとする。時定数Tfについては、速度指令値に基づいて運転制御部102で設定され、運転制御部102がローパスフィルタ555,556に通知してもよいし、ローパスフィルタ555,556が保持していてもよい。ローパスフィルタ555,556については、一次遅れフィルタは一例であって、移動平均フィルタなどであってもよいし、高周波側の脈動成分を除去できればフィルタの種類は限定されない。 The low- pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1/(1+s·Tf). where s is the Laplacian operator. Tf is a time constant, and is determined to remove pulsation components with frequencies higher than the frequency ωmn. Note that "removal" includes the case where part of the pulsation component is attenuated, that is, reduced. The time constant Tf is set by the operation control unit 102 based on the speed command value, and may be notified to the low- pass filters 555 and 556 by the operation control unit 102, or may be held by the low- pass filters 555 and 556. . As for the low- pass filters 555 and 556, a first-order lag filter is an example, and a moving average filter or the like may be used, and the type of filter is not limited as long as the pulsation component on the high frequency side can be removed.
 ローパスフィルタ555は、余弦成分ωest・cosθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωest_cを出力する。低周波数成分ωest_cは、周波数推定値ωestの脈動成分のうち、周波数がωmnである余弦成分を表す直流量である。 A low-pass filter 555 performs low-pass filtering on the cosine component ωest·cos θmn, removes pulsation components with a frequency higher than the frequency ωmn, and outputs a low-frequency component ωest_c. The low-frequency component ωest_c is a DC quantity representing a cosine component with a frequency of ωmn among the pulsating components of the estimated frequency value ωest.
 ローパスフィルタ556は、正弦成分ωest・sinθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωest_sを出力する。低周波数成分ωest_sは、周波数推定値ωestの脈動成分のうち、周波数がωmnである正弦成分を表す直流量である。 A low-pass filter 556 performs low-pass filtering on the sine component ωest·sin θmn, removes pulsation components with a frequency higher than the frequency ωmn, and outputs a low-frequency component ωest_s. The low-frequency component ωest_s is a DC quantity representing a sinusoidal component with a frequency ωmn among the pulsating components of the frequency estimation value ωest.
 減算部557は、ローパスフィルタ555から出力された低周波数成分ωest_cとゼロとの差分(ωest_c-0)を算出する。減算部558は、ローパスフィルタ556から出力された低周波数成分ωest_sとゼロとの差分(ωest_s-0)を算出する。 The subtraction unit 557 calculates the difference (ωest_c−0) between the low frequency component ωest_c output from the low-pass filter 555 and zero. The subtraction unit 558 calculates the difference (ωest_s−0) between the low frequency component ωest_s output from the low-pass filter 556 and zero.
 周波数制御部559は、減算部557で算出された差分(ωest_c-0)に対して比例積分演算を行って、差分(ωest_c-0)をゼロに近付ける電流指令値の余弦成分iδ_trq_cを算出する。周波数制御部559は、このようにして余弦成分iδ_trq_cを生成することで、低周波数成分ωest_cをゼロに一致させるための制御を行う。 The frequency control unit 559 performs proportional integral calculation on the difference (ωest_c−0) calculated by the subtraction unit 557 to calculate the cosine component iδ_trq_c of the current command value that brings the difference (ωest_c−0) close to zero. By generating the cosine component iδ_trq_c in this manner, the frequency control unit 559 performs control to match the low frequency component ωest_c to zero.
 周波数制御部560は、減算部558で算出された差分(ωest_s-0)に対して比例積分演算を行って、差分(ωest_s-0)をゼロに近付ける電流指令値の正弦成分iδ_trq_sを算出する。周波数制御部560は、このようにして正弦成分iδ_trq_sを生成することで、低周波数成分ωest_sをゼロに一致させるための制御を行う。 The frequency control unit 560 performs proportional integral calculation on the difference (ωest_s−0) calculated by the subtraction unit 558 to calculate the sine component iδ_trq_s of the current command value that brings the difference (ωest_s−0) close to zero. The frequency control unit 560 generates the sine component iδ_trq_s in this way, thereby performing control to match the low frequency component ωest_s to zero.
 乗算部561は、周波数制御部559から出力された余弦成分iδ_trq_cに余弦値cosθmnを乗算してiδ_trq_c・cosθmnを生成する。iδ_trq_c・cosθmnは、周波数n・ωestを持つ交流成分である。 The multiplier 561 multiplies the cosine component iδ_trq_c output from the frequency control unit 559 by the cosine value cos θmn to generate iδ_trq_c·cos θmn. iδ_trq_c·cos θmn is an AC component with frequency n·ωest.
 乗算部562は、周波数制御部560から出力された正弦成分iδ_trq_sに正弦値sinθmnを乗算してiδ_trq_s・sinθmnを生成する。iδ_trq_s・sinθmnは、周波数n・ωestを持つ交流成分である。 The multiplier 562 multiplies the sine component iδ_trq_s output from the frequency control unit 560 by the sine value sinθmn to generate iδ_trq_s·sinθmn. iδ_trq_s·sin θmn is an AC component with frequency n·ωest.
 加算部563は、乗算部561から出力されたiδ_trq_c・cosθmnと、乗算部562から出力されたiδ_trq_s・sinθmnとの和を求める。補償値演算部505は、加算部563で求められたものを、δ軸電流補償値iδ_trq*として出力する。 The addition unit 563 obtains the sum of iδ_trq_c·cos θmn output from the multiplication unit 561 and iδ_trq_s·sin θmn output from the multiplication unit 562 . Compensation value calculator 505 outputs the value obtained by adder 563 as δ-axis current compensation value iδ_trq*.
 次に、電源高調波規格適合判定部506の構成について説明する。図10は、実施の形態1に係る電圧指令値演算部115が備える電源高調波規格適合判定部506の構成例を示すブロック図である。電源高調波規格適合判定部506は、電源高調波規格値演算部701と、次数成分演算部702と、判定部703とを備える。 Next, the configuration of the power harmonic standard conformity determination unit 506 will be described. FIG. 10 is a block diagram showing a configuration example of power supply harmonic standard conformity determination section 506 provided in voltage command value calculation section 115 according to the first embodiment. The power harmonic standard conformance determination unit 506 includes a power harmonic standard value calculation unit 701 , an order component calculation unit 702 , and a determination unit 703 .
 電源高調波規格値演算部701は、γ軸電流iγと、δ軸電流iδと、γ軸電圧指令値Vγ*と、δ軸電圧指令値Vδ*とに基づいて、電源高調波規格値Iin_lim_nを演算する。電源高調波規格値Iin_lim_nは、ある特定の周波数成分が電源高調波規格を満たしているかを判定するための閾値である。電源高調波規格値Iin_lim_nは、判定部703に入力される。 Power supply harmonic standard value calculation unit 701 calculates power supply harmonic standard value Iin_lim_n based on γ-axis current iγ, δ-axis current iδ, γ-axis voltage command value Vγ*, and δ-axis voltage command value Vδ*. Calculate. The power harmonic standard value Iin_lim_n is a threshold for determining whether a specific frequency component satisfies the power harmonic standard. The power harmonic standard value Iin_lim_n is input to the determination unit 703 .
 次数成分演算部702は、電流検出部83から取得した電源電流Iinに基づいて、電源電流Iinに含まれる特定の次数の高調波成分である次数成分Iin_nを演算する。次数成分演算部702が演算する次数成分Iin_nは、電源高調波規格値演算部701が演算する電源高調波規格値Iin_lim_nと比較するためのものであり、それぞれの高調波成分の次数は同じである。次数成分Iin_nは、判定部703に入力される。 Based on the power supply current Iin acquired from the current detection unit 83, the order component calculation unit 702 calculates the order component Iin_n, which is a harmonic component of a specific order included in the power supply current Iin. The order component Iin_n calculated by the order component calculation unit 702 is for comparison with the power harmonic standard value Iin_lim_n calculated by the power harmonic standard value calculation unit 701, and the order of each harmonic component is the same. . The order component Iin_n is input to the determination section 703 .
 図11は、実施の形態1に係る判定部703の動作説明に供するフローチャートである。判定部703は、電源高調波規格値演算部701から電源高調波規格値Iin_lim_nを受領し、次数成分演算部702から次数成分Iin_nを受領する(ステップS11)。判定部703は、1又は複数の特定の次数成分Iin_nと、対応する電源高調波規格値Iin_lim_nとを比較し(ステップS12)、1又は複数の特定の次数成分Iin_nに対し、全ての次数成分Iin_nにおいて、Iin_n<Iin_lim_nが成り立つか否かを判定する(ステップS13)。全ての次数成分Iin_nにおいて、Iin_n<Iin_lim_nが成り立つ場合(ステップS13,Yes)、電源高調波規格値演算部701は、周波数指令値変更フラグωe*_c_flagに論理値0を設定し(ステップS14)、設定した周波数指令値変更フラグωe*_c_flagを出力する(ステップS16)。一方、全ての次数成分Iin_nにおいて、Iin_n<Iin_lim_nが成り立たない場合(ステップS13,No)、即ち少なくとも1つの次数成分Iin_nにおいて、Iin_n≧Iin_lim_nが成り立つ場合には、周波数指令値変更フラグωe*_c_flagに論理値1を設定し(ステップS15)、設定した周波数指令値変更フラグωe*_c_flagを出力する(ステップS16)。ここでの論理値1は、周波数指令値ωe*の変更を指示する情報である。 FIG. 11 is a flowchart for explaining the operation of the determination unit 703 according to Embodiment 1. FIG. The determination unit 703 receives the power harmonic normalized value Iin_lim_n from the power harmonic normalized value calculator 701 and the order component Iin_n from the order component calculator 702 (step S11). The determination unit 703 compares the one or more specific order components Iin_n with the corresponding power supply harmonic standard value Iin_lim_n (step S12), and determines all the order components Iin_n for the one or more specific order components Iin_n. , it is determined whether or not Iin_n<Iin_lim_n holds (step S13). When Iin_n<Iin_lim_n holds for all the order components Iin_n (step S13, Yes), the power harmonic standard value calculation unit 701 sets the frequency command value change flag ωe*_c_flag to a logical value of 0 (step S14), The set frequency command value change flag ωe*_c_flag is output (step S16). On the other hand, if Iin_n<Iin_lim_n does not hold for all order components Iin_n (step S13, No), that is, if Iin_n≧Iin_lim_n holds for at least one order component Iin_n, the frequency command value change flag ωe*_c_flag is set to A logical value of 1 is set (step S15), and the set frequency command value change flag ωe*_c_flag is output (step S16). The logical value 1 here is information that instructs to change the frequency command value ωe*.
 なお、図11のフローでは、全ての次数成分Iin_nにおいて、Iin_n<Iin_lim_nが成り立つ場合には論理値0を設定し、少なくとも1つの次数成分Iin_nにおいて、in_lim_n≧Iin_lim_nが成り立つ場合には論理値1を設定しているが、この処理に限定されない。全ての次数成分Iin_nにおいて、Iin_n<Iin_lim_nが成り立つ場合には論理値1を設定し、少なくとも1つの次数成分Iin_nにおいて、in_n≧Iin_lim_nが成り立つ場合には論理値0を設定してもよい。即ち、両者を識別できるのであれば、どのような論理値を設定してもよい。 In the flow of FIG. 11 , a logical value of 0 is set when Iin_n<Iin_lim_n holds for all order components Iin_n, and a logical value of 1 is set when in_lim_n≧Iin_lim_n holds for at least one order component Iin_n. set, but not limited to this process. A logical value of 1 may be set when Iin_n<Iin_lim_n holds for all order components Iin_n, and a logical value of 0 may be set where in_n≧Iin_lim_n holds for at least one order component Iin_n. That is, any logical value may be set as long as the two can be distinguished.
 次に、電源高調波規格値演算部701について説明する。図12は、実施の形態1に係る電源高調波規格適合判定部506が備える電源高調波規格値演算部701の構成例を示すブロック図である。電源高調波規格値演算部701は、電動機電力演算部751と、電流高調波限度値演算部752と、係数乗算部753とを備える。 Next, the power supply harmonic standard value calculation unit 701 will be described. FIG. 12 is a block diagram showing a configuration example of power harmonic standard value calculation section 701 included in power harmonic standard conformity determining section 506 according to the first embodiment. The power harmonic standard value calculator 701 includes a motor power calculator 751 , a current harmonic limit value calculator 752 , and a coefficient multiplier 753 .
 まず、電動機電力演算部751は、以下の(4)式を用いて電動機電力Wを演算する。 First, the motor power calculator 751 calculates the motor power W using the following equation (4).
 W=Vγ*・iγ+Vδ*・iδ  …(4)  W=Vγ*・iγ+Vδ*・iδ ...(4)
 電流高調波限度値演算部752は、電動機電力Wに基づいて電流高調波限度値を演算する。係数乗算部753は、電流高調波限度値演算部752が演算した電流高調波限度値に対して、どの程度のマージンを見込んだ値とするかを決める係数K1を乗算する。係数乗算部753による演算結果は、前述した電源高調波規格値Iin_lim_nとして出力される。 A current harmonic limit value calculation unit 752 calculates a current harmonic limit value based on the motor power W. The coefficient multiplier 753 multiplies the current harmonic limit value calculated by the current harmonic limit value calculation unit 752 by a coefficient K1 that determines how much margin is taken into account. The calculation result by the coefficient multiplier 753 is output as the above-described power supply harmonic standard value Iin_lim_n.
 次に、電流高調波限度値演算部752による具体的な演算例を説明する。図13は、実施の形態1に係る電源高調波規格値演算部701が備える電流高調波限度値演算部752の演算処理の説明に供する図である。図13には、JIS_C_61000-3-2に規定されている600W超の空気調和機に適用する限度値の計算手順を示す表が示されている。具体的に、図13の左側には、3次~39次までの奇数次高調波の最大許容高調波電流の計算式と、2次~40次までの偶数次高調波の最大許容高調波電流の計算式とが示されている。例えば、5次の最大許容高調波電流は、上記(4)式を用いて演算した電動機電力Wを“1.14+0.00070(W-600)”の式に代入して電流高調波限度値を計算する。なお、式中の数値“1.14”については、機器の定格電圧に基づき、右側の枠内に示されている換算式を用いて換算する。計算例が示されているように、定格電圧が100Vである場合には“1.14”に代えて“2.62”を使用し、定格電圧が200Vである場合には“1.14”に代えて“1.31”を使用する。また、定格電圧が200V、230V、240Vの場合には、“1.14”をそのまま使用する。 Next, a specific calculation example by the current harmonic limit value calculator 752 will be described. FIG. 13 is a diagram for explaining calculation processing of current harmonic limit value calculation section 752 included in power supply harmonic standard value calculation section 701 according to the first embodiment. FIG. 13 shows a table showing the procedure for calculating limit values applied to air conditioners exceeding 600 W specified in JIS_C_61000-3-2. Specifically, on the left side of FIG. 13, the calculation formula for the maximum allowable harmonic current of odd-order harmonics from the 3rd to the 39th order and the maximum allowable harmonic current of the even-order harmonics from the 2nd to 40th orders are shown. is shown. For example, the fifth-order maximum allowable harmonic current is obtained by substituting the motor power W calculated using the above formula (4) into the formula "1.14 + 0.00070 (W-600)" and calculating the current harmonic limit value. calculate. The numerical value "1.14" in the formula is converted using the conversion formula shown in the right frame based on the rated voltage of the equipment. As shown in the calculation example, "2.62" is used instead of "1.14" when the rated voltage is 100V, and "1.14" is used when the rated voltage is 200V. Use "1.31" instead of Moreover, when the rated voltage is 200V, 230V, and 240V, "1.14" is used as it is.
 なお、図13は一例であり、電流高調波限度値の演算はこの例に限定されない。γ軸電圧指令値Vγ*及びδ軸電圧指令値Vδ*に代えて、d軸電圧指令値Vd*、q軸電圧指令値Vq*、d軸電流id及びq軸電流iqを用いて演算してもよい。また、電動機電力演算部751と電流高調波限度値演算部752との間にLPF(Low Pass Filter)を入れ、電動機電力Wの演算値に含まれる高調波を除去してから、上述した演算を行ってもよい。また、図13では、2次~40次までの高調波成分の演算を行っているが、これらの高調波成分に加え、40次を超える高調波成分の演算を行ってもよい。 Note that FIG. 13 is an example, and the calculation of the current harmonic limit value is not limited to this example. Instead of the γ-axis voltage command value Vγ* and the δ-axis voltage command value Vδ*, the d-axis voltage command value Vd*, the q-axis voltage command value Vq*, the d-axis current id and the q-axis current iq are used for calculation. good too. In addition, an LPF (Low Pass Filter) is inserted between the motor power calculation unit 751 and the current harmonic limit value calculation unit 752 to remove harmonics contained in the calculated value of the motor power W, and then the above calculation is performed. you can go Further, in FIG. 13, harmonic components of the 2nd to 40th orders are calculated, but in addition to these harmonic components, harmonic components exceeding the 40th order may also be calculated.
 次に、次数成分演算部702について説明する。図14は、実施の形態1に係る電源高調波規格適合判定部506が備える次数成分演算部702の構成例を示すブロック図である。次数成分演算部702は、第1の演算ブロック702-1と、第2の演算ブロック702-2とを備える。 Next, the order component calculation unit 702 will be described. FIG. 14 is a block diagram showing a configuration example of the order component calculation section 702 included in the power harmonic standard conformity determination section 506 according to the first embodiment. The order component calculation section 702 includes a first calculation block 702-1 and a second calculation block 702-2.
 第1の演算ブロック702-1は、電源電流Iinに基づいて、(n-1).5次~n.5次(nは2以上の整数)の実効値Iin_xを演算する。例えばn=3、即ち3次の高調波成分の場合、(n-1).5次~n.5次の高調波成分は、2.5次、2.6次、…、3.0次、…、3.4次、及び3.5次の11個の高調波成分である。第1の演算ブロック702-1では、高調波成分の周波数に同期した位相角θxの余弦値cosθx及び正弦値sinθxが電源電流Iinの検出値に乗算され、ローパスフィルタを通すことで直交成分Iin_c,Iin_sが演算される。更に、直交成分Iin_c,Iin_sの2乗平方根が演算され、1/√2を乗算することで、(n-1).5次~n.5次の実効値Iin_xが演算される。 The first computation block 702-1 computes an effective value Iin_x of order (n-1).5 to n.5 (where n is an integer equal to or greater than 2) based on the power supply current Iin. For example, when n=3, that is, the harmonic component of the third order, the harmonic components of the (n−1).5th to n.5th order are the 2.5th, 2.6th, . , . . . , 3.4th and 3.5th harmonic components. In the first operation block 702-1, the detected value of the power supply current Iin is multiplied by the cosine value cos θx and the sine value sin θx of the phase angle θx synchronized with the frequency of the harmonic component, and passed through a low-pass filter to obtain the quadrature component Iin_c, Iin_s is computed. Furthermore, the square root of the orthogonal components Iin_c and Iin_s is calculated, and by multiplying by 1/√2, the effective value Iin_x of the order (n−1).5 to n.5 is calculated.
 第2の演算ブロック702-2では、(n-1).5次~n.5次の各々の実効値Iin_xが2乗され、それらの2乗値を加算した加算値の平方根を演算することで、次数成分Iin_nが演算される。なお、加算処理においては、11個の高調波成分の両端に位置する(n-1).5次及びn.5次の成分は、隣接する次数間で重複するため、1/2を乗算してから加算される。 In the second operation block 702-2, each effective value Iin_x of the (n-1).5th to n.5th order is squared, and the square root of the sum of the squared values is calculated. , the order component Iin_n is calculated. In the addition process, the (n-1).5 order and n.5 order components located at both ends of the 11 harmonic components are multiplied by 1/2 because they overlap between adjacent orders. is added from
 なお、図14の演算例は一例であり、次数成分Iin_nの演算はこの例に限定されない。各次の高調波成分を更に細かく区分して演算してもよい。また、電流高調波限度値の演算と同様に、40次を超える高調波成分の演算を行ってもよい。 Note that the calculation example in FIG. 14 is an example, and the calculation of the order component Iin_n is not limited to this example. The calculation may be performed by further dividing the harmonic components of each order. Further, similar to the calculation of the current harmonic limit value, calculation of harmonic components exceeding the 40th order may be performed.
 次に、運転制御部102について説明する。図15は、実施の形態1に係る制御装置100が備える運転制御部102の構成例を示すブロック図である。運転制御部102は、周波数指令決定部760を備える。周波数指令決定部760は、周波数指令値変更フラグωe*_c_flagの値に応じて、要すれば周波数指令値ωe*を変更する制御を行う。 Next, the operation control unit 102 will be explained. FIG. 15 is a block diagram showing a configuration example of the operation control section 102 included in the control device 100 according to Embodiment 1. As shown in FIG. Operation control unit 102 includes frequency command determination unit 760 . The frequency command determination unit 760 performs control to change the frequency command value ωe*, if necessary, according to the value of the frequency command value change flag ωe*_c_flag.
 図16は、実施の形態1に係る周波数指令決定部760の動作説明に供するフローチャートである。周波数指令決定部760は、電圧指令値演算部115から周波数指令値変更フラグωe*_c_flagを受領する(ステップS21)。周波数指令決定部760は、周波数指令値変更フラグωe*_c_flagの内容を確認する(ステップS22)。周波数指令値変更フラグωe*_c_flagが論理値1である場合(ステップS22,Yes)、周波数指令決定部760は、周波数指令値ωe*を変更する(ステップS23)。一方、周波数指令値変更フラグωe*_c_flagが論理値1ではない場合(ステップS22,No)、即ち周波数指令値変更フラグωe*_c_flagが論理値0である場合、周波数指令決定部760は、周波数指令値ωe*を変更せず、現在の周波数指令値ωe*を維持する(ステップS24)。周波数指令決定部760は、ステップS23で変更された周波数指令値ωe*、又はステップS24で維持された周波数指令値ωe*を電圧指令値演算部115に出力する(ステップS25)。 FIG. 16 is a flowchart for explaining the operation of the frequency command determination unit 760 according to Embodiment 1. FIG. Frequency command determination unit 760 receives frequency command value change flag ωe*_c_flag from voltage command value calculation unit 115 (step S21). The frequency command determination unit 760 confirms the content of the frequency command value change flag ωe*_c_flag (step S22). When the frequency command value change flag ωe*_c_flag is logical value 1 (step S22, Yes), the frequency command determination unit 760 changes the frequency command value ωe* (step S23). On the other hand, if the frequency command value change flag ωe*_c_flag is not logical 1 (step S22, No), that is, if the frequency command value change flag ωe*_c_flag is logical 0, the frequency command determination unit 760 determines the frequency command The current frequency command value ωe* is maintained without changing the value ωe* (step S24). The frequency command determination unit 760 outputs the frequency command value ωe* changed in step S23 or the frequency command value ωe* maintained in step S24 to the voltage command value calculation unit 115 (step S25).
 なお、ステップS23において、周波数指令値ωe*の変更には、どのような手法が用いられてもよい。例えば、予め設定されたステップ幅で周波数指令値ωe*を変更してもよい。但し、前述した回避すべき駆動周波数の範囲内での運転が継続しないように、周波数指令値ωe*を変更すべきことは言うまでも無い。 Any method may be used to change the frequency command value ωe* in step S23. For example, the frequency command value ωe* may be changed by a preset step width. However, it goes without saying that the frequency command value ωe* should be changed so as not to continue the operation within the range of the drive frequency to be avoided.
 次に、速度制御部503及びδ軸電流指令値生成部504について説明する。図17は、実施の形態1に係る電圧指令値演算部115が備える速度制御部503及びδ軸電流指令値生成部504の構成例を示すブロック図である。なお、図17では、前段の減算部502も含めている。 Next, the speed control unit 503 and the δ-axis current command value generation unit 504 will be explained. FIG. 17 is a block diagram showing a configuration example of speed control section 503 and δ-axis current command value generation section 504 included in voltage command value calculation section 115 according to the first embodiment. Note that FIG. 17 also includes the preceding subtraction unit 502 .
 速度制御部503は、前述した回転座標系におけるδ軸電流指令値iδ*を生成する。具体的に、速度制御部503は、比例制御部611と、積分制御部612と、加算部613と、を備える。比例制御部611は、減算部502から取得した、周波数指令値ωe*と周波数推定値ωestとの差分(ωe*-ωest)に対して比例制御を行い、比例項iδ_p*を出力する。積分制御部612は、減算部502から取得した、周波数指令値ωe*と周波数推定値ωestとの差分(ωe*-ωest)に対して積分制御を行い、積分項iδ_i*を出力する。加算部613は、比例制御部611から取得した比例項iδ_p*と、積分制御部612から取得した積分項iδ_i*とを加算して、δ軸電流指令値iδ*を生成する。 The speed control unit 503 generates the δ-axis current command value iδ* in the rotating coordinate system described above. Specifically, speed control section 503 includes proportional control section 611 , integral control section 612 , and addition section 613 . The proportional control unit 611 performs proportional control on the difference (ωe*−ωest) between the frequency command value ωe* and the frequency estimated value ωest obtained from the subtraction unit 502, and outputs a proportional term iδ_p*. The integral control unit 612 performs integral control on the difference (ωe*−ωest) between the frequency command value ωe* and the frequency estimated value ωest obtained from the subtraction unit 502, and outputs an integral term iδ_i*. The addition unit 613 adds the proportional term iδ_p* obtained from the proportional control unit 611 and the integral term iδ_i* obtained from the integral control unit 612 to generate the δ-axis current command value iδ*.
 また、δ軸電流指令値生成部504は、制限部504aと、振動抑制部504bと、を備える。 In addition, the δ-axis current command value generating section 504 includes a limiting section 504a and a vibration suppressing section 504b.
 制限部504aは、記憶部631と、選択部632と、リミッタ633と、を備える。記憶部631は、リミッタ値iδ_lim1,iδ_lim2を記憶している。即ち、制限部504aは、リミッタ値iδ_lim1,iδ_lim2を有している。選択部632は、記憶部631に記憶されているリミッタ値iδ_lim1,iδ_lim2の何れかを選択し、リミッタ値iδ_limとする。リミッタ633は、速度制御部503で生成されたδ軸電流指令値iδ*に対して、リミッタ値iδ_limで制限したものをδ軸電流指令値iδ_lim*として出力する。 The restriction unit 504a includes a storage unit 631, a selection unit 632, and a limiter 633. The storage unit 631 stores limiter values iδ_lim1 and iδ_lim2. That is, the limiter 504a has limiter values iδ_lim1 and iδ_lim2. The selection unit 632 selects one of the limiter values iδ_lim1 and iδ_lim2 stored in the storage unit 631 and sets it as the limiter value iδ_lim. The limiter 633 limits the δ-axis current command value iδ* generated by the speed control unit 503 with the limiter value iδ_lim and outputs the δ-axis current command value iδ_lim*.
 リミッタ値iδ_lim1は、電動機7の回転速度が低速領域の場合において、電動機7の電流値に基づいて制限をかけることを想定したものである。このリミッタ値iδ_lim1は、電動機7の相電流に対する電流制限値、及びγ軸電流iγに基づいて規定することができる。また、リミッタ値iδ_lim2は、電動機7の回転速度が中高速領域の場合において、電動機7の電圧値に基づいて制限をかけることを想定したものである。リミッタ値iδ_lim2は、γδ軸電圧の制限値、回転座標系のγ軸及びδ軸インダクタンス、γ軸電流iγ、電動機7のγδ軸磁束鎖交数及び角周波数ωeに基づいて規定することができる。 The limiter value iδ_lim1 is based on the assumption that the current value of the electric motor 7 is limited when the rotation speed of the electric motor 7 is in the low speed range. This limiter value iδ_lim1 can be defined based on the current limit value for the phase current of the electric motor 7 and the γ-axis current iγ. Also, the limiter value iδ_lim2 is based on the assumption that the limit is applied based on the voltage value of the electric motor 7 when the rotation speed of the electric motor 7 is in the middle to high speed range. The limiter value iδ_lim2 can be defined based on the limit value of the γδ-axis voltage, the γ-axis and δ-axis inductances of the rotating coordinate system, the γ-axis current iγ, the γδ-axis magnetic flux linkage of the motor 7, and the angular frequency ωe.
 なお、リミッタ値iδ_lim1,iδ_lim2の算出式は公知であり、ここでの更なる説明は割愛する。また、制限部504aは、リミッタ値iδ_lim1,iδ_lim2について、自身で演算して求めたものを記憶部631に記憶させてもよいし、外部、例えば、運転制御部102から取得して記憶部631に記憶させてもよい。 The calculation formulas for the limiter values iδ_lim1 and iδ_lim2 are well known, and further explanation is omitted here. Further, the limiting unit 504a may store the limiter values iδ_lim1 and iδ_lim2 calculated by itself in the storage unit 631, or acquire them from the outside, for example, the operation control unit 102, and store them in the storage unit 631. may be stored.
 振動抑制部504bは、δ軸電流指令値iδ_lim*、リミッタ値iδ_lim及びδ軸電流補償値iδ_trq*を用いて、δ軸電流指令値iδ**を生成する。具体的に、振動抑制部504bは、減算部641と、リミッタ643と、加算部644とを備える。 The vibration suppression unit 504b uses the δ-axis current command value iδ_lim*, the limiter value iδ_lim, and the δ-axis current compensation value iδ_trq* to generate the δ-axis current command value iδ**. Specifically, the vibration suppression unit 504 b includes a subtraction unit 641 , a limiter 643 and an addition unit 644 .
 減算部641は、制限部504aから取得したリミッタ値iδ_limとδ軸電流指令値iδ_lim*との差分を算出し、δ軸電流補償値iδ_trq*に対するリミッタ値iδ_trq_limを算出する。 The subtraction unit 641 calculates the difference between the limiter value iδ_lim obtained from the limiting unit 504a and the δ-axis current command value iδ_lim*, and calculates the limiter value iδ_trq_lim for the δ-axis current compensation value iδ_trq*.
 リミッタ643は、δ軸電流補償値iδ_trq*に対して、リミッタ値iδ_trq_limで制限したものをリミッタ後のδ軸電流補償値iδ_trq_lim*として出力する。加算部644は、δ軸電流指令値iδ_lim*と、リミッタ後のδ軸電流補償値iδ_trq_lim*とを加算して、δ軸電流指令値Iδ**を生成する。 The limiter 643 limits the δ-axis current compensation value iδ_trq* with the limiter value iδ_trq_lim and outputs it as the δ-axis current compensation value iδ_trq_lim* after the limiter. The adder 644 adds the δ-axis current command value iδ_lim* and the δ-axis current compensation value iδ_trq_lim* after the limiter to generate the δ-axis current command value Iδ**.
 図17に示す例では、δ軸電流指令値生成部504は、前端に制限部504aを設け、後段に振動抑制部504bを設けている。これにより、δ軸電流指令値生成部504は、速度指令に追従できる分のδ軸電流指令を確保しつつ、余っている分を振動抑制制御のδ軸電流指令に使うことができる。 In the example shown in FIG. 17, the δ-axis current command value generating section 504 has a limiting section 504a at the front end and a vibration suppressing section 504b at the rear stage. As a result, the δ-axis current command value generator 504 can secure a δ-axis current command that can follow the speed command, and can use the surplus as a δ-axis current command for vibration suppression control.
 図18は、実施の形態1に係る速度制御部503及び制限部504aの動作説明に供するフローチャートである。速度制御部503は、周波数指令値ωe*と周波数推定値ωestとの差分(ωe*-ωest)からδ軸電流指令値iδ*を生成する(ステップS31)。制限部504aは、リミッタ値iδ_limがδ軸電流指令値iδ*より小さい場合(ステップS32,No)、積分制御部612の積分項iδ_i*を低減させる(ステップS33)。具体的に、制限部504aのリミッタ633は、「iδ_i*=iδ_lim-iδ_p*」、即ち積分項iδ_i*の値をiδ_lim-iδ_p*にすることを速度制御部503の積分制御部612に指示する。一方、リミッタ値iδ_limがδ軸電流指令値iδ*以上の場合(ステップS32:Yes)、制限部504aのリミッタ633は、積分制御部612には指示をせず、速度制御部503から出力されるδ軸電流指令値iδ*を、リミッタ後のδ軸電流指令値iδ_lim*として、出力する(ステップS34)。 FIG. 18 is a flow chart for explaining the operations of the speed control unit 503 and the limiting unit 504a according to the first embodiment. The speed control unit 503 generates a δ-axis current command value iδ* from the difference (ωe*−ωest) between the frequency command value ωe* and the frequency estimated value ωest (step S31). If the limiter value iδ_lim is smaller than the δ-axis current command value iδ* (step S32, No), the limiting unit 504a reduces the integral term iδ_i* of the integral control unit 612 (step S33). Specifically, the limiter 633 of the limiting unit 504a instructs the integral control unit 612 of the speed control unit 503 to set "iδ_i*=iδ_lim−iδ_p*", that is, set the value of the integral term iδ_i* to iδ_lim−iδ_p*. . On the other hand, when the limiter value iδ_lim is equal to or greater than the δ-axis current command value iδ* (step S32: Yes), the limiter 633 of the limiter 504a does not instruct the integral control unit 612, and the speed control unit 503 outputs The δ-axis current command value iδ* is output as the δ-axis current command value iδ_lim* after the limiter (step S34).
 図19は、実施の形態1に係る電動機駆動装置50において振動抑制制御を最大限に働かせたときに発生し得る電源高調波の偶数次の次数成分を規格値と比較したシミュレーション結果を示す図である。具体的に、図19には、上段側から順に、2次高調波成分、4次高調波成分及び6次高調波成分の振幅値と、対応する規格値とが示されている。図19の横軸は回転速度を表している。規格値は、4次高調波成分における20[rps]の回転速度を基準値、即ち“1”としている。また、4次高調波成分における他の回転速度の規格値、並びに、2次高調波成分及び6次高調波成分の規格値は、この基準値を基準にした値としている。このため、縦軸の数値は、各々の高調波成分ごとに異なっている。 FIG. 19 is a diagram showing a simulation result comparing even-order components of power supply harmonics that can occur when vibration suppression control is applied to the maximum in the electric motor drive device 50 according to the first embodiment, with standard values. be. Specifically, FIG. 19 shows the amplitude values of the second harmonic component, the fourth harmonic component, and the sixth harmonic component, and the corresponding standard values, in order from the top. The horizontal axis of FIG. 19 represents the rotational speed. As for the standard value, the rotational speed of 20 [rps] in the fourth harmonic component is set as the reference value, that is, "1". Further, the standard value of other rotational speeds in the fourth harmonic component, the standard values of the second harmonic component and the sixth harmonic component are values based on this reference value. Therefore, the numerical values on the vertical axis are different for each harmonic component.
 図19の各波形から理解できるように、次数成分が規格値を超えるのは、4次高調波が最も厳しい条件となる。そこで、図19の中段部の波形に着目し、次数成分が規格値を超える回転速度をそれぞれA,B,C,Dとする。これらの値は、図19にも示すように、以下の値となる。 As can be understood from each waveform in FIG. 19, the fourth harmonic is the most severe condition for the order component to exceed the standard value. Focusing on the waveform in the middle part of FIG. 19, let A, B, C, and D be rotational speeds whose order components exceed standard values. These values are the following values, as also shown in FIG.
 A=27[rps]=0.54次
 B=37[rps]=0.74次
 C=63[rps]=1.26次
 D=78[rps]=1.56次
A = 27 [rps] = 0.54th order B = 37 [rps] = 0.74th order C = 63 [rps] = 1.26th order D = 78 [rps] = 1.56th order
 これらの数値は、図7の表に基づいて説明した数値と若干異なるが、ほぼ同等の値である。本稿では、次数成分が規格値を超えるのを確実に回避できるように、回避すべき駆動周波数の好ましい範囲は、以下の範囲とする。 These numerical values are slightly different from the numerical values explained based on the table in FIG. 7, but they are almost the same values. In this paper, in order to reliably avoid exceeding the standard value of the order component, the preferable range of the driving frequency to be avoided is the following range.
 <回避すべき駆動周波数>
 ・電源周波数の0.5~0.75次、及び1.25~1.6次
<Drive frequency to be avoided>
・0.5 to 0.75 and 1.25 to 1.6 orders of power frequency
 以上説明したように、実施の形態1に係る電力変換装置によれば、負荷の振動を抑制する振動抑制制御の実施時に、電動機は、電動機の駆動周波数が、継続的に電源電圧の周波数である電源周波数の0.5から0.75次、及び1.25から1.6次の範囲内とはならないように駆動される。これにより、電力変換装置は、電動機のトルク脈動を補償しつつ、電源高調波の次数成分が規格値を超えないように電動機を動作させることが可能となる。 As described above, according to the power converter according to Embodiment 1, when the vibration suppression control for suppressing the vibration of the load is performed, the driving frequency of the electric motor is continuously the frequency of the power supply voltage. It is driven so as not to be within the range of 0.5 to 0.75 and 1.25 to 1.6 of the mains frequency. As a result, the power conversion device can compensate for torque pulsation of the electric motor and operate the electric motor so that the order component of the harmonics of the power supply does not exceed the standard value.
 また、実施の形態1に係る電力変換装置によれば、制御装置は、電動機の駆動周波数が電源周波数の0.5から0.75次、又は1.25から1.6次の範囲内となる場合には、駆動周波数がそれらの範囲外の値となるように、駆動周波数に対応する周波数指令値を変更する。これにより、電源高調波の次数成分が規格値を超えない制御を確実に実施することが可能となる。 Further, according to the power conversion device according to Embodiment 1, the control device allows the driving frequency of the electric motor to be within the range of 0.5 to 0.75 or 1.25 to 1.6 of the power supply frequency. In this case, the frequency command value corresponding to the drive frequency is changed so that the drive frequency takes a value outside those ranges. As a result, it is possible to reliably perform control so that the order component of the power supply harmonic does not exceed the standard value.
 また、実施の形態1に係る電力変換装置によれば、電源高調波規格への適合が制御装置の自動的な制御によって実施されるので、コンバータ及びコンバータ周辺の回路定数に関する調整が簡易になり、安価で信頼性が高く、開発負荷の小さい電動機駆動装置を得ることが可能となる。 In addition, according to the power converter according to the first embodiment, the conformity to the power supply harmonic standard is automatically controlled by the control device. It is possible to obtain a motor drive device that is inexpensive, highly reliable, and has a small development load.
 更に、実施の形態1に係る電力変換装置によれば、電源高調波の低減により、電源力率も上昇するので、無駄な電流を流す必要がなくなる。これにより、コンバータ側の効率を上昇させることができ、且つインバータ及び電動機側に流す電流もより小さくできるので、効率の高い電動機駆動装置を得ることが可能となる。 Furthermore, according to the power converter according to Embodiment 1, the reduction of power source harmonics also increases the power factor of the power source, so there is no need to flow wasteful current. As a result, the efficiency of the converter can be increased, and the current flowing through the inverter and the motor can be reduced, so that a highly efficient motor driving device can be obtained.
 なお、上記の制御において、振動抑制制御を行う振動抑制制御部は、交流電源とコンバータとの間に流れる電源電流が電源高調波規格を満たしているかを判定したフラグを生成する適合判定部と、フラグの値に応じて、要すれば周波数指令値を変更する運転制御部と、を備えた構成とすることができる。 In the above control, the vibration suppression control unit that performs vibration suppression control includes a conformance determination unit that generates a flag that determines whether the power supply current flowing between the AC power supply and the converter satisfies the power supply harmonic standard; and an operation control unit that changes the frequency command value according to the value of the flag, if necessary.
 上記の制御におけるフラグは、電源電流の特定の次数成分が電源高調波規格を満たしているかを判定するための閾値である電源高調波規格値と、電源電流に基づいて演算される高調波の次数成分との比較結果に基づいて生成されることでよい。このフラグには、少なくとも1つの次数成分が電源高調波規格値を超えた場合に、周波数指令値の変更を指示する情報が付されることでよい。このようなフラグを用いれば、運転制御部において、周波数指令値の変更の可否を容易に判断することができる。 The flags in the above control are the power harmonic standard value, which is a threshold for determining whether a specific harmonic component of the power current satisfies the power harmonic standard, and the harmonic order calculated based on the power current. It may be generated based on the result of comparison with the component. This flag may be accompanied by information instructing to change the frequency command value when at least one order component exceeds the power supply harmonic standard value. By using such a flag, the operation control section can easily determine whether or not the frequency command value can be changed.
 次に、電力変換装置2が備える制御装置100のハードウェア構成について説明する。図20は、実施の形態1に係る電力変換装置2が備える制御装置100を実現するハードウェア構成の一例を示す図である。制御装置100は、プロセッサ201及びメモリ202により実現される。 Next, the hardware configuration of the control device 100 included in the power electronics device 2 will be described. FIG. 20 is a diagram showing an example of a hardware configuration that implements the control device 100 included in the power conversion device 2 according to Embodiment 1. As shown in FIG. The control device 100 is implemented by a processor 201 and memory 202 .
 プロセッサ201は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、又はシステムLSI(Large Scale Integration)である。メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)といった不揮発性又は揮発性の半導体メモリを例示できる。またメモリ202は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)でもよい。 The processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or a system LSI (Large Scale Integration). The memory 202 may be RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), non-volatile or non-volatile memory such as can be exemplified. Also, the memory 202 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
実施の形態2.
 図21は、実施の形態2に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態2に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置2を備える。実施の形態2に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図21において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
Embodiment 2.
FIG. 21 is a diagram showing a configuration example of a refrigeration cycle equipment 900 according to Embodiment 2. As shown in FIG. A refrigerating cycle applied equipment 900 according to the second embodiment includes the power converter 2 described in the first embodiment. The refrigerating cycle applied equipment 900 according to Embodiment 2 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters. In FIG. 21, constituent elements having functions similar to those of the first embodiment are assigned the same reference numerals as those of the first embodiment.
 冷凍サイクル適用機器900は、実施の形態1における電動機7を内蔵した圧縮機901と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。 A refrigerating cycle application device 900 includes a compressor 901 incorporating the electric motor 7 according to Embodiment 1, a four-way valve 902, an indoor heat exchanger 906, an expansion valve 908, and an outdoor heat exchanger 910 with a refrigerant pipe 912. attached through
 圧縮機901の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させる電動機7とが設けられている。 A compression mechanism 904 for compressing refrigerant and an electric motor 7 for operating the compression mechanism 904 are provided inside the compressor 901 .
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御される電動機7によって駆動される。 The refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 . Compression mechanism 904 is driven by electric motor 7 whose speed is controlled.
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。 During heating operation, as indicated by solid line arrows, the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。 During cooling operation, as indicated by dashed arrows, the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。 During heating operation, the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat. During cooling operation, the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat. The expansion valve 908 reduces the pressure of the refrigerant to expand it.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 交流電源、2 電力変換装置、4 リアクタ、7 電動機、8 圧縮機、10 コンバータ、20 コンデンサ、22a,22b 直流母線、30 インバータ、50 電動機駆動装置、82 電圧検出部、83,84 電流検出部、100 制御装置、102 運転制御部、110 インバータ制御部、111 電流復元部、112 3相2相変換部、113 γ軸電流指令値生成部、115 電圧指令値演算部、116 電気位相演算部、117 2相3相変換部、118 PWM信号生成部、201 プロセッサ、202 メモリ、310 インバータ主回路、311~316 スイッチング素子、321~326 整流素子、331~333 出力線、350 駆動回路、501 周波数推定部、502,509,510,557,558,641 減算部、503 速度制御部、504 δ軸電流指令値生成部、504a 制限部、504b 振動抑制部、505 補償値演算部、506 電源高調波規格適合判定部、631 記憶部、632 選択部、633,643 リミッタ、511 γ軸電流制御部、512 δ軸電流制御部、550 演算部、551 余弦演算部、552 正弦演算部、553,554,561,562 乗算部、555,556 ローパスフィルタ、559,560 周波数制御部、563,613,644 加算部、611 比例制御部、612 積分制御部、701 電源高調波規格値演算部、702 次数成分演算部、702-1 第1の演算ブロック、702-2 第2の演算ブロック、703 判定部、751 電動機電力演算部、752 電流高調波限度値演算部、753 係数乗算部、760 周波数指令決定部、800 振動抑制制御部、900 冷凍サイクル適用機器、901 圧縮機、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管、D1,D2,D3,D4 ダイオード。 1 AC power supply, 2 power converter, 4 reactor, 7 electric motor, 8 compressor, 10 converter, 20 capacitor, 22a, 22b DC bus, 30 inverter, 50 motor drive device, 82 voltage detector, 83, 84 current detector , 100 control device, 102 operation control unit, 110 inverter control unit, 111 current restoration unit, 112 three-phase to two-phase conversion unit, 113 γ-axis current command value generation unit, 115 voltage command value calculation unit, 116 electrical phase calculation unit, 117 2-phase 3-phase converter, 118 PWM signal generator, 201 processor, 202 memory, 310 inverter main circuit, 311 to 316 switching elements, 321 to 326 rectifying elements, 331 to 333 output lines, 350 drive circuit, 501 frequency estimation 502, 509, 510, 557, 558, 641 Subtraction section 503 Speed control section 504 δ-axis current command value generation section 504a Limitation section 504b Vibration suppression section 505 Compensation value calculation section 506 Power supply harmonic standard Conformity determination unit 631 storage unit 632 selection unit 633, 643 limiters 511 γ-axis current control unit 512 δ-axis current control unit 550 operation unit 551 cosine operation unit 552 sine operation unit 553, 554, 561 , 562 multiplier, 555, 556 low-pass filter, 559, 560 frequency controller, 563, 613, 644 adder, 611 proportional controller, 612 integral controller, 701 power supply harmonic standard value calculator, 702 order component calculator , 702-1 first calculation block, 702-2 second calculation block, 703 determination section, 751 motor power calculation section, 752 current harmonic limit value calculation section, 753 coefficient multiplication section, 760 frequency command determination section, 800 Vibration suppression control unit, 900 refrigeration cycle applied equipment, 901 compressor, 902 four-way valve, 904 compression mechanism, 906 indoor heat exchanger, 908 expansion valve, 910 outdoor heat exchanger, 912 refrigerant piping, D1, D2, D3, D4 diode.

Claims (6)

  1.  負荷を駆動する電動機に交流電力を供給する電力変換装置であって、
     交流電源から印加される電源電圧を整流するコンバータと、
     前記コンバータの出力端に接続されるインバータと、
     を備え、
     前記電動機は、前記負荷の振動を抑制する振動抑制制御の実施時に、前記電動機の駆動周波数が、継続的に前記電源電圧の周波数である電源周波数の0.5から0.75次、及び1.25から1.6次の範囲内とはならないように駆動される
     電力変換装置。
    A power conversion device that supplies AC power to a motor that drives a load,
    a converter that rectifies a power supply voltage applied from an AC power supply;
    an inverter connected to the output terminal of the converter;
    with
    The electric motor has a driving frequency of 0.5 to 0.75th order of the power supply frequency, which is continuously the frequency of the power supply voltage, and 1.0. A power converter driven not within the 25th to 1.6th order.
  2.  前記インバータの動作を制御する制御装置を備え、
     前記制御装置は、前記駆動周波数が前記電源周波数の0.5から0.75次、又は1.25から1.6次の範囲内となる場合には、前記駆動周波数がそれらの範囲外の値となるように前記駆動周波数に対応する周波数指令値を変更する
     請求項1に記載の電力変換装置。
    A control device for controlling the operation of the inverter,
    When the drive frequency is within the range of 0.5 to 0.75 or 1.25 to 1.6 of the power source frequency, the control device controls the drive frequency to be outside of those ranges. The power converter according to claim 1, wherein the frequency command value corresponding to the driving frequency is changed so as to be
  3.  前記制御装置は、
     前記振動抑制制御を行う振動抑制制御部と、
     前記交流電源と前記コンバータとの間に流れる電源電流が電源高調波規格を満たしているかを判定したフラグを生成する適合判定部と、
     前記フラグの値に応じて、要すれば前記周波数指令値を変更する運転制御部と、
     を備える請求項2に記載の電力変換装置。
    The control device is
    a vibration suppression control unit that performs the vibration suppression control;
    a conformance determination unit that generates a flag that determines whether a power supply current flowing between the AC power supply and the converter satisfies a power supply harmonic standard;
    an operation control unit that changes the frequency command value, if necessary, according to the value of the flag;
    The power converter according to claim 2, comprising:
  4.  前記フラグは、前記電源電流の特定の次数成分が電源高調波規格を満たしているかを判定するための閾値である電源高調波規格値と、前記電源電流に基づいて演算される高調波の次数成分との比較結果に基づいて生成され、
     少なくとも1つの前記次数成分が前記電源高調波規格値を超えた場合、前記フラグには、前記周波数指令値の変更を指示する情報が付される
     請求項3に記載の電力変換装置。
    The flag is a power harmonic standard value that is a threshold value for determining whether a specific order component of the power current satisfies the power harmonic standard, and a harmonic order component calculated based on the power source current. is generated based on the result of comparison with
    The power conversion device according to claim 3, wherein when at least one of the order components exceeds the power supply harmonic standard value, information instructing a change of the frequency command value is attached to the flag.
  5.  請求項1から4の何れか1項に記載の電力変換装置を備える電動機駆動装置。 An electric motor drive device comprising the power conversion device according to any one of claims 1 to 4.
  6.  請求項1から4の何れか1項に記載の電力変換装置を備える冷凍サイクル適用機器。 A refrigerating cycle application equipment comprising the power converter according to any one of claims 1 to 4.
PCT/JP2021/038757 2021-10-20 2021-10-20 Power conversion device, electric motor drive device, and refrigeration cycle application apparatus WO2023067724A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023554150A JPWO2023067724A1 (en) 2021-10-20 2021-10-20
PCT/JP2021/038757 WO2023067724A1 (en) 2021-10-20 2021-10-20 Power conversion device, electric motor drive device, and refrigeration cycle application apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038757 WO2023067724A1 (en) 2021-10-20 2021-10-20 Power conversion device, electric motor drive device, and refrigeration cycle application apparatus

Publications (1)

Publication Number Publication Date
WO2023067724A1 true WO2023067724A1 (en) 2023-04-27

Family

ID=86058001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038757 WO2023067724A1 (en) 2021-10-20 2021-10-20 Power conversion device, electric motor drive device, and refrigeration cycle application apparatus

Country Status (2)

Country Link
JP (1) JPWO2023067724A1 (en)
WO (1) WO2023067724A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017673A (en) * 2007-07-04 2009-01-22 Toshiba Schneider Inverter Corp Motor controller
JP2016127649A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Power conversion device
WO2020184285A1 (en) * 2019-03-14 2020-09-17 ダイキン工業株式会社 Direct power conversion device
JP2020178439A (en) * 2019-04-18 2020-10-29 三菱電機株式会社 Controller of electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017673A (en) * 2007-07-04 2009-01-22 Toshiba Schneider Inverter Corp Motor controller
JP2016127649A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Power conversion device
WO2020184285A1 (en) * 2019-03-14 2020-09-17 ダイキン工業株式会社 Direct power conversion device
JP2020178439A (en) * 2019-04-18 2020-10-29 三菱電機株式会社 Controller of electric motor

Also Published As

Publication number Publication date
JPWO2023067724A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
JP6343037B1 (en) Motor drive device and refrigeration equipment
WO2004095684A1 (en) Motor controlling device, compressor, air conditioner and refrigerator
JP2002247876A (en) Inverter device, compressor controlling device, freezer and air conditioner controlling device, motor controlling method, compressor, freezer and air conditioner
US10270380B2 (en) Power converting apparatus and heat pump device
WO2023067724A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application apparatus
JP7166468B2 (en) Motor drive device and refrigeration cycle application equipment
WO2023067723A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2023047486A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
JP7050951B2 (en) Load drive device, refrigeration cycle device and air conditioner
WO2023105761A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
JP7361948B2 (en) Electric motor drive equipment, refrigeration cycle equipment, and air conditioners
JP6982532B2 (en) Refrigeration cycle device
WO2023105689A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device
WO2023095311A1 (en) Power conversion device, electric motor drive device, and refrigeration-cycle-applicable apparatus
WO2024075210A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
JP5350107B2 (en) Refrigeration cycle equipment
WO2023073870A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
WO2023067810A1 (en) Power conversion device, motor drive device, and refrigeration-cycle application apparatus
WO2023157045A1 (en) Power conversion device and air conditioner
WO2023073880A1 (en) Power conversion device, motor drive device, and refrigeration-cycle application device
WO2024075163A1 (en) Electric power conversion device, motor drive device, and refrigeration cycle application device
WO2023162106A1 (en) Motor drive device and refrigeration cycle device
JP7330401B2 (en) Power conversion device, motor drive device and refrigeration cycle application equipment
WO2023067811A1 (en) Power conversion device, motor drive device, and cooling cycle application apparatus
WO2023105676A1 (en) Power conversion device, motor drive device, and equipment for refrigeration cycle applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554150

Country of ref document: JP