WO2023067810A1 - Power conversion device, motor drive device, and refrigeration-cycle application apparatus - Google Patents

Power conversion device, motor drive device, and refrigeration-cycle application apparatus Download PDF

Info

Publication number
WO2023067810A1
WO2023067810A1 PCT/JP2021/039142 JP2021039142W WO2023067810A1 WO 2023067810 A1 WO2023067810 A1 WO 2023067810A1 JP 2021039142 W JP2021039142 W JP 2021039142W WO 2023067810 A1 WO2023067810 A1 WO 2023067810A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
control
current
motor
unit
Prior art date
Application number
PCT/JP2021/039142
Other languages
French (fr)
Japanese (ja)
Inventor
翔英 堤
慎也 豊留
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/039142 priority Critical patent/WO2023067810A1/en
Priority to JP2023554218A priority patent/JPWO2023067810A1/ja
Priority to CN202180103385.2A priority patent/CN118104123A/en
Publication of WO2023067810A1 publication Critical patent/WO2023067810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device that convert AC power into desired power.
  • a device such as a motor control device that controls the operation of a motor reduces noise by appropriately compensating for the torque pulsation component according to the state of the motor that drives a single rotary compressor, twin rotary compressor, etc. It suppresses the occurrence of vibration that is the cause.
  • a technique is disclosed in Patent Document 1.
  • the torque ripple component is compensated for the purpose of reducing noise and vibration.
  • the charge/discharge current becomes unbalanced between the positive side and the negative side of the power supply current, and the even-order harmonic component may increase.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a power conversion device capable of suppressing generation of harmonic components while suppressing generation of vibration in a connected load.
  • a power conversion device includes a rectification unit that rectifies first AC power supplied from a commercial power supply, and a rectification unit that is connected to an output end of the rectification unit.
  • the control device performs vibration suppression control to reduce vibration of the motor and load current control to bring the load current, which is the output current of the capacitor, closer to a desired value.
  • the power converter according to the present disclosure has the effect of being able to suppress the generation of harmonic components while suppressing the generation of vibrations in the connected load.
  • FIG. 1 is a diagram showing a configuration example of a power converter according to Embodiment 1;
  • FIG. FIG. 2 is a diagram showing a configuration example of an inverter included in the power converter according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of a control device included in the power conversion device according to Embodiment 1;
  • FIG. 3 is a block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to Embodiment 1;
  • 4 is a block diagram showing a configuration example of a load current control section included in the voltage command value calculation section according to the first embodiment;
  • FIG. 4 is a block diagram showing a configuration example of a vibration suppression control compensation value calculation section included in the voltage command value calculation section according to the first embodiment;
  • FIG. 2 is a block diagram showing a configuration example of a vibration suppression limit control section included in the voltage command value calculation section according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of a power supply harmonic standard value calculation unit included in the vibration suppression limit control unit according to the first embodiment;
  • FIG. 4 is a block diagram showing a configuration example of an order component calculation section included in the vibration suppression and limitation control section according to Embodiment 1;
  • 4 is a block diagram showing a configuration example of a speed control unit and a vibration suppression control unit included in the voltage command value calculation unit according to the first embodiment;
  • FIG. FIG. 4 shows examples of waveforms of motor torque, load torque, and load current when vibration suppression control is performed to suppress vibration in the power converter according to Embodiment 1;
  • FIG. 4 shows examples of waveforms of motor torque, load torque, and load current when load current control for suppressing power supply harmonics is performed in the power converter according to Embodiment 1; 4 is a flowchart showing the operation of the control device included in the power conversion device according to Embodiment 1;
  • FIG. 2 is a diagram showing an example of a hardware configuration that implements a control device included in the power conversion device according to Embodiment 1;
  • a power conversion device, a motor drive device, and a refrigeration cycle application device will be described below in detail based on the drawings.
  • FIG. 1 is a diagram showing a configuration example of a power converter 200 according to Embodiment 1.
  • FIG. 2 is a diagram showing a configuration example of the inverter 30 included in the power conversion device 200 according to Embodiment 1.
  • Power converter 200 is connected to commercial power source 1 and compressor 8 .
  • the power conversion device 200 converts the first AC power of the power supply voltage Vs supplied from the commercial power supply 1 into the second AC power having desired amplitude and phase, and supplies the second AC power to the compressor 8 .
  • Power converter 200 includes reactor 2 , rectifier 3 , smoothing capacitor 5 , inverter 30 , bus voltage detector 10 , load current detector 40 , and controller 100 .
  • a motor drive device 400 is configured by the power conversion device 200 and the motor 7 included in the compressor 8 .
  • the commercial power supply 1 is assumed to have a frequency of 50 Hz or 60 Hz, but is not limited to these. Moreover, the commercial power source 1 may be a distributed power source as long as it can output AC power.
  • Reactor 2 is connected between commercial power source 1 and rectifying section 3 .
  • the reactor 2 has a shape such as an EI shape, an EE shape, or the like, in which electromagnetic steel plates or the like are laminated, uses an iron core such as ferrite or amorphous, and has a winding made of copper, aluminum, or the like.
  • the rectifying section 3 has a bridge circuit composed of rectifying elements 131 to 134, rectifies the first AC power of the power supply voltage Vs supplied from the commercial power supply 1, and outputs it.
  • the rectifier 3 performs full-wave rectification.
  • the rectifying elements 131 to 134 are, for example, diodes, but may be power semiconductors such as MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the smoothing capacitor 5 is a smoothing element that is connected to the output terminal of the rectifier 3 and smoothes the power rectified by the rectifier 3 .
  • the smoothing capacitor 5 is, for example, a capacitor such as an electrolytic capacitor or a film capacitor.
  • the smoothing capacitor 5 has a capacity for smoothing the power rectified by the rectifier 3, and the voltage generated in the smoothing capacitor 5 by the smoothing has a DC component rather than a full-wave rectified waveform of the commercial power supply 1. It has a waveform shape in which a voltage ripple corresponding to the frequency of the commercial power supply 1 is superimposed, and does not pulsate greatly.
  • the frequency of this voltage ripple is a two-fold component of the frequency of the power supply voltage Vs when the commercial power supply 1 is single-phase, and a six-fold component is the main component when the commercial power supply 1 is three-phase. If the power input from commercial power supply 1 and the power output from inverter 30 do not change, the amplitude of this voltage ripple is determined by the capacity of smoothing capacitor 5 . For example, it pulsates in such a range that the maximum value of the voltage ripple generated in the smoothing capacitor 5 is less than twice the minimum value.
  • the bus voltage detection unit 10 is a detection unit that detects the voltage across the smoothing capacitor 5 , that is, the voltage across the DC buses 12 a and 12 b as a bus voltage Vdc , and outputs the detected voltage value to the control device 100 .
  • Load current detection unit 40 is a detection unit that detects load current Idc , which is a direct current flowing into inverter 30 from smoothing capacitor 5 , and outputs the detected current value to control device 100 .
  • the inverter 30 is connected across the smoothing capacitor 5 and converts the power output from the rectifier 3 and the smoothing capacitor 5 into second AC power having a desired amplitude and phase, that is, generates the second AC power. and output to the motor 7. Specifically, inverter 30 receives bus voltage Vdc , generates a three-phase AC voltage with variable frequency and voltage value, and supplies it to motor 7 via output lines 331-333.
  • the inverter 30 includes an inverter main circuit 310 and a drive circuit 350, as shown in FIG. Input terminals of the inverter main circuit 310 are connected to the DC buses 12a and 12b.
  • the inverter main circuit 310 includes switching elements 311-316. Freewheeling rectifying elements 321 to 326 are connected in anti-parallel to the switching elements 311 to 316, respectively.
  • the drive circuit 350 generates drive signals Sr1-Sr6 based on PWM (Pulse Width Modulation) signals Sm1-Sm6 output from the control device 100.
  • PWM Pulse Width Modulation
  • the drive circuit 350 controls on/off of the switching elements 311-316 by the drive signals Sr1-Sr6.
  • the inverter 30 can supply the three-phase AC voltage with variable frequency and variable voltage to the motor 7 via the output lines 331-333.
  • the PWM signals Sm1 to Sm6 are signals having a logic circuit signal level, that is, a magnitude of 0V to 5V.
  • the PWM signals Sm1 to Sm6 are signals having the ground potential of the control device 100 as a reference potential.
  • the driving signals Sr1 to Sr6 are signals having voltage levels necessary to control the switching elements 311 to 316, eg, -15V to +15V.
  • the drive signals Sr1 to Sr6 are signals having the potential of the negative terminal, that is, the emitter terminal of the corresponding switching elements 311 to 316 as a reference potential.
  • the compressor 8 is a load having a motor 7 for driving compression.
  • the motor 7 rotates according to the amplitude and phase of the second AC power supplied from the inverter 30 and performs compression operation.
  • the load torque of the compressor 8 can often be regarded as a constant torque load.
  • FIG. 1 shows a case where the motor windings are Y-connected, but this is an example and is not limited to this.
  • the motor windings of the motor 7 may be delta-connection, or may be switchable between Y-connection and delta-connection.
  • the compressor 8 is assumed to be a single rotary compressor, a scroll compressor, or the like, but is not limited to these.
  • the arrangement of each configuration shown in FIG. 1 is an example, and the arrangement of each configuration is not limited to the example shown in FIG.
  • the reactor 2 may be arranged after the rectifying section 3 .
  • the power conversion device 200 may include a booster section, or the rectifier section 3 may have the function of the booster section.
  • the bus voltage detection section 10 and the load current detection section 40 may be collectively referred to as a detection section.
  • the voltage value detected by the bus voltage detection unit 10 and the current value detected by the load current detection unit 40 may be referred to as detection values.
  • Control device 100 acquires bus voltage Vdc from bus voltage detector 10 and load current Idc from load current detector 40 .
  • Control device 100 controls the operation of inverter main circuit 310, specifically, the on/off of switching elements 311 to 316 included in inverter main circuit 310, using the detection values detected by the respective detection units.
  • control device 100 controls the operation of inverter 30 so as to suppress the generation of power source harmonics generated in power conversion device 200 . It should be noted that the control device 100 does not have to use all the detection values acquired from each detection unit, and may perform control using some of the detection values.
  • FIG. 3 is a block diagram showing a configuration example of the control device 100 included in the power conversion device 200 according to Embodiment 1. As shown in FIG.
  • the control device 100 includes an operation control section 102 and an inverter control section 110 .
  • the operation control unit 102 receives command information Q e from the outside and generates a frequency command value ⁇ e * based on the command information Q e .
  • the frequency command value ⁇ e * is obtained by multiplying the rotational angular velocity command value ⁇ m * , which is the command value for the rotational speed of the motor 7, by the number of pole pairs P m of the motor 7, as shown in the following equation (1). be able to.
  • the control device 100 controls the operation of each part of the air conditioner based on the command information Qe .
  • the command information Qe includes, for example, a temperature detected by a temperature sensor (not shown), information indicating a set temperature instructed by a remote controller (not shown), operation mode selection information, operation start and operation end instruction information, and the like. is.
  • the operation modes are, for example, heating, cooling, and dehumidification.
  • the operation control unit 102 may be outside the control device 100 . That is, control device 100 may be configured to acquire frequency command value ⁇ e * from the outside.
  • the inverter control unit 110 includes a current restoration unit 111, a three-phase to two-phase conversion unit 112, an excitation current command value generation unit 113, a voltage command value calculation unit 115, an electric phase calculation unit 116, and a two-to-three phase conversion unit.
  • a section 117 and a PWM signal generation section 118 are provided.
  • a current restoration unit 111 restores the phase currents i u , iv , and i w flowing through the motor 7 based on the load current I dc detected by the load current detection unit 40 .
  • Current restoration unit 111 samples load current Idc detected by load current detection unit 40 at timing determined based on PWM signals Sm1 to Sm6 generated by PWM signal generation unit 118, thereby obtaining phase current i u , i v , i w can be recovered.
  • the three-phase to two-phase conversion unit 112 converts the phase currents i u , iv , and i w restored by the current restoration unit 111 to the ⁇ -axis using the electric phase ⁇ e generated by the electric phase calculation unit 116 described later.
  • An excitation current i ⁇ that is a current and a torque current i ⁇ that is a ⁇ -axis current, that is, are converted into current values of the ⁇ -axis.
  • the excitation current command value generator 113 generates the excitation current command value i ⁇ * in the above-described rotating coordinate system. Specifically, the excitation current command value generation unit 113 obtains the optimum excitation current command value i ⁇ * for driving the motor 7 with the highest efficiency based on the torque current i ⁇ . Based on the torque current i ⁇ , the excitation current command value generator 113 generates a current phase at which the output torque Tm of the motor 7 becomes a specified value or more or a maximum value, that is, the current value becomes a specified value or less or a minimum value. An exciting current command value i ⁇ * that becomes ⁇ m is output.
  • the excitation current command value generator 113 obtains the excitation current command value i ⁇ * based on the torque current i ⁇ , but this is an example and the present invention is not limited to this. Even if the excitation current command value generator 113 obtains the excitation current command value i ⁇ * based on the excitation current i ⁇ , the frequency command value ⁇ e * , etc., the same effect can be obtained. Further, the excitation current command value generator 113 may determine the excitation current command value i ⁇ * by flux weakening control or the like. In the following description, the exciting current command value may be referred to as the ⁇ -axis current command value.
  • the voltage command value calculation unit 115 calculates the load current I dc obtained from the load current detection unit 40, the frequency command value ⁇ e * obtained from the operation control unit 102, and the excitation current i ⁇ -axis voltage command value V ⁇ * and ⁇ -axis voltage command value V ⁇ * are generated based on ⁇ and torque current i ⁇ and excitation current command value i ⁇ * obtained from excitation current command value generation unit 113 . Furthermore, the voltage command value calculation unit 115 calculates the frequency estimated value ⁇ est based on the ⁇ -axis voltage command value V ⁇ * , the ⁇ -axis voltage command value V ⁇ * , the excitation current i ⁇ , and the torque current i ⁇ . to estimate
  • the electric phase calculation unit 116 calculates the electric phase ⁇ e by integrating the frequency estimation value ⁇ est acquired from the voltage command value calculation unit 115 .
  • Two-to-three phase converter 117 converts ⁇ -axis voltage command value V ⁇ * and ⁇ -axis voltage command value V ⁇ * obtained from voltage command value calculator 115, that is, voltage command values in a two-phase coordinate system, to electrical phase calculation.
  • the electric phase ⁇ e acquired from the unit 116 the three-phase voltage command values V u * , V v * , V w * , which are the output voltage command values in the three-phase coordinate system, are converted.
  • PWM signal generation unit 118 converts three-phase voltage command values V u * , V v * , V w * obtained from two-to-three phase conversion unit 117 and bus voltage V dc detected by bus voltage detection unit 10. The comparison generates PWM signals Sm1-Sm6. The PWM signal generator 118 can also stop the motor 7 by not outputting the PWM signals Sm1 to Sm6.
  • control device 100 performs control in a rotating coordinate system having ⁇ and ⁇ axes.
  • ⁇ -axis current, ⁇ -axis current, etc. may be referred to as excitation current, torque current, and the like.
  • FIG. 4 is a block diagram showing a configuration example of voltage command value calculation section 115 included in control device 100 according to the first embodiment.
  • Voltage command value calculator 115 includes frequency estimator 501 , speed controller 502 , vibration suppression control compensation value calculator 503 , vibration suppression limit controller 504 , vibration suppression controller 505 , and integral controller 506 . , a mechanical angle phase calculator 507 , a load current controller 508 , an adder 509 , subtractors 510 and 511 , a ⁇ -axis current controller 512 , and a ⁇ -axis current controller 513 .
  • the frequency estimator 501 calculates the frequency of the voltage supplied to the motor 7 based on the excitation current i ⁇ , the torque current i ⁇ , the ⁇ -axis voltage command value V ⁇ * , and the ⁇ -axis voltage command value V ⁇ *. is estimated and output as the frequency estimate ⁇ est .
  • the speed control unit 502 controls the operation of the inverter 30 so that the rotation speed of the motor 7 reaches a desired rotation speed. constant current load control. Specifically, the speed controller 502 calculates the difference ( ⁇ e * ⁇ est ) between the frequency command value ⁇ e * and the frequency estimated value ⁇ est estimated by the frequency estimator 501 .
  • the speed control unit 502 has a proportional term obtained by performing proportional control on the difference ( ⁇ e * ⁇ est ), and a proportional term obtained by performing integral control on the difference ( ⁇ e * ⁇ est ).
  • An integral term is added to produce a first torque current command value i ⁇ * that brings the difference ( ⁇ e * ⁇ est ) closer to zero.
  • the speed control unit 502 performs control for matching the frequency estimated value ⁇ est with the frequency command value ⁇ e * .
  • a vibration suppression control compensation value calculation unit 503 generates a torque current compensation value i ⁇ trq * , which is a vibration suppression control compensation value, so that the output torque Tm of the motor 7 follows the periodic variation of the load torque Tl .
  • vibration suppression control compensation value calculation section 503 generates torque current compensation value i ⁇ trq * based on frequency estimation value ⁇ est acquired from frequency estimation section 501 .
  • the torque current compensation value i ⁇ trq * is for suppressing the pulsation component of the estimated frequency value ⁇ est , especially the pulsation component with the frequency ⁇ mn .
  • the “pulsation component of the estimated frequency value ⁇ est , especially the pulsation component with a frequency of ⁇ mn ” is the pulsation component of the DC quantity, which is a value representing the estimated frequency value ⁇ est , especially the pulsation frequency of ⁇ mn .
  • m is a parameter related to the amount of direct current
  • n is a parameter indicating the load that the motor 7 drives. For example, n is 1 when the load driven by the motor 7 is a single rotary compressor, and 2 when it is a twin rotary compressor. Also, n may be 3 or more.
  • the vibration suppression limit control unit 504 obtains the load current I dc obtained from the load current detection unit 40, the excitation current i ⁇ and the torque current i ⁇ obtained from the three-phase two-phase conversion unit 112, and the torque current i ⁇ obtained from the ⁇ -axis current control unit 512. Based on the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * acquired from the ⁇ -axis current control unit 513, the vibration suppression limit torque current command value ⁇ i ⁇ trqlim * is generated.
  • the vibration suppression control unit 505 compensates the output torque Tm so as to match the load torque of the compressor 8 in the power conversion device 200, thereby suppressing the vibration. I do. Specifically, the vibration suppression control unit 505 controls the first torque current command value i ⁇ * acquired from the speed control unit 502, the torque current compensation value i ⁇ trq * acquired from the vibration suppression control compensation value calculation unit 503, and A second torque current command value i ⁇ *** is generated based on the vibration suppression limit torque current command value ⁇ i ⁇ trqlim * acquired from the vibration suppression limit control section 504 . Vibration suppression control unit 505 can suppress speed pulsation caused by load torque pulsation by compensating first torque current command value i ⁇ * using torque current compensation value i ⁇ trq * .
  • Integral control section 506 performs integral control on frequency estimation value ⁇ est acquired from frequency estimating section 501 .
  • the mechanical angle phase calculation unit 507 multiplies the value obtained by the integral control unit 506 by 1/ Pm , that is, divides the value obtained by the integral control unit 506 by the pole log number Pm of the motor 7, Calculate the mechanical angle phase ⁇ m .
  • the load current control unit 508 performs motor control to reduce pulsation of the load current Idc , that is, load current control. Specifically, the load current control unit 508 calculates the torque current compensation value i ⁇ lcc based on the load current I dc obtained from the load current detection unit 40 and the mechanical angle phase ⁇ m obtained from the mechanical angle phase calculation unit 507. * is generated.
  • the load current control unit 508 is configured by, for example, a notch filter.
  • the addition unit 509 adds the second torque current command value i ⁇ *** generated by the vibration suppression control unit 505 and the torque current compensation value i ⁇ lcc * generated by the load current control unit 508, Generate a third torque current command value i ⁇ **** .
  • Subtraction unit 510 calculates the difference (i ⁇ * ⁇ i ⁇ ) of excitation current i ⁇ with respect to excitation current command value i ⁇ * .
  • the subtraction unit 511 calculates the difference (i ⁇ **** ⁇ i ⁇ ) of the torque current i ⁇ with respect to the third torque current command value i ⁇ **** .
  • the ⁇ -axis current control unit 512 performs a proportional integral operation on the difference (i ⁇ * ⁇ i ⁇ ) calculated by the subtraction unit 510 to bring the difference (i ⁇ * ⁇ i ⁇ ) close to zero.
  • a command value V ⁇ * is generated.
  • the ⁇ -axis current control unit 512 generates the ⁇ -axis voltage command value V ⁇ * in this manner, thereby performing control to match the excitation current i ⁇ with the excitation current command value i ⁇ * .
  • a ⁇ -axis current control unit 513 performs a proportional integral operation on the difference (i ⁇ **** -i ⁇ ) calculated by the subtraction unit 511 to obtain the difference (i ⁇ **** -i ⁇ ).
  • a ⁇ -axis voltage command value V ⁇ * that approaches zero is generated.
  • the ⁇ -axis current control unit 513 controls the torque current i ⁇ to match the third torque current command value i ⁇ **** . I do.
  • FIG. 5 is a block diagram showing a configuration example of load current control section 508 included in voltage command value calculation section 115 according to the first embodiment.
  • Load current control section 508 includes multiplication section 521, sine calculation section 522, cosine calculation section 523, low-pass filters 524 and 525, subtraction sections 526 and 527, integration control sections 528 and 529, and sine calculation section 530. , a cosine calculator 531 , and an adder 532 .
  • the multiplier 521 multiplies the mechanical angle phase ⁇ m by n to calculate the frequency component n ⁇ ⁇ m to be controlled.
  • the sine calculator 522 multiplies the load current I dc by the sine sin(n ⁇ m ) of the frequency component n ⁇ m to be controlled.
  • the low-pass filter 524 performs low-pass filtering with a time constant Tfs , removes the AC component from the calculated value obtained by the sine calculator 522, and extracts the DC component.
  • s is the Laplacian operator.
  • the subtraction unit 526 calculates the difference between the DC component and 0 so that the DC component obtained by the low-pass filter 524 becomes 0.
  • the integral control unit 528 performs integral control on the difference obtained by the subtraction unit 526 to calculate the sine component of the current command value that brings the difference closer to zero.
  • Sine calculator 530 multiplies the sine component of the current command value calculated by integral controller 528 by sine sin (n ⁇ m ) to calculate an AC component in the imaginary axis direction on the complex plane.
  • the cosine calculator 523 multiplies the load current I dc by the cosine cos (n ⁇ m ) of the frequency component n ⁇ m to be controlled.
  • the low-pass filter 525 performs low-pass filtering with a time constant Tfs , removes AC components from the calculated values obtained by the cosine calculator 523, and extracts DC components.
  • the subtraction unit 527 calculates the difference between the DC component and 0 so that the DC component obtained by the low-pass filter 525 becomes 0.
  • the integral control unit 529 performs integral control on the difference obtained by the subtraction unit 527 to calculate the cosine component of the current command value that brings the difference closer to zero.
  • Cosine calculator 531 multiplies the cosine component of the current command value calculated by integral controller 529 by cosine cos (n ⁇ m ) to calculate the AC component in the real axis direction on the complex plane.
  • the addition unit 532 adds the AC component in the imaginary axis direction on the complex plane calculated by the sine calculation unit 530 and the AC component in the real axis direction on the complex plane calculated by the cosine calculation unit 531, and obtains the mechanical angle A torque current compensation value i ⁇ lcc * , which is an alternating quantity due to the n-fold component of the frequency, is generated.
  • the control device 100 controls the power conversion device 200 so that the 1f component of the mechanical frequency of the current supplied to the motor 7 becomes significant at motor operating frequencies that are 0.6 times and 1.4 times the power frequency of the commercial power source 1.
  • Control device 100 may grasp the power supply frequency of commercial power supply 1 from the value of load current Idc obtained from load current detection unit 40 and the content of control for inverter 30, or may determine the power supply frequency of commercial power supply 1 to which commercial power supply 1 is connected. In this case, information on the power supply frequency of the commercial power supply 1 may be held in advance. Further, the control device 100 can grasp the mechanical frequency, which is the operating frequency of the motor 7 , from the details of control over the inverter 30 .
  • FIG. 6 is a block diagram showing a configuration example of vibration suppression control compensation value calculation section 503 included in voltage command value calculation section 115 according to the first embodiment.
  • the vibration suppression control compensation value calculation unit 503 includes a calculation unit 550, a cosine calculation unit 551, a sine calculation unit 552, multiplication units 553 and 554, low-pass filters 555 and 556, subtraction units 557 and 558, and a frequency control unit. It includes sections 559 and 560 , multiplication sections 561 and 562 , and an addition section 563 .
  • the calculation unit 550 integrates the estimated frequency value ⁇ est and divides it by the pole logarithm to calculate the mechanical angle phase ⁇ mn indicating the rotational position of the motor 7 .
  • a cosine calculator 551 calculates a cosine cos ⁇ mn based on the mechanical angle phase ⁇ mn .
  • a sine calculator 552 calculates a sine sin ⁇ mn based on the mechanical angle phase ⁇ mn .
  • the multiplier 553 multiplies the estimated frequency value ⁇ est by the cosine cos ⁇ mn to calculate the cosine component ⁇ est ⁇ cos ⁇ mn of the estimated frequency value ⁇ est .
  • the multiplier 554 multiplies the frequency estimation value ⁇ est by the sine sin ⁇ mn to calculate the sine component ⁇ est ⁇ sin ⁇ mn of the frequency estimation value ⁇ est .
  • the cosine component ⁇ est ⁇ cos ⁇ mn and the sine component ⁇ est ⁇ sin ⁇ mn calculated by the multipliers 553 and 554 include a pulsation component with a frequency of ⁇ mn and a pulsation component with a frequency higher than ⁇ mn . Contains harmonic components.
  • the low-pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1/(1+s ⁇ T f ).
  • T f is a time constant and is determined to remove pulsation components with frequencies higher than the frequency ⁇ mn . Note that "removal” includes the case where part of the pulsation component is attenuated, that is, reduced.
  • the time constant Tf is set by the operation control unit 102 based on the speed command value, and may be notified to the low-pass filters 555 and 556 by the operation control unit 102, or may be held by the low-pass filters 555 and 556. good.
  • a first-order lag filter is an example, and a moving average filter or the like may be used, and the type of filter is not limited as long as the pulsation component on the high frequency side can be removed.
  • a low-pass filter 555 performs low-pass filtering on the cosine component ⁇ est ⁇ cos ⁇ mn to remove pulsation components with a frequency higher than ⁇ mn and outputs a low frequency component ⁇ estcos .
  • the low-frequency component ⁇ estcos is a DC quantity representing a cosine component with a frequency ⁇ mn among the pulsating components of the frequency estimate ⁇ est .
  • a low-pass filter 556 performs low-pass filtering on the sine component ⁇ est ⁇ sin ⁇ mn to remove pulsation components with a frequency higher than the frequency ⁇ mn and outputs a low frequency component ⁇ estsin .
  • the low-frequency component ⁇ estsin is a DC quantity representing a sinusoidal component with a frequency ⁇ mn among the pulsating components of the frequency estimation value ⁇ est .
  • the subtraction unit 557 calculates the difference ( ⁇ estcos ⁇ 0) between the low frequency component ⁇ estcos output from the low-pass filter 555 and 0.
  • the subtraction unit 558 calculates the difference ( ⁇ estsin ⁇ 0) between the low frequency component ⁇ estsin output from the low-pass filter 556 and 0.
  • a frequency control unit 559 performs a proportional integral operation on the difference ( ⁇ estcos ⁇ 0) calculated by the subtraction unit 557 to generate a cosine component i ⁇ trqcos of the current command value that makes the difference ( ⁇ estcos ⁇ 0) close to zero. calculate. By generating the cosine component i ⁇ trqcos in this manner, the frequency control unit 559 performs control to match the low frequency component ⁇ estcos to zero.
  • the frequency control unit 560 performs a proportional integral operation on the difference ( ⁇ estsin ⁇ 0) calculated by the subtraction unit 558 to generate a sine component i ⁇ trqsin of the current command value that makes the difference ( ⁇ estsin ⁇ 0) close to zero. calculate.
  • the frequency control unit 560 generates the sine component i ⁇ trqsin in this way, thereby performing control to match the low frequency component ⁇ estsin to zero.
  • the multiplier 561 multiplies the cosine component i ⁇ trqcos output from the frequency control unit 559 by the cosine cos ⁇ mn to generate i ⁇ trqcos ⁇ cos ⁇ mn .
  • i ⁇ trqcos ⁇ cos ⁇ mn is the AC component with frequency n ⁇ est .
  • the multiplier 562 multiplies the sine component i ⁇ trqsin output from the frequency control unit 560 by the sine sin ⁇ mn to generate i ⁇ trqsin ⁇ sin ⁇ mn .
  • i ⁇ trqsin ⁇ sin ⁇ mn is the AC component with frequency n ⁇ est .
  • the addition unit 563 obtains the sum of i ⁇ trqcos ⁇ cos ⁇ mn output from the multiplication unit 561 and i ⁇ trqsin ⁇ sin ⁇ mn output from the multiplication unit 562 .
  • the vibration suppression control compensation value calculator 503 outputs the value obtained by the adder 563 as the torque current compensation value i ⁇ trq * .
  • the vibration suppression control unit 505 adds the torque current compensation value i ⁇ trq * obtained as described above in the vibration suppression control compensation value calculation unit 503 to the torque current command value during calculation, and converts the addition result to the corrected torque current command value. By using it as the second torque current command value i ⁇ *** , the ripple component can be suppressed.
  • FIG. 7 is a block diagram showing a configuration example of vibration suppression limit control section 504 included in voltage command value calculation section 115 according to the first embodiment.
  • Vibration suppression limit control section 504 includes power harmonic standard value calculation section 601 , order component calculation section 602 , subtraction section 603 , integration control section 604 , and setting section 605 .
  • the power harmonic standard value calculation unit 601 calculates the power harmonic standard value for each order of the power harmonic.
  • FIG. 8 is a block diagram showing a configuration example of power supply harmonic standard value calculation section 601 included in vibration suppression limit control section 504 according to the first embodiment.
  • the power harmonic standard value calculator 601 includes a power calculator 611 , a power multiplier 612 , a limit value converter 613 , and a coefficient multiplier 614 .
  • Power calculation unit 611 uses ⁇ -axis voltage command value V ⁇ * , ⁇ -axis voltage command value V ⁇ * , excitation current i ⁇ , and torque current i ⁇ to calculate ⁇ -axis voltage command value V ⁇ * ⁇ excitation current i
  • the electric power W is calculated by the formula of ⁇ + ⁇ -axis voltage command value V ⁇ * ⁇ torque current i ⁇ .
  • the power multiplier 612 calculates the power exceeding the specified 600 watts from the power W as (W-600), and multiplies the calculated value by the second term of the maximum allowable harmonic current specified for each order. . 600 watts is a value specified in JIS (Japanese Industrial Standards) C 61000-3-2. In the example of FIG. 8, "1.08+0.00033" is the maximum allowable harmonic current when the order of power supply harmonics is 2, so the power multiplier 612 outputs "1.08+0.00033 (W-600)". Calculate as The power multiplier 612 performs similar calculations for other orders of power supply harmonics.
  • the limit value conversion unit 613 multiplies the value of each order obtained by the power multiplication unit 612 by (230/power supply voltage) to calculate the limit value for each order.
  • 230 is the value when the power supply is single-phase, as specified in the aforementioned JIS C 61000-3-2.
  • the power supply voltage is 100V or 200V in a general usage environment.
  • a coefficient multiplier 614 multiplies a coefficient K of 0 ⁇ K ⁇ 1 to set a margin for the limit value for each order obtained by the limit value conversion unit 613, and obtains a power supply harmonic for each order in power supply harmonics.
  • the order component calculation unit 602 calculates each order component of the power supply harmonic using the load current Idc .
  • FIG. 9 is a block diagram showing a configuration example of the order component calculation section 602 included in the vibration suppression/limitation control section 504 according to the first embodiment.
  • the order component calculation unit 602 includes multiplication units 621 and 622, low-pass filters 623 and 624, a peak value calculation unit 625, an effective value calculation unit 626, a squaring unit 627, division units 628 and 629, and an addition unit. 630 and a 1/2 power part 631 .
  • the order component calculation unit 602 does not target only the integer values, but targets the entire range by cooperating with the orders before and after.
  • the order component calculation unit 602 targets the 1.5th to 2.5th orders when targeting the second order, and targets the 2.5th to 3.5th orders when targeting the third order.
  • the order component calculation unit 602 performs calculation in units of 5 Hz in the range from 75 Hz to 125 Hz when the order is second order. Therefore, order component calculation section 602 performs multiplication sections 621 and 622, low-pass filters 623 and 624, peak value calculation section 625, and effective value calculation section 626 as follows: Be prepared for a few minutes.
  • the multiplier 621 multiplies the load current Idc by the cosine cos ⁇ x of the frequency component ⁇ x to be calculated.
  • the multiplier 622 multiplies the load current I dc by the sine sin ⁇ x of the frequency component ⁇ x to be calculated.
  • a low-pass filter 623 removes the AC component from the calculated value obtained by the multiplier 621 and extracts the DC component.
  • a low-pass filter 624 removes the AC component from the calculated value obtained by the multiplier 622 and extracts the DC component.
  • the peak value calculator 625 uses Idccosx obtained from the lowpass filter 623 and Idcsinx obtained from the lowpass filter 624 to calculate the peak value of the frequency component ⁇ x to be calculated.
  • the effective value calculator 626 divides the peak value of the frequency component ⁇ x to be calculated obtained by the peak value calculator 625 by ⁇ (2) to obtain the effective value of the frequency component ⁇ x to be calculated. Calculate. ⁇ (2) represents the square root of two.
  • the squaring unit 627 squares the effective value calculated at each frequency of the order to be calculated.
  • the minimum frequency among the frequency components is (n-1).
  • the maximum frequency is n. It is described as fifth order. For example, when the order is 2, the minimum frequency is 1.5 and the maximum frequency is 2.5.
  • the minimum frequency is the same as the maximum frequency of the next lower order, and the maximum frequency is the same as the minimum frequency of the one higher order.
  • a division unit 628 halves the square value of the effective value of the minimum frequency obtained by the squaring unit 627 in order to eliminate the influence of overlapping portions.
  • a division unit 629 halves the square value of the effective value of the maximum frequency obtained by the squaring unit 627 in order to eliminate the influence of overlapping portions.
  • Adder 630 obtains a total value by adding the values obtained by squaring the effective values calculated at each frequency of the order to be calculated, or the values obtained by halving the squared values.
  • a 1/2 power unit 631 takes the square root of the total value obtained by the addition unit 630 to obtain the magnitude of the order component to be calculated.
  • the order component calculation unit 602 performs similar calculations for each order.
  • the subtraction unit 603 calculates the power harmonic standard value tolerance. Specifically, the subtraction unit 603 subtracts the power harmonic standard value calculated by the power harmonic standard value calculation unit 601 and the power harmonic order component calculated by the order component calculation unit 602 for each order. Compute the difference. The subtraction unit 603 outputs the calculated difference to the integration control unit 604 as the power supply harmonic standard value tolerance.
  • the integral control unit 604 performs integral control on the power supply harmonic standard value tolerance calculated by the subtraction unit 603 to bring the difference closer to 0. That is, the order component of the power supply harmonic calculated by the order component calculation unit 602 to the power harmonic standard value calculated by the power harmonic standard value calculation unit 601, the current value idck is calculated.
  • the setting unit 605 sets the vibration suppression limit torque current command value ⁇ i ⁇ trqlim * depending on whether the current value i dck calculated by the integral control unit 604 is 0 or more or less than 0. Specifically, the setting unit 605 sets the vibration suppression limit torque current command value ⁇ i ⁇ trqlim * as shown in Equation (2).
  • FIG. 10 is a block diagram showing a configuration example of speed control unit 502 and vibration suppression control unit 505 included in voltage command value calculation unit 115 according to the first embodiment.
  • the speed control section 502 includes a subtraction section 711 , a proportional control section 712 , an integral control section 713 and an addition section 714 .
  • the vibration suppression control section 505 includes an adder section 721 , a limiter section 722 , a subtractor section 726 , an adder section 727 , a limiter 728 and an adder section 729 .
  • the limiting section 722 includes a storage section 723 , a selecting section 724 and a limiter 725 .
  • subtraction section 711 calculates the difference ( ⁇ e * - ⁇ est ) between frequency command value ⁇ e * and frequency estimated value ⁇ est estimated by frequency estimating section 501 .
  • Proportional control section 712 performs proportional control on the difference ( ⁇ e * - ⁇ est ) between frequency command value ⁇ e * and frequency estimated value ⁇ est obtained from subtraction section 711, and converts proportional term i ⁇ p * to Output.
  • Integral control section 713 performs integral control on the difference ( ⁇ e * - ⁇ est ) between frequency command value ⁇ e * and frequency estimated value ⁇ est obtained from subtraction section 711, and converts integral term i ⁇ i * to Output.
  • the addition unit 714 adds the proportional term i ⁇ p * obtained from the proportional control unit 712 and the integral term i ⁇ i * obtained from the integral control unit 713 to generate the first torque current command value i ⁇ * . .
  • an addition unit 721 adds the first torque current command value i ⁇ * generated by the speed control unit 502 and the torque current compensation value i ⁇ trq * obtained from the vibration suppression control compensation value calculation unit 503. are added to generate the intermediate torque current command value i ⁇ ** .
  • a limiter 722 sets a limit value for the intermediate torque current command value i ⁇ ** .
  • a limit value is set for the intermediate torque current command value i ⁇ ** for the purpose of vibration suppression control and the like.
  • vibration suppression control section 505 uses ⁇ -axis current limit values i ⁇ lim1 , i ⁇ lim2 , and i ⁇ trqlim as limit values for intermediate torque current command value i ⁇ ** .
  • the ⁇ -axis current limit value i ⁇ lim1 can be expressed by Equation (3)
  • the ⁇ -axis current limit value i ⁇ lim2 can be expressed by Equation (4)
  • the ⁇ -axis current limit value i ⁇ trqlim can be expressed by Equation (5). be able to.
  • the ⁇ -axis current limit value i ⁇ lim2 is based on the assumption that the limit is applied based on the voltage value of the motor 7 when the rotation speed of the motor 7 is in the medium-to-high speed range.
  • L ⁇ is the ⁇ -axis inductance
  • L ⁇ is the ⁇ -axis inductance.
  • the maximum AC voltage that the inverter 30 can output to the motor 7 is limited .
  • the limit value V om may be a value obtained by subtracting, for example, the winding resistance of the motor 7, the voltage drop of the switching elements 311 to 316 of the inverter 30, and the like.
  • the output limit range of the inverter 30 has a hexagonal shape, but is approximated by a circle here.
  • the discussion is based on the premise that the approximation is by a circle, but it is needless to say that the discussion may be made strictly considering a hexagon.
  • the ⁇ -axis current command value in equation (4) can take into consideration the voltage limit and the effectiveness of the flux-weakening control.
  • the ⁇ -axis current limit value i ⁇ lim2 is a voltage limit value that is a limit value V om based on the voltage that the inverter 30 can output to the motor 7, an electrical angular velocity ⁇ e that is the rotation speed of the motor 7, and a ⁇ -axis magnetic flux chain of the motor 7. It is determined from the alternating number ⁇ a , the ⁇ -axis inductance L ⁇ , and the ⁇ -axis inductance L ⁇ .
  • the storage unit 723 of the limiting unit 722 stores ⁇ -axis current limit values i ⁇ lim1 and i ⁇ lim2 . That is, the limiter 722 has ⁇ -axis current limit values i ⁇ lim1 and i ⁇ lim2 .
  • the selection unit 724 selects one of the ⁇ -axis current limit values i ⁇ lim1 and i ⁇ lim2 stored in the storage unit 723 and outputs it as the ⁇ -axis current limit value i ⁇ lim .
  • the ⁇ -axis current limit value i ⁇ lim is a current limit value for the intermediate torque current command value i ⁇ ** .
  • a limiter 725 limits the intermediate torque current command value i ⁇ ** with the ⁇ -axis current limit value i ⁇ lim and outputs it as a limit torque current command value i ⁇ lim * .
  • the limiting unit 722 may store the ⁇ -axis current limit values i ⁇ lim1 and i ⁇ lim2 calculated by itself in the storage unit 723, or may acquire them from the outside, for example, the operation control unit 102. may be stored in the storage unit 723.
  • the subtractor 726 calculates the difference between the ⁇ -axis current limit value i ⁇ lim obtained from the limiter 722 and the limit torque current command value i ⁇ lim * .
  • the limiter 725 limits within the range of the ⁇ -axis current limit value i ⁇ lim , i ⁇ ** ⁇ i ⁇ lim ⁇ i ⁇ lim * . Since there are cases where the limiter 725 does not use up the ⁇ -axis current limit value i ⁇ lim , the unused portion is calculated as the difference between the ⁇ -axis current limit value i ⁇ lim and the limit torque current command value i ⁇ lim * .
  • the adder 727 adds the difference calculated by the subtractor 726 and the vibration suppression limit torque current command value ⁇ i ⁇ trqlim * calculated by the vibration suppression limit control unit 504, and calculates the ⁇ axis for the torque current compensation value i ⁇ trq * .
  • a current limit value i ⁇ trqlim is calculated.
  • a limiter 728 limits the torque current compensation value i ⁇ trq * with the ⁇ axis current limit value i ⁇ trqlim and outputs it as the post-limiting torque current compensation value i ⁇ trqlim * .
  • the adder 729 adds the limited torque current command value i ⁇ lim * and the post-limiter torque current compensation value i ⁇ trqlim * to generate the second torque current command value I ⁇ *** .
  • the load connected to both ends of the smoothing capacitor 5 includes, for example, a load composed of the inverter 30 and the motor 7, etc.
  • pulsation occurs periodically. Assume the connection of such loads.
  • Constraint control or machine 1f compensation, is widely used. Vibration suppression control is control that suppresses speed unevenness that causes vibration by causing the output torque Tm to follow the pulsating load torque.
  • the machine 1f represents the one-fold component of the machine frequency, which is the operating frequency of the motor 7.
  • FIG. 11 is a diagram showing examples of waveforms of the motor torque, the load torque, and the load current Idc when vibration suppression control for suppressing vibration is performed in the power conversion device 200 according to the first embodiment.
  • the upper part shows the waveforms of the motor torque and the load torque
  • the lower part shows the waveform of the load current Idc .
  • each horizontal axis indicates time.
  • the motor torque follows the load torque.
  • a phenomenon occurs in which the load current Idc generated on the power supply side is unbalanced between positive and negative.
  • FIG. 12 is a diagram showing examples of waveforms of motor torque, load torque, and load current Idc when load current control for suppressing power source harmonics is performed in power converter 200 according to Embodiment 1. is.
  • the upper part shows the waveforms of the motor torque and the load torque
  • the lower part shows the waveform of the load current Idc .
  • each horizontal axis indicates time.
  • the principle behind the increase in power supply harmonics is that the load current Idc is positively and negatively unbalanced. Therefore, as shown in the lower waveform of FIG. If there is, it can be said that the power supply harmonics can be suppressed.
  • the upper part of FIG. shows the waveforms of the motor torque and the load torque
  • the lower part shows the waveform of the load current Idc .
  • the load current control is to add a compensation amount to the torque current that generates the motor torque so that the amplitude of the motor torque is small and the phase is delayed.
  • the present embodiment includes a vibration suppression control compensation value calculator 503 that generates a torque current compensation value i ⁇ trq * that gradually shifts the amplitude and phase of the motor torque.
  • the control device 100 controls this instantaneous power. You may make it As a method for gradually shifting the amplitude and phase of the motor torque, the control device 100 is provided with an arithmetic unit for calculating the difference between the above-mentioned power supply harmonic standard value and the order component, and the order component is the power supply harmonic standard value. can be achieved by using the vibration suppression limit control unit 504 that operates the load current control in a range exceeding .
  • the control device 100 performs vibration suppression control for reducing vibration of the motor 7 and load current control for controlling the load current Idc , which is the output current of the smoothing capacitor 5, to approach a desired value.
  • load current control the control device 100 controls the voltage output from the inverter 30 so that the absolute value of the difference between the positive and negative peak values of the instantaneous power consumed by the motor 7 becomes small.
  • control is the same as the control device 100 controlling the voltage output from the inverter 30 so that the peak-to-peak value of the positive and negative peaks of the instantaneous power consumed by the motor 7 becomes small.
  • the control device 100 controls the load torque generated by the load so that the absolute value of the difference between the positive and negative peak values of the motor torque generated by the motor 7 is small and the phase of the positive peak is the delayed phase. It can also be said that the voltage output from the inverter 30 is controlled so that
  • FIG. 13 is a flowchart showing the operation of the control device 100 included in the power conversion device 200 according to Embodiment 1.
  • the speed control unit 502 generates a first torque current command value i ⁇ * for constant current load control (step S1).
  • the vibration suppression control compensation value calculation unit 503 generates a torque current compensation value i ⁇ trq * , which is a vibration suppression control compensation value, so that the output torque Tm of the motor 7 follows the periodic fluctuation of the load torque Tl (step S2).
  • the vibration suppression limit control unit 504 generates a vibration suppression limit torque current command value ⁇ i ⁇ trqlim * (step S3).
  • Vibration suppression control unit 505 generates second torque current command value i ⁇ based on first torque current command value i ⁇ * , torque current compensation value i ⁇ trq * , and vibration suppression limit torque current command value ⁇ i ⁇ trqlim *. *** is generated (step S4).
  • the load current control unit 508 generates the torque current compensation value i ⁇ lcc * based on the load current I dc and the mechanical angle phase ⁇ m (step S5).
  • the adder 509 adds the second torque current command value i ⁇ *** and the torque current compensation value i ⁇ lcc * to generate the third torque current command value i ⁇ **** (step S6). .
  • FIG. 14 is a diagram showing an example of a hardware configuration that implements the control device 100 included in the power conversion device 200 according to Embodiment 1. As shown in FIG. Control device 100 is implemented by processor 91 and memory 92 .
  • the processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or a system LSI (Large Scale Integration).
  • the memory 92 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) or a volatile non-volatile Read Only memory.
  • a semiconductor memory can be exemplified.
  • the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • control device 100 performs vibration suppression control to reduce vibration of motor 7 and load current Idc , which is the output current of smoothing capacitor 5, to A load current is controlled so as to approach a desired value.
  • Control device 100 adjusts each control content of vibration suppression control and load current control according to the operating state of inverter 30 that outputs the second AC power to motor 7 , that is, the control content for inverter 30 .
  • the power conversion device 200 can suppress the generation of harmonic components while suppressing the generation of vibrations in the load such as the motor 7 connected thereto.
  • the control device 100 uses the ⁇ -axis current, which is a reactive current, instead of the ⁇ -axis current, which is an active current, and utilizes the change in active power due to the winding resistance of the motor 7 to convert the inverter
  • the load current Idc which is the direct current flowing into the circuit 30
  • a specified value that is, a constant value
  • FIG. 15 is a diagram showing a configuration example of a refrigeration cycle device 900 according to Embodiment 2.
  • a refrigerating cycle applied equipment 900 according to the second embodiment includes the power converter 200 described in the first embodiment.
  • the refrigerating cycle applied equipment 900 according to Embodiment 2 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters.
  • constituent elements having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • Refrigerating cycle applied equipment 900 includes compressor 8 incorporating motor 7 in Embodiment 1, four-way valve 902, indoor heat exchanger 906, expansion valve 908, and outdoor heat exchanger 910 with refrigerant pipe 912. attached through
  • a compression mechanism 904 for compressing refrigerant and a motor 7 for operating the compression mechanism 904 are provided inside the compressor 8 .
  • the refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 .
  • Compression mechanism 904 is driven by motor 7 whose speed is controlled.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
  • the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 reduces the pressure of the refrigerant to expand it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A power conversion device (200) comprises: a rectifier unit (3) for rectifying a first AC power supplied from a commercial power supply (1); a smoothing capacitor (5) connected to the output end of the rectifier unit (3); an inverter (30) connected to both ends of the smoothing capacitor (5) and generating a second AC power to output the second AC power to a motor (7) included in a load; and a control device (100) for controlling the operation of the inverter (30). The control device (100) performs vibration suppression control and load current control, said vibration suppression control reducing the vibration of the motor (7), said load current control performing control so that load current that is the output current of the smoothing capacitor (5) approaches a desired value.

Description

電力変換装置、モータ駆動装置および冷凍サイクル適用機器Power conversion device, motor drive device and refrigeration cycle application equipment
 本開示は、交流電力を所望の電力に変換する電力変換装置、モータ駆動装置および冷凍サイクル適用機器に関する。 The present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device that convert AC power into desired power.
 従来、電動機の動作を制御する電動機制御装置などの装置は、シングルロータリ圧縮機、ツインロータリ圧縮機などを駆動する電動機の状態に応じて、トルクの脈動成分を適切に補償することで、騒音の原因となる振動の発生を抑制している。このような技術が特許文献1において開示されている。 Conventionally, a device such as a motor control device that controls the operation of a motor reduces noise by appropriately compensating for the torque pulsation component according to the state of the motor that drives a single rotary compressor, twin rotary compressor, etc. It suppresses the occurrence of vibration that is the cause. Such a technique is disclosed in Patent Document 1.
国際公開第2021/059350号WO2021/059350
 しかしながら、上記従来の技術によれば、騒音、振動などの低減を目的にトルク脈動成分を補償するものであるが、電源周波数と非同期の周波数とで電動機のトルク脈動を発生させると、平滑コンデンサの充放電電流が電源電流の正側と負側とでアンバランス状態となり、偶数次高調波成分が増加してしまうおそれがある、という問題があった。 However, according to the above-described conventional technology, the torque ripple component is compensated for the purpose of reducing noise and vibration. There is a problem that the charge/discharge current becomes unbalanced between the positive side and the negative side of the power supply current, and the even-order harmonic component may increase.
 本開示は、上記に鑑みてなされたものであって、接続される負荷での振動の発生を抑制しつつ、高調波成分の発生を抑制可能な電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain a power conversion device capable of suppressing generation of harmonic components while suppressing generation of vibration in a connected load.
 上述した課題を解決し、目的を達成するために、本開示に係る電力変換装置は、商用電源から供給される第1の交流電力を整流する整流部と、整流部の出力端に接続されるコンデンサと、コンデンサの両端に接続され、第2の交流電力を生成して負荷に含まれるモータに出力するインバータと、インバータの動作を制御する制御装置と、を備える。制御装置は、モータの振動を低減する振動抑制制御、およびコンデンサの出力電流である負荷電流を所望の値に近付けるように制御する負荷電流制御を行う。 In order to solve the above-described problems and achieve the object, a power conversion device according to the present disclosure includes a rectification unit that rectifies first AC power supplied from a commercial power supply, and a rectification unit that is connected to an output end of the rectification unit. A capacitor, an inverter connected to both ends of the capacitor for generating second AC power and outputting it to a motor included in a load, and a control device for controlling the operation of the inverter. The control device performs vibration suppression control to reduce vibration of the motor and load current control to bring the load current, which is the output current of the capacitor, closer to a desired value.
 本開示に係る電力変換装置は、接続される負荷での振動の発生を抑制しつつ、高調波成分の発生を抑制できる、という効果を奏する。 The power converter according to the present disclosure has the effect of being able to suppress the generation of harmonic components while suppressing the generation of vibrations in the connected load.
実施の形態1に係る電力変換装置の構成例を示す図1 is a diagram showing a configuration example of a power converter according to Embodiment 1; FIG. 実施の形態1に係る電力変換装置が備えるインバータの構成例を示す図FIG. 2 is a diagram showing a configuration example of an inverter included in the power converter according to Embodiment 1; 実施の形態1に係る電力変換装置が備える制御装置の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of a control device included in the power conversion device according to Embodiment 1; 実施の形態1に係る制御装置が備える電圧指令値演算部の構成例を示すブロック図FIG. 3 is a block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to Embodiment 1; 実施の形態1に係る電圧指令値演算部が備える負荷電流制御部の構成例を示すブロック図4 is a block diagram showing a configuration example of a load current control section included in the voltage command value calculation section according to the first embodiment; FIG. 実施の形態1に係る電圧指令値演算部が備える振動抑制制御補償値演算部の構成例を示すブロック図4 is a block diagram showing a configuration example of a vibration suppression control compensation value calculation section included in the voltage command value calculation section according to the first embodiment; FIG. 実施の形態1に係る電圧指令値演算部が備える振動抑制制限制御部の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of a vibration suppression limit control section included in the voltage command value calculation section according to Embodiment 1; 実施の形態1に係る振動抑制制限制御部が備える電源高調波規格値計算部の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of a power supply harmonic standard value calculation unit included in the vibration suppression limit control unit according to the first embodiment; 実施の形態1に係る振動抑制制限制御部が備える次数成分演算部の構成例を示すブロック図FIG. 4 is a block diagram showing a configuration example of an order component calculation section included in the vibration suppression and limitation control section according to Embodiment 1; 実施の形態1に係る電圧指令値演算部が備える速度制御部および振動抑制制御部の構成例を示すブロック図4 is a block diagram showing a configuration example of a speed control unit and a vibration suppression control unit included in the voltage command value calculation unit according to the first embodiment; FIG. 実施の形態1に係る電力変換装置において振動を抑制するための振動抑制制御を行った場合のモータトルク、負荷トルク、および負荷電流の各波形の例を示す図FIG. 4 shows examples of waveforms of motor torque, load torque, and load current when vibration suppression control is performed to suppress vibration in the power converter according to Embodiment 1; 実施の形態1に係る電力変換装置において電源高調波を抑制するための負荷電流制御を行った場合のモータトルク、負荷トルク、および負荷電流の各波形の例を示す図FIG. 4 shows examples of waveforms of motor torque, load torque, and load current when load current control for suppressing power supply harmonics is performed in the power converter according to Embodiment 1; 実施の形態1に係る電力変換装置が備える制御装置の動作を示すフローチャート4 is a flowchart showing the operation of the control device included in the power conversion device according to Embodiment 1; 実施の形態1に係る電力変換装置が備える制御装置を実現するハードウェア構成の一例を示す図FIG. 2 is a diagram showing an example of a hardware configuration that implements a control device included in the power conversion device according to Embodiment 1; FIG. 実施の形態2に係る冷凍サイクル適用機器の構成例を示す図A diagram showing a configuration example of a refrigeration cycle application device according to Embodiment 2
 以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置および冷凍サイクル適用機器を図面に基づいて詳細に説明する。 A power conversion device, a motor drive device, and a refrigeration cycle application device according to an embodiment of the present disclosure will be described below in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る電力変換装置200の構成例を示す図である。図2は、実施の形態1に係る電力変換装置200が備えるインバータ30の構成例を示す図である。電力変換装置200は、商用電源1および圧縮機8に接続される。電力変換装置200は、商用電源1から供給される電源電圧Vの第1の交流電力を所望の振幅および位相を有する第2の交流電力に変換し、圧縮機8に供給する。電力変換装置200は、リアクタ2と、整流部3と、平滑コンデンサ5と、インバータ30と、母線電圧検出部10と、負荷電流検出部40と、制御装置100と、を備える。なお、電力変換装置200、および圧縮機8が備えるモータ7によって、モータ駆動装置400を構成している。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a power converter 200 according to Embodiment 1. As shown in FIG. FIG. 2 is a diagram showing a configuration example of the inverter 30 included in the power conversion device 200 according to Embodiment 1. As shown in FIG. Power converter 200 is connected to commercial power source 1 and compressor 8 . The power conversion device 200 converts the first AC power of the power supply voltage Vs supplied from the commercial power supply 1 into the second AC power having desired amplitude and phase, and supplies the second AC power to the compressor 8 . Power converter 200 includes reactor 2 , rectifier 3 , smoothing capacitor 5 , inverter 30 , bus voltage detector 10 , load current detector 40 , and controller 100 . A motor drive device 400 is configured by the power conversion device 200 and the motor 7 included in the compressor 8 .
 商用電源1は、周波数が50Hzまたは60Hzを想定しているがこれらに限定されない。また、商用電源1は、交流電力を出力できればよいので、分散電源などであってもよい。リアクタ2は、商用電源1と整流部3との間に接続される。リアクタ2は、電磁鋼板などを積層したEI形状、EE形状などの形状のものであり、フェライト、アモルファスなどの鉄心を用いたものであり、巻線は銅、アルミなどである。整流部3は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源1から供給される電源電圧Vの第1の交流電力を整流して出力する。整流部3は、全波整流を行うものである。整流素子131~134は、例えばダイオードであるが、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのパワー半導体であってもよい。 The commercial power supply 1 is assumed to have a frequency of 50 Hz or 60 Hz, but is not limited to these. Moreover, the commercial power source 1 may be a distributed power source as long as it can output AC power. Reactor 2 is connected between commercial power source 1 and rectifying section 3 . The reactor 2 has a shape such as an EI shape, an EE shape, or the like, in which electromagnetic steel plates or the like are laminated, uses an iron core such as ferrite or amorphous, and has a winding made of copper, aluminum, or the like. The rectifying section 3 has a bridge circuit composed of rectifying elements 131 to 134, rectifies the first AC power of the power supply voltage Vs supplied from the commercial power supply 1, and outputs it. The rectifier 3 performs full-wave rectification. The rectifying elements 131 to 134 are, for example, diodes, but may be power semiconductors such as MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
 平滑コンデンサ5は、整流部3の出力端に接続され、整流部3によって整流された電力を平滑化する平滑素子である。平滑コンデンサ5は、例えば、電解コンデンサ、フィルムコンデンサなどのコンデンサである。平滑コンデンサ5は、整流部3によって整流された電力を平滑化するような容量を有し、平滑化により平滑コンデンサ5に発生する電圧は商用電源1の全波整流波形形状ではなく、直流成分に商用電源1の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源1が単相の場合は電源電圧Vの周波数の2倍成分となり、商用電源1が三相の場合は6倍成分が主成分となる。商用電源1から入力される電力とインバータ30から出力される電力が変化しない場合、この電圧リプルの振幅は平滑コンデンサ5の容量によって決まる。例えば、平滑コンデンサ5に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。 The smoothing capacitor 5 is a smoothing element that is connected to the output terminal of the rectifier 3 and smoothes the power rectified by the rectifier 3 . The smoothing capacitor 5 is, for example, a capacitor such as an electrolytic capacitor or a film capacitor. The smoothing capacitor 5 has a capacity for smoothing the power rectified by the rectifier 3, and the voltage generated in the smoothing capacitor 5 by the smoothing has a DC component rather than a full-wave rectified waveform of the commercial power supply 1. It has a waveform shape in which a voltage ripple corresponding to the frequency of the commercial power supply 1 is superimposed, and does not pulsate greatly. The frequency of this voltage ripple is a two-fold component of the frequency of the power supply voltage Vs when the commercial power supply 1 is single-phase, and a six-fold component is the main component when the commercial power supply 1 is three-phase. If the power input from commercial power supply 1 and the power output from inverter 30 do not change, the amplitude of this voltage ripple is determined by the capacity of smoothing capacitor 5 . For example, it pulsates in such a range that the maximum value of the voltage ripple generated in the smoothing capacitor 5 is less than twice the minimum value.
 母線電圧検出部10は、平滑コンデンサ5の両端電圧、すなわち直流母線12a,12b間の電圧を母線電圧Vdcとして検出し、検出した電圧値を制御装置100に出力する検出部である。負荷電流検出部40は、平滑コンデンサ5からインバータ30に流入される直流電流である負荷電流Idcを検出し、検出した電流値を制御装置100に出力する検出部である。 The bus voltage detection unit 10 is a detection unit that detects the voltage across the smoothing capacitor 5 , that is, the voltage across the DC buses 12 a and 12 b as a bus voltage Vdc , and outputs the detected voltage value to the control device 100 . Load current detection unit 40 is a detection unit that detects load current Idc , which is a direct current flowing into inverter 30 from smoothing capacitor 5 , and outputs the detected current value to control device 100 .
 インバータ30は、平滑コンデンサ5の両端に接続され、整流部3および平滑コンデンサ5から出力される電力を所望の振幅および位相を有する第2の交流電力に変換、すなわち第2の交流電力を生成して、モータ7に出力する。具体的には、インバータ30は、母線電圧Vdcを受けて、周波数および電圧値が可変の3相交流電圧を発生して、出力線331~333を介してモータ7に供給する。インバータ30は、図2に示すように、インバータ主回路310と、駆動回路350と、を備える。インバータ主回路310の入力端子は、直流母線12a,12bに接続されている。インバータ主回路310は、スイッチング素子311~316を備える。スイッチング素子311~316の各々には、還流用の整流素子321~326が逆並列接続されている。 The inverter 30 is connected across the smoothing capacitor 5 and converts the power output from the rectifier 3 and the smoothing capacitor 5 into second AC power having a desired amplitude and phase, that is, generates the second AC power. and output to the motor 7. Specifically, inverter 30 receives bus voltage Vdc , generates a three-phase AC voltage with variable frequency and voltage value, and supplies it to motor 7 via output lines 331-333. The inverter 30 includes an inverter main circuit 310 and a drive circuit 350, as shown in FIG. Input terminals of the inverter main circuit 310 are connected to the DC buses 12a and 12b. The inverter main circuit 310 includes switching elements 311-316. Freewheeling rectifying elements 321 to 326 are connected in anti-parallel to the switching elements 311 to 316, respectively.
 駆動回路350は、制御装置100から出力されるPWM(Pulse Width Modulation)信号Sm1~Sm6に基づいて、駆動信号Sr1~Sr6を生成する。駆動回路350は、駆動信号Sr1~Sr6によってスイッチング素子311~316のオンオフを制御する。これにより、インバータ30は、周波数可変かつ電圧可変の3相交流電圧を、出力線331~333を介してモータ7に供給することができる。 The drive circuit 350 generates drive signals Sr1-Sr6 based on PWM (Pulse Width Modulation) signals Sm1-Sm6 output from the control device 100. FIG. The drive circuit 350 controls on/off of the switching elements 311-316 by the drive signals Sr1-Sr6. As a result, the inverter 30 can supply the three-phase AC voltage with variable frequency and variable voltage to the motor 7 via the output lines 331-333.
 PWM信号Sm1~Sm6は、論理回路の信号レベル、すなわち0V~5Vの大きさを持つ信号である。PWM信号Sm1~Sm6は、制御装置100の接地電位を基準電位とする信号である。一方、駆動信号Sr1~Sr6は、スイッチング素子311~316を制御するのに必要な電圧レベル、例えば、-15V~+15Vの大きさを持つ信号である。駆動信号Sr1~Sr6は、それぞれ対応するスイッチング素子311~316の負側の端子、すなわちエミッタ端子の電位を基準電位とする信号である。 The PWM signals Sm1 to Sm6 are signals having a logic circuit signal level, that is, a magnitude of 0V to 5V. The PWM signals Sm1 to Sm6 are signals having the ground potential of the control device 100 as a reference potential. On the other hand, the driving signals Sr1 to Sr6 are signals having voltage levels necessary to control the switching elements 311 to 316, eg, -15V to +15V. The drive signals Sr1 to Sr6 are signals having the potential of the negative terminal, that is, the emitter terminal of the corresponding switching elements 311 to 316 as a reference potential.
 圧縮機8は、圧縮駆動用のモータ7を有する負荷である。モータ7は、インバータ30から供給される第2の交流電力の振幅および位相に応じて回転し、圧縮動作を行う。例えば、圧縮機8が空気調和機などで使用される密閉型圧縮機の場合、圧縮機8の負荷トルクは定トルク負荷とみなせる場合が多い。モータ7について、図1ではモータ巻線がY結線の場合を示しているが、一例であり、これに限定されない。モータ7のモータ巻線は、Δ結線であってもよいし、Y結線とΔ結線とが切り替え可能な仕様であってもよい。本実施の形態では、圧縮機8として、シングルロータリ圧縮機、スクロール圧縮機などを想定しているが、これらに限定されない。 The compressor 8 is a load having a motor 7 for driving compression. The motor 7 rotates according to the amplitude and phase of the second AC power supplied from the inverter 30 and performs compression operation. For example, when the compressor 8 is a hermetic compressor used in an air conditioner or the like, the load torque of the compressor 8 can often be regarded as a constant torque load. As for the motor 7, FIG. 1 shows a case where the motor windings are Y-connected, but this is an example and is not limited to this. The motor windings of the motor 7 may be delta-connection, or may be switchable between Y-connection and delta-connection. In this embodiment, the compressor 8 is assumed to be a single rotary compressor, a scroll compressor, or the like, but is not limited to these.
 なお、電力変換装置200において、図1に示す各構成の配置は一例であり、各構成の配置は図1で示される例に限定されない。例えば、リアクタ2は、整流部3の後段に配置されてもよい。また、電力変換装置200は、昇圧部を備えてもよいし、整流部3に昇圧部の機能を持たせるようにしてもよい。以降の説明において、母線電圧検出部10および負荷電流検出部40をまとめて検出部と称することがある。また、母線電圧検出部10で検出された電圧値、および負荷電流検出部40で検出された電流値を、検出値と称することがある。 In addition, in the power conversion device 200, the arrangement of each configuration shown in FIG. 1 is an example, and the arrangement of each configuration is not limited to the example shown in FIG. For example, the reactor 2 may be arranged after the rectifying section 3 . Further, the power conversion device 200 may include a booster section, or the rectifier section 3 may have the function of the booster section. In the following description, the bus voltage detection section 10 and the load current detection section 40 may be collectively referred to as a detection section. Also, the voltage value detected by the bus voltage detection unit 10 and the current value detected by the load current detection unit 40 may be referred to as detection values.
 制御装置100は、母線電圧検出部10から母線電圧Vdcを取得し、負荷電流検出部40から負荷電流Idcを取得する。制御装置100は、各検出部によって検出された検出値を用いて、インバータ主回路310の動作、具体的には、インバータ主回路310が有するスイッチング素子311~316のオンオフを制御する。本実施の形態において、制御装置100は、電力変換装置200で発生する電源高調波の発生を抑制するように、インバータ30の動作を制御する。なお、制御装置100は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行ってもよい。 Control device 100 acquires bus voltage Vdc from bus voltage detector 10 and load current Idc from load current detector 40 . Control device 100 controls the operation of inverter main circuit 310, specifically, the on/off of switching elements 311 to 316 included in inverter main circuit 310, using the detection values detected by the respective detection units. In the present embodiment, control device 100 controls the operation of inverter 30 so as to suppress the generation of power source harmonics generated in power conversion device 200 . It should be noted that the control device 100 does not have to use all the detection values acquired from each detection unit, and may perform control using some of the detection values.
 制御装置100の構成について説明する。図3は、実施の形態1に係る電力変換装置200が備える制御装置100の構成例を示すブロック図である。制御装置100は、運転制御部102と、インバータ制御部110と、を備える。 The configuration of the control device 100 will be explained. FIG. 3 is a block diagram showing a configuration example of the control device 100 included in the power conversion device 200 according to Embodiment 1. As shown in FIG. The control device 100 includes an operation control section 102 and an inverter control section 110 .
 運転制御部102は、外部から指令情報Qを受け、指令情報Qに基づいて、周波数指令値ω を生成する。周波数指令値ω は、下記の式(1)に示すように、モータ7の回転速度の指令値である回転角速度指令値ω にモータ7の極対数Pを乗算することで求めることができる。 The operation control unit 102 receives command information Q e from the outside and generates a frequency command value ω e * based on the command information Q e . The frequency command value ω e * is obtained by multiplying the rotational angular velocity command value ω m * , which is the command value for the rotational speed of the motor 7, by the number of pole pairs P m of the motor 7, as shown in the following equation (1). be able to.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 制御装置100は、冷凍サイクル適用機器として空気調和機を制御する場合、指令情報Qに基づいて空気調和機の各部の動作を制御する。指令情報Qは、例えば、図示しない温度センサで検出された温度、図示しない操作部であるリモコンから指示される設定温度を示す情報、運転モードの選択情報、運転開始及び運転終了の指示情報などである。運転モードとは、例えば、暖房、冷房、除湿などである。なお、運転制御部102については、制御装置100の外部にあってもよい。すなわち、制御装置100は、外部から周波数指令値ω を取得する構成であってもよい。 When controlling an air conditioner as a refrigeration cycle application device, the control device 100 controls the operation of each part of the air conditioner based on the command information Qe . The command information Qe includes, for example, a temperature detected by a temperature sensor (not shown), information indicating a set temperature instructed by a remote controller (not shown), operation mode selection information, operation start and operation end instruction information, and the like. is. The operation modes are, for example, heating, cooling, and dehumidification. Note that the operation control unit 102 may be outside the control device 100 . That is, control device 100 may be configured to acquire frequency command value ω e * from the outside.
 インバータ制御部110は、電流復元部111と、3相2相変換部112と、励磁電流指令値生成部113と、電圧指令値演算部115と、電気位相演算部116と、2相3相変換部117と、PWM信号生成部118と、を備える。 The inverter control unit 110 includes a current restoration unit 111, a three-phase to two-phase conversion unit 112, an excitation current command value generation unit 113, a voltage command value calculation unit 115, an electric phase calculation unit 116, and a two-to-three phase conversion unit. A section 117 and a PWM signal generation section 118 are provided.
 電流復元部111は、負荷電流検出部40で検出された負荷電流Idcに基づいてモータ7に流れる相電流i,i,iを復元する。電流復元部111は、負荷電流検出部40で検出された負荷電流Idcを、PWM信号生成部118で生成されたPWM信号Sm1~Sm6に基づいて定められるタイミングでサンプリングすることによって、相電流i,i,iを復元することができる。 A current restoration unit 111 restores the phase currents i u , iv , and i w flowing through the motor 7 based on the load current I dc detected by the load current detection unit 40 . Current restoration unit 111 samples load current Idc detected by load current detection unit 40 at timing determined based on PWM signals Sm1 to Sm6 generated by PWM signal generation unit 118, thereby obtaining phase current i u , i v , i w can be recovered.
 3相2相変換部112は、電流復元部111で復元された相電流i,i,iを、後述する電気位相演算部116で生成された電気位相θを用いて、γ軸電流である励磁電流iγ、およびδ軸電流であるトルク電流iδ、すなわちγδ軸の電流値に変換する。 The three-phase to two-phase conversion unit 112 converts the phase currents i u , iv , and i w restored by the current restoration unit 111 to the γ-axis using the electric phase θ e generated by the electric phase calculation unit 116 described later. An excitation current i γ that is a current and a torque current i δ that is a δ-axis current, that is, are converted into current values of the γδ-axis.
 励磁電流指令値生成部113は、前述の回転座標系における励磁電流指令値iγ を生成する。具体的には、励磁電流指令値生成部113は、トルク電流iδに基づいて、モータ7を駆動するために最も効率が良くなる最適な励磁電流指令値iγ を求める。励磁電流指令値生成部113は、トルク電流iδに基づいて、モータ7の出力トルクTが規定された値以上または最大になる、すなわち電流値が規定された値以下または最小になる電流位相βとなる励磁電流指令値iγ を出力する。なお、ここでは、励磁電流指令値生成部113が、トルク電流iδに基づいて励磁電流指令値iγ を求めているが、一例であり、これに限定されない。励磁電流指令値生成部113は、励磁電流iγ、周波数指令値ω などに基づいて励磁電流指令値iγ を求めても、同様の効果を得ることができる。また、励磁電流指令値生成部113は、弱め磁束制御などによって励磁電流指令値iγ を決定してもよい。以降の説明において、励磁電流指令値をγ軸電流指令値と称することがある。 The excitation current command value generator 113 generates the excitation current command value i γ * in the above-described rotating coordinate system. Specifically, the excitation current command value generation unit 113 obtains the optimum excitation current command value i γ * for driving the motor 7 with the highest efficiency based on the torque current i δ . Based on the torque current , the excitation current command value generator 113 generates a current phase at which the output torque Tm of the motor 7 becomes a specified value or more or a maximum value, that is, the current value becomes a specified value or less or a minimum value. An exciting current command value i γ * that becomes β m is output. Here, the excitation current command value generator 113 obtains the excitation current command value i γ * based on the torque current i δ , but this is an example and the present invention is not limited to this. Even if the excitation current command value generator 113 obtains the excitation current command value i γ * based on the excitation current i γ, the frequency command value ω e * , etc., the same effect can be obtained. Further, the excitation current command value generator 113 may determine the excitation current command value i γ * by flux weakening control or the like. In the following description, the exciting current command value may be referred to as the γ-axis current command value.
 電圧指令値演算部115は、負荷電流検出部40から取得した負荷電流Idcと、運転制御部102から取得した周波数指令値ω と、3相2相変換部112から取得した励磁電流iγおよびトルク電流iδと、励磁電流指令値生成部113から取得した励磁電流指令値iγ とに基づいて、γ軸電圧指令値Vγ およびδ軸電圧指令値Vδ を生成する。さらに、電圧指令値演算部115は、γ軸電圧指令値Vγ と、δ軸電圧指令値Vδ と、励磁電流iγと、トルク電流iδとに基づいて、周波数推定値ωestを推定する。 The voltage command value calculation unit 115 calculates the load current I dc obtained from the load current detection unit 40, the frequency command value ω e * obtained from the operation control unit 102, and the excitation current i γ -axis voltage command value V γ * and δ-axis voltage command value V δ * are generated based on γ and torque current i δ and excitation current command value i γ * obtained from excitation current command value generation unit 113 . Furthermore, the voltage command value calculation unit 115 calculates the frequency estimated value ω est based on the γ-axis voltage command value V γ * , the δ-axis voltage command value V δ * , the excitation current i γ , and the torque current i δ . to estimate
 電気位相演算部116は、電圧指令値演算部115から取得した周波数推定値ωestを積分することで、電気位相θを演算する。 The electric phase calculation unit 116 calculates the electric phase θ e by integrating the frequency estimation value ω est acquired from the voltage command value calculation unit 115 .
 2相3相変換部117は、電圧指令値演算部115から取得したγ軸電圧指令値Vγ およびδ軸電圧指令値Vδ 、すなわち2相座標系の電圧指令値を、電気位相演算部116から取得した電気位相θを用いて、3相座標系の出力電圧指令値である3相電圧指令値V ,V ,V に変換する。 Two-to-three phase converter 117 converts γ-axis voltage command value V γ * and δ-axis voltage command value V δ * obtained from voltage command value calculator 115, that is, voltage command values in a two-phase coordinate system, to electrical phase calculation. Using the electric phase θ e acquired from the unit 116, the three-phase voltage command values V u * , V v * , V w * , which are the output voltage command values in the three-phase coordinate system, are converted.
 PWM信号生成部118は、2相3相変換部117から取得した3相電圧指令値V ,V ,V と、母線電圧検出部10で検出された母線電圧Vdcとを比較することによって、PWM信号Sm1~Sm6を生成する。なお、PWM信号生成部118は、PWM信号Sm1~Sm6を出力しないようにすることによって、モータ7を停止することも可能である。 PWM signal generation unit 118 converts three-phase voltage command values V u * , V v * , V w * obtained from two-to-three phase conversion unit 117 and bus voltage V dc detected by bus voltage detection unit 10. The comparison generates PWM signals Sm1-Sm6. The PWM signal generator 118 can also stop the motor 7 by not outputting the PWM signals Sm1 to Sm6.
 本実施の形態において、制御装置100は、γ軸およびδ軸を有する回転座標系において制御を行う。以降の説明において、γ軸電流、δ軸電流などを励磁電流、トルク電流などと称することがある。 In the present embodiment, control device 100 performs control in a rotating coordinate system having γ and δ axes. In the following description, γ-axis current, δ-axis current, etc. may be referred to as excitation current, torque current, and the like.
 電圧指令値演算部115の構成について説明する。図4は、実施の形態1に係る制御装置100が備える電圧指令値演算部115の構成例を示すブロック図である。電圧指令値演算部115は、周波数推定部501と、速度制御部502と、振動抑制制御補償値演算部503と、振動抑制制限制御部504と、振動抑制制御部505と、積分制御部506と、機械角位相演算部507と、負荷電流制御部508と、加算部509と、減算部510,511と、γ軸電流制御部512と、δ軸電流制御部513と、を備える。 The configuration of the voltage command value calculation unit 115 will be described. FIG. 4 is a block diagram showing a configuration example of voltage command value calculation section 115 included in control device 100 according to the first embodiment. Voltage command value calculator 115 includes frequency estimator 501 , speed controller 502 , vibration suppression control compensation value calculator 503 , vibration suppression limit controller 504 , vibration suppression controller 505 , and integral controller 506 . , a mechanical angle phase calculator 507 , a load current controller 508 , an adder 509 , subtractors 510 and 511 , a γ-axis current controller 512 , and a δ-axis current controller 513 .
 周波数推定部501は、励磁電流iγと、トルク電流iδと、γ軸電圧指令値Vγ と、δ軸電圧指令値Vδ とに基づいて、モータ7に供給される電圧の周波数を推定し、周波数推定値ωestとして出力する。 The frequency estimator 501 calculates the frequency of the voltage supplied to the motor 7 based on the excitation current i γ , the torque current i δ , the γ-axis voltage command value V γ * , and the δ-axis voltage command value V δ *. is estimated and output as the frequency estimate ω est .
 速度制御部502は、電力変換装置200が圧縮機8の備えるモータ7に第2の交流電力を出力する場合において、モータ7の回転速度が所望の回転速度になるようにインバータ30の動作を制御する定電流負荷制御を行う。具体的には、速度制御部502は、周波数指令値ω に対する、周波数推定部501で推定された周波数推定値ωestの差分(ω -ωest)を算出する。速度制御部502は、差分(ω -ωest)に対して比例制御を行って得られた比例項、および差分(ω -ωest)に対して積分制御を行って得られた積分項を加算して、差分(ω -ωest)をゼロに近付ける第1のトルク電流指令値iδ を生成する。速度制御部502は、このようにして第1のトルク電流指令値iδ を生成することで、周波数推定値ωestを周波数指令値ω に一致させるための制御を行う。 When the power conversion device 200 outputs the second AC power to the motor 7 of the compressor 8, the speed control unit 502 controls the operation of the inverter 30 so that the rotation speed of the motor 7 reaches a desired rotation speed. constant current load control. Specifically, the speed controller 502 calculates the difference (ω e * −ω est ) between the frequency command value ω e * and the frequency estimated value ω est estimated by the frequency estimator 501 . The speed control unit 502 has a proportional term obtained by performing proportional control on the difference (ω e * −ω est ), and a proportional term obtained by performing integral control on the difference (ω e * −ω est ). An integral term is added to produce a first torque current command value i δ * that brings the difference (ω e * −ω est ) closer to zero. By generating the first torque current command value i δ * in this manner, the speed control unit 502 performs control for matching the frequency estimated value ω est with the frequency command value ω e * .
 振動抑制制御補償値演算部503は、モータ7の出力トルクTが負荷トルクTの周期的変動に追従するように振動抑制制御補償値であるトルク電流補償値iδtrq を生成する。具体的には、振動抑制制御補償値演算部503は、周波数推定部501から取得した周波数推定値ωestに基づいて、トルク電流補償値iδtrq を生成する。トルク電流補償値iδtrq は、周波数推定値ωestの脈動成分、特に周波数がωmnである脈動成分を抑制するためのものである。ここで、「周波数推定値ωestの脈動成分、特に周波数がωmnである脈動成分」とは、周波数推定値ωestを表す値である直流量の脈動成分、特に脈動周波数がωmnである脈動成分を意味する。なお、mは直流量に関係するパラメータであり、nはモータ7が駆動する負荷を示すパラメータである。nについては、例えば、モータ7が駆動する負荷が、シングルロータリ圧縮機の場合は1とし、ツインロータリ圧縮機の場合は2とする。また、nは3以上であってもよい。 A vibration suppression control compensation value calculation unit 503 generates a torque current compensation value i δtrq * , which is a vibration suppression control compensation value, so that the output torque Tm of the motor 7 follows the periodic variation of the load torque Tl . Specifically, vibration suppression control compensation value calculation section 503 generates torque current compensation value i δtrq * based on frequency estimation value ω est acquired from frequency estimation section 501 . The torque current compensation value i δtrq * is for suppressing the pulsation component of the estimated frequency value ω est , especially the pulsation component with the frequency ω mn . Here, the “pulsation component of the estimated frequency value ω est , especially the pulsation component with a frequency of ω mn ” is the pulsation component of the DC quantity, which is a value representing the estimated frequency value ω est , especially the pulsation frequency of ω mn . means the pulsating component. Note that m is a parameter related to the amount of direct current, and n is a parameter indicating the load that the motor 7 drives. For example, n is 1 when the load driven by the motor 7 is a single rotary compressor, and 2 when it is a twin rotary compressor. Also, n may be 3 or more.
 振動抑制制限制御部504は、負荷電流検出部40から取得した負荷電流Idc、3相2相変換部112から取得した励磁電流iγおよびトルク電流iδ、γ軸電流制御部512から取得したγ軸電圧指令値Vγ 、およびδ軸電流制御部513から取得したδ軸電圧指令値Vδ に基づいて、振動抑制制限トルク電流指令値Δiδtrqlim を生成する。 The vibration suppression limit control unit 504 obtains the load current I dc obtained from the load current detection unit 40, the excitation current i γ and the torque current i δ obtained from the three-phase two-phase conversion unit 112, and the torque current i δ obtained from the γ-axis current control unit 512. Based on the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ * acquired from the δ-axis current control unit 513, the vibration suppression limit torque current command value Δi δtrqlim * is generated.
 振動抑制制御部505は、圧縮機8で発生する振動を抑制するため、電力変換装置200において圧縮機8の負荷トルクに一致するように出力トルクTを補償し、振動を抑制する振動抑制制御を行う。具体的には、振動抑制制御部505は、速度制御部502から取得した第1のトルク電流指令値iδ 、振動抑制制御補償値演算部503から取得したトルク電流補償値iδtrq 、および振動抑制制限制御部504から取得した振動抑制制限トルク電流指令値Δiδtrqlim に基づいて、第2のトルク電流指令値iδ ***を生成する。振動抑制制御部505は、第1のトルク電流指令値iδ をトルク電流補償値iδtrq を用いて補償することによって、負荷トルクの脈動により発生する速度脈動を抑制することができる。 In order to suppress the vibration generated in the compressor 8, the vibration suppression control unit 505 compensates the output torque Tm so as to match the load torque of the compressor 8 in the power conversion device 200, thereby suppressing the vibration. I do. Specifically, the vibration suppression control unit 505 controls the first torque current command value i δ * acquired from the speed control unit 502, the torque current compensation value i δtrq * acquired from the vibration suppression control compensation value calculation unit 503, and A second torque current command value i δ *** is generated based on the vibration suppression limit torque current command value Δi δtrqlim * acquired from the vibration suppression limit control section 504 . Vibration suppression control unit 505 can suppress speed pulsation caused by load torque pulsation by compensating first torque current command value i δ * using torque current compensation value i δtrq * .
 積分制御部506は、周波数推定部501から取得した周波数推定値ωestに対して積分制御を行う。 Integral control section 506 performs integral control on frequency estimation value ω est acquired from frequency estimating section 501 .
 機械角位相演算部507は、積分制御部506で得られた値に1/Pを乗算する、すなわち積分制御部506で得られた値をモータ7の極対数Pで除算することで、機械角位相θを演算する。 The mechanical angle phase calculation unit 507 multiplies the value obtained by the integral control unit 506 by 1/ Pm , that is, divides the value obtained by the integral control unit 506 by the pole log number Pm of the motor 7, Calculate the mechanical angle phase θm .
 負荷電流制御部508は、負荷電流Idcの脈動を低減するモータ制御、すなわち負荷電流制御を行う。具体的には、負荷電流制御部508は、負荷電流検出部40から取得した負荷電流Idc、および機械角位相演算部507から取得した機械角位相θに基づいて、トルク電流補償値iδlcc を生成する。負荷電流制御部508は、例えば、ノッチフィルタによって構成される。 The load current control unit 508 performs motor control to reduce pulsation of the load current Idc , that is, load current control. Specifically, the load current control unit 508 calculates the torque current compensation value i δlcc based on the load current I dc obtained from the load current detection unit 40 and the mechanical angle phase θ m obtained from the mechanical angle phase calculation unit 507. * is generated. The load current control unit 508 is configured by, for example, a notch filter.
 加算部509は、振動抑制制御部505で生成された第2のトルク電流指令値iδ ***と、負荷電流制御部508で生成されたトルク電流補償値iδlcc とを加算して、第3のトルク電流指令値iδ ****を生成する。 The addition unit 509 adds the second torque current command value i δ *** generated by the vibration suppression control unit 505 and the torque current compensation value i δlcc * generated by the load current control unit 508, Generate a third torque current command value i δ **** .
 減算部510は、励磁電流指令値iγ に対する励磁電流iγの差分(iγ -iγ)を算出する。 Subtraction unit 510 calculates the difference (i γ * −i γ ) of excitation current i γ with respect to excitation current command value i γ * .
 減算部511は、第3のトルク電流指令値iδ ****に対するトルク電流iδの差分(iδ ****-iδ)を算出する。 The subtraction unit 511 calculates the difference (i δ **** i δ ) of the torque current i δ with respect to the third torque current command value i δ **** .
 γ軸電流制御部512は、減算部510で算出された差分(iγ -iγ)に対して比例積分演算を行って、差分(iγ -iγ)をゼロに近付けるγ軸電圧指令値Vγ を生成する。γ軸電流制御部512は、このようにしてγ軸電圧指令値Vγ を生成することで、励磁電流iγを励磁電流指令値iγ に一致させるための制御を行う。 The γ-axis current control unit 512 performs a proportional integral operation on the difference (i γ * −i γ ) calculated by the subtraction unit 510 to bring the difference (i γ * −i γ ) close to zero. A command value V γ * is generated. The γ-axis current control unit 512 generates the γ-axis voltage command value V γ * in this manner, thereby performing control to match the excitation current i γ with the excitation current command value i γ * .
 δ軸電流制御部513は、減算部511で算出された差分(iδ ****-iδ)に対して比例積分演算を行って、差分(iδ ****-iδ)をゼロに近付けるδ軸電圧指令値Vδ を生成する。δ軸電流制御部513は、このようにしてδ軸電圧指令値Vδ を生成することで、トルク電流iδを第3のトルク電流指令値iδ ****に一致させるための制御を行う。 A δ-axis current control unit 513 performs a proportional integral operation on the difference (i δ **** -i δ ) calculated by the subtraction unit 511 to obtain the difference (i δ **** -i δ ). A δ-axis voltage command value V δ * that approaches zero is generated. By generating the δ-axis voltage command value V δ * in this manner, the δ-axis current control unit 513 controls the torque current i δ to match the third torque current command value i δ **** . I do.
 負荷電流制御部508の構成について説明する。図5は、実施の形態1に係る電圧指令値演算部115が備える負荷電流制御部508の構成例を示すブロック図である。負荷電流制御部508は、乗算部521と、正弦演算部522と、余弦演算部523と、ローパスフィルタ524,525と、減算部526,527と、積分制御部528,529と、正弦演算部530と、余弦演算部531と、加算部532と、を備える。 A configuration of the load current control unit 508 will be described. FIG. 5 is a block diagram showing a configuration example of load current control section 508 included in voltage command value calculation section 115 according to the first embodiment. Load current control section 508 includes multiplication section 521, sine calculation section 522, cosine calculation section 523, low- pass filters 524 and 525, subtraction sections 526 and 527, integration control sections 528 and 529, and sine calculation section 530. , a cosine calculator 531 , and an adder 532 .
 乗算部521は、機械角位相θをn倍し、制御対象となる周波数成分n×θを演算する。 The multiplier 521 multiplies the mechanical angle phase θm by n to calculate the frequency component n× θm to be controlled.
 正弦演算部522は、負荷電流Idcに制御対象となる周波数成分n×θの正弦sin(n×θ)を乗算する。ローパスフィルタ524は、時定数Tfsのローパスフィルタリングを行って、正弦演算部522で得られた演算値から交流成分を除去し、直流成分を抽出する。ここで、sはラプラス演算子である。減算部526は、ローパスフィルタ524で得られた直流成分が0になるように直流成分と0との差分を算出する。積分制御部528は、減算部526で得られた差分に対して積分制御を行い、差分を0に近付ける電流指令値の正弦成分を算出する。正弦演算部530は、積分制御部528で演算された電流指令値の正弦成分に正弦sin(n×θ)を乗算し、複素平面上の虚軸方向の交流成分を演算する。 The sine calculator 522 multiplies the load current I dc by the sine sin(n×θ m ) of the frequency component n×θ m to be controlled. The low-pass filter 524 performs low-pass filtering with a time constant Tfs , removes the AC component from the calculated value obtained by the sine calculator 522, and extracts the DC component. where s is the Laplacian operator. The subtraction unit 526 calculates the difference between the DC component and 0 so that the DC component obtained by the low-pass filter 524 becomes 0. The integral control unit 528 performs integral control on the difference obtained by the subtraction unit 526 to calculate the sine component of the current command value that brings the difference closer to zero. Sine calculator 530 multiplies the sine component of the current command value calculated by integral controller 528 by sine sin (n×θ m ) to calculate an AC component in the imaginary axis direction on the complex plane.
 余弦演算部523は、負荷電流Idcに制御対象となる周波数成分n×θの余弦cos(n×θ)を乗算する。ローパスフィルタ525は、時定数Tfsのローパスフィルタリングを行って、余弦演算部523で得られた演算値から交流成分を除去し、直流成分を抽出する。減算部527は、ローパスフィルタ525で得られた直流成分が0になるように直流成分と0との差分を算出する。積分制御部529は、減算部527で得られた差分に対して積分制御を行い、差分を0に近付ける電流指令値の余弦成分を算出する。余弦演算部531は、積分制御部529で演算された電流指令値の余弦成分に余弦cos(n×θ)を乗算し、複素平面上の実軸方向の交流成分を演算する。 The cosine calculator 523 multiplies the load current I dc by the cosine cos (n×θ m ) of the frequency component n×θ m to be controlled. The low-pass filter 525 performs low-pass filtering with a time constant Tfs , removes AC components from the calculated values obtained by the cosine calculator 523, and extracts DC components. The subtraction unit 527 calculates the difference between the DC component and 0 so that the DC component obtained by the low-pass filter 525 becomes 0. The integral control unit 529 performs integral control on the difference obtained by the subtraction unit 527 to calculate the cosine component of the current command value that brings the difference closer to zero. Cosine calculator 531 multiplies the cosine component of the current command value calculated by integral controller 529 by cosine cos (n×θ m ) to calculate the AC component in the real axis direction on the complex plane.
 加算部532は、正弦演算部530で演算された複素平面上の虚軸方向の交流成分と、余弦演算部531で演算された複素平面上の実軸方向の交流成分とを加算し、機械角周波数のn倍成分に起因する交流量であるトルク電流補償値iδlcc を生成する。 The addition unit 532 adds the AC component in the imaginary axis direction on the complex plane calculated by the sine calculation unit 530 and the AC component in the real axis direction on the complex plane calculated by the cosine calculation unit 531, and obtains the mechanical angle A torque current compensation value i δlcc * , which is an alternating quantity due to the n-fold component of the frequency, is generated.
 なお、nは機械1f周期で負荷変動が起きる回数を表し、例えば、シングルロータリ圧縮機の場合n=1である。特に、電力変換装置200に接続される負荷がモータ7を含む圧縮機8の場合、商用電源1の電源周波数の0.6倍および1.4倍のモータ運転周波数において、電源高調波規格に対してNGとなりやすい。そのため、制御装置100は、商用電源1の電源周波数の0.6倍および1.4倍のモータ運転周波数においてモータ7に供給する電流の機械周波数の1f成分が顕著となるように電力変換装置200の動作を制御することで、電源高調波規格を満たす運転が可能となる。制御装置100は、商用電源1の電源周波数について、負荷電流検出部40から取得した負荷電流Idcの値およびインバータ30に対する制御内容から把握してもよいし、接続される商用電源1が固定の場合は予め商用電源1の電源周波数の情報を保持していてもよい。また、制御装置100は、モータ7の運転周波数である機械周波数について、インバータ30に対する制御内容から把握することが可能である。 Note that n represents the number of times the load fluctuation occurs in the machine 1f cycle, and for example, n=1 in the case of a single rotary compressor. In particular, when the load connected to the power conversion device 200 is the compressor 8 including the motor 7, at the motor operating frequencies of 0.6 and 1.4 times the power frequency of the commercial power source 1, It is easy to be NG. Therefore, the control device 100 controls the power conversion device 200 so that the 1f component of the mechanical frequency of the current supplied to the motor 7 becomes significant at motor operating frequencies that are 0.6 times and 1.4 times the power frequency of the commercial power source 1. By controlling the operation of , operation that satisfies the power supply harmonic standard is possible. Control device 100 may grasp the power supply frequency of commercial power supply 1 from the value of load current Idc obtained from load current detection unit 40 and the content of control for inverter 30, or may determine the power supply frequency of commercial power supply 1 to which commercial power supply 1 is connected. In this case, information on the power supply frequency of the commercial power supply 1 may be held in advance. Further, the control device 100 can grasp the mechanical frequency, which is the operating frequency of the motor 7 , from the details of control over the inverter 30 .
 振動抑制制御補償値演算部503の構成について説明する。図6は、実施の形態1に係る電圧指令値演算部115が備える振動抑制制御補償値演算部503の構成例を示すブロック図である。振動抑制制御補償値演算部503は、演算部550と、余弦演算部551と、正弦演算部552と、乗算部553,554と、ローパスフィルタ555,556と、減算部557,558と、周波数制御部559,560と、乗算部561,562と、加算部563と、を備える。 The configuration of the vibration suppression control compensation value calculation unit 503 will be described. FIG. 6 is a block diagram showing a configuration example of vibration suppression control compensation value calculation section 503 included in voltage command value calculation section 115 according to the first embodiment. The vibration suppression control compensation value calculation unit 503 includes a calculation unit 550, a cosine calculation unit 551, a sine calculation unit 552, multiplication units 553 and 554, low- pass filters 555 and 556, subtraction units 557 and 558, and a frequency control unit. It includes sections 559 and 560 , multiplication sections 561 and 562 , and an addition section 563 .
 演算部550は、周波数推定値ωestを積分し、極対数で除算することによってモータ7の回転位置を示す機械角位相θmnを算出する。余弦演算部551は、機械角位相θmnに基づいて、余弦cosθmnを算出する。正弦演算部552は、機械角位相θmnに基づいて、正弦sinθmnを算出する。 The calculation unit 550 integrates the estimated frequency value ω est and divides it by the pole logarithm to calculate the mechanical angle phase θ mn indicating the rotational position of the motor 7 . A cosine calculator 551 calculates a cosine cos θ mn based on the mechanical angle phase θ mn . A sine calculator 552 calculates a sine sin θ mn based on the mechanical angle phase θ mn .
 乗算部553は、周波数推定値ωestに余弦cosθmnを乗算し、周波数推定値ωestの余弦成分ωest・cosθmnを算出する。乗算部554は、周波数推定値ωestに正弦sinθmnを乗算し、周波数推定値ωestの正弦成分ωest・sinθmnを算出する。乗算部553,554で算出される余弦成分ωest・cosθmnおよび正弦成分ωest・sinθmnには、周波数がωmnである脈動成分の他、周波数がωmnより高い周波数の脈動成分、すなわち高調波成分が含まれている。 The multiplier 553 multiplies the estimated frequency value ω est by the cosine cos θ mn to calculate the cosine component ω est ·cos θ mn of the estimated frequency value ω est . The multiplier 554 multiplies the frequency estimation value ω est by the sine sin θ mn to calculate the sine component ω est ·sin θ mn of the frequency estimation value ω est . The cosine component ω est ·cos θ mn and the sine component ω est ·sin θ mn calculated by the multipliers 553 and 554 include a pulsation component with a frequency of ω mn and a pulsation component with a frequency higher than ω mn . Contains harmonic components.
 ローパスフィルタ555,556は、伝達関数が1/(1+s・T)で表される一次遅れフィルタである。Tは時定数であり、周波数ωmnよりも高い周波数の脈動成分を除去するように定められる。なお、「除去」には、脈動成分の一部が減衰、すなわち低減される場合が含まれるものとする。時定数Tについては、速度指令値に基づいて運転制御部102で設定され、運転制御部102がローパスフィルタ555,556に通知してもよいし、ローパスフィルタ555,556が保持していてもよい。ローパスフィルタ555,556については、一次遅れフィルタは一例であって、移動平均フィルタなどであってもよいし、高周波側の脈動成分を除去できればフィルタの種類は限定されない。 The low- pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1/(1+s·T f ). T f is a time constant and is determined to remove pulsation components with frequencies higher than the frequency ω mn . Note that "removal" includes the case where part of the pulsation component is attenuated, that is, reduced. The time constant Tf is set by the operation control unit 102 based on the speed command value, and may be notified to the low- pass filters 555 and 556 by the operation control unit 102, or may be held by the low- pass filters 555 and 556. good. As for the low- pass filters 555 and 556, a first-order lag filter is an example, and a moving average filter or the like may be used, and the type of filter is not limited as long as the pulsation component on the high frequency side can be removed.
 ローパスフィルタ555は、余弦成分ωest・cosθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωestcosを出力する。低周波数成分ωestcosは、周波数推定値ωestの脈動成分のうち、周波数がωmnである余弦成分を表す直流量である。 A low-pass filter 555 performs low-pass filtering on the cosine component ω est ·cos θ mn to remove pulsation components with a frequency higher than ω mn and outputs a low frequency component ω estcos . The low-frequency component ω estcos is a DC quantity representing a cosine component with a frequency ω mn among the pulsating components of the frequency estimate ω est .
 ローパスフィルタ556は、正弦成分ωest・sinθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωestsinを出力する。低周波数成分ωestsinは、周波数推定値ωestの脈動成分のうち、周波数がωmnである正弦成分を表す直流量である。 A low-pass filter 556 performs low-pass filtering on the sine component ω est ·sin θ mn to remove pulsation components with a frequency higher than the frequency ω mn and outputs a low frequency component ω estsin . The low-frequency component ω estsin is a DC quantity representing a sinusoidal component with a frequency ω mn among the pulsating components of the frequency estimation value ω est .
 減算部557は、ローパスフィルタ555から出力された低周波数成分ωestcosと0との差分(ωestcos-0)を算出する。減算部558は、ローパスフィルタ556から出力された低周波数成分ωestsinと0との差分(ωestsin-0)を算出する。 The subtraction unit 557 calculates the difference (ω estcos −0) between the low frequency component ω estcos output from the low- pass filter 555 and 0. The subtraction unit 558 calculates the difference (ω estsin −0) between the low frequency component ω estsin output from the low- pass filter 556 and 0.
 周波数制御部559は、減算部557で算出された差分(ωestcos-0)に対して比例積分演算を行って、差分(ωestcos-0)をゼロに近付ける電流指令値の余弦成分iδtrqcosを算出する。周波数制御部559は、このようにして余弦成分iδtrqcosを生成することで、低周波数成分ωestcosを0に一致させるための制御を行う。 A frequency control unit 559 performs a proportional integral operation on the difference (ω estcos −0) calculated by the subtraction unit 557 to generate a cosine component i δtrqcos of the current command value that makes the difference (ω estcos −0) close to zero. calculate. By generating the cosine component i δtrqcos in this manner, the frequency control unit 559 performs control to match the low frequency component ω estcos to zero.
 周波数制御部560は、減算部558で算出された差分(ωestsin-0)に対して比例積分演算を行って、差分(ωestsin-0)をゼロに近付ける電流指令値の正弦成分iδtrqsinを算出する。周波数制御部560は、このようにして正弦成分iδtrqsinを生成することで、低周波数成分ωestsinを0に一致させるための制御を行う。 The frequency control unit 560 performs a proportional integral operation on the difference (ω estsin −0) calculated by the subtraction unit 558 to generate a sine component i δtrqsin of the current command value that makes the difference (ω estsin −0) close to zero. calculate. The frequency control unit 560 generates the sine component i δtrqsin in this way, thereby performing control to match the low frequency component ω estsin to zero.
 乗算部561は、周波数制御部559から出力された余弦成分iδtrqcosに余弦cosθmnを乗算してiδtrqcos・cosθmnを生成する。iδtrqcos・cosθmnは、周波数n・ωestを持つ交流成分である。 The multiplier 561 multiplies the cosine component i δtrqcos output from the frequency control unit 559 by the cosine cos θ mn to generate i δtrqcos ·cos θ mn . i δtrqcos ·cos θ mn is the AC component with frequency n·ω est .
 乗算部562は、周波数制御部560から出力された正弦成分iδtrqsinに正弦sinθmnを乗算してiδtrqsin・sinθmnを生成する。iδtrqsin・sinθmnは、周波数n・ωestを持つ交流成分である。 The multiplier 562 multiplies the sine component i δtrqsin output from the frequency control unit 560 by the sine sin θ mn to generate i δtrqsin ·sin θ mn . i δtrqsin ·sin θ mn is the AC component with frequency n·ω est .
 加算部563は、乗算部561から出力されたiδtrqcos・cosθmnと、乗算部562から出力されたiδtrqsin・sinθmnとの和を求める。振動抑制制御補償値演算部503は、加算部563で求められたものを、トルク電流補償値iδtrq として出力する。 The addition unit 563 obtains the sum of i δtrqcos ·cos θ mn output from the multiplication unit 561 and i δtrqsin ·sin θ mn output from the multiplication unit 562 . The vibration suppression control compensation value calculator 503 outputs the value obtained by the adder 563 as the torque current compensation value i δtrq * .
 振動抑制制御部505は、振動抑制制御補償値演算部503において上記のようにして求められたトルク電流補償値iδtrq を演算途中のトルク電流指令値に加算し、加算結果を、補正された第2のトルク電流指令値iδ ***として用いることで、脈動成分を抑制することができる。 The vibration suppression control unit 505 adds the torque current compensation value i δtrq * obtained as described above in the vibration suppression control compensation value calculation unit 503 to the torque current command value during calculation, and converts the addition result to the corrected torque current command value. By using it as the second torque current command value i δ *** , the ripple component can be suppressed.
 振動抑制制限制御部504の構成について説明する。図7は、実施の形態1に係る電圧指令値演算部115が備える振動抑制制限制御部504の構成例を示すブロック図である。振動抑制制限制御部504は、電源高調波規格値計算部601と、次数成分演算部602と、減算部603と、積分制御部604と、設定部605と、を備える。 The configuration of the vibration suppression limit control unit 504 will be described. FIG. 7 is a block diagram showing a configuration example of vibration suppression limit control section 504 included in voltage command value calculation section 115 according to the first embodiment. Vibration suppression limit control section 504 includes power harmonic standard value calculation section 601 , order component calculation section 602 , subtraction section 603 , integration control section 604 , and setting section 605 .
 電源高調波規格値計算部601は、電源高調波において各次数に対する電源高調波規格値を計算する。図8は、実施の形態1に係る振動抑制制限制御部504が備える電源高調波規格値計算部601の構成例を示すブロック図である。電源高調波規格値計算部601は、電力計算部611と、電力乗算部612と、限度値換算部613と、係数乗算部614と、を備える。 The power harmonic standard value calculation unit 601 calculates the power harmonic standard value for each order of the power harmonic. FIG. 8 is a block diagram showing a configuration example of power supply harmonic standard value calculation section 601 included in vibration suppression limit control section 504 according to the first embodiment. The power harmonic standard value calculator 601 includes a power calculator 611 , a power multiplier 612 , a limit value converter 613 , and a coefficient multiplier 614 .
 電力計算部611は、γ軸電圧指令値Vγ 、δ軸電圧指令値Vδ 、励磁電流iγ、およびトルク電流iδを用いて、γ軸電圧指令値Vγ ×励磁電流iγ+δ軸電圧指令値Vδ ×トルク電流iδの計算式で電力Wを計算する。 Power calculation unit 611 uses γ-axis voltage command value V γ * , δ-axis voltage command value V δ * , excitation current i γ , and torque current i δ to calculate γ-axis voltage command value V γ * × excitation current i The electric power W is calculated by the formula of γ + δ-axis voltage command value V δ * × torque current i δ .
 電力乗算部612は、電力Wから規定された600ワットを超える電力を(W-600)として算出し、算出した値を次数ごとに規定されている最大許容高調波電流の第2項に乗算する。600ワットは、JIS(Japanese Industrial Standards) C 61000-3-2で規定された値である。図8の例では「1.08+0.00033」は電源高調波の次数が2のときの最大許容高調波電流であるので、電力乗算部612は、「1.08+0.00033(W-600)」のように計算する。電力乗算部612は、電源高調波の他の次数についても同様の計算を行う。 The power multiplier 612 calculates the power exceeding the specified 600 watts from the power W as (W-600), and multiplies the calculated value by the second term of the maximum allowable harmonic current specified for each order. . 600 watts is a value specified in JIS (Japanese Industrial Standards) C 61000-3-2. In the example of FIG. 8, "1.08+0.00033" is the maximum allowable harmonic current when the order of power supply harmonics is 2, so the power multiplier 612 outputs "1.08+0.00033 (W-600)". Calculate as The power multiplier 612 performs similar calculations for other orders of power supply harmonics.
 限度値換算部613は、電力乗算部612で得られた各次数の値に対して(230/電源電圧)を乗算し、各次数についての限度値を計算する。なお、230は、前述のJIS C 61000-3-2で規定された、電源が単相の場合の値である。電源電圧は、一般的な使用環境であれば100Vまたは200Vとなる。 The limit value conversion unit 613 multiplies the value of each order obtained by the power multiplication unit 612 by (230/power supply voltage) to calculate the limit value for each order. Note that 230 is the value when the power supply is single-phase, as specified in the aforementioned JIS C 61000-3-2. The power supply voltage is 100V or 200V in a general usage environment.
 係数乗算部614は、限度値換算部613で得られた各次数についての限度値に対してマージンを設定するため、0<K≦1の係数Kを乗算し、電源高調波において各次数に対する電源高調波規格値を得る。例えば、k=0.5の場合は電源高調波規格値に対して50%のマージンを持たせる場合であり、k=1の場合は電源高調波規格値に対してマージンを持たせない場合である。 A coefficient multiplier 614 multiplies a coefficient K of 0<K≤1 to set a margin for the limit value for each order obtained by the limit value conversion unit 613, and obtains a power supply harmonic for each order in power supply harmonics. Obtain harmonic specifications. For example, when k=0.5, a margin of 50% is given to the standard value of power harmonics, and when k=1, no margin is given to the standard value of power harmonics. be.
 図7の説明に戻る。次数成分演算部602は、負荷電流Idcを用いて、電源高調波の各次数成分を演算する。図9は、実施の形態1に係る振動抑制制限制御部504が備える次数成分演算部602の構成例を示すブロック図である。次数成分演算部602は、乗算部621,622と、ローパスフィルタ623,624と、ピーク値演算部625と、実効値演算部626と、2乗部627と、除算部628,629と、加算部630と、1/2乗部631と、を備える。ここで、次数成分演算部602は、電源高調波の各次数について、整数値のみを対象とせず、前後の次数と連携することで全ての範囲を対象とする。次数成分演算部602は、例えは、2次を対象にする場合は1.5~2.5次を対象とし、3次を対象にする場合は2.5~3.5次を対象とする。具体的には、商用電源1の電源周波数が50Hzの場合、次数成分演算部602は、次数が2次の場合、75Hzから125Hzの範囲において5Hz単位で演算を行う。そのため、次数成分演算部602は、乗算部621,622、ローパスフィルタ623,624、ピーク値演算部625、および実効値演算部626を、対象の次数分×各次数での演算対象の周波数成分の数分備える。 Returning to the description of FIG. The order component calculation unit 602 calculates each order component of the power supply harmonic using the load current Idc . FIG. 9 is a block diagram showing a configuration example of the order component calculation section 602 included in the vibration suppression/limitation control section 504 according to the first embodiment. The order component calculation unit 602 includes multiplication units 621 and 622, low- pass filters 623 and 624, a peak value calculation unit 625, an effective value calculation unit 626, a squaring unit 627, division units 628 and 629, and an addition unit. 630 and a 1/2 power part 631 . Here, for each order of the power source harmonics, the order component calculation unit 602 does not target only the integer values, but targets the entire range by cooperating with the orders before and after. The order component calculation unit 602, for example, targets the 1.5th to 2.5th orders when targeting the second order, and targets the 2.5th to 3.5th orders when targeting the third order. . Specifically, when the power supply frequency of the commercial power supply 1 is 50 Hz, the order component calculation unit 602 performs calculation in units of 5 Hz in the range from 75 Hz to 125 Hz when the order is second order. Therefore, order component calculation section 602 performs multiplication sections 621 and 622, low- pass filters 623 and 624, peak value calculation section 625, and effective value calculation section 626 as follows: Be prepared for a few minutes.
 乗算部621は、負荷電流Idcに演算対象となる周波数成分θの余弦cosθを乗算する。乗算部622は、負荷電流Idcに演算対象となる周波数成分θの正弦sinθを乗算する。ローパスフィルタ623は、乗算部621で得られた演算値から交流成分を除去し、直流成分を抽出する。ローパスフィルタ624は、乗算部622で得られた演算値から交流成分を除去し、直流成分を抽出する。ピーク値演算部625は、ローパスフィルタ623から取得したIdccosxおよびローパスフィルタ624から取得したIdcsinxを用いて、演算対象となる周波数成分θのピーク値を演算する。実効値演算部626は、ピーク値演算部625で得られた演算対象となる周波数成分θのピーク値を√(2)で除算することで、演算対象となる周波数成分θの実効値を演算する。なお、√(2)は2の平方根を表している。 The multiplier 621 multiplies the load current Idc by the cosine cos θx of the frequency component θx to be calculated. The multiplier 622 multiplies the load current I dc by the sine sin θ x of the frequency component θ x to be calculated. A low-pass filter 623 removes the AC component from the calculated value obtained by the multiplier 621 and extracts the DC component. A low-pass filter 624 removes the AC component from the calculated value obtained by the multiplier 622 and extracts the DC component. The peak value calculator 625 uses Idccosx obtained from the lowpass filter 623 and Idcsinx obtained from the lowpass filter 624 to calculate the peak value of the frequency component θx to be calculated. The effective value calculator 626 divides the peak value of the frequency component θx to be calculated obtained by the peak value calculator 625 by √(2) to obtain the effective value of the frequency component θx to be calculated. Calculate. √(2) represents the square root of two.
 2乗部627は、演算対象の次数の各周波数で演算された実効値を2乗する。なお、図9では、周波数成分のうち、最小周波数を(n-1).5次と記載し、0.1次ずつ大きくして、最大周波数をn.5次と記載している。例えば、次数が2のとき、最小周波数は1.5次となり、最大周波数は2.5次となる。ここで、各次数で演算される対象の周波数成分のうち、最小周波数は1つ下の次数の最大周波数と同一となり、最大周波数は1つ上の次数の最小周波数と同一となる。除算部628は、重複する部分の影響を排除するため、2乗部627で得られた最小周波数の実効値の2乗値を1/2にする。除算部629は、重複する部分の影響を排除するため、2乗部627で得られた最大周波数の実効値の2乗値を1/2にする。加算部630は、演算対象の次数の各周波数で演算された実効値を2乗した値、または2乗した値を1/2にした値を加算して合計値を求める。1/2乗部631は、加算部630で得られた合計値の平方根を取って演算対象の次数成分の大きさを求める。次数成分演算部602は、同様の演算を次数分行う。 The squaring unit 627 squares the effective value calculated at each frequency of the order to be calculated. In FIG. 9, the minimum frequency among the frequency components is (n-1). The maximum frequency is n. It is described as fifth order. For example, when the order is 2, the minimum frequency is 1.5 and the maximum frequency is 2.5. Here, among the frequency components to be calculated for each order, the minimum frequency is the same as the maximum frequency of the next lower order, and the maximum frequency is the same as the minimum frequency of the one higher order. A division unit 628 halves the square value of the effective value of the minimum frequency obtained by the squaring unit 627 in order to eliminate the influence of overlapping portions. A division unit 629 halves the square value of the effective value of the maximum frequency obtained by the squaring unit 627 in order to eliminate the influence of overlapping portions. Adder 630 obtains a total value by adding the values obtained by squaring the effective values calculated at each frequency of the order to be calculated, or the values obtained by halving the squared values. A 1/2 power unit 631 takes the square root of the total value obtained by the addition unit 630 to obtain the magnitude of the order component to be calculated. The order component calculation unit 602 performs similar calculations for each order.
 図7の説明に戻る。減算部603は、電源高調波規格値裕度を計算する。具体的には、減算部603は、各次数について、電源高調波規格値計算部601で演算された電源高調波規格値と、次数成分演算部602で演算された電源高調波の次数成分との差分を計算する。減算部603は、計算した差分を電源高調波規格値裕度として積分制御部604に出力する。 Return to the description of Fig. 7. The subtraction unit 603 calculates the power harmonic standard value tolerance. Specifically, the subtraction unit 603 subtracts the power harmonic standard value calculated by the power harmonic standard value calculation unit 601 and the power harmonic order component calculated by the order component calculation unit 602 for each order. Compute the difference. The subtraction unit 603 outputs the calculated difference to the integration control unit 604 as the power supply harmonic standard value tolerance.
 積分制御部604は、減算部603で計算された電源高調波規格値裕度に対して積分制御を行い、差分を0に近付ける、すなわち次数成分演算部602で演算された電源高調波の次数成分を電源高調波規格値計算部601で演算された電源高調波規格値に近付ける電流値idckを演算する。 The integral control unit 604 performs integral control on the power supply harmonic standard value tolerance calculated by the subtraction unit 603 to bring the difference closer to 0. That is, the order component of the power supply harmonic calculated by the order component calculation unit 602 to the power harmonic standard value calculated by the power harmonic standard value calculation unit 601, the current value idck is calculated.
 設定部605は、積分制御部604で演算された電流値idckが0以上か0未満によって、振動抑制制限トルク電流指令値Δiδtrqlim を設定する。具体的には、設定部605は、式(2)のように、振動抑制制限トルク電流指令値Δiδtrqlim を設定する。 The setting unit 605 sets the vibration suppression limit torque current command value Δi δtrqlim * depending on whether the current value i dck calculated by the integral control unit 604 is 0 or more or less than 0. Specifically, the setting unit 605 sets the vibration suppression limit torque current command value Δi δtrqlim * as shown in Equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 速度制御部502および振動抑制制御部505の構成について説明する。図10は、実施の形態1に係る電圧指令値演算部115が備える速度制御部502および振動抑制制御部505の構成例を示すブロック図である。速度制御部502は、減算部711と、比例制御部712と、積分制御部713と、加算部714と、を備える。振動抑制制御部505は、加算部721と、制限部722と、減算部726と、加算部727と、リミッタ728と、加算部729と、を備える。制限部722は、記憶部723と、選択部724と、リミッタ725と、を備える。 The configurations of the speed control unit 502 and the vibration suppression control unit 505 will be described. FIG. 10 is a block diagram showing a configuration example of speed control unit 502 and vibration suppression control unit 505 included in voltage command value calculation unit 115 according to the first embodiment. The speed control section 502 includes a subtraction section 711 , a proportional control section 712 , an integral control section 713 and an addition section 714 . The vibration suppression control section 505 includes an adder section 721 , a limiter section 722 , a subtractor section 726 , an adder section 727 , a limiter 728 and an adder section 729 . The limiting section 722 includes a storage section 723 , a selecting section 724 and a limiter 725 .
 速度制御部502において、減算部711は、周波数指令値ω に対する、周波数推定部501で推定された周波数推定値ωestの差分(ω -ωest)を算出する。比例制御部712は、減算部711から取得した、周波数指令値ω と周波数推定値ωestとの差分(ω -ωest)に対して比例制御を行い、比例項iδp を出力する。積分制御部713は、減算部711から取得した、周波数指令値ω と周波数推定値ωestとの差分(ω -ωest)に対して積分制御を行い、積分項iδi を出力する。加算部714は、比例制御部712から取得した比例項iδp と、積分制御部713から取得した積分項iδi とを加算して、第1のトルク電流指令値iδ を生成する。 In speed control section 502, subtraction section 711 calculates the difference (ω e * - ω est ) between frequency command value ω e * and frequency estimated value ω est estimated by frequency estimating section 501 . Proportional control section 712 performs proportional control on the difference (ω e * - ω est ) between frequency command value ω e * and frequency estimated value ω est obtained from subtraction section 711, and converts proportional term i δp * to Output. Integral control section 713 performs integral control on the difference (ω e * - ω est ) between frequency command value ω e * and frequency estimated value ω est obtained from subtraction section 711, and converts integral term i δi * to Output. The addition unit 714 adds the proportional term i δp * obtained from the proportional control unit 712 and the integral term i δi * obtained from the integral control unit 713 to generate the first torque current command value i δ * . .
 振動抑制制御部505において、加算部721は、速度制御部502で生成された第1のトルク電流指令値iδ と、振動抑制制御補償値演算部503から取得したトルク電流補償値iδtrq とを加算して、中間トルク電流指令値iδ **を生成する。 In the vibration suppression control unit 505, an addition unit 721 adds the first torque current command value i δ * generated by the speed control unit 502 and the torque current compensation value i δtrq * obtained from the vibration suppression control compensation value calculation unit 503. are added to generate the intermediate torque current command value i δ ** .
 制限部722は、中間トルク電流指令値iδ **に対するリミット値を設定する。一般的に、冷凍サイクル適用機器を制御する電力変換装置200では、振動抑制制御などを目的として、中間トルク電流指令値iδ **に対してリミット値を設定している。本実施の形態において、振動抑制制御部505は、中間トルク電流指令値iδ **に対するリミット値として、δ軸電流リミット値iδlim1,iδlim2,iδtrqlimを用いる。δ軸電流リミット値iδlim1は式(3)で表すことができ、δ軸電流リミット値iδlim2は式(4)で表すことができ、δ軸電流リミット値iδtrqlimは式(5)で表すことができる。 A limiter 722 sets a limit value for the intermediate torque current command value i δ ** . Generally, in the power converter 200 that controls the refrigerating cycle equipment, a limit value is set for the intermediate torque current command value i δ ** for the purpose of vibration suppression control and the like. In the present embodiment, vibration suppression control section 505 uses δ-axis current limit values i δlim1 , i δlim2 , and i δtrqlim as limit values for intermediate torque current command value i δ ** . The δ-axis current limit value i δlim1 can be expressed by Equation (3), the δ-axis current limit value i δlim2 can be expressed by Equation (4), and the δ-axis current limit value i δtrqlim can be expressed by Equation (5). be able to.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 δ軸電流リミット値iδlim2は、モータ7の回転速度が中高速領域の場合において、モータ7の電圧値に基づいて制限をかけることを想定したものである。式(4)において、Lγはγ軸インダクタンスであり、Lδはδ軸インダクタンスである。一般的に、インバータ30がモータ7に出力できる交流電圧の最大電圧には制限があるので、γδ軸電圧の制限値をVomとした場合、励磁電流iγとトルク電流iδとの関係は、式(6)のように表される。なお、制限値Vomについては、例えば、モータ7の巻線抵抗、インバータ30のスイッチング素子311~316などの電圧降下分を差し引いた値にしてもよい。インバータ30の出力限界範囲は、厳密には六角形状であるが、ここでは円で近似して考えている。本実施の形態では、円で近似することを前提として議論するが、厳密に六角形を考えて議論してもよいことは言うまでも無い。 The δ-axis current limit value i δlim2 is based on the assumption that the limit is applied based on the voltage value of the motor 7 when the rotation speed of the motor 7 is in the medium-to-high speed range. In equation (4), L γ is the γ-axis inductance and L δ is the δ-axis inductance. In general, the maximum AC voltage that the inverter 30 can output to the motor 7 is limited . , is expressed as in equation (6). Note that the limit value V om may be a value obtained by subtracting, for example, the winding resistance of the motor 7, the voltage drop of the switching elements 311 to 316 of the inverter 30, and the like. Strictly speaking, the output limit range of the inverter 30 has a hexagonal shape, but is approximated by a circle here. In the present embodiment, the discussion is based on the premise that the approximation is by a circle, but it is needless to say that the discussion may be made strictly considering a hexagon.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)をトルク電流iδについて解くと、式(4)を導出することができる。式(4)のδ軸電流指令値は、電圧限界および弱め磁束制御の効き具合を考慮できている。δ軸電流リミット値iδlim2は、インバータ30がモータ7に出力可能な電圧に基づく制限値Vomである電圧制限値、モータ7の回転速度である電気角速度ω、モータ7のγδ軸磁束鎖交数Φ、γ軸インダクタンスLγ、δ軸インダクタンスLδから既定される。 Solving equation (6) for the torque current i δ yields equation (4). The δ-axis current command value in equation (4) can take into consideration the voltage limit and the effectiveness of the flux-weakening control. The δ-axis current limit value i δlim2 is a voltage limit value that is a limit value V om based on the voltage that the inverter 30 can output to the motor 7, an electrical angular velocity ω e that is the rotation speed of the motor 7, and a γδ-axis magnetic flux chain of the motor 7. It is determined from the alternating number Φ a , the γ-axis inductance L γ , and the δ-axis inductance L δ .
 図10において、制限部722の記憶部723は、δ軸電流リミット値iδlim1,iδlim2を記憶している。すなわち、制限部722は、δ軸電流リミット値iδlim1,iδlim2を有している。選択部724は、記憶部723に記憶されているδ軸電流リミット値iδlim1,iδlim2のいずれかを選択し、δ軸電流リミット値iδlimとして出力する。δ軸電流リミット値iδlimは、中間トルク電流指令値iδ **に対する電流リミット値である。リミッタ725は、中間トルク電流指令値iδ **に対してδ軸電流リミット値iδlimで制限したものを制限トルク電流指令値iδlim として出力する。なお、制限部722は、δ軸電流リミット値iδlim1,iδlim2について、自身で演算して求めたものを記憶部723に記憶させてもよいし、外部、例えば、運転制御部102から取得して記憶部723に記憶させてもよい。 In FIG. 10, the storage unit 723 of the limiting unit 722 stores δ-axis current limit values i δlim1 and i δlim2 . That is, the limiter 722 has δ-axis current limit values i δlim1 and i δlim2 . The selection unit 724 selects one of the δ-axis current limit values i δlim1 and i δlim2 stored in the storage unit 723 and outputs it as the δ-axis current limit value i δlim . The δ-axis current limit value i δlim is a current limit value for the intermediate torque current command value i δ ** . A limiter 725 limits the intermediate torque current command value i δ ** with the δ-axis current limit value i δlim and outputs it as a limit torque current command value i δlim * . Note that the limiting unit 722 may store the δ-axis current limit values i δlim1 and i δlim2 calculated by itself in the storage unit 723, or may acquire them from the outside, for example, the operation control unit 102. may be stored in the storage unit 723.
 減算部726は、制限部722から取得したδ軸電流リミット値iδlimと制限トルク電流指令値iδlim との差分を算出する。リミッタ725がδ軸電流リミット値iδlimの範囲内で制限した場合、iδ **≧iδlim≧iδlim となる。リミッタ725がδ軸電流リミット値iδlimを使い切らないケースもあるため、使い切らなかった分をδ軸電流リミット値iδlimと制限トルク電流指令値iδlim との差分として算出する。加算部727は、減算部726で算出された差分と、振動抑制制限制御部504で演算された振動抑制制限トルク電流指令値Δiδtrqlim とを加算し、トルク電流補償値iδtrq に対するδ軸電流リミット値iδtrqlimを算出する。リミッタ728は、トルク電流補償値iδtrq に対してδ軸電流リミット値iδtrqlimで制限したものをリミッタ後のトルク電流補償値iδtrqlim として出力する。加算部729は、制限トルク電流指令値iδlim と、リミッタ後のトルク電流補償値iδtrqlim とを加算して、第2のトルク電流指令値Iδ ***を生成する。 The subtractor 726 calculates the difference between the δ-axis current limit value i δlim obtained from the limiter 722 and the limit torque current command value i δlim * . When the limiter 725 limits within the range of the δ-axis current limit value i δlim , i δ ** ≧i δlim ≧i δlim * . Since there are cases where the limiter 725 does not use up the δ-axis current limit value i δlim , the unused portion is calculated as the difference between the δ-axis current limit value i δlim and the limit torque current command value i δlim * . The adder 727 adds the difference calculated by the subtractor 726 and the vibration suppression limit torque current command value Δi δtrqlim * calculated by the vibration suppression limit control unit 504, and calculates the δ axis for the torque current compensation value i δtrq * . A current limit value i δtrqlim is calculated. A limiter 728 limits the torque current compensation value i δtrq * with the δ axis current limit value i δtrqlim and outputs it as the post-limiting torque current compensation value i δtrqlim * . The adder 729 adds the limited torque current command value i δlim * and the post-limiter torque current compensation value i δtrqlim * to generate the second torque current command value I δ *** .
 ここまで詳細に説明してきた構成および制御内容に基づいて、本実施の形態で得られる効果について説明する。図1に示す電力変換装置200において、平滑コンデンサ5の両端に接続された負荷は、例えば、インバータ30およびモータ7などで構成される負荷などが挙げられるが、ここでは周期的に脈動が発生するような負荷の接続を想定する。モータ7の機械角1周期中に1回脈動が大きく起きるような機器では、機器の振動、振動に起因する騒音などを防ぐ必要があるため、制御装置100が行う制御として、前述したような振動抑制制御、すなわち機械1f補償が広く使われている。振動抑制制御は、脈動する負荷トルクに出力トルクTを追従させることで、振動の原因となる速度むらを抑制する制御である。なお、機械1fは、モータ7の運転周波数である機械周波数の1倍成分を表している。 Based on the configuration and control details that have been described in detail up to this point, the effects obtained in this embodiment will be described. In the power conversion device 200 shown in FIG. 1, the load connected to both ends of the smoothing capacitor 5 includes, for example, a load composed of the inverter 30 and the motor 7, etc. Here, pulsation occurs periodically. Assume the connection of such loads. In a device in which a large pulsation occurs once in one cycle of the mechanical angle of the motor 7, it is necessary to prevent vibration of the device and noise caused by the vibration. Constraint control, or machine 1f compensation, is widely used. Vibration suppression control is control that suppresses speed unevenness that causes vibration by causing the output torque Tm to follow the pulsating load torque. The machine 1f represents the one-fold component of the machine frequency, which is the operating frequency of the motor 7. FIG.
 図11は、実施の形態1に係る電力変換装置200において振動を抑制するための振動抑制制御を行った場合のモータトルク、負荷トルク、および負荷電流Idcの各波形の例を示す図である。図11において、上段はモータトルクおよび負荷トルクの各波形を示し、下段は負荷電流Idcの波形を示している。なお、横軸はいずれも時間を示している。図11の例では、負荷トルクに対して、モータトルクが追従している様子が見てとれる。なお、このときの特徴として、図11の下段に示すように電源側で発生する負荷電流Idcが正負にアンバランスするといった現象が起きる。これはつまり、制御装置100が振動抑制制御を行うことで、振動の抑制効果を得られる一方で、電源側の負荷電流Idcの機械1f成分の脈動は大きくなってしまい電源高調波規格に適合しない可能性が生じるということを意味する。規格に適合しない機器の使用は認められないため、電源高調波に関しても抑制する必要がある。ここで、制御装置100では、振動抑制制御をオフにすることで高調波を抑えることも考えられるが、急な制御切替などは脱調などを引き起こす切り替えショックに繋がるため、制御をオンオフするのではなく、徐々に制御を切り替えていくような手法を選択することが望ましい。 FIG. 11 is a diagram showing examples of waveforms of the motor torque, the load torque, and the load current Idc when vibration suppression control for suppressing vibration is performed in the power conversion device 200 according to the first embodiment. . In FIG. 11, the upper part shows the waveforms of the motor torque and the load torque, and the lower part shows the waveform of the load current Idc . Note that each horizontal axis indicates time. In the example of FIG. 11, it can be seen that the motor torque follows the load torque. As a feature at this time, as shown in the lower part of FIG. 11, a phenomenon occurs in which the load current Idc generated on the power supply side is unbalanced between positive and negative. In other words, by performing vibration suppression control by the control device 100, while the effect of suppressing vibration can be obtained, the pulsation of the mechanical 1f component of the load current Idc on the power supply side becomes large, and it conforms to the power supply harmonic standard. It means that there is a possibility that it will not. Since the use of equipment that does not conform to the standards is not permitted, power supply harmonics must also be suppressed. Here, in the control device 100, it is conceivable to suppress the harmonics by turning off the vibration suppression control. It is desirable to select a method that gradually switches control without
 図12は、実施の形態1に係る電力変換装置200において電源高調波を抑制するための負荷電流制御を行った場合のモータトルク、負荷トルク、および負荷電流Idcの各波形の例を示す図である。図12において、上段はモータトルクおよび負荷トルクの各波形を示し、下段は負荷電流Idcの波形を示している。なお、横軸はいずれも時間を示している。電源高調波が増大する原理として、負荷電流Idcが正負にアンバランス状態となることが起因しているため、図12の下段の波形のように負荷電流Idcの正負がバランス状態となっている場合は、電源高調波を抑え込むことができていると言える。このとき、図12の上段のモータトルクおよび負荷トルクの波形をみると、図11と比較して、モータトルクが負荷トルクに対して小振幅で遅れ位相となっていることがわかる。そのため、負荷電流制御というのは、すなわち、モータトルクを生成するトルク電流に対して、モータトルクを振幅が小さく、かつ位相が遅れ位相となるようにシフトするような補償量を加算することに他ならない。本実施の形態では、モータトルクの振幅および位相を徐々にシフトするトルク電流補償値iδtrq を生成する振動抑制制御補償値演算部503を備えている。 FIG. 12 is a diagram showing examples of waveforms of motor torque, load torque, and load current Idc when load current control for suppressing power source harmonics is performed in power converter 200 according to Embodiment 1. is. In FIG. 12, the upper part shows the waveforms of the motor torque and the load torque, and the lower part shows the waveform of the load current Idc . Note that each horizontal axis indicates time. The principle behind the increase in power supply harmonics is that the load current Idc is positively and negatively unbalanced. Therefore, as shown in the lower waveform of FIG. If there is, it can be said that the power supply harmonics can be suppressed. At this time, when looking at the waveforms of the motor torque and the load torque in the upper part of FIG. 12, it can be seen that the motor torque has a lagging phase with a small amplitude with respect to the load torque, compared to FIG. Therefore, the load current control is to add a compensation amount to the torque current that generates the motor torque so that the amplitude of the motor torque is small and the phase is delayed. not. The present embodiment includes a vibration suppression control compensation value calculator 503 that generates a torque current compensation value i δtrq * that gradually shifts the amplitude and phase of the motor torque.
 なお、ここで、モータ7のイナーシャが十分に大きい場合、トルクの振幅を小さくすることで、モータ7で消費される電力の瞬時電力振幅もまた小さくなるため、制御装置100がこの瞬時電力を制御するようにしてもよい。モータトルクの振幅および位相を徐々にシフトさせる方法として、前述した電源高調波規格値と次数成分との差分を計算する演算部を制御装置100の内部に持たせ、次数成分が電源高調波規格値を超えた範囲で負荷電流制御を動作させる振動抑制制限制御部504を用いることで達成できる。本実施の形態のような制御を行うことによって、高調波規格適合の課題に対して、コンバータ回路の回路定数、スイッチング方法などを変更する必要がなく、制御によってのみ解決を図ることができ、開発負荷が小さくかつ安価かつ信頼性の高い電力変換装置200を得ることが出来る。 Here, if the inertia of the motor 7 is sufficiently large, reducing the torque amplitude also reduces the instantaneous power amplitude of the power consumed by the motor 7. Therefore, the control device 100 controls this instantaneous power. You may make it As a method for gradually shifting the amplitude and phase of the motor torque, the control device 100 is provided with an arithmetic unit for calculating the difference between the above-mentioned power supply harmonic standard value and the order component, and the order component is the power supply harmonic standard value. can be achieved by using the vibration suppression limit control unit 504 that operates the load current control in a range exceeding . By performing control as in this embodiment, there is no need to change the circuit constants of the converter circuit, the switching method, etc., to solve the problem of conforming to harmonic standards. It is possible to obtain a power conversion device 200 with a small load, low cost, and high reliability.
 このように、制御装置100は、モータ7の振動を低減する振動抑制制御、および平滑コンデンサ5の出力電流である負荷電流Idcを所望の値に近付けるように制御する負荷電流制御を行う。制御装置100は、負荷電流制御として、モータ7で消費される瞬時電力の正負のピーク値の差の絶対値が小さくなるようにインバータ30が出力する電圧を制御する。このような制御は、制御装置100が、モータ7で消費される瞬時電力の正負のピークについてピークtoピークの値が小さくなるようにインバータ30が出力する電圧を制御することと同じである。制御装置100は、負荷電流制御として、負荷で発生する負荷トルクに対して、モータ7で発生するモータトルクの正負のピーク値の差の絶対値が小さく、かつ正のピークの位相が遅れ位相となるようにインバータ30が出力する電圧を制御するとも言える。 In this manner, the control device 100 performs vibration suppression control for reducing vibration of the motor 7 and load current control for controlling the load current Idc , which is the output current of the smoothing capacitor 5, to approach a desired value. As load current control, the control device 100 controls the voltage output from the inverter 30 so that the absolute value of the difference between the positive and negative peak values of the instantaneous power consumed by the motor 7 becomes small. Such control is the same as the control device 100 controlling the voltage output from the inverter 30 so that the peak-to-peak value of the positive and negative peaks of the instantaneous power consumed by the motor 7 becomes small. As load current control, the control device 100 controls the load torque generated by the load so that the absolute value of the difference between the positive and negative peak values of the motor torque generated by the motor 7 is small and the phase of the positive peak is the delayed phase. It can also be said that the voltage output from the inverter 30 is controlled so that
 制御装置100の動作を、フローチャートを用いて説明する。図13は、実施の形態1に係る電力変換装置200が備える制御装置100の動作を示すフローチャートである。制御装置100において、速度制御部502は、定電流負荷制御用の第1のトルク電流指令値iδ を生成する(ステップS1)。振動抑制制御補償値演算部503は、モータ7の出力トルクTが負荷トルクTの周期的変動に追従するように振動抑制制御補償値であるトルク電流補償値iδtrq を生成する(ステップS2)。振動抑制制限制御部504は、振動抑制制限トルク電流指令値Δiδtrqlim を生成する(ステップS3)。振動抑制制御部505は、第1のトルク電流指令値iδ 、トルク電流補償値iδtrq 、および振動抑制制限トルク電流指令値Δiδtrqlim に基づいて、第2のトルク電流指令値iδ ***を生成する(ステップS4)。負荷電流制御部508は、負荷電流Idc、および機械角位相θに基づいて、トルク電流補償値iδlcc を生成する(ステップS5)。加算部509は、第2のトルク電流指令値iδ ***とトルク電流補償値iδlcc とを加算し、第3のトルク電流指令値iδ ****を生成する(ステップS6)。 The operation of the control device 100 will be explained using a flowchart. FIG. 13 is a flowchart showing the operation of the control device 100 included in the power conversion device 200 according to Embodiment 1. FIG. In the control device 100, the speed control unit 502 generates a first torque current command value i δ * for constant current load control (step S1). The vibration suppression control compensation value calculation unit 503 generates a torque current compensation value i δtrq * , which is a vibration suppression control compensation value, so that the output torque Tm of the motor 7 follows the periodic fluctuation of the load torque Tl (step S2). The vibration suppression limit control unit 504 generates a vibration suppression limit torque current command value Δi δtrqlim * (step S3). Vibration suppression control unit 505 generates second torque current command value i δ based on first torque current command value i δ * , torque current compensation value i δtrq * , and vibration suppression limit torque current command value Δi δtrqlim *. *** is generated (step S4). The load current control unit 508 generates the torque current compensation value i δlcc * based on the load current I dc and the mechanical angle phase θ m (step S5). The adder 509 adds the second torque current command value i δ *** and the torque current compensation value i δlcc * to generate the third torque current command value i δ **** (step S6). .
 つづいて、電力変換装置200が備える制御装置100のハードウェア構成について説明する。図14は、実施の形態1に係る電力変換装置200が備える制御装置100を実現するハードウェア構成の一例を示す図である。制御装置100は、プロセッサ91およびメモリ92により実現される。 Next, the hardware configuration of the control device 100 included in the power conversion device 200 will be described. FIG. 14 is a diagram showing an example of a hardware configuration that implements the control device 100 included in the power conversion device 200 according to Embodiment 1. As shown in FIG. Control device 100 is implemented by processor 91 and memory 92 .
 プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、またはシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)でもよい。 The processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or a system LSI (Large Scale Integration). The memory 92 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) or a volatile non-volatile Read Only memory. A semiconductor memory can be exemplified. Moreover, the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
 以上説明したように、本実施の形態によれば、電力変換装置200において、制御装置100は、モータ7の振動を低減する振動抑制制御、および平滑コンデンサ5の出力電流である負荷電流Idcを所望の値に近付けるように制御する負荷電流制御を行う。制御装置100は、モータ7に第2の交流電力を出力するインバータ30の動作状態、すなわちインバータ30に対する制御内容に応じて、振動抑制制御および負荷電流制御の各制御内容を調整する。これにより、電力変換装置200は、接続されるモータ7などの負荷での振動の発生を抑制しつつ、高調波成分の発生を抑制することができる。 As described above, according to the present embodiment, in power conversion device 200, control device 100 performs vibration suppression control to reduce vibration of motor 7 and load current Idc , which is the output current of smoothing capacitor 5, to A load current is controlled so as to approach a desired value. Control device 100 adjusts each control content of vibration suppression control and load current control according to the operating state of inverter 30 that outputs the second AC power to motor 7 , that is, the control content for inverter 30 . As a result, the power conversion device 200 can suppress the generation of harmonic components while suppressing the generation of vibrations in the load such as the motor 7 connected thereto.
 なお、電力変換装置200において、制御装置100は、有効電流であるδ軸電流の代わりに無効電流であるγ軸電流を用い、モータ7の巻線抵抗による有効電力の変化を利用して、インバータ30に流入される直流電流である負荷電流Idcが規定された値、すなわち一定の値に近付くよう制御することで、本実施の形態と同様の効果を得ることができる。以降の実施の形態についても同様である。 In the power conversion device 200, the control device 100 uses the γ-axis current, which is a reactive current, instead of the δ-axis current, which is an active current, and utilizes the change in active power due to the winding resistance of the motor 7 to convert the inverter By controlling the load current Idc , which is the direct current flowing into the circuit 30, to approach a specified value, that is, a constant value, the same effects as in the present embodiment can be obtained. The same applies to subsequent embodiments.
実施の形態2.
 図15は、実施の形態2に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態2に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置200を備える。実施の形態2に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図15において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
Embodiment 2.
FIG. 15 is a diagram showing a configuration example of a refrigeration cycle device 900 according to Embodiment 2. As shown in FIG. A refrigerating cycle applied equipment 900 according to the second embodiment includes the power converter 200 described in the first embodiment. The refrigerating cycle applied equipment 900 according to Embodiment 2 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters. In FIG. 15, constituent elements having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
 冷凍サイクル適用機器900は、実施の形態1におけるモータ7を内蔵した圧縮機8と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。 Refrigerating cycle applied equipment 900 includes compressor 8 incorporating motor 7 in Embodiment 1, four-way valve 902, indoor heat exchanger 906, expansion valve 908, and outdoor heat exchanger 910 with refrigerant pipe 912. attached through
 圧縮機8の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ7とが設けられている。 A compression mechanism 904 for compressing refrigerant and a motor 7 for operating the compression mechanism 904 are provided inside the compressor 8 .
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ7によって駆動される。 The refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 . Compression mechanism 904 is driven by motor 7 whose speed is controlled.
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。 During heating operation, as indicated by solid line arrows, the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。 During cooling operation, as indicated by dashed arrows, the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。 During heating operation, the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat. During cooling operation, the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat. The expansion valve 908 reduces the pressure of the refrigerant to expand it.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1 商用電源、2 リアクタ、3 整流部、5 平滑コンデンサ、7 モータ、8 圧縮機、10 母線電圧検出部、12a,12b 直流母線、30 インバータ、40 負荷電流検出部、100 制御装置、102 運転制御部、110 インバータ制御部、111 電流復元部、112 3相2相変換部、113 励磁電流指令値生成部、115 電圧指令値演算部、116 電気位相演算部、117 2相3相変換部、118 PWM信号生成部、131~134,321~326 整流素子、200 電力変換装置、310 インバータ主回路、311~316 スイッチング素子、331~333 出力線、350 駆動回路、400 モータ駆動装置、501 周波数推定部、502 速度制御部、503 振動抑制制御補償値演算部、504 振動抑制制限制御部、505 振動抑制制御部、506,528,529,604,713 積分制御部、507 機械角位相演算部、508 負荷電流制御部、509,532,563,630,714,721,727,729 加算部、510,511,526,527,557,558,603,711,726 減算部、512 γ軸電流制御部、513 δ軸電流制御部、521,553,554,561,562,621,622 乗算部、522,530,552 正弦演算部、523,531,551 余弦演算部、524,525,555,556,623,624 ローパスフィルタ、550 演算部、559,560 周波数制御部、601 電源高調波規格値計算部、602 次数成分演算部、605 設定部、611 電力計算部、612 電力乗算部、613 限度値換算部、614 係数乗算部、625 ピーク値演算部、626 実効値演算部、627 2乗部、628,629 除算部、631 1/2乗部、712 比例制御部、722 制限部、723 記憶部、724 選択部、725,728 リミッタ、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。 1 commercial power supply, 2 reactor, 3 rectifier, 5 smoothing capacitor, 7 motor, 8 compressor, 10 bus voltage detector, 12a, 12b DC bus, 30 inverter, 40 load current detector, 100 controller, 102 operation control section, 110 inverter control section, 111 current restoration section, 112 three-phase to two-phase conversion section, 113 excitation current command value generation section, 115 voltage command value calculation section, 116 electrical phase calculation section, 117 two-phase to three-phase conversion section, 118 PWM signal generator, 131 to 134, 321 to 326 rectifying element, 200 power converter, 310 inverter main circuit, 311 to 316 switching element, 331 to 333 output line, 350 drive circuit, 400 motor drive, 501 frequency estimator , 502 speed control section, 503 vibration suppression control compensation value calculation section, 504 vibration suppression limit control section, 505 vibration suppression control section, 506, 528, 529, 604, 713 integral control section, 507 mechanical angle phase calculation section, 508 load Current control unit, 509, 532, 563, 630, 714, 721, 727, 729 Addition unit, 510, 511, 526, 527, 557, 558, 603, 711, 726 Subtraction unit, 512 γ-axis current control unit, 513 δ-axis current control unit, 521, 553, 554, 561, 562, 621, 622; multiplication unit; 522, 530, 552; sine calculation unit; 523, 531, 551; 624 low-pass filter, 550 calculation unit, 559, 560 frequency control unit, 601 power harmonic standard value calculation unit, 602 order component calculation unit, 605 setting unit, 611 power calculation unit, 612 power multiplication unit, 613 limit value conversion unit, 614 coefficient multiplication unit, 625 peak value calculation unit, 626 effective value calculation unit, 627 squaring unit, 628, 629 division unit, 631 1/2 power unit, 712 proportional control unit, 722 limiting unit, 723 storage unit, 724 selection Parts, 725, 728 Limiters, 900 Refrigeration cycle application equipment, 902 Four-way valve, 904 Compression mechanism, 906 Indoor heat exchanger, 908 Expansion valve, 910 Outdoor heat exchanger, 912 Refrigerant piping.

Claims (5)

  1.  商用電源から供給される第1の交流電力を整流する整流部と、
     前記整流部の出力端に接続されるコンデンサと、
     前記コンデンサの両端に接続され、第2の交流電力を生成して負荷に含まれるモータに出力するインバータと、
     前記インバータの動作を制御する制御装置と、
     を備え、
     前記制御装置は、前記モータの振動を低減する振動抑制制御、および前記コンデンサの出力電流である負荷電流を所望の値に近付けるように制御する負荷電流制御を行う、
     電力変換装置。
    a rectifier that rectifies first AC power supplied from a commercial power supply;
    a capacitor connected to the output terminal of the rectifying unit;
    an inverter connected to both ends of the capacitor for generating second AC power and outputting it to a motor included in the load;
    a control device that controls the operation of the inverter;
    with
    The control device performs vibration suppression control for reducing vibration of the motor and load current control for controlling the load current, which is the output current of the capacitor, to approach a desired value.
    Power converter.
  2.  前記制御装置は、前記負荷電流制御として、前記モータで消費される瞬時電力の正負のピーク値の差の絶対値が小さくなるように前記インバータが出力する電圧を制御する、
     請求項1に記載の電力変換装置。
    As the load current control, the control device controls the voltage output from the inverter so that the absolute value of the difference between the positive and negative peak values of the instantaneous power consumed by the motor becomes small.
    The power converter according to claim 1.
  3.  前記制御装置は、前記負荷電流制御として、前記負荷で発生する負荷トルクに対して、前記モータで発生するモータトルクの正負のピーク値の差の絶対値が小さく、かつ正のピークの位相が遅れ位相となるように前記インバータが出力する電圧を制御する、
     請求項1または2に記載の電力変換装置。
    As the load current control, the control device is configured such that the absolute value of the difference between the positive and negative peak values of the motor torque generated by the motor is small and the phase of the positive peak is delayed with respect to the load torque generated by the load. controlling the voltage output by the inverter so as to be in phase;
    The power converter according to claim 1 or 2.
  4.  請求項1から3のいずれか1つに記載の電力変換装置を備えるモータ駆動装置。 A motor drive device comprising the power conversion device according to any one of claims 1 to 3.
  5.  請求項1から3のいずれか1つに記載の電力変換装置を備える冷凍サイクル適用機器。 A refrigerating cycle application device comprising the power conversion device according to any one of claims 1 to 3.
PCT/JP2021/039142 2021-10-22 2021-10-22 Power conversion device, motor drive device, and refrigeration-cycle application apparatus WO2023067810A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/039142 WO2023067810A1 (en) 2021-10-22 2021-10-22 Power conversion device, motor drive device, and refrigeration-cycle application apparatus
JP2023554218A JPWO2023067810A1 (en) 2021-10-22 2021-10-22
CN202180103385.2A CN118104123A (en) 2021-10-22 2021-10-22 Power conversion device, motor drive device, and refrigeration cycle application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039142 WO2023067810A1 (en) 2021-10-22 2021-10-22 Power conversion device, motor drive device, and refrigeration-cycle application apparatus

Publications (1)

Publication Number Publication Date
WO2023067810A1 true WO2023067810A1 (en) 2023-04-27

Family

ID=86058103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039142 WO2023067810A1 (en) 2021-10-22 2021-10-22 Power conversion device, motor drive device, and refrigeration-cycle application apparatus

Country Status (3)

Country Link
JP (1) JPWO2023067810A1 (en)
CN (1) CN118104123A (en)
WO (1) WO2023067810A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232591A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Motor driving device and air conditioner
JP2017112755A (en) * 2015-12-17 2017-06-22 本田技研工業株式会社 Rotary electric machine and rotary electric machine controller
JP2020058184A (en) * 2018-10-03 2020-04-09 ファナック株式会社 Motor drive device having power supply mode changeover function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232591A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Motor driving device and air conditioner
JP2017112755A (en) * 2015-12-17 2017-06-22 本田技研工業株式会社 Rotary electric machine and rotary electric machine controller
JP2020058184A (en) * 2018-10-03 2020-04-09 ファナック株式会社 Motor drive device having power supply mode changeover function

Also Published As

Publication number Publication date
JPWO2023067810A1 (en) 2023-04-27
CN118104123A (en) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2004095684A1 (en) Motor controlling device, compressor, air conditioner and refrigerator
WO2023067810A1 (en) Power conversion device, motor drive device, and refrigeration-cycle application apparatus
JP7166468B2 (en) Motor drive device and refrigeration cycle application equipment
WO2023067811A1 (en) Power conversion device, motor drive device, and cooling cycle application apparatus
WO2020095377A1 (en) Load driving device, refrigeration cycle device, and air conditioner
WO2023067774A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
WO2024075210A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
WO2023105761A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2023067724A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application apparatus
WO2023067723A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
JP7330401B2 (en) Power conversion device, motor drive device and refrigeration cycle application equipment
WO2024142324A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
JP7515740B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
JP7325671B2 (en) Power conversion device, motor drive device and refrigeration cycle application equipment
WO2023084600A1 (en) Power conversion device, motor drive device, and equipment for refrigeration cycle applications
WO2023073880A1 (en) Power conversion device, motor drive device, and refrigeration-cycle application device
WO2023073870A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
JP7515739B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
WO2023047486A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2023100305A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
WO2023100321A1 (en) Power conversion device, motor drive device, and apparatus applicable to refrigeration cycle
WO2024075163A1 (en) Electric power conversion device, motor drive device, and refrigeration cycle application device
WO2023105570A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
WO2023105689A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device
WO2023105676A1 (en) Power conversion device, motor drive device, and equipment for refrigeration cycle applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554218

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE