WO2023067712A1 - 多芯ケーブル、断線検知装置 - Google Patents

多芯ケーブル、断線検知装置 Download PDF

Info

Publication number
WO2023067712A1
WO2023067712A1 PCT/JP2021/038673 JP2021038673W WO2023067712A1 WO 2023067712 A1 WO2023067712 A1 WO 2023067712A1 JP 2021038673 W JP2021038673 W JP 2021038673W WO 2023067712 A1 WO2023067712 A1 WO 2023067712A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
detection
conductor
line
wires
Prior art date
Application number
PCT/JP2021/038673
Other languages
English (en)
French (fr)
Inventor
拓実 大嶋
洋和 小森
宗一郎 奥村
高弘 村田
充 坂本
佑佳 高橋
正樹 甲谷
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Priority to PCT/JP2021/038673 priority Critical patent/WO2023067712A1/ja
Priority to CN202180103268.6A priority patent/CN118140280A/zh
Priority to JP2023554141A priority patent/JPWO2023067712A1/ja
Publication of WO2023067712A1 publication Critical patent/WO2023067712A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle

Definitions

  • the present disclosure relates to multicore cables and disconnection detection devices.
  • Patent Document 1 discloses an electric motor equipped with at least one power supply line for supplying electric power to a motor serving as a braking source for an electric brake of a vehicle such as an automobile and at least one signal line for transmitting a signal related to control of the motor.
  • brake cables Along with the power supply line and the signal line or spirally wound around the relevant lines, formed so as to be disconnected prior to disconnection of the power supply line or the signal line, and with an insulating coating
  • a cable for an electric brake is disclosed, which is characterized by comprising at least one disconnection detection wire that is connected to the wire.
  • a multicore cable of the present disclosure includes a plurality of coated wires having a wire conductor that is a twisted wire of a plurality of wire strands and a wire coating that covers the outer periphery of the wire conductor; a sensing wire having a sensing wire conductor that is a twisted wire of a plurality of sensing wire strands; Having a jacket covering the outer periphery of a core including the plurality of covered wires and the detection wire, The detection wire is arranged in a region surrounded by the plurality of covered wires, A wire diameter of the detection wire is equal to or larger than a wire diameter of the electric wire.
  • FIG. 1A is a cross-sectional view along a plane perpendicular to the longitudinal direction of a multicore cable according to one aspect of the present disclosure.
  • FIG. 1B is a cross-sectional view along a plane perpendicular to the longitudinal direction of a multicore cable according to one aspect of the present disclosure;
  • FIG. 1C is a cross-sectional view along a plane perpendicular to the longitudinal direction of a multicore cable according to one aspect of the present disclosure;
  • FIG. 1D is a cross-sectional view of the multi-core cable used in the simulation of the bending resistance test, taken along a plane perpendicular to the longitudinal direction.
  • FIG. 2A is a cross-sectional view along a plane perpendicular to the longitudinal direction of a detection line included in a multicore cable according to one aspect of the present disclosure.
  • FIG. 2B is a cross-sectional view along a plane perpendicular to the longitudinal direction of the detection wires of the multicore cable according to one aspect of the present disclosure.
  • FIG. 3A is a configuration explanatory diagram of a conductive tape.
  • FIG. 3B is a configuration explanatory diagram of the conductive tape.
  • FIG. 4 is an explanatory diagram of the twist pitch.
  • FIG. 5 is an explanatory diagram of the flex resistance test.
  • FIG. 6A is a simulation result of a bending endurance test.
  • FIG. 6B is the simulation result of the bending endurance test.
  • FIG. 6C is the simulation result of the bending resistance test.
  • FIG. 7 is a configuration explanatory diagram of a disconnection detection device according to one aspect of the present disclosure.
  • Patent Document 1 As disclosed in Patent Document 1, conventionally, in a cable to which bending motion is likely to be applied, a disconnection detection line for predicting disconnection of an electric wire included in the cable is arranged.
  • the contained coated wires are not arranged point-symmetrically with the center of the cross section as a point of symmetry, and are configured along the circumferential direction. It was difficult to predict the size of the load when different covered wires were arranged. For this reason, in the multi-core cable having the above configuration, it may not be possible to predict the disconnection of the coated wire.
  • An object of the present disclosure is to provide a multi-core cable including a plurality of covered electric wires that can predict breakage of the covered electric wires.
  • a multicore cable includes a plurality of coated wires, which includes a wire conductor that is a twisted wire of a plurality of wire strands, and a wire coating that coats the outer periphery of the wire conductor.
  • a sensing wire having a sensing wire conductor that is a twisted wire of a plurality of sensing wire strands; Having a jacket covering the outer periphery of a core including the plurality of covered wires and the detection wire, The detection wire is arranged in a region surrounded by the plurality of covered wires, A wire diameter of the detection wire is equal to or larger than a wire diameter of the electric wire.
  • the detection wire conductor of the detection wire will become the wire of the wire of the covered wire. It can be configured to disconnect before the conductor.
  • a multi-core cable including a plurality of covered wires arranges the detection wires in a region surrounded by the plurality of covered wires. For this reason, in the cross section perpendicular to the longitudinal direction of the multicore cable, when the covered wires with different configurations are arranged along the circumferential direction and the covered wires are not arranged symmetrically with respect to the center of the cross section. However, when the multi-core cable is repeatedly bent, the detection wire is subjected to a greater load than the other covered wires. Further, by arranging the detection wire within the area surrounded by the plurality of covered electric wires, the position of the detection wire within the core is stabilized even when the multi-core cable is repeatedly bent. Therefore, by measuring the electrical characteristics of the sensing line conductor of the sensing line and evaluating the state of the sensing line conductor, breakage of the coated wire can be predicted at an appropriate timing.
  • a wire diameter of the detection wire may be larger than a wire diameter of the electric wire.
  • the detection wire is more likely to break than the wire of the covered wire when the multi-core cable is repeatedly bent. becomes easier. Therefore, breakage of the coated electric wire can be predicted early and with high accuracy.
  • the detection line includes a detection line coating that covers the outer periphery of the detection line conductor;
  • a coaxial cable may be provided with a shield conductor covering the outer periphery of the sensing wire covering.
  • a measuring device When measuring the characteristic impedance between two conductors, for example, a measuring device is connected between the sensing line conductor of the sensing line and the shield conductor.
  • the position of the detection line conductor and the shield conductor of the detection line is constant, and by not sandwiching other coated wires between them, noise is suppressed when measuring the characteristic impedance, and the measurement is stable. becomes possible to do.
  • the coated wire includes a power wire
  • the power wire includes a first twisted wire obtained by twisting a plurality of the electric wires and a second twisted wire obtained by twisting a plurality of the first twisted wires,
  • a twist pitch of the sensing line conductor may be longer than a twist pitch of the first twisted wire.
  • the detection line is more likely to break than the power supply line. Therefore, by measuring the electrical characteristics of the detection wire conductor of the detection wire and evaluating the state of the detection wire conductor, it is possible to evaluate the state of the detection wire conductor. disconnection can be predicted early and with high accuracy.
  • the covered electric wire includes a power supply line and a communication line;
  • the conductor cross-sectional area S1 of the electric wire conductor of the power supply line, the conductor cross-sectional area S2 of the electric wire conductor of the communication line, and the conductor cross-sectional area S3 of the detection line conductor are The relationship may be S1>S2 ⁇ S3.
  • the conductor cross-sectional area S1 of the electric wire conductor of the power supply line, the conductor cross-sectional area S2 of the electric wire conductor of the communication line, and the conductor cross-sectional area S3 of the detection line conductor of the detection line satisfy the above relationship, so that the detection can be performed.
  • the wires can be appropriately arranged within the area surrounded by the multiple covered wires.
  • the core includes a plurality of the coated wires and the detection wire twisted together;
  • the covered electric wire includes two power wires, In the core, among the power lines, a first power line connected to a ground potential and the detection line may be arranged and twisted so as to be in contact with each other.
  • the detection line and the first power supply line connected to the ground potential are twisted together in contact with each other, noise is suppressed when the characteristic impedance is measured, and the characteristic impedance can be measured easily and stably. be possible.
  • the shield layer may be arranged between the core and the jacket.
  • the shield layer In the cross section perpendicular to the longitudinal direction of the multi-core cable, the shield layer is arranged outside the coated wires and the detection wires. For this reason, when the multi-core cable receives a sudden impact due to an external force, or when it comes into contact or friction with an external object, the shield layer is subjected to a larger load than the coated wire and the detection wire. Easy to receive and break. Therefore, by arranging the shield layer and detecting damage or breakage of the shield layer, it is possible to sensitively detect the presence of a sign of damage to the coated wire due to impact or external injury. As a result, it is possible to improve the accuracy of prediction of disconnection of the coated electric wire.
  • the shield layer has a structure in which a conductive layer disposed on the core side and a base material containing an insulating material are laminated,
  • the drain line may be in contact with the conductive layer.
  • the shield layer In order to evaluate whether the shield layer is broken, it is necessary to electrically connect the shield layer to an external measuring device. If the shield layer is formed of a conductive tape or the like, it may be difficult to directly connect the shield layer to the terminal. Therefore, by providing a drain wire and keeping the drain wire in contact with a shield layer such as a conductive layer, the shield layer can be easily connected to a terminal via the drain wire.
  • the shield layer has a structure in which a base material containing an insulating material disposed on the core side and a conductive layer are laminated,
  • the drain line may be in contact with the substrate containing the insulating material.
  • the covered electric wire includes two power wires, namely a first power wire and a second power wire, and two communication wires, the two communication lines are twisted to form a twisted pair communication line, and the intervening includes a first intervening and a second intervening,
  • the detection line is arranged in a region surrounded by the two power supply lines, the twisted pair communication line, and the intermediate,
  • the first interposition is arranged so as to be in contact with the first power supply line and the twisted pair communication line,
  • the second intervention may be arranged so as to be in contact with the second power supply line and the twisted pair communication line.
  • the detection line when the multi-core cable is bent It is possible to prevent the positional deviation of the position and the positional deviation over time. Furthermore, it is possible to improve the accuracy of prediction of disconnection of the coated wire by the detection wire.
  • a disconnection detection device includes the multicore cable according to any one of (1) to (11); and a measurement device configured to input a test signal including an AC component into the sense line conductor and measure the characteristic impedance.
  • the coating can be accurately coated. Can predict disconnection of electric wire.
  • FIG. 1A shows a cross-sectional view of the multicore cable 10 of this embodiment in a plane perpendicular to the longitudinal direction.
  • FIG. 1B shows a cross-sectional view of the multicore cable 100 of this embodiment in a plane perpendicular to the longitudinal direction.
  • FIG. 1C shows a cross-sectional view of the multicore cable 110 of this embodiment in a plane perpendicular to the longitudinal direction.
  • FIG. 1D shows a cross-sectional view of a plane perpendicular to the longitudinal direction of the multicore cable 111 used in the simulation of the bending resistance test.
  • FIG. 2A and FIG. 2B show cross-sectional views in a plane perpendicular to the longitudinal direction of the detection line.
  • FIGS. 6A to 6C show simulation results of the bending resistance test.
  • the multicore cable 10 of this embodiment has a plurality of coated electric wires 11, a detection wire 12, and a jacket 13.
  • the Z-axis direction perpendicular to the paper surface corresponds to the longitudinal direction of the multicore cable
  • the XY plane formed by the X-axis and the Y-axis is the multi-core cable. It becomes a plane perpendicular to the longitudinal direction of the core cable 10 and the like.
  • the multicore cable 10 shown in FIG. 1A shows an example having two power lines 14 and two communication lines 15 as the coated wires 11, but the multicore cable of the present embodiment has a plurality of wires.
  • the configuration of the coated wire is not limited to such a form. For example, a configuration having three or more power lines and communication lines is also possible. Moreover, a power wire and a covered wire other than a communication wire can also be included.
  • the multicore cable of this embodiment can have any number of covered electric wires of any configuration according to the device or the like to which the multicore cable is connected. As is clear from FIG. 1A, in the cross section perpendicular to the longitudinal direction, the covered wires contained in the multicore cable 10 are not arranged point-symmetrically with respect to the center of the cross section. Insulated wires with different configurations are arranged. Therefore, the bending center and cross-sectional center of the multicore cable 10 do not match.
  • the covered wire 11 is a wire that performs functions such as power supply, voltage application, communication, and the like required in equipment and the like, and is a target wire for detection of signs of damage.
  • the number and configuration of the covered wires 11 are not particularly limited, but, for example, as shown in FIG. 1A, a plurality of types of covered wires with different configurations can be included.
  • the coated wire 11 can have a wire conductor that is a twisted wire of a plurality of wire strands and a wire coating that covers the outer periphery of the wire conductor.
  • the power wire 14 has a wire conductor 141 that is a stranded wire of wire strands and a wire coating 142 that covers the outer periphery of the wire conductor 141 .
  • the communication line 15 has a wire conductor 151 that is a stranded wire of wire strands and a wire coating 152 that covers the outer circumference of the wire conductor 151 .
  • the communication lines 15 two communication lines 15 are twisted together to form a twisted pair communication line 16 along the longitudinal direction, which is the Z-axis direction perpendicular to the plane of FIG. 1A.
  • the outer edge of the twisted pair communication line 16 is indicated by a dashed line.
  • the wire diameter and the number of wire elements constituting the wire conductor of the covered wire 11 can be selected according to the electrical characteristics required for each covered wire 11 .
  • the wire diameter of the wire is preferably 0.05 mm or more and 0.16 mm or less, and more preferably 0.05 mm or more and 0.10 mm or less.
  • the power wire 14 can also be made into the electric wire conductor 141 by twisting electric wires in multiple stages.
  • the electric wire conductor 141 of the power supply wire 14 includes a first stranded wire (child stranded wire) obtained by twisting electric wires and a second stranded wire (parent stranded wire) obtained by twisting a plurality of first stranded wires. ).
  • the second stranded wire can be the electric wire conductor 141
  • the electric wire conductor 141 can be, for example, a third stranded wire obtained by further twisting a plurality of second stranded wires.
  • the wire diameter of the electric wire is 0.08 mm.
  • a first twisted wire (right twist, 10 mm pitch) is formed by twisting 48 electric wires, and seven first twist wires are twisted to form a second twist (right twist, 30 mm pitch).
  • the 10 mm pitch and 30 mm pitch mean the twist pitch.
  • a second stranded wire obtained by twisting seven first stranded wires can be used as the wire conductor 141 .
  • the conductor cross-sectional area S1 of the power line 14 is 1.69 mm 2 .
  • the outer diameter of the power wire 14 including the wire coating 142 is 2.7 mm.
  • the diameter of the wire element is preferably 0.05 mm or more and 0.16 mm or less, and more preferably 0.05 mm or more and 0.10 mm or less.
  • the wire conductor 151 can be formed by twisting the wire strands in multiple stages. That is, the electric wire conductor 151 of the communication line 15 includes a first stranded wire (child stranded wire) obtained by twisting electric wires and a second stranded wire (parent stranded wire) obtained by twisting a plurality of first stranded wires. can also have The second stranded wire can be the electric wire conductor 151 , and the electric wire conductor 151 can be, for example, a third stranded wire obtained by further twisting a plurality of second stranded wires.
  • the wire strand of the communication line 15 can be single twisted, and the first twisted wire can be used as the wire conductor 151 .
  • two communication lines 15 can be twisted together to form a twisted pair communication line 16.
  • the wire diameter of the electric wire is 0.08 mm.
  • a first twisted wire (right twist, 5 mm pitch) is formed by twisting 16 electric wires, and three first twist wires are twisted to form a second twist (right twist, 9 mm pitch).
  • the 5 mm pitch and 9 mm pitch in parentheses mean the twist pitch.
  • a second stranded wire obtained by twisting three first stranded wires can be used as the wire conductor 151 .
  • the conductor cross-sectional area S2 of the communication line 15 is 0.24 mm 2 .
  • the outer diameter of the communication line 15 including the wire coating 152 is 1.5 mm.
  • two communication lines 15 are twisted together (right twist, 25 mm pitch) to form a twisted pair communication line 16 .
  • the outer diameter of the twisted pair communication line 16 is 3.0 mm.
  • the wire conductor 151 of the communication line 15 may be configured with a single strand. That is, the above-mentioned first twisted wire can also be used as the electric wire conductor.
  • the outer diameter of the communication line 15 and the like can be reduced.
  • a first twisted wire (right twist, 12 mm pitch) can be formed by twisting 48 electric wires.
  • the first strand can be the wire conductor 151 .
  • the conductor cross-sectional area S2 of the communication line 15 is 0.24 mm 2 .
  • the outer diameter of the communication line 15 including the wire coating 152 is 1.1 mm.
  • two communication lines 15 are twisted together (right twist, 20 mm pitch) to form a twisted pair communication line 16 .
  • the outer diameter of the twisted pair communication line 16 is 2.2 mm.
  • wire diameter of wires such as wire wires can be measured and calculated according to the following procedure, for example, in accordance with JIS C3002 (1992).
  • the wire diameter of the wire is measured with a micrometer along two diameters of the wire that are perpendicular to each other in an arbitrary cross section perpendicular to the longitudinal direction of the wire. Then, the average value can be used as the wire diameter of the wire. In this specification, the wire diameter of the wire can be similarly measured and calculated.
  • the conductor cross-sectional area of the wire conductor 141 of the power supply wire 14 is A form in which S1 is 1.5 mm 2 or more and 2.5 mm 2 or less can be exemplified. Further, in this case, a form in which the conductor cross-sectional area S2 of the wire conductor 151 of the communication line 15 is 0.1 mm 2 or more and 0.5 mm 2 or less can be exemplified.
  • the conductor cross-sectional area S2 of the wire conductor 151 of the communication line 15 is preferably smaller than the conductor cross-sectional area S1 of the wire conductor 141 of the power supply line 14 . It is more preferable that the conductor cross-sectional area S1 of the electric wire conductor 141 of the power supply line 14 is 3 to 15 times as large as the conductor cross-sectional area S2 of the electric wire conductor 151 of the communication line 15 .
  • the conductor cross-sectional area of the electric wire conductor can be calculated by the following procedure. First, the wire diameter of the wire element constituting the wire conductor is measured and calculated by the method described above, and the cross-sectional area of each wire is calculated using the wire diameter. By calculating the product of the cross-sectional area of the wire element and the number of wire elements contained in the wire conductor, the conductor cross-sectional area of the wire conductor can be calculated.
  • the material of the wire element of the coated wire 11 is not particularly limited, but examples thereof include copper, aluminum, and copper alloys.
  • the wires may be plated with silver or tin on their surfaces. Therefore, for example, a silver-plated copper alloy, a tin-plated copper alloy, or the like can be used as the material of the electric wires.
  • the material of the wire coating is also not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), One or more resins selected from fluororesins such as ethylene-tetrafluoroethylene copolymer (ETFE), polyester resins such as polyethylene terephthalate (PET), and polyolefin resins such as polyethylene and polypropylene can be used.
  • the wire coating resin may or may not be crosslinked.
  • the wire coating may contain additives such as flame retardants, flame retardant aids, antioxidants, lubricants, colorants, reflection imparting agents, masking agents, processing stabilizers and plasticizers, in addition to the above resins.
  • Detection wire (1-2-1) configuration The detection wire 12 is a wire that detects that a sign of disconnection has occurred in the coated wire 11 by causing damage or breakage (disconnection) by itself. is.
  • breakage does not only mean that the detection line, the shield layer, etc. are actually broken. It also means disconnection or thinning of the film thickness.
  • a test signal containing AC components is input to two conductors, and the characteristic impedance between the two conductors is measured as a response signal. By doing so, it is possible to more accurately detect anomalies before fracture.
  • the sensing wire 12 can have a sensing wire conductor 121 that is a twisted wire of a plurality of sensing wire strands, and further has a sensing wire coating 122 that covers the outer circumference of the sensing wire conductor 121.
  • a sensing wire conductor 121 that is a twisted wire of a plurality of sensing wire strands, and further has a sensing wire coating 122 that covers the outer circumference of the sensing wire conductor 121.
  • FIG. 1A shows an example in which the multicore cable 10 has one detection wire 12, the multicore cable 10 is not limited to such a form, and may have a plurality of detection wires 12.
  • the multicore cable 10 is not limited to such a form, and may have a plurality of detection wires 12.
  • at least one detection wire 12 should be arranged within a region surrounded by a plurality of covered wires 11 .
  • the detection wire conductor 121 of the detection wire 12 is able to withstand the load when the multicore cable 10 is repeatedly subjected to bending or vibration. It is easier to break than the wire conductor of the coated wire 11 . Therefore, when a load is repeatedly applied to the multicore cable of the present embodiment due to bending or vibration, the detection wire conductor 121 of the detection wire 12 breaks in a shorter period of time than the wire conductor of the coated wire 11. . Then, electrical characteristics such as characteristic impedance are measured for the detection line conductor 121, and the state of the detection line conductor 121 such as damage or breakage of the detection line conductor 121 can be detected from changes in the measured values.
  • the wire diameter of the wire that constitutes the conductor has an effect on the bending characteristics of the wire such as the covered wire. It is easy to disconnect when it is added. For this reason, it is preferable that the wire diameter of the wire strand of the detection wire of the detection wire 12 is equal to or larger than the wire wire diameter of the wire wire of the coated wire 11 .
  • the detection wire conductor 121 of the detection wire 12 is It can be configured such that the wire conductor of the coated wire 11 is broken before the wire conductor. As will be described later, by arranging the detection wire 12 within a specific region, when the multi-core cable is repeatedly bent and a load is applied, the detection wire 12 is subjected to a larger load than the coated wire 11. be done. For this reason, the detection wire 12 is more likely to break than the covered wire 11. By measuring the electrical characteristics of the detection wire conductor 121 of the detection wire 12 and evaluating the state of the detection wire conductor, the detection of the covered wire 11 It is possible to grasp the state and predict the disconnection of the covered electric wire 11 .
  • the wire diameter of the wire strand of the detection wire 12 is larger than the wire wire diameter of the wire wire of the coated wire 11 .
  • the detection wire 12 is covered. It becomes easier to disconnect than the electric wire 11. - ⁇ Therefore, breakage of the coated wire 11 can be predicted early and with high accuracy.
  • the detection wires of the detection wires preferably have a wire diameter equal to or greater than that of the wires of the covered wires 11 for which breakage prediction is required at least. .
  • the wire diameter of the detection wire of the detection wire 12 is at least the power supply wire 14 as described above. is preferably equal to or greater than the wire diameter of the wire wire of the electric wire. That is, it is preferable that D1211 ⁇ D1411, where D1211 is the wire diameter of the detection wire of the detection wire 12 and D1411 is the wire diameter of the wire of the power wire 14 . In particular, it is more preferable that D1211>D1411.
  • the wire diameter of the detection wire of the detection wire 12 is equal to or larger than the wire diameter of the wires of all the covered wires included in the multicore cable 10 .
  • the wire diameter of the detection wire of the detection wire 12 is the wire diameter of the wire wire of the power supply wire 14, the wire wire diameter of the wire wire of the communication wire 15, and D1211 ⁇ D1411. , D1211 ⁇ D1511. In particular, D1211>D1411 and D1211>D1511 are more preferable.
  • the wire diameter of the detection wire of the detection wire 12 is D1211
  • the wire diameter of the wire wire of the power wire 14 is D1411
  • the wire wire diameter of the wire wire of the communication wire 15 is D1511. It is written as The same notation is used below.
  • the wire diameter of the detection wire of the detection wire 12 and the wire diameter of all the covered wires included in the multicore cable 10 can be made equal.
  • a conductor cross-sectional area S3 of the detection line conductor 121 can be exemplified as a form of, for example, 0.08 mm 2 or more and 0.42 mm 2 or less.
  • the conductor cross-sectional area S3 of the detection line conductor 121 of the detection line 12 is preferably smaller than the conductor cross-sectional area S1 of the wire conductor 141 of the power supply line 14 .
  • the conductor cross-sectional area S3 of the detection line conductor 121 of the detection line 12 is preferably the same as the conductor cross-sectional area S2 of the electric wire conductor 151 of the communication line 15, or smaller than the conductor cross-sectional area S2.
  • the conductor cross-sectional area S1 of the electric wire conductor 141 of the power supply line 14 the conductor cross-sectional area S2 of the electric wire conductor 151 of the communication line 15, and the detection line
  • the conductor cross-sectional area S3 of the conductor 121 preferably satisfies the relationship of formula (A).
  • the conductor cross-sectional area S1 of the electric wire conductor 141 of the power supply line 14, the conductor cross-sectional area S2 of the electric wire conductor 151 of the communication line 15, and the conductor cross-sectional area S3 of the detection line conductor 121 of the detection line 12 are obtained by the above formula ( By satisfying the relationship A), the detection wire 12 can be appropriately arranged within the area A surrounded by the plurality of covered wires 11 .
  • the electric wire conductor 141 of the power wire 14 includes a first stranded wire (child stranded wire) obtained by twisting a plurality of wire strands together, and a plurality of first stranded wires. and a second strand (parent strand) that is obtained by twisting one strand.
  • the twist pitch of the detection line conductor 121 is preferably longer than the twist pitch of the first twisted wire of the power supply line 14 .
  • the detection line 12 is more likely to break than the power supply line 14 . Therefore, by measuring the electrical characteristics of the detection line conductor 121 of the detection line 12 and evaluating the state of the detection line conductor 121, it is possible to predict disconnection of the covered wire 11 of the multicore cable 10. It is possible to predict the disconnection of the power supply line 14 at an early stage with high accuracy.
  • twist pitch means the length that a cable such as a strand constituting a stranded wire is twisted once. Such length means the length along the central axis of the stranded wire.
  • the twisted wire 40 has a structure in which a total of ten cables, cables 400 to 409, are twisted together.
  • the distance between the same cables, for example, between cables 400 along the central axis CA on the side surface of the stranded wire 40 is the twist pitch Pt of the stranded wire 40 .
  • the twist pitch is obtained by measuring the twist pitch Pt.
  • twist pitch and winding pitch can be measured and calculated in the same manner.
  • the electric wire conductor 151 of the communication wire 15 includes a first stranded wire (child stranded wire) obtained by twisting a plurality of wire strands together, and a plurality of and second strands (parent strands) that are twisted together from the first strands.
  • the twist pitch of the detection line conductor 121 is preferably longer than the twist pitch of the first twisted wire of the communication line 15 .
  • the wire conductor 151 of the communication line 15 can also be single twisted.
  • the twist pitch of the detection line conductor 121 is preferably longer than the twist pitch of the wire conductor 151 of the communication line 15 .
  • the detection line 12 is more likely to break than the communication line 15 .
  • the wire conductor 151 of the communication line 15 is single twisted and the twist pitch of the detection line conductor 121 is set longer than the twist pitch of the wire conductor 151 of the communication line 15 .
  • the strand diameter of the sensing wire strand of the sensing wire 12 can be made equal to the strand diameter of one or more covered wires selected from the power supply wire 14 and the communication wire 15 .
  • the wire diameter of the wires of the power supply wire 14 and the communication wire 15 is assumed to be 0.08 mm, which is the configuration example described above.
  • the wire diameter of the detection wire is also 0.08 mm. 42 sensing wire strands are twisted together (right twist, 14 mm pitch) to form the sensing wire conductor 121 .
  • the conductor cross-sectional area S3 of the detection line 12 is 0.21 mm 2 .
  • the outer diameter of the sensing wire 12 including the sensing wire coating is 1.3 mm.
  • the wire diameter of the detection wire of the detection wire 12 is larger than the wire diameter of one or more covered wires selected from the power supply wire 14 and the communication wire 15 .
  • the wire diameter of the wires of the power supply wire 14 and the communication wire 15 is assumed to be 0.08 mm, which is the configuration example described above.
  • the wire diameter of the detection wire is 0.10 mm.
  • Twenty-eight sensing wire strands are twisted together (right twist, 14 mm pitch) to form the sensing wire conductor 121 .
  • the conductor cross-sectional area S3 of the detection line 12 is 0.22 mm 2 .
  • the outer diameter of the sensing wire 12 including the sensing wire coating is 1.3 mm.
  • the detection wire 12 in order to make the detection wire 12 more likely to be disconnected than the power supply wire 14 as described above, the detection wire 12 is arranged at a pitch greater than the twist pitch of the first twisted wire of the electric wire conductor 141 of the power supply wire 14, for example. The longer the twist pitch of the detection line conductor 121, the better.
  • the twist pitch of the detection line conductor 121 of the detection line 12 is longer than the twist pitch of the first twisted wire of the electric wire conductor 151 of the communication line 15, for example. Better.
  • the twist pitch of the detection line conductor 121 of the detection line 12 is preferably longer than the twist pitch of the wire conductor 151 of the communication line 15, for example.
  • the material of the sensing wire is not particularly limited, examples thereof include copper, aluminum, and copper alloys.
  • the surface of the sensing wire may be plated with silver or tin. Therefore, for example, a silver-plated copper alloy, a tin-plated copper alloy, or the like can be used as the material of the sensing wire. (detection wire coating)
  • the material of the sensing line coating 122 is not particularly limited, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP ), fluororesins such as ethylene-tetrafluoroethylene copolymer (ETFE), polyester resins such as polyethylene terephthalate (PET), and polyolefin resins such as polyethylene and polypropylene.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • fluororesins such as ethylene-tetrafluoroethylene copolymer (ETFE)
  • PET polyethylene terephthalate
  • the detection line coating 122 may contain additives such as flame retardants, flame retardant auxiliaries, antioxidants, lubricants, colorants, reflection imparting agents, masking agents, processing stabilizers, plasticizers, etc., in addition to the above resins. . (shield conductor, outer coating)
  • the sensing line may consist of a coaxial cable. That is, the sensing wire 120 includes a sensing wire conductor 121 that is a twisted wire of a plurality of sensing wire strands, a sensing wire coating 122 that coats the outer periphery of the sensing wire conductor 121, and a shield that coats the outer periphery of the sensing wire coating 122. and a conductor 123 .
  • the shield conductor 123 may be configured by twisting a plurality of shield wires, or may be configured by metal foil such as copper foil. Furthermore, it is also possible to have an outer covering 124 that covers the outer circumference of the shield conductor 123 .
  • a measuring device When measuring the characteristic impedance between two conductors, for example, a measuring device is connected between the sensing line conductor 121 of the sensing line 12 and the shield conductor 123 .
  • the positions of the detection line conductor 121 of the detection line 12 and the shield conductor 123 are constant, and by not sandwiching another covered wire between them, noise is suppressed when the characteristic impedance is measured, and the measurement is performed. It can be done stably. Further, by providing the outer circumference coating 124 on the outer periphery of the shield conductor 123, the shield conductor 123, the detection wire coating 122, and the detection wire conductor 121 can be protected.
  • the arrangement of the detection wires 12 in the multi-core cable 10 may cause the multi-core cable to be repeatedly bent. Predicting the magnitude of the load was particularly difficult. Therefore, the inventors of the present invention conducted a study and obtained a difference in the magnitude of the load depending on the arrangement of the detection wires 12 in the multicore cable 10 when the multicore cable 10 is repeatedly bent. As a result, in the multicore cable 10, in the cross section perpendicular to the longitudinal direction of the multicore cable 10, by arranging the detection wire 12 in an area surrounded by a plurality of coated wires 11, the multicore cable is repeatedly operated.
  • the detection wire 12 is likely to break.
  • the bending center of the multicore cable does not coincide with the cross-sectional center
  • the magnitude of the load applied to the detection wire 12 varies depending on the arrangement of the detection wire 12 in the multicore cable. Therefore, it is particularly difficult to predict breakage of the coated wire 11 .
  • the arrangement of the detection wire 12 is shifted for each multi-core cable manufactured in different production lots, and the timing of breakage is deviation is likely to occur.
  • the multicore cable 10 of the present embodiment in the cross section perpendicular to the longitudinal direction of the multicore cable 10, by arranging the detection wire 12 in an area surrounded by a plurality of covered wires 11, The arrangement of the detection wires 12 in the multi-core cable is stable even for multi-core cables manufactured in different lots. It also contributes to suppressing positional displacement of the coated wire 11 and the detection wire 12 over time at positions along the longitudinal direction.
  • the multicore cable 10 of the present embodiment arrange the detection wires 12 in a region surrounded by a plurality of covered wires 11 in a cross section perpendicular to the longitudinal direction.
  • the covered wires with different configurations are arranged along the circumferential direction, and the covered wires are arranged point-symmetrically about the center of the cross section. Even if the multi-core cable is repeatedly bent, the sensing wire will be subjected to a greater load than the other coated wires. Further, by arranging the detection wire within the area surrounded by the plurality of covered electric wires, the position of the detection wire within the core is stabilized even when the multi-core cable is repeatedly bent. Therefore, by measuring the electrical characteristics of the sensing line conductor of the sensing line and evaluating the state of the sensing line conductor, breakage of the coated wire can be predicted at an appropriate timing.
  • the region A surrounded by the plurality of coated wires 11 is the region surrounded by the centers of the plurality of coated wires and the plurality of coated wires It is an area surrounded by the outer peripheral portion of the electric wire 11 .
  • the detection wire 12 is an area surrounded by the centers O 141 , O 142 , O 151 , and O 152 of the covered wires 11 and surrounded by the outer peripheral portions of the plurality of covered wires 11. It is arranged in area A, which is an isolated area.
  • FIGS. 6A to 6C show simulation results of the relationship between the placement of the detection line 12 and the magnitude of the load applied to the detection line.
  • a flex resistance test can be performed according to the following procedure. First, as shown in FIG. 5 , a multicore cable 50 to be evaluated is arranged and sandwiched between a first mandrel 511 having a diameter of 20 mm and a second mandrel 512 which are horizontally and parallel to each other. A load of 500 g is applied vertically downward to 50. Then, in the above state, the upper end of the multicore cable 50 is bent horizontally by 90° so as to abut on the upper side of the first mandrel 511 , and then bent horizontally by 90° so as to abut on the upper side of the second mandrel 512 . Bending is repeated.
  • 6A to 6C show the curvature of the detection line and coated wire included in the multicore cable when the bending angle and direction of the multicore cable are changed for each step when the bending resistance test is performed. It shows the change in maximum value.
  • the maximum value of curvature indicates the extent to which the sensing wire and the coated wire are bent, that is, it corresponds to the load applied to the sensing wire and the coated wire.
  • FIG. 6A is a simulation result of subjecting the multicore cable 10 shown in FIG. be.
  • FIG. 6B is a simulation result of subjecting the multicore cable 111 shown in FIG. is.
  • the detection wire 12A is arranged on the outer peripheral side of the plurality of coated wires 11 , specifically between the two power wires 14 and the jacket 13 .
  • the multicore cable 111 shown in FIG. 1D has the same configuration as the multicore cable 10 shown in FIG. 1A except that the arrangement of the detection lines is changed.
  • FIG. 6C shows the result of the detection line among the simulation results of the bending resistance test shown in FIGS. 6A and 6B.
  • the center of the detection line shows the simulation result for the detection line in FIG. 6A
  • the outside of the detection line shows the simulation result for the detection line in FIG. 6B.
  • the power line 1 and the power line 2 are connected to the power line 14 in the multicore cable 10 in FIG. 1A
  • the communication lines 1 and 2 are connected to the communication line 15 in the multicore cable 10 in FIG. 1A.
  • the dotted line 61 indicates the state in which the bending angle of the multicore cable reaches 90 degrees, that is, the state in contact with the first mandrel 511
  • the dotted line 62 indicates the state in which the bending angle of the multicore cable reaches -90 degrees. , ie, in contact with the second mandrel 512 .
  • step 0 on the horizontal axis corresponds to 0 degree bending and step 2.5 corresponds to 90 degree bending for the multicore cable.
  • step 7.5 corresponds to the condition of -90 degree bending and step 12.5 corresponds to the condition of 90 degree bending. That is, one step on the horizontal axis corresponds to a bend of 18 degrees.
  • the maximum value of the curvature becomes the maximum value as shown in FIG. 6A. It can be confirmed that the load applied to the detection wire 12 is larger than that of the covered wire 11 at the position to be taken.
  • the position where the maximum value of the curvature takes the maximum value is the position indicated by the dotted line 61 when the bending angle reaches 90 degrees, and the position indicated by the dotted line 62 when the bending angle reaches ⁇ 90 degrees. It means position, and so on.
  • the detection wire 12 are arranged within the area surrounded by the power wires 14 and the jacket 13 as described above.
  • FIG. 6C is a graph that extracts changes in the maximum value of curvature for the detection line from the results shown in FIG. 6A (middle of the detection line) and FIG. 6B (outside the detection line).
  • the detection wire 12 is arranged in the area A surrounded by the plurality of covered wires 11 (in the center of the detection wire)
  • the detection wire 12 is arranged outside the area A surrounded by the plurality of covered wires 11 (outside the detection line).
  • the multicore cable 10 is repeatedly bent to reduce the load.
  • the detection wire 12 is subjected to a larger load than the covered wire 11 .
  • the detection wire 12 is likely to break earlier than the covered wire 11.
  • the covered wire 11 breaks can be predicted.
  • the multicore cable 10 can contain the core 17 including the multiple coated wires 11 and the detection wires 12 described above.
  • the core 17 can be configured by twisting together the above-described multiple covered electric wires 11 and the detection wires 12 along the longitudinal direction.
  • the arrangement of the plurality of covered wires 11 forming the core 17 and the detection wires 12 can be selected according to the configuration of the plurality of covered wires 11 included in the core 17 .
  • the covered wire 11 can include two power wires 14, a first power wire 14A and a second power wire 14B.
  • the first power line 14A can be connected to the ground potential.
  • the first power line 14A and the detection line 12 of the power lines 14 are preferably arranged and twisted so as to be in contact with each other.
  • the detection line 12 and the covered wire 11 of either the power supply line 14 or the communication line 15, the shield conductor 123, or the shield layer 20 when measuring the characteristic impedance, it is performed between the detection line 12 and the covered wire 11 of either the power supply line 14 or the communication line 15, the shield conductor 123, or the shield layer 20. Therefore, the detection line 12 and the first power supply line 14A connected to the ground potential are twisted in contact with each other, thereby suppressing noise when measuring the characteristic impedance and facilitating the measurement of the characteristic impedance. It can be done stably.
  • the detection wire 12 may be twisted so as to be in contact with both of the two power wires 14 .
  • the twist direction of the core 17 can be arbitrarily selected, but one example is a right twist.
  • the twist pitch of the core 17 can also be arbitrarily selected, but one example is 90 mm.
  • the above twist direction and twist pitch are examples, and are not limited to the above examples.
  • the multicore cable 10 can have a jacket 13 that covers the outer periphery of the core 17 .
  • the jacket 13 can be configured as an extruded body of insulator mainly composed of a polymer material, for example, and can constitute the outermost circumference of the multicore cable 10 .
  • the structure of the jacket 13 is not particularly limited, and can be composed of, for example, one layer or two or more layers.
  • the jacket 13 can also be composed of two layers, an inner layer 131 and an outer layer 132 .
  • the outer layer 132 arranged on the outermost periphery is preferably made of a material having mechanical properties such as abrasion resistance superior to those of the inner layer 131 .
  • the material of the outer cover 13 is not particularly limited, but when the outer cover 13 has an inner layer 131 and an outer layer 132 as shown in FIG. It can contain one or more selected from polyolefins such as (EVA), polyurethane elastomers, polyester elastomers, and the like.
  • the outer layer 132 is arranged on the outermost surface of the multicore cable 10, it is preferably made of a material with excellent resistance to trauma and wear, and may contain polyurethane or the like as a resin component, for example.
  • the resin component of the jacket 13 may or may not be crosslinked.
  • the jacket 13 may contain additives such as flame retardants, flame retardant auxiliaries, antioxidants, lubricants, colorants, reflection imparting agents, masking agents, processing stabilizers, plasticizers, etc., in addition to the above resin components. .
  • (1-5) Shield Layer As shown in FIG. 1B, the multicore cable 100 of the present embodiment can also have a shield layer 20 covering the outer periphery of the core 17 . In this case, the shield layer 20 can be arranged between the core 17 and the jacket 13 .
  • the detection wire 12 described above predicts disconnection due to accumulation of metal fatigue in the wire conductor of the coated wire 11, using damage or breakage of the detection wire conductor 121 as an index.
  • the shield layer 20 functions as an outer detection layer in addition to the detection wire 12, so that signs of damage to the coated wire 11 due to sudden impact or external injury can be prevented from It will be possible to detect disconnection along with signs of disconnection due to fatigue.
  • the shield layer 20, which functions as an outer sensing layer, preferably does not conduct to ground or earth potential in order to input test signals for measuring characteristic impedance.
  • the placement of the shield layer 20 is not particularly limited, and can be placed on the outer peripheral side of the core 17 included in the multicore cable.
  • the shield layer 20 can be arranged on the outer circumference of the jacket 13 to detect signs of damage to the coated wire 11.
  • the shield layer 20 is preferably arranged inside the jacket 13 .
  • the shield layer 20 is preferably arranged between the core 17 and the jacket 13 as described above.
  • the shield layer 20 is preferably arranged inside the restraining winding 18, for example, between the core 17 and the restraining winding 18.
  • the shield layer 20 can be easily taken out when taking out the coated wire 11 or the detection wire 12 from the longitudinal end of the multicore cable 10. - ⁇ can.
  • the shield layer 20 is arranged outside the coated wires 11 and the detection wires 12. For this reason, when the multicore cable 100 receives a sudden impact due to an external force, or when it comes into contact or friction with an external object, the shield layer 20 is more likely than the coated wire 11 or the detection wire 12 to be applied. are more susceptible to larger loads and break more easily. Therefore, by arranging the shield layer 20 and detecting the damage or breakage of the shield layer 20, it is possible to sensitively detect that the insulated wire 11 has a sign of damage caused by an impact or external injury. As a result, the accuracy of prediction of disconnection of the covered electric wire 11 can be improved.
  • the multi-core cable of this embodiment can detect and predict disconnection of the coated wire 11 mainly due to metal fatigue by means of the detection wire 12 described above.
  • the multicore cable 100 of the present embodiment has the shield layer 20 functioning as an outer detection layer, signs of damage to the coated wire 11 due to impact or external injury can also be detected. Therefore, by having the shield layer 20 in the multicore cable 100 of the present embodiment, various signs of damage to the covered electric wire 11 can be detected.
  • the shield layer 20 is not particularly limited as long as it has a conductive member.
  • the shield layer 20 can be composed of, for example, a conductive tape, metal wire, or braid, as described below.
  • the shield layer 20 may have a conductive member as described above, but the thickness of the conductive member is preferably smaller than the outer diameter of the detection line conductor 121 of the detection line 12 .
  • the thickness of the conductive member means, for example, the thickness of the conductive layer when the following conductive tape is used, and the thickness of the conductive layer formed by the metal wire when the metal wire is used.
  • the detection wire 12 is protected from sudden impacts that do not break the detection wire 12, contact with external objects, and friction. Also, the conductive member of the shield layer is likely to break. Therefore, the shield layer 20 can sensitively detect a sign of damage to the covered wire 11 that cannot be detected by the detection wire 12 alone.
  • the shield layer 20 can be formed by arranging a layer containing a conductive substance such as metal on the outer periphery of the core 17 .
  • the shield layer 20 can be configured by spirally winding a conductive tape including a conductive layer around the outer periphery of the core 17 along the longitudinal direction of the core 17 .
  • the conductive tape can have a conductive layer on one of the upper and lower surfaces of the substrate. Therefore, as shown in FIG. 3A, for example, the conductive tape 30 can have a structure in which a substrate 31 and a conductive layer 32 are laminated. It is preferable that the conductive layer 32 of the conductive tape 30 be positioned on the core 17 side so as to be electrically connected to the drain line 21 described later. That is, it is preferable that the surface 30A be positioned on the core 17 side. Therefore, the shield layer 20 can have a structure in which the conductive layer 32 arranged on the core side and the base material 31 arranged on the jacket side are laminated.
  • the conductive tape 30 is preferably spirally wound so as to be in contact with each other in order to detect an abnormality without gaps.
  • the conductive tape 30 is wound around the core 17, since the base material 31 is provided on the outer side, the conductive layer 32 does not contact each other even if it is wound, and as described later, the position where the breakage occurs. can be specified.
  • the shield layer 20 can also have a base material arranged on the core 17 side.
  • the shield layer 20 consists of the base material 31 arranged on the core side and A structure in which the conductive layer 32 is laminated can be formed.
  • the conductive tape 300 can also have a structure in which a first conductive layer 321, a base material 31, and a second conductive layer 322 are laminated. In this case, either side may face the core 17 side.
  • 3A and 3B are cross-sectional views along the lamination direction of each layer that constitutes the conductive tape.
  • conductive layers are provided on both sides of the base material like the conductive tape 300 shown in FIG. 3B, it is preferable that the conductive tapes are wound with a gap so that the conductive tapes do not come into contact with each other. By configuring in this way, it is possible to specify even the position where the breakage occurs.
  • the materials of the conductive layer 32, the first conductive layer 321, and the second conductive layer 322 are not particularly limited, but they preferably contain metal, and can be metal foil, for example.
  • the metal material is not particularly limited, but copper, copper alloys, aluminum, aluminum alloys, and the like can be used, for example.
  • the material of the base material 31 is also not particularly limited, but it is preferably made of an insulating material such as an organic polymer material or a non-woven fabric.
  • organic polymer materials include polyester resins such as polyethylene terephthalate (PET), polyolefin resins such as polypropylene, and vinyl resins such as polyvinyl chloride.
  • PET polyethylene terephthalate
  • the base material 31 can be a base material containing an insulating material, or can be a base material consisting only of an insulating material.
  • the winding direction of the conductive tape can be arbitrarily selected. It can be.
  • the twisting direction of the core 17 and the winding direction of the conductive tape are preferably the same.
  • the winding pitch of the conductive tape can be selected arbitrarily, but one example is 18 mm.
  • winding pitch is an example and is not limited to the above example.
  • the shield layer 20 functioning as the outer sensing layer has been described above, it may be used simply to shield the coated wires in the multicore cable. In this case, the shield layer 20 conducts with the ground potential or earth potential.
  • a material for fixing the conductive tape such as an adhesive, may or may not be placed between the core 17 and the conductive tape.
  • the shield layer 20 can also be formed by arranging a metal wire around the outer periphery of the core 17 in a horizontal winding or a braided structure. That is, the shield layer 20 can be composed of metal wires. Copper, aluminum, a copper alloy, or the like can be used as the material of the metal wire. Therefore, a hard copper wire or the like can be used as the metal wire.
  • the metal wire may be plated with silver or tin on its surface. Therefore, for example, a silver-plated copper alloy, a tin-plated copper alloy, or the like can be used as the metal wire.
  • (1-6) Drain Wire As shown in FIG. 1B, the multicore cable 100 of this embodiment can also have a drain wire 21 .
  • the drain line 21 is preferably in contact with the already-described shield layer 20 , more specifically, in contact with the conductive layer 32 when the shield layer 20 is formed of the conductive tape 30 .
  • the shield layer 20 In order to evaluate whether the shield layer 20 is broken, it is necessary to electrically connect the shield layer 20 to an external measuring device.
  • the shield layer 20 When the shield layer 20 is formed of the above-mentioned conductive tape or the like, it may be difficult to directly connect the shield layer 20 to the terminal. Therefore, by providing the drain line 21 and keeping the drain line 21 in contact with the shield layer 20, for example, the already-described conductive layer 32, the first conductive layer 321, or the second conductive layer 322, the shield layer 20 is , can be easily connected to the terminal via the drain line 21.
  • the drain wire 21 only needs to be in contact with the shield layer 20 at least at one point, that is, to be electrically connected. is preferably in contact with the shield layer 20 at .
  • the configuration of the drain line 21 is not particularly limited.
  • the drain wire 21 is preferably a twisted wire obtained by twisting a plurality of drain strands, for example.
  • the wire diameter and number of the drain wire can be selected according to the electrical properties required for the drain wire 21, and are not particularly limited.
  • the wire diameter of the drain wire is preferably 0.05 mm or more and 0.16 mm or less, and more preferably 0.05 mm or more and 0.10 mm or less.
  • Examples of the wire diameter of the drain strand of the drain wire 21 and the conductor cross-sectional area of the drain wire 21 include the following configuration examples. In addition, the following are examples, and are not limited to the following examples.
  • the wire diameter of the drain wire is 0.08 mm. 42 drain strands are twisted together (right twist, 12 mm pitch) to form the drain wire 21 . At this time, the conductor cross-sectional area of the drain wire 21 is 0.21 mm 2 .
  • the material of the drain wire is not particularly limited, but examples include copper, aluminum, and copper alloys.
  • the surface of the drain wire may be plated with silver or tin. Therefore, for example, a silver-plated copper alloy, a tin-plated copper alloy, or the like can be used as the material of the drain wire.
  • drain wire 21 is electrically connected to the shield layer 20 described above, it is preferable that the surface of the twisted wire of the drain wire is not covered.
  • the shield layer 20 and the drain line 21 are electrically connected has been described above, it is also possible to adopt a configuration in which they are not electrically connected. That is, the base material 31 is positioned on the core 17 side, and the base material 31 and the drain wire 21 are in contact with each other.
  • the shield layer 20 can have a structure in which a substrate 31 containing an insulating material arranged on the core 17 side and a conductive layer 32 are laminated. Then, a configuration in which the base material 31 and the drain line 21 are in contact with each other can be provided.
  • the multicore cable 10 of the present embodiment can also have a restraining winding 18 covering the outer periphery of the core 17 .
  • the restraint winding 18 is suitably exemplified by spirally winding a tape body made of an insulating material such as paper, non-woven fabric, or resin such as polyester around the outer periphery of the core 17 along the longitudinal direction of the core 17. can.
  • the restraining winding 18 serves to keep the positions of the covered wire 11 and the detection wire 12 that constitute the core 17 from being separated from each other. Therefore, it is possible to suppress displacement of the covered wire 11 and the detection wire 12 in the core 17 . That is, it is possible to prevent the positional relationship between the coated wire 11 and the detection wire 12 from changing depending on the position along the longitudinal direction and from changing with time. Therefore, when an external force such as bending or vibration is applied to the multicore cable, the relationship between the load received by the coated wire 11 and the load received by the detection wire 12 depends on the position in the longitudinal direction of the multicore cable. , easily maintained constant over time.
  • the detection wire conductor 121 of the detection wire 12 when the detection wire conductor 121 of the detection wire 12 is broken, by detecting the breakage, the wire conductor of the coated wire 11 can be detected regardless of the position or time along the longitudinal direction of the multi-core cable. A certain amount of metal fatigue is accumulated, and it can be used as an indicator of occurrence of a sign of wire breakage in the coated wire 11 . In other words, it is possible to accurately detect a sign of disconnection of the covered electric wire 11 with sensitivity that does not depend on position or time.
  • the restraining winding 18 on the outer periphery of the core 17, it is possible to prevent the core 17 and the jacket 13 from coming into direct contact with each other.
  • the jacket 13 can be easily peeled off when the detection wire 12 is taken out.
  • the winding direction of the restraining winding 18 can be arbitrarily selected. , or in a different direction. In particular, it is preferable that the twisting direction of the core 17 and the winding direction of the restraining winding 18 are the same.
  • the winding pitch of the restraining winding 18 is preferably shorter than the winding pitch of the core 17.
  • the tape body forming the restraining winding 18 in the concave portion formed between the covered electric wire 11 constituting the core and the detection wire 12 is formed. This is because the surface of the hold-down winding 18 can be made smooth by suppressing the drop of the holding winding 18 .
  • the winding pitch of the restraint winding 18 can be arbitrarily selected, but an example is 20 mm.
  • the multicore cable 10 of the present embodiment can also have an interposition 19 arranged within the region surrounded by the jacket 13 , for example, within the core 17 .
  • the intervening material 19 can be made of fiber such as staple thread or nylon thread.
  • the interposer may be composed of tensile strength fibers.
  • the multicore cable 10 of the present embodiment includes, as covered wires, for example, the first power wire 14A and the second power wire 14B, which are two power wires, and the two communication wires 15. be able to.
  • the two communication lines 15 can be twisted together to form a twisted pair communication line 16 .
  • the intervention 19 can include a first intervention 191 and a second intervention 192.
  • the detection line 12 is surrounded by the two power lines 14, the twisted pair communication line 16, and the interposition 19. It is preferable to place it in a closed area.
  • the first interposition 191 can be arranged so as to be in contact with the first power supply line 14A and the twisted pair communication line 16.
  • the second interposer 192 can be arranged so as to be in contact with the second power supply line 14B and the twisted pair communication line 16 .
  • the detection wire 12 and the interposition 19 are arranged separately, but the interposition 19 may be arranged so as to be in contact with the detection wire 12.
  • the multicore cable 10 Since the multicore cable 10 has the interposition 19 in the region surrounded by the jacket 13, it is possible to prevent the positional deviation of the detection wire 12 when the multicore cable 10 is bent and the positional deviation over time. can. Furthermore, the accuracy of prediction of disconnection of the coated wire 11 by the detection wire 12 can be enhanced.
  • the interposition 19 By arranging the interposition 19 as described above and arranging the detection line 12 in the area surrounded by the two power supply lines 14, the twisted pair communication line 16, and the interposition 19, the multicore cable 110 is bent. It is possible to prevent positional deviation of the detection line 12 when it is moved and positional deviation over time. Furthermore, the accuracy of prediction of disconnection of the coated wire 11 by the detection wire 12 can be enhanced.
  • the multicore cable of the present embodiment described above includes detection wires 12 in addition to covered electric wires 11 that perform predetermined functions in equipment and the like.
  • the detection wire 12 is arranged in an area A surrounded by a plurality of coated electric wires in a cross section perpendicular to the longitudinal direction of the multicore cable. A large force can easily be applied.
  • the wire diameter of the detection wire contained in the detection wire 12 is equal to or larger than the wire diameter of the wire wire of the coated wire 11, and when the multicore cable is repeatedly bent, the detection wire of the detection wire 12
  • the conductor 121 can be configured to break before the wire conductor of the covered wire 11 .
  • the detection wire conductor 121 of the detection wire 12 is more likely to break than the wire conductor of the coated wire 11, and the electrical characteristics of the detection wire conductor 121 are measured. By evaluating the state of the detection line conductor 121, breakage of the coated wire can be predicted.
  • Breakage of the detection line conductor 121 and the shield layer 20 can be detected by electrical measurement such as characteristic impedance measurement.
  • electrical measurement such as characteristic impedance measurement. The evaluation method will be explained in the disconnection detection device to be described later.
  • the multicore cable of the present embodiment can be used for various applications that require prediction of breakage of coated electric wires.
  • the multi-core cable of the present embodiment is suitable for use in devices such as automobiles in which bending and vibration are frequently applied to the multi-core cable due to movement, for example, an electric parking brake that is an electric parking brake.
  • an electric parking brake that is an electric parking brake.
  • it can be suitably used in applications such as an electric brake system that electrifies the foot brake of an automobile, where the effect that can occur when the covered wire is broken is large, and it is significant to detect the broken wire of the covered wire in advance.
  • the power line is configured to supply power for driving the motor
  • the communication line is configured to transmit electrical signals related to motor control and wheel rotation speeds. .
  • the disconnection detection device of this embodiment can have the above-described multicore cable and a measuring device connected to the detection line conductor of the detection line of the multicore cable.
  • the metrology device can be configured to input a test signal containing an AC component into the sense line conductors and measure the characteristic impedance.
  • FIG. 7 schematically shows the configuration of a disconnection detection device 70 according to an embodiment of the present disclosure.
  • the disconnection detection device 70 detects a sign of disconnection of the wire conductor of the covered wire, that is, predicts disconnection, for the above-mentioned multi-core cable.
  • FIG. 7 for the sake of simplification, only one wire conductor 711 of the coated wire and one detection wire conductor 712 of the detection wire are shown as components of the multicore cable 71, and the detection wire conductor 712 shows a state in which an abnormality or breakage X1 has occurred.
  • the disconnection detection device 70 can have a measurement device 72 .
  • the measuring device 72 measures the characteristic impedance of the detection line conductor 712 of the detection line included in the multicore cable 71, thereby inspecting whether or not the detection line conductor 712 has an abnormality or a breakage X1. It is a device. That is, the metrology device 72 can be configured to measure the characteristic impedance of the sense line conductor 712, for example. A measurement of the characteristic impedance can be performed by inputting a test signal containing an AC component into a conductor, eg, the sense line conductor 712 .
  • the characteristic impedance can be measured by inputting a test signal, preferably containing an AC component, into two conductors and measuring the characteristic impedance between the two conductors as a response signal.
  • the measurement of the characteristic impedance between the two conductors is performed by measuring the detection line conductor 712 of interest, the wire conductor of the covered wire 11 of either the power supply line 14 or the communication line 15, the shield conductor, or the conductive layer of the shield layer. You can do it in between. If the multicore cable has multiple sense wires, measurements may be made between two sense wire conductors 712 .
  • a test signal containing an AC component is input to the two conductors and the characteristic impedance is measured.
  • the measurement device can be configured to input a test signal, for example, including an AC component, into the sensing line conductor and the wire conductor and measure the characteristic impedance between the sensing line conductor and the wire conductor.
  • a test signal for example, including an AC component
  • the shield conductor or the conductive layer of the shield layer may be used instead of the wire conductor as described above.
  • a response signal is acquired by a reflection method or a transmission method.
  • the measuring device 72 an LCR meter or the like can be used as the measuring device 72.
  • the inspection signal is reflected at the breakage X1, causing a discontinuous change in the response signal. Therefore, when the characteristic impedance measured by the measuring device 72 changes more than a reference value, an abnormality or breakage X1 has occurred in the detection wire conductor 712, and it is a sign of breakage in the wire conductor 711 of the coated wire. can be determined to be occurring. In other words, breakage of the covered electric wire can be predicted.
  • the reference value is determined in advance as a threshold value for the amount of change that should be considered to be due to an abnormality or breakage in the detection line conductor 712, based on actual measurement results when no abnormality or breakage X1 has occurred in the detection line conductor 712. can be kept
  • a change in the characteristic impedance also occurs due to an abnormality such as damage to the detection line conductor 712 that does not lead to breakage.
  • change in characteristic impedance due to breakage is treated as a typical example, but damage to the detection line conductor 712 other than breakage is also a sign of breakage of the coated wire through change in characteristic impedance. It can be used for detection, ie prediction.
  • the detection of an abnormality or breakage X1 in the sensing line conductor 712 is not limited to measuring the characteristic impedance between two conductors, but may be performed simply by measuring the electrical resistance of one conductor (the sensing line conductor 712). However, by measuring the characteristic impedance between the two conductors, it is possible to detect abnormalities in the detection line conductor 712 with higher sensitivity before actual breakage. In particular, when the characteristic impedance measurement is performed by the reflection method, even if the measuring device 72 is not connected to both ends of the multi-core cable 71, if the measuring device 72 can be connected only to one end, the characteristic impedance can be measured. can do.
  • the measuring device 72 can be connected to even one end of the detection wire conductor 712, it is possible to detect a sign of disconnection in the coated wire without removing the multicore cable or removing the obstacle. can. Therefore, if the measuring device 72 can be connected to one end of the detection line conductor 712 as described above, the multi-core cable 71 may be placed in a location that is not easily accessible, such as inside a vehicle, or if a complicated route is taken. It is possible to detect a sign of wire breakage in the covered electric wire even when there is a wire.
  • TDR method time domain reflection method
  • the disconnection detection device of this embodiment can also have a measuring device connected to the shield layer of the multicore cable.
  • the measuring device connected to the detection line conductor and the measuring device connected to the shield layer may be composed of one measuring device, or may be composed of a total of two different measuring devices. Also good.
  • a switch or the like is provided on the wiring so that the connection can be switched according to the object to be measured. It is preferable to keep
  • the breakage of the shield layer may be detected not only by measuring the characteristic impedance between two conductors, but also by simply measuring the electrical resistance of one conductor (shield layer). However, by measuring the characteristic impedance between the two conductors, an abnormality in the shield layer can be detected with higher sensitivity before the actual breakage. A break in the shield layer causes a discontinuous change in the characteristic impedance.
  • the characteristic impedance of the shield layer may be measured between the shield layer and the wire conductor of the covered wire 11 of either the power supply line 14 or the communication line 15, the shield conductor, or the detection line conductor 712. A test signal containing an AC component is input to the two conductors and the characteristic impedance is measured.
  • the characteristic impedance of the shield layer is measured by the TDR method, it is possible to identify not only the presence or absence of abnormality or breakage, but also the position where the abnormality or breakage occurs. be.
  • a change in the characteristic impedance is also caused by damage to the shield layer that does not lead to breakage.
  • change in characteristic impedance due to breakage of the shield layer is treated as a typical example. can be used to detect
  • the disconnection detection device 70 of this embodiment can also have a notification device 73 .
  • a signal about the measurement result is transmitted from the measurement device 72 to the notification device 73 .
  • the notification device 73 detects the covered wire. can be notified to the outside of a sign of wire breakage for the electric wire conductor 711.
  • the specific method of notification to the outside is not particularly limited, for example, a display panel or the like is provided as the notification device 73 in a device such as an automobile in which a multi-core cable is arranged, and a method of visually notifying, an alarm sound, or the like. can be exemplified.
  • the notification device 73 may be provided as an interlock device that restricts some or all of the functions of the equipment including the multicore cable 71 .
  • the notification device 73 includes a display device such as a display panel and a warning light, a transmitter such as a buzzer, a control device for interlocking, and the like.
  • a measuring device 72 or the like is always connected to the multi-core cable, and the characteristic impedance is continuously measured by the measuring device 72, and a sign of disconnection occurs in the coated wire. It is preferable to continue to monitor whether or not Then, if a sign of wire breakage occurs in the coated wires included in the multi-core cable 71, the sign of wire breakage can be found early and notified to the user of the device or the like via the notification device 73.
  • FIG. The user who receives the notification can take countermeasures such as replacement of the multi-core cable at an early stage, and can use the device for a long time without problems.
  • the measurement device 72 does not always monitor for signs of disconnection of the covered electric wire, and a predetermined
  • the measuring device 72 may be connected to the multi-core cable and inspected only at the time of .
  • the disconnection detection device of the present embodiment since the above-described multicore cable is used, by measuring the electrical characteristics such as the characteristic impedance of the detection line conductor of the detection line, it is possible to accurately Breakage of coated wires can be predicted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Insulated Conductors (AREA)

Abstract

複数本の電線素線の撚線である電線導体と、前記電線導体の外周を被覆する電線被覆とを有する、複数本の被覆電線と、 複数本の検知線素線の撚線である検知線導体を有する検知線と、 前記複数本の被覆電線と、前記検知線とを含むコアの外周を被覆する外被とを有し、 前記検知線は、前記複数本の被覆電線で囲まれた領域内に配置され、 前記検知線素線の素線径が、前記電線素線の素線径以上である多芯ケーブル。

Description

多芯ケーブル、断線検知装置
 本開示は、多芯ケーブル、断線検知装置に関する。
 特許文献1には自動車等の車両の電動ブレーキの制動源となるモータに電力を供給するための電源供給線と、前記モータの制御に関する信号を伝送する信号線のそれぞれを少なくとも1本備えた電動ブレーキ用ケーブルにおいて、
 前記電源供給線及び前記信号線に縦添え又は該当線の周囲に螺旋巻きにして複合されると共に、前記電源供給線又は前記信号線の断線に先行して断線するように形成され、かつ絶縁被覆された少なくとも1本の断線検知線を備えることを特徴とする電動ブレーキ用ケーブルが開示されている。
特開2005-166450号公報
 本開示の多芯ケーブルは、複数本の電線素線の撚線である電線導体と、前記電線導体の外周を被覆する電線被覆とを有する、複数本の被覆電線と、
 複数本の検知線素線の撚線である検知線導体を有する検知線と、
 前記複数本の被覆電線と、前記検知線とを含むコアの外周を被覆する外被とを有し、
 前記検知線は、前記複数本の被覆電線で囲まれた領域内に配置され、
 前記検知線素線の素線径が、前記電線素線の素線径以上である。
図1Aは、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図である。 図1Bは、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図である。 図1Cは、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図である。 図1Dは、耐屈曲性試験のシミュレーションで用いた多芯ケーブルの長手方向と垂直な面での断面図である。 図2Aは、本開示の一態様に係る多芯ケーブルが有する検知線の長手方向と垂直な面での断面図である。 図2Bは、本開示の一態様に係る多芯ケーブルが有する検知線の長手方向と垂直な面での断面図である。 図3Aは、導電テープの構成説明図である。 図3Bは、導電テープの構成説明図である。 図4は、撚りピッチの説明図である。 図5は、耐屈曲性試験の説明図である。 図6Aは、耐屈曲性試験のシミュレーション結果である。 図6Bは、耐屈曲性試験のシミュレーション結果である。 図6Cは、耐屈曲性試験のシミュレーション結果である。 図7は、本開示の一態様に係る断線検知装置の構成説明図である。
 [本開示が解決しようとする課題]
 特許文献1に開示されているように、屈曲運動が加わり易いケーブルにおいて、該ケーブルが含む電線の断線を予測する断線検知線を配置することが従来からなされていた。
 しかし、複数本の被覆電線を含む多芯ケーブルの長手方向と垂直な断面において、含有する被覆電線が、該断面における中心を対称点とした点対称に配置されず、周方向に沿って構成の異なる被覆電線が配置されている場合などに、負荷の大きさの予想が難しかった。このため、上記構成の多芯ケーブルでは、被覆電線の断線を予測できない場合があった。
 従って、複数本の被覆電線を含む多芯ケーブルにおいて、該被覆電線の断線を予測できる多芯ケーブルが求められていた。
 本開示の目的は、複数本の被覆電線を含む多芯ケーブルにおいて、該被覆電線の断線を予測できる多芯ケーブルを提供することである。
 [本開示の効果]
 本開示によれば、複数本の被覆電線を含む多芯ケーブルにおいて、該被覆電線の断線を予測できる多芯ケーブルを提供できる。
 実施するための形態について、以下に説明する。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
 (1) 本開示の一態様に係る多芯ケーブルは、複数本の電線素線の撚線である電線導体と、前記電線導体の外周を被覆する電線被覆とを有する、複数本の被覆電線と、
 複数本の検知線素線の撚線である検知線導体を有する検知線と、
 前記複数本の被覆電線と、前記検知線とを含むコアの外周を被覆する外被とを有し、
 前記検知線は、前記複数本の被覆電線で囲まれた領域内に配置され、
 前記検知線素線の素線径が、前記電線素線の素線径以上である。
 検知線が有する検知線素線の素線径を、被覆電線が有する電線素線の素線径以上とすることで、繰り返し屈曲させた場合に、検知線の検知線導体が、被覆電線の電線導体より先に断線するように構成できる。
 そして、本開示の一態様に係る複数本の被覆電線を含む多芯ケーブルは、検知線を複数本の被覆電線で囲まれた領域内に配置している。このため、該多芯ケーブルの長手方向と垂直な断面において、周方向に沿って構成の異なる被覆電線が配置され、被覆電線が該断面における中心を対称点とした点対称に配置されていない場合でも、多芯ケーブルを繰り返し屈曲させた場合に、検知線に他の被覆電線よりも大きな負荷が加えられる。また、検知線を、複数本の被覆電線で囲まれた領域内に配置することで、多芯ケーブルを繰り返し屈曲させた場合でも、コア内での検知線の位置が安定する。従って、検知線が有する検知線導体の電気的特性の測定を行い、検知線導体の状態を評価することで、被覆電線の断線を適切なタイミングで予測できる。
 (2) 前記検知線素線の素線径が、前記電線素線の素線径よりも大きくてもよい。
 検知線が有する検知線素線の素線径を、被覆電線が有する電線素線の素線径より大きくすることで、多芯ケーブルを繰り返し屈曲させた際に、検知線が被覆電線よりも断線し易くなる。このため、被覆電線の断線を早期に、精度よく予測できる。
 (3) 前記検知線は、前記検知線導体の外周を被覆する検知線被覆と、
 前記検知線被覆の外周を被覆するシールド導体を備える同軸ケーブルであってもよい。
 2つの導体間の特性インピーダンスの測定を行う場合、例えば、検知線の検知線導体と、シールド導体との間に測定装置を接続する。検知線の検知線導体と、シールド導体との位置が一定であり、また、間に他の被覆電線を挟まないことで、特性インピーダンスの測定を行う際のノイズを抑制し、測定を安定して行うことが可能になる。
 (4) 前記被覆電線は、電源線を含み、
 前記電源線は、複数本の前記電線素線を撚り合わせた第1撚線と、複数本の前記第1撚線を撚り合わせた第2撚線とを含み、
 前記検知線導体の撚りピッチは、前記第1撚線の撚りピッチよりも長くてもよい。
 検知線導体の撚りピッチを、電源線が有する第1撚線の撚りピッチよりも長くすることで、検知線が電源線よりも断線し易くなる。このため、検知線が有する検知線導体の電気的特性の測定を行い、検知線導体の状態を評価することで、多芯ケーブルが有する被覆電線のうち、特に断線予測の要求が高い、電源線の断線を早期に、精度よく予測できる。
 (5) 前記被覆電線は、電源線と、通信線とを含み、
 前記電源線が有する前記電線導体の導体断面積S1と、前記通信線が有する前記電線導体の導体断面積S2と、前記検知線導体の導体断面積S3とが、
 S1>S2≧S3の関係にあってもよい。
 電源線が有する電線導体の導体断面積S1と、通信線が有する電線導体の導体断面積S2と、検知線が有する検知線導体の導体断面積S3とが、上記関係を充足することで、検知線を複数本の被覆電線で囲まれた領域内に適切に配置できる。
 (6) 前記コアは、複数本の前記被覆電線と、前記検知線とが撚り合わされており、
 前記被覆電線は、2本の電源線を含み、
 前記コアにおいて、前記電源線のうち、グランド電位に接続する第1電源線と、前記検知線と、が接するように配置され、撚り合わされていてもよい。
 検知線とグランド電位に接続する第1電源線とが接して撚り合わされていることで、特性インピーダンスの測定を行う際のノイズを抑制し、特性インピーダンスの測定を容易に、安定して行うことが可能になる。
 (7) 前記コアの外周を被覆するシールド層を有し、
 前記シールド層は、前記コアと、前記外被との間に配置されていてもよい。
 多芯ケーブルの長手方向と垂直な断面において、シールド層は、被覆電線や、検知線よりも外側に配置されている。このため、多芯ケーブルが外力により突発的に衝撃を受けた際や、外部の物体との間で接触や摩擦を受けた際に、被覆電線や、検知線よりもシールド層の方が大きな負荷を受けやすく、破断しやすい。従って、シールド層を配置し、シールド層の損傷、破断を検出することで、被覆電線に衝撃や外傷に起因する損傷の予兆が発生していることを敏感に検知できる。その結果、被覆電線の断線の予測の精度を高められる。
 (8) ドレイン線を有し、
 前記シールド層は、前記コア側に配置された導電層と、絶縁性の材料を含む基材とが積層された構造を有し、
 前記ドレイン線は、前記導電層と接していてもよい。
 シールド層が破断しているかを評価するためには、シールド層を外部の計測装置に電気的に接続する必要がある。シールド層を導電テープ等で形成した場合は、シールド層を端子に直接接続することが困難な場合がある。このため、ドレイン線を設け、ドレイン線をシールド層、例えば導電層等に接触させておくことで、シールド層を、ドレイン線を介して容易に端子に接続できる。
 (9) ドレイン線を有し、
 前記シールド層は、前記コア側に配置された絶縁性の材料を含む基材と、導電層とが積層された構造を有し、
 前記ドレイン線は、前記絶縁性の材料を含む基材と接していてもよい。
 シールド層がドレイン線と接して巻かれることで、特性インピーダンスの測定を行う際のノイズを抑制し、特性インピーダンスの測定を容易に、安定して行うことが可能になる。
 (10) 前記外被で囲まれた領域内に配置された介在を有していてもよい。
 多芯ケーブルが、外被で囲まれた領域内に介在を有することで、多芯ケーブルを屈曲させた時の検知線の位置ズレや経時的な位置ズレを防止することができる。さらに、検知線による被覆電線の断線の予測精度を高めることができる。
 (11) 前記被覆電線は、2本の電源線である第1電源線および第2電源線と、2本の通信線とを含み、
 2本の前記通信線は撚り合わされて対撚通信線となっており
 前記介在は、第1介在、および第2介在を含み、
 前記コアの長手方向と垂直な断面において、
 前記検知線は、2本の前記電源線と、前記対撚通信線と、前記介在とで囲まれた領域内に配置され、
 前記第1介在は、前記第1電源線と、前記対撚通信線とに接するように配置され、
 前記第2介在は、前記第2電源線と、前記対撚通信線とに接するように配置されていてもよい。
 介在を上述のように配置し、検知線を2本の電源線と、対撚通信線と、介在とで囲まれた領域内に配置することで、多芯ケーブルを屈曲させたときの検知線の位置ズレや経時的な位置ズレを防止できる。さらに、検知線による被覆電線の断線の予測精度を高めることができる。
 (12) 本開示の一態様に係る断線検知装置は、(1)から(11)のいずれかに記載の多芯ケーブルと、
 交流成分を含む検査信号を前記検知線導体に入力し、特性インピーダンスを測定するように構成された計測装置と、を有することができる。
 本開示の一態様に係る断線検知装置によれば、既述の多芯ケーブルを用いているため、検知線が有する検知線導体の特性インピーダンス等の電気的特性を測定することで、精度よく被覆電線の断線を予測できる。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下「本実施形態」と記す)に係る多芯ケーブル、断線検知装置の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
(1)多芯ケーブルが有する部材について
 まず、本実施形態の多芯ケーブルについて、図1A~図6Cに基づき説明する。
 図1Aに本実施形態の多芯ケーブル10の長手方向と垂直な面での断面図を示す。図1Bに、本実施形態の多芯ケーブル100の長手方向と垂直な面での断面図を示す。図1Cに本実施形態の多芯ケーブル110の長手方向と垂直な面での断面図を示す。図1Dに耐屈曲性試験のシミュレーションで用いた多芯ケーブル111の長手方向と垂直な面での断面図を示す。図2A、図2Bに検知線の長手方向と垂直な面での断面図を示す。図3A、図3Bは、導電テープの構成説明図である。図4は、撚りピッチの説明図である。図5は耐屈曲性試験の説明図であり、図6A~図6Cは、耐屈曲性試験のシミュレーション結果を示している。
 図1Aに示すように、本実施形態の多芯ケーブル10は、複数本の被覆電線11と、検知線12と、外被13とを有する。図1A~図1Dにおいて、紙面と垂直なZ軸方向が多芯ケーブルや、被覆電線11、検知線12、コア17等の長手方向に当たり、X軸、Y軸で形成されるXY平面が上記多芯ケーブル10等の長手方向と垂直な面になる。
 図1Aに示した多芯ケーブル10では被覆電線11として、2本の電源線14と、2本の通信線15とを有する例を示しているが、本実施形態の多芯ケーブルが有する複数本の被覆電線の構成は係る形態に限定されるものではない。例えば、3本以上の電源線や、通信線を有する構成とすることもできる。また、電源線や、通信線以外の被覆電線を含有することもできる。本実施形態の多芯ケーブルは、多芯ケーブルを接続する機器等に応じて、任意の構成の被覆電線を、任意の本数有することができる。図1Aから明らかなように、多芯ケーブル10は、長手方向と垂直な断面において、含有する被覆電線が、該断面における中心を対称点とした点対称に配置されておらず、周方向に沿って構成の異なる被覆電線が配置されている。このため、多芯ケーブル10の曲げ中心と断面中心とは一致しない。
 以下、本実施形態の多芯ケーブル10が有する部材について説明する。
(1-1)被覆電線
 被覆電線11は、給電、電圧印加、通信等、機器等において求められる機能を果たす電線であり、損傷の予兆を検出すべき対象となる電線である。上述のように、被覆電線11の本数や構成は特に限定されないが、例えば図1Aに示すように、構成の異なる複数種類の被覆電線を含むことができる。
 被覆電線11は、複数本の電線素線の撚線である電線導体と、電線導体の外周を被覆する電線被覆とを有することができる。
 電源線14は、電線素線の撚線である電線導体141と、電線導体141の外周を被覆する電線被覆142とを有している。
 通信線15は、電線素線の撚線である電線導体151と、電線導体151の外周を被覆する電線被覆152とを有している。通信線15については、2本の通信線15が、図1Aの紙面と垂直なZ軸方向である長手方向に沿って、撚り合わされて、対撚通信線16となっている。図1Aでは対撚通信線16の外縁を破線で表示している。
 被覆電線11の電線導体を構成する電線素線の素線径や、本数は、各被覆電線11に要求される電気特性に応じて選択できる。
 例えば被覆電線11が電源線14の場合、電線素線の素線径は0.05mm以上0.16mm以下であることが好ましく、0.05mm以上0.10mm以下であることがより好ましい。電源線14は、電線素線を多段階で撚り合わせて電線導体141とすることもできる。このため例えば、電源線14の電線導体141は、電線素線を撚り合わせた第1撚線(子撚線)と、複数本の第1撚線を撚り合わせた第2撚線(親撚線)とを有することもできる。第2撚線を電線導体141とすることもでき、複数本の第2撚線をさらに撚り合わせた、例えば第3撚線を電線導体141とすることもできる。
 電源線14の電線導体141として、以下の構成例を一例として挙げられる。なお、以下は例示であり、以下の例に限定されるものではない。
 電線素線の素線径は0.08mmである。そして、48本の電線素線が撚り合わされた第1撚線(右撚り、10mmピッチ)が形成され、7本の第1撚線が撚り合わされて第2撚線(右撚り、30mmピッチ)を形成できる。なお、10mmピッチ、30mmピッチは、撚りピッチを意味している。図1Aに示す通り、7本の第1撚線が撚り合わされた第2撚線を電線導体141とすることができる。このとき、電源線14の導体断面積S1は1.69mmである。電線被覆142を含めた電源線14の外径は2.7mmである。
 被覆電線11が通信線15の場合、電線素線の素線径は0.05mm以上0.16mm以下であることが好ましく、0.05mm以上0.10mm以下であることがより好ましい。
 通信線15についても電線素線を多段階で撚り合わせて電線導体151とすることができる。すなわち、通信線15の電線導体151は、電線素線を撚り合わせた第1撚線(子撚線)と、複数本の第1撚線を撚り合わせた第2撚線(親撚線)とを有することもできる。第2撚線を電線導体151とすることもでき、複数本の第2撚線をさらに撚り合わせた、例えば第3撚線を電線導体151とすることもできる。通信線15の電線素線は、単撚りとすることもでき、上記第1撚線を電線導体151とすることもできる。
 また、既述のように通信線15については、2本の通信線15を撚り合わせて対撚通信線16とすることもできる。
 通信線15の電線導体151として、以下の構成例を一例として挙げられる。なお、以下は例示であり、以下の例に限定されるものではない。
 電線素線の素線径は0.08mmである。そして、16本の電線素線が撚り合わされた第1撚線(右撚り、5mmピッチ)が形成され、3本の第1撚線が撚り合わされて第2撚線(右撚り、9mmピッチ)を形成できる。なお、括弧内の5mmピッチ、9mmピッチは、撚りピッチを意味している。図1Aに示す通り、3本の第1撚線が撚り合わされた第2撚線を電線導体151とすることができる。このとき、通信線15の導体断面積S2は0.24mmである。電線被覆152を含めた通信線15の外径は1.5mmである。さらに、2本の通信線15が撚り合わされ(右撚り、25mmピッチ)、対撚通信線16とすることができる。この場合、対撚通信線16の外径は3.0mmである。
 別の例では、通信線15の電線導体151を単撚りの構成とすることもできる。すなわち既述の第1撚線を電線導体とすることもできる。通信線15の電線導体151を単撚りとすることで、通信線15等の外径を小さくすることができる。例えば、48本の電線素線が撚り合わされた第1撚線(右撚り、12mmピッチ)を形成できる。第1撚線を電線導体151とすることができる。このとき、通信線15の導体断面積S2は0.24mmである。電線被覆152を含めた通信線15の外径は1.1mmである。さらに、2本の通信線15が撚り合わされ(右撚り、20mmピッチ)、対撚通信線16とすることができる。対撚通信線16の外径は2.2mmである。
 電線素線等の素線の素線径は、例えばJIS C3002(1992)に準拠して、以下の手順により測定、算出できる。
 まず、素線の長手方向と垂直な任意の一断面内において、素線の直交する2本の直径に沿って、マイクロメータにより素線の素線径を測定する。そして、その平均値を該素線の素線径とすることができる。本明細書において、素線の素線径は同様にして測定、算出できる。
 また、図1Aに示した多芯ケーブル10のように、多芯ケーブル10が被覆電線11として、電源線14と、通信線15とを有する場合、電源線14が有する電線導体141の導体断面積S1を1.5mm以上2.5mm以下とする形態を例示できる。また、この場合、通信線15が有する電線導体151の導体断面積S2を0.1mm以上0.5mm以下とする形態を例示できる。
 通信線15が有する電線導体151の導体断面積S2は、電源線14が有する電線導体141の導体断面積S1よりも小さいことが好ましい。電源線14が有する電線導体141の導体断面積S1が、通信線15が有する電線導体151の導体断面積S2の3倍以上15倍以下であることがより好ましい。
 電線導体の導体断面積は以下の手順により算出できる。まず、電線導体を構成する電線素線の素線径を既述の方法により測定、算出し、該素線径を用いて各電線素線の断面積を算出する。そして電線素線の断面積と、電線導体が含有する電線素線の本数との積を算出することで、電線導体の導体断面積を算出できる。
 被覆電線11が有する電線素線の材料は特に限定されないが、例えば銅や、アルミニウム、銅合金等が挙げられる。電線素線は、表面に銀や錫のめっき処理が施されていてもよい。このため、電線素線の材料として、例えば銀めっき銅合金や、錫めっき銅合金等を用いることもできる。
 電線被覆の材料についても特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素樹脂や、ポリエチレンテレフタレート(PET)などのポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂等から選択された1種類以上の樹脂を用いることができる。電線被覆の樹脂は架橋されていても良く、架橋されていなくてもよい。
 電線被覆は、上記樹脂以外に難燃剤、難燃助剤、酸化防止剤、滑剤、着色剤、反射付与剤、隠蔽剤、加工安定剤、可塑剤等の添加剤を含有することもできる。
(1-2)検知線
(1-2-1)構成
 検知線12は、自らが損傷や破断(断線)を起こすことで、被覆電線11に断線の予兆が発生していることを検知する電線である。
 ここで、本明細書でいう破断や断線とは、検知線、シールド層等が実際に断線することのみを意味するものではなく、検知線や検知線素線、シールド層の一部が損傷、断線することや、膜厚が薄くなることも意味するものとする。単に、検知線やシールド層といった一つの導体の電気抵抗を測定するだけではなく、交流成分を含む検査信号を2つの導体に入力して、応答信号として、2つの導体間の特性インピーダンスを測定することで、破断前の異常をより正確に検知できる。
 図2Aに示すように、検知線12は、複数本の検知線素線の撚線である検知線導体121を有することができ、さらに検知線導体121の外周を被覆する検知線被覆122を有することもできる。
 図1Aにおいては、多芯ケーブル10が1本の検知線12を有する例を示したが、係る形態に限定されず、複数本の検知線12を有することもできる。複数本の検知線12が設けられている場合は、少なくとも1本の検知線12が、複数本の被覆電線11で囲まれた領域内に配置されていればよい。
 検知線12を複数本の被覆電線11で囲まれた領域内に配置することにより、検知線12の検知線導体121は、多芯ケーブル10に繰り返し屈曲や振動により負荷が加えられた際に、被覆電線11の電線導体よりも破断し易くなっている。このため、本実施形態の多芯ケーブルに、屈曲や振動により負荷が繰り返し加えられると、被覆電線11の電線導体よりも検知線12の検知線導体121の方が短期間で破断することになる。そして、検知線導体121について、特性インピーダンスの測定等、電気的特性の測定を行い、測定値の変化等から、検知線導体121の損傷や破断等の検知線導体121の状態を検出できる。このため、検知線導体121の電気的特性の測定を行うことで、被覆電線11が断線する前に、被覆電線11に断線の予兆が生じていることの検知を行える。すなわち、被覆電線11の断線を予測できる。
(検知線素線、検知線導体)
 本発明の発明者の検討によると、被覆電線等の電線の屈曲特性には、導体を構成する素線の素線径が影響しており、素線径が太いものほど繰り返し屈曲させて負荷を加えた場合に断線し易い。このため、検知線12が有する検知線素線の素線径が、被覆電線11が有する電線素線の素線径以上であることが好ましい。
 検知線12が有する検知線素線の素線径を、被覆電線11が有する電線素線の素線径以上とすることで、繰り返し屈曲させた場合に、検知線12の検知線導体121が、被覆電線11の電線導体より先に断線するように構成できる。そして、後述するように、検知線12の配置を特定の領域内とすることで、多芯ケーブルを繰り返し屈曲させ、負荷を加えた場合に、検知線12に被覆電線11よりも大きな負荷が加えられる。このため、検知線12が被覆電線11よりも断線し易くなり、検知線12が有する検知線導体121の電気的特性の測定を行い、検知線導体の状態を評価することで、被覆電線11の状態を把握し、被覆電線11の断線を予測できる。
 検知線12が有する検知線素線の素線径は、被覆電線11が有する電線素線の素線径よりも大きいことがより好ましい。検知線12が有する検知線素線の素線径を、被覆電線11が有する電線素線の素線径より大きくすることで、多芯ケーブル10を繰り返し屈曲させた際に、検知線12が被覆電線11よりも断線し易くなる。このため、被覆電線11の断線を早期に、精度よく予測できる。
 多芯ケーブルが、複数種類の被覆電線を有する場合、検知線が有する検知線素線は、少なくとも断線を予測することが求められる被覆電線11の電線素線の素線径以上であることが好ましい。
 図1Aに示した様に、多芯ケーブル10が、電源線14と、通信線15とを有する場合、上述のように検知線12が有する検知線素線の素線径は、少なくとも電源線14が有する電線素線の素線径以上であることが好ましい。すなわち、検知線12が有する検知線素線の素線径をD1211、電源線14が有する電線素線の素線径をD1411とした場合、D1211≧D1411であることが好ましい。特にD1211>D1411であることがより好ましい。
 検知線12が有する検知線素線の素線径は、多芯ケーブル10が含有する全ての被覆電線が有する電線素線の素線径以上であることが好ましい。多芯ケーブル10の場合、検知線12が有する検知線素線の素線径は、電源線14の電線素線の素線径、通信線15の電線素線の素線径と、D1211≧D1411、D1211≧D1511の関係であることが好ましい。特にD1211>D1411、D1211>D1511であることがより好ましい。上記式においては、検知線12が有する検知線素線の素線径をD1211、電源線14が有する電線素線の素線径をD1411、通信線15が有する電線素線の素線径をD1511として表記している。以下、同様に表記する。
 検知線12が有する検知線素線の素線径と、多芯ケーブル10が含有する全ての被覆電線が有する電線素線の素線径とを等しくすることもできる。多芯ケーブル10の場合、検知線12が有する検知線素線の素線径は、電源線14の電線素線の素線径、通信線15の電線素線の素線径と、D1211=D1411=D1511の関係とすることができる。多芯ケーブルが有する被覆電線11、検知線12に含まれる素線の素線径を同じとすることで、多芯ケーブルを製造する際に要する素線の種類を抑制し、生産性を高められる。
 検知線導体121の導体断面積S3は例えば0.08mm以上0.42mm以下とする形態を例示できる。検知線12が有する検知線導体121の導体断面積S3は電源線14が有する電線導体141の導体断面積S1よりも小さいことが好ましい。また、検知線12が有する検知線導体121の導体断面積S3は通信線15が有する電線導体151の導体断面積S2と同じか、導体断面積S2よりも小さいことが好ましい。
 従って、被覆電線11が電源線14と通信線15とを含む場合、電源線14が有する電線導体141の導体断面積S1と、通信線15が有する電線導体151の導体断面積S2と、検知線導体121の導体断面積S3とが、式(A)の関係を満たすことが好ましい。
 S1>S2≧S3 ・・・(A)
 電源線14が有する電線導体141の導体断面積S1と、通信線15が有する電線導体151の導体断面積S2と、検知線12が有する検知線導体121の導体断面積S3とが、上記式(A)の関係を充足することで、検知線12を複数本の被覆電線11で囲まれた領域A内に適切に配置できる。
 被覆電線11が電源線14を含む場合、既述のように電源線14の電線導体141は、複数本の電線素線を撚り合わせた第1撚線(子撚線)と、複数本の第1撚線を撚り合わせた第2撚線(親撚線)とを含むことができる。この場合、検知線導体121の撚りピッチは、電源線14が有する第1撚線の撚りピッチよりも長いことが好ましい。
 検知線導体121の撚りピッチを、電源線14が有する第1撚線の撚りピッチよりも長くすることで、検知線12が電源線14よりも断線し易くなる。このため、検知線12が有する検知線導体121の電気的特性の測定を行い、検知線導体121の状態を評価することで、多芯ケーブル10が有する被覆電線11のうち、特に断線予測の要求が高い、電源線14の断線を早期に、精度よく予測できる。
 なお、上記撚りピッチとは、撚線を構成する素線等のケーブルが1回撚られる長さを意味する。係る長さとは、撚線の中心軸に沿った長さを意味する。
 図4に、撚線40の側面図を示す。撚線40は、ケーブル400~ケーブル409の合計10本のケーブルが撚り合わされた構成を有する。
 この場合、図4に示すように、撚線40の側面において、中心軸CAに沿った同じケーブルの間、例えばケーブル400の間の距離が、撚線40の撚りピッチPtとなる。撚りピッチは、上記撚りピッチPtを測定することで求められる。
 本明細書において、撚りピッチや巻きピッチは同様にして測定、算出できる。
 また、被覆電線11が、通信線15を含む場合、既述のように通信線15の電線導体151は、複数本の電線素線を撚り合わせた第1撚線(子撚線)と、複数本の第1撚線を撚り合わせた第2撚線(親撚線)とを含むことができる。この場合、検知線導体121の撚りピッチは、通信線15が有する第1撚線の撚りピッチよりも長いことが好ましい。
 なお、通信線15の電線導体151は、単撚りとすることもできる。この場合、検知線導体121の撚りピッチは、通信線15が有する電線導体151の撚りピッチよりも長いことが好ましい。
 検知線導体121の撚りピッチを、通信線15が有する第1撚線の撚りピッチよりも長くすることで、検知線12が通信線15よりも断線し易くなる。なお、通信線15の電線導体151が単撚りの場合に、検知線導体121の撚りピッチを、通信線15が有する電線導体151の撚りピッチよりも長くした場合でも同様である。
 このため、検知線12が有する検知線導体121の電気的特性の測定を行い、検知線導体121の状態を評価することで、通信線15の断線についても早期に、精度よく予測できる。
 多芯ケーブル10が含有する各被覆電線11が有する電線素線の素線径と、検知線12が有する検知線素線の素線径とについて、以下の構成例を挙げられる。なお、以下は例示であり、以下の例に限定されるものではない。
 第1の例では、検知線12が有する検知線素線の素線径は、電源線14、および通信線15から選択された1以上の被覆電線の電線素線の素線径と等しくできる。例えば電源線14、通信線15の電線素線の素線径を既述の構成例の0.08mmとする。そして、検知線素線の素線径についても0.08mmである。42本の検知線素線が撚り合わされ(右撚り、14mmピッチ)、検知線導体121が形成される。このとき、検知線12の導体断面積S3は0.21mmである。検知線被覆を含めた検知線12の外径は1.3mmである。
 第2の例では、検知線12が有する検知線素線の素線径は、電源線14、および通信線15から選択された1以上の被覆電線の電線素線の素線径より大きい。例えば電源線14、通信線15の電線素線の素線径を既述の構成例の0.08mmとする。そして、検知線素線の素線径は0.10mmである。28本の検知線素線が撚り合わされ(右撚り、14mmピッチ)、検知線導体121が形成される。このとき、検知線12の導体断面積S3は0.22mmである。検知線被覆を含めた検知線12の外径は1.3mmである。この様に形成することで、上記第1の例の検知線素線よりも、第2の例の検知線素線を断線しやすくできる。
 上記いずれの例においても、既述のように電源線14より検知線12が断線しやすくするため、例えば電源線14が有する電線導体141の第1撚線の撚りピッチよりも、検知線12が有する検知線導体121の撚りピッチの方が長い方がよい。
 また、通信線15より検知線12が断線し易くするため、例えば通信線15が有する電線導体151の第1撚線の撚りピッチよりも、検知線12が有する検知線導体121の撚りピッチが長い方がよい。
 なお、通信線15の電線導体151が単撚りの場合には、例えば通信線15が有する電線導体151の撚りピッチよりも、検知線12が有する検知線導体121の撚りピッチが長い方がよい。
 検知線素線の材料は特に限定されないが、例えば銅や、アルミニウム、銅合金等が挙げられる。検知線素線は、表面に銀や錫のめっき処理が施されていてもよい。このため、検知線素線の材料として、例えば銀めっき銅合金や、錫めっき銅合金等を用いることもできる。
(検知線被覆)
 検知線被覆122の材料については特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素樹脂や、ポリエチレンテレフタレート(PET)などのポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂等から選択された1種類以上の樹脂を用いることができる。検知線被覆122の樹脂は架橋されていても良く、架橋されていなくてもよい。
 検知線被覆122は、上記樹脂以外に難燃剤、難燃助剤、酸化防止剤、滑剤、着色剤、反射付与剤、隠蔽剤、加工安定剤、可塑剤等の添加剤を含有することもできる。
(シールド導体、外周被覆)
 図2Bに示すように、検知線は、同軸ケーブルにより構成されてもよい。つまり、検知線120は、複数本の検知線素線の撚線である検知線導体121と、検知線導体121の外周を被覆する検知線被覆122と、検知線被覆122の外周を被覆するシールド導体123と、を有してもよい。シールド導体123は、複数本のシールド素線を撚り合わせて構成されてもよく、銅箔などの金属箔により構成されてもよい。さらに、シールド導体123の外周を被覆する外周被覆124を有することもできる。
 2つの導体間の特性インピーダンスの測定を行う場合、例えば、検知線12の検知線導体121と、シールド導体123との間に測定装置を接続する。検知線12の検知線導体121と、シールド導体123との位置が一定であり、また、間に他の被覆電線を挟まないことで、特性インピーダンスの測定を行う際のノイズを抑制し、測定を安定して行うことが可能になる。また、シールド導体123の外周に外周被覆124を設けることで、シールド導体123や、検知線被覆122、検知線導体121を保護できる。このため、被覆電線の断線の予兆を検知する場合と関係なく、検知線導体121が断線することを防止できる。
(1-2-2)配置
 長手方向と垂直な断面において、含有する被覆電線が、該断面における中心を対称点とした点対称に配置された多芯ケーブルを考えた場合、多芯ケーブルの曲げ中心と断面中心とは一致しており、中心の曲げひずみは0である。このため、中心に配置された被覆電線の破断は生じにくい。
 本実施形態の多芯ケーブル10のように、多芯ケーブル10の曲げ中心と断面中心とが一致しない場合、検知線12の多芯ケーブル10内における配置による、多芯ケーブルを繰り返し屈曲した場合の負荷の大きさの予測が特に難しかった。そこで、本発明の発明者は検討を行い、多芯ケーブル10を繰り返し屈曲した場合に、検知線12の多芯ケーブル10内における配置による負荷の大きさの違いを求めた。その結果、多芯ケーブル10では、多芯ケーブル10の長手方向と垂直な断面において、検知線12を、複数本の被覆電線11で囲まれた領域内に配置することで、多芯ケーブルを繰り返し屈曲させた際に、検知線12に加わる負荷が大きくなることが分かった。このため、多芯ケーブル10の長手方向と垂直な断面において、検知線12を複数本の被覆電線11で囲まれた領域内に配置することで、検知線12の破断が生じやすくなる。
 また、多芯ケーブルの曲げ中心と断面中心とが一致しない場合、多芯ケーブル内における検知線12の配置によって、検知線12に加わる負荷の大きさが異なるために、検知線12についての評価結果から、被覆電線11の破断の予測を行うのは特に難しい。具体的には例えば、複数本の被覆電線と検知線を撚り合わせたコアを有する多芯ケーブルを製造した場合、製造ロットが異なる多芯ケーブルごとに、検知線12の配置がずれ、破断のタイミングにずれが生じやすい。これに対して、本実施形態の多芯ケーブル10では、多芯ケーブル10の長手方向と垂直な断面において、検知線12を複数本の被覆電線11で囲まれた領域内に配置することで、製造ロットが異なる多芯ケーブルであっても、多芯ケーブル内の検知線12の配置が安定する。長手方向に沿った位置で、被覆電線11と、検知線12との経時的な位置ズレを抑制することにも寄与する。
 以上の検討結果から、本実施形態の多芯ケーブル10は、長手方向と垂直な断面において、検知線12を、複数本の被覆電線11で囲まれた領域内に配置することが好ましい。
 上記配置とすることで、多芯ケーブルの長手方向と垂直な断面において、周方向に沿って構成の異なる被覆電線が配置され、被覆電線が該断面における中心を対称点とした点対称に配置されていない場合でも、多芯ケーブルを繰り返し屈曲させた場合に、検知線に他の被覆電線よりも大きな負荷が加えられる。また、検知線を、複数本の被覆電線で囲まれた領域内に配置することで、多芯ケーブルを繰り返し屈曲させた場合でも、コア内での検知線の位置が安定する。従って、検知線が有する検知線導体の電気的特性の測定を行い、検知線導体の状態を評価することで、被覆電線の断線を適切なタイミングで予測できる。
 多芯ケーブル10の長手方向と垂直な断面において、複数本の被覆電線11で囲まれた領域Aとは、複数本の被覆電線の中心で囲まれた領域であって、かつ、複数本の被覆電線11の外周部分で囲まれた領域である。例えば図1Aの構成では、検知線12は、被覆電線11の中心O141、O142、O151、O152で囲まれた領域であって、かつ、複数本の被覆電線11の外周部分で囲まれた領域である領域Aに配置されている。
 ここで、検知線12の配置と、検知線に加えられる負荷の大きさとの関係のシミュレーション結果を図6A~図6Cに示す。
 上記シミュレーションは図5に示した耐屈曲性試験を実施した場合のシミュレーション結果である。耐屈曲性試験は以下の手順に従って実施できる。まず、図5に示すように、水平かつ互いに平行に配置された直径20mmの第1マンドレル511と、第2マンドレル512の間に、評価を行う多芯ケーブル50を配置して挟み、多芯ケーブル50に対して鉛直下方に500gの荷重を加える。そして、上記状態で、多芯ケーブル50の上端を第1マンドレル511の上側に当接するように水平方向に90°屈曲させた後、第2マンドレル512の上側に当接するように水平方向に90°屈曲させることを繰り返し実施する。
 図6A~図6Cは、上記耐屈曲性試験を実施した際の、ステップごとに多芯ケーブルの曲げ角度、方向を変化させた際の、多芯ケーブルに含まれる検知線、被覆電線の曲率の最大値の変化を示している。曲率の最大値が、検知線、被覆電線の屈曲されている程度を示しており、すなわち検知線、被覆電線に加えられる負荷に相当する。
 図6Aは、図1Aに示した、検知線12を、複数本の被覆電線11で囲まれた領域A内に配置した多芯ケーブル10を、上記耐屈曲性試験に供した場合のシミュレーション結果である。
 図6Bは、図1Dに示した、検知線12Aを、複数本の被覆電線11で囲まれた領域Aの外に配置した多芯ケーブル111を、上記耐屈曲性試験に供した場合のシミュレーション結果である。多芯ケーブル111では、検知線12Aを、複数本の被覆電線11の外周側、具体的には2本の電源線14と、外被13との間に配置している。図1Dに示した多芯ケーブル111は、検知線の配置を変更した点以外は図1Aに示した多芯ケーブル10と同じ構成になっている。
 図6Cは、図6A、図6Bに示した耐屈曲性試験のシミュレーション結果のうち、検知線についての結果を示したものである。図6C中、検知線中央が図6Aにおける検知線についてのシミュレーション結果を、検知線外側が図6Bにおける検知線についてのシミュレーション結果を、それぞれ示したものである。
 図6A、図6B中、電源線1、電源線2が、図1Aの多芯ケーブル10における電源線14に、通信線1、通信線2が、図1Aの多芯ケーブル10における通信線15にそれぞれ当たる。また、図6A~図6C中、点線61が多芯ケーブルの屈曲角度が90度に達した状態、すなわち第1マンドレル511に接した状態を、点線62が多芯ケーブルの屈曲角度が-90度に達した状態、すなわち第2マンドレル512に接した状態をそれぞれ示す。図6A~図6Cにおいて、横軸のステップ0は多芯ケーブルについて、0度曲げの状態に対応し、ステップ2.5は90度曲げの状態に対応する。また、ステップ7.5は-90度曲げの状態に対応し、ステップ12.5は、90度曲げの状態に対応する。すなわち横軸における1ステップは、18度の曲げに対応する。
 図1Aに示した多芯ケーブル10の様に、検知線12を複数本の被覆電線11で囲まれた領域A内に配置することで、図6Aに示す様に曲率の最大値が極大値を取る位置において、検知線12の方が、被覆電線11よりも加わる負荷が大きいことが確認できる。上記曲率の最大値が極大値を取る位置とは、点線61で示した屈曲角度が90度に達した状態での位置、および点線62で示した屈曲角度が-90度に達した状態での位置を意味であり、以下同様である。
 これに対して、図1Dに示した多芯ケーブル111の様に、検知線12を複数本の被覆電線11で囲まれた領域Aの外に配置することで、図6Bに示す様に曲率の最大値が極大値を取る位置において、検知線12の方が、被覆電線11よりも加わる負荷が小さくなることを確認できる。図1Dに示した多芯ケーブル111は、既述のように検知線12を電源線14と外被13とで囲まれた領域内に配置している。
 図6Cは、図6A(検知線中央)と図6B(検知線外側)に示した結果のうち、検知線について、曲率の最大値の変化を取り出したグラフである。検知線12を複数本の被覆電線11で囲まれた領域A内に配置(検知線中央)すると、検知線12を複数本の被覆電線11で囲まれた領域Aの外に配置(検知線外側)した場合と比較して、検知線に加わる負荷が大きくなることを確認できる。
 従って、多芯ケーブル10の長手方向と垂直な断面において、検知線12を、複数本の被覆電線11で囲まれた領域A内に配置することで、多芯ケーブル10を繰り返し屈曲させ、負荷を加えた場合に、検知線12に被覆電線11よりも大きな負荷が加えられる。このため、検知線12が被覆電線11よりも早く断線し易くなり、検知線12が有する検知線導体121の電気的特性の測定を行い、検知線導体121の状態を評価することで、被覆電線11の断線を予測できる。
(1-3)コア
 多芯ケーブル10は、既述の複数本の被覆電線11と、検知線12とを含むコア17を含有できる。コア17は、既述の複数本の被覆電線11と、検知線12とを、長手方向に沿って撚り合わせて構成できる。
 コア17を構成する複数本の被覆電線11と、検知線12との配置は、コア17が含有する複数本の被覆電線11の構成に応じて選択できる。例えば被覆電線11は、2本の電源線14である第1電源線14Aと、第2電源線14Bとを含むことができる。例えば第1電源線14Aについてはグランド電位に接続することができる。この場合、コア17において、上記電源線14のうち、第1電源線14Aと、検知線12とが接するように配置され、撚り合わされていることが好ましい。
 後述するように、特性インピーダンスの測定を行う場合、検知線12と、電源線14、通信線15のいずれかの被覆電線11、シールド導体123、またはシールド層20との間で行う。このため、検知線12と、グランド電位に接続する第1電源線14Aとが接して撚り合わされていることで、特性インピーダンスの測定を行う際のノイズを抑制し、特性インピーダンスの測定を容易に、安定して行うことが可能になる。
 図1Aに示すように、検知線12は、2本の電源線14の両方と接するようにして、撚り合わされていてもよい。
 コア17の撚り方向は任意に選択できるが、一例では右撚りが挙げられる。
 コア17の撚りピッチについても任意に選択できるが、一例では90mmが挙げられる。
 なお、上記撚り方向、撚りピッチは例示であり、上記例に限定されるものではない。
(1-4)外被
 多芯ケーブル10は、コア17の外周を被覆する外被13を有することができる。外被13は、例えばポリマー材料を主成分とする絶縁体の押出成形体として構成でき、多芯ケーブル10の最外周を構成できる。
 外被13の構成は特に限定されず、例えば1層または2層以上により構成できる。例えば図1Aに示すように、外被13は、内層131と、外層132との2層により構成することもできる。この場合、最外周に配置される外層132は、内層131よりも耐摩耗性等の機械的特性に優れた材料により構成されていることが好ましい。
 外被13の材料は特に限定されないが、図1Aに示すように外被13が内層131と、外層132とを有する場合、内層131は、樹脂成分として、例えばポリエチレンやエチレン-酢酸ビニル共重合体(EVA)等のポリオレフィン、ポリウレタンエラストマー、ポリエステルエラストマー等から選択された1種類以上を含有することができる。
 外層132は、多芯ケーブル10の最表面に配置されるため、耐外傷性や耐摩耗性に優れた材料であることが好ましく、例えば樹脂成分として、ポリウレタン等を含有することができる。
 外被13の樹脂成分は架橋されていても良く、架橋されていなくてもよい。
 外被13は、上記樹脂成分以外に難燃剤、難燃助剤、酸化防止剤、滑剤、着色剤、反射付与剤、隠蔽剤、加工安定剤、可塑剤等の添加剤を含有することもできる。
(1-5)シールド層
 図1Bに示すように、本実施形態の多芯ケーブル100は、コア17の外周を被覆するシールド層20を有することもできる。この場合、シールド層20は、コア17と、外被13との間に配置できる。
 既述の検知線12は、検知線導体121の損傷や破断を指標として、被覆電線11の電線導体の金属疲労の蓄積による断線を予測するものである。
 しかし、多芯ケーブルに含まれる被覆電線においては、金属疲労による電線導体の断線以外にも、損傷が生じる可能性がある。例えば、電線導体の金属疲労による断線が、屈曲や振動の繰り返しにより、長期にわたって進行するものであるのに対し、外力等により、突発的に被覆電線に大きな衝撃が加わった際にも、電線導体に断線が生じる可能性がある。また、外部の物体との接触や摩擦等により、被覆電線に外傷が生じ、電線被覆や、さらには電線導体の破断に至る可能性がある。
 既述の検知線12の破断を利用する検知法においては、金属疲労による電線導体の断線の予兆等を敏感に検知できる。しかし、突発的な衝撃による電線導体の断線の予兆や、外部の物体との接触や摩擦による被覆電線11への外傷の形成や、その予兆は、検知が難しい。
 そこで、本実施形態の多芯ケーブルが、検知線12に加えて、シールド層20を外側検知層として機能させることで、突発的な衝撃や外傷に起因する被覆電線11の損傷の予兆も、金属疲労による断線の予兆と合わせて検知できるようになる。外側検知層として機能するシールド層20は、特性インピーダンスを測定する検査信号を入力するために、グランド電位またはアース電位と導通しない方が好ましい。
 シールド層20の配置は特に限定されず、多芯ケーブルに含まれるコア17よりも外周側に配置できる。シールド層20を、外被13の外周に配置し、被覆電線11の損傷の予兆を検知することもできるが、正確な損傷の検知を継続し、シールド層20を外部の環境から保護する観点から、シールド層20は、外被13の内側に配置することが好ましい。このため、上述のようにシールド層20は、コア17と、外被13との間に配置することが好ましい。
 なお、本実施形態の多芯ケーブル100が、後述する抑え巻18を有する場合、シールド層20は、抑え巻18よりも内側、例えばコア17と抑え巻18との間に配置することが好ましい。抑え巻18よりも内側にシールド層20を配置することで、多芯ケーブル10の長手方向の端部で、被覆電線11や、検知線12を取出す際に、シールド層20も容易に取り出すことができる。
 多芯ケーブル100の長手方向と垂直な断面において、シールド層20は、被覆電線11や、検知線12よりも外側に配置されている。このため、多芯ケーブル100が外力により突発的に衝撃を受けた際や、外部の物体との間で接触や摩擦を受けた際に、被覆電線11や、検知線12よりもシールド層20の方が大きな負荷を受けやすく、破断しやすい。従って、シールド層20を配置し、シールド層20の損傷、破断を検出することで、被覆電線11に衝撃や外傷に起因する損傷の予兆が発生していることを敏感に検知できる。その結果、被覆電線11の断線の予測の精度を高められる。
 本実施形態の多芯ケーブルは、既述の検知線12により主に金属疲労に起因する被覆電線11の断線の検知、予測を行うことできる。そして、本実施形態の多芯ケーブル100が、外側検知層として機能するシールド層20を有することで、衝撃や外傷に起因する被覆電線11の損傷の予兆も検知できる。従って、本実施形態の多芯ケーブル100がシールド層20を有することで、被覆電線11に関して多様な損傷の予兆を検知できる。
 シールド層20は、導電性部材を有するものであればよく、構成は特に限定されない。シールド層20は、例えば以下に説明するように、導電テープや、金属素線、編組により構成できる。
 なお、シールド層20は上述のように導電性部材を有するものであればよいが、導電性部材の厚さが、検知線12の検知線導体121の外径よりも小さいことが好ましい。導電性部材の厚さとは、例えば以下の導電テープを用いる場合には導電層の厚さを、金属素線を用いる場合には金属素線により形成された導電層の厚さを意味する。
 導電性部材の厚さを、検知線導体121の外径よりも小さくすることで、検知線12の破断には至らない突発的な衝撃の印加や、外部の物体との接触や摩擦を受けた際にも、シールド層の導電性部材が破断を起こしやすくなる。このため、検知線12だけでは検知できない被覆電線11の損傷の予兆を、シールド層20によって敏感に検知することが可能になる。
 シールド層20は、コア17の外周に金属等の導電性物質を含有する層を配置することで形成できる。
 例えば、コア17の外周に、コア17の長手方向に沿って、導電層を含む導電テープを螺旋状に巻き付けることでシールド層20を構成できる。
 この場合、導電テープは、基材の上面、および下面の内、一方の面上に導電層を配置できる。このため、例えば図3Aに示すように、導電テープ30は、基材31と、導電層32とを積層した構造を有することができる。導電テープ30は、後述するドレイン線21と電気的に接続するように、導電層32がコア17側に位置することが好ましい。すなわち面30Aがコア17側に位置することが好ましい。このため、シールド層20は、コア側に配置された導電層32と、外被側に配置された基材31とが積層された構造にできる。導電テープ30は、隙間なく異常を感知するため、互いに接するように螺旋状に巻き付けられることが好ましい。導電テープ30をコア17に巻き付ける際に、外側に基材31が設けられることで、導電層32は巻きけられても互いに接触することは無く、後で説明するように破断が生じている位置まで特定することができる。
 なお、後述するように、シールド層20は、コア17側に基材を配置することもでき、この場合、シールド層20は、コア側に配置された基材31と、外被側に配置された導電層32とが積層された構造にできる。
 また、図3Bに示すように、導電テープ300は、第1導電層321と、基材31と、第2導電層322とを積層した構造を有することもできる。この場合、いずれの面がコア17側に向いてもよい。
 図3A、図3Bは、導電テープを構成する各層の積層方向に沿った面での断面図になる。なお、図3Bに示した導電テープ300のように、基材の両面に導電層が設けられる場合には、導電テープが互いに接しないように、隙間を設けて巻かれるのが良い。この様に構成することで、破断が生じている位置まで特定することができる。
 導電層32や、第1導電層321、第2導電層322の材料は特に限定されないが、金属を含んでいることが好ましく、例えば金属箔とすることができる。導電層32、第1導電層321、第2導電層322が金属を含む場合、金属の材料としては特に限定されないが、例えば銅、銅合金、アルミニウム、アルミニウム合金等を用いることができる。
 基材31の材料についても特に限定されないが、有機ポリマー材料や不織布等、絶縁性の材料により構成されていることが好ましい。有機ポリマー材料としては、例えばポリエチレンテレフタレート(PET)等のポリエステル樹脂、ポリプロピレン等のポリオレフィン樹脂、ポリ塩化ビニル等のビニル樹脂等が挙げられる。基材31は、絶縁性の材料を含む基材とすることができ、絶縁性の材料のみからなる基材とすることもできる。
 上述のように、導電テープを巻き付けてシールド層20を形成する場合、導電テープの巻き方向は任意に選択でき、例えば既述のコア17の撚り方向と同じ方向であっても良く、異なる方向であっても良い。特にコア17の撚り方向と、導電テープの巻き方向とは同じ方向であることが好ましい。
 導電テープの巻きピッチは任意に選択できるが、一例では18mmが挙げられる。
 なお、上記巻きピッチは例示であり、上記例に限定されるものではない。
 上記では、外側検知層として機能するシールド層20として説明したが、単に多芯ケーブル内の被覆電線をシールドするために用いられてもよい。この場合、シールド層20はグランド電位またはアース電位と導通する。
 コア17と、導電テープとの間には、接着剤等の導電テープを固定するための材料を配置しても良く、配置しなくても良い。
 また、コア17の外周に金属素線を横巻、または編組構造で配置することで、シールド層20を構成することもできる。すなわち、シールド層20を、金属素線により構成できる。金属素線の材料としては、銅や、アルミニウム、銅合金等を用いることができる。このため、金属素線としては、硬銅線等を用いることもできる。金属素線は、表面に銀や錫のめっき処理が施されていてもよい。このため、金属素線としては、例えば銀めっき銅合金や、錫めっき銅合金等を用いることもできる。
(1-6)ドレイン線
 図1Bに示すように、本実施形態の多芯ケーブル100は、ドレイン線21を有することもできる。ドレイン線21は、既述のシールド層20と接する、詳しくは、シールド層20が導電テープ30で形成されている場合には、導電層32と接していることが好ましい。
 シールド層20が破断しているかを評価するためには、シールド層20を外部の計測装置に電気的に接続する必要がある。シールド層20を既述の導電テープ等で形成した場合、シールド層20を端子に直接接続することが困難な場合がある。このため、ドレイン線21を設け、ドレイン線21をシールド層20、例えば既述の導電層32や、第1導電層321または第2導電層322等に接触させておくことで、シールド層20を、ドレイン線21を介して容易に端子に接続できる。
 ドレイン線21は、少なくとも1か所でシールド層20と接していれば良いが、すなわち電気的な接続がとれていれば良いが、ドレイン線21は、ドレイン線21の長手方向に沿って複数箇所でシールド層20と接していることが好ましい。
 ドレイン線21の構成は特に限定されない。ドレイン線21は、例えば複数本のドレイン素線を撚り合わせた撚線であることが好ましい。
 ドレイン素線の素線径や、本数は、ドレイン線21に要求される電気特性に応じて選択でき、特に限定されない。例えばドレイン素線の素線径は0.05mm以上0.16mm以下であることが好ましく、0.05mm以上0.10mm以下であることがより好ましい。ドレイン線21が有するドレイン素線の素線径、ドレイン線21の導体断面積の構成として以下の構成例を挙げられる。なお、以下は例示であり、以下の例に限定されるものではない。
 一例では、ドレイン素線の素線径は0.08mmである。42本のドレイン素線が撚り合わされ(右撚り、12mmピッチ)、ドレイン線21が形成される。このとき、ドレイン線21の導体断面積は0.21mmである。
 ドレイン素線の材料は特に限定されないが、例えば銅や、アルミニウム、銅合金等が挙げられる。ドレイン素線は、表面に銀や錫のめっき処理が施されていてもよい。このため、ドレイン素線の材料として、例えば銀めっき銅合金や、錫めっき銅合金等を用いることもできる。
 ドレイン線21は、既述のシールド層20との間で電気的に接続させるため、ドレイン素線の撚線の表面には被覆を設けないことが好ましい。
 上記において、シールド層20とドレイン線21とが電気的に接続する構成を説明したが、電気的に接続しない構成を取ることもできる。つまり、基材31がコア17側に位置し、基材31とドレイン線21が接する構成である。この場合、シールド層20は、コア17側に配置された絶縁性の材料を含む基材31と、導電層32とが積層された構造を有することができる。そして、基材31とドレイン線21とが接する構成にできる。
 上記の場合、ドレイン線21はグランド電位と電気的に接続し、シールド層20は外側検知層として機能する。シールド層20がドレイン線21と接して巻かれることで、特性インピーダンスの測定を行う際のノイズを抑制し、特性インピーダンスの測定を容易に、安定して行うことが可能になる。
(1-7)抑え巻
 本実施形態の多芯ケーブル10は、コア17の外周を被覆する抑え巻18を有することもできる。抑え巻18は、コア17の外周に紙や、不織布、ポリエステルなどの樹脂等の絶縁性材料により構成されたテープ体を、コア17の長手方向に沿って螺旋状に巻き付けた形態を好適に例示できる。
 コア17の外周に抑え巻18を配置することで、抑え巻18は、コア17を構成する被覆電線11や、検知線12の位置が相互に離れないようにまとめる役割を果たす。このため、コア17内において、被覆電線11や、検知線12の位置が変位することを抑制できる。すなわち、被覆電線11と、検知線12との位置関係が、長手方向に沿った位置によって変化することや、経時的に変化することを抑制できる。このため、多芯ケーブルに、屈曲や振動等の外力が印加された際に、被覆電線11が受ける負荷と、検知線12が受ける負荷との関係性が、多芯ケーブルの長手方向の位置や、時間によらず、一定に維持されやすい。よって、検知線12の検知線導体121に破断が起こった際に、該破断を検出することで、多芯ケーブルの長手方向に沿った位置や時期によらず、被覆電線11の電線導体に同程度の金属疲労が蓄積され、被覆電線11に断線の予兆が発生していることの指標にできる。つまり、被覆電線11の断線の予兆を、位置や時期に依存しない感度で、正確に検知することができる。
 また、コア17の外周に抑え巻18を配置することで、コア17と、外被13とが直接接することを防止できるため、多芯ケーブル10の長手方向の端部で、被覆電線11や、検知線12を取出す際に、容易に外被13を剥離できる。
 上述のように、コア17の外周にテープ体を巻き付けて抑え巻18を形成する場合、抑え巻18の巻き方向は任意に選択でき、例えば既述のコア17の撚り方向と同じ方向であっても良く、異なる方向であっても良い。特にコア17の撚り方向と、抑え巻18の巻き方向とは同じ方向であることが好ましい。
 また、抑え巻18の巻きピッチは、コア17の巻きピッチよりも短いことが好ましい。これは、抑え巻18の巻きピッチを、コア17の巻きピッチよりも短くすることで、コアを構成する被覆電線11や、検知線12間に形成された凹部に抑え巻18を形成するテープ体が落ち込むことを抑制し、抑え巻18の表面を平滑にできるためである。
 抑え巻18の巻きピッチは任意に選択できるが、一例では20mmが挙げられる。
 なお、上記巻きピッチは例示であり、上記例に限定されるものではない。
(1-8)介在
 本実施形態の多芯ケーブル10は、外被13で囲まれた領域内、例えばコア17内に配置された介在19を有することもできる。介在19は、スフ糸やナイロン糸などの繊維で構成することができる。介在は、抗張力繊維で構成してもよい。
 既述のように、本実施形態の多芯ケーブル10は、被覆電線として、例えば2本の電源線である第1電源線14Aおよび第2電源線14Bと、2本の通信線15とを含むことができる。そして、2本の通信線15は撚り合わされて対撚通信線16とすることができる。
 この場合、介在19は、第1介在191、および第2介在192を含むことができる。
 そして、図1Cに示した多芯ケーブル110のように、コア17の長手方向と垂直な断面において、検知線12を2本の電源線14と、対撚通信線16と、介在19とで囲まれた領域内に配置することが好ましい。
 図1Cの多芯ケーブル110の例では、第1介在191は、第1電源線14Aと、対撚通信線16とに接するように配置できる。また、第2介在192は、第2電源線14Bと、対撚通信線16とに接するように配置できる。
 図1Cの多芯ケーブル110では、検知線12と介在19とが離して配置されているが、介在19は検知線12と接するように配置してもよい。
 多芯ケーブル10が、外被13で囲まれた領域内に介在19を有することで、多芯ケーブル10を屈曲させた時の検知線12の位置ズレや経時的な位置ズレを防止することができる。さらに、検知線12による被覆電線11の断線の予測精度を高めることができる。
 介在19を上述のように配置し、検知線12を2本の電源線14と、対撚通信線16と、介在19とで囲まれた領域内に配置することで、多芯ケーブル110を屈曲させたときの検知線12の位置ズレや経時的な位置ズレを防止できる。さらに、検知線12による被覆電線11の断線の予測精度を高めることができる。
 以上に説明した本実施形態の多芯ケーブルは、機器等において所定の機能を果たす被覆電線11に加えて、検知線12を含んでいる。そして、検知線12は、多芯ケーブルの長手方向と垂直な断面において、複数本の被覆電線で囲まれた領域A内に配置されており、係る領域は多芯ケーブルを繰り返し屈曲させた場合に大きな力が加わり易い。
 また、検知線12が含有する検知線素線の素線径は、被覆電線11の電線素線の素線径以上であり、多芯ケーブルを繰り返し屈曲させた際に、検知線12の検知線導体121は、被覆電線11の電線導体より先に破断するように構成できる。
 このため、多芯ケーブルを繰り返し屈曲させた場合に被覆電線11の電線導体よりも、検知線12の検知線導体121の方が破断し易く、係る検知線導体121の電気的特性の測定を行い検知線導体121の状態を評価することで、被覆電線の断線を予測できる。
 なお、検知線導体121や、シールド層20の破断は、特性インピーダンスの測定等、電気的測定によって検出することができる。評価方法は、後述する断線検知装置の中で説明する。
 本実施形態の多芯ケーブルは、被覆電線の断線を予測することが求められる各種用途に用いることができる。本実施形態の多芯ケーブルは、自動車等の、運動によって多芯ケーブルに屈曲や振動が頻繁に加えられる機器、例えばパーキングレーキを電動化した電動パーキングブレーキに用いるのに適している。中でも、自動車のフットブレーキを電動化した電動ブレーキシステム等、被覆電線が断線した場合に生じうる影響が大きく、被覆電線の断線を未然に検知することの意義が大きい用途に、好適に用いることができる。電動ブレーキシステムにおいては、電源線はモータを駆動させるための電力を供給するように構成され、通信線はモータの制御に関する電気信号や、車輪の回転速度に関する電気信号を伝達するように構成される。
[断線検知装置]
 本実施形態の断線検知装置は、既述の多芯ケーブルと、多芯ケーブルが有する検知線の検知線導体に接続された計測装置とを有することができる。計測装置は、交流成分を含む検査信号を検知線導体に入力し、特性インピーダンスを測定するように構成できる。
 図7に、本開示の一実施形態にかかる断線検知装置70の構成を模式的に示す。断線検知装置70は、既述の多芯ケーブルを対象として、被覆電線の電線導体の断線の予兆を検知、すなわち断線を予測するものである。図7においては、簡略化のため、多芯ケーブル71の構成部材としては、被覆電線の電線導体711と、検知線の検知線導体712とを、それぞれ1本のみ示しており、その検知線導体712に異常、または破断X1が生じた状態を示している。
 断線検知装置70は、計測装置72を有することができる。計測装置72は、例えば多芯ケーブル71に含まれる検知線が有する検知線導体712の特性インピーダンスを計測することにより、検知線導体712に異常、または破断X1が発生しているか否かを検査する装置である。すなわち、計測装置72は、例えば検知線導体712の特性インピーダンスを測定するように構成できる。特性インピーダンスの測定は、交流成分を含む検査信号を、導体、例えば検知線導体712に入力することで実施できる。特性インピーダンスの測定は、好ましくは交流成分を含む検査信号を2つの導体に入力し、応答信号として、2つの導体間の特性インピーダンスを測定することで行うことができる。2つの導体間の特性インピーダンスの測定は、着目している検知線導体712と、電源線14、通信線15のいずれかの被覆電線11の電線導体、シールド導体、またはシールド層の導電層との間で行えばよい。多芯ケーブルが複数の検知線を有する場合には、2つの検知線導体712との間で測定を行ってもよい。交流成分を含む検査信号を、上記2つの導体に入力し、特性インピーダンスを測定する。このため、計測装置は、例えば交流成分を含む検査信号を検知線導体と電線導体に入力し、検知線導体と電線導体の間の特性インピーダンスを測定するように構成できる。なお、電線導体の代わりに、上述のようにシールド導体や、シールド層の導電層とすることもできる。応答信号は、反射法または透過法によって取得する。計測装置72としては、LCRメーター等が挙げられる。
 検知線導体712の中途部に異常、または破断X1が存在すると、破断X1の箇所で検査信号の反射が起こるので、応答信号に不連続な変化が発生する。そこで、計測装置72によって計測される特性インピーダンスに、基準値以上の変化が生じた場合に、検知線導体712に異常、または破断X1が発生しており、被覆電線の電線導体711に断線の予兆が生じていると判定できる。すなわち、被覆電線の断線を予測できる。基準値は、検知線導体712に異常、または破断X1が発生していない場合の実測結果等に基づいて、検知線導体712の異常、または破断によるものとみなすべき変化量の閾値として、予め定めておくことができる。なお、特性インピーダンスの変化は、破断にまでは至らない検知線導体712の損傷等の異常によっても発生する。本明細書においては、破断による特性インピーダンスの変化を代表として扱っているが、破断以外の検知線導体712の損傷についても、同様に、特性インピーダンスの変化を介して、被覆電線の断線の予兆の検知、すなわち予測に利用することができる。
 検知線導体712の異常、または破断X1の検出は、2つの導体間の特性インピーダンスの測定に限らず、単に1つの導体(検知線導体712)の電気抵抗を測定することで行ってもよい。ただし、2つの導体間の特性インピーダンスを測定することで、実際の破断前に、より高感度に検知線導体712の異常を検知することができる。特に、特性インピーダンス測定を反射法によって行う場合には、計測装置72を多芯ケーブル71の両端に接続しなくても、一端にのみ計測装置72を接続することができれば、特性インピーダンスの測定を実施することができる。このため、検知線導体712の一端にさえ計測装置72を接続することができれば、多芯ケーブルを取り外したり、障害物を除去したりすることなく、被覆電線における断線の予兆の検知を行うことができる。従って、上述のように検知線導体712の一端に計測装置72が接続できれば、多芯ケーブル71が車両の内部等において、容易にアクセスできない箇所に配置されている場合や、複雑な経路をとっている場合でも、被覆電線における断線の予兆の検知を実施できる。
 さらに、検知線導体712の特性インピーダンスの計測を、時間領域反射法(TDR法)によって行えば、検知線導体712における破断X1の有無のみならず、破断X1が生じている位置まで特定することも可能である。
 多芯ケーブルが、既述のシールド層を有する場合、シールド層の破断についても、計測装置を用いて同様に測定できる。このため、本実施形態の断線検知装置が含有する多芯ケーブルがシールド層を有する場合、本実施形態の断線検知装置は、多芯ケーブルが有するシールド層に接続された計測装置を有することもできる。既述の検知線導体に接続された計測装置と、シールド層に接続された計測装置とは、1台の計測装置により構成しても良く、それぞれ別の計2台の計測装置により構成しても良い。検知線導体に接続された計測装置と、シールド層に接続された計測装置とを、1台の計測装置により構成する場合、測定対象に応じて接続を切り替えられるようにスイッチ等を配線上に設けておくことが好ましい。
 シールド層の破断の検出は、2つの導体間の特性インピーダンスの測定に限らず、単に1つの導体(シールド層)の電気抵抗を測定することで行ってもよい。ただし、2つの導体間の特性インピーダンスを測定することで、実際の破断前に、より高感度にシールド層の異常を検知することができる。シールド層に破断が生じると、特性インピーダンスに不連続な変化が生じる。シールド層の特性インピーダンスの測定は、シールド層と、電源線14、通信線15のいずれかの被覆電線11の電線導体、シールド導体、または検知線導体712との間で行えばよい。交流成分を含む検査信号を、上記2つの導体に入力し、特性インピーダンスを測定する。シールド層についても、検知線導体と同様に、特性インピーダンスの計測を、TDR法によって行えば、異常、または破断の有無のみならず、異常、または破断が生じている位置まで特定することも可能である。なお、シールド層において、特性インピーダンスの変化は、破断にまでは至らないシールド層の損傷によっても発生する。本明細書においては、シールド層の破断による特性インピーダンスの変化を代表として扱っているが、破断以外のシールド層の損傷についても、同様に、特性インピーダンスの変化を介して、被覆電線の損傷の予兆の検知に利用することができる。
 本実施形態の断線検知装置70は、通知装置73を有することもできる。通知装置73には、計測装置72から計測結果についての信号が伝達される。計測装置72によって検知線導体712やシールド層の特性インピーダンスに基準値以上の変化が生じ、検知線導体712やシールド層に断線が生じていると判定された際に、通知装置73が、被覆電線の電線導体711についての断線の予兆を外部に通知できる。
 外部への通知の具体的な方法は特に限定されないが、例えば、自動車等の多芯ケーブルが配置された機器に、通知装置73としてディスプレイパネル等を設け、視覚的に通知する方法や、警報音によって通知する方法を例示できる。あるいは、多芯ケーブル71を含む機器の機能の一部または全てを制限するインターロック装置として、通知装置73を設けてもよい。このため、通知装置73としては、ディスプレイパネル、警告灯などの表示装置や、ブザー等の発信機、インターロックを行う制御装置等が挙げられる。
 自動車等、多芯ケーブルが配置された機器において、常時、多芯ケーブルに計測装置72等を接続して、計測装置72による特性インピーダンスの測定を継続的に行い、被覆電線に断線の予兆が生じているか否かを、監視し続けることが好ましい。すると、多芯ケーブル71に含まれる被覆電線に断線の予兆が生じれば、早期にその断線の予兆を発見し、通知装置73を介して、機器の使用者等に通知できる。通知を受けた使用者は、多芯ケーブルの交換等の対策を早期に講じることができ、その機器を不具合のない状態で長く使用することが可能となる。被覆電線に断線が生じる可能性や頻度が低い場合等には、計測装置72により被覆電線の断線の予兆の監視を常時行わず、多芯ケーブルが配置された機器の定期点検の際等、所定の時期にのみ、計測装置72を多芯ケーブルに接続して、検査するようにしてもよい。
 以上に説明した本実施形態の断線検知装置によれば、既述の多芯ケーブルを用いているため、検知線が有する検知線導体の特性インピーダンス等の電気的特性を測定することで、精度よく被覆電線の断線を予測できる。
10、100、110、111、50、71 多芯ケーブル
11                   被覆電線
12、120、12A           検知線
121、712              検知線導体
S3                   検知線導体の導体断面積
122                  検知線被覆
123                  シールド導体
124                  外周被覆
13                   外被
131                  内層
132                  外層
14                   電源線
14A                  第1電源線
14B                  第2電源線
15                   通信線
16                   対撚通信線
141、151、711          電線導体
S1                   電源線が有する電線導体の導体断面積
S2                   通信線が有する電線導体の導体断面積
142、152              電線被覆
141、O142、O151、O152      中心
17                   コア
18                   抑え巻
19                   介在
191                  第1介在
192                  第2介在
20                   シールド層
21                   ドレイン線
A                    領域
X                    X軸
Y                    Y軸
Z                    Z軸(長手方向)
30、300               導電テープ
30A                  面
31                   基材
32                   導電層
321                  第1導電層
322                  第2導電層
40                   撚線
400~409              ケーブル
CA                   中心軸
Pt                   撚りピッチ
511                  第1マンドレル
512                  第2マンドレル
61、62                点線
70                   断線検知装置
72                   計測装置
73                   通知装置
X1                   破断

Claims (12)

  1.  複数本の電線素線の撚線である電線導体と、前記電線導体の外周を被覆する電線被覆とを有する、複数本の被覆電線と、
     複数本の検知線素線の撚線である検知線導体を有する検知線と、
     前記複数本の被覆電線と、前記検知線とを含むコアの外周を被覆する外被とを有し、
     前記検知線は、前記複数本の被覆電線で囲まれた領域内に配置され、
     前記検知線素線の素線径が、前記電線素線の素線径以上である多芯ケーブル。
  2.  前記検知線素線の素線径が、前記電線素線の素線径よりも大きい請求項1に記載の多芯ケーブル。
  3.  前記検知線は、前記検知線導体の外周を被覆する検知線被覆と、
     前記検知線被覆の外周を被覆するシールド導体を備える同軸ケーブルである請求項2に記載の多芯ケーブル。
  4.  前記被覆電線は、電源線を含み、
     前記電源線は、複数本の前記電線素線を撚り合わせた第1撚線と、複数本の前記第1撚線を撚り合わせた第2撚線とを含み、
     前記検知線導体の撚りピッチは、前記第1撚線の撚りピッチよりも長い、請求項1から請求項3のいずれか1項に記載の多芯ケーブル。
  5.  前記被覆電線は、電源線と、通信線とを含み、
     前記電源線が有する前記電線導体の導体断面積S1と、前記通信線が有する前記電線導体の導体断面積S2と、前記検知線導体の導体断面積S3とが、
     S1>S2≧S3の関係にある請求項1から請求項4のいずれか1項に記載の多芯ケーブル。
  6.  前記コアは、複数本の前記被覆電線と、前記検知線とが撚り合わされており、
     前記被覆電線は、2本の電源線を含み、
     前記コアにおいて、前記電源線のうち、グランド電位と接続する第1電源線と、前記検知線と、が接するように配置され、撚り合わされている請求項1から請求項5のいずれか1項に記載の多芯ケーブル。
  7.  前記コアの外周を被覆するシールド層を有し、
     前記シールド層は、前記コアと、前記外被との間に配置されている請求項1から請求項6のいずれか1項に記載の多芯ケーブル。
  8.  ドレイン線を有し、
     前記シールド層は、前記コア側に配置された導電層と、絶縁性の材料を含む基材とが積層された構造を有し、
     前記ドレイン線は、前記導電層と接している請求項7に記載の多芯ケーブル。
  9.  ドレイン線を有し、
     前記シールド層は、前記コア側に配置された絶縁性の材料を含む基材と、導電層とが積層された構造を有し、
     前記ドレイン線は、前記絶縁性の材料を含む基材と接している請求項7に記載の多芯ケーブル。
  10.  前記外被で囲まれた領域内に配置された介在を有する請求項1から請求項9のいずれか1項に記載の多芯ケーブル。
  11.  前記被覆電線は、2本の電源線である第1電源線および第2電源線と、2本の通信線とを含み、
     2本の前記通信線は撚り合わされて対撚通信線となっており
     前記介在は、第1介在、および第2介在を含み、
     前記コアの長手方向と垂直な断面において、
     前記検知線は、2本の前記電源線と、前記対撚通信線と、前記介在とで囲まれた領域内に配置され、
     前記第1介在は、前記第1電源線と、前記対撚通信線とに接するように配置され、
     前記第2介在は、前記第2電源線と、前記対撚通信線とに接するように配置されている請求項10に記載の多芯ケーブル。
  12.  請求項1から請求項11のいずれか1項に記載の多芯ケーブルと、
     交流成分を含む検査信号を前記検知線導体に入力し、特性インピーダンスを測定するように構成された計測装置と、を有する断線検知装置。
PCT/JP2021/038673 2021-10-19 2021-10-19 多芯ケーブル、断線検知装置 WO2023067712A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/038673 WO2023067712A1 (ja) 2021-10-19 2021-10-19 多芯ケーブル、断線検知装置
CN202180103268.6A CN118140280A (zh) 2021-10-19 2021-10-19 多芯电缆、断线探测装置
JP2023554141A JPWO2023067712A1 (ja) 2021-10-19 2021-10-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038673 WO2023067712A1 (ja) 2021-10-19 2021-10-19 多芯ケーブル、断線検知装置

Publications (1)

Publication Number Publication Date
WO2023067712A1 true WO2023067712A1 (ja) 2023-04-27

Family

ID=86057977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038673 WO2023067712A1 (ja) 2021-10-19 2021-10-19 多芯ケーブル、断線検知装置

Country Status (3)

Country Link
JP (1) JPWO2023067712A1 (ja)
CN (1) CN118140280A (ja)
WO (1) WO2023067712A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182716A (ja) * 2012-02-29 2013-09-12 Hitachi Cable Ltd 断線検知機能付ケーブル
JP2017147067A (ja) * 2016-02-16 2017-08-24 日立金属株式会社 ケーブル及びハーネス
WO2018198476A1 (ja) * 2017-04-28 2018-11-01 住友電装株式会社 複合ケーブル
WO2021200088A1 (ja) * 2020-03-31 2021-10-07 株式会社オートネットワーク技術研究所 電線検査システム、電線検査方法、および電線

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182716A (ja) * 2012-02-29 2013-09-12 Hitachi Cable Ltd 断線検知機能付ケーブル
JP2017147067A (ja) * 2016-02-16 2017-08-24 日立金属株式会社 ケーブル及びハーネス
WO2018198476A1 (ja) * 2017-04-28 2018-11-01 住友電装株式会社 複合ケーブル
WO2021200088A1 (ja) * 2020-03-31 2021-10-07 株式会社オートネットワーク技術研究所 電線検査システム、電線検査方法、および電線

Also Published As

Publication number Publication date
JPWO2023067712A1 (ja) 2023-04-27
CN118140280A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
JP7559812B2 (ja) 電線異常予兆検知装置
US9412497B2 (en) Cable
CN109841314B (zh) 带有编织屏蔽的电缆
RU2686839C2 (ru) Устройство и способ для индикатора перенапряжения электромеханического кабеля
JP2019096628A (ja) 同軸ケーブル
JP5810618B2 (ja) ケーブル及びその製造方法
JP2022179553A5 (ja) 電線異常予兆検知装置
CN103503082A (zh) 多芯线缆
US20140209348A1 (en) Multi-core cable
JP4760521B2 (ja) 電気ケーブルの断線検知装置および断線検知方法
JP2013182716A (ja) 断線検知機能付ケーブル
EP2220657A2 (en) Small-diameter wireline cables and methods of making same
WO2023067712A1 (ja) 多芯ケーブル、断線検知装置
WO2023067713A1 (ja) 多芯ケーブル、断線検知装置
JP6380872B1 (ja) 編組シールド付ケーブル
CN113508441B (zh) 通信用屏蔽电线
JP2022082303A5 (ja)
WO2023148825A1 (ja) ケーブル
WO2023145510A1 (ja) 異常予兆検知機能付ケーブル
WO2023145803A1 (ja) 異常予兆検知機能付ケーブルおよび電線異常予兆検知システム
CN112562891A (zh) 可动部用电缆及寿命预测系统
JP2006032060A (ja) 断線検知機能付ケーブル
JP4760513B2 (ja) 断線検知機能付ケーブル
US11869681B2 (en) Multicore cable
WO2023058149A1 (ja) 電線検査システム、電線検査方法、および電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023554141

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180103268.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE