WO2023066194A1 - 一种电光调制器、光模块以及光发送设备 - Google Patents

一种电光调制器、光模块以及光发送设备 Download PDF

Info

Publication number
WO2023066194A1
WO2023066194A1 PCT/CN2022/125656 CN2022125656W WO2023066194A1 WO 2023066194 A1 WO2023066194 A1 WO 2023066194A1 CN 2022125656 W CN2022125656 W CN 2022125656W WO 2023066194 A1 WO2023066194 A1 WO 2023066194A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
conductive layer
electro
optical waveguide
Prior art date
Application number
PCT/CN2022/125656
Other languages
English (en)
French (fr)
Inventor
张培杰
桂成程
李彦波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023066194A1 publication Critical patent/WO2023066194A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Definitions

  • the present application relates to the technical field of optical communication, and in particular to an electro-optic modulator, an optical module, and an optical sending device.
  • Optical communication technology is an important bearer technology in the current Internet world, and it is also one of the core technologies in the information age.
  • the electro-optical modulator is one of the key devices in optical interconnection, optical computing and optical communication systems.
  • An existing electro-optic modulator includes a substrate, a signal electrode and a ground electrode located on the surface of the substrate, and a transmission optical waveguide located between adjacent signal electrodes and ground electrodes.
  • the electrical signal transmitted by the signal electrode generates an electric field between the signal electrode and the ground electrode. Variations in this electric field can modulate the optical signal transmitted by the transmission optical waveguide.
  • the signal electrode is made of metal. Due to the absorption effect of the metal on the optical signal, the closer the distance between the signal electrode and the transmission optical waveguide, the greater the optical loss will be. In order to reduce the optical loss, the distance between the signal electrode and the transmission optical waveguide needs to be increased. However, the greater the distance between the signal electrode and the transmitting optical waveguide, the lower the modulation efficiency.
  • Embodiments of the present invention provide an electro-optical modulator, an optical module, and an optical transmission device, which can reduce optical loss and improve modulation efficiency while maintaining a high modulation bandwidth.
  • the first aspect of the embodiments of the present invention provides an electro-optical modulator.
  • the electro-optic modulator includes a first electrode and a second electrode located on the surface of the substrate, and a transmission optical waveguide. Wherein, the electric field between the first electrode and the second electrode is used to modulate the optical signal transmitted by the transmission optical waveguide.
  • the first electrode includes a first conductive layer and a second conductive layer, and the second conductive layer is located between the substrate and the first conductive layer.
  • the electrical conductivity of the first conductive layer is greater than the electrical conductivity of the second conductive layer.
  • the light absorption coefficient of the first conductive layer is greater than the light absorption coefficient of the second conductive layer.
  • the first electrode may be a signal electrode or a ground electrode.
  • the light absorption coefficient of the first conductive layer is greater than the light absorption coefficient of the second conductive layer, so the second conductive layer will bring less light loss, and thus can shorten the distance between the first electrode and the transmission optical waveguide. spacing. Since the first electrode can be closer to the transmission optical waveguide, the electric field can act on the transmission optical waveguide more strongly, thereby effectively improving the modulation efficiency. Moreover, the electrical conductivity of the first conductive layer is greater than that of the second conductive layer, and the first conductive layer with higher electrical conductivity has higher electrical conductivity, which reduces microwave loss, thereby increasing modulation bandwidth. It can be seen that the first conductive layer with higher conductivity can compensate the microwave loss lost by the second conductive layer with lower conductivity. Because the distance between the first electrode and the transmission optical waveguide is shortened, the size of the electro-optic modulator can be effectively reduced, and the integration degree of the electro-optic modulator can be improved.
  • the second electrode includes a third conductive layer and a fourth conductive layer.
  • the fourth conductive layer is located between the substrate and the third conductive layer.
  • the conductivity of the third conductive layer is greater than that of the fourth conductive layer.
  • the light absorption coefficient of the third conductive layer is greater than the light absorption coefficient of the fourth conductive layer.
  • the first electrode is a signal electrode
  • the second electrode is a ground electrode.
  • the first electrode is a ground electrode
  • the second electrode is a signal electrode.
  • both the first electrode and the second electrode shown in this aspect can bring about less light loss and improve the modulation efficiency more effectively. Moreover, the size of the electro-optic modulator is effectively reduced, and the integration degree of the electro-optic modulator is improved.
  • a side surface of the first conductive layer facing the third conductive layer is protruded with a plurality of first upper layer protrusions.
  • a first upper-layer concave portion is formed between two first upper-layer convex portions that are adjacent at any position.
  • the side surface of the third conductive layer facing the first conductive layer protrudes from a plurality of second upper layer protrusions.
  • a second upper-layer concave portion is formed between two second upper-layer convex portions that are adjacent at any position.
  • Each of the first upper-layer convex parts is opposite to one of the second upper-layer concave parts, and each of the second upper-layer convex parts is opposite to one of the first upper-layer concave parts.
  • a side surface of the second conductive layer facing the fourth conductive layer is protruded with a plurality of first lower layer protrusions.
  • a first lower layer concave portion is formed between two first lower layer convex portions adjacent at any position.
  • the side surface of the fourth conductive layer facing the second conductive layer is protruded with a plurality of second lower layer protrusions.
  • a second lower layer concave portion is formed between two second lower layer convex portions adjacent at any position.
  • Each of the first lower-layer convex parts is opposite to one of the second lower-layer concave parts, and each of the second lower-layer convex parts is opposite to one of the first lower-layer concave parts.
  • each of the first upper-layer protrusions included in the first conductive layer and one first lower-layer protrusion included in the second conductive layer portion, the projection positions on the substrate coincide.
  • the projection positions of the first upper layer convex portion and the first lower layer convex portion coincide on the substrate, so the parasitic capacitance between the first electrode and the second electrode can be effectively reduced, and the cost of making the electro-optic modulator can also be reduced. difficulty.
  • each of the second upper layer protrusions included in the third conductive layer and one second lower layer protrusion included in the fourth conductive layer the projection positions on the substrate coincide.
  • the first electrode includes multiple superstructure periods.
  • Each of the superstructure periods includes at least one first upper-layer convex portion and at least one first upper-layer concave portion that are adjacent to each other.
  • the different superstructure periods have the same structure.
  • the first electrode includes a plurality of periods of the underlying structure.
  • Each period of the lower layer structure includes at least one first lower layer convex portion and at least one first lower layer concave portion that are adjacent to each other.
  • the structures of different periods of the underlying structures are the same.
  • the electro-optic modulator further includes an electric field confinement layer.
  • the electric field confinement layer is located between the transmission optical waveguide and the first electrode. Or, the electric field confinement layer is located between the transmission optical waveguide and the second electrode. Or, the electric field confinement layer is located between the transmission optical waveguide and the first electrode, and the electric field confinement layer is also located between the transmission optical waveguide and the second electrode. The electric field confinement layer is used to distribute the electric field on the transmission optical waveguide.
  • the electric field confinement layer can make the electric field between the first electrode and the second electrode mainly distributed on the transmission optical waveguide, thereby enhancing the interaction between the electric field and the optical field of the optical signal transmitted by the transmission optical waveguide, In order to improve the modulation efficiency.
  • the electric field confinement layer is made of an insulating material, the electric field confinement layer does not have electrical conductivity and does not cause microwave loss.
  • the electro-optic modulator includes an electric field confinement layer, which does not reduce the modulation bandwidth.
  • the transmission optical waveguide is located on the surface of the substrate.
  • the electric field confinement layer has a first side and a second side opposite to each other.
  • the first side is adjacent to the first electrode.
  • the first side is adjacent to the second electrode.
  • the second side is located adjacent to the transmission optical waveguide.
  • the electric field confinement layer extends to at least one of the following positions: the first upper layer protrusion included in the first electrode, the first upper layer convex portion included in the first electrode, The first upper layer concave portion included, the first lower layer convex portion included in the first electrode, the first lower layer concave portion included in the first electrode, the second upper layer convex portion included in the second electrode, The second upper layer concave portion included in the second electrode, the second lower layer convex portion included in the second electrode, or the second lower layer concave portion included in the second electrode.
  • the transmission optical waveguide and the first electrode are located on both sides of the substrate, and/or the transmission optical waveguide and the second electrode are located on the two sides of the substrate both sides of the substrate.
  • the substrate further includes an electric field confinement layer, the electric field confinement layer is located between the transmission optical waveguide and the first electrode, and/or, the electric field confinement layer is located between the transmission optical waveguide and the second electrode between.
  • the electric field confinement layer is used to make the electric field mainly distributed on the transmission optical waveguide.
  • the electric field confinement layer is made of a material with a high dielectric constant and insulation.
  • the material refractive index of the electric field confinement layer is smaller than the material refractive index of the transmission optical waveguide.
  • the electric field confinement layer can distribute the electric field on the transmission optical waveguide to improve the modulation efficiency. Moreover, since the electric field confinement layer is made of high dielectric constant and insulating material, the electric field confinement layer will not cause microwave loss.
  • a side surface of the first conductive layer facing the substrate includes a first region and a second region.
  • the first region is in contact with the second conductive layer.
  • the second region is in contact with the substrate.
  • a side surface of the third conductive layer facing the substrate includes a third region and a fourth region.
  • the third region is in contact with the fourth conductive layer.
  • the fourth region is in contact with the substrate.
  • a second aspect of the embodiments of the present invention provides an optical module.
  • the optical module includes a light source and the electro-optic modulator according to any one of the first aspect above.
  • the light source is connected to the transmission optical waveguide.
  • the light source is used to send an optical signal to the transmission optical waveguide.
  • a third aspect of the embodiments of the present invention provides an optical sending device.
  • the optical sending device includes a processor and the optical module as shown in the second aspect above.
  • the processor is connected to the signal electrode.
  • the signal electrode is the first electrode or the second electrode.
  • the processor is configured to send an electrical signal to the signal electrode.
  • the electrical signal is used to modulate the optical signal transmitted by the transmission optical waveguide.
  • Fig. 1 is a kind of structural example diagram of the optical communication system provided by the present application.
  • FIG. 2a is a structural example diagram of an optical sending device provided in an embodiment of the present application.
  • Fig. 2b is an example diagram of the first cross-sectional structure of the electro-optic modulator provided in the embodiment of the present application;
  • Fig. 2c is an example diagram of the first top view structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 3a is an example diagram of the second cross-sectional structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 3b is an example diagram of the second top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • Fig. 4a is an example diagram of an overall structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 4b is an example diagram of the third top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • FIG. 5 is an example diagram of a fourth top view structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 6a is an example diagram of the third cross-sectional structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 6b is an example diagram of a fifth top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • Fig. 7a is an example diagram of the sixth top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • Fig. 7b is an example diagram of the seventh top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • FIG. 8 is an exemplary diagram of a fourth cross-sectional structure of the electro-optic modulator provided by the embodiment of the present application.
  • the present application provides an electro-optic modulator, which can improve modulation efficiency while reducing optical loss.
  • an electro-optic modulator which can improve modulation efficiency while reducing optical loss.
  • FIG. 1 is a structural example diagram of an optical communication system provided by the present application.
  • an optical communication system 100 includes an optical sending device 110 and an optical receiving device 120 .
  • the present application does not limit the specific number of optical receiving devices 120 connected to the optical sending device 110 .
  • the optical sending device 110 shown in this application may also be referred to as a transmitter, a sending end, or a sending end device, and the like.
  • the optical receiving device 120 may also be referred to as a receiver, a receiving end or a receiving end device, and the like.
  • optical communication system 100 This application is described by taking the application of the optical communication system 100 to an optical fiber access network, and its specific application in a passive optical network (passive optical network, PON) as an example.
  • the optical sending device 110 in the transmission direction of the downlink service optical signal, is an optical line terminal (OLT), and the optical receiving device 120 is an optical network unit (optical network unit, ONU).
  • the optical sending device 110 In the transmission direction of the uplink service optical signal, the optical sending device 110 is an ONU, and the optical receiving device 120 is an OLT.
  • This application does not limit the specific type of network used by the optical communication system.
  • it may also be applied to a data center network, a wavelength division multiplexing network, or an optical transport network (optical transport network, OTN).
  • OTN optical transport network
  • the optical sending device 110 and the optical receiving device 120 may both be OTN devices.
  • Fig. 2a is a structural example diagram of an optical sending device provided by an embodiment of the present application.
  • the optical sending device 110 specifically includes an optical module 201 and a processor 202 .
  • the optical module 201 includes a light source 203 and an electro-optic modulator 210 .
  • the electro-optic modulator may be a Mach-Zehnder interferometer (MZI) or a microring modulator.
  • FIG. 2b is an example diagram of the first cross-sectional structure of the electro-optic modulator provided by the embodiment of the present application.
  • Fig. 2c is an example diagram of the first top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • FIG. 2b is a cross-sectional view obtained by cutting the electro-optic modulator along the cross-section line 200 in FIG. 2c.
  • the electro-optic modulator shown in this embodiment includes a substrate.
  • the substrate may include two layers, the bottom one being the substrate 211 and the optical waveguide layer 212 on the surface of the substrate 211 .
  • the substrate 211 may include silicon (silicon, Si), and the substrate 211 further includes silicon dioxide (silicon dioxide, SiO2) deposited on the surface of the silicon.
  • the material of the substrate 211 is not limited, as long as the structure of the substrate 211 is stable and has less optical absorption performance.
  • the substrate 211 can also be made of zirconium boride (ZrB2), gallium arsenide (gallium arsenide, GaAs), glass, magnesium oxide and other materials.
  • the optical waveguide layer 212 can form a transmission optical waveguide between the signal electrode and the ground electrode.
  • the optoelectronic material used to form the optical waveguide layer 212 shown in this embodiment may be lithium niobate (LiNbO3).
  • the electro-optic modulator shown in this embodiment includes a signal electrode 213 located on the surface of the optical waveguide layer 212 , and a ground electrode 214 and a ground electrode 215 located on both sides of the signal electrode 213 .
  • the description of the number of signal electrodes and ground electrodes included in the electro-optic modulator 210 in this embodiment is an optional example and is not limited, as long as the electro-optic modulator 210 includes at least one signal electrode and at least one ground electrode.
  • the electro-optic modulator 210 also includes a transmission optical waveguide 216 and a transmission optical waveguide 217 .
  • the transmission optical waveguide 216 is located between the ground electrode 214 and the signal electrode 213 .
  • the transmission optical waveguide 217 is located between the signal electrode 213 and the ground electrode 215 .
  • the signal electrode 213 is connected to the processor 202 .
  • the ground electrode 214 and the ground electrode 215 are grounded.
  • the optical waveguide layer 212 may be etched to form the transmission optical waveguide 216 .
  • the transmission optical waveguide 216 is formed by extending the optical waveguide layer 212 in a direction away from the substrate surface. It can be seen that the transmission optical waveguide 216 protrudes from the surface of the optical waveguide layer 212 to form.
  • the substrate included in the electro-optic modulator may only include the substrate.
  • a transmission optical waveguide is formed on the surface of the substrate and between the signal electrode and the ground electrode.
  • the optoelectronic material of the transmission optical waveguide of this example can be one or more of the following: single crystal silicon (silicon, Si), amorphous silicon (amorphous silicon, a-Si), silicon nitride (silicon nitride, SiN ) waveguide, aluminum nitride (AlN), titanium oxide (titanium oxide, TiO2), or tantalum oxide (tantalum pentoxide, Ta2O3, etc.
  • the light source 203 is respectively connected to the transmission optical waveguide 216 and the transmission optical waveguide 217 .
  • the light source 203 is used to send optical signals to be modulated to the transmission optical waveguide 216 and the transmission optical waveguide 217 respectively.
  • the specific type of the light source 203 is not limited.
  • the light source 203 may be a laser, a semiconductor light-emitting diode (light-emitting diode, LED), or a laser diode (laser diode, LD).
  • the processor 202 is connected to the signal electrode 213 , and the processor 202 is used to send an electrical signal to the signal electrode 213 .
  • the electrical signal is used to modulate the optical signals transmitted by the transmission optical waveguide 216 and the transmission optical waveguide 217 .
  • the processor 202 shown in this embodiment may be one or more chips, or one or more integrated circuits.
  • the processor 202 can be one or more field-programmable gate array (field-programmable gate array, FPGA), application specific integrated circuit (ASIC), system chip (system on chip, SoC), central processing (central processor unit, CPU), network processor (network processor, NP), digital signal processing circuit (digital signal processor, DSP), microcontroller (micro controller unit, MCU), programmable controller (programmable logic device , PLD) or other integrated chips, or any combination of the above chips or processors, etc.
  • an electric field can be generated between the signal electrode 213 and the ground electrode 214 .
  • the direction of the electric field is from the signal electrode 213 to the ground electrode 214 , for details, refer to the direction of the arrow between the signal electrode 213 and the ground electrode 214 shown in FIG. 2 a .
  • an electric field is generated between the signal electrode 213 and the ground electrode 215 .
  • the direction of the electric field is from the signal electrode 213 to the ground electrode 215 , for details, refer to the direction of the arrow between the signal electrode 213 and the ground electrode 215 shown in FIG. 2 a .
  • the electric field between the signal electrode 213 and the ground electrode 214 is applied on the transmission optical waveguide 216 to achieve the purpose of modulating the optical signal transmitted in the transmission optical waveguide 216 .
  • the optical signal to be modulated is transmitted along the transmission optical waveguide 216 , then, the transmission direction of the optical signal is perpendicular to the direction of the electric field between the signal electrode 213 and the ground electrode 214 .
  • a change in the electric field between the signal electrode 213 and the ground electrode 214 changes the effective refractive index of the transmission optical waveguide 216 .
  • the change of the effective refractive index of the transmission optical waveguide 216 will change the phase of the optical signal transmitted by the transmission optical waveguide 216 to realize the modulation of the optical signal transmitted by the transmission optical waveguide 216 .
  • the modulation process of the transmission optical waveguide 217 please refer to the illustration of the transmission optical waveguide 216, and details are not repeated here.
  • This embodiment provides a first electrode.
  • the structure of the first electrode is a stacked structure, which can ensure that the optical loss can be reduced while shortening the distance between the first electrode and the transmission optical waveguide 216 .
  • the first electrode may be a signal electrode 213 or a ground electrode 214 . It can be seen that, when the distance between the first electrode and the transmission optical waveguide 216 is shortened, the modulation efficiency of the optical signal transmitted by the modulation transmission optical waveguide 216 can be improved.
  • first electrodes in a stacked structure will be described below.
  • the following takes the first electrode as the signal electrode 213 as an example for illustration.
  • the first electrode may also be the ground electrode 214 .
  • the signal electrode 213 shown in this embodiment includes a first conductive layer 231 and a second conductive layer 232 .
  • the second conductive layer 232 is located between the substrate and the first conductive layer 231 .
  • the second conductive layer 232 is located on the side of the signal electrode 213 close to the transmission optical waveguide 216 .
  • the first conductive layer 231 is made of metal material.
  • the first conductive layer 231 can be made of at least one metal material as follows: gold (Au), silver (Ag), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os) or ruthenium (Ru) etc.
  • the conductivity of the first conductive layer 231 is greater than that of the second conductive layer 232
  • the light absorption coefficient of the first conductive layer 231 is greater than the light absorption coefficient of the second conductive layer 232 .
  • the second conductive layer 232 satisfying this condition may be made of transparent conductive oxide (TCO).
  • TCO is mainly oxides such as cadmium oxide (CdO), indium oxide (In2O3), tin dioxide (SnO2) and zinc oxide (ZnO) and their corresponding composite compounds.
  • the light absorption coefficient of the first conductive layer 231 is greater than that of the second conductive layer 232 , and the second conductive layer 232 is closer to the transmission optical waveguide 216 than the first conductive layer 231 . Then, the optical loss generated by the second conductive layer 232 is smaller than the optical loss generated by the first conductive layer 231 which is purely made of metal material. Moreover, because the conductivity of the first conductive layer 231 is greater than that of the second conductive layer 232 , the microwave loss of electrical signals during transmission in the first conductive layer 231 is reduced and the modulation bandwidth is improved.
  • the light absorption coefficient of the second conductive layer 232 of the signal electrode 213 shown in this embodiment is smaller than that of the signal electrode shown in the existing scheme. the light absorption coefficient.
  • the second conductive layer 232 shown in this embodiment can be closer to the transmission optical waveguide 216 . It can be seen that the signal electrode 213 shown in this embodiment can be closer to the transmission optical waveguide than the signal electrode shown in the existing solution. Because the signal electrode 213 of this embodiment can be closer to the transmission optical waveguide, the electric field can act on the transmission optical waveguide 216 more strongly, thereby effectively improving the modulation efficiency.
  • the signal electrode 213 shown in this embodiment includes a first conductive layer 231 and a second conductive layer 232 in a stacked structure.
  • the second conductive layer 232 has a lower electrical conductivity, for example, the electrical conductivity of the second conductive layer 232 is in the range of 10 3 -10 5 Siemens/meter (s/m).
  • the second conductive layer 232 with lower conductivity will increase the microwave loss of electrical signal transmission.
  • the signal electrode 213 also includes a first conductive layer 231 with higher conductivity, for example, the conductivity of the first conductive layer 231 is equal to 10 7 s/m.
  • the first conductive layer 231 with higher conductivity has higher conductivity, which reduces microwave loss, thereby increasing modulation bandwidth. It can be seen that in this embodiment, the first conductive layer 231 with high conductivity is stacked on the second conductive layer 232 to compensate the microwave loss lost by the second conductive layer 232 with low conductivity.
  • the transmission optical waveguide 216 shown in this embodiment extends along the Y direction. It can be seen that the optical signal transmitted along the transmission optical waveguide 216 is transmitted along the Y direction.
  • the first conductive layer 231 and the second conductive layer 232 shown in this embodiment are stacked along the X direction, wherein the X direction is perpendicular to the Y direction, and the X direction is perpendicular to the surface of the substrate.
  • the Z direction is perpendicular to the X direction and the Y direction at the same time.
  • the length of the second conductive layer 232 is shorter than the length of the first conductive layer 231, and the second conductive layer 232 is accommodated in the first conductive layer 231.
  • the sides of the first conductive layer 231 are aligned with the sides of the second conductive layer 232 , and it can be seen that, in the top view shown in FIG. 2 c , the second conductive layer 232 is completely hidden within the first conductive layer 231 .
  • FIG. 3 a is an exemplary diagram of a second cross-sectional structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 3b is an example diagram of a second top view structure of the electro-optic modulator provided by the embodiment of the present application. In this example, along the Z direction, the second conductive layer 232 protrudes out of the first conductive layer 231 .
  • the side surfaces of the first conductive layer 231 and the second conductive layer 232 are not aligned, and the side surfaces of the second conductive layer 232 are closer to the transmission optical waveguide 216 than the side surfaces of the first conductive layer 231 .
  • the side of the first conductive layer 231 facing the substrate has a connected first region and a second region. The first region directly contacts the second conductive layer 232 , while the second region directly contacts the optical waveguide layer 212 .
  • the length of the second conductive layer 232 may also be greater than or equal to the length of the first conductive layer 231 . It can be seen that, in this example, the entire area of the side surface of the first conductive layer 231 facing the substrate is only in contact with the second conductive layer 232 .
  • the first electrodes (signal electrodes or ground electrodes) shown in this embodiment adopt a stacked structure, thereby shortening the distance between the first electrodes and the transmission optical waveguide.
  • the modulation efficiency is improved, the optical loss can also be reduced and the modulation bandwidth can be increased.
  • the distance between the first electrode and the transmission optical waveguide included in the electro-optic modulator shown in this embodiment is relatively small, the size of the electro-optic modulator is effectively reduced and the integration degree of the electro-optic modulator is improved.
  • the second electrode included in the electro-optic modulator shown in this embodiment may also adopt a stacked structure.
  • the first electrode is a signal electrode
  • the second electrode is a ground electrode.
  • the first electrode is a ground electrode
  • the second electrode is a signal electrode. It can be seen that the ground electrode and the signal electrode included in the electro-optic modulator shown in this embodiment all adopt a stacked structure.
  • the ground electrode 214 specifically includes a third conductive layer 233 and a fourth conductive layer 234 .
  • the fourth conductive layer 234 is located between the substrate and the third conductive layer 233 .
  • the conductivity of the third conductive layer 233 is greater than that of the fourth conductive layer 234
  • the light absorption coefficient of the third conductive layer 233 is greater than the light absorption coefficient of the fourth conductive layer 234 .
  • the length of the third conductive layer 233 is greater than the length of the fourth conductive layer 234 as an example. It can be seen that a partial area of the side surface of the third conductive layer 233 facing the substrate is in contact with the fourth conductive layer 234. Specifically, the side of the third conductive layer 233 facing the substrate has a connected third region and a fourth region. The third region directly contacts the fourth conductive layer 234 , while the fourth region directly contacts the optical waveguide layer 212 .
  • the distance between the first electrode and the transmission optical waveguide and the distance between the second electrode and the transmission optical waveguide can be shortened simultaneously.
  • this example can improve modulation efficiency and modulation bandwidth, and reduce optical loss and microwave loss.
  • the size of the electro-optic modulator can be further reduced, and the integration degree of the electro-optic modulator can be improved.
  • the ground electrode 215 also includes a third conductive layer 243 and a fourth conductive layer 244 .
  • the third conductive layer 243 and the fourth conductive layer 244 included in the ground electrode 215 please refer to the description of the third conductive layer 233 and the fourth conductive layer 234 included in the ground electrode 214 shown above.
  • the side of the signal electrode 213 facing the ground electrode 215 includes a first conductive layer 251 and a second conductive layer 252 .
  • the signal electrode 213 For the description of the first conductive layer 251 and the second conductive layer 252 included in the signal electrode 213 , please refer to the description of the first conductive layer 231 and the second conductive layer 232 included in the signal electrode 213 shown above. It can be seen that the signal electrode 213 , the ground electrode 214 and the ground electrode 215 shown in this embodiment all adopt a stacked structure.
  • FIG. 4a and 4b illustrate how to reduce the parasitic capacitance between the signal electrode and the ground electrode.
  • FIG. 4a is an example diagram of an overall structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 4b is an example diagram of a third top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • the electro-optic modulator shown in this embodiment includes a signal electrode 213 and a ground electrode 214 in a stacked structure.
  • Both the first conductive layer 231 and the third conductive layer 233 shown in this embodiment adopt a concave-convex structure.
  • the concavo-convex structure of the first conductive layer 231 means that the side surface of the first conductive layer 231 facing the third conductive layer 233 is protruded with a plurality of first upper layer protrusions 301 .
  • a first upper layer concave portion 303 is formed between two first upper layer convex portions 301 adjacent to each other at any position.
  • the concave-convex structure of the third conductive layer 233 means that the side surface of the third conductive layer 233 facing the first conductive layer 231 is protruded with a plurality of second upper layer protrusions 302 .
  • a second upper layer concave portion 304 is formed between two adjacent second upper layer convex portions 302 at any position.
  • each of the first upper layer protrusions 301 is opposite to one of the second upper layer concave portions 304 .
  • each of the second upper layer protrusions 302 is opposite to one of the first upper layer recesses 303 . It can be seen that, as shown in this embodiment, the situation that the first upper layer convex portion 301 is opposite to the second upper layer convex portion 302 does not occur. Because each of the first upper layer protrusions 301 is opposite to one of the second upper layer recesses 304 , and each of the second upper layer protrusions 302 is opposite to one of the first upper layer recesses 303 .
  • the positions of the first upper layer protrusions 301 and the second upper layer protrusions 302 are staggered, thereby increasing the distance between the first conductive layer 231 and the third conductive layer 233 as much as possible. Furthermore, the parasitic capacitance between the signal electrode 213 and the ground electrode 214 is effectively reduced.
  • the Z direction please refer to the above-mentioned FIG. 2 b , which will not be described in detail.
  • the present embodiment does not limit the specific shape and size of the first upper layer convex portion 301.
  • the shape of the first upper layer convex portion 301 is square. example, without limitation.
  • the shape of the first upper layer protrusion 301 may also be trapezoidal, arcuate, rhombus, T-shape or cone.
  • the shape of the second upper-layer convex portion 302 please refer to the description of the shape of the first upper-layer convex portion 301, and details are not repeated here.
  • one first upper layer convex portion 301 is adjacent to one first upper layer concave portion 303 . It can be seen that the discontinuous state between the adjacent first upper layer protrusions 301 will increase the microwave loss of the first conductive layer 231 .
  • the signal electrode 213 shown in this embodiment includes a plurality of periods of the superstructure.
  • each superstructure period includes at least one first upper-layer convex portion 301 and at least one first upper-layer concave portion 303 that are adjacent to each other.
  • the different superstructure periods have the same structure.
  • a period 305 of the upper layer structure included in the signal electrode 213 includes a first upper layer convex portion 301 and a first upper layer concave portion 303 that are adjacent to each other.
  • first upper layer convex portion 301 and the first upper layer concave portion 303 included in each superstructure period there is no limit to the number of the first upper layer convex portion 301 and the first upper layer concave portion 303 included in each superstructure period, as long as the first upper layer convex portion 301 and the first upper layer concave portion 303 included in one superstructure period The positions are continuous.
  • the same structure of different superstructure periods shown in this embodiment means that the dimensions of the first upper-layer protrusions 301 located at the same positions of different structural periods are the same.
  • the first upper layer protrusions 301 at the same position in different structural periods refer to the first upper layer protrusions 301 located in different structural periods, and by analogy, the last upper layer protrusions 301 in different structural periods.
  • the size of the first upper layer protrusion 301 refers to the length of the first upper layer protrusion 301 along the Z direction, the length along the Y direction and the height along the X direction.
  • the same structure of different upper layer structure periods shown in this embodiment also means that the first upper layer recesses 303 located at the same positions of different structure periods have the same size.
  • the first upper layer recesses 303 at the same position in different structural periods refer to the first upper layer recesses 303 located in different structural periods, and so on, the last upper layer recesses 303 in different structural periods.
  • the size of the first upper recess 303 refers to the length of the first upper recess 303 along the Z direction and the length along the Y direction.
  • the microwave loss of the first upper-layer protrusion 301 can be reduced by the period of the upper-layer structure.
  • the number of periods of the superstructure included in the signal electrode 213 within a unit length is positively correlated with the modulation bandwidth of the electro-optic modulator.
  • the unit length is only a reference standard of a length, and the specific length of the unit length is not limited in this embodiment.
  • the number of periods of the superstructure included in the signal electrode 213 within a unit length can be increased as much as possible.
  • the periodic arrangement of the first conductive layer 231 with the period of the upper layer structure as a period is taken as an example for illustration and not limited thereto.
  • the size of the first upper layer convex portion 301 and the size of the first upper layer concave portion 303 included in the first conductive layer 231 may also be randomly arranged.
  • the ground electrode in this embodiment reduces the microwave loss, please refer to the description of the signal electrode 213 reducing the microwave loss for details, and details are not repeated here.
  • the second conductive layer 232 shown in this embodiment may have a continuous strip structure. Along the Y direction, the second conductive layer 232 extends from the starting position of the first conductive layer 231 to the ending position of the first conductive layer 231 .
  • the description of the shape of the second conductive layer 232 in this embodiment is an optional example and is not limited, as long as the second conductive layer 232 has a continuous structure.
  • the second conductive layer 232 may be arc-shaped or the like. This embodiment does not limit the length relationship between the first conductive layer 231 and the second conductive layer 232 along the Y direction, for example, along the Y direction, the length of the first conductive layer 231 and the second conductive layer 232 are equal in length.
  • the side of the second conductive layer 232 away from the substrate has a fifth region and a sixth region.
  • the fifth region is in direct contact with the first upper layer protrusion 301 .
  • the sixth region 321 is directly exposed from the first upper recess 303 .
  • the first conductive layer 231 and the third conductive layer 233 may adopt a periodic structure.
  • the second conductive layer 232 and the fourth conductive layer 234 may also adopt a concave-convex structure.
  • the concavo-convex structure of the second conductive layer 232 means that the side of the second conductive layer 232 facing the fourth conductive layer 234 is protruded with a plurality of first lower layer convex parts, and two adjacent second layer protrusions at any position A first lower concave portion is formed between the lower convex portions.
  • the description of the structure of the first lower convex portion and the first lower concave portion can refer to the description of the structure of the first upper convex portion 301 and the first upper concave portion 303 shown above, and details are not repeated here.
  • the concave-convex structure of the fourth conductive layer 234 means that the fourth conductive layer 234 protrudes to the side of the second conductive layer 232 with a plurality of second lower-layer protrusions, and two adjacent second lower-layer protrusions at any position A second lower recess is formed therebetween.
  • the description of the structure of the second lower convex portion and the second lower concave portion can refer to the description of the structure of the second upper convex portion 302 and the second upper concave portion 304 shown above, and details are not repeated here.
  • each of the first lower-layer convex portions is opposite to one of the second lower-layer concave portions.
  • each of the second lower-layer convex parts is opposite to one of the first lower-layer concave parts.
  • each of the first lower-layer protrusions is opposite to one of the first lower-layer recesses, and each second lower-layer protrusion is opposite to a second lower-layer recess. Then, along the Z direction, the positions of the first lower layer protrusions and the second lower layer protrusions are staggered, thereby increasing the distance between the second conductive layer 232 and the fourth conductive layer 234 as much as possible. Furthermore, the parasitic capacitance between the signal electrode 213 and the ground electrode 214 is effectively reduced.
  • both the first conductive layer 231 and the second conductive layer 232 adopt a periodic structure.
  • the following optionally describes the positional relationship between the concave-convex structure of the first conductive layer 231 and the concave-convex structure of the second conductive layer 232 .
  • the concave-convex structure of the first conductive layer 231 and the concave-convex structure of the second conductive layer 232 overlap.
  • the coincidence of concave-convex structures means that, under the irradiation of the same projection line, each of the first upper-layer protrusions 301 included in the first conductive layer 231 and each of the first upper-layer protrusions 301 included in the second conductive layer 232 The projected positions of the lower layer protrusions on the substrate overlap. And under the irradiation of the same projection line, the projection position of each first upper layer concave portion 303 included in the first conductive layer 231 and one first lower layer concave portion included in the second conductive layer 232 on the substrate coincide.
  • This embodiment does not limit the specific direction of the projection line, for example, the projection line is a light perpendicular to the direction of the substrate.
  • FIG. 5 is an example diagram of a fourth top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • the upper recess 303 is exposed.
  • the concave-convex structure of the third conductive layer 233 and the concave-convex structure of the fourth conductive layer 234 shown in this embodiment overlap.
  • the description of the overlap of structural positions will not be described in detail.
  • each of the second upper layer protrusions 302 included in the third conductive layer 233 and one second lower layer protrusion included in the fourth conductive layer 234, in the The projection positions on the substrate coincide.
  • the projection positions of each second upper layer concave part included in the third conductive layer 233 and one second lower layer concave part included in the fourth conductive layer 234 coincide on the substrate. .
  • the concave-convex structure of the first conductive layer 231 overlaps with the concave-convex structure of the second conductive layer 232, and the concave-convex structure of the third conductive layer 233 overlaps with the concave-convex structure of the fourth conductive layer 234
  • the distance between the first upper layer protrusions 301 and the second upper layer protrusions 302 can be sufficiently increased, and the distance between the first upper layer protrusions 301 and the second lower layer protrusions can be increased sufficiently. Therefore, the parasitic capacitance between the signal electrode 213 and the ground electrode 214 is effectively reduced. Moreover, the manufacturing difficulty of the signal electrode and the ground electrode is reduced.
  • this embodiment is described by taking the overlapping of the concavo-convex structure of the first conductive layer 231 and the concavo-convex structure of the second conductive layer 232 as an example, without limitation.
  • the concave-convex structure of the first conductive layer 231 and the concave-convex structure of the second conductive layer 232 may also be staggered. For example, at a viewing angle of the electro-optic modulator, at least part of a first lower convex portion included in the second conductive layer 232 is exposed from a first upper concave portion included in the first conductive layer 231 .
  • the signal electrode 213 shown in this embodiment includes a plurality of periods of the underlying structure.
  • each period of the lower layer structure includes at least one first lower layer convex portion and at least one first lower layer concave portion that are adjacent to each other.
  • the structures of different periods of the lower structure are the same.
  • the structure of the lower-layer structural cycle please refer to the above-mentioned description of the upper-layer structural cycle, and details will not be repeated.
  • the microwave loss of the first lower layer convex portion can be reduced through the period of the lower layer structure.
  • the number of periods of the underlying structure included in the signal electrode 213 within a unit length is positively correlated with the modulation bandwidth of the electro-optic modulator.
  • FIG. 6a is an exemplary diagram of a third cross-sectional structure of the electro-optic modulator provided in the embodiment of the present application.
  • Fig. 6b is an example diagram of a fifth top view structure of the electro-optic modulator provided by the embodiment of the present application.
  • the electro-optic modulator shown in this embodiment further includes an electric field confinement layer.
  • an electric field confinement layer Several optional structures of the electric field confinement layer are described below.
  • the electro-optic modulator shown in this embodiment includes a first electric field confinement layer 601 and a second electric field confinement layer 602 .
  • the first electric field confinement layer 601 is located between the transmission optical waveguide 216 and the signal electrode 213 .
  • the second electric field confinement layer 602 is located between the transmission optical waveguide 216 and the ground electrode 214 .
  • the description of the number of electric field confinement layers in this embodiment is an optional example and is not limited.
  • the electro-optic modulator includes only the first electric field confinement layer 601 between the transmission optical waveguide 216 and the signal electrode 213.
  • the electro-optic modulator only includes the second electric field confinement layer 602 between the transmission optical waveguide 216 and the ground electrode 214 .
  • the first electric field confinement layer 601 shown in this embodiment has a first side and a second side opposite to each other.
  • the first side and the second side opposite to each other refer to two sides of the first electric field confinement layer 601 facing opposite to each other along the direction Z.
  • the first side faces the signal electrode 213
  • the second side faces the transmission optical waveguide 216 .
  • the first side is adjacent to the signal electrode 213 .
  • the first side and the signal electrode 213 are in a bonded state.
  • the second side is adjacent to the transmission optical waveguide 216 .
  • the distance between the second side surface and the transmission optical waveguide 216 is not limited.
  • the second electric field confinement layer 602 also has a first side and a second side opposite to each other, the first side of the second electric field confinement module 602 is adjacent to the ground electrode 214, and the second side is adjacent to the transmission optical waveguide 216 .
  • the first side and the second side of the first electric field confinement layer 601 which will not be repeated here.
  • both the first electric field confinement layer 601 and the second electric field confinement layer 602 are continuous structures. That is, along the Y direction, the first electric field confinement layer 601 extends from the starting position of the signal electrode 213 to the ending position of the signal electrode 213 .
  • the description of the shape of the first electric field confining layer 601 in this embodiment is an optional example without limitation, as long as the first electric field confining layer 601 has a continuous structure, for example, the first electric field confining layer 601 can be Long or curved, etc. In this embodiment, there is no limitation on the length relationship between the first electric field constraining layer 601 and the signal electrode 213 along the Y direction.
  • the length of the first electric field constraining layer 601 is equal to the length of the signal electrode 213 .
  • the description of the structure of the second electric field confinement layer 602 along the Y direction reference may be made to the description of the first electric field confinement layer 601 , and details are not repeated here.
  • the height of the first electric field confinement layer 601 is equal to the height of the signal electrode 213 .
  • the description of the height relationship between the first electric field constraining layer 601 and the signal electrode 213 along the X direction in this embodiment is an optional example and is not limited.
  • the height of the first electric field constraining layer 601 is greater than that of the signal electrode 213 .
  • the first electric field confinement layer 601 and the second electric field confinement layer 602 shown in this embodiment satisfy the condition that both the first electric field confinement layer 601 and the second electric field confinement layer 602 are made of high dielectric constant and insulating materials become. And the refractive index of the material of the first electric field confinement layer 601 and the second electric field confinement layer 602 is smaller than that of the transmission optical waveguide 216 .
  • both the first electric field confinement layer 601 and the second electric field confinement layer 602 can be made of barium titanate (BaTiO3).
  • the first electric field confinement layer 601 and the second electric field confinement layer 602 satisfying this condition can make the electric field between the signal electrode 213 and the ground electrode 214 mainly distributed on the transmission optical waveguide 216, thereby improving the transmission of the modulation transmission optical waveguide 216.
  • the modulation efficiency of the optical signal can concentrate the electric field between the signal electrode 213 and the ground electrode 214 as much as possible between the first electric field constraining layer 601 and the second electric field constraining layer 602 .
  • the transmission optical waveguide 216 is located between the first electric field confinement layer 601 and the second electric field confinement layer 602 , and compared to the signal electrode 213 , the transmission optical waveguide 216 is closer to the first electric field confinement layer 601 . Likewise, the transmission optical waveguide 216 is closer to the second electric field confinement layer 602 than the ground electrode 214 . Then, the electric field concentrated between the first electric field confinement layer 601 and the second electric field confinement layer 602 can be mainly concentrated on the transmission optical waveguide 216 . Therefore, the interaction between the electric field and the optical field transmitting the optical signal transmitted by the optical waveguide 216 is enhanced, thereby improving the modulation efficiency.
  • the electro-optic modulator includes an electric field confinement layer, which does not reduce the modulation bandwidth.
  • the electro-optic modulator shown in this example includes a plurality of electric field confinement layers 611 .
  • the electric field confinement layer 611 extends to at least one of the following positions: the side of the first upper convex part of the signal electrode 213 facing the transmission optical waveguide 216, the side of the first upper concave part of the signal electrode 213, the first upper layer of the signal electrode 213
  • the lower convex part faces the side of the transmission optical waveguide 216
  • the side of the first lower concave part of the signal electrode 213, the second upper convex part of the ground electrode faces the side of the transmission optical waveguide 216, the second upper concave part of the ground electrode
  • the second lower convex part of the ground electrode faces the side of the transmission optical waveguide 216, or the side of the second lower concave part of the ground electrode.
  • Fig. 7a is an example diagram of a sixth top view structure of the electro-optic modulator provided by the embodiment of the present application. It can be known that, in this example, the electric field confinement layer 611 is adhered to the side of each first upper recess, and the electric field restraint layer 611 is adhered to the side of each second upper recess.
  • Fig. 7b is an example diagram of a seventh top view structure of the electro-optic modulator provided by the embodiment of the present application. It can be known that, in this example, the electric field confinement layer 612 is filled inside each first upper recess and the electric field confinement layer 612 is filled inside each second upper recess as an example. It should be clear that, the present embodiment does not limit the specific number and specific positions of the electric field confinement layers 611 .
  • FIG. 8 is an example diagram of a fourth embodiment of the cross-sectional structure of the electro-optic modulator provided by the embodiment of the present application.
  • the substrate of the electro-optic modulator includes an optical waveguide layer 801 and a substrate 802 on the surface of the optical waveguide layer 801 .
  • the description of the specific materials of the substrate 802 and the optical waveguide layer 801 can be referred to in FIG. 2 b , and details are not repeated here.
  • the surface of the substrate 802 includes a signal electrode 811 and a ground electrode 812 and a ground electrode 813 located on both sides of the signal electrode 811 .
  • the signal electrode 811 , the ground electrode 812 and the ground electrode 813 shown in this embodiment all adopt a stacked structure.
  • the electrode structure of the stacked structure please refer to FIGS.
  • the electro-optic modulator shown in this embodiment also includes a transmission optical waveguide.
  • the electro-optic modulator shown in this embodiment includes a transmission optical waveguide 803 formed by an optical waveguide layer 801 .
  • the optical waveguide layer 801 can form the transmission optical waveguide 803 by means of deposition, etching, polarization and the like.
  • the transmission optical waveguide 803 and the signal electrode 811 are located on two sides of the substrate 802 , that is, along the X direction, and the transmission optical waveguide 803 and the signal electrode 811 are opposite to each other.
  • the transmission optical waveguide 803 is disposed at a position opposite to the signal electrode 811 along the X direction as an example for illustration, without limitation.
  • a transmission optical waveguide 804 is also provided at a position opposite to the ground electrode 812 .
  • the electro-optic modulator shown in this embodiment further includes an electric field confinement layer.
  • the transmission optical waveguide 803 is disposed opposite to the signal electrode 811 along the X direction, then the substrate 802 includes a first through groove. The first slot is located between the signal electrode 811 and the transmission optical waveguide 803 .
  • An electric field confinement layer is arranged in the first through groove.
  • the transmission optical waveguide 804 is disposed opposite to the ground electrode 812, then the substrate 802 includes a second through groove, and the second through groove is located between the ground electrode 812 and the transmission optical waveguide 804.
  • An electric field confinement layer is arranged in the two-way slot.
  • FIG. 6 a For the description of the specific material and function of the electric field confinement layer shown in this embodiment, please refer to FIG. 6 a , and details are not repeated here.

Abstract

一种电光调制器(210)、光模块(201)以及光发送设备(110),在保持高调制带宽的同时,能够降低对光信号调制的过程中的光损耗以及提高调制效率。电光调制器(210)包括位于基板表面的第一电极和第二电极,电光调制器(210)还包括传输光波导(216),第一电极和第二电极之间的电场用于调制传输光波导(216)所传输的光信号。第一电极包括第一导电层(231)和第二导电层(232),第二导电层(232)位于基板和第一导电层(231)之间,第一导电层(231)的电导率大于第二导电层(232)的电导率,第一导电层(231)的光吸收系数大于第二导电层(232)的光吸收系数。

Description

一种电光调制器、光模块以及光发送设备
本申请要求于2021年10月21日提交中国国家知识产权局、申请号202111229067.9、申请名称为“一种电光调制器、光模块以及光发送设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种电光调制器、光模块以及光发送设备。
背景技术
光通信技术是当前互联网世界的重要承载技术,同时也是信息时代的核心技术之一。在光通信技术中,电光调制器是光互连、光计算和光通信系统的关键器件之一。
现有的电光调制器包括基板,位于基板表面的信号电极和接地电极,以及位于相邻的信号电极和接地电极之间的传输光波导。信号电极所传输的电信号会在信号电极和接地电极之间产生电场。该电场的变化能够调制传输光波导所传输的光信号。
以信号电极为例,信号电极由金属制成,因金属对光信号的吸收作用,信号电极和传输光波导之间的距离越近,会带来越大的光损耗。为降低光损耗,需要提高信号电极和传输光波导之间的距离。但是,信号电极和传输光波导之间距离越大,调制效率越低。
发明内容
本发明实施例提供了一种电光调制器、光模块以及光发送设备,其能够在保持高调制带宽的同时,降低光损耗以及提高调制效率。
本发明实施例第一方面提供了一种电光调制器。所述电光调制器包括位于基板表面的第一电极和第二电极,以及传输光波导。其中,所述第一电极和所述第二电极之间的电场用于调制所述传输光波导所传输的光信号。所述第一电极包括第一导电层和第二导电层,所述第二导电层位于所述基板和所述第一导电层之间。所述第一导电层的电导率大于所述第二导电层的电导率。所述第一导电层的光吸收系数大于所述第二导电层的光吸收系数。其中,第一电极可为信号电极或接地电极。
所述第一导电层的光吸收系数大于所述第二导电层的光吸收系数,因此所述第二导电层会带来较小的光损耗,进而能够拉近第一电极和传输光波导的间距。因第一电极更能够靠近传输光波导,那么电场能够更强烈的作用在传输光波导上,从而有效地提高了调制效率。而且所述第一导电层的电导率大于所述第二导电层的电导率,具有较高电导率的第一导电层的导电性能较高,会降低微波损耗,从而提高调制带宽。可知电导率较高的第一导电层能够补偿电导率较低的第二导电层所损失的微波损耗。因拉近了第一电极和传输光波导的间距,可有效地降低了电光调制器的尺寸,提高了电光调制器的集成度。
基于第一方面,一种可选地实现方式中,所述第二电极包括第三导电层和第四导电层。所述第四导电层位于所述基板和所述第三导电层之间。所述第三导电层的电导率大于所述第四导电层的电导率。所述第三导电层的光吸收系数大于所述第四导电层的光吸收系数。一种情况下,第一电极为信号电极,第二电极为接地电极。另一种情况下,所述第一电极为接地电极,所述第二电极为信号电极。
可见,本方面所示的第一电极和第二电极均能够带来较小的光损耗,更有效地提高调制效率。而且有效地降低了电光调制器的尺寸,提高了电光调制器的集成度。
基于第一方面,一种可选地实现方式中,所述第一导电层面向所述第三导电层的侧面凸设多个第一上层凸部。任意位置相邻的两个所述第一上层凸部之间形成第一上层凹部。所述第三导电层面向所述第一导电层的侧面凸设多个第二上层凸部。任意位置相邻的两个所述第二上层凸部之间形成第二上层凹部。每个所述第一上层凸部与一个所述第二上层凹部位置相对,每个所述第二上层凸部与一个所述第一上层凹部位置相对。
可见,因第一上层凸部和第二上层凸部位置相错,那么能够有效地提高第一导电层和第三导电层之间的间距。有效地降低了第一电极和第二电极之间的寄生电容。
基于第一方面,一种可选地实现方式中,所述第二导电层面向所述第四导电层的侧面凸设多个第一下层凸部。任意位置相邻的两个所述第一下层凸部之间形成第一下层凹部。所述第四导电层面向所述第二导电层的侧面凸设多个第二下层凸部。任意位置相邻的两个所述第二下层凸部之间形成第二下层凹部。每个所述第一下层凸部与一个所述第二下层凹部位置相对,每个所述第二下层凸部与一个所述第一下层凹部位置相对。
可见,因第一下层凸部和第二下层凸部位置相错,那么能够有效地提高第三导电层和第四导电层之间的间距。有效地降低了第一电极和第二电极之间的寄生电容。
基于第一方面,一种可选地实现方式中,所述第一导电层所包括的每个所述第一上层凸部和所述第二导电层所包括的一个所述第一下层凸部,在所述基板上的投影位置重合。
可见,第一上层凸部和第一下层凸部在所述基板上的投影位置重合,那么有效地降低第一电极和第二电极之间的寄生电容,还能够降低制成电光调制器的难度。
基于第一方面,一种可选地实现方式中,所述第三导电层所包括的每个所述第二上层凸部和所述第四导电层所包括的一个所述第二下层凸部,在所述基板上的投影位置重合。
可见,第二上层凸部和第二下层凸部在所述基板上的投影位置重合,那么有效地降低第一电极和第二电极之间的寄生电容,还能够降低制成电光调制器的难度。
基于第一方面,一种可选地实现方式中,所述第一电极包括多个上层结构周期。每个所述上层结构周期包括位置相邻的至少一个所述第一上层凸部以及至少一个所述第一上层凹部。不同的所述上层结构周期的结构相同。沿所述第一电极的延伸方向,一个单位长度内所述第一电极所包括的所述上层结构周期的数量和所述电光调制器的调制带宽呈正相关关系。
可见,同一单位长度内,包括数量越多的上层结构周期,说明该电光调制器的第一电极的结构越连续。该第一电极所带来的微波损耗越低,进而使得该电光调制器的调制带宽越大。同样地,同一单位长度内,包括数量越少的上层结构周期,说明该电光调制器的第一电极的结构越松散。该第一电极所带来的微波损耗越高,进而使得该电光调制器的调制带宽越小。
基于第一方面,一种可选地实现方式中,所述第一电极包括多个下层结构周期。每个所述下层结构周期包括位置相邻的至少一个所述第一下层凸部以及至少一个所述第一下层凹部。 不同的所述下层结构周期的结构相同。沿所述第一电极的延伸方向,一个单位长度内所述第一电极所包括的所述下层结构周期的数量和所述电光调制器的调制带宽呈正相关关系。
可见,同一单位长度内,包括数量越多的下层结构周期,说明该电光调制器的第二电极的结构越连续。该第二电极所带来的微波损耗越低,进而使得该电光调制器的调制带宽越大。同样地,同一单位长度内,包括数量越少的下层结构周期,说明该电光调制器的第二电极的结构越松散。该第二电极所带来的微波损耗越高,进而使得该电光调制器的调制带宽越小。
基于第一方面,一种可选地实现方式中,所述电光调制器还包括电场约束层。所述电场约束层位于所述传输光波导和所述第一电极之间。或,所述电场约束层位于所述传输光波导和所述第二电极之间。或,所述电场约束层位于所述传输光波导和所述第一电极之间,且所述电场约束层还位于所述传输光波导和所述第二电极之间。所述电场约束层用于使得所述电场分布在所述传输光波导上。
可见,电场约束层能够使得第一电极和第二电极之间的电场主要分布在所述传输光波导上,从而增强了电场和传输光波导所传输的光信号的光场之间的相互作用,以提高调制效率。而且因电场约束层由绝缘的材料制成,从而使得电场约束层不具有导电性能,不会带来微波损耗。可知,电光调制器包括电场约束层,不会降低调制带宽。
基于第一方面,一种可选地实现方式中,所述传输光波导位于所述基板表面。所述电场约束层具有位置相背的第一侧面和第二侧面。所述第一侧面与所述第一电极位置相邻。或,所述第一侧面与所述第二电极位置相邻。所述第二侧面与所述传输光波导位置相邻。
基于第一方面,一种可选地实现方式中,所述电场约束层延伸到以下所示的至少一个位置处:所述第一电极所包括的第一上层凸部,所述第一电极所包括的第一上层凹部,所述第一电极所包括的第一下层凸部,所述第一电极所包括的第一下层凹部,所述第二电极所包括的第二上层凸部,所述第二电极所包括的第二上层凹部,所述第二电极所包括的第二下层凸部,或所述第二电极所包括的第二下层凹部。
基于第一方面,一种可选地实现方式中,所述传输光波导和所述第一电极位于所述基板的两侧,和/或,所述传输光波导和所述第二电极位于所述基板的两侧。所述基板还包括电场约束层,所述电场约束层位于所述传输光波导和所述第一电极之间,和/或,所述电场约束层位于所述传输光波导和所述第二电极之间。所述电场约束层用于使得所述电场主要分布在所述传输光波导上。
基于第一方面,一种可选地实现方式中,所述电场约束层由高介电常数且绝缘的材料制成。所述电场约束层的材料折射率小于所述传输光波导的材料折射率。
可见,因所述电场约束层的材料折射率小于所述传输光波导的材料折射率,那么,电场约束层能够将电场分布于所述传输光波导上,以提高调制效率。而且因电场约束层由高介电常数且绝缘的材料制成,从而使得电场约束层不会带来微波损耗。
基于第一方面,一种可选地实现方式中,所述第一导电层面向所述基板的侧面包括第一区域和第二区域。所述第一区域与所述第二导电层接触。所述第二区域与所述基板接触。
基于第一方面,一种可选地实现方式中,所述第三导电层面向所述基板的侧面包括第三区域和第四区域。所述第三区域与所述第四导电层接触。所述第四区域与所述基板接触。
本发明实施例第二方面提供了一种光模块。所述光模块包括光源以及上述第一方面任一项所述的电光调制器。所述光源与所述传输光波导连接。所述光源用于向所述传输光波导发 送光信号。
本发明实施例第三方面提供了一种光发送设备。所述光发送设备包括处理器以及如上述第二方面所示的光模块。所述处理器与信号电极连接。所述信号电极为所述第一电极或所述第二电极。所述处理器用于向所述信号电极发送电信号。所述电信号用于调制所述传输光波导所传输的光信号。
附图说明
图1为本申请所提供的光通信系统的一种结构示例图;
图2a为本申请实施例所提供的光发送设备的一种结构示例图;
图2b为本申请实施例所提供的电光调制器的第一种剖面结构示例图;
图2c为本申请实施例所提供的电光调制器的第一种俯视结构示例图;
图3a为本申请实施例所提供的电光调制器的第二种剖面结构示例图;
图3b为本申请实施例所提供的电光调制器的第二种俯视结构示例图;
图4a为本申请实施例所提供的电光调制器的一种整体结构示例图;
图4b为本申请实施例所提供的电光调制器的第三种俯视结构示例图;
图5为本申请实施例所提供的电光调制器的第四种俯视结构示例图;
图6a为本申请实施例所提供的电光调制器的第三种剖面结构示例图;
图6b为本申请实施例所提供的电光调制器的第五种俯视结构示例图;
图7a为本申请实施例所提供的电光调制器的第六种俯视结构示例图;
图7b为本申请实施例所提供的电光调制器的第七种俯视结构示例图;
图8为本申请实施例所提供的电光调制器的第四种剖面结构示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提供了一种电光调制器,该电光调制器能够降低光损耗的情况下,还能够提高调制效率。为更好地理解,以下结合图1所示对本申请所提供的电光调制器所应用的光通信系统的结构进行说明。
图1为本申请所提供的光通信系统的一种结构示例图。如图1所示,光通信系统100包括光发送设备110以及光接收设备120。本申请对光发送设备110所连接的光接收设备120的具体数量不做限定。本申请所示的光发送设备110也可称之为发送机,发送端或发送端设备等。该光接收设备120也可称之为接收机,接收端或接收端设备等。
本申请以光通信系统100应用至光纤接入网,且具体应用在无源光纤网络(passive optical network,PON)中为例进行说明。可知,在下行业务光信号的传输方向,光发送设备110为光线路终端(optical line terminal,OLT),而光接收设备120为光网络 单元(optical network unit,ONU)。在上行业务光信号的传输方向,光发送设备110为ONU,而光接收设备120为OLT。
本申请对光通信系统所应用的网络具体类型不做限定。例如,在其他示例中,还可应用至数据中心网络,波分复用网络,或光传送网(optical transport network,OTN)等。若应用至OTN,则光发送设备110和光接收设备120可均为OTN设备。
图2a为本申请实施例所提供的光发送设备的一种结构示例图。如图2a所示,该光发送设备110具体包括光模块201以及处理器202。其中,光模块201包括光源203以及电光调制器210。该电光调制器可为马赫-曾德尔干涉仪(mach–zehnder interferometer,MZI)或微环调制器。
图2b为本申请实施例所提供的电光调制器的第一种剖面结构示例图。图2c为本申请实施例所提供的电光调制器的第一种俯视结构示例图。其中,图2b为沿图2c的横截线200剖切开电光调制器所得到的剖面图。
本实施例所示的电光调制器包括基板。该基板可包括两层,最下面的为衬底211以及位于衬底211表面的光波导层212。其中,衬底211可包括硅(silicon,Si),该衬底211还包括在硅表面沉积的二氧化硅(silicon dioxide,SiO2)。本实施例对衬底211的材质不做限定,只要该衬底211结构稳定且具有较少的光学吸收性能即可。例如,该衬底211还可由硼化锆(zirconiumboride,ZrB2),砷化镓(gallium arsenide,GaAs),玻璃,氧化镁等材质制成。该光波导层212能够形成位于信号电极和接地电极之间的传输光波导。本实施例所示的用于形成光波导层212的光电材料可为铌酸锂(lithium niobate,LiNbO3)。
本实施例所示的电光调制器包括位于光波导层212表面的信号电极213,以及位于信号电极213两侧的接地电极214和接地电极215。本实施例对电光调制器210所包括的信号电极以及接地电极的数量的说明为一种可选地示例,不做限定,只要电光调制器210包括至少一个信号电极以及至少一个接地电极即可。
该电光调制器210还包括传输光波导216以及传输光波导217。其中,传输光波导216位于接地电极214和信号电极213之间。传输光波导217位于信号电极213和接地电极215之间。该信号电极213与处理器202连接。接地电极214和接地电极215接地。
以传输光波导216为例,在对电光调制器制成的过程中,可对光波导层212进行刻蚀处理以形成该传输光波导216。其中,在垂直于基板表面的方向,该传输光波导216由光波导层212沿远离该基板表面的方向延伸以形成。可知,该传输光波导216从光波导层212的表面突出以形成。
可选地,在其他示例中,电光调制器所包括的基板可仅包括衬底。在衬底的表面且在信号电极和接地电极之间形成传输光波导。此示例的传输光波导的光电材料可为如下所示的一种或多种:单晶硅(silicon,Si),无定形硅(amorphous silicon,a-Si),氮化硅(silicon nitride,SiN)波导,氮化铝(aluminum nitride,AlN),氧化钛(titanium oxide,TiO2),或氧化钽(tantalum pentoxide,Ta2O3等。
光源203分别与传输光波导216以及传输光波导217连接。光源203用于分别向传输光波导216以及传输光波导217发送待调制的光信号。本实施例对光源203的具体类型不做限定,例如,该光源203可为激光器,半导体发光二极管(light-emitting diode,LED),或激光二极管(laser diode,LD)等。处理器202与信号电极213连接,处理器202用于向信号电极213发送电信号。该电信号用于调制传输光波导216以及传输光波导217所传输的光信号。本实施例对处理器202的类型不做限定,例如,本实施例所示的处理器202可为一个或多个芯片,或一个或多个集成电路。例如,处理器202可以是一个或多个现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片或者处理器的任意组合等。
以下对电光调制器实现对光信号调制的具体过程进行示例性说明。在信号电极213接收到来自处理器202的电信号的情况下,能够在信号电极213和接地电极214之间产生电场。该电场的方向是由信号电极213指向接地电极214,具体可参见图2a所示位于信号电极213和接地电极214之间箭头的指向。同样地,信号电极213和接地电极215之间产生电场。该电场的方向是由信号电极213指向接地电极215,具体可参见图2a所示位于信号电极213和接地电极215之间箭头的指向。
以信号电极213和接地电极214为例,信号电极213和接地电极214之间的电场施加在传输光波导216上,以对传输光波导216内所传输的光信号实现调制的目的。具体地,待调制的光信号沿传输光波导216传输,那么,该光信号的传输方向与信号电极213和接地电极214之间的电场方向垂直。信号电极213和接地电极214之间的电场的变化,会改变传输光波导216的有效折射率。传输光波导216有效折射率的改变,会改变传输光波导216所传输的光信号的相位,以实现对传输光波导216所传输的光信号的调制。对传输光波导217调制过程的说明,请参见传输光波导216所示,具体不做赘述。
信号电极213和接地电极214之间的间距,与对传输光波导216所传输的光信号的调制效率之间,呈负相关关系。可知,信号电极213和接地电极214之间的间距越大,那么对传输光波导216所传输的光信号的调制效率越低。同样地,信号电极213和接地电极214之间的间距越小,那么对传输光波导216所传输的光信号的调制效率越高。对传输光波导307所传输的光信号的调制效率的说明,请参见对传输光波导216所传输的光信号的调制效率的说明,具体不做赘述。
本实施例提供了一种第一电极。该第一电极的结构为堆叠式结构,能够保证在拉近第一电极和传输光波导216之间的间距的情况下,还能够降低光损耗。其中,该第一电极可为信号电极213或接地电极214。可知,在拉近了第一电极和传输光波导216之间的间距的情况下,能够提高调制传输光波导216所传输的光信号的调制效率。
以下对呈堆叠式结构的第一电极的结构进行说明。为更好地理解,以下以第一电极 为信号电极213为例进行示例性说明。在其他示例中,该第一电极也可为接地电极214。
本实施例在拉近信号电极213和传输光波导216之间的间距的情况下,还能够有效地降低信号电极213对传输光波导216所传输的光信号的吸收作用,进而降低传输光波导216所传输的光信号的光损耗。为此,参见图2b所示,本实施例所示的信号电极213包括第一导电层231和第二导电层232。该第二导电层232位于基板和该第一导电层231之间。其中,该第二导电层232位于信号电极213靠近传输光波导216的侧面。
该第一导电层231由金属材料制成。例如,该第一导电层231可由如下的至少一种金属材料制成:金(Au),银(Ag),钯(Pd),铑(Rh),铱(Ir),锇(Os)或钌(Ru)等。
以下对第二导电层232需要满足的条件进行说明。本实施例所示的该第一导电层231的电导率大于该第二导电层232的电导率,且该第一导电层231的光吸收系数大于该第二导电层232的光吸收系数。满足该条件的第二导电层232可由透明导电氧化物(ransparent conductive oxide,TCO)制成。其中,TCO主要为氧化镉(CdO),氧化铟(In2O3),二氧化锡(SnO2)和氧化锌(ZnO)等氧化物及其相应的复合化合物等。
本实施例中,第一导电层231的光吸收系数大于该第二导电层232的光吸收系数,而且第二导电层232相对于第一导电层231更靠近传输光波导216。那么,第二导电层232所产生的光损耗小于单纯由金属材料制成的第一导电层231所产生的光损耗。而且因该第一导电层231的电导率大于该第二导电层232的电导率,降低了电信号在第一导电层231传输过程中的微波损耗,提高了调制带宽。
为更好地理解,对本实施例所示的呈堆叠式结构的信号电极和已有方案所示的仅通过金属材料制成的信号电极进行对比说明。
本实施例所示的信号电极213相对于已有方案所示的信号电极而言,本实施例所示的信号电极213的第二导电层232的光吸收系数小于已有方案所示的信号电极的光吸收系数。那么,在相同的光损耗条件下,如2分贝/厘米(dB/cm),本实施例所示的第二导电层232可以更靠近传输光波导216。可知,本实施例所示的信号电极213相对于已有方案所示的信号电极,能够更靠近传输光波导。因本实施例的信号电极213更能够靠近传输光波导,那么电场能够更强烈的作用在传输光波导216上,从而有效地提高了调制效率。
本实施例所示的信号电极213包括呈堆叠式结构的第一导电层231和第二导电层232。第二导电层232具有较低的电导率,例如第二导电层232的电导率位于10 3~10 5西门子/米(s/m)区间之内。具有较低电导率的第二导电层232会增加电信号传输的微波损耗。但是,信号电极213还包括具有较高电导率的第一导电层231,例如,第一导电层231的电导率等于10 7s/m。具有较高电导率的第一导电层231的导电性能较高,会降低微波损耗,从而提高调制带宽。可知,本实施例在第二导电层232的上方堆叠了高电导率的第一导电层231,以补偿低电导率的第二导电层232所损失的微波损耗。
为更好地理解信号电极213所包括的第一导电层231和第二导电层232之间的空间位置关系,以下结合图2a,图2b以及图2c所示的具体方向进行说明。本实施例所示的传输光波导216沿Y方向延伸。可知,沿传输光波导216传输的光信号沿Y方向传输。本实施例所示的第一导电层231和第二导电层232沿X方向堆叠,其中,该X方向与Y方向垂直,且该X 方向与基板表面垂直。
本实施例对沿Z方向,第一导电层231和第二导电层232之间的长度关系不做限定。其中,Z方向同时与X方向和Y方向垂直。例如,在图2b以及图2c所示的示例中,沿Z方向,该第二导电层232的长度小于第一导电层231的长度,且第二导电层232容纳于第一导电层231内设置。沿X方向,该第一导电层231的侧面与第二导电层232的侧面对齐,进而可知,在图2c所示的俯视图中,第二导电层232完全掩藏在第一导电层231之内。
需明确地是,图2b以及图2c所示的结构为一种示例,不做限定。例如图3a以及图3b所示。其中,图3a为本申请实施例所提供的电光调制器的第二种剖面结构示例图。图3b为本申请实施例所提供的电光调制器的第二种俯视结构示例图。在本示例中,沿Z方向,第二导电层232突出至第一导电层231之外。可知,沿X方向,该第一导电层231的侧面与第二导电层232的侧面不对齐,且第二导电层232的侧面相对于该第一导电层231的侧面,更靠近传输光波导216。
可知,在沿Z方向,该第二导电层232的长度小于第一导电层231的长度的情况下,该第一导电层231面向该基板的侧面的部分区域与该第二导电层232接触。具体地,该第一导电层231面向该基板的侧面具有连接的第一区域和第二区域。该第一区域直接与第二导电层232接触,而第二区域直接与光波导层212接触。
在其他的示例中,沿Z方向,该第二导电层232的长度也可大于或等于第一导电层231的长度。可知,此示例下的该第一导电层231面向该基板的侧面的全部区域仅与该第二导电层232接触。
由上述所示可知,本实施例所示的第一电极(信号电极或接地电极)采用堆叠式结构,由此可拉近第一电极和传输光波导之间的间距。在提高了调制效率的情况下,还能够降低光损耗以及提高调制带宽。而且因本实施例所示的电光调制器所包括的第一电极和传输光波导之间的间距比较小,有效地降低了电光调制器的尺寸,提高了电光调制器的集成度。
上述所示以电光调制器仅第一电极采用堆叠式结构为例,本实施例所示的电光调制器所包括的第二电极也可采用堆叠式结构。例如,若第一电极为信号电极,那么,第二电极为接地电极。又如,若第一电极为接地电极,那么,第二电极为信号电极。可知,本实施例所示的电光调制器所包括的接地电极和信号电极,均采用堆叠式结构。
具体参见图2b所示,以第二电极为接地电极214为例,该接地电极214具体包括第三导电层233和第四导电层234。该第四导电层234位于该基板和该第三导电层233之间。该第三导电层233的电导率大于该第四导电层234的电导率,且该第三导电层233的光吸收系数大于该第四导电层234的光吸收系数。对接地电极214的具体结构的说明,请参见上述对信号电极213结构的说明,具体不做赘述。
本实施例对沿Z方向,第三导电层233和第四导电层234之间的长度关系不做限定。本实施例以第三导电层233的长度大于第四导电层234的长度为例。可知,第三导电层 233面向该基板的侧面的部分区域与该第四导电层234接触。具体地,第三导电层233面向该基板的侧面具有连接的第三区域和第四区域。该第三区域直接与第四导电层234接触,而第四区域直接与光波导层212接触。
可知,本示例下,能够同时拉近第一电极和传输光波导之间的间距以及拉近第二电极和传输光波导之间的间距。相对于仅第一电极采用堆叠式结构的示例,本示例更能够提高调制效率以及调制带宽,以及降低光损耗和微波损耗。而且还能够进一步地降低电光调制器的尺寸,提高电光调制器的集成度。
继续如图2b所示,接地电极215也包括第三导电层243和第四导电层244。接地电极215所包括的第三导电层243和第四导电层244的说明,请参见上述所示的接地电极214所包括的第三导电层233和第四导电层234的说明。此示例下,信号电极213朝向接地电极215的侧面包括第一导电层251和第二导电层252。信号电极213所包括的第一导电层251和第二导电层252的说明,请参见上述所示的信号电极213所包括第一导电层231和第二导电层232的说明。可知,本实施例所示的信号电极213,接地电极214以及接地电极215均采用堆叠式结构。
如图4a以及图4b所示说明如何降低信号电极和接地电极之间的寄生电容。其中,图4a为本申请实施例所提供的电光调制器的一种整体结构示例图。图4b为本申请实施例所提供的电光调制器的第三种俯视结构示例图。
本实施例所示的电光调制器包括呈堆叠式结构的信号电极213和接地电极214,对这两者的说明,请参见图2a至图3b所示,具体不做赘述。本实施例所示的第一导电层231和第三导电层233均采用凹凸式结构。具体地,第一导电层231的凹凸式结构是指,第一导电层231面向该第三导电层233的侧面凸设多个第一上层凸部301。任意位置相邻的两个该第一上层凸部301之间形成第一上层凹部303。该第三导电层233的凹凸式结构是指,该第三导电层233面向该第一导电层231的侧面凸设多个第二上层凸部302。任意位置相邻的两个该第二上层凸部302之间形成第二上层凹部304。
为实现降低信号电极213以及接地电极214之间寄生电容的目的,每个该第一上层凸部301与一个该第二上层凹部304位置相对。同样地,每个该第二上层凸部302与一个该第一上层凹部303位置相对。可知,本实施例所示不会出现该第一上层凸部301与该第二上层凸部302位置相对的情况。因每个该第一上层凸部301与一个该第二上层凹部304位置相对,且每个该第二上层凸部302与一个该第一上层凹部303位置相对。那么,沿Z方向,第一上层凸部301和第二上层凸部302之间位置相错,从而尽可能的提高了第一导电层231和第三导电层233之间的间距。进而有效地降低了信号电极213和接地电极214之间的寄生电容。对Z方向的具体说明,请参见上述图2b所示,具体不做赘述。
以第一上层凸部301为例,本实施例对第一上层凸部301的具体形状和大小不做限定,例如,图4a和图4b所示以第一上层凸部301的形状为方形为例,不做限定。在其他示例中,该第一上层凸部301的形状也可呈梯形,弧形,菱形,T形或锥形等形状。对第二上层凸部302的形状的说明,请参见第一上层凸部301形状的说明,具体不做赘 述。
继续以第一上层凸部301为例,一个第一上层凸部301与一个第一上层凹部303位置相邻。可知,相邻的第一上层凸部301之间处于非连续的状态,那么,会提高第一导电层231的微波损耗。
以下对本实施例所示的如何降低信号电极213的微波损耗的进行说明。本实施例所示的信号电极213包括多个上层结构周期。其中,每个上层结构周期包括位置相邻的至少一个第一上层凸部301以及至少一个第一上层凹部303。不同的该上层结构周期的结构相同。例如,图4b所示,信号电极213所包括的一个上层结构周期305包括位置相邻的一个第一上层凸部301以及一个第一上层凹部303。本实施例对每个上层结构周期所包括的第一上层凸部301和第一上层凹部303的数量不做限定,只要一个上层结构周期所包括的第一上层凸部301和第一上层凹部303位置连续即可。
本实施例所示的不同上层结构周期的结构相同是指,位于不同结构周期的相同位置处的第一上层凸部301的尺寸相同。其中,位于不同结构周期的相同位置处的第一上层凸部301是指,位于不同结构周期的第一个上层凸部301,依次类推,位于不同结构周期的最后一个上层凸部301。其中,第一上层凸部301的尺寸是指,第一上层凸部301沿Z方向的长度,沿Y方向的长度以及沿X方向的高度。
本实施例所示的不同上层结构周期的结构相同还指,位于不同结构周期的相同位置处的第一上层凹部303的尺寸相同。其中,位于不同结构周期的相同位置处的第一上层凹部303是指,位于不同结构周期的第一个上层凹部303,依次类推,位于不同结构周期的最后一个上层凹部303。其中,第一上层凹部303的尺寸是指,第一上层凹部303沿Z方向的长度以及沿Y方向的长度。
本实施例中,可通过上层结构周期降低第一上层凸部301的微波损耗。具体地,沿该信号电极213的延伸方向(即Y方向),一个单位长度内该信号电极213所包括的该上层结构周期的数量和该电光调制器的调制带宽呈正相关关系。其中,单位长度仅为一个长度的参考标准,本实施例对单位长度的具体长度不做限定。
对于采用堆叠式结构的信号电极而言,同一单位长度内,包括数量越多的上层结构周期,说明该电光调制器的信号电极的结构越连续。该信号电极所带来的微波损耗越低,进而使得该电光调制器的调制带宽越大。同样地,同一单位长度内,包括数量越少的上层结构周期,说明该电光调制器的信号电极的结构越松散。该信号电极所带来的微波损耗越高,进而使得该电光调制器的调制带宽越小。
可知,本实施例为提高电光调制器的调制带宽,可尽可能的增加一个单位长度内,信号电极213所包括的上层结构周期的数量。
本实施例所示,第一导电层231以上层结构周期为周期,进行周期性排布为例进行示例性说明,不做限定。例如,在其他示例中,第一导电层231所包括的第一上层凸部301的尺寸和第一上层凹部303的尺寸也可通过随机的方式进行排布。本实施例所示的接地电极如何降低微波损耗的请详见信号电极213降低微波损耗的说明,具体不做赘述。
基于图4a以及图4b所示的第一导电层231和第三导电层233的结构,以下对本实施例所示的第二导电层232以及第四导电层234的可选结构进行说明。以下以第二导电层232的结构为例进行示例性说明,第四导电层234的结构的说明可参见下述对第二导电层232的结构的说明,不做赘述。
本实施例所示的第二导电层232可呈结构连续的条形结构。沿Y方向,该第二导电层232由第一导电层231的起始位置延伸至第一导电层231的结束位置。本实施例对第二导电层232的形状的说明为可选地示例,不做限定,只要该第二导电层232呈连续的结构即可。例如,该第二导电层232可呈弧形等。本实施例对沿Y方向,该第一导电层231和该第二导电层232之间的长度关系不做限定,例如,沿Y方向,该第一导电层231的长度和该第二导电层232的长度相等。可知,在图4b所示的俯视图中,第二导电层232背离基板的侧面具有第五区域和第六区域。其中,第五区域与第一上层凸部301直接接触。由如图4b的俯视图所示可知,第六区域321直接从第一上层凹部303中露出。
由上述可知,为降低电光调制器的寄生电容,第一导电层231和第三导电层233可采用周期性的结构。本实施例为进一步地降低电光调制器的寄生电容,第二导电层232和第四导电层234也可采用凹凸式结构。
具体地,第二导电层232的凹凸式结构是指,该第二导电层232面向该第四导电层234的侧面凸设多个第一下层凸部,任意位置相邻的两个该第一下层凸部之间形成第一下层凹部。其中,第一下层凸部和第一下层凹部的结构的说明,可参加上述所示的第一上层凸部301和第一上层凹部303的结构的说明,具体不做赘述。
第四导电层234的凹凸式结构是指,该第四导电层234向该第二导电层232的侧面凸设多个第二下层凸部,任意位置相邻的两个该第二下层凸部之间形成第二下层凹部。其中,第二下层凸部和第二下层凹部的结构的说明,可参加上述所示的第二上层凸部302和第二上层凹部304的结构的说明,具体不做赘述。
为更大程度的降低信号电极213以及接地电极214之间的寄生电容,每个该第一下层凸部与一个该第二下层凹部位置相对。同样地,每个该第二下层凸部与一个该第一下层凹部位置相对。
可知,每个该第一下层凸部与一个该第一下层凹部位置相对,且每个第二下层凸部与一个第二下层凹部位置相对。那么,沿Z方向,第一下层凸部和第二下层凸部之间位置相错,从而尽可能的提高了第二导电层232和第四导电层234之间的间距。进而有效地降低了信号电极213和接地电极214之间的寄生电容。
由此可知,为降低信号电极213以及接地电极214之间的寄生电容,那么第一导电层231和第二导电层232均采用周期性的结构。以下对第一导电层231的凹凸式结构和第二导电层232的凹凸式结构的位置关系进行可选地说明。例如,该第一导电层231的凹凸式结构和第二导电层232的凹凸式结构位置重合。其中,凹凸式结构位置重合是指,在相同的投影线的照射下,第一导电层231所包括的每个该第一上层凸部301和该第二导电层232所包括的一个该第一下层凸部,在该基板上的投影位置重合。且在相同的投影线的照射下,第一导电层231所包括的每个第一上层凹部303和该第二导电层232所包括的一个该第一下层凹部,在该基板上的投影位置重合。本实施例对投影线的具体方向不做限定,例如,该投影线为垂直 于基板方向的光线。
可参见图5所示,其中,图5为本申请实施例所提供的电光调制器的第四种俯视结构示例图。在第一导电层231的凹凸式结构和第二导电层232的凹凸式结构的位置重合,且在俯视该电光调制器的视角下,光波导层212依次从第一下层凹部以及该第一上层凹部303露出。本实施例所示的第三导电层233的凹凸式结构和第四导电层234的凹凸式结构位置重合,具体说明请参见第一导电层231的凹凸式结构和第二导电层232的凹凸式结构位置重合的说明,具体不做赘述。
同样地,在相同的投影线的照射下,该第三导电层233所包括的每个该第二上层凸部302和该第四导电层234所包括的一个该第二下层凸部,在该基板上的投影位置重合。且在相同的投影线的照射下,该第三导电层233所包括的每个第二上层凹部和该第四导电层234所包括的一个该第二下层凹部,在该基板上的投影位置重合。具体说明请参见上述所示的对该第一导电层231的凹凸式结构和第二导电层232的说明,具体不做赘述。
可知,在该第一导电层231的凹凸式结构和第二导电层232的凹凸式结构位置重合,且第三导电层233的凹凸式结构和第四导电层234的凹凸式结构位置重合的情况下,能够充分的提高第一上层凸部301和第二上层凸部302之间的间距,以及提高第一上层凸部301和第二下层凸部之间的间距。从而有效地降低信号电极213和接地电极214之间的寄生电容。而且降低了制成信号电极和接地电极的制成难度。
需明确地是,本实施例以该第一导电层231的凹凸式结构和第二导电层232的凹凸式结构位置重合为例进行示例性说明,不做限定。在其他示例中,该第一导电层231的凹凸式结构和第二导电层232的凹凸式结构也可位置相错。例如,在俯视该电光调制器的视角下,该第二导电层232所包括的一个第一下层凸部的至少部分,从该第一导电层231所包括的一个第一上层凹部中露出。
继续以第一下层凸部为例,以下对如何降低信号电极213的微波损耗的进行说明。本实施例所示的信号电极213包括多个下层结构周期。其中,每个下层结构周期包括位置相邻的至少一个第一下层凸部以及至少一个第一下层凹部。不同的该下层结构周期的结构相同。对下层结构周期的结构的说明,请参见上述对上层结构周期的说明,具体不做赘述。
可知,本实施例中,可通过下层结构周期降低第一下层凸部的微波损耗。具体地,沿该信号电极213的延伸方向(即Y方向),一个单位长度内该信号电极213所包括的该下层结构周期的数量和该电光调制器的调制带宽呈正相关关系。下层结构周期降低第一下层凸部的微波损耗的过程的说明,请参见上述对上层结构周期降低第一上层凸部的微波损耗的说明,具体不做赘述。
以下参见图6a和图6b所示。其中,图6a为本申请实施例所提供的电光调制器的第三种剖面结构示例图。图6b为本申请实施例所提供的电光调制器的第五种俯视结构示例图。
本实施例所示的电光调制器还包括电场约束层。以下对该电场约束层的几种可选地结构进行说明。
可选结构1,针对信号电极213和接地电极214,本实施例所示的电光调制器包括第一电场约束层601和第二电场约束层602。其中,该第一电场约束层601位于传输光波导216和信号电极213之间。该第二电场约束层602位于传输光波导216和接地电极214之间。需明确地是,本实施例对电场约束层的数量的说明为可选地示例,不做限定。例如,电光调制器 仅包括位于传输光波导216和信号电极213之间的第一电场约束层601。又如,电光调制器仅包括位于传输光波导216和接地电极214之间的第二电场约束层602。
以下对第一电场约束层601和第二电场约束层602的具体位置进行说明。本实施例所示的第一电场约束层601具有位置相背的第一侧面和第二侧面。其中,位置相背的第一侧面和第二侧面是指第一电场约束层601所具有的,沿方向Z朝向相背的两个侧面。可知,该第一侧面朝向信号电极213,而第二侧面朝向传输光波导216。其中,该第一侧面与该信号电极213位置相邻。本实施例对沿Z方向,第一侧面和信号电极213之间的距离不做限定。例如,图6a和图6b所示,该第一侧面与该信号电极213处于贴合的状态。该第二侧面与传输光波导216位置相邻。本实施例沿Z方向,第二侧面和传输光波导216之间的距离不做限定。同样地,第二电场约束层602也具有位置相背的第一侧面和第二侧面,第二电场约束模块602的第一侧面与接地电极214相邻,第二侧面与传输光波导216相邻。具体说明可参见第一电场约束层601的第一侧面和第二侧面的说明,具体不做赘述。
可知,第一电场约束层601和第二电场约束层602均为连续结构。即沿Y方向,第一电场约束层601由信号电极213的起始位置延伸至信号电极213的结束位置。本实施例对第一电场约束层601的形状的说明为可选地示例,不做限定,只要该第一电场约束层601呈连续的结构即可,例如,该第一电场约束层601可呈长条形或弧形等。本实施例对沿Y方向,该第一电场约束层601和该信号电极213之间的长度关系不做限定。例如,沿Y方向,该第一电场约束层601的长度和该信号电极213的长度相等。对沿Y方向,该第二电场约束层602的结构的说明,可参见第一电场约束层601的说明,具体不做赘述。
可选地,如图6a所示,沿X方向,该第一电场约束层601的高度等于该信号电极213的高度。需明确地是,本实施例对沿X方向,该第一电场约束层601和信号电极213之间的高度关系的说明为可选地示例,不做限定。例如,沿X方向,该第一电场约束层601的高度大于信号电极213的高度。
本实施例所示的该第一电场约束层601和第二电场约束层602满足的条件为,该第一电场约束层601和第二电场约束层602均由高介电常数且绝缘的材料制成。且该第一电场约束层601和第二电场约束层602的材料折射率均小于该传输光波导216的材料折射率。例如,该第一电场约束层601和第二电场约束层602均可由钛酸钡(BaTiO3)材质制成。
满足该条件的第一电场约束层601和第二电场约束层602能够使得信号电极213和接地电极214之间的电场主要分布在该传输光波导216上,从而提高了调制传输光波导216所传输的光信号的调制效率。具体地,第一电场约束层601和第二电场约束层602能够将信号电极213和接地电极214之间的电场,尽可能地集中在第一电场约束层601和第二电场约束层602之间。因传输光波导216位于第一电场约束层601和第二电场约束层602之间,而且相对于信号电极213,传输光波导216更靠近第一电场约束层601。同样地,相对于接地电极214,传输光波导216更靠近第二电场约束层602。那么,集中于第一电场约束层601和第二电场约束层602之间的电场能够主要向传输光波导216上集中。从而增强了电场和传输光波导216所传输的光信号的光场之间的相互作用,进而提高了调制效率。
而且因本实施例所示的第一电场约束层601和第二电场约束层602均由绝缘的材料制成,从而使得第一电场约束层601和第二电场约束层602均不具有导电性能,进而不会带来微波损耗。可知,电光调制器包括电场约束层,不会降低调制带宽。
可选结构2,本示例所示的电光调制器包括多个电场约束层611。该电场约束层611延伸到以下所示的至少一个位置处:信号电极213的第一上层凸部朝向传输光波导216的侧面,信号电极213的第一上层凹部的侧面,信号电极213的第一下层凸部朝向传输光波导216的侧面,信号电极213的第一下层凹部的侧面,该接地电极的第二上层凸部朝向传输光波导216的侧面,该接地电极的第二上层凹部的侧面,该接地电极的第二下层凸部朝向传输光波导216的侧面,或该接地电极的第二下层凹部的侧面。
图7a为本申请实施例所提供的电光调制器的第六种俯视结构示例图。可知,本示例以每个第一上层凹部的侧面均贴合设置电场约束层611,以及每个第二上层凹部的侧面均贴合设置有电场约束层611为例。图7b为本申请实施例所提供的电光调制器的第七种俯视结构示例图。可知,本示例以每个第一上层凹部内部均填充设置电场约束层612,以及每个第二上层凹部内部均填充设置电场约束层612为例。需明确地是,本实施例对电场约束层611的具体数量以及具体位置不做限定。
图8为本申请实施例所提供的电光调制器的第四种剖面结构实施例示例图。如图8所示,电光调制器的基板包括光波导层801,以及位于光波导层801表面的衬底802。该衬底802以及光波导层801的具体材质的说明,可参见图2b所示,具体不做赘述。
该衬底802的表面包括信号电极811和位于信号电极811两侧的接地电极812以及接地电极813。本实施例所示的信号电极811、接地电极812以及接地电极813均采用堆叠式结构,对堆叠式结构的电极结构的说明,请参见图2a至图3b所示,具体不做赘述。
本实施例所示的电光调制器还包括传输光波导。例如,本实施例所示的电光调制器包括由光波导层801所形成的传输光波导803。其中,光波导层801可通过沉积,刻蚀,极化等方式形成传输光波导803。该传输光波导803和信号电极811位于衬底802的两侧,即沿X方向,该传输光波导803和信号电极811位置相对。实施例以沿X方向,与该信号电极811位置相对处设置传输光波导803为例进行示例性说明,不做限定。例如,在其他示例中,沿X方向,与该接地电极812位置相对处也设置传输光波导804。
本实施例所示的电光调制器还包括电场约束层。具体地,若沿X方向,与该信号电极811位置相对处设置传输光波导803,那么衬底802包括第一通槽。该第一通槽位于信号电极811和传输光波导803之间。该第一通槽内设置电场约束层。又如,沿X方向,与该接地电极812位置相对处设置传输光波导804,那么衬底802包括第二通槽,该第二通槽位于接地电极812和传输光波导804之间,该第二通槽内设置电场约束层。本实施例所示的电场约束层的具体材质以及作用的说明,请参见图6a所示,具体不做赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (17)

  1. 一种电光调制器,其特征在于,所述电光调制器包括位于基板表面的第一电极和第二电极,所述电光调制器还包括传输光波导,所述第一电极和所述第二电极之间的电场用于调制所述传输光波导所传输的光信号;
    所述第一电极包括第一导电层和第二导电层,所述第二导电层位于所述基板和所述第一导电层之间,所述第一导电层的电导率大于所述第二导电层的电导率,所述第一导电层的光吸收系数大于所述第二导电层的光吸收系数。
  2. 根据权利要求1所述的电光调制器,其特征在于,所述第二电极包括第三导电层和第四导电层,所述第四导电层位于所述基板和所述第三导电层之间,所述第三导电层的电导率大于所述第四导电层的电导率,所述第三导电层的光吸收系数大于所述第四导电层的光吸收系数。
  3. 根据权利要求2所述的电光调制器,其特征在于,所述第一导电层面向所述第三导电层的侧面凸设多个第一上层凸部,任意位置相邻的两个所述第一上层凸部之间形成第一上层凹部;
    所述第三导电层面向所述第一导电层的侧面凸设多个第二上层凸部,任意位置相邻的两个所述第二上层凸部之间形成第二上层凹部;
    每个所述第一上层凸部与一个所述第二上层凹部位置相对,每个所述第二上层凸部与一个所述第一上层凹部位置相对。
  4. 根据权利要求3所述的电光调制器,其特征在于,所述第二导电层面向所述第四导电层的侧面凸设多个第一下层凸部,任意位置相邻的两个所述第一下层凸部之间形成第一下层凹部;
    所述第四导电层面向所述第二导电层的侧面凸设多个第二下层凸部,任意位置相邻的两个所述第二下层凸部之间形成第二下层凹部;
    每个所述第一下层凸部与一个所述第二下层凹部位置相对,每个所述第二下层凸部与一个所述第一下层凹部位置相对。
  5. 根据权利要求4所述的电光调制器,其特征在于,所述第一导电层所包括的每个所述第一上层凸部和所述第二导电层所包括的一个所述第一下层凸部,在所述基板上的投影位置重合。
  6. 根据权利要求4或5所述的电光调制器,其特征在于,所述第三导电层所包括的每个所述第二上层凸部和所述第四导电层所包括的一个所述第二下层凸部,在所述基板上的投影位置重合。
  7. 根据权利要求3或5所述的电光调制器,其特征在于,所述第一电极包括多个上层结构周期,每个所述上层结构周期包括位置相邻的至少一个所述第一上层凸部以及至少一个所述第一上层凹部,且不同的所述上层结构周期的结构相同,沿所述第一电极的延伸方向,一个单位长度内所述第一电极所包括的所述上层结构周期的数量和所述电光调制器的调制带宽呈正相关关系。
  8. 根据权利要求4或5所述的电光调制器,其特征在于,所述第一电极包括多个下层结构周期,每个所述下层结构周期包括位置相邻的至少一个所述第一下层凸部以及至少一 个所述第一下层凹部,且不同的所述下层结构周期的结构相同,沿所述第一电极的延伸方向,一个单位长度内所述第一电极所包括的所述下层结构周期的数量和所述电光调制器的调制带宽呈正相关关系。
  9. 根据权利要求1至8任一项所述的电光调制器,其特征在于,所述电光调制器还包括电场约束层,所述电场约束层位于所述传输光波导和所述第一电极之间,和/或,所述电场约束层位于所述传输光波导和所述第二电极之间,所述电场约束层用于使得所述电场分布在所述传输光波导上。
  10. 根据权利要求9所述的电光调制器,其特征在于,所述传输光波导位于所述基板表面,且所述电场约束层具有位置相背的第一侧面和第二侧面,所述第一侧面与所述第一电极位置相邻;或,所述第一侧面与所述第二电极位置相邻,所述第二侧面与所述传输光波导位置相邻。
  11. 根据权利要求9所述的电光调制器,其特征在于,所述电场约束层延伸到以下所示的至少一个位置处:
    所述第一电极所包括的第一上层凸部,所述第一电极所包括的第一上层凹部,所述第一电极所包括的第一下层凸部,所述第一电极所包括的第一下层凹部,所述第二电极所包括的第二上层凸部,所述第二电极所包括的第二上层凹部,所述第二电极所包括的第二下层凸部,或所述第二电极所包括的第二下层凹部。
  12. 根据权利要求1至8任一项所述的电光调制器,其特征在于,所述传输光波导和所述第一电极位于所述基板的两侧,和/或,所述传输光波导和所述第二电极位于所述基板的两侧;
    所述基板还包括电场约束层,所述电场约束层位于所述传输光波导和所述第一电极之间,和/或,所述电场约束层位于所述传输光波导和所述第二电极之间,所述电场约束层用于使得所述电场主要分布在所述传输光波导上。
  13. 根据权利要求9至12任一项所述的电光调制器,其特征在于,所述电场约束层由高介电常数且绝缘的材料制成,且所述电场约束层的材料折射率小于所述传输光波导的材料折射率。
  14. 根据权利要求1至13任一项所述的电光调制器,其特征在于,所述第一导电层面向所述基板的侧面包括第一区域和第二区域,所述第一区域与所述第二导电层接触,所述第二区域与所述基板接触。
  15. 根据权利要求2至8任一项所述的电光调制器,其特征在于,所述第三导电层面向所述基板的侧面包括第三区域和第四区域,所述第三区域与所述第四导电层接触,所述第四区域与所述基板接触。
  16. 一种光模块,其特征在于,所述光模块包括光源以及如权利要求1至15任一项所述的电光调制器,所述光源与所述传输光波导连接,所述光源用于向所述传输光波导发送光信号。
  17. 一种光发送设备,其特征在于,所述光发送设备包括处理器以及如权利要求16所述的光模块,所述处理器与信号电极连接,所述信号电极为所述第一电极或所述第二电极,所述处理器用于向所述信号电极发送电信号,所述电信号用于调制所述传输光波导所传输的光信号。
PCT/CN2022/125656 2021-10-21 2022-10-17 一种电光调制器、光模块以及光发送设备 WO2023066194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111229067.9 2021-10-21
CN202111229067.9A CN116009156A (zh) 2021-10-21 2021-10-21 一种电光调制器、光模块以及光发送设备

Publications (1)

Publication Number Publication Date
WO2023066194A1 true WO2023066194A1 (zh) 2023-04-27

Family

ID=86034119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125656 WO2023066194A1 (zh) 2021-10-21 2022-10-17 一种电光调制器、光模块以及光发送设备

Country Status (2)

Country Link
CN (1) CN116009156A (zh)
WO (1) WO2023066194A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237442A1 (en) * 2004-09-13 2007-10-11 Marks Tobin J Transparent conducting components and related electro-optic modulator devices
US20100215309A1 (en) * 2009-02-20 2010-08-26 Sun Microsystems, Inc. electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices
CN103869425A (zh) * 2012-12-17 2014-06-18 鸿富锦精密工业(深圳)有限公司 光耦合装置
EP2884331A1 (en) * 2013-12-10 2015-06-17 Institute of Solid State Physics, University of Latvia Electro-optic modulator and method of fabricating same
CN106972069A (zh) * 2017-04-14 2017-07-21 浙江大学 一种超薄材料‑金属新型接触电极
CN107238951A (zh) * 2017-07-05 2017-10-10 浙江大学 低偏压大带宽电光调制器
CN112987346A (zh) * 2021-03-29 2021-06-18 电子科技大学 一种易于实现电光波速匹配的薄膜电光调制器及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237442A1 (en) * 2004-09-13 2007-10-11 Marks Tobin J Transparent conducting components and related electro-optic modulator devices
US20100215309A1 (en) * 2009-02-20 2010-08-26 Sun Microsystems, Inc. electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices
CN103869425A (zh) * 2012-12-17 2014-06-18 鸿富锦精密工业(深圳)有限公司 光耦合装置
EP2884331A1 (en) * 2013-12-10 2015-06-17 Institute of Solid State Physics, University of Latvia Electro-optic modulator and method of fabricating same
CN106972069A (zh) * 2017-04-14 2017-07-21 浙江大学 一种超薄材料‑金属新型接触电极
CN107238951A (zh) * 2017-07-05 2017-10-10 浙江大学 低偏压大带宽电光调制器
CN112987346A (zh) * 2021-03-29 2021-06-18 电子科技大学 一种易于实现电光波速匹配的薄膜电光调制器及制备方法

Also Published As

Publication number Publication date
CN116009156A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US9668037B2 (en) Detector remodulator and optoelectronic switch
US8150223B2 (en) Thermal tuning of an optical device
GB2523434A (en) Detector remodulator and optoelectronic switch
KR102276913B1 (ko) 광 다이오드를 가지는 광전 변환 소자 및 광 신호 수신 유닛
CN111487793B (zh) 实现调制效率提高的z切lnoi电光调制器及其应用
US9535308B2 (en) Enhanced optical modulation using slow light
CN110196474B (zh) 光子集成电路封装及其制造方法
CN100555678C (zh) 硅基光感测元件及其制造方法
US20210226091A1 (en) Light-emitting unit and method for manufacturing the same
JP5979509B2 (ja) 光変調器、光ピックアップ及び光変調モジュール
WO2023066194A1 (zh) 一种电光调制器、光模块以及光发送设备
CN104204917A (zh) 光波导元件
KR20200124446A (ko) 광소자 및 그의 제조방법
WO2023020143A1 (zh) 光波导器件、光芯片、通信设备
CN114583420A (zh) 一种移相器及其制造方法、半导体器件、光通信系统
KR20180028331A (ko) 전계 흡수 변조기 및 광 통신 시스템
US20220404651A1 (en) Optical Modulator and Related Apparatus
CN114460684B (zh) T结构电极背面光纤连接的硅基薄膜铌酸锂调制器及方法
WO2023093052A1 (zh) 光模块
WO2021233390A1 (zh) 微环调制器以及制备方法
WO2021142588A1 (zh) 一种电光调制器及其制造方法、芯片
CN116722084A (zh) 一种倒装led芯片、led封装模组及显示装置
KR20180040005A (ko) 광변조기 및 이를 포함하는 광모듈
JPH11191654A (ja) 半導体レーザ装置及びその製造方法
JP2013251410A (ja) 光結合素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022882800

Country of ref document: EP

Effective date: 20240425