WO2023065281A1 - 具有冷却流路的传动机构及电桥驱动系统 - Google Patents

具有冷却流路的传动机构及电桥驱动系统 Download PDF

Info

Publication number
WO2023065281A1
WO2023065281A1 PCT/CN2021/125562 CN2021125562W WO2023065281A1 WO 2023065281 A1 WO2023065281 A1 WO 2023065281A1 CN 2021125562 W CN2021125562 W CN 2021125562W WO 2023065281 A1 WO2023065281 A1 WO 2023065281A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
shaft
inner cylinder
circumferential
main shaft
Prior art date
Application number
PCT/CN2021/125562
Other languages
English (en)
French (fr)
Inventor
李欣
Original Assignee
舍弗勒技术股份两合公司
李欣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 李欣 filed Critical 舍弗勒技术股份两合公司
Priority to CN202180102122.XA priority Critical patent/CN117941228A/zh
Priority to PCT/CN2021/125562 priority patent/WO2023065281A1/zh
Publication of WO2023065281A1 publication Critical patent/WO2023065281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium

Definitions

  • the present application relates to the field of power systems of vehicles, in particular to a transmission mechanism with a cooling flow path for a vehicle and an electric bridge drive system including the transmission mechanism.
  • a motor In pure electric vehicles, for example, a motor is used as a power source, and a so-called bridge drive system is composed of the motor and the transmission.
  • the rotor of the electric motor In the above-mentioned electric bridge drive system, the rotor of the electric motor is coupled with the transmission through a transmission mechanism including a shaft assembly.
  • the oil at the location of the transmission can be transferred to the location of the rotor of the motor through the shaft assembly for cooling, and then the oil is transferred back to the location of the transmission.
  • the parts of the shaft assembly used to realize this function require high machining accuracy, the assembly process is complicated and the assembly time is long.
  • An object of the present application is to provide a new type of transmission mechanism with a cooling flow path, which overcomes the need for high machining accuracy, complex assembly process and assembly process due to the interference fit between the inner cylinder of the shaft assembly and other components. The question of how long it takes.
  • Another object of the present application is to provide an electric bridge drive system comprising the above transmission mechanism.
  • the present application provides a transmission mechanism with a cooling flow path as follows, which includes:
  • a shaft assembly the shaft assembly is formed with a shaft hole and a discharge hole, the shaft hole extends along the axial direction of the shaft assembly, and the shaft hole is formed with an inlet at one axial end of the shaft assembly, the the discharge hole penetrates the wall of the shaft hole;
  • an inner cylinder the inner cylinder is accommodated in the shaft hole, an intermediate space is formed between the outer peripheral wall of the inner cylinder and the inner peripheral wall of the shaft assembly, the inner cylinder is formed with a central hole and a communication hole, the The central hole extends along the axial direction of the inner cylinder and communicates with the inlet, the communication hole passes through the wall of the central hole, and the outer peripheral wall at one axial end of the inner cylinder is formed with One or more first annular ribs, the first annular ribs abut against the inner peripheral wall of the shaft assembly, so as to close the space between the one axial end of the inner cylinder and the shaft assembly one or more second annular ribs are formed on the outer peripheral wall at the other axial end of the inner cylinder, and the second annular ribs abut against the inner peripheral wall of the shaft assembly, to close the gap between the other axial end of the inner cylinder and the shaft assembly,
  • the intermediate space communicates with the outside of the shaft assembly via the discharge hole
  • the central hole communicates with the intermediate space via the communication hole, whereby the cooling medium entering from the inlet port can The flow is discharged to the outside of the shaft assembly through the center hole, the communication hole, the intermediate space and the discharge hole.
  • the inner cylinder includes a plurality of circumferential parts made of plastic, and the plurality of circumferential parts respectively extend along the circumferential direction of the inner cylinder and form an inner peripheral wall with the shaft assembly.
  • An abutting rib that engages the plurality of circumferential portions to enclose the central aperture.
  • the plurality of circumferential parts include a first circumferential part and a second circumferential part, the first circumferential part comprises a first arc-shaped main body, and the second circumferential part comprises a The second arc-shaped main body matched with the arc-shaped main body, the first arc-shaped main body and the second arc-shaped main body extend along the axial direction of the inner cylinder and both have an arc-shaped cross-sectional shape. In a state where the second circumferential parts are engaged with each other, the circumferential end of the first arc-shaped main body and the circumferential end of the second arc-shaped main body abut against each other.
  • the circumferential end of the first arc-shaped body is formed in a concave shape, and the circumferential end of the second arc-shaped main body is inserted into the concave shape, so that the first circumferential portion and the The second circumferential portion is relatively fixed in the circumferential and radial directions of the inner cylinder.
  • one of the first circumferential portion and the second circumferential portion has a limiting recess, and the other of the first circumferential portion and the second circumferential portion There is a limiting convex part, and the limiting concave part cooperates with the limiting convex part so that the first circumferential part and the second circumferential part are relatively fixed in the axial direction of the inner cylinder.
  • each of the circumferential parts has a plurality of ribs, and the ribs extend along the axial direction of the inner cylinder,
  • a plurality of the ribs extend from circumferentially different positions of the circumferential portion and abut against circumferentially different positions of the inner peripheral wall of the shaft assembly.
  • the shaft assembly includes a main shaft and a shaft cap, the main shaft is formed with a main shaft through hole extending along the axial direction of the main shaft, and the main shaft through hole is formed on the axis of the main shaft The opening to one end serves as the inlet, and the shaft cap is fixed to the other axial end of the main shaft to close the opening of the main shaft through hole at the other axial end of the main shaft.
  • the main shaft through hole includes a first axial section and a middle section arranged from one axial end side of the main shaft toward the other axial end side of the main shaft and communicating with each other. and the second axial section, the cross-sectional area of the main shaft through hole becomes larger in the order of the first axial section, the middle section and the second axial section, the discharge hole and the middle The section is connected, and a part of the inner cylinder including one end in the axial direction protrudes into the middle section,
  • the shaft cap is formed with a shaft cap blind hole communicating with the main shaft through hole, and a part of the inner cylinder including the other axial end thereof protrudes into the shaft cap blind hole.
  • the present application also provides the following electric bridge driving system, which includes the transmission mechanism with a cooling flow path described in any one of the above technical solutions.
  • the bridge drive system further includes a casing, a transmission and a motor
  • the casing includes a first space and a second space separated from each other, and the transmission is accommodated in the first In a space, the motor is accommodated in the second space, the inlet port and the discharge hole are both located in the first space, and the rotor of the motor and the transmission mechanism are located in the second space. Partial torsion-proof connection in the space.
  • the transmission mechanism includes a shaft assembly and an inner cylinder.
  • the shaft assembly is formed with a shaft hole and a discharge hole, the shaft hole extends along the axial direction of the shaft assembly, the shaft hole is formed with an inlet at one axial end of the shaft assembly, and the discharge hole passes through the wall of the shaft hole.
  • the inner cylinder is accommodated in the shaft hole, and an intermediate space is formed between the outer peripheral wall of the inner cylinder and the inner peripheral wall of the shaft assembly.
  • the inner cylinder is formed with a central hole and a communication hole. The central hole extends along the axial direction of the inner cylinder and is connected to the inlet port.
  • the inner cylinder includes a plurality of circumferential parts respectively extending along the circumferential direction of the inner cylinder and formed with ribs abutting against the inner peripheral wall of the shaft assembly, the ribs engaging the plurality of circumferential parts to surround and form the central hole.
  • the outer peripheral wall at one axial end of the inner cylinder is formed with a first annular rib, and the first annular rib abuts against the inner peripheral wall of the shaft assembly to close the gap between the axial one end of the inner cylinder and the shaft assembly.
  • the intermediate space is communicated with the outside of the shaft assembly via the discharge hole, and the central hole is communicated with the intermediate space via the communication hole, whereby the cooling medium entering from the inlet port can flow through the central hole, the communication hole, the intermediate space and the discharge hole to be discharged. to the outside of the shaft assembly.
  • the annular rib By providing the annular rib, it is possible to achieve cooling flow in the transmission mechanism without an overall interference fit between the axial ends (outer peripheral surfaces) of the inner cylinder and the shaft assembly. Therefore, under the premise of achieving the same function, the machining accuracy of the axial ends of the inner cylinder and the corresponding parts of the shaft assembly can be reduced, and the assembly process can be simplified and the assembly time can be shortened. Further, the electric bridge driving system including the above transmission mechanism has the same beneficial effect.
  • FIG. 1A is a schematic cross-sectional view showing a partial structure of a possible electric bridge drive system, in which the rotor and the transmission mechanism of the motor are shown, both in an assembled state.
  • FIG. 1B is a schematic cross-sectional view showing the transmission mechanism in FIG. 1A , where the dashed line with arrows indicates the flow direction of the cooling medium in the cooling flow path.
  • FIG. 2A is a schematic cross-sectional view showing a transmission mechanism with a cooling flow path according to an embodiment of the present application, which can replace the transmission mechanism in FIG. 1B and be applied to an electric bridge drive system.
  • FIG. 2B is a schematic cross-sectional view along the N-N direction showing the transmission mechanism with cooling channels in FIG. 2A .
  • FIG. 2C is a schematic exploded structure diagram showing the transmission mechanism with a cooling flow path in FIG. 2A .
  • FIG. 2D is an enlarged schematic diagram showing a region M1 of the transmission mechanism having a cooling flow path in FIG. 2A .
  • FIG. 2E is an enlarged schematic view showing a region M2 of the transmission mechanism having a cooling flow path in FIG. 2A .
  • FIG. 3A is a schematic perspective view showing the inner cylinder of the transmission mechanism with a cooling flow path in FIG. 2A .
  • FIG. 3B is a schematic side view showing the inner cylinder of the transmission mechanism with a cooling flow path in FIG. 3A .
  • Fig. 4A is a schematic front view showing a first circumferential portion of the inner cylinder in Fig. 3A.
  • Fig. 4B is a schematic side view showing the first circumferential portion in Fig. 4A.
  • Fig. 5A is a schematic front view showing a second circumferential portion of the inner cylinder in Fig. 3A.
  • Fig. 5B is a schematic side view showing the second circumferential portion in Fig. 5A.
  • RO rotor S intermediate space A axial R radial C circumferential.
  • the rotor RO of the motor is installed on the main shaft 10 of the transmission mechanism and is connected to the main shaft 10 of the transmission mechanism in a torque-proof manner.
  • a cooling flow path for a cooling medium such as oil to flow is formed inside the transmission mechanism, through which the rotor RO of the motor can be cooled to improve the heat dissipation capability of the motor.
  • the transmission mechanism includes a main shaft 10 , a shaft cap 20 and an inner cylinder 30 assembled together.
  • a main shaft through hole 10h1 is formed inside the main shaft 10 .
  • the opening of the main shaft through hole 10 h1 at one axial end (the left end in FIG. 1B ) of the main shaft 10 serves as an inlet through which a cooling medium enters.
  • the wall portion of the spindle 10 for forming the spindle through hole 10h1 is also formed with a discharge hole 10h2.
  • the shaft cap 20 is fixed at the other axial end of the main shaft 10 by interference fit, and the shaft cap 20 closes the opening of the main shaft through hole 10h1 at the other axial end of the main shaft 10 (the right end in FIG.
  • the shaft cap blind hole 20h formed by the shaft cap 20 communicates with the main shaft through hole 10h1.
  • the inner cylinder 30 is installed in a space surrounded by the main shaft 10 and the shaft cap 20 and arranged coaxially with the main shaft 10 and the shaft cap 20 . Most of the inner cylinder 30 including one axial end is located in the main shaft through hole 10h1 , and the rest of the inner cylinder 30 including the other axial end is located in the shaft cap blind hole 20h of the shaft cap 20 .
  • An intermediate space S is formed between the outer peripheral wall of the inner cylinder 30 and the inner peripheral wall of the main shaft 10 .
  • the inner cylinder 30 is also formed with a center hole 30h1 extending in the axial direction A and a communication hole 30h2 communicating the center hole 30h1 with the intermediate space S. As shown in FIG. In this way, the cooling medium flows in the cooling flow path according to the direction indicated by the single dotted line with arrows in FIG. 1B , and when the cooling medium flows through the intermediate space S, it takes away the heat of the rotor RO of the motor, thereby achieving the purpose of cooling.
  • the entire axial end of the inner cylinder 30 and the main shaft 10 are fixed and sealed by interference fit, and the inner cylinder 30 The entire other end in the axial direction and the shaft cap 20 are fixed and sealed by interference fit.
  • the regions for interference fit at both ends of the inner cylinder 30 in the axial direction and the corresponding regions of the main shaft 10 and the shaft cap 20 require high machining accuracy, high component processing costs, and complicated and time-consuming assembly processes.
  • axial, radial and circumferential refer to the axial, radial and circumferential directions of the shaft assembly respectively;
  • one axial end of each component refers to The left end of the component in Figure 2A, the “other axial end” of each component refers to the right end of the component in Figure 2A;
  • the side of the central axis, “radially inner” means the side radially closer to the central axis of the shaft assembly.
  • a "torque-proof connection” means a torque-transmitting connection between two parts, the two parts being able to rotate together during the torque transmission.
  • a transmission mechanism with a cooling flow path includes a shaft assembly (a main shaft 1 and a shaft cap 2 ) and an inner cylinder 3 , the main shaft 1 , the shaft cap 2 and an inner cylinder 3 Assembled together in a coaxial manner, a cooling flow path for the cooling medium to flow is formed in the transmission mechanism.
  • the shaft assembly is composed of a main shaft 1 and a shaft cap 2 which are fixed to each other and form a shaft hole inside the shaft assembly.
  • the main shaft 1 is formed with a main shaft through hole 1h1 extending along the axial direction A, and the opening of the main shaft through hole 1 h1 at one axial end of the main shaft 1 serves as The cooling medium enters the inlet of the transmission mechanism, and the opening of the main shaft through hole 1h1 at the other end in the axial direction of the main shaft 1 serves as a mounting port for inserting the inner cylinder 3 into the main shaft through hole 1h1.
  • the main shaft through hole 1h1 includes a first axial section 1h11 , a middle section 1h13 and a second axial section 1h12 communicating with each other.
  • the cross-sectional area of the main shaft through hole 1h1 becomes larger in the order of the first axial segment 1h11, the intermediate segment 1h13, and the second axial segment 1h12.
  • the cross-sectional area of the first axial section 1h11 is substantially the same over its entire axial length, and the cross-sectional area of the second axial section 1h12 is approximately the same over its entire axial length. As shown in FIG.
  • the change tendency of the cross-sectional area of the middle section 1h13 is different at different parts of the middle section 1h13, and in some parts the cross-sectional area of the middle section 1h13 gradually increases toward the second axial section 1h12,
  • the cross-sectional area of the middle section 1h13 remains constant at some portions.
  • the main shaft 1 is also formed with three discharge holes 1h2 extending obliquely with respect to the radial direction R, and the three discharge holes 1h2 are uniformly distributed at intervals in the circumferential direction C of the main shaft 1, and three
  • the discharge hole 1h2 is located at the position of the middle section 1h13 of the main shaft through hole 1h1 and penetrates through the wall of the main shaft 1 .
  • the discharge hole 1h2 communicates with the intermediate section 1h13 of the main shaft through hole 1h1.
  • the shaft cap 2 is fixed on the other axial end of the main shaft 1 through interference fit, so as to close the main shaft through hole 1h1 at the main shaft 1 An opening at the other end of the shaft.
  • the shaft cap 2 includes a flange portion 21 fitted with the other axial end of the main shaft 1 , and the flange portion 21 abuts against the other axial end of the main shaft 1 .
  • the shaft cap 2 is formed with a mounting portion 22 protruding toward the main shaft 1 at the radially inner position of the flange portion 21, and the mounting portion 22 extends into the second axial section 1h12 of the main shaft through hole 1h1 and is interference fit with the main shaft 1 are fixed together so as to close the opening of the main shaft through hole 1h1 at the other axial end portion of the main shaft 1 .
  • the shaft cap 2 is also formed with a shaft cap blind hole 2 h communicating with the main shaft through hole 1 h1 .
  • the main shaft through hole 1h1 communicates with the blind hole 2h of the shaft cap to form a shaft hole of the shaft assembly.
  • the central body of the inner cylinder 3 has a cylindrical shape.
  • the inner cylinder 3 is inserted and installed in the space surrounded by the main shaft 1 and the shaft cap 2 and is fixed relative to the main shaft 1 and the shaft cap 2 .
  • an intermediate space S is formed between the outer peripheral wall of the inner cylinder 3 and the inner peripheral wall of the main shaft 1, and the intermediate space S is mainly located in the second axial section 1h12 and the middle section of the main shaft through hole 1h1. 1h13.
  • the inside of the inner cylinder 3 is formed with a central hole 3h1 passing through the inner cylinder 3 along the axial direction A, and the opening of the central hole 3h1 at one axial end 3a of the inner cylinder 3 and
  • the first axial section 1h11 of the main shaft through hole 1h1 is opposite, and the cross-sectional area at the other axial end of the first axial section 1h11 is smaller than the cross-sectional area of the opening at the axial end 3a of the inner cylinder 3, so that the inner cylinder 3 will not be inserted into the first axial section 1h11 and make it easy for the cooling medium flowing through the first axial section 1h11 to directly enter the central hole 3h1.
  • a communication hole 3h2 penetrates through the wall portion of the center hole 3h1 and is formed in a portion of the inner cylinder 3 where the shaft cap blind hole 2h of the shaft cap 2 is inserted.
  • a part of the inner cylinder 3 including one end 3a in the axial direction protrudes into the middle section 1h13 of the main shaft through hole 1h1, and there is a gap in the radial direction R between the outer peripheral wall of the cylindrical main body of this part and the main shaft 1 .
  • first annular ribs 3a1 are formed on the outer peripheral wall at one axial end 3a of the inner cylinder 3, and the two first annular ribs 3a1 are spaced side by side in the axial direction A, and each The first annular rib 3a1 extends over the entire circumference along the circumferential direction C, and the first annular rib 3a1 abuts against the inner peripheral wall of the main shaft 1 to close the outer peripheral wall of the axial one end 3a of the inner tube 3 Clearance from spindle 1.
  • the cooling medium entering the first axial section 1h11 through the inlet port will not be directly discharged from the discharge hole 1h2 through the above-mentioned gap, but will enter the central hole 3h1 of the inner cylinder 3 .
  • a portion of the inner cylinder 3 including the other axial end 3b protrudes into the shaft cap blind hole 2h of the shaft cap 2 , and there is a gap in the radial direction R between the outer peripheral wall of the cylindrical body of this portion and the shaft cap 2 .
  • Two protruding second annular ribs 3b1 are formed on the outer peripheral wall at the other end 3b in the axial direction of the inner cylinder 3, and the two second annular ribs 3b1 are spaced side by side in the axial direction A, Each second annular rib 3b1 extends over the entire circumference in the circumferential direction C, and the second annular rib 3b1 abuts against the inner peripheral wall of the main shaft 1 to close the inner cylinder 3 at the other end 3b in the axial direction.
  • the cooling medium flowing into the intermediate space S through the communication hole 3h2 of the inner cylinder 3 will flow toward the discharge hole 1h2 along the axial direction A, and will not flow directly from the other axial end portion 3b of the inner cylinder 3 through the above-mentioned gap.
  • the inner cylinder 3 includes a first circumferential portion 31 and a second circumferential portion 32 .
  • the first circumferential portion 31 includes a first arc-shaped main body 311 , a plurality of first ribs 312 and a limiting recess 313 .
  • the second circumferential portion 32 includes a second arc-shaped main body 321 cooperating with the first arc-shaped main body 311 , a plurality of second ribs 322 and a limiting protrusion 323 cooperating with the limiting concave portion 313 .
  • the first arc-shaped main body 311 and the second arc-shaped main body 321 extend along the axial direction A and both have an arc-shaped cross-sectional shape.
  • the circumferential end of the first arc-shaped body 311 is formed in a concave shape, and the circumferential end of the second arc-shaped main body 321 is inserted into the concave shape, so that the first circumferential portion 31 and the second circumferential portion 32 It is relatively fixed in the circumferential direction C and the radial direction R.
  • the first circumferential portion 31 has two limiting concave portions 313 spaced apart in the axial direction A
  • the second circumferential portion 32 has two limiting convex portions 323 spaced apart in the axial direction A.
  • the paired limiting concave portion 313 and the limiting convex portion 323 cooperate to make the first circumferential portion 31 and the second circumferential portion 32 relatively fixed in the axial direction A.
  • the relative movement of the first circumferential portion 31 and the second circumferential portion 32 is restricted in the circumferential direction C, the radial direction R and the axial direction A by the above-mentioned structure, so that the central body of the inner tube 3 always maintains a circular shape without gaps. barrel shape.
  • five first ribs 312 extend from different parts in the circumferential direction of the first arc-shaped main body 31 and abut against different parts in the circumferential direction of the inner peripheral wall of the main shaft 1 , and all the first ribs 312 are It has a flat plate shape and extends along the axis A.
  • these first ribs 312 three first ribs 312 are parallel to each other, and the other two first ribs 312 are respectively provided at both circumferential ends of the first arc-shaped main body 311 and extend toward opposite directions.
  • the two first ribs 312 are perpendicular to the three first ribs 312 arranged in parallel.
  • Three second ribs 322 extend from different parts in the circumferential direction of the second arc-shaped main body 32 and abut against different parts in the circumferential direction of the inner peripheral wall of the main shaft 1 , all of the second ribs 322 have a flat plate shape and extend along the axial direction. A stretch. These second ribs 322 are parallel to each other. The three second ribs 322 correspond to the three first ribs 312 arranged in parallel and extend in opposite directions.
  • both the first circumferential portion 31 and the second circumferential portion 32 are made of plastic, which is conducive to the close engagement of the first circumferential portion 31 and the second circumferential portion 32 and reduces manufacturing costs.
  • a cooling flow path through which a cooling medium flows is formed inside the transmission mechanism.
  • the intermediate space S communicates with the outside of the main shaft 1 through the discharge hole 1h2, and the center hole 3h1 communicates with the intermediate space S through the communication hole 3h2, whereby the cooling medium entering from the inlet port can flow through the center hole.
  • 3h1, the communication hole 3h2, the intermediate space S, and the discharge hole 1h2 are discharged to the outside of the transmission mechanism.
  • the cooling medium flows in and out on the same side (left side in FIG. 2A ) and flows substantially over the entire length of the main shaft 1 , so that the components along the entire length of the main shaft can be cooled.
  • the present application also provides an electric bridge drive system including the above-mentioned transmission mechanism.
  • the bridge drive system may also include a housing, a transmission and a motor.
  • the housing may include a first space and a second space separated from each other, the transmission is accommodated in the first space, and the motor is accommodated in the second space.
  • the main shaft 1 of the transmission mechanism extends to such a length that a part of the main shaft 1 is located in the first space and another part is located in the second space.
  • the inlet and outlet holes 1h2 of the transmission mechanism are both formed in a portion of the main shaft 1 located in the first space (located in the first space), whereby the inlet and outlet holes 1h2 communicate with the first space.
  • the rotor of the electric machine is connected in a rotationally fixed manner to the part of the transmission located in the second space.
  • the part of the main shaft 1 of the transmission mechanism corresponding to the second axial section 1h12 of the main shaft through hole 1h1 is in interference fit with the rotor of the motor, so as to realize a torque-resistant connection between the two.
  • the rotor drives the transmission mechanism to rotate together.
  • the oil collected from the first space as the cooling medium enters the cooling flow path of the transmission mechanism, and the cooling medium entering from the inlet can flow through the central hole 3h1, the communication hole 3h2, the intermediate space S and the discharge
  • the hole 1h2 returns to the first space. Therefore, the rotor installed in the transmission mechanism and located in the second space can be effectively cooled by the collected oil from the first space, thereby improving the heat dissipation capability of the motor.
  • the shaft assembly is composed of the split main shaft 1 and the shaft cap 2 fixed together, but the present application is not limited thereto. It can be understood that the shaft assembly can have an integrated structure, and the shape and size of the shaft hole in the shaft assembly can be changed according to needs, so as to install the inner cylinder 3 in the shaft assembly.
  • the shape of the central hole 3h1 of the inner cylinder 3 can be a shape in which the cross-sectional area gradually increases from one axial end side of the inner cylinder 3 toward the other axial end side of the inner cylinder 3.
  • the main shaft of the main shaft 1 The shape of the second axial section 1h12 of the through hole 1h1 can be a shape in which the cross-sectional area gradually increases from the other axial end side of the main shaft 1 toward the one axial end side of the main shaft 1, so that the transmission mechanism rotates The centrifugal force is used to promote the flow of the cooling medium in the cooling flow path.
  • the above transmission mechanism not only has low cost, but also is easy to assemble and takes a short time to assemble, and can also improve NVH performance.
  • the electric bridge drive system of the present application is not limited to be used in pure electric vehicles, and can also be used in hybrid vehicles as part of a hybrid system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

提供了一种具有冷却流路的传动机构,其包括轴组件(1、2)和内筒(3)。内筒(3)的轴向一端部(3a)处的外周壁上形成有第一环状肋部(3a1),以封闭内筒(3)的轴向一端部(3a)与轴组件(1、2)之间的间隙,内筒(3)的轴向另一端部(3b)处的外周壁上形成有第二环状肋部(3b1),以封闭内筒(3)的轴向另一端部(3b)与轴组件(1、2)之间的间隙,使得从轴组件(1、2)的进入口进入的冷却介质能够流经中心孔(3h1)、连通孔(3h2)、中间空间(S)和排出孔(1h2)排出到轴组件的外部。这样,降低对应部件的加工精度,还能够简化组装过程以及缩短组装用时。进一步地,提供了包括上述传动机构的电桥驱动系统。

Description

具有冷却流路的传动机构及电桥驱动系统 技术领域
本申请涉及车辆的动力系统领域,特别地涉及一种用于车辆的具有冷却流路的传动机构以及包括该传动机构的电桥驱动系统。
背景技术
在例如纯电动车辆中,采用电机作为动力源,由电机和变速器构成所谓的电桥驱动系统。在上述电桥驱动系统中,电机的转子与变速器经由包括轴组件的传动机构实现传动联接。为了对电机的转子进行冷却,可以通过轴组件将变速器所在位置的油传输到电机的转子所在的位置进行冷却,再将油传输回变速器所在的位置。但是用于实现这种功能的轴组件的部件之间需要较高加工精度,组装过程复杂以及组装用时长的问题。
发明内容
本申请的一个目的在于提供一种新型的具有冷却流路的传动机构,其克服了中由于轴组件的内筒与其它部件需要过盈配合而导致的需要较高加工精度,组装过程复杂以及组装用时长的问题。本申请的另一个目的在于提供一种包括上述传动机构的电桥驱动系统。
为了实现上述发明目的,本申请采用如下的技术方案。
本申请提供了一种如下的具有冷却流路的传动机构,其包括:
轴组件,所述轴组件形成有轴孔和排出孔,所述轴孔沿着所述轴组件的轴向延伸,所述轴孔在所述轴组件的轴向一端部形成有进入口,所述排出孔贯通所述轴孔的壁部;以及
内筒,所述内筒收纳在所述轴孔内,在所述内筒的外周壁和所述轴组件 的内周壁之间形成中间空间,所述内筒形成有中心孔和连通孔,所述中心孔沿着所述内筒的轴向延伸且与所述进入口连通,所述连通孔贯通所述中心孔的壁部,所述内筒的轴向一端部处的外周壁上形成有一个或多个第一环状肋部,所述第一环状肋部与所述轴组件的内周壁抵靠,以封闭所述内筒的所述轴向一端部与所述轴组件之间的间隙,所述内筒的轴向另一端部处的外周壁上形成有一个或多个第二环状肋部,所述第二环状肋部与所述轴组件的内周壁抵靠,以封闭所述内筒的所述轴向另一端部与所述轴组件之间的间隙,
其中,经由所述排出孔使所述中间空间与所述轴组件的外部连通,经由所述连通孔使所述中心孔与所述中间空间连通,由此从所述进入口进入的冷却介质能够流经所述中心孔、所述连通孔、所述中间空间和所述排出孔排出到所述轴组件的外部。
在一种可选的方案中,所述内筒包括由塑料制成的多个周向部,所述多个周向部分别沿着所述内筒的周向延伸且形成有与所述轴组件的内周壁抵靠的肋部,所述肋部使得所述多个周向部接合以包围形成所述中心孔。
在另一种可选的方案中,所述多个周向部包括第一周向部和第二周向部,所述第一周向部包括第一弧状主体,所述第二周向部包括与所述第一弧状主体配合的第二弧状主体,所述第一弧状主体和所述第二弧状主体沿着所述内筒的轴向延伸且均具有弧形截面形状,在所述第一周向部和所述第二周向部彼此接合的状态下所述第一弧状主体的周向端部与所述第二弧状主体的周向端部彼此抵靠。
在另一种可选的方案中,所述第一弧状主体的周向端部形成为凹陷形状,所述第二弧状主体的周向端部插入所述凹陷形状中,使得所述第一周向部和所述第二周向部在所述内筒的周向和径向上相对固定。
在另一种可选的方案中,所述第一周向部和所述第二周向部中的一者具 有限位凹部,所述第一周向部和所述第二周向部中的另一者具有限位凸部,所述限位凹部和所述限位凸部配合使得所述第一周向部和所述第二周向部在所述内筒的轴向上相对固定。
在另一种可选的方案中,每个所述周向部具有多个所述肋部,所述肋部沿着所述内筒的轴向延伸,
对于一个所述周向部,多个所述肋部从所述周向部的周向不同部位延伸并抵靠于所述轴组件的内周壁的周向不同部位。
在另一种可选的方案中,所述轴组件包括主轴和轴帽,所述主轴形成有沿着所述主轴的轴向延伸的主轴通孔,所述主轴通孔在所述主轴的轴向一端部处的开口作为所述进入口,所述轴帽固定于所述主轴的轴向另一端部,以封闭所述主轴通孔的在所述主轴的轴向另一端部处的开口。
在另一种可选的方案中,所述主轴通孔包括从所述主轴的轴向一端部侧朝向轴向所述主轴的另一端部侧布置且彼此连通的第一轴向段、中间段和第二轴向段,所述主轴通孔的横截面面积按照所述第一轴向段、所述中间段和所述第二轴向段的顺序变大,所述排出孔与所述中间段连通,所述内筒的包括其轴向一端部的一部分伸入所述中间段中,
所述轴帽形成有与所述主轴通孔连通的轴帽盲孔,所述内筒的包括其轴向另一端部的一部分伸入所述轴帽盲孔中。
本申请还提供了一种如下的电桥驱动系统,其包括以上技术方案中任意一项技术方案所述的具有冷却流路的传动机构。
在一种可选的方案中,所述电桥驱动系统还包括壳体、变速器和电机,所述壳体包括彼此分隔开的第一空间和第二空间,所述变速器收纳于所述第一空间内,所述电机收纳于所述第二空间内,所述进入口和所述排出孔均位于所述第一空间内,所述电机的转子与所述传动机构的位于所述第二空间内 的部分抗扭连接。
通过采用上述技术方案,本申请提供了一种新型的具有冷却流路的传动机构及包括该传动机构的电桥驱动系统。该传动机构包括轴组件和内筒。轴组件形成有轴孔和排出孔,轴孔沿着轴组件的轴向延伸,轴孔在轴组件的轴向一端部形成有进入口,排出孔贯通轴孔的壁部。内筒收纳在轴孔内,在内筒的外周壁和轴组件的内周壁之间形成中间空间,内筒形成有中心孔和连通孔,中心孔沿着内筒的轴向延伸且与进入口连通,连通孔贯通中心孔的壁部。内筒包括多个周向部,多个周向部分别沿着内筒的周向延伸且形成有与轴组件的内周壁抵靠的肋部,肋部使得多个周向部接合以包围形成中心孔。内筒的轴向一端部处的外周壁形成有第一环状肋部,第一环状肋部与轴组件的内周壁抵靠,以封闭内筒的轴向一端部与轴组件之间的间隙,内筒的轴向另一端部处的外周壁形成有第二环状肋部,第二环状肋部与轴组件的内周壁抵靠,以封闭内筒的轴向另一端部与轴组件之间的间隙。这样,经由排出孔使中间空间与轴组件的外部连通,经由连通孔使中心孔与中间空间连通,由此从进入口进入的冷却介质能够流经中心孔、连通孔、中间空间和排出孔排出到轴组件的外部。
在上述传动机构中,通过设置环状肋部,能够使得内筒的轴向两端部(的外周面)与轴组件之间不需要进行整体过盈配合,就能够在传动机构中实现冷却流路,由此在实现同样的功能的前提下能够降低对内筒的轴向两端部及轴组件的对应部位的加工精度,而且还能够简化组装过程以及缩短组装用时。进一步地,包括上述传动机构的电桥驱动系统具有同样的有益效果。
附图说明
图1A是示出了一种可能的电桥驱动系统的局部结构的剖视示意图,其中示出了电机的转子和传动机构,两者处于组装状态。
图1B是示出了图1A中的传动机构的剖视示意图,其中带有箭头的单点划线表示冷却介质在冷却流路中的流动方向。
图2A是示出了根据本申请的一实施例的具有冷却流路的传动机构的剖视示意图,其可以代替图1B中的传动机构应用于电桥驱动系统。
图2B是示出了图2A中的具有冷却流路的传动机构的N-N向剖视示意图。
图2C是示出了图2A中的具有冷却流路的传动机构的分解结构示意图。
图2D是示出了图2A中的具有冷却流路的传动机构的区域M1的放大示意图。
图2E是示出了图2A中的具有冷却流路的传动机构的区域M2的放大示意图。
图3A是示出了图2A中的具有冷却流路的传动机构的内筒的立体示意图。
图3B是示出了图3A中的具有冷却流路的传动机构的内筒的侧视示意图。
图4A是示出了图3A中的内筒的第一周向部的主视示意图。
图4B是示出了图4A中的第一周向部的侧视示意图。
图5A是示出了图3A中的内筒的第二周向部的主视示意图。
图5B是示出了图5A中的第二周向部的侧视示意图。
附图标记说明
10主轴 10h1主轴通孔 10h2排出孔 20轴帽 20h轴帽盲孔 30内筒 30h1中心孔 30h2连通孔
1主轴 1h1主轴通孔 1h11第一轴向段 1h12第二轴向段 1h13中间段 1h2排出孔 2轴帽 21凸缘部 22安装部 2h轴帽盲孔 3内筒 3a内筒的轴向一端部 3a1第一环状肋部 3b内筒的轴向另一端 部 3b1第二环状肋部 3h1中心孔 3h2连通孔 31第一周向部 311第一弧状主体 312第一肋部 313限位凹部 32第二周向部 321第二弧状主体 322第二肋部 323限位凸部
RO转子 S中间空间 A轴向 R径向 C周向。
具体实施方式
下面参照附图描述本申请的示例性实施例。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
如图1A所示,在一种可能的电桥驱动系统的设计中,电机的转子RO安装于传动机构的主轴10并且与传动机构的主轴10抗扭连接。传动机构的内部形成有供例如油等的冷却介质流动的冷却流路,通过冷却介质能够对电机的转子RO进行冷却,改善电机的散热能力。
如图1B所示,传动机构包括组装在一起的主轴10、轴帽20和内筒30。主轴10的内部形成有主轴通孔10h1。主轴通孔10h1在主轴10的轴向一端部(图1B中的左侧端部)处的开口用作冷却介质进入的进入口。另外,主轴10的用于形成主轴通孔10h1的壁部还形成有排出孔10h2。轴帽20通过过盈配合固定在主轴10的轴向另一端部处,轴帽20封闭主轴通孔10h1在主轴10的轴向另一端部(图1B中的右侧端部)处的开口,轴帽20形成的轴帽盲孔20h与主轴通孔10h1连通。内筒30安装在由主轴10和轴帽20包围的空间内,并与主轴10和轴帽20同轴地布置。内筒30的包括其轴向一端部的绝大部分位于主轴通孔10h1内,内筒30的包括其轴向另一端部的其余部分位于轴帽20的轴帽盲孔20h内。内筒30的外周壁与主轴10的内周壁之间形成中间空间S。内筒30还形成有沿着轴向A延伸的中心孔30h1和使中心孔30h1与中间空间S连通的连通孔30h2。这样,冷却介质按照图1B中具有箭头的单点划线指示的方向在冷却流路中流动,当冷却介质流动经过中间空间S时带走电机的转子RO的热量, 从而实现降温的目的。
在上述传动机构中,为了在上述传动机构中实现用于冷却介质流动的冷却流路,内筒30的整个轴向一端部与主轴10通过过盈配合来实现固定和密封的作用,内筒30的整个轴向另一端部与轴帽20通过过盈配合来实现固定和密封的作用。这导致内筒30的轴向两端部的用于实现过盈配合的区域、以及主轴10和轴帽20的对应区域需要高加工精度,部件加工成本高,而且组装过程复杂且组装用时长。
考虑到上述情况而进一步提出如下实施例。
应当理解,虽然上面描述了图1A和图1B所示的传动机构的一些缺点,但是其至少部分方面或特征相对于一些现有技术仍然是新颖的和具有优势的,图1A、图1B及上面的描述仍构成本申请的创新的实施方案的一部分。
在本申请中,如无特殊说明,“轴向”、“径向”和“周向”分别是指轴组件的轴向、径向和周向;各部件的“轴向一端部”是指该部件的图2A中的左侧端部,各部件的“轴向另一端部”是指该部件的图2A中的右侧端部;“径向外侧”是指在径向上远离轴组件的中心轴线的那侧,“径向内侧”是指在径向上接近轴组件的中心轴线的那侧。
在本申请中,“抗扭连接”是指两个部件之间能够传递扭矩地连接,这两个部件能够在传递扭矩的过程中一起转动。
以下将结合说明书附图说明根据本申请的一实施例的传动机构的结构。
如图2A至图5B所示,根据本申请的一实施例的具有冷却流路的传动机构包括轴组件(主轴1和轴帽2)和内筒3,主轴1、轴帽2和内筒3以同轴的方式组装在一起,在传动机构内形成供冷却介质流动的冷却流路。
在本实施例中,如图2A至图2E所示,轴组件由主轴1和轴帽2构成,主轴1和轴帽2彼此固定并且在轴组件的内部形成轴孔。
具体地,在本实施例中,如图2A至图2E所示,主轴1形成有沿着轴向A 延伸的主轴通孔1h1,主轴通孔1h1在主轴1的轴向一端部处的开口作为冷却介质进入传动机构的进入口,主轴通孔1h1的在主轴1的轴向另一端部处的开口用作将内筒3插入主轴通孔1h1中的安装口。从轴向一端部侧朝向轴向另一端部侧(也就是从进入口朝向安装口),主轴通孔1h1包括彼此连通的第一轴向段1h11、中间段1h13和第二轴向段1h12。主轴通孔1h1的横截面面积按照第一轴向段1h11、中间段1h13和第二轴向段1h12的顺序变大。第一轴向段1h11的横截面面积在其整个轴向长度上大致相同,第二轴向段1h12的横截面面积在其整个轴向长度上大致相同。如图2D所示,中间段1h13的横截面面积的变化趋势在中间段1h13的不同部分处有所不同,在有些部分处中间段1h13的横截面面积朝向第二轴向段1h12逐渐增大,在有些部分处中间段1h13的横截面面积保持不变。
如图2A和图2B所示,主轴1还形成有相对于径向R倾斜地延伸的三个排出孔1h2,三个排出孔1h2在主轴1的周向C上间隔开地均匀分布,三个排出孔1h2位于主轴通孔1h1的中间段1h13的位置处且贯通主轴1的壁部。这样,排出孔1h2与主轴通孔1h1的中间段1h13连通。
进一步地,在本实施例中,如图2A、图2C和图2E所示,轴帽2通过过盈配合固定在主轴1的轴向另一端部,以封闭主轴通孔1h1的在主轴1的轴向另一端部处的开口。
如图2A和图2E所示,轴帽2包括与主轴1的轴向另一端部配合的凸缘部21,凸缘部21与主轴1的轴向另一端部抵靠在一起。轴帽2在凸缘部21的径向内侧位置形成有朝向主轴1伸出的安装部22,安装部22伸入主轴通孔1h1的第二轴向段1h12中并与主轴1通过过盈配合固定在一起,从而封闭主轴通孔1h1的在主轴1的轴向另一端部处的开口。
如图2A和图2E所示,轴帽2还形成有与主轴通孔1h1连通的轴帽盲孔2h。 在轴帽2固定于主轴1的状态下,主轴通孔1h1与轴帽盲孔2h连通在一起以构成轴组件的轴孔。
进一步地,在本实施例中,如图2A至图5B所示,内筒3的中心主体具有圆筒形状。内筒3插入安装在主轴1和轴帽2包围的空间内且相相对于主轴1和轴帽2固定。这样,在内筒3安装到位之后,在内筒3的外周壁和主轴1的内周壁之间形成中间空间S,该中间空间S主要位于主轴通孔1h1的第二轴向段1h12和中间段1h13。
如图2A、图2D和图2E所示,内筒3的内部形成有沿着轴向A贯通内筒3的中心孔3h1,中心孔3h1在内筒3的轴向一端部3a处的开口与主轴通孔1h1的第一轴向段1h11相对,第一轴向段1h11的轴向另一端部处的横截面面积小于内筒3的轴向一端部3a处开口的横截面面积,使得内筒3不会插入第一轴向段1h11内而且使得流经第一轴向段1h11的冷却介质易于直接进入中心孔3h1。连通孔3h2贯通中心孔3h1的壁部且形成于内筒3的插入轴帽2的轴帽盲孔2h的部分中。
进一步地,内筒3的包括其轴向一端部3a的一部分伸入主轴通孔1h1的中间段1h13中,并且该部分的筒状主体的外周壁与主轴1之间在径向R上存在间隙。内筒3的轴向一端部3a处的外周壁上形成有两个凸出的第一环状肋部3a1,两个第一环状肋部3a1在轴向A上间隔开地并排设置,每个第一环状肋部3a1沿着周向C在整周上延伸,并且第一环状肋部3a1与主轴1的内周壁抵靠,以封闭内筒3的轴向一端部3a的外周壁与主轴1之间的间隙。由此,经由进入口进入第一轴向段1h11的冷却介质不会通过上述间隙直接从排出孔1h2排出,而是会进入内筒3的中心孔3h1中。内筒3的包括轴向另一端部3b的一部分伸入轴帽2的轴帽盲孔2h中,并且该部分的筒状主体的外周壁与轴帽2在径向R上存在间隙。内筒3的轴向另一端部3b处的外周壁上形成有两个凸出的 第二环状肋部3b1,两个第二环状肋部3b1在轴向A上间隔开地并排设置,每个第二环状肋部3b1沿着周向C在整周上延伸,并且第二环状肋部3b1与主轴1的内周壁抵靠,以封闭内筒3的轴向另一端部3b的外周壁与主轴1之间的间隙。由此,通过内筒3的连通孔3h2流入到中间空间S中的冷却介质将沿着轴向A朝向排出孔1h2流动,而不会直接通过上述间隙从内筒3的轴向另一端部3b的开口返回中心孔3h1中。
进一步地,如图2A至图5B所示,内筒3包括第一周向部31和第二周向部32。第一周向部31包括第一弧状主体311、多个第一肋部312和限位凹部313。第二周向部32包括与第一弧状主体311配合的第二弧状主体321、多个第二肋部322和与限位凹部313配合的限位凸起323。通过第一肋部312和第二肋部322与主轴1的内周面抵靠的反作用力,使得第一弧状主体311和第二弧状主体321两者的周向端部彼此紧密地抵靠在一起,从而第一周向部31和第二周向部32紧密接合而不存在间隙,并且由两者包围形成内筒3的中心孔3h1。
第一弧状主体311和第二弧状主体321沿着轴向A延伸且均具有弧形截面形状。一方面,如图2B和图4B所示,第一弧状主体311的周向端部形成为凹陷形状,第二弧状主体321的周向端部插入凹陷形状中,使得第一周向部31和第二周向部32在周向C和径向R上相对固定。另一方面,第一周向部31具有在轴向A上间隔开设置的两个限位凹部313,第二周向部32具有在轴向A上间隔开设置的两个限位凸部323。成对设置的限位凹部313和限位凸部323配合使得第一周向部31和第二周向部32在轴向A上相对固定。这样,通过上述结构在周向C、径向R和轴向A上均限制了第一周向部31和第二周向部32彼此的相对运动,因而内筒3的中心主体始终保持无间隙的圆筒形状。
如图3A至5B所示,五个第一肋部312从第一弧状主体31的周向不同部位延伸并且抵靠于主轴1的内周壁的周向不同部位,所有的第一肋部312均具有 平板形状且沿着轴向A延伸。在这些第一肋部312中,三个第一肋部312彼此平行,另外两个第一肋部312分别设置在第一弧状主体311的周向两端部处且朝向相反的方向延伸,这两个第一肋部312与平行设置的三个第一肋部312垂直。三个第二肋部322从第二弧状主体32的周向不同部位延伸并且抵靠于主轴1的内周壁的周向不同部位,所有的第二肋部322均具有平板形状且沿着轴向A延伸。这些第二肋部322彼此平行。三个第二肋部322与平行设置的三个第一肋部312对应且朝向相反的方向延伸。
进一步地,第一周向部31和第二周向部32均通过塑料制成,这样有利于第一周向部31和第二周向部32彼此紧密接合并且降低制造成本。
通过采用上述结构,在传动机构的内部形成了供冷却介质流动的冷却流路。在该冷却流路中,经由排出孔1h2使中间空间S与主轴1的外部连通,经由连通孔3h2使中心孔3h1与中间空间S连通,由此从进入口进入的冷却介质能够流经中心孔3h1、连通孔3h2、中间空间S和排出孔1h2排出到传动机构的外部。这样,冷却介质在同一侧(图2A中的左侧)流入和流出,并且大致流过主轴1的整个长度,从而可以对主轴的整个长度上的部件进行降温。
进一步地,本申请还提供了一种包括上述传动机构的电桥驱动系统。电桥驱动系统还可以包括壳体、变速器和电机。壳体可以包括彼此分隔开的第一空间和第二空间,变速器收纳于第一空间内,电机收纳于第二空间内。传动机构的主轴1延伸的长度使得主轴1的一部分位于第一空间内而另一部分位于第二空间内。传动机构的进入口和排出孔1h2均形成于主轴1的位于第一空间内的部分(位于第一空间内),由此进入口和排出孔1h2与第一空间导通。电机的转子与传动机构的位于第二空间内的部分抗扭连接。具体地,传动机构的主轴1的与主轴通孔1h1的第二轴向段1h12对应的部分同电机的转子过盈配合,以在两者之间实现抗扭连接。
这样,当电桥驱动系统工作时,转子带动传动机构一起转动。如图2所示,从第一空间内收集的作为冷却介质的油进入传动机构的冷却流路内,从进入口进入的冷却介质能够流经中心孔3h1、连通孔3h2、中间空间S和排出孔1h2返回到第一空间内。由此,通过收集的来自第一空间的油能够对安装于传动机构的位于第二空间内的转子进行有效地冷却,进而改善电机的散热能力。
本申请不限于上述实施例,本领域技术人员在本申请的教导下可以对本申请的上述实施例做出各种变型,而不脱离本申请的范围。另外,还进行以下说明。
i.在以上的实施例中说明了轴组件由分体的主轴1和轴帽2固定在一起构成,但是本申请不限于此。可以理解,轴组件可以具有形成为一体的结构,可以根据需要改变轴组件内轴孔的形状和尺寸,以便在轴组件内安装内筒3。
ii.可以理解,内筒3的中心孔3h1的形状可以为横截面面积从内筒3的轴向一端部侧朝向内筒3的轴向另一端部侧逐渐变大的形状,主轴1的主轴通孔1h1的第二轴向段1h12的形状可以为横截面面积从主轴1的轴向另一端部侧朝向主轴1的轴向一端部侧逐渐变大的形状,由此在传动机构转动的过程中利用离心力促进冷却介质在冷却流路中的流动。
iii.可以理解,上述传动机构不仅成本较低,而且组装容易且组装用时短,还能够改善NVH性能。
iv.本申请的电桥驱动系统不限于用于纯电动车辆,也可以作为混合动力系统的一部分而用于混合动力车辆。

Claims (10)

  1. 一种具有冷却流路的传动机构,其包括:
    轴组件(1、2),所述轴组件(1、2)形成有轴孔(1h1、2h)和排出孔(1h2),所述轴孔(1h1、2h)沿着所述轴组件(1、2)的轴向(A)延伸,所述轴孔(1h1、2h)在所述轴组件(1、2)的轴向一端部形成有进入口,所述排出孔(1h2)贯通所述轴孔(1h1、2h)的壁部;以及
    内筒(3),所述内筒(3)收纳在所述轴孔(1h1、2h)内,在所述内筒(3)的外周壁和所述轴组件(1、2)的内周壁之间形成中间空间(S),所述内筒(3)形成有中心孔(3h1)和连通孔(3h2),所述中心孔(3h1)沿着所述内筒(3)的轴向(A)延伸且与所述进入口连通,所述连通孔(3h2)贯通所述中心孔(3h1)的壁部,所述内筒(3)的轴向一端部(3a)处的外周壁上形成有一个或多个第一环状肋部(3a1),所述第一环状肋部(3a1)与所述轴组件(1、2)的内周壁抵靠,以封闭所述内筒(3)的所述轴向一端部(3a)与所述轴组件(1、2)之间的间隙,所述内筒(3)的轴向另一端部(3b)处的外周壁上形成有一个或多个第二环状肋部(3b1),所述第二环状肋部(3b1)与所述轴组件(1、2)的内周壁抵靠,以封闭所述内筒(3)的所述轴向另一端部(3b)与所述轴组件(1、2)之间的间隙,
    其中,经由所述排出孔(1h2)使所述中间空间(S)与所述轴组件的外部连通,经由所述连通孔(3h2)使所述中心孔(3h1)与所述中间空间(S)连通,由此从所述进入口进入的冷却介质能够流经所述中心孔(3h1)、所述连通孔(3h2)、所述中间空间(S)和所述排出孔(1h2)排出到所述轴组件的外部。
  2. 根据权利要求1所述的具有冷却流路的传动机构,其特征在于,所述内筒(3)包括由塑料制成的多个周向部(31、32),所述多个周向部(31、32)分别沿着所述内筒(3)的周向(C)延伸且形成有与所述轴组件(1、2) 的内周壁抵靠的肋部(312、322),所述肋部(312、322)使得所述多个周向部(31、32)接合以包围形成所述中心孔(3h1)。
  3. 根据权利要求2所述的具有冷却流路的传动机构,其特征在于,所述多个周向部包括第一周向部(31)和第二周向部(32),所述第一周向部(31)包括第一弧状主体(311),所述第二周向部(32)包括与所述第一弧状主体(311)配合的第二弧状主体(321),所述第一弧状主体(311)和所述第二弧状主体(321)沿着所述内筒(3)的轴向(A)延伸且均具有弧形截面形状,在所述第一周向部(31)和所述第二周向部(32)彼此接合的状态下所述第一弧状主体(311)的周向端部与所述第二弧状主体(321)的周向端部彼此抵靠。
  4. 根据权利要求3所述的具有冷却流路的传动机构,其特征在于,所述第一弧状主体(311)的周向端部形成为凹陷形状,所述第二弧状主体(321)的周向端部插入所述凹陷形状中,使得所述第一周向部(31)和所述第二周向部(32)在所述内筒(3)的周向(C)和径向(R)上相对固定。
  5. 根据权利要求3或4所述的具有冷却流路的传动机构,其特征在于,所述第一周向部(31)和所述第二周向部(32)中的一者具有限位凹部(313),所述第一周向部(31)和所述第二周向部(32)中的另一者具有限位凸部(323),所述限位凹部(313)和所述限位凸部(323)配合使得所述第一周向部(31)和所述第二周向部(32)在所述内筒(3)的轴向(A)上相对固定。
  6. 根据权利要求2至5中任一项所述的具有冷却流路的传动机构,其特征在于,每个所述周向部(31、32)具有多个所述肋部(312、322),所述肋部(312、322)沿着所述内筒(3)的轴向(A)延伸,
    对于一个所述周向部(31、32),多个所述肋部(312、322)从所述周 向部(31、32)的周向不同部位延伸并抵靠于所述轴组件(1、2)的内周壁的周向不同部位。
  7. 根据权利要求1至6中任一项所述的具有冷却流路的传动机构,其特征在于,所述轴组件包括主轴(1)和轴帽(2),所述主轴(1)形成有沿着所述主轴(1)的轴向(A)延伸的主轴通孔(1h1),所述主轴通孔(1h1)在所述主轴(1)的轴向一端部处的开口作为所述进入口,所述轴帽(2)固定于所述主轴(1)的轴向另一端部,以封闭所述主轴通孔(1h1)的在所述主轴(1)的轴向另一端部处的开口。
  8. 根据权利要求7所述的具有冷却流路的传动机构,其特征在于,所述主轴通孔(1h1)包括从所述主轴(1)的轴向一端部侧朝向轴向所述主轴(1)的另一端部侧布置且彼此连通的第一轴向段(1h11)、中间段(1h13)和第二轴向段(1h12),所述主轴通孔(1h1)的横截面面积按照所述第一轴向段(1h11)、所述中间段(1h13)和所述第二轴向段(1h12)的顺序变大,所述排出孔(1h2)与所述中间段(1h13)连通,所述内筒(3)的包括其轴向一端部(3a)的一部分伸入所述中间段(1h13)中,
    所述轴帽(2)形成有与所述主轴通孔(1h1)连通的轴帽盲孔(2h),所述内筒(3)的包括其轴向另一端部(3b)的一部分伸入所述轴帽盲孔(2h)中。
  9. 一种电桥驱动系统,其包括权利要求1至8中任一项所述的具有冷却流路的传动机构。
  10. 根据权利要求9所述的电桥驱动系统,其特征在于,所述电桥驱动系统还包括壳体、变速器和电机,所述壳体包括彼此分隔开的第一空间和第二空间,所述变速器收纳于所述第一空间内,所述电机收纳于所述第二空间内,所述进入口和所述排出孔(1h2)均位于所述第一空间内,所述电机的转子 与所述传动机构的位于所述第二空间内的部分抗扭连接。
PCT/CN2021/125562 2021-10-22 2021-10-22 具有冷却流路的传动机构及电桥驱动系统 WO2023065281A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102122.XA CN117941228A (zh) 2021-10-22 2021-10-22 具有冷却流路的传动机构及电桥驱动系统
PCT/CN2021/125562 WO2023065281A1 (zh) 2021-10-22 2021-10-22 具有冷却流路的传动机构及电桥驱动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125562 WO2023065281A1 (zh) 2021-10-22 2021-10-22 具有冷却流路的传动机构及电桥驱动系统

Publications (1)

Publication Number Publication Date
WO2023065281A1 true WO2023065281A1 (zh) 2023-04-27

Family

ID=86058749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125562 WO2023065281A1 (zh) 2021-10-22 2021-10-22 具有冷却流路的传动机构及电桥驱动系统

Country Status (2)

Country Link
CN (1) CN117941228A (zh)
WO (1) WO2023065281A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018104131A1 (de) * 2018-02-23 2019-08-29 Schaeffler Technologies AG & Co. KG Kühlanordnung für einen Rotor, Rotor mit der Kühlanordnung sowie elektrische Achse mit dem Rotor und/oder der Kühlanordnung
CN110311506A (zh) * 2018-03-27 2019-10-08 大众汽车有限公司 用于流体冷却空心轴的流体分配器
WO2020094512A1 (de) * 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
CN212426181U (zh) * 2020-04-27 2021-01-29 深圳市原速光电科技有限公司 一种冷水辊及原子层沉积设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018104131A1 (de) * 2018-02-23 2019-08-29 Schaeffler Technologies AG & Co. KG Kühlanordnung für einen Rotor, Rotor mit der Kühlanordnung sowie elektrische Achse mit dem Rotor und/oder der Kühlanordnung
CN110311506A (zh) * 2018-03-27 2019-10-08 大众汽车有限公司 用于流体冷却空心轴的流体分配器
WO2020094512A1 (de) * 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
CN212426181U (zh) * 2020-04-27 2021-01-29 深圳市原速光电科技有限公司 一种冷水辊及原子层沉积设备

Also Published As

Publication number Publication date
CN117941228A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US10808856B2 (en) Flow control valve
CN109139222B (zh) 控制阀
US10415590B2 (en) Electric coolant pump
KR101080770B1 (ko) 전동식 워터펌프
JP6705510B2 (ja) 電動コンプレッサ
JP2015068245A (ja) スクロール式流体機械
CN103384771A (zh) 汽车冷却剂泵
US6843645B2 (en) Cooling system for a magnetic pump
WO2023065281A1 (zh) 具有冷却流路的传动机构及电桥驱动系统
US5425625A (en) Car-used electric fuel pump
US20110164995A1 (en) Fluid pump
WO2024041534A1 (zh) 电机转子、电机和车辆
WO2023065282A1 (zh) 具有冷却流路的传动机构及电桥驱动系统
TW201526483A (zh) 馬達
JPH05149282A (ja) ベーン型真空ポンプ
US5205707A (en) Ioric pump with cast impeller housing requiring three machined surfaces and one central piloting bore to control critical tolerances
JP6697803B2 (ja) 流体式ファンクラッチ
US20240011504A1 (en) Ventilation device for a motor vehicle cooling module
US10539146B2 (en) Centrifugal pump
JP2019127859A (ja) ターボチャージャ
CN112186967A (zh) 电机定子用冷却系统及电机
JP6698791B1 (ja) 回転電機
CN114165624A (zh) 阀装置
JP2021162013A (ja) 電動ポンプ
JP2015109799A (ja) 電気自動車用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961030

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102122.X

Country of ref document: CN