WO2023063742A1 - Sequential independent-generation-type power generation device having induced-current-strength selection function - Google Patents

Sequential independent-generation-type power generation device having induced-current-strength selection function Download PDF

Info

Publication number
WO2023063742A1
WO2023063742A1 PCT/KR2022/015491 KR2022015491W WO2023063742A1 WO 2023063742 A1 WO2023063742 A1 WO 2023063742A1 KR 2022015491 W KR2022015491 W KR 2022015491W WO 2023063742 A1 WO2023063742 A1 WO 2023063742A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite cores
fixing
permanent magnet
ferrite
winding coil
Prior art date
Application number
PCT/KR2022/015491
Other languages
French (fr)
Korean (ko)
Inventor
이승권
Original Assignee
이승권
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승권 filed Critical 이승권
Publication of WO2023063742A1 publication Critical patent/WO2023063742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/20Structural association with auxiliary dynamo-electric machines, e.g. with electric starter motors or exciters

Definitions

  • ferrite cores on which winding coils are wound are arranged in a circumferential shape, and permanent magnets sequentially pass through ends of a plurality of ferrite cores arranged in a circumferential shape so that independent voltages are sequentially generated in each winding coil.
  • a sequential independent power generation device relates to a sequential independent power generation device, and more specifically, a plurality of outer ferrite cores on which a first winding coil is wound are disposed spaced apart in a predetermined first circumference between a pair of fixed plates, and the first winding coil and A plurality of inner ferrite cores on which second coch coils having different winding numbers are wound are spaced apart on a second circumference inner than the first circumference, and a plurality of outer ferrite cores are rotated on the outside of the pair of fixing plates.
  • a rotating plate for a rotor having permanent magnets passing through both ends of the plurality of inner ferrite cores is installed, but the permanent magnets are configured to be movable in an inward and outward direction from the center of the rotating plate for a rotor along the outer end, so that the permanent magnets are configured to have a plurality of It relates to a sequential independent power generator capable of selecting the induced current intensity generated by sequentially passing through the ends of an outer ferrite core with a time difference or sequentially passing through the ends of a plurality of inner ferrite cores with a time difference.
  • a generator uses electricity generated when a conductor moves in a magnetic field to convert mechanical energy, that is, mechanical energy, generated from various energy sources such as chemical or nuclear energy into a magnetic field. It refers to a device that converts electrical energy into electrical energy according to Fleming's right-hand rule, which is a rule that determines the direction of the magnetic field and the direction of the induced electromotive force or induced current in the direction in which the conductor moves when the conductor moves, and is divided into AC generator and DC generator.
  • a generator In general, a generator consists of a field part that forms a magnetic field and an armature part that rotates in a magnetic field.
  • the field part is the name of the part where the magnetic force line of the magnet forms the magnetic field, and refers to the magnet attached to the housing of the generator.
  • the armature portion refers to a portion that emits lines of force by applying a current, and is also referred to as an armature, a rotor, or a core.
  • a magnetic field is always formed around a wire through which a current flows, and the armature rotates due to the force that the magnetic field of the permanent magnet and the magnetic field generated from the coil of the armature push or pull each other. It will do.
  • the force that hinders the rotor of the generator is due to the magnetic field generated in the armature coil when current flows in the armature coil, and this magnetic field interacts with the magnetic field of the rotor to generate counter-electromotive force that hinders rotation of the rotor.
  • Patent Registration No. 10-1324546 has a configuration in which a rotating shaft through hole is formed at the center point and a plurality of ferrite core fixing holes are formed at regular intervals along the circumference having a predetermined diameter, and are parallel in the vertical direction.
  • a time difference generator using bipolar equilibrium characterized in that, has been published.
  • the ferrite cores installed on the fixed plate have the same winding coils with the number of windings set at the time of design, and the permanent magnet is fixedly mounted on the rotating plate for the rotor. Because of the structure that cannot be moved, the same induced current intensity is generated in one generator, and if you want to change the induced current intensity generated by changing the number of turns of the winding coil, the winding work of the winding coil as a whole is redone. It was necessary to proceed, or the ferrite core with the winding coil wound with a different number of turns had to be replaced on the fixed plate.
  • the present invention has been devised to solve the conventional problems as described above, and arranges a plurality of outer ferrite cores on which a first winding coil is wound between a pair of fixed plates spaced apart on a predetermined first circumference, and A plurality of inner ferrite cores on which a second coch coil having a different number of windings than the coil is wound are spaced apart on a second circumference inside the first circumference, and a plurality of outer ferrite cores are rotated on the outside of the pair of fixing plates.
  • a rotating plate for a rotor having a ferrite core or a permanent magnet passing through both ends of a plurality of inner ferrite cores is installed.
  • An induced current intensity selection function capable of selecting the induced current intensity generated by independently passing the ends of the plurality of outer ferrite cores with a time difference or independently passing the ends of the plurality of inner ferrite cores with a time difference. It is an object to provide a sequential independent power generation device having.
  • the present invention is configured to automatically move the position of the permanent magnet in the inner and outer direction along the outer end from the center on the rotating plate for the rotor, so that the permanent magnet can be automatically moved without the need to manually move the position of the permanent magnet.
  • Another object is to provide a sequential independent power generation device having an organic current intensity selection function capable of automatically moving the position of a permanent magnet by control.
  • the object of the present invention is not limited thereto, and even if not explicitly mentioned, the purpose or effect that can be grasped from the solution or embodiment of the problem is also included therein, of course.
  • the sequential independent power generator having an organic current intensity selection function of the present invention has a rotation shaft through hole formed at the center point, a plurality of fixing holes for fixing a plurality of ferrite cores on the circumference are formed, , a pair of fixing plates coupled in parallel; A plurality of ferrite cores having a rod shape and fixedly installed between the pair of fixing plates in a form in which both ends are inserted into the ferrite core fixing holes, respectively; A plurality of winding coils wound around the outer circumferential surface of the ferrite core and inducing induced electromotive force or induced current generated when the magnetic field of the permanent magnet passes through each of the ferrite cores and transferring the induced electromotive force to a power control unit; A pair of rotating plates fixed to both ends of a rotating shaft installed in a manner passing through the rotating shaft passing hole in a state of being disposed close to the outer side of the pair of fixed plates, respectively, and rotating together with the rotating shaft; permanent magnets installed inside the
  • the plurality of ferrite cores are composed of a plurality of outer ferrite cores inserted into and fixedly installed in the outer fixing hole and a plurality of inner ferrite cores inserted into and fixedly installed in the inner fixing hole.
  • the winding coil includes a first winding coil wound around the outer ferrite core and a second winding coil wound around the inner ferrite core, wherein the first winding coil has a greater number of turns than the second winding coil.
  • the magnet moving means moves the permanent magnet is moved inward and outward from the center of the rotary plate along the outer direction so that the permanent magnet rotates according to the rotation of the rotary plate and sequentially passes through the ends of the plurality of outer ferrite cores, passing through the first winding coil to the first
  • the induced current is generated or the second induced current is generated through the second winding coil by sequentially passing the ends of the plurality of inner ferrite cores.
  • the present invention is an improvement of the time difference generator of registered patent registration No. 10-1324546, and an outer ferrite core and an inner ferrite core are configured in different circumferential shapes on a fixed plate, and each of the outer and inner ferrite cores It is configured by winding the first and second winding coils to have different winding numbers, and a permanent magnet is installed on the rotary plate rotating outside the fixed plate, but a magnet moving means capable of moving the permanent magnet on the rotary plate is provided to make it permanent.
  • the permanent magnet can selectively pass while facing the end of the outer ferrite core or the inner ferrite core, so even if other conditions are not changed, power generation is achieved by selecting the induced current generation strength by the position movement of the magnet. can make you lose
  • the magnet moving means of another type can move the position of the magnet by the motor driving method, so that the magnet can be moved automatically without a separate manual work, improving the convenience of operation.
  • FIG. 1 is a perspective view showing a sequential independent power generation device having an organic current intensity selection function according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a sequential independent power generation device having an organic current intensity selection function according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing a sequential independent power generation device having an induced current intensity selection function according to a first embodiment of the present invention in FIG. 1;
  • FIG. 4 is a view showing an example of a first winding coil (a) wound around an outer ferrite core of FIG. 1 and a second winding coil (b) wound around an inner ferrite core;
  • FIG. 5 is a view showing the arrangement of a plurality of outer ferrite cores and a plurality of inner ferrite cores installed on the fixed plate of the present invention
  • FIG. 6 is a view showing the position adjustment state of the permanent magnets installed to be position-adjustable on the rotating plate for the rotor of the present invention
  • FIG. 7 is a view showing a state in which the installation position of the permanent magnet is changed in FIG. 3;
  • FIG. 8 is a cross-sectional view of the main part showing another form of the positioning means of the present invention.
  • FIG. 9 is a perspective view showing a sequential independent power generation device having an organic current intensity selection function according to a second embodiment of the present invention.
  • FIG. 10 is an enlarged view showing a main part of the rotating plate for a rotor shown in FIG. 9;
  • FIG. 11 is a view showing the positional state of both permanent magnets and ferrite core ends installed by adjusting the position of the rotor rotation plate of the present invention according to the second embodiment
  • FIG. 12 is a cross-sectional view showing a sequential independent power generation device having an organic current intensity selection function according to a second embodiment.
  • Embodiments described in this specification will be described with reference to cross-sectional views and/or plan views, which are ideal exemplary views of the present invention.
  • the thicknesses of films and regions are exaggerated for effective explanation of technical content. Accordingly, the shape of the illustrated drawings may be modified due to manufacturing techniques and/or tolerances. Therefore, embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to manufacturing processes. For example, an etched region shown at right angles may be round or have a predetermined curvature. Accordingly, the regions illustrated in the drawings have attributes, and the shapes of the regions illustrated in the drawings are for exemplifying a specific form of a region of an element and are not intended to limit the scope of the invention. Although terms such as first and second are used to describe various components in various embodiments of the present specification, these components should not be limited by these terms. These terms are only used to distinguish one component from another. Embodiments described and illustrated herein also include complementary embodiments thereof.
  • the sequential independent power generator 1 of the present invention includes a pair of fixed plates 10, a plurality of ferrite cores 30a and 30b, a plurality of winding coils 30a and 30b, and a pair of rotor plates 50 , It is configured to include a plurality of permanent magnets 60 and a magnet moving means 70.
  • the fixing plate 10 is composed of a pair, and is configured to be coupled to be spaced apart from each other at a predetermined interval through the fixing and spacing maintaining means 20 side by side.
  • the fixing and space keeping means 20 is molded into a rod shape having a predetermined diameter and length and a plurality of supporters 21 installed between the pair of fixing plates 1; It may be composed of a plurality of bolts 22 and nuts 23 that are mutually fastened in a state of being installed to pass through the pair of fixing plates 10 and the supporter 21, respectively.
  • the fixing plate 10 has a rotating shaft passage hole 11 formed at the center and fixing holes 12a and 12b for fixing ends of a plurality of ferrite cores at regular intervals along a circumference having a predetermined diameter are formed. It consists of
  • the fixing plate 10 is configured with a plurality of outer fixing holes 12a spaced apart at predetermined intervals in a first circumferential shape having a predetermined diameter, and the first circumferential shape to the inside of the plurality of outer fixing holes 12a.
  • a plurality of inner fixing holes 12b are configured to be spaced apart at predetermined intervals on a second circumference having a smaller diameter toward the inner side.
  • each of the outer fixing hole 12 and the inner fixing hole 12b is configured to be disposed on a straight line along an outward direction from the center of the fixing plate 10 .
  • the plurality of ferrite cores 30 are made in the shape of a rod, and both ends are fixedly installed by being inserted into the fixing holes 12a and 12b, and both ends exposed to the outside of the fixing plate 10 become permanent magnets when the permanent magnet 60 passes.
  • the magnetic field generated in (60) forms a closed circuit.
  • the plurality of ferrite cores 30 include a plurality of outer ferrite cores 30a inserted into and fixedly installed in the outer fixing hole 12a, and a plurality of inner ferrite cores 30b inserted into and fixedly installed in the inner fixing hole 12b. ) is made up of
  • the plurality of winding coils 40a and 40b are installed in a form wound by a predetermined number of windings on the outer and inner ferrite cores 30a and 30b, respectively, and the permanent magnets 60 through the outer and inner ferrite cores 30a and 30b, respectively. ) is configured to induce induced currents generated when the magnetic field passes through and transmit them to the power control unit 80.
  • the plurality of winding coils 40a and 40b include a plurality of first winding coils 40a wound around a plurality of outer ferrite cores 30a and a plurality of second winding coils (wound around a plurality of inner ferrite cores 30b) 40b), and each first winding coil 40a is configured to have a larger number of turns than each second winding coil 40b, so that the permanent magnet 60 is formed at the end of the outer ferrite core 30a.
  • the induced current intensity generated when passing the inner ferrite core 30b is configured to be greater than the induced current intensity generated when passing the end of the inner ferrite core 30b.
  • the intensity of the induced current induced in the coil is proportional to the number of turns (number of turns) in which the coil is wound around the core, the first winding coil 40a having a larger number of turns than the second winding coil 40b has the number of turns. A large induced current can be induced compared to the second winding coil 40b having a smaller .
  • a pair of rotating plates 50 for rotors are installed in the form of penetrating the rotating shaft through-holes 11 formed at the center points of the fixing plates 10 in a state in which they are disposed close to each other on the outside of the pair of fixing plates 10 51 ) It is fixed to both ends of the rotating force generating means 90 and is configured to rotate together with the rotating shaft 51 in response to the number of rotations of the rotating shaft 51 connected to the shaft.
  • the permanent magnet 60 is installed in the form of facing each other so that the S pole and the N pole have opposite directions on the inside of the rotor rotary plate 50, and rotates together with the rotor rotary plate 50 while rotating with a plurality of outer ferrite cores 30a. ) or to provide a magnetic field to the plurality of inner ferrite cores 30b.
  • the magnet moving means 70 moves the permanent magnet 60 installed on the rotor rotating plate 50 from the center of the rotor rotating plate 50 inward and outward along the outer end direction so that the permanent magnet 60 is the rotor rotating plate While rotating according to the rotation of (50), the ends of the plurality of outer ferrite cores (30a) are sequentially passed through so that an induced current is generated through the first winding coil (40a) or the plurality of inner ferrite cores (30b) It is a configuration for generating an induced current through the second winding coil 40b by sequentially passing the ends.
  • the magnet moving means 70 includes a guide part 71 formed on the rotating plate 50 for the rotor and guiding the movement of the permanent magnet 60, and a permanent magnet 60 guided by the guide part 71 and adjusted in position. ) It is configured to include a magnet fixing part 75 for fixing.
  • the guide part 71 is formed on the inner surface of the rotating plate 50 for the rotor, and is formed in the form of a long hole with a predetermined length along the outer direction from the center of the rotating plate 50 for the rotor, so that the permanent magnet 60 is inserted and seated.
  • the front rail groove 72 for movement is formed on the outer surface of the rotor 50 and is formed along the front rail groove 72 so as to be connected to the inner rail groove 72, and the front rail groove 72 It is configured to include a rear rail groove 73 configured to have a narrower width than the width of.
  • the magnet fixing part 75 is configured to extend from the permanent magnet 60, penetrates the rear rail groove 73 and is configured to protrude from the rotating plate 50 for the rotor, and interlocks with the movement of the permanent magnet 60. It is configured to move along the rear rail groove 73 and is made of a coupling rod 76 having a thread formed on the outer circumferential surface and a nut and is screwed to the coupling rod 76 and the permanent magnet 60 is installed by tightening the front rail groove It may be configured to include a fixing member 77 for fixing to a predetermined position of (72).
  • the user manually changes the position of the permanent magnet 60 and fixes it to the outer end of the front rail groove 72 as shown in FIG. 6 (a), or as shown in FIG. 6 (b), The position can be fixed to the inner end of the front rail groove 72.
  • the user moves the permanent magnet 60 to the outer end or inner end of the front rail groove 72 in a state in which the fastening member 77 is rotated in the fastening release direction in the coupling rod 76 so that the fastening is released. Then, by fastening the fixing member 77 to the coupling rod 76 again, the state in which the permanent magnet 60 is moved in the front rail groove 72 can be maintained.
  • each permanent magnet 60 When the permanent magnet 60 is rotated in conjunction with the rotation of the rotating plate 50 for the rotor in a state where the position is fixed at the outer end of the front rail groove 72, each permanent magnet 60 is a first winding coil As (40a) sequentially passes through the ends of the wound outer ferrite cores (30a), the magnetic field generated from the permanent magnet (60) forms a closed circuit, and an induced current is induced in the first winding coil (40a), and the induced current is It may be transmitted to the power control unit 80.
  • each permanent magnet 60 is rotated in conjunction with the rotation of the rotating plate 50 for a rotor in a state where the position is fixed at the inner end of the front rail hole 72, each permanent magnet 60 is As the winding coil 40b sequentially passes through the ends of the wound inner ferrite cores 30b, the magnetic field generated from the permanent magnet 60 forms a closed circuit, induced current in the second winding coil 40b, and induction Current may be transmitted to the current controller 80 .
  • the present invention provides a plurality of outer ferrite cores 30a around which a first winding coil 40a having a predetermined number of turns is wound, and a second winding coil having a number different from that of the first winding coil 40a.
  • a plurality of inner ferrite cores (30b) with (40b) wound thereon are respectively arranged in two circumferential shapes having different diameters between a pair of fixing plates (10), and permanent magnets (60) are magnet moving means (70).
  • the permanent magnet 60 is selectively, as shown in FIG. 3, the ends of the outer ferrite cores 30a. or, as shown in FIG. 7, passing through the ends of the inner ferrite cores 30b to generate different induced current intensities.
  • the magnet moving means 70 of the present invention includes a guide part 71 formed on the rotating plate 50 for a rotor and guiding the movement of the permanent magnet 60, and the guide part 71 It is configured to include a magnet fixing part 75 for fixing the guided permanent magnet 60, which is positioned at the outer end of the front rail groove 72 by manually changing the position of the permanent magnet 60 by the user.
  • the magnet moving means 70' of the present invention is a permanent magnet automatically by a motor drive method. (60) can be configured to displace.
  • the magnet moving means 70' of the present invention shown in FIG. 8 includes a guide part 71 formed on a rotary plate 50 for guiding the positional movement of the permanent magnet 60, and a motor for the permanent magnet 60. It is configured to include a magnet moving driving unit 80 that moves the position by a driving method.
  • the magnet moving driving unit 80 includes a driving motor 82 fixed to the outer end of the rotor rotating plate 80, a rotation support 83 installed at the inner end of the rear rail groove 73, and a rear rail groove ( 73), one end is configured to be rotated by the rotation support part 83, and the other end is configured to be coupled with the drive shaft of the drive motor 82, configured to rotate according to the driving of the drive motor 82, and the outer circumference can be
  • the threaded screw rod 84 and the permanent magnet 60 are fixedly installed to be inserted into the rear rail groove 73, and the screw rod 84 passes through the screw rod 84 and the ball-screw. It is configured to be connected in a manner and is configured to include a moving member 86 for moving the permanent magnet 60 along the front rail groove 72 while moving along the screw rod 84 according to the rotation of the screw rod 84 do.
  • the permanent magnet 60 is automatically positioned at the outer end or the inner end of the front rail groove 72 without the need for manual work to select the induced current intensity. development can proceed.
  • both ends of the winding coils 40a and 40b wound on the ferrite cores 30a and 30b are connected to the fixed plate 10 on one side of the present invention, and the power control unit to which the winding coils 40a and 40b are connected
  • a terminal board 90 to which the input terminal of 80 can be connected can be provided.
  • the terminal plate 90 of the present invention is electrically connected to both ends of the first wire coil 40a wound around the outer ferrite core 30a, and the first terminal unit capable of connecting the input terminal of the power control unit 80 ( 91) and a second terminal unit 92 electrically connected to both ends of the second wire coil 40b wound around the inner ferrite core 30b and capable of connecting the input terminal of the power control unit 80. do.
  • the first induced current induced from the first wire coil 40a wound around each outer ferrite core 30a can be transmitted and input to the power control unit 80 through the first terminal unit 91
  • each The second induced current induced from the second wire coil 40b wound around the inner ferrite core 30b can be transmitted and input to the power control unit 80 through the second terminal unit 92
  • the power control unit 80 may be configured to separately store and manage the first induced current transmitted through the first terminal 91 and the second induced current transmitted through the second terminal 92 .
  • the outer left and right magnet moving grooves 72aa extending in both directions at both ends in the longitudinal direction of the front rail grooves 72a and 72b formed on the inner surfaces of each of the pair of rotor-type rotating plates 50a and 50b, respectively.
  • 72ba) and inner left and right magnet moving grooves 72ab and 72bb are formed.
  • the outer left and right magnet moving grooves 72aa and 72ba formed at the ends of the front rail grooves 72a and 72b or the inner side It is configured to be movable left and right along the left and right magnet moving grooves 72ab and 72bb.
  • the present invention is formed to be connected to the outer left and right magnet moving grooves 72aa and 72ba on the outer surface of the rotating plates 50a and 50b, and the permanent magnets 60a and 60b are moved along the outer left and right magnet moving grooves 72aa and 72ba.
  • the coupling rod 76 is also configured to move the outer rod moving groove (73aa, 73ba).
  • the inner rod moving grooves 73ab and 73bb for moving the coupling rod 76 together are configured.
  • the left and right outer magnet moving grooves 72aa and 72ba are formed in an arc shape having the same curvature as the plurality of outer ferrite cores 30a arranged in a first circumferential shape
  • the inner left and right magnet moving grooves 72ab and 72bb are , composed of a circular arc shape having the same curvature as the plurality of inner ferrite cores 30b arranged in a second circumferential shape, and moving the permanent magnets 60a and 60b along the left and right outer magnet moving grooves 72aa and 72ba.
  • the permanent magnets 60a and 60b are configured to pass through the ends of the outer ferrite core 30a sequentially, and likewise, along the left and right inner magnet moving grooves 72ab and 72bb, permanent magnets 60a and 60b are formed. Even when the magnets 60a and 60b are moved, the permanent magnets 60a and 60b sequentially pass through the ends of the inner ferrite core 30b according to the rotation of the rotating plates 50a and 50b.
  • the central axis of the ferrite core, the center of the permanent magnet 60a on one side, and the center of the permanent magnet 60b on the other side A position where all of them coincide is not generated, and at least one of the center of one permanent magnet 60a and the center of the other permanent magnet 60b is configured to be offset from the central axis of the ferrite cores 30a and 30b.
  • the permanent magnet 60a on one side first passes through one end of the ferrite core, and then the permanent magnet 60b on the other side passes through the other side of the ferrite core.
  • the rotation of the rotating plates (50a, 50b) on both sides distributes the attraction between the permanent magnets (60a, 60b) and the ferrite cores (30a, 30b) on both sides to make rotation easier and improve power generation efficiency can make it
  • the present invention as described above can be widely used in the power generation industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Eletrric Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Disclosed is a sequential independent-generation-type power generation device having an induced-current-strength selection function, comprising: a pair of fixing plates having a rotary shaft passage hole and a plurality of fixing holes for fixing a plurality of ferrite cores; the plurality of ferrite cores fixed between the pair of fixing plates; a plurality of winding coils wound around the outer circumferential surface of a ferrite core; a pair of rotary plates, each being fixed to both end portions of a rotary shaft formed at the center of the fixing plate, so as to rotate together with the rotary shaft; a permanent magnet, which is provided on the inner side of a rotary plate and provides a magnetic field to the plurality of ferrite cores; and a magnet transportation means provided at the rotary plate so as to move the position of the permanent magnet, wherein the plurality of ferrite cores comprises a plurality of outer ferrite cores and a plurality of inner ferrite cores, the plurality of winding coils is composed of a first winding coil and a second winding coil that are wound a different of number of times around the outer and inner ferrite cores, and the magnet transportation means generates induced currents of different strengths by allowing the permanent magnet through end portions of the plurality of outer ferrite cores or end portions of the plurality of inner ferrite cores to be selectively passed therethrough.

Description

유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치Sequential independent power generator with organic current intensity selection function
본 발명은 권선코일이 권취된 페라이트 코어를 원주상으로 배열하고, 이 원주상으로 배열된 복수의 페라이트 코어 단부를 영구자석이 순차적으로 지나가면서 각각의 권선코일에 각각 순차적으로 독립적인 전압이 발생되도록 한 순차 독립 발전형 발전장치에 관한 것으로서, 더욱 상세하게는 한 쌍의 고정판 사이에 제1권취코일이 권취된 복수의 외측 페라이트 코어를 소정의 제1원주상으로 이격 배치하고, 제1권취코일과는 다른 권선수를 갖는 제2코취코일이 권취된 복수의 내측 페라이트 코어를 제1원주상 보다 내측의 제2원주상으로 이격 배치하며, 한 쌍의 고정판의 외측에는 회전에 따라 복수의 외측 페라이트 코어 또는 복수의 내측 페라이트 코어의 양단부를 지나는 영구자석을 구비한 회전자용 회전판을 설치하되, 영구자석은 회전자용 회전판의 중심으로부터 외측단을 따라 내외측 방향으로 위치이동가능하도록 구성하여, 영구자석이 복수의 외측 페라이트 코어의 단부를 시간차를 두고 순차적으로 지나거나, 복수의 내측 페라이트 코어의 단부를 시간차를 두고 순차적으로 지나도록 구성되어 발생되는 유기전류세기를 선택할 수 있는 순차 독립 발전형 발전장치에 관한 것이다. In the present invention, ferrite cores on which winding coils are wound are arranged in a circumferential shape, and permanent magnets sequentially pass through ends of a plurality of ferrite cores arranged in a circumferential shape so that independent voltages are sequentially generated in each winding coil. It relates to a sequential independent power generation device, and more specifically, a plurality of outer ferrite cores on which a first winding coil is wound are disposed spaced apart in a predetermined first circumference between a pair of fixed plates, and the first winding coil and A plurality of inner ferrite cores on which second coch coils having different winding numbers are wound are spaced apart on a second circumference inner than the first circumference, and a plurality of outer ferrite cores are rotated on the outside of the pair of fixing plates. Alternatively, a rotating plate for a rotor having permanent magnets passing through both ends of the plurality of inner ferrite cores is installed, but the permanent magnets are configured to be movable in an inward and outward direction from the center of the rotating plate for a rotor along the outer end, so that the permanent magnets are configured to have a plurality of It relates to a sequential independent power generator capable of selecting the induced current intensity generated by sequentially passing through the ends of an outer ferrite core with a time difference or sequentially passing through the ends of a plurality of inner ferrite cores with a time difference. .
일반적으로 발전기(generator, 發電機)는 도체(導體)가 자기장에서 운동할 때 전기가 발생하는 것을 이용하여 화학적 또는 원자력 에너지와 같이 다양한 에너지원으로부터 발생하는 기계적인 에너지 즉, 역학적 에너지를 자기장 속에서 도선이 움직일 때 자기장의 방향과 도선이 움직이는 방향으로 유도 기전력 또는 유도 전류의 방향을 결정하는 규칙인 플레밍의 오른손법칙에 따라 전기 에너지로 바꾸는 장치를 통틀어 이르는 것으로, 교류 발전기와 직류 발전기로 구별된다.In general, a generator uses electricity generated when a conductor moves in a magnetic field to convert mechanical energy, that is, mechanical energy, generated from various energy sources such as chemical or nuclear energy into a magnetic field. It refers to a device that converts electrical energy into electrical energy according to Fleming's right-hand rule, which is a rule that determines the direction of the magnetic field and the direction of the induced electromotive force or induced current in the direction in which the conductor moves when the conductor moves, and is divided into AC generator and DC generator.
최근, 직선 운동에 의한 발전기가 개발되어 있기는 하나, 그 대부분은 회전식의 발전기로 구성되어 있다. 하지만, 모든 발전기들은 전자기 유도 작용에 의하여 기전력을 발생시킨다는 점에서는 모두 동일하다.In recent years, although generators by linear motion have been developed, most of them are composed of rotary generators. However, all generators are the same in that they generate electromotive force by electromagnetic induction.
일반적으로 발전기는 자계를 형성하는 계자부분과 자계 속에서 회전운동을 하는 전기자 부분으로 이루어진다.In general, a generator consists of a field part that forms a magnetic field and an armature part that rotates in a magnetic field.
이때, 상기 계자부분은 자석의 자력선이 자계를 형성하여 놓은 부분의 명칭으로서, 발전기의 하우징과 접착된 자석을 일컫는 말이다.At this time, the field part is the name of the part where the magnetic force line of the magnet forms the magnetic field, and refers to the magnet attached to the housing of the generator.
또한, 상기 전기자 부분은 전류를 인가하여 자력선을 방출시키는 부분을 의미하며, 아마추어(Armature), 로터(Rotor) 또는 코어(Core)라고도 한다.In addition, the armature portion refers to a portion that emits lines of force by applying a current, and is also referred to as an armature, a rotor, or a core.
전술한 구성을 갖는 발전기는, 전류가 흐르는 전선 주위에는 항상 자계가 형성되고, 영구자석의 자계와 전기자의 코일에서 발생하는 자계가 서로 밀거나 당기는 힘에 의해 전기자가 돌아가게 되는데, 이러한 전자력을 이용하게 되는 것이다.In a generator having the above configuration, a magnetic field is always formed around a wire through which a current flows, and the armature rotates due to the force that the magnetic field of the permanent magnet and the magnetic field generated from the coil of the armature push or pull each other. It will do.
한편, 종래 발전기에서 자기와 코일 사이에서 전기가 발생되는 과정을 살펴보면, 역기전류에 의한 히스테리시스 손실과 자기운동에 의한 와전류가 발생하여 쓸데없는 막강한 부하가 걸리고 열이 발생한다.On the other hand, looking at the process in which electricity is generated between a magnet and a coil in a conventional generator, hysteresis loss due to counter-electromotive current and eddy current due to magnetic motion occur, resulting in a useless heavy load and generation of heat.
특히, 과다 전류를 사용할 경우와 예기치 못한 단락(합선) 상태가 발생하면 발전기의 화재 손실 또는 과부하에 의한 정전 사태로 인하여 각종 계기와 설비가 손상되는 문제점이 있다.In particular, when excessive current is used and an unexpected short circuit (short circuit) occurs, various instruments and equipment are damaged due to power failure due to fire loss or overload of the generator.
또, 발전기가 손상되는 위험이 있어서, 실제로 생산되는 전력의 100퍼센트 전체의 양을 다 사용한다는 것이나, 그 출력의 전체 양에 가깝게 과부하의 위험을 무릅쓰며 사용한다는 것은 절대 불가능하다. 그래서 출력보다 항상 적은 양을 사용해야만 하며, 그에 따라서 발생하는 손실은 생각보다 막대하며, 이것이 현재 발전 운영의 실태이다.In addition, there is a risk of damage to the generator, so it is absolutely impossible to use 100% of the total amount of power actually produced, or to use it at the risk of overloading close to the total amount of its output. Therefore, it is always necessary to use a smaller amount than the output, and the loss that occurs accordingly is enormous than expected, and this is the current state of power generation operation.
또한, 발전기의 회전자를 방해하는 힘은 전기자 코일에 전류가 흐를 때 전기자 코일에 생기는 자기장 때문이며, 이 자기장이 회전자의 자기장과 상호 작용하여 회전자의 회전을 방해하는 역기전력을 일으키기 때문이다.In addition, the force that hinders the rotor of the generator is due to the magnetic field generated in the armature coil when current flows in the armature coil, and this magnetic field interacts with the magnetic field of the rotor to generate counter-electromotive force that hinders rotation of the rotor.
이러한 종래의 제반 문제점을 해결하고자 등록특허 10-1324546호에서는 중심점에 회전축 통과공이 형성되고 소정지름을 갖는 원주를 따라서는 정해진 간격을 두고 복수의 페라이트 코어 고정공이 형성된 구성을 갖고 수직방향으로 평행한 상태를 유지하게 고정겸 간격유지수단을 통해 상호 일체로 결합된 한 쌍의 고정판과; 봉 형상을 갖고 상기 페라이트 코어 고정공에 각각 양단부가 끼워지는 형태로 한 쌍의 고정판 사이에 고정 설치되어 고정판의 외측으로 노출되는 양단부를 각각 영구자석이 지나갈 때 영구자석에서 발생되는 자기장이 폐회로를 이루도록 하는 복수의 페라이트 코어와; 상기 페라이트 코어의 외주면에 각각 정해진 회전수만큼 권취된 형태로 설치되어 각각의 페라이트 코어를 통해 영구자석의 자기장이 통과될 때 발생되는 유도 기전력 또는 유도 전류를 각각 유기시켜 전력제어부로 전달하는 복수의 권선코일과; 상기 한 쌍의 고정판 외측에 각각 근접되게 배치된 상태에서 고정판들의 중심점에 형성된 회전축 통과공을 관통하는 형태로 설치되는 회전축의 양단부에 각각 고정되어 회전력 발생수단의 축에 연결된 회전축의 회전수에 대응하여 회전축과 함께 회전하는 한 쌍의 회전자용 회전판과; 상기 회전자용 회전판의 내측에서 S극과 N극이 서로 반대방향을 갖도록 마주보는 형태를 갖고 정해진 간격 및 배열로 고정 설치되어 상기 복수의 페라이트 코어에 자기장을 제공하는 복수의 영구자석;을 포함하여 구성한 것을 특징으로 하는 양극평형을 이용한 시간차 발전기가 게재된 바 있다. In order to solve these conventional problems, Patent Registration No. 10-1324546 has a configuration in which a rotating shaft through hole is formed at the center point and a plurality of ferrite core fixing holes are formed at regular intervals along the circumference having a predetermined diameter, and are parallel in the vertical direction. A pair of fixed plates integrally coupled to each other through a fixing and space maintaining means to maintain the; It has a bar shape and is fixed between a pair of fixing plates in a form in which both ends are inserted into the ferrite core fixing holes, so that when the permanent magnets pass through both ends exposed to the outside of the fixing plates, the magnetic field generated from the permanent magnet forms a closed circuit. A plurality of ferrite cores and; A plurality of windings installed on the outer circumferential surface of the ferrite core in a form wound at a predetermined number of revolutions to induce and transmit the induced electromotive force or induced current generated when the magnetic field of the permanent magnet passes through each ferrite core to the power control unit. Coil and; Corresponding to the number of rotations of the rotating shaft connected to the shaft of the rotating force generating means, each fixed to both ends of the rotating shaft installed in a form passing through the rotating shaft through hole formed at the center point of the fixed plate in a state of being disposed close to the outer side of the pair of fixed plates. a pair of rotating plates for rotors that rotate together with the rotating shaft; A plurality of permanent magnets having a form facing each other so that S poles and N poles have opposite directions on the inside of the rotor rotating plate and are fixedly installed at predetermined intervals and arrangements to provide magnetic fields to the plurality of ferrite cores; A time difference generator using bipolar equilibrium, characterized in that, has been published.
하지만, 등록특허 10-1324546호의 양극평형을 이용한 시간차 발전기는 고정판에 설치된 페라이트 코어들에는, 설계시 설정된 권선수로 모두 동일하게 권선코일이 권취되어 있고, 회전자용 회전판에 영구자석이 고정장착되어 위치이동시킬 수 없는 구조로 되어 있기 때문에, 하나의 발전기에서는 유기 전류 세기가 동일하게 발생되며, 권선코일의 권선수를 변경하여 발생되는 유기전류세기를 바꾸고자 할 경우에는 전체적으로 권선코일의 권선작업을 다시 진행해야 하거나 다른 권선수로 권선코일이 권취된 페라이트 코어를 고정판에 교체 장착해야만 했다. However, in the time difference generator using bipolar balance of Registered Patent No. 10-1324546, the ferrite cores installed on the fixed plate have the same winding coils with the number of windings set at the time of design, and the permanent magnet is fixedly mounted on the rotating plate for the rotor. Because of the structure that cannot be moved, the same induced current intensity is generated in one generator, and if you want to change the induced current intensity generated by changing the number of turns of the winding coil, the winding work of the winding coil as a whole is redone. It was necessary to proceed, or the ferrite core with the winding coil wound with a different number of turns had to be replaced on the fixed plate.
<선행기술 문헌><Prior art literature>
등록특허 10-1324546호Registered Patent No. 10-1324546
본 발명은 상기한 바와 같은 종래의 문제점을 해결하고자 창안된 것으로서, 한 쌍의 고정판 사이에 제1권취코일이 권취된 복수의 외측 페라이트 코어를 소정의 제1원주상으로 이격 배치하고, 제1권취코일과는 다른 권선수를 갖는 제2코취코일이 권취된 복수의 내측 페라이트 코어를 제1원주상 보다 내측의 제2원주상으로 이격 배치하며, 한 쌍의 고정판의 외측에는 회전에 따라 복수의 외측 페라이트 코어 또는 복수의 내측 페라이트 코어의 양단부를 지나는 영구자석을 구비한 회전자용 회전판을 설치하되, 영구자석은 회전자용 회전판의 중심으로부터 외측단을 따라 내외측 방향으로 위치이동가능하도록 구성하여, 영구자석이 복수의 외측 페라이트 코어의 단부를 시간차를 두고 독립적으로 지나거나, 복수의 내측 페라이트 코어의 단부를 시간차를 두고 독립적으로 지나도록 구성되어 발생되는 유기전류세기를 선택할 수 할 수 있는 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 제공하는데 목적이 있다. The present invention has been devised to solve the conventional problems as described above, and arranges a plurality of outer ferrite cores on which a first winding coil is wound between a pair of fixed plates spaced apart on a predetermined first circumference, and A plurality of inner ferrite cores on which a second coch coil having a different number of windings than the coil is wound are spaced apart on a second circumference inside the first circumference, and a plurality of outer ferrite cores are rotated on the outside of the pair of fixing plates. A rotating plate for a rotor having a ferrite core or a permanent magnet passing through both ends of a plurality of inner ferrite cores is installed. An induced current intensity selection function capable of selecting the induced current intensity generated by independently passing the ends of the plurality of outer ferrite cores with a time difference or independently passing the ends of the plurality of inner ferrite cores with a time difference. It is an object to provide a sequential independent power generation device having.
또한, 본 발명은 영구자석을 회전자용 회전판에서 중심으로부터 외측단을 따라 내외측 방향으로 구동수단에 의해 자동으로 위치이동시킬 수 있도록 구성되어, 별도의 수작업으로 영구자석을 위치이동시킬 필요 없이 전자적인 제어에 의해 영구자석의 위치를 자동으로 이동시킬 수 있는 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 제공하는데 다른 목적이 있다. In addition, the present invention is configured to automatically move the position of the permanent magnet in the inner and outer direction along the outer end from the center on the rotating plate for the rotor, so that the permanent magnet can be automatically moved without the need to manually move the position of the permanent magnet. Another object is to provide a sequential independent power generation device having an organic current intensity selection function capable of automatically moving the position of a permanent magnet by control.
다만, 본 발명의 목적은 이에만 제한되는 것은 아니며, 명시적으로 언급하지 않더라도 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 이에 포함됨은 물론이다. However, the object of the present invention is not limited thereto, and even if not explicitly mentioned, the purpose or effect that can be grasped from the solution or embodiment of the problem is also included therein, of course.
상기한 목적을 달성하기 위한 본 발명의 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치는, 중심점에 회전축 통과공이 형성되고, 원주 상으로 복수의 페라이트 코어를 고정하기 위한 복수의 고정공이 형성되며, 평행한 상태로 결합된 한 쌍의 고정판; 봉 형상을 갖고 상기 페라이트 코어 고정공에 각각 양단부가 끼워지는 형태로 상기 한 쌍의 고정판 사이에 고정 설치되는 복수의 페라이트 코어; 상기 페라이트 코어의 외주면에 권취되고, 각각의 페라이트 코어를 통해 영구자석의 자기장이 통과될 때 발생되는 유도 기전력 또는 유도 전류를 각각 유기시켜 전력제어부로 전달하는 복수의 권선코일; 상기 한 쌍의 고정판의 외측에 각각 근접되게 배치된 상태에서 상기 회전축 통과공을 관통하는 형태로 설치된 회전축의 양단부에 각각 고정되어 상기 회전축과 함께 회전하는 한 쌍의 회전판; 상기 회전판의 내측에서 S극과 N극이 서로 반대방향을 갖도록 마주보는 형태를 갖도록 설치되며, 상기 복수의 페라이트 코어에 자기장을 제공하는 영구자석; 상기 회전판에 구성되어 상기 영구자석의 위치를 이동시키도록 하는 자석이동수단;을 포함하며, 상기 고정판에는 소정 지름을 갖는 제1원주상으로 소정간격 이격되게 복수의 외측 고정공이 구성되고, 상기 복수의 외측 고정공의 내측으로 상기 제1원주상 보다 지름이 작은 제2원주상으로 소정간격 이격되게 복수의 내측 고정공이 구성되며, 상기 외측 고정공과 내측 고정공은 상기 고정판의 중심으로부터 외측방향을 따라 일직선 상에 배치되도록 구성되며, 상기 복수의 페라이트 코어는 상기 외측 고정공에 끼워져 고정설치되는 복수의 외측 페라이트 코어와, 상기 내측 고정공에 끼워져 고정설치되는 복수의 내측 페라이트 코어로 이루어지며, 상기 복수의 권선코일은 상기 외측 페라이트 코어에 권취되는 제1권선코일과, 상기 내측 페라이트 코어에 권취되는 제2권선코일을 포함하며, 상기 제1권선코일은 상기 제2권선코일에 비해 보다 많은 권선수를 갖도록 구성되어, 상기 영구자석이 상기 외측 페라이트 코어의 단부를 지날 때 발생되는 유기전류세기가 상기 내측 페라이트 코어의 단부를 지날 때 발생되는 유기전류세기보다 크도록 구성되며, 상기 자석이동수단은 상기 영구자석을 상기 회전판의 중심에서 외측 방향을 따라 내외측으로 위치이동되도록 하여 상기 영구자석이 상기 회전판의 회전에 따라 회전하면서 상기 복수의 외측 페라이트 코어의 단부들을 순차적으로 지나게 하여 상기 제1권선코일을 통해 제1유기전류의 발생이 이루어지도록 하거나 상기 복수의 내측 페라이트 코어의 단부를 순차적으로 지나게 하여 상기 제2권선코일을 통해 제2유기전류의 발생시키도록 구성되는 것을 특징으로 한다. In order to achieve the above object, the sequential independent power generator having an organic current intensity selection function of the present invention has a rotation shaft through hole formed at the center point, a plurality of fixing holes for fixing a plurality of ferrite cores on the circumference are formed, , a pair of fixing plates coupled in parallel; A plurality of ferrite cores having a rod shape and fixedly installed between the pair of fixing plates in a form in which both ends are inserted into the ferrite core fixing holes, respectively; A plurality of winding coils wound around the outer circumferential surface of the ferrite core and inducing induced electromotive force or induced current generated when the magnetic field of the permanent magnet passes through each of the ferrite cores and transferring the induced electromotive force to a power control unit; A pair of rotating plates fixed to both ends of a rotating shaft installed in a manner passing through the rotating shaft passing hole in a state of being disposed close to the outer side of the pair of fixed plates, respectively, and rotating together with the rotating shaft; permanent magnets installed inside the rotating plate so that S poles and N poles face each other so as to have opposite directions, and provide magnetic fields to the plurality of ferrite cores; and a magnet moving means configured on the rotating plate to move the position of the permanent magnet, wherein the fixing plate is formed with a plurality of outer fixing holes spaced apart at predetermined intervals in a first circumference having a predetermined diameter, and the plurality of A plurality of inner fixing holes are formed spaced apart at predetermined intervals on a second circumference having a diameter smaller than that of the first circumference inside the outer fixing hole, and the outer fixing hole and the inner fixing hole are in a straight line along the outer direction from the center of the fixing plate. The plurality of ferrite cores are composed of a plurality of outer ferrite cores inserted into and fixedly installed in the outer fixing hole and a plurality of inner ferrite cores inserted into and fixedly installed in the inner fixing hole. The winding coil includes a first winding coil wound around the outer ferrite core and a second winding coil wound around the inner ferrite core, wherein the first winding coil has a greater number of turns than the second winding coil. It is configured so that the induced current intensity generated when the permanent magnet passes the end of the outer ferrite core is greater than the induced current intensity generated when the permanent magnet passes the end portion of the inner ferrite core, and the magnet moving means moves the permanent magnet is moved inward and outward from the center of the rotary plate along the outer direction so that the permanent magnet rotates according to the rotation of the rotary plate and sequentially passes through the ends of the plurality of outer ferrite cores, passing through the first winding coil to the first It is characterized in that the induced current is generated or the second induced current is generated through the second winding coil by sequentially passing the ends of the plurality of inner ferrite cores.
상기한 바에 따르면, 본 발명은 기 등록된 등록특허 10-1324546호의 시간차 발전기를 개선한 것으로, 고정판에 서로 다른 원주상으로 외측 페라이트 코어와 내측 페라이트 코어가 구성되고, 이 각각의 외측 및 내측 페라이트 코어에 서로 다른 권선수를 갖도록 제1 및 제2권선코일을 감아 구성하며, 고정판의 외측에서 회전하는 회전판에는 영구자석을 설치하되, 영구자석을 회전판 상에서 위치이동시킬 수 있는 자석이동수단을 구비하여 영구자석의 위치이동에 따라 영구자석이 선택적으로 외측 페라이트 코어 또는 내측 페라이트 코어의 단부에 마주하면서 지나가게 할 수 있어 다른 조건을 변경하지 않더라도 유도전류발생세기를 자석의 위치이동에 의해 선택하여 발전이 이루어지게 할 수 있다. According to the above, the present invention is an improvement of the time difference generator of registered patent registration No. 10-1324546, and an outer ferrite core and an inner ferrite core are configured in different circumferential shapes on a fixed plate, and each of the outer and inner ferrite cores It is configured by winding the first and second winding coils to have different winding numbers, and a permanent magnet is installed on the rotary plate rotating outside the fixed plate, but a magnet moving means capable of moving the permanent magnet on the rotary plate is provided to make it permanent. As the position of the magnet moves, the permanent magnet can selectively pass while facing the end of the outer ferrite core or the inner ferrite core, so even if other conditions are not changed, power generation is achieved by selecting the induced current generation strength by the position movement of the magnet. can make you lose
한편, 본 발명에서 다른 형태의 자석이동수단은 모터구동방식에 의해 자석의 위치이동이 이루어지게 할 수 있어, 별도의 수작업 없이도 자석이동이 자동으로 이루어지게 하여 조작편리성을 향상시킬 수 있다. On the other hand, in the present invention, the magnet moving means of another type can move the position of the magnet by the motor driving method, so that the magnet can be moved automatically without a separate manual work, improving the convenience of operation.
도 1은 본 발명의 제 1 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 나타낸 사시도이고, 1 is a perspective view showing a sequential independent power generation device having an organic current intensity selection function according to a first embodiment of the present invention,
도 2는 본 발명의 제 1 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 나타낸 분리사시도이고, 2 is an exploded perspective view showing a sequential independent power generation device having an organic current intensity selection function according to a first embodiment of the present invention;
도 3은 도 1은 본 발명의 제 1 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 나타낸 단면도이고, 3 is a cross-sectional view showing a sequential independent power generation device having an induced current intensity selection function according to a first embodiment of the present invention in FIG. 1;
도 4는 도 1의 외측 페라이트 코어에 권취된 제1권취코일(a)과, 내측 페라이트 코어에 권취된 제2권취코일(b)의 일예를 나타낸 도면이고, 4 is a view showing an example of a first winding coil (a) wound around an outer ferrite core of FIG. 1 and a second winding coil (b) wound around an inner ferrite core;
도 5는 본 발명의 고정판에 설치되는 복수의 외측 페라이트 코어와 복수의 내측 페라이트 코어의 배열 형태를 나타낸 도면이고, 5 is a view showing the arrangement of a plurality of outer ferrite cores and a plurality of inner ferrite cores installed on the fixed plate of the present invention;
도 6은 본 발명의 회전자용 회전판에 위치조정가능하게 설치된 영구자석의 위치조정상태를 나타낸 도면이고, 6 is a view showing the position adjustment state of the permanent magnets installed to be position-adjustable on the rotating plate for the rotor of the present invention,
도 7은 도 3에서 영구자석의 설치위치를 변경한 상태를 나타낸 도면이고, 7 is a view showing a state in which the installation position of the permanent magnet is changed in FIG. 3;
도 8은 본 발명의 위치이동수단의 다른 형태를 나타낸 요부 단면도이고, 8 is a cross-sectional view of the main part showing another form of the positioning means of the present invention,
도 9는 본 발명의 제 2 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 나타낸 사시도이고, 9 is a perspective view showing a sequential independent power generation device having an organic current intensity selection function according to a second embodiment of the present invention;
도 10은 도 9에 도시된 회전자용 회전판의 요부를 확대하여 나타낸 도면이고, 10 is an enlarged view showing a main part of the rotating plate for a rotor shown in FIG. 9;
도 11은 제 2 실시 예에 따른 본 발명의 회전자용 회전판에 위치조정하여 설치된 양측의 영구자석과 페라이트 코어 단부의 위치상태를 나타낸 도면이고, 11 is a view showing the positional state of both permanent magnets and ferrite core ends installed by adjusting the position of the rotor rotation plate of the present invention according to the second embodiment,
도 12는 제 2 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 나타낸 단면도이다. 12 is a cross-sectional view showing a sequential independent power generation device having an organic current intensity selection function according to a second embodiment.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시 예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. The above objects, other objects, features and advantages of the present invention will be easily understood through the following preferred embodiments in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content will be thorough and complete and the spirit of the present invention will be sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In this specification, when an element is referred to as being on another element, it means that it may be directly formed on the other element or a third element may be interposed therebetween. Also, in the drawings, the thickness of components is exaggerated for effective description of technical content.
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 식각 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서 도면에서 예시된 영역들은 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다. 본 명세서의 다양한 실시 예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성 요소들이 이 같은 용어들에 의해 한정되어서는 안된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시 예들은 그것의 상보적인 실시 예들도 포함한다. Embodiments described in this specification will be described with reference to cross-sectional views and/or plan views, which are ideal exemplary views of the present invention. In the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical content. Accordingly, the shape of the illustrated drawings may be modified due to manufacturing techniques and/or tolerances. Therefore, embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to manufacturing processes. For example, an etched region shown at right angles may be round or have a predetermined curvature. Accordingly, the regions illustrated in the drawings have attributes, and the shapes of the regions illustrated in the drawings are for exemplifying a specific form of a region of an element and are not intended to limit the scope of the invention. Although terms such as first and second are used to describe various components in various embodiments of the present specification, these components should not be limited by these terms. These terms are only used to distinguish one component from another. Embodiments described and illustrated herein also include complementary embodiments thereof.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. Terms used in this specification are for describing embodiments, and are not intended to limit the present invention. In this specification, singular forms also include plural forms unless specifically stated otherwise in a phrase. The terms 'comprises' and/or 'comprising' used in the specification do not exclude the presence or addition of one or more other elements.
아래의 특정 실시 예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만, 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다. In describing the specific embodiments below, various specific contents are prepared to more specifically describe the invention and aid understanding. However, a reader having knowledge in this field to the extent of being able to understand the present invention can recognize that it can be used without these various specific details. In some cases, it is mentioned in advance that parts that are commonly known in describing the invention and are not greatly related to the invention are not described in order to prevent confusion for no particular reason in explaining the present invention.
이하, 도 1 내지 도 8을 참조하여, 본 발명의 제 1 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치(1)에 대해 설명한다. Hereinafter, with reference to FIGS. 1 to 8, a sequential independent power generator 1 having an induced current intensity selection function according to a first embodiment of the present invention will be described.
본 발명의 순차 독립 발전형 발전장치(1)는 한 쌍의 고정판(10), 복수의 페라이트 코어(30a,30b), 복수의 권선코일(30a,30b), 한 쌍의 회전자용 회전판(50), 복수의 영구자석(60), 자석이동수단(70)을 포함하도록 구성된다. The sequential independent power generator 1 of the present invention includes a pair of fixed plates 10, a plurality of ferrite cores 30a and 30b, a plurality of winding coils 30a and 30b, and a pair of rotor plates 50 , It is configured to include a plurality of permanent magnets 60 and a magnet moving means 70.
고정판(10)은 한 쌍으로 구성되고, 서로 평행하게 나란히 고정겸 간격유지수단(20)을 통해 소정간격 이격되게 결합되도록 구성된다. 여기서, 고정겸 간격유지수단(20)은 소정지름 및 길이를 갖는 원봉 형상으로 성형되어 한 쌍의 고정판(1) 사이에 설치되는 복수의 서포터(21)와; 한 쌍의 고정판(10)과 서포터(21)를 각각 관통하도록 설치된 상태에서 상호 체결되는 복수의 볼트(22) 및 너트(23)로 구성될 수 있다. The fixing plate 10 is composed of a pair, and is configured to be coupled to be spaced apart from each other at a predetermined interval through the fixing and spacing maintaining means 20 side by side. Here, the fixing and space keeping means 20 is molded into a rod shape having a predetermined diameter and length and a plurality of supporters 21 installed between the pair of fixing plates 1; It may be composed of a plurality of bolts 22 and nuts 23 that are mutually fastened in a state of being installed to pass through the pair of fixing plates 10 and the supporter 21, respectively.
고정판(10)은 중심에 회전축 통과공(11)이 형성되고 소정지름을 갖는 원주상을 따라서는 정해진 간격을 두고 복수의 페라이트 코어의 단부가 끼워져 고정되기 위한 고정공(12a,12b)이 형성되도록 구성된다. The fixing plate 10 has a rotating shaft passage hole 11 formed at the center and fixing holes 12a and 12b for fixing ends of a plurality of ferrite cores at regular intervals along a circumference having a predetermined diameter are formed. It consists of
구체적으로, 고정판(10)에는 소정 지름을 갖는 제1원주상으로 소정간격 이격되게 복수의 외측 고정공(12a)이 구성되고, 이 복수의 외측 고정공(12a)의 내측으로 상기 제1원주상 보다 내측으로 지름이 작은 제2원주상으로 소정간격 이격되게 복수의 내측 고정공(12b)이 구성된다. 아울러, 각각의 외측 고정공(12)과 내측 고정공(12b)은 고정판(10)의 중심으로부터 외측방향을 따라 일직선 상에 배치되도록 구성된다. Specifically, the fixing plate 10 is configured with a plurality of outer fixing holes 12a spaced apart at predetermined intervals in a first circumferential shape having a predetermined diameter, and the first circumferential shape to the inside of the plurality of outer fixing holes 12a. A plurality of inner fixing holes 12b are configured to be spaced apart at predetermined intervals on a second circumference having a smaller diameter toward the inner side. In addition, each of the outer fixing hole 12 and the inner fixing hole 12b is configured to be disposed on a straight line along an outward direction from the center of the fixing plate 10 .
복수의 페라이트 코어(30)는 봉 형상으로 이루어지며, 양단부가 고정공(12a,12b)의 끼워져 고정설치되며, 고정판(10)의 외측으로 노출되는 양단부는 영구자석(60)이 지나갈때 영구자석(60)에서 발생되는 자기장이 폐회로를 이루도록 한다. The plurality of ferrite cores 30 are made in the shape of a rod, and both ends are fixedly installed by being inserted into the fixing holes 12a and 12b, and both ends exposed to the outside of the fixing plate 10 become permanent magnets when the permanent magnet 60 passes. The magnetic field generated in (60) forms a closed circuit.
본 발명에서는 복수의 페라이트 코어(30)는 외측 고정공(12a)에 끼워져 고정설치되는 복수의 외측 페라이트 코어(30a)와, 내측 고정공(12b)에 끼워져 고정설치되는 복수의 내측 페라이트 코어(30b)로 이루어진다. In the present invention, the plurality of ferrite cores 30 include a plurality of outer ferrite cores 30a inserted into and fixedly installed in the outer fixing hole 12a, and a plurality of inner ferrite cores 30b inserted into and fixedly installed in the inner fixing hole 12b. ) is made up of
복수의 권선코일(40a,40b)은 외측 및 내측 페라이트 코어(30a,30b)에 정해진 권선수 만큼 각각 권취된 형태로 설치되어 각각의 외측 및 내측 페라이트 코어(30a,30b)를 통해 영구자석(60)의 자기장이 통과될 때 발생되는 유도 전류를 각각 유기시키켜 전력제어부(80)로 전달하도록 구성된다. The plurality of winding coils 40a and 40b are installed in a form wound by a predetermined number of windings on the outer and inner ferrite cores 30a and 30b, respectively, and the permanent magnets 60 through the outer and inner ferrite cores 30a and 30b, respectively. ) is configured to induce induced currents generated when the magnetic field passes through and transmit them to the power control unit 80.
복수의 권선코일(40a,40b)은 복수의 외측 페라이트 코어(30a)에 권취되는 복수의 제1권선코일(40a)과, 복수의 내측 페라이트 코어(30b)에 권취되는 복수의 제2권선코일(40b)을 포함하도록 구성되며, 각 제1권선코일(40a)은 각 제2권선코일(40b)에 비해 보다 많은 권선수를 갖도록 구성되어, 영구자석(60)이 외측 페라이트 코어(30a)의 단부를 지날 때 발생되는 유기전류세기가 내측 페라이트 코어(30b)의 단부를 지날 때 발생되는 유기전류세기보다 크도록 구성된다. The plurality of winding coils 40a and 40b include a plurality of first winding coils 40a wound around a plurality of outer ferrite cores 30a and a plurality of second winding coils (wound around a plurality of inner ferrite cores 30b) 40b), and each first winding coil 40a is configured to have a larger number of turns than each second winding coil 40b, so that the permanent magnet 60 is formed at the end of the outer ferrite core 30a. The induced current intensity generated when passing the inner ferrite core 30b is configured to be greater than the induced current intensity generated when passing the end of the inner ferrite core 30b.
즉, 코일에 유기되는 유기전류세기는 코일이 코어에 권취된 권취횟수(권선수)에 비례하므로, 제2권선코일(40b)에 비해 많은 권선수를 갖는 제1권선코일(40a)이 권취횟수가 더 적은 제2권선코일(40b)에 비해 큰 유기전류가 유도될 수 있다. That is, since the intensity of the induced current induced in the coil is proportional to the number of turns (number of turns) in which the coil is wound around the core, the first winding coil 40a having a larger number of turns than the second winding coil 40b has the number of turns. A large induced current can be induced compared to the second winding coil 40b having a smaller .
한 쌍의 회전자용 회전판(50)은 한 쌍의 고정판(10) 외측에 각각 근접되게 배치된 상태에서 고정판(10)들의 중심점에 형성된 회전축 통과공(11)을 관통하는 형태로 설치되는 회전축(51)의 양단부에 각각 고정되어 회전력 발생수단(90)의 축에 연결된 회전축(51)의 회전수에 대응하여 회전축(51)과 함께 회전하도록 구성된다. A pair of rotating plates 50 for rotors are installed in the form of penetrating the rotating shaft through-holes 11 formed at the center points of the fixing plates 10 in a state in which they are disposed close to each other on the outside of the pair of fixing plates 10 51 ) It is fixed to both ends of the rotating force generating means 90 and is configured to rotate together with the rotating shaft 51 in response to the number of rotations of the rotating shaft 51 connected to the shaft.
영구자석(60)은 회전자용 회전판(50)의 내측에서 S극과 N극이 서로 반대방향을 갖도록 마주보는 형태로 설치되어, 회전자용 회전판(50)과 함께 회전하면서 복수의 외측 페라이트 코어(30a) 또는 복수의 내측 페라이트 코어(30b)에 자기장을 제공하도록 구성된다. The permanent magnet 60 is installed in the form of facing each other so that the S pole and the N pole have opposite directions on the inside of the rotor rotary plate 50, and rotates together with the rotor rotary plate 50 while rotating with a plurality of outer ferrite cores 30a. ) or to provide a magnetic field to the plurality of inner ferrite cores 30b.
자석이동수단(70)은 회전자용 회전판(50)에 설치된 영구자석(60)을 회전자용 회전판(50)의 중심에서 외측단 방향을 따라 내외측으로 위치이동되도록 하여 영구자석(60)이 회전자용 회전판(50)의 회전에 따라 회전하면서 복수의 외측 페라이트 코어(30a)의 단부들을 순차적으로 지나게 하여 제1권선코일(40a)을 통해 유기전류의 발생이 이루어지도록 하거나 복수의 내측 페라이트 코어(30b)의 단부를 순차적으로 지나게 하여 제2권선코일(40b)을 통한 유기전류의 발생이 이루어지도록 하기 위한 구성이다. The magnet moving means 70 moves the permanent magnet 60 installed on the rotor rotating plate 50 from the center of the rotor rotating plate 50 inward and outward along the outer end direction so that the permanent magnet 60 is the rotor rotating plate While rotating according to the rotation of (50), the ends of the plurality of outer ferrite cores (30a) are sequentially passed through so that an induced current is generated through the first winding coil (40a) or the plurality of inner ferrite cores (30b) It is a configuration for generating an induced current through the second winding coil 40b by sequentially passing the ends.
자석이동수단(70)은 회전자용 회전판(50)에 형성되어 영구자석(60)의 위치이동을 안내하는 가이드부(71)와, 이 가이드부(71)에 안내되어 위치조정된 영구자석(60)을 고정시키는 자석고정부(75)를 포함하도록 구성된다. The magnet moving means 70 includes a guide part 71 formed on the rotating plate 50 for the rotor and guiding the movement of the permanent magnet 60, and a permanent magnet 60 guided by the guide part 71 and adjusted in position. ) It is configured to include a magnet fixing part 75 for fixing.
가이드부(71)는 회전자용 회전판(50)의 내면에 형성되고, 회전자용 회전판(50)의 중심에서 외측 방향을 따라 소정길이로 길게 장홀 형태로 형성되어 영구자석(60)이 삽입안착되고 위치이동이 이루어지도록 하는 전방 레일홈(72)과, ㅎ회전자용(50)의 외면에 형성되고 내측 레일홈(72)과 연결되도록 전방 레일홈(72)을 따라 형성되며, 전방 레일홈(72)의 폭보다 좁은 폭을 갖도록 구성되는 후방 레일홈(73)을 포함하도록 구성된다. The guide part 71 is formed on the inner surface of the rotating plate 50 for the rotor, and is formed in the form of a long hole with a predetermined length along the outer direction from the center of the rotating plate 50 for the rotor, so that the permanent magnet 60 is inserted and seated. The front rail groove 72 for movement is formed on the outer surface of the rotor 50 and is formed along the front rail groove 72 so as to be connected to the inner rail groove 72, and the front rail groove 72 It is configured to include a rear rail groove 73 configured to have a narrower width than the width of.
자석고정부(75)는 영구자석(60)으로부터 연장되게 구성되고, 후방 레일홈(73)을 관통하여 회전자용 회전판(50)에서 돌출되도록 구성되며, 영구자석(60)의 이동과 함께 연동하여 후방 레일홈(73)을 따라 위치이동되도록 구성되며 외주면에 나사산이 형성된 결합로드(76)와, 너트로 이루어지고 결합로드(76)에 나사체결되고 조임에 의해 영구자석(60)을 전방 레일홈(72)의 소정위치에 고정시키는 고정부재(77)를 포함하도록 구성될 수 있다. The magnet fixing part 75 is configured to extend from the permanent magnet 60, penetrates the rear rail groove 73 and is configured to protrude from the rotating plate 50 for the rotor, and interlocks with the movement of the permanent magnet 60. It is configured to move along the rear rail groove 73 and is made of a coupling rod 76 having a thread formed on the outer circumferential surface and a nut and is screwed to the coupling rod 76 and the permanent magnet 60 is installed by tightening the front rail groove It may be configured to include a fixing member 77 for fixing to a predetermined position of (72).
본 실시 예에서는 사용자가 수작업으로 영구자석(60)의 위치를 변경시켜서 도 6의 (a)와 같이, 전방 레일홈(72)의 외측단부에 위치고정시키거나 도 6의 (b)와 같이, 전방 레일홈(72)의 내측단부에 위치고정시킬 수 있다. In this embodiment, the user manually changes the position of the permanent magnet 60 and fixes it to the outer end of the front rail groove 72 as shown in FIG. 6 (a), or as shown in FIG. 6 (b), The position can be fixed to the inner end of the front rail groove 72.
사용자는 고정부재(77)를 결합로드(76)에서 체결해제방향으로 회전시켜 조임해제가 이루어지게 한 상태에서, 영구자석(60)을 전방 레일홈(72)의 외측단부 또는 내측단부에 위치이동시킨 다음, 다시 고정부재(77)를 결합로드(76)에 체결하여 조여 줌으로써 영구자석(60)이 전방 레일홈(72)에서 위치이동된 상태가 유지될 수 있다. The user moves the permanent magnet 60 to the outer end or inner end of the front rail groove 72 in a state in which the fastening member 77 is rotated in the fastening release direction in the coupling rod 76 so that the fastening is released. Then, by fastening the fixing member 77 to the coupling rod 76 again, the state in which the permanent magnet 60 is moved in the front rail groove 72 can be maintained.
영구자석(60)이 전방 레일홈(72)의 외측단에 위치고정된 상태에서, 회전자용 회전판(50)의 회전에 따라 연동하여 회전되는 경우, 각각의 영구자석(60)은 제1권선코일(40a)이 권취된 외측 페라이트 코어(30a)들의 단부를 순차적으로 지나면서, 영구자석(60)에서 발생되는 자기장이 폐회로를 이루면서 제1권선코일(40a)에 유도전류가 유기되고, 유도전류는 전력제어부(80)에 전달될 수 있다. When the permanent magnet 60 is rotated in conjunction with the rotation of the rotating plate 50 for the rotor in a state where the position is fixed at the outer end of the front rail groove 72, each permanent magnet 60 is a first winding coil As (40a) sequentially passes through the ends of the wound outer ferrite cores (30a), the magnetic field generated from the permanent magnet (60) forms a closed circuit, and an induced current is induced in the first winding coil (40a), and the induced current is It may be transmitted to the power control unit 80.
반면, 영구자석(60)이 전방 레일홀(72)의 내측단에 위치고정된 상태에서, 회전자용 회전판(50)의 회전에 따라 연동하여 회전되는 경우, 각각의 영구자석(60)은 제2권선코일(40b)이 권취된 내측 페라이트 코어(30b)들의 단부를 순차적으로 지나면서, 영구자석(60)에서 발생되는 자기장이 폐회로를 이루면서 제2권선코일(40b)에 유도전류가 유기되고, 유도전류는 전류제어부(80)에 전달될 수 있다. On the other hand, when the permanent magnet 60 is rotated in conjunction with the rotation of the rotating plate 50 for a rotor in a state where the position is fixed at the inner end of the front rail hole 72, each permanent magnet 60 is As the winding coil 40b sequentially passes through the ends of the wound inner ferrite cores 30b, the magnetic field generated from the permanent magnet 60 forms a closed circuit, induced current in the second winding coil 40b, and induction Current may be transmitted to the current controller 80 .
이처럼, 본 발명은 소정의 권선수를 갖는 제1권선코일(40a)이 감겨진 복수의 외측 페라이트 코어(30a)과, 상기 제1권선코일(40a)과는 다른 권선수를 갖는 제2권선코일(40b)이 감겨진 복수의 내측 페라이트 코어(30b)를 한 쌍의 고정판(10) 사이에 서로 다른 지름을 갖는 두 원주상으로 각각 배열 설치하고, 영구자석(60)은 자석이동수단(70)에 의해 회전자용 회전판(50)의 중심에서 외측방향을 따라 내외측으로 위치이동하여 고정시키는 것이 가능하도록 구성됨으로써, 영구자석(60)이 선택적으로, 도 3과 같이, 외측 페라이트 코어(30a)들의 단부를 지나가게 하거나 도 7과 같이, 내측 페라이트 코어(30b)들의 단부를 지나가게 하여 각기 다른 유기전류 세기를 발생시키도록 구성한 것이다. As described above, the present invention provides a plurality of outer ferrite cores 30a around which a first winding coil 40a having a predetermined number of turns is wound, and a second winding coil having a number different from that of the first winding coil 40a. A plurality of inner ferrite cores (30b) with (40b) wound thereon are respectively arranged in two circumferential shapes having different diameters between a pair of fixing plates (10), and permanent magnets (60) are magnet moving means (70). By being configured to move inward and outward from the center of the rotor rotation plate 50 along the outward direction and fixing it, the permanent magnet 60 is selectively, as shown in FIG. 3, the ends of the outer ferrite cores 30a. or, as shown in FIG. 7, passing through the ends of the inner ferrite cores 30b to generate different induced current intensities.
상기에서 설명한 바와 같이, 본 발명의 자석이동수단(70)은 회전자용 회전판(50)에 형성되어 영구자석(60)의 위치이동을 안내하는 가이드부(71)와, 이 가이드부(71)에 안내되어 위치조정된 영구자석(60)을 고정시키는 자석고정부(75)를 포함하도록 구성되어, 사용자가 수작업으로 영구자석(60)의 위치를 변경시켜서 전방 레일홈(72)의 외측단부에 위치고정시키거나 전방 레일홈(72)의 내측단부에 위치고정시킬 수 있도록 구성되는 것으로 설명하였으나, 도 8을 참조하면, 본 발명의 자석이동수단(70')은 모터구동방식에 의해 자동으로 영구자석(60)을 위치이동시키도록 구성될 수 있다. As described above, the magnet moving means 70 of the present invention includes a guide part 71 formed on the rotating plate 50 for a rotor and guiding the movement of the permanent magnet 60, and the guide part 71 It is configured to include a magnet fixing part 75 for fixing the guided permanent magnet 60, which is positioned at the outer end of the front rail groove 72 by manually changing the position of the permanent magnet 60 by the user. Although it has been described that it is configured to be fixed or to be positioned at the inner end of the front rail groove 72, referring to FIG. 8, the magnet moving means 70' of the present invention is a permanent magnet automatically by a motor drive method. (60) can be configured to displace.
도 8에 도시된 본 발명의 자석이동수단(70')은 회전자용 회전판(50)에 형성되어 영구자석(60)의 위치이동을 안내하는 가이드부(71)와, 영구자석(60)을 모터구동방식으로 위치이동시키는 자석이동 구동부(80)를 포함하도록 구성된다. The magnet moving means 70' of the present invention shown in FIG. 8 includes a guide part 71 formed on a rotary plate 50 for guiding the positional movement of the permanent magnet 60, and a motor for the permanent magnet 60. It is configured to include a magnet moving driving unit 80 that moves the position by a driving method.
자석이동 구동부(80)는 회전자용 회전판(80)의 외측단에 고정설치되는 구동모터(82)와, 후방 레일홈(73)의 내측단에 설치되는 회전지지부(83)와, 후방 레일홈(73)의 내부에 배치되며 일단은 회전지지부(83)에 회전되도록 구성되고 타단은 구동모터(82)의 구동축과 결합되도록 구성되어, 구동모터(82)의 구동에 따라 회전되도록 구성되며 외주면에 수나사산이 형성된 스크류 로드(84)와, 영구자석(60)의 후면에 고정설치되어 후방 레일홈(73)에 삽입되도록 설치되며, 스크류 로드(84)가 관통되되 스크류로드(84)와 볼-스크류 방식으로 연결되도록 구성되어 스크류 로드(84)의 회전에 따라 스크류로드(84)를 따라 이동되면서 영구자석(60)을 전방 레일홈(72)을 따라 위치이동시키는 이동부재(86)를 포함하도록 구성된다. The magnet moving driving unit 80 includes a driving motor 82 fixed to the outer end of the rotor rotating plate 80, a rotation support 83 installed at the inner end of the rear rail groove 73, and a rear rail groove ( 73), one end is configured to be rotated by the rotation support part 83, and the other end is configured to be coupled with the drive shaft of the drive motor 82, configured to rotate according to the driving of the drive motor 82, and the outer circumference can be The threaded screw rod 84 and the permanent magnet 60 are fixedly installed to be inserted into the rear rail groove 73, and the screw rod 84 passes through the screw rod 84 and the ball-screw. It is configured to be connected in a manner and is configured to include a moving member 86 for moving the permanent magnet 60 along the front rail groove 72 while moving along the screw rod 84 according to the rotation of the screw rod 84 do.
상기한 구성으로, 구동모터(82)의 구동제어에 따라, 영구자석(60)은 수작업을 할 필요 없이 자동으로 전방 레일홈(72)의 외측단 또는 내측단으로 위치시켜서 유기전류세기를 선택하여 발전을 진행할 수 있다. With the above configuration, according to the driving control of the driving motor 82, the permanent magnet 60 is automatically positioned at the outer end or the inner end of the front rail groove 72 without the need for manual work to select the induced current intensity. development can proceed.
한편, 본 발명의 일측 고정판(10)에 각 페라이트 코어(30a,30b)에 권취된 권선코일(40a,40b)의 양단부와 연결이 이루어지고, 각 권선코일(40a,40b)이 연결되는 전력제어부(80)의 입력단자를 연결할 수 있는 단자판(90)을 구비할 수 있다. On the other hand, both ends of the winding coils 40a and 40b wound on the ferrite cores 30a and 30b are connected to the fixed plate 10 on one side of the present invention, and the power control unit to which the winding coils 40a and 40b are connected A terminal board 90 to which the input terminal of 80 can be connected can be provided.
이때, 본 발명의 단자판(90)은 외측 페라이트 코어(30a)에 권취된 제1전선코일(40a)의 양단부와 전기적으로 연결되고, 전력제어부(80)의 입력단자를 연결할 수 있는 제1단자부(91)와, 내측 페라이트 코어(30b)에 권취된 제2전선코일(40b)의 양단부와 전기적으로 연결되고, 전력제어부(80)의 입력단자를 연결할 수 있는 제2단자부(92)를 포함하도록 구성된다. 이에 따라, 각 외측 페라이트 코어(30a)에 권취된 제1전선코일(40a)로부터 유도된 제1유기전류는 제1단자부(91)를 통해 전력제어부(80)에 전달되어 입력될 수 있고, 각 내측 페라이트 코어(30b)에 권취된 제2전선코일(40b)로부터 유도된 제2유기전류는 제2단자부(92)를 통해 전력제어부(80)에 전달되어 입력될 수 있으며, 전력제어부(80)는 제1단자부(91)를 통해 전달되는 제1유기전류와 제2단자부(92)를 통해 전달되는 제2유기전류를 각각 별도로 저장하고 관리하도록 구성될 수 있다. At this time, the terminal plate 90 of the present invention is electrically connected to both ends of the first wire coil 40a wound around the outer ferrite core 30a, and the first terminal unit capable of connecting the input terminal of the power control unit 80 ( 91) and a second terminal unit 92 electrically connected to both ends of the second wire coil 40b wound around the inner ferrite core 30b and capable of connecting the input terminal of the power control unit 80. do. Accordingly, the first induced current induced from the first wire coil 40a wound around each outer ferrite core 30a can be transmitted and input to the power control unit 80 through the first terminal unit 91, and each The second induced current induced from the second wire coil 40b wound around the inner ferrite core 30b can be transmitted and input to the power control unit 80 through the second terminal unit 92, and the power control unit 80 may be configured to separately store and manage the first induced current transmitted through the first terminal 91 and the second induced current transmitted through the second terminal 92 .
이하, 도 9 내지 도 12를 참조하여, 본 발명의 제 2 실시 예에 따른 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치에 대해 설명한다.Hereinafter, with reference to FIGS. 9 to 12, a sequential independent power generator having an induced current intensity selection function according to a second embodiment of the present invention will be described.
이하의 설명에서는 제 1 실시 예에 비해 동일한 구성에 대해서는 동일한 참조부여를 부여하고 설명하도록 생략하도록 하며, 차이가 있는 구성에 대해서만 설명하도록 한다. In the following description, the same references are given to the same configurations as those of the first embodiment, and descriptions thereof are omitted, and only configurations with differences are described.
제 2 실시 예에서는, 한 쌍의 회전자형 회전판(50a,50b) 각각의 내측면에 형성된 전방 레일홈(72a,72b)의 길이방향 양단부 각각에는 양측방향으로 연장형성되는 외측 좌우 자석이동홈(72aa,72ba)과 내측 좌우 자석이동홈(72ab,72bb)이 형성되도록 구성된다. In the second embodiment, the outer left and right magnet moving grooves 72aa extending in both directions at both ends in the longitudinal direction of the front rail grooves 72a and 72b formed on the inner surfaces of each of the pair of rotor- type rotating plates 50a and 50b, respectively. , 72ba) and inner left and right magnet moving grooves 72ab and 72bb are formed.
영구자석(60)을 전방레일홈(72a,72b)의 외측단부 또는 내측단부로 이동시킨 상태에서, 전방레일홈(72a,72b)의 단부에 형성된 외측 좌우 자석이동홈(72aa,72ba)이나 내측 좌우 자석이동홈(72ab,72bb)을 따라 좌우로 이동가능하도록 구성된다. In a state in which the permanent magnet 60 is moved to the outer end or the inner end of the front rail grooves 72a and 72b, the outer left and right magnet moving grooves 72aa and 72ba formed at the ends of the front rail grooves 72a and 72b or the inner side It is configured to be movable left and right along the left and right magnet moving grooves 72ab and 72bb.
본 발명은 회전판(50a,50b)의 외면으로 외측 좌우 자석이동홈(72aa,72ba)에 연결되도록 형성되며 영구자석(60a,60b)이 외측 좌우 자석이동홈(72aa,72ba)을 따라 위치이동 될 때, 결합로드(76)도 함께 이동되기 위한 외측 로드이동홈(73aa,73ba)이 구성된다. The present invention is formed to be connected to the outer left and right magnet moving grooves 72aa and 72ba on the outer surface of the rotating plates 50a and 50b, and the permanent magnets 60a and 60b are moved along the outer left and right magnet moving grooves 72aa and 72ba. When the coupling rod 76 is also configured to move the outer rod moving groove (73aa, 73ba).
또한, 회전판(50a,50b)의 외면으로 내측 좌우 자석이동홈(72ab,72bb)에 연결되도록 형성되, 영구자석(60a,60b)이 내측 좌우 자석이동홈(72ab,72bb)을 따라 위치이동될 때, 결합로드(76)도 함께 이동되기 위한 내측 로드 이동홈(73ab,73bb)이 구성된다. In addition, it is formed to be connected to the inner left and right magnet moving grooves 72ab and 72bb on the outer surface of the rotating plates 50a and 50b, and when the permanent magnets 60a and 60b are moved along the inner left and right magnet moving grooves 72ab and 72bb , the inner rod moving grooves 73ab and 73bb for moving the coupling rod 76 together are configured.
이때, 외측 좌우 자석이동홈(72aa,72ba)은 제 1 원주상으로 배열된 복수의 외측 페라이트 코어(30a)와 동일한 곡률을 갖는 원호상으로 구성되고, 내측 좌우 자석이동홈(72ab,72bb)은, 제 2 원주상으로 배열된 복수의 내측 페라이트 코어(30b)와 동일한 곡률을 갖는 원호상으로 구성되어, 외측 좌우 자석이동홈(72aa,72ba)을 따라 영구자석(60a,60b)을 위치이동시키더라도, 회전판(50a,50b)의 회전에 따라 영구자석(60a,60b)은 외측 페라이트 코어(30a)의 단부를 순차적으로 지나도록 구성되며, 마찬가지로 내측 좌우 자석이동홈(72ab,72bb)을 따라 영구자석(60a,60b)을 위치이동시키더라도, 회전판(50a,50b)의 회전에 따라 영구자석(60a,60b)은 내측 페라이트 코어(30b)의 단부를 순차적으로 지나도록 구성된다. At this time, the left and right outer magnet moving grooves 72aa and 72ba are formed in an arc shape having the same curvature as the plurality of outer ferrite cores 30a arranged in a first circumferential shape, and the inner left and right magnet moving grooves 72ab and 72bb are , composed of a circular arc shape having the same curvature as the plurality of inner ferrite cores 30b arranged in a second circumferential shape, and moving the permanent magnets 60a and 60b along the left and right outer magnet moving grooves 72aa and 72ba. However, as the rotating plates 50a and 50b rotate, the permanent magnets 60a and 60b are configured to pass through the ends of the outer ferrite core 30a sequentially, and likewise, along the left and right inner magnet moving grooves 72ab and 72bb, permanent magnets 60a and 60b are formed. Even when the magnets 60a and 60b are moved, the permanent magnets 60a and 60b sequentially pass through the ends of the inner ferrite core 30b according to the rotation of the rotating plates 50a and 50b.
제 2 실시 예에 따른 본 발명은 영구자석(60a,60b)을 전방레일홈(72a,72b)의 외측단부 또는 내측단부로 이동시킨 상태에서, 각 단부에 형성된 외측 좌우 자석이동홈(72aa,72ba)이나 내측 좌우 자석이동홈(72ab,72bb)을 따라 좌우 측방으로 이동하여 위치조정가능하도록 구성된다. In the present invention according to the second embodiment, the left and right outer magnet moving grooves 72aa and 72ba formed at each end in a state in which the permanent magnets 60a and 60b are moved to the outer end or the inner end of the front rail grooves 72a and 72b. ) or the inner left and right magnet movement grooves 72ab and 72bb to move left and right and sideways to adjust the position.
양측의 영구자석(60a,60b)이 페라이트 코어(30a,30b)의 양단부를 지날 때, 페라이트 코어의 중심축과, 일측의 영구자석(60a)의 중심과, 타측의 영구자석(60b)의 중심 모두가 일치되는 위치가 발생되지 않고 적어도 일측의 영구자석(60a)의 중심과, 타측의 영구자석(60b)의 중심 중 하나는 페라이트 코어(30a,30b)의 중심축과 어긋난 상태가 되도록 구성된다. When the permanent magnets 60a and 60b on both sides pass both ends of the ferrite cores 30a and 30b, the central axis of the ferrite core, the center of the permanent magnet 60a on one side, and the center of the permanent magnet 60b on the other side A position where all of them coincide is not generated, and at least one of the center of one permanent magnet 60a and the center of the other permanent magnet 60b is configured to be offset from the central axis of the ferrite cores 30a and 30b. .
이러한 구성으로, 양측의 회전자용 회전판(50a,50b)이 회전함에 따라 일측의 영구자석(60a)은 먼저 페라이트 코어의 일단부를 지나게 되고 그 다음으로, 타측의 영구자석(60b)이 페라이트 코어의 타단부를 지나게 되면서 양측의 회전판(50a,50b)의 회전에 따라 양측의 영구자석(60a,60b)과 페라이트 코어(30a,30b)와의 인력을 분산시켜 회전이 보다 용이하게 이루어지게 하여 발전효율을 향상시킬 수 있다. With this configuration, as the rotor plates 50a and 50b on both sides rotate, the permanent magnet 60a on one side first passes through one end of the ferrite core, and then the permanent magnet 60b on the other side passes through the other side of the ferrite core. As it passes through the end, the rotation of the rotating plates (50a, 50b) on both sides distributes the attraction between the permanent magnets (60a, 60b) and the ferrite cores (30a, 30b) on both sides to make rotation easier and improve power generation efficiency can make it
이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직할 실시 예와 관련하여 도시하고 또한 설명하였으나, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물도 본 발명의 범주에 속하는 것으로 간주되어야 할 것이다. In the above, the present invention has been shown and described in relation to preferred embodiments for illustrating the principles of the present invention, but the present invention is not limited to the configuration and operation as shown and described. Rather, those skilled in the art will appreciate that many changes and modifications to the present invention can be made without departing from the spirit and scope of the appended claims. Accordingly, all such appropriate changes and modifications and equivalents should be regarded as belonging to the scope of the present invention.
상기한 바와 같은 본 발명은 발전기 산업에 널리 이용될 수 있다. The present invention as described above can be widely used in the power generation industry.
10…고정판10... fixed plate
11…회전축 통과공11... axis through hole
12a…외측 고정공12a... external fixture
12b…내측 고정공12b... inner fixation hole
20…고정겸 간격유지수단20... Means for fixing and maintaining spacing
30a…외측 페라이트 코어30a... outer ferrite core
30b…외측 페라이트 코어30b... outer ferrite core
40a…제1권선코일40a... 1st winding coil
40b…제1권선코일40b... 1st winding coil
50…회전자용 회전판50... rotating plate for rotor
51…회전축51... axis of rotation
60…영구자석60... permanent magnet
70…단자판70... terminal board
80…전력제어부80... power control unit
90…회전력 발생수단90... Rotational force generating means
70…자석이동수단70... magnet moving means
71…가이드부71... guide department
72…전방 레일홈72... front rail groove
73…후방 레일홈73... rear rail groove
75…자석고정부75... magnet fixing part
76…결합로드76... combined rod
77…고정부재77... fixing member
80…자석이동 구동부80... Magnet moving drive unit
82…구동모터82... driving motor

Claims (1)

  1. 중심점에 회전축 통과공이 형성되고, 원주 상으로 복수의 페라이트 코어를 고정하기 위한 복수의 고정공이 형성되며, 평행한 상태로 결합된 한 쌍의 고정판;A rotation axis through hole is formed at the center point, a plurality of fixing holes are formed for fixing a plurality of ferrite cores on a circumference, and a pair of fixing plates coupled in a parallel state;
    봉 형상을 갖고 상기 페라이트 코어의 고정공에 각각 양단부가 끼워지는 형태로 상기 한 쌍의 고정판 사이에 고정 설치되는 복수의 페라이트 코어;A plurality of ferrite cores having a rod shape and fixedly installed between the pair of fixing plates in a form in which both ends are inserted into fixing holes of the ferrite core, respectively;
    상기 페라이트 코어의 외주면에 권취되고, 각각의 페라이트 코어를 통해 영구자석의 자기장이 통과될 때 발생되는 유도 기전력 또는 유도 전류를 각각 유기시켜 전력제어부로 전달하는 복수의 권선코일;A plurality of winding coils wound around the outer circumferential surface of the ferrite core and inducing induced electromotive force or induced current generated when the magnetic field of the permanent magnet passes through each of the ferrite cores and transferring the induced electromotive force to a power control unit;
    상기 한 쌍의 고정판의 외측에 각각 근접되게 배치된 상태에서 상기 회전축 통과공을 관통하는 형태로 설치된 회전축의 양단부에 각각 고정되어 상기 회전축과 함께 회전하는 한 쌍의 회전판;A pair of rotating plates fixed to both ends of a rotating shaft installed in a manner passing through the rotating shaft passing hole in a state of being disposed close to the outer side of the pair of fixed plates, respectively, and rotating together with the rotating shaft;
    상기 회전판의 내측에서 S극과 N극이 서로 반대방향을 갖도록 마주보는 형태를 갖도록 설치되며, 상기 복수의 페라이트 코어에 자기장을 제공하는 영구자석;permanent magnets installed inside the rotating plate so that S poles and N poles face each other so as to have opposite directions, and provide magnetic fields to the plurality of ferrite cores;
    상기 회전판에 구성되어 상기 영구자석의 위치를 이동시키도록 하는 자석이동수단;을 포함하며, It includes; a magnet moving means configured on the rotating plate to move the position of the permanent magnet;
    상기 고정판에는 소정 지름을 갖는 제1원주상으로 소정간격 이격되게 복수의 외측 고정공이 구성되고, 상기 복수의 외측 고정공의 내측으로 상기 제1원주상 보다 지름이 작은 제2원주상으로 소정간격 이격되게 복수의 내측 고정공이 구성되며, The fixing plate includes a plurality of outer fixing holes spaced apart at predetermined intervals on a first circumference having a predetermined diameter, and spaced apart at predetermined intervals on a second circumference having a smaller diameter than the first circumference on the inside of the plurality of outer fixing holes. A plurality of inner fixing holes are configured,
    상기 외측 고정공과 내측 고정공은 상기 고정판의 중심으로부터 외측방향을 따라 일직선 상에 배치되도록 구성되며, The outer fixing hole and the inner fixing hole are configured to be arranged on a straight line along an outward direction from the center of the fixing plate,
    상기 복수의 페라이트 코어는 상기 외측 고정공에 끼워져 고정설치되는 복수의 외측 페라이트 코어와, 상기 내측 고정공에 끼워져 고정설치되는 복수의 내측 페라이트 코어로 이루어지며, The plurality of ferrite cores are composed of a plurality of outer ferrite cores inserted into and fixedly installed in the outer fixing hole and a plurality of inner ferrite cores inserted into and fixedly installed in the inner fixing hole,
    상기 복수의 권선코일은 상기 외측 페라이트 코어에 권취되는 제1권선코일과, 상기 내측 페라이트 코어에 권취되는 제2권선코일을 포함하며, 상기 제1권선코일은 상기 제2권선코일에 비해 보다 많은 권선수를 갖도록 구성되어, 상기 영구자석이 상기 외측 페라이트 코어의 단부를 지날 때 발생되는 유기전류세기가 상기 내측 페라이트 코어의 단부를 지날 때 발생되는 유기전류세기보다 크도록 구성되며, The plurality of winding coils include a first winding coil wound around the outer ferrite core and a second winding coil wound around the inner ferrite core, wherein the first winding coil has more turns than the second winding coil. It is configured to have a bow, so that the induced current intensity generated when the permanent magnet passes through the end of the outer ferrite core is greater than the induced current intensity generated when the permanent magnet passes through the end of the inner ferrite core,
    상기 자석이동수단은 상기 영구자석을 상기 회전판의 중심에서 외측 방향을 따라 내외측으로 위치이동되도록 하여 상기 영구자석이 상기 회전판의 회전에 따라 회전하면서 상기 복수의 외측 페라이트 코어의 단부들을 순차적으로 지나게 하여 상기 제1권선코일을 통해 제1유기전류의 발생이 이루어지도록 하거나 상기 복수의 내측 페라이트 코어의 단부를 순차적으로 지나게 하여 상기 제2권선코일을 통해 제2유기전류의 발생이 이루어지도록 구성되는 것을 특징으로 하는 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치.The magnet moving means causes the permanent magnet to be moved inward and outward from the center of the rotary plate along an outward direction so that the permanent magnet rotates according to the rotation of the rotary plate and sequentially passes through the ends of the plurality of outer ferrite cores. Characterized in that the first induced current is generated through the first winding coil or the second induced current is generated through the second winding coil by sequentially passing the ends of the plurality of inner ferrite cores. A sequential independent power generation device with an organic current intensity selection function.
PCT/KR2022/015491 2021-10-15 2022-10-13 Sequential independent-generation-type power generation device having induced-current-strength selection function WO2023063742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0137576 2021-10-15
KR1020210137576A KR102449464B1 (en) 2021-10-15 2021-10-15 sequence power generation type generator with induced current strength selection function

Publications (1)

Publication Number Publication Date
WO2023063742A1 true WO2023063742A1 (en) 2023-04-20

Family

ID=83462032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015491 WO2023063742A1 (en) 2021-10-15 2022-10-13 Sequential independent-generation-type power generation device having induced-current-strength selection function

Country Status (2)

Country Link
KR (1) KR102449464B1 (en)
WO (1) WO2023063742A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449464B1 (en) * 2021-10-15 2022-09-29 이승권 sequence power generation type generator with induced current strength selection function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200253766Y1 (en) * 2001-07-31 2001-11-22 남왕기 Power generator
KR20080063747A (en) * 2005-08-12 2008-07-07 파워 그룹 인터내셔널 인코포레이티드 Self-regulated permanent magnet generator
CN102055257A (en) * 2009-10-30 2011-05-11 路易斯·J·芬克尔 Electric motor and/or generator with mechanically tuneable permanent magnetic field
KR101324546B1 (en) * 2013-05-22 2013-11-01 안종석 Time difference generator using balance of both poles
KR20160134160A (en) * 2015-05-15 2016-11-23 안종석 Winding device and circuit in power generator with parallel bipolar movement
KR102449464B1 (en) * 2021-10-15 2022-09-29 이승권 sequence power generation type generator with induced current strength selection function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200253766Y1 (en) * 2001-07-31 2001-11-22 남왕기 Power generator
KR20080063747A (en) * 2005-08-12 2008-07-07 파워 그룹 인터내셔널 인코포레이티드 Self-regulated permanent magnet generator
CN102055257A (en) * 2009-10-30 2011-05-11 路易斯·J·芬克尔 Electric motor and/or generator with mechanically tuneable permanent magnetic field
KR101324546B1 (en) * 2013-05-22 2013-11-01 안종석 Time difference generator using balance of both poles
KR20160134160A (en) * 2015-05-15 2016-11-23 안종석 Winding device and circuit in power generator with parallel bipolar movement
KR102449464B1 (en) * 2021-10-15 2022-09-29 이승권 sequence power generation type generator with induced current strength selection function

Also Published As

Publication number Publication date
KR102449464B1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2012026685A2 (en) Linear motor
WO2023063742A1 (en) Sequential independent-generation-type power generation device having induced-current-strength selection function
WO2009099300A2 (en) Electric motor
WO2016024777A1 (en) Washing machine
WO2011049298A2 (en) Linear motor
WO2016117751A1 (en) Magnetic body holding device
WO2020138583A1 (en) Axial motor including magnetic levitation rotation body
WO2019045341A1 (en) Improved multi-stage high-voltage generator having multiple coil stators
WO2023182750A1 (en) Battery clustering system using sequential independent power generation device having induced current strength selection function
WO2023182749A1 (en) Battery clustering system using power generation device configured to generate power successively and independently
WO2023239132A1 (en) Power generation device for generating power successively/independently having induced current intensity selecting function
WO2015190719A1 (en) Brushless motor
WO2023063740A1 (en) Power generation device with improved counter-electromotive force reduction efficiency
WO2014061908A1 (en) Double porosity-type power generator
WO2023146056A1 (en) Non-contact rotary transformer and motor comprising same
WO2023063741A1 (en) Magnetic force line flow control-type magnetic power generation device
WO2018117555A1 (en) Generator using two rotors capable of using rotating shaft or fixed shaft
WO2017217621A1 (en) Superconducting direct current induction heating device using magnetic field displacement
WO2023239135A1 (en) Magnetic generation device comprising load offset member
WO2018128487A1 (en) Driving machine combining motor and alternator
WO2022169029A1 (en) Magnet holder and magnetic drill comprising same
WO2015034255A1 (en) Time difference-based generator using balance of both poles
WO2010013895A2 (en) Electro-motive apparatus with rotary plate containing separated coil members and stationary plate containing separated magnetic members
WO2011049282A1 (en) Permanent magnet workholding device
WO2023022515A1 (en) Magnetic rotation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE