WO2022169029A1 - Magnet holder and magnetic drill comprising same - Google Patents

Magnet holder and magnetic drill comprising same Download PDF

Info

Publication number
WO2022169029A1
WO2022169029A1 PCT/KR2021/005394 KR2021005394W WO2022169029A1 WO 2022169029 A1 WO2022169029 A1 WO 2022169029A1 KR 2021005394 W KR2021005394 W KR 2021005394W WO 2022169029 A1 WO2022169029 A1 WO 2022169029A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
yoke
fixed
yokes
rotating
Prior art date
Application number
PCT/KR2021/005394
Other languages
French (fr)
Korean (ko)
Inventor
송노수
Original Assignee
주식회사 호산기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 호산기술 filed Critical 주식회사 호산기술
Priority to CN202180001225.7A priority Critical patent/CN115210039A/en
Priority to US17/325,739 priority patent/US20220241916A1/en
Priority to KR1020210081771A priority patent/KR20220111631A/en
Publication of WO2022169029A1 publication Critical patent/WO2022169029A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/02Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor driven by electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B1/00Devices for securing together, or preventing relative movement between, constructional elements or machine parts

Definitions

  • the present invention relates to a magnetic holder and a magnetic drill including the same.
  • a magnetic holder is a device for attaching an attachment target made of a magnetic material using magnetic force, and is used in various holding devices, machine tools, and the like.
  • This magnetic holder basically attaches a magnetic object to an attachment by using the strong magnetic force of a permanent magnet. do.
  • Patent Document 1 discloses a magnetic drill to which such a magnetic holder is applied.
  • a magnetic drill including a magnetic holder as in Patent Document 1 it is a manual type and has the advantage that no power is required to fix the drill, but it is inconvenient to use, and in particular, even when released, force must be applied due to residual magnetization. There is a problem of falling from the attachment target.
  • Patent Document 1
  • the present invention is to solve the problems of the prior art as described above, and an object of the present invention is to provide a magnetic holder that is easy to fasten and release, and which is easy to move even after release, and a magnetic drill including the same.
  • the present invention provides a magnetic holder and a portable magnetic drill as follows in order to achieve the above object.
  • the present invention in one embodiment a fixed permanent magnet extending in one direction; a rotatable permanent magnet extending in the one direction and having both ends rotatably fixed; first and second yokes covering both sides of the fixed permanent magnet and the rotating permanent magnet and extending in the vertical direction; and a coil wound around the first and second yokes, in a cross-section perpendicular to the one direction, the first yoke is in contact with the N pole of the fixed permanent magnet, and the second yoke is the fixed permanent magnet.
  • a magnetic holder in contact with the S pole and in which a coil, a rotating permanent magnet and a fixed permanent magnet are sequentially disposed along the first and second yokes from an attachment surface to which the first and second yokes are attached to an attachment object.
  • the first yoke and the second yoke include a groove to which the fixed permanent magnet is in close contact and a cover part surrounding the rotatable permanent magnet, and the rotatable permanent magnet includes a curved part and a straight part.
  • the cover portion may include a curved surface having a radius of curvature greater than a radius of the curved portion of the rotatable permanent magnet.
  • the radius of curvature of the curved surface of the cover is 0.1 to 0.6 mm larger than the maximum radius of the rotatable permanent magnet, and the radius of the radius of curvature of the curved surface of the cover is the same as the rotational center of the rotatable permanent magnet.
  • it may include an additional permanent magnet disposed at a position corresponding to the fixed permanent magnet or the rotating permanent magnet on the outer surface of each of the first and second yokes.
  • the thickness of the additional permanent magnet may be less than or equal to the winding thickness of the coil.
  • the first and second yokes include a permanent magnet yoke corresponding to the fixed permanent magnet and the rotating permanent magnet, and a coil unit yoke including an attachment surface from a portion on which the coil is wound, the permanent magnet
  • the magnet yoke and the coil unit yoke may have a separable structure.
  • the coil unit yoke may be configured to be separated and mounted to the permanent magnet yoke by a bolt fastened in a direction perpendicular to the attachment surface.
  • the rotational permanent magnet is disposed at positions corresponding to both end surfaces in the one direction, further comprising a bracket fixed to the first and second yokes, the bracket having a shaft mounted thereon, A groove is formed in the typical permanent magnet, so that the rotating permanent magnet can be rotatably fixed to the shaft of the bracket.
  • the present invention is a drill unit; the magnetic holder described above; and a power supply unit for providing power to the drill unit and the magnetic holder, wherein the power supply unit may include a rechargeable battery.
  • the present invention can provide a magnetic holder that is easy to fasten and disengage, and which is easy to move even after release, and a magnetic drill including the same.
  • FIG. 1 is a schematic diagram of a magnetic drill according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a magnetic holder according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a magnetic holder according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram showing the formation of a magnetic field in the magnetic holder of Fig. 4;
  • FIG. 6 is a cross-sectional view of a rotating permanent magnet of a magnetic holder according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a first yoke of a magnetic holder according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram showing the formation of a magnetic field in the magnetic holder of Fig. 8;
  • FIG. 10 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a magnetic drill according to an embodiment of the present invention is shown.
  • the magnetic drill (1) is a body with a handle; a drill part 10 connected to one side of the main body and provided with a motor for driving a drill, a gear, etc.; It includes a power supply unit 20 for providing power to the drill unit 10 and a magnetic holder 30 for fixing the main body to an attachment target.
  • the power supply unit 20 may include a rechargeable battery.
  • the magnetic holder 30 includes a fixed permanent magnet 31 , a rotating permanent magnet 32 , and a coil 35 (refer to FIG. 2 ) connected to the power supply unit 20 , and power supplied to the coil 35 . Depending on the direction, the magnetic holder 30 may or may not be operated. The configuration of the magnetic holder 30 will be described again in detail with reference to FIGS. 2 to 10 .
  • the magnetic holder 30 is switched on/off by electricity supply without the need for a person to rotate the handle. Therefore, the user's force is not required and the operation is easy.
  • power consumption can be reduced by switching operation/non-operation with an instantaneous current of about 0.3 to 0.5 seconds, so that the power supply unit 20 of limited capacity shared by the drill unit 10 and the magnetic holder 30 is used. It can be used more in the drill part 10, which can lead to an increase in the use time until charging.
  • the magnetic holder 30 when the magnetic holder 30 does not operate, there is no residual magnetism, so that the user can use the magnetic force due to the magnetic force in addition to the weight of the magnetic drill 1 or the weight of the attachment object when the magnetic drill 1 is moved or the attachment object is removed. This addition may not be necessary, which may reduce the user's workload.
  • FIG. 2 is a conceptual diagram of a magnetic holder 30 according to an embodiment of the present invention.
  • Figure 2 (a) shows a state when the magnetic holder 30 does not operate.
  • a fixed permanent magnet 31 extending in one direction
  • a rotatable permanent magnet extending in the one direction and having both ends rotatably fixed
  • first and second yokes (33, 34) covering both sides of the fixed permanent magnet (31) and the rotating type permanent magnet (32) and extending in the vertical direction
  • a coil (35) wound around the first and second yokes (33, 34) wherein, in a cross section perpendicular to the one direction, the first yoke (33) is the N pole of the fixed permanent magnet (31).
  • the second yoke 34 In contact with, the second yoke 34 is in contact with the S pole of the fixed permanent magnet 31, and the first and second yokes 33 and 34 are attached to the attachment surface (O) 37), a coil 35, a rotating permanent magnet 32 and a stationary permanent magnet 31 are arranged one after another along the first and second yokes 33, 34.
  • the magnetic flow is formed through the first and second yokes 33 and 34 in the stationary permanent magnet 31 and the rotating permanent magnet 32 during non-operation. Since no current flows in the coil 35 , the rotating permanent magnet 32 is rotated so that the S pole faces the first yoke 33 and the N pole faces the second yoke 34 .
  • the rotational permanent magnet 32 rotates by applying a current to the coil so that the upper portion of the coil 35 of the first yoke 33 becomes the S pole and the upper portion of the coil 35 of the second yoke 34 becomes the N pole.
  • the rotating permanent magnet 32 rotates, and when current application is blocked in this state, the magnetic field flow is formed to pass through the attachment surface 37 as shown in FIG. 2(b).
  • the N poles of the fixed permanent magnet 31 and the rotating permanent magnet 32 are disposed toward the first yoke 33 , and the fixed permanent magnet 31 and the rotating permanent magnet 32 are directed toward the second yoke 34 . ) of the S pole is arranged.
  • the magnetic holder 1 Since the magnetic holder 1 is sufficient to use power only momentarily, it is possible to improve user convenience without burdening the rechargeable battery.
  • the user manually rotated the rotating magnet of the permanent magnet to fix it after moving it, but it was difficult to use an external power source, so a mechanical structure was used as in the prior art, It is effective to use power only momentarily when passing through the coil 35 , and it is also useful in that it does not require a separate user's effort for rotation.
  • the curvature of the curved surfaces formed in the first and second yokes 33 and 34 is greater than the maximum radius of the rotating permanent magnet 32 so that the rotational permanent magnet 32 can rotate smoothly due to the coil 35 .
  • a gap is formed between the rotating permanent magnet 32 and the curved surface.
  • the gap acts as a resistance element in the magnetic force transmission, the gap is preferably in the range of 0.1 to 0.6 mm.
  • FIG 3 is a perspective view of a magnetic holder 30 according to an embodiment of the present invention.
  • the magnetic holder 30 has a first yoke 33 and a second yoke 34 disposed on the side thereof, and a permanent magnet 31 fixed to the first yoke 33 and the second yoke 34 . ) are arranged consecutively in a plurality along the longitudinal direction or arranged as one piece.
  • a rotating permanent magnet 32 is disposed directly below the fixed permanent magnet 31 .
  • the rotating permanent magnet 32 is formed in one piece.
  • Brackets 36 for rotatably supporting the rotatable permanent magnet 32 are disposed at both ends of the rotatable permanent magnet 32 in the longitudinal direction.
  • the bracket 36 is bolted to the first and second yokes 33 and 34 , and a groove 36a and a bearing 36b are disposed at positions corresponding to the rotational axis of the rotating permanent magnet 32 .
  • a rotating shaft may be inserted into the center of both ends of the rotating permanent magnet 32 , and the rotating shaft is inserted into the bearing 36b so that the rotating permanent magnet 32 is disposed between the first and second yokes 33 and 34 . can be rotated.
  • the fixed permanent magnet 31 and the rotating permanent magnet 32 are arranged adjacent to each other, and are arranged close to each other within the limit not interfering with the rotation of the rotating permanent magnet 32 .
  • the coil 35 is disposed below the rotating permanent magnet 32 .
  • the first yoke 33 and the second yoke 34 are not formed as a single piece, but may be configured separately from a portion on which the coil 35 is wound, as shown in FIG. 7 to be described later.
  • FIG. 4 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention is disclosed
  • FIG. 5 is a schematic diagram showing the formation of a magnetic field of the magnetic holder of FIG. 4
  • FIG. 6 is a cross-sectional view of a rotating permanent magnet is shown.
  • the fixed permanent magnet 31 has a rectangular parallelepiped shape, and the rotating permanent magnet 32 is positioned between a pair of curved portions 32a having a constant radius of curvature and the coplanar portion 32a. It includes a flat portion (32b), and is provided with a rotation groove (32c) into which the rotation shaft is inserted at both ends.
  • the rotating groove (32c) it is possible to be provided at both ends, and it is also possible to be composed of a single groove that completely penetrates the rotating permanent magnet (32).
  • the permanent magnet yoke 33a is a surface facing the second yoke 34, and a groove 33c into which the fixed permanent magnet is fitted is formed, and the curved surface of the rotating permanent magnet 32 is formed underneath it. and a cover portion 33d covering the portion 32a.
  • the upper and lower edges of the cover part 33d protrude from the groove 33c, and the central part is located further inside the groove 33c.
  • the cover portion 33d is formed with a curved surface 33e between upper and lower edges, and the curved surface 33e has a greater radius of curvature R than the radius r of the curved portion 32a of the rotating permanent magnet 32 .
  • the radius of curvature R of the cover portion 33d may be 0.1 to 0.6 mm greater than the radius r of the rotating permanent magnet 32 .
  • the center of the radius r of the rotating permanent magnet 32 and the center of the radius of curvature R of the cover part 33d coincide with each other.
  • the magnetic field formed by the rotating permanent magnet 32 and the fixed permanent magnet 31 hardly flows to the object.
  • FIG. 7 is a cross-sectional view of the first yoke 33 of the magnetic holder 30 according to an embodiment of the present invention.
  • the first yoke 33 includes a permanent magnet yoke 33a and a coil unit yoke 33b.
  • the permanent magnet yoke 33a and the coil unit yoke 33b have a structure that can be coupled/separated by the bolt 35a, which facilitates disassembly and assembly during manufacturing and repair.
  • there is no room for failure in the case of the permanent magnet but in the case of the coil 35, problems such as disconnection may occur depending on use.
  • the present invention by arranging the coil 35 in the first and second yokes 33 and 34 at a position adjacent to the attachment surface 37, and applying a separable structure, workability is improved.
  • guide plates 35b may be disposed on the coil part yoke 33b and above/under the coil 35 on which the coil 35 is wound.
  • the magnetic holder 30 includes a fixed permanent magnet 31, a rotating permanent magnet 32, first and second yokes 33 and 34, and a rotating permanent magnet 32 and first and second yokes. (33, 34) is made by a complex correlation such as an air gap, it is difficult to analyze which configuration and how to combine in order to reduce the residual magnetism, and it is very difficult to further reduce the residual magnetism.
  • Figs. 8 and 9 schematically show a cross-sectional view of the magnetic holder and a magnetic field formed in the magnetic holder.
  • the structure of the fixed permanent magnet 31, the rotating permanent magnet 32, the first yoke 33, the second yoke 34 and the coil 35 in the magnetic holder 30 of FIG. is the same as the structure of the magnetic holder 30 of FIG. 4, and thus a detailed description thereof will be omitted.
  • additional permanent magnets 36 are respectively disposed at a height corresponding to the rotational permanent magnets 32 on the outer surfaces of the first and second yokes 34 .
  • the additional permanent magnets 36 have a thinner thickness than the fixed permanent magnets 31 , and each of the additional permanent magnets 36 is disposed to face the same polarity as the fixed permanent magnets 31 in a plan view. That is, the additional permanent magnets 36 are disposed to face the poles different from those of the rotational permanent magnets 32 .
  • the residual magnetism is not transmitted to the attachment target, so the user does not have any difficulty in moving the machine after the operation is finished, and the magnetic need to repeat fast and precise attachment and detachment. It is more useful in drilling equipment.
  • the thickness of the additional permanent magnet 36 may be formed to correspond to or thinner than the winding thickness of the coil 35, which increases the volume due to the additional permanent magnet 36 when the case 37 is covered. may not bring
  • the additional permanent magnet (36) is a first of a magnetic holder (30) having a stationary permanent magnet (31), a rotating permanent magnet (32), a first yoke (33), a second yoke (34) and a coil (35). And since it can be attached to the outside of the structure of the second yoke (33, 34), it is possible to design the maximum magnetic force by the basic structure except for the additional permanent magnet (36), and to remove the residual magnetism with the additional permanent magnet (36) do.
  • FIG. 10 shows a modified example of the magnetic holder of the embodiment of FIG. 8 .
  • the structures of the fixed permanent magnet 31, the rotating permanent magnet 32, the first yoke 33, the second yoke 34 and the coil 35 are shown in FIG. 8 and the magnetic holder 30 of FIG. is substantially the same as the structure of
  • the first yoke 33 and the second yoke 34 have a separate coil winding part, which is the same as the embodiment of FIG. 7, and the positions of the additional permanent magnets 36 are the first and second yokes ( Additional permanent magnets 36 are respectively disposed at a height corresponding to the fixed permanent magnets 31 on the outer surface of the 34 .
  • the additional permanent magnets 36 have a thinner thickness than the fixed permanent magnets 31 , and the additional permanent magnets 36 have the same polarity as the fixed permanent magnets 31 and are disposed to face each other.
  • the first and second yokes 33 and 34 having the same cross section as in FIG. 7 , the rotating permanent magnet 32 having the same cross section as the cross section of FIG. 6 and having a volume of about 43,000 mm 3 , and about 36,000 mm 3 .
  • An experiment was conducted with a magnetic holder 30 having a fixed permanent magnet 31 having a volume of .
  • this magnetic holder 30 the difference in the attraction force due to the gap between the curved surface portion 32a of the rotating permanent magnet 32 and the curved surface 33e of the cover portion 33d is summarized in Table 1, Rotational torque due to the gap, magnetic force, torque reduction rate, and magnetic force reduction rate are summarized.
  • the above experimental results, ie, rotational torque and magnetic force may be changed according to the size/shape of the yoke and permanent magnet to be tested, but the tendency of the torque reduction rate and magnetic force reduction rate according to the interval is maintained.
  • the magnetic force was 8,992N when there was an upper and lower edge protruding from the groove 33c in the cover part 33d having an interval of 0.6mm, but 8,362N when there was no upper and lower edge, 7% when the edge was missing A degree of magnetic force reduction occurred.
  • the first and second yokes 33 and 34 having the same cross section as in FIG. 7 , the rotating permanent magnet 32 having the same cross section as the cross section of FIG. 6 and having a volume of about 48,000 mm 3 , and about 44,000 mm 3 .
  • An additional permanent magnet 36 was attached to the magnetic holder 30 having a fixed permanent magnet 31 having a volume of , and the thickness of the additional permanent magnet 36 was changed.
  • the magnet grades of the stationary permanent magnet 31, the rotating permanent magnet 32 and the additional permanent magnet 36 were the same as Nd50.
  • the additional permanent magnets 36 were 13.5 mm wide and 50 mm long, and were attached two each on each side, and the experiment was conducted while only changing the thickness.
  • the residual magnetism can be reduced, so that the yokes 33 and 34 and the permanent magnet ( 31, 32) is easy to design.
  • it is expected to be more advantageous for actual products in that it can respond to changes in magnetic force due to manufacturing tolerances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnets (AREA)
  • Drilling And Boring (AREA)

Abstract

The present invention provides a magnet holder which can be moved easily even after release. Provided in one embodiment is the magnet holder comprising: a fixed-type permanent magnet extended in one direction; a rotating-type permanent magnet extended in the one direction and having both ends rotatably fixed; a first yoke and a second yoke covering both lateral surfaces of the fixed-type permanent magnet and the rotating-type permanent magnet, and extended in the vertical direction; and coils which are respectively wound around the first and second yokes. On a cross-section perpendicular to the one direction, the first yoke comes into contact with the N pole of the fixed-type permanent magnet, the second yoke comes into contact with the S pole of the fixed-type permanent magnet, and the coils, the rotating-type permanent magnet and the fixed-type permanent magnet are positioned consecutively along the first and second yokes from an attachment surface of an object to be attached to which the first and second yokes are attached.

Description

자기 홀더 및 이를 포함하는 마그네틱 드릴Magnetic holder and magnetic drill including same
본 발명은 자기 홀더 및 이를 포함하는 마그네틱 드릴에 대한 것이다.The present invention relates to a magnetic holder and a magnetic drill including the same.
자기 홀더(magnet holder)는 자성 물질로 구성된 부착대상을 자기력을 이용하여 부착시키는 장치로, 각종 홀딩장치, 공작 기계 등에 사용되고 있다. A magnetic holder is a device for attaching an attachment target made of a magnetic material using magnetic force, and is used in various holding devices, machine tools, and the like.
이러한 자기 홀더는 기본적으로는 영구 자석의 강한 자기력을 이용하여 자성체인 부착대상을 부착시키는 것으로, 부착대상에 자기 흐름이 형성되는 경우에 부착되고, 부착대상에 자기 흐름이 형성되지 않는 경우에 해제되게 된다. This magnetic holder basically attaches a magnetic object to an attachment by using the strong magnetic force of a permanent magnet. do.
특허문헌 1 에는 이러한 자기 홀더가 적용된 마그네틱 드릴이 개시되어 있다. 특허문헌 1 과 같은 자기 홀더를 포함하는 마그네틱 드릴의 경우에 수동형으로, 드릴의 고정에 전원 사용이 필요없다는 장점이 있지만, 사용이 불편하며, 특히 해제를 한 경우에도 잔류자화로 인하여 힘을 가해야지만 부착대상으로부터 떨어진다는 문제가 있다. Patent Document 1 discloses a magnetic drill to which such a magnetic holder is applied. In the case of a magnetic drill including a magnetic holder as in Patent Document 1, it is a manual type and has the advantage that no power is required to fix the drill, but it is inconvenient to use, and in particular, even when released, force must be applied due to residual magnetization. There is a problem of falling from the attachment target.
특허문헌 1 Patent Document 1
US 9,452,521 B2(2016.9.27 공고)US 9,452,521 B2 (2016.9.27 Announcement)
본 발명은 위와 같은 종래 기술의 문제를 해결하기 위한 것으로, 체결과 해제가 용이하며, 해제 후에도 이동이 용이한 자기 홀더 및 이를 포함하는 마그네틱 드릴을 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, and an object of the present invention is to provide a magnetic holder that is easy to fasten and release, and which is easy to move even after release, and a magnetic drill including the same.
본 발명은 위와 같은 목적을 달성하기 위하여 다음과 같은 자기 홀더 및 휴대용 마그네틱 드릴을 제공한다. The present invention provides a magnetic holder and a portable magnetic drill as follows in order to achieve the above object.
본 발명은 일실시예에서 일방향으로 연장된 고정형 영구자석; 상기 일방향으로 연장되며, 양단이 회전 가능하게 고정된 회전형 영구자석; 상기 고정형 영구자석과 상기 회전형 영구자석의 양측면을 커버하며, 상하 방향으로 연장 형성된 제 1 요크 및 제 2 요크; 및 상기 제 1 및 제 2 요크에 감겨진 코일을 포함하며, 상기 일방향에 수직한 단면상에서, 상기 제 1 요크는 상기 고정형 영구자석의 N극에 접촉하며, 상기 제 2 요크는 상기 고정형 영구자석의 S극에 접촉하며, 상기 제 1 및 제 2 요크가 부착대상에 부착되는 부착면으로부터 코일, 회전형 영구자석 및 고정형 영구자석이 상기 제 1 및 제 2 요크를 따라서 연이어 배치되는 자기 홀더를 제공한다. The present invention in one embodiment a fixed permanent magnet extending in one direction; a rotatable permanent magnet extending in the one direction and having both ends rotatably fixed; first and second yokes covering both sides of the fixed permanent magnet and the rotating permanent magnet and extending in the vertical direction; and a coil wound around the first and second yokes, in a cross-section perpendicular to the one direction, the first yoke is in contact with the N pole of the fixed permanent magnet, and the second yoke is the fixed permanent magnet. Provided is a magnetic holder in contact with the S pole and in which a coil, a rotating permanent magnet and a fixed permanent magnet are sequentially disposed along the first and second yokes from an attachment surface to which the first and second yokes are attached to an attachment object. .
일실시예에서, 상기 제 1 요크 및 제 2 요크는 상기 고정형 영구자석이 밀착하는 홈 및 상기 회전형 영구자석을 감싸는 커버부를 포함하며, 상기 회전형 영구자석은 곡면부와 직선부를 포함하고. 상기 커버부는 상기 회전형 영구자석의 곡면부의 반경보다 큰 곡률 반경을 가지는 곡면을 포함할 수 있다. In one embodiment, the first yoke and the second yoke include a groove to which the fixed permanent magnet is in close contact and a cover part surrounding the rotatable permanent magnet, and the rotatable permanent magnet includes a curved part and a straight part. The cover portion may include a curved surface having a radius of curvature greater than a radius of the curved portion of the rotatable permanent magnet.
일실시예에서, 상기 커버부 곡면의 곡률 반경은 상기 회전형 영구자석의 최대 반경보다 0.1 ~ 0.6 mm 크며, 상기 커버부 곡면의 곡률 반경의 반경 중심은 상기 회전형 영구자석의 회전 중심과 동일할 수 있다. In one embodiment, the radius of curvature of the curved surface of the cover is 0.1 to 0.6 mm larger than the maximum radius of the rotatable permanent magnet, and the radius of the radius of curvature of the curved surface of the cover is the same as the rotational center of the rotatable permanent magnet. can
일실시예에서, 상기 제 1 및 제 2 요크 각각의 외측면에서 상기 고정형 영구자석 혹은 회전형 영구자석에 대응되는 위치에 배치되는 추가 영구자석을 포함할 수 있다.In one embodiment, it may include an additional permanent magnet disposed at a position corresponding to the fixed permanent magnet or the rotating permanent magnet on the outer surface of each of the first and second yokes.
일실시예에서, 상기 추가 영구자석의 두께는 상기 코일의 권취 두께 이하일 수 있다.In one embodiment, the thickness of the additional permanent magnet may be less than or equal to the winding thickness of the coil.
일실시예에서, 상기 제 1 및 제 2 요크는 상기 고정형 영구자석 및 회전형 영구자석에 대응되는 영구자석 요크와 상기 코일이 감겨진 부분으로부터 부착면을 포함하는 코일부 요크를 포함하며, 상기 영구자석 요크와 상기 코일부 요크는 분리 가능한 구조일 수 있다. 이때, 상기 코일부 요크는 상기 부착면에 수직한 방향으로 체결되는 볼트에 의해서 상기 영구자석 요크에 분리 및 장착되게 구성될 수 있다. In one embodiment, the first and second yokes include a permanent magnet yoke corresponding to the fixed permanent magnet and the rotating permanent magnet, and a coil unit yoke including an attachment surface from a portion on which the coil is wound, the permanent magnet The magnet yoke and the coil unit yoke may have a separable structure. In this case, the coil unit yoke may be configured to be separated and mounted to the permanent magnet yoke by a bolt fastened in a direction perpendicular to the attachment surface.
일실시예에서, 상기 회전형 영구자석의 상기 일방향의 양단부면에 대응되는 위치에 배치되며, 상기 제 1 및 제 2 요크에 고정되는 브라켓을 더 포함하며, 상기 브라켓에는 축이 장착되며, 상기 회전형 영구자석에는 홈이 형성되어, 상기 회전형 영구자석이 상기 브라켓의 축에 회전가능하게 고정될 수 있다. In one embodiment, the rotational permanent magnet is disposed at positions corresponding to both end surfaces in the one direction, further comprising a bracket fixed to the first and second yokes, the bracket having a shaft mounted thereon, A groove is formed in the typical permanent magnet, so that the rotating permanent magnet can be rotatably fixed to the shaft of the bracket.
본 발명은 드릴 유닛; 상술한 자기 홀더; 및 상기 드릴 유닛 및 상기 자기 홀더로 전원을 제공하는 전원부;를 포함하며, 상기 전원부는 충전 가능한 베터리를 포함할 수 있다.The present invention is a drill unit; the magnetic holder described above; and a power supply unit for providing power to the drill unit and the magnetic holder, wherein the power supply unit may include a rechargeable battery.
본 발명은 체결과 해제가 용이하며, 해제 후에도 이동이 용이한 자기 홀더 및 이를 포함하는 마그네틱 드릴을 제공할 수 있다. The present invention can provide a magnetic holder that is easy to fasten and disengage, and which is easy to move even after release, and a magnetic drill including the same.
도 1 은 본 발명의 일실시예에 따른 마그네틱 드릴의 개략도이다. 1 is a schematic diagram of a magnetic drill according to an embodiment of the present invention.
도 2 는 본 발명의 일실시예에 따른 자기 홀더의 개념도이다. 2 is a conceptual diagram of a magnetic holder according to an embodiment of the present invention.
도 3 은 본 발명의 일실시예에 따른 자기 홀더의 사시도이다. 3 is a perspective view of a magnetic holder according to an embodiment of the present invention.
도 4 는 본 발명의 일실시예에 따른 자기 홀더의 단면도이다.4 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention.
도 5 는 도 4 의 자기 홀더에서 자기장의 형성을 보이는 개략도이다.Fig. 5 is a schematic diagram showing the formation of a magnetic field in the magnetic holder of Fig. 4;
도 6 은 본 발명의 일실시예에 따른 자기 홀더의 회전형 영구자석의 단면도이다.6 is a cross-sectional view of a rotating permanent magnet of a magnetic holder according to an embodiment of the present invention.
도 7 은 본 발명의 일실시예에 따른 자기 홀더의 제 1 요크의 단면도이다. 7 is a cross-sectional view of a first yoke of a magnetic holder according to an embodiment of the present invention.
도 8 은 본 발명의 일실시예에 따른 자기 홀더의 단면도이다. 8 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention.
도 9 는 도 8 의 자기 홀더에서 자기장의 형성을 보이는 개략도이다. Fig. 9 is a schematic diagram showing the formation of a magnetic field in the magnetic holder of Fig. 8;
도 10 은 본 발명의 일실시예에 따른 자기 홀더의 단면도이다.10 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention.
이하에서는 첨부된 도면을 참고로 하여 본 발명의 구체적일 실시예를 중심으로 설명하도록 한다. Hereinafter, a specific embodiment of the present invention will be mainly described with reference to the accompanying drawings.
도 1 에는 본 발명의 일실시예에 따른 마그네틱 드릴의 개략도가 도시되어 있다. 1 is a schematic diagram of a magnetic drill according to an embodiment of the present invention is shown.
도 1 에서 보이듯이, 마그네틱 드릴(1)은 손잡이가 달린 본체; 상기 본체의 일측에 연결되며, 드릴을 구동시키는 모터, 기어등이 구비된 드릴부(10); 상기 드릴부(10)에 전원을 제공하는 전원부(20) 및 상기 본체를 부착대상에 고정시키는 자기 홀더(30)를 포함한다. As shown in Figure 1, the magnetic drill (1) is a body with a handle; a drill part 10 connected to one side of the main body and provided with a motor for driving a drill, a gear, etc.; It includes a power supply unit 20 for providing power to the drill unit 10 and a magnetic holder 30 for fixing the main body to an attachment target.
드릴부(10)의 경우에 종래의 마그네틱 드릴(1)과 차이가 없으므로, 상세한 설명은 생략하며, 전원부(20)의 경우에 충전 가능한 베터리를 포함할 수 있다. In the case of the drill unit 10 , since there is no difference from the conventional magnetic drill 1 , a detailed description is omitted, and the power supply unit 20 may include a rechargeable battery.
자기 홀더(30)의 경우에 고정형 영구자석(31), 회전형 영구자석(32) 및 상기 전원부(20)와 연결된 코일(35; 도 2 참고)을 포함하며, 코일(35)로 공급되는 전원 방향에 따라서 자기 홀더(30)가 동작되거나, 동작되지 않을 수 있다. 자기 홀더(30)의 구성은 도 2 내지 10 의 설명에서 다시 자세히 설명하도록 한다. The magnetic holder 30 includes a fixed permanent magnet 31 , a rotating permanent magnet 32 , and a coil 35 (refer to FIG. 2 ) connected to the power supply unit 20 , and power supplied to the coil 35 . Depending on the direction, the magnetic holder 30 may or may not be operated. The configuration of the magnetic holder 30 will be described again in detail with reference to FIGS. 2 to 10 .
이 실시예에서, 자기 홀더(30)는 동작/비동작의 전환이 사람이 핸들을 회전시킬 필요 없이 전기 공급에 의해서 이루어진다. 따라서, 사용자의 힘이 필요하지 않아서 조작이 용이하다. 또한, 0.3 ~ 0.5초 정도의 순간적인 전류로 동작/비동작 전환을 함으로써 전원의 소비가 작아질 수 있어서, 드릴부(10)와 자기 홀더(30)가 공유하는 제한된 용량의 전원부(20)를 드릴부(10)에 좀 더 사용할 수 있으며, 이는 충전까지의 사용 시간의 증대를 가져올 수 있다. In this embodiment, the magnetic holder 30 is switched on/off by electricity supply without the need for a person to rotate the handle. Therefore, the user's force is not required and the operation is easy. In addition, power consumption can be reduced by switching operation/non-operation with an instantaneous current of about 0.3 to 0.5 seconds, so that the power supply unit 20 of limited capacity shared by the drill unit 10 and the magnetic holder 30 is used. It can be used more in the drill part 10, which can lead to an increase in the use time until charging.
또한 간단한 구조 및 분해 조립이 용이한 구조를 사용하므로, 수리 혹은 조립이 용이하며, 차지하는 공간이 작아서 마그네틱 드릴(1)을 컴팩트하게 하는 것이 가능하다. In addition, since it uses a simple structure and a structure that is easy to disassemble and assemble, it is easy to repair or assemble, and it is possible to make the magnetic drill 1 compact because the space it occupies is small.
나아가, 자기 홀더(30)가 비동작할 때, 잔류 자기가 없어서 사용자는 마그네틱 드릴(1)의 이동시에 혹은 부착대상 제거시에 마그네틱 드릴(1)의 무게 혹은 부착대상의 무게 외에 자기력으로 인한 힘이 추가로 필요하지 않을 수 있으며, 이는 사용자의 작업 부하를 감소시킬 수 있다. Furthermore, when the magnetic holder 30 does not operate, there is no residual magnetism, so that the user can use the magnetic force due to the magnetic force in addition to the weight of the magnetic drill 1 or the weight of the attachment object when the magnetic drill 1 is moved or the attachment object is removed. This addition may not be necessary, which may reduce the user's workload.
도 2 에는 본 발명의 일실시예에 따른 자기 홀더(30)의 개념도가 도시되어 있다.2 is a conceptual diagram of a magnetic holder 30 according to an embodiment of the present invention.
도 2 (a) 에는 자기 홀더(30)가 동작하지 않을 때의 모습이 도시되어 있다. 본 발명의 자기 홀더(30)의 경우에, 일방향으로 연장된 고정형 영구자석(31); 상기 일방향으로 연장되며, 양단이 회전 가능하게 고정된 회전형 영구자석(32); 상기 고정형 영구자석(31)과 상기 회전형 영구자석(32)의 양측면을 커버하며, 상하 방향으로 연장 형성된 제 1 요크 및 제 2 요크(33, 34); 및 상기 제 1 및 제 2 요크(33, 34)에 감겨진 코일(35)을 포함하며, 상기 일방향에 수직한 단면상에서, 상기 제 1 요크(33)는 상기 고정형 영구자석(31)의 N극에 접촉하며, 상기 제 2 요크(34)는 상기 고정형 영구자석(31)의 S극에 접촉하며, 상기 제 1 및 제 2 요크(33, 34)가 부착대상(O)에 부착되는 부착면(37)으로부터 코일(35), 회전형 영구자석(32) 및 고정형 영구자석(31)이 상기 제 1 및 제 2 요크(33, 34)를 따라서 연이어 배치된다. Figure 2 (a) shows a state when the magnetic holder 30 does not operate. In the case of the magnetic holder 30 of the present invention, a fixed permanent magnet 31 extending in one direction; a rotatable permanent magnet extending in the one direction and having both ends rotatably fixed; first and second yokes (33, 34) covering both sides of the fixed permanent magnet (31) and the rotating type permanent magnet (32) and extending in the vertical direction; and a coil (35) wound around the first and second yokes (33, 34), wherein, in a cross section perpendicular to the one direction, the first yoke (33) is the N pole of the fixed permanent magnet (31). In contact with, the second yoke 34 is in contact with the S pole of the fixed permanent magnet 31, and the first and second yokes 33 and 34 are attached to the attachment surface (O) 37), a coil 35, a rotating permanent magnet 32 and a stationary permanent magnet 31 are arranged one after another along the first and second yokes 33, 34.
도 2(a)에서 보이듯이, 비동작시에 고정식 영구자석(31)과 회전식 영구자석(32)은 제 1 요크 및 제 2 요크(33, 34)를 통하여 자기 흐름이 형성된다. 코일(35)에 전류가 흐르지 않으므로, 회전식 영구자석(32)은 S극이 제 1 요크(33)을 향하며, N극이 제 2 요크(34)를 향하게 회전된다.As shown in Fig. 2 (a), the magnetic flow is formed through the first and second yokes 33 and 34 in the stationary permanent magnet 31 and the rotating permanent magnet 32 during non-operation. Since no current flows in the coil 35 , the rotating permanent magnet 32 is rotated so that the S pole faces the first yoke 33 and the N pole faces the second yoke 34 .
비동작 상태에서 코일(35)에 전류를 인가하여 회전형 영구자석(32)을 회전시키는 것이 가능하다. 제 1 요크(33)의 코일(35)의 상부가 S극이 되도록, 제 2 요크(34)의 코일(35)의 상부가 N극이 되도록 코일에 전류를 회전형 영구자석(32)이 회전될 정도로 크게 인가하면, 회전형 영구자석(32)은 회전하며, 이 상태에서 전류 인가를 차단하면, 도 2(b)와 같이 자계 흐름이 부착면(37)을 통과하게 형성된다. 제 1 요크(33)를 향하여 고정형 영구자석(31) 및 회전형 영구자석(32)의 N극이 배치되며, 제 2 요크(34)를 향하여 고정형 영구자석(31) 및 회전형 영구자석(32)의 S극이 배치된다. It is possible to rotate the rotating permanent magnet 32 by applying a current to the coil 35 in the non-operational state. The rotational permanent magnet 32 rotates by applying a current to the coil so that the upper portion of the coil 35 of the first yoke 33 becomes the S pole and the upper portion of the coil 35 of the second yoke 34 becomes the N pole. When applied as large as possible, the rotating permanent magnet 32 rotates, and when current application is blocked in this state, the magnetic field flow is formed to pass through the attachment surface 37 as shown in FIG. 2(b). The N poles of the fixed permanent magnet 31 and the rotating permanent magnet 32 are disposed toward the first yoke 33 , and the fixed permanent magnet 31 and the rotating permanent magnet 32 are directed toward the second yoke 34 . ) of the S pole is arranged.
이러한 자기 홀더(1)는 순간적으로만 전원을 사용하면 충분하므로, 충전형 베터리에 부담을 주지 않으면서도 사용자의 편의성을 향상시킬 수 있다. Since the magnetic holder 1 is sufficient to use power only momentarily, it is possible to improve user convenience without burdening the rechargeable battery.
특히, 마그네틱 드릴(1)의 경우에 사용자가 들고 이동시킨 후 고정시키는 것으로 종래기술에서는 영구자석의 회전형 자석을 수동으로 회전시켰으나, 외부 전원을 사용하기 어려워서 종래기술과 같이 기계식 구조를 사용하였으나, 코일(35)을 통하는 경우에 순간적으로만 전원을 사용하는 것이어서 효과적이며, 회전을 위한 별도의 사용자의 노력이 필요 없다는 점에서도 유용하다. In particular, in the case of the magnetic drill (1), the user manually rotated the rotating magnet of the permanent magnet to fix it after moving it, but it was difficult to use an external power source, so a mechanical structure was used as in the prior art, It is effective to use power only momentarily when passing through the coil 35 , and it is also useful in that it does not require a separate user's effort for rotation.
또한, 코일(35)로 인하여 회전형 영구자석(32)의 회전이 원활할 수 있도록 상기 회전형 영구자석(32)의 최대 반경보다 제 1 및 제 2 요크(33, 34)에 형성된 곡면의 곡률 반경이 더 크게 형성하여, 회전형 영구자석(32)과 곡면 사이에 간극이 형성되게 한다. 자기력 전달에 있어서 간극은 자력 전달에 저항요소로 작용하므로, 상기 간극은 0.1~0.6 mm 사이의 범위인 것이 바람직하다. In addition, the curvature of the curved surfaces formed in the first and second yokes 33 and 34 is greater than the maximum radius of the rotating permanent magnet 32 so that the rotational permanent magnet 32 can rotate smoothly due to the coil 35 . By forming a larger radius, a gap is formed between the rotating permanent magnet 32 and the curved surface. In the magnetic force transmission, since the gap acts as a resistance element in the magnetic force transmission, the gap is preferably in the range of 0.1 to 0.6 mm.
도 3 에는 본 발명의 일실시예에 따른 자기 홀더(30)의 사시도가 도시되어 있다. 3 is a perspective view of a magnetic holder 30 according to an embodiment of the present invention.
도 3 에서 보이듯이, 자기 홀더(30)는 제 1 요크(33), 제 2 요크(34)가 측면에 배치되며, 제 1 요크(33)와 제 2 요크(34)에 고정형 영구자석(31)이 길이 방향을 따라서 복수 개 이어서 배치되거나 하나의 피스로 배치된다. 상기 고정형 영구자석(31)의 바로 아래에 회전형 영구자석(32)이 배치된다. 상기 회전형 영구자석(32)은 원피스로 형성되어 있다. As shown in FIG. 3 , the magnetic holder 30 has a first yoke 33 and a second yoke 34 disposed on the side thereof, and a permanent magnet 31 fixed to the first yoke 33 and the second yoke 34 . ) are arranged consecutively in a plurality along the longitudinal direction or arranged as one piece. A rotating permanent magnet 32 is disposed directly below the fixed permanent magnet 31 . The rotating permanent magnet 32 is formed in one piece.
회전형 영구자석(32)의 길이 방향 양 단부에는 회전형 영구자석(32)을 회전가능하게 지지하는 브라켓(36)이 배치된다. 브라켓(36)은 제 1 및 제 2 요크(33, 34)에 볼트 결합되며, 회전형 영구자석(32)의 회전축에 대응되는 위치에 홈(36a) 및 베어링(36b)이 배치된다. 회전형 영구자석(32)의 양단부 중심에 회전축이 삽입될 수 있으며, 상기 회전축이 상기 베어링(36b)에 끼워져 상기 회전형 영구자석(32)은 제 1 및 제 2 요크(33, 34) 사이에서 회전될 수 있다. 고정형 영구자석(31)과 회전형 영구자석(32)는 이웃하게 배치되며, 회전형 영구자석(32)의 회전에 간섭되지 않는 한도 내에서 가깝게 배치된다. Brackets 36 for rotatably supporting the rotatable permanent magnet 32 are disposed at both ends of the rotatable permanent magnet 32 in the longitudinal direction. The bracket 36 is bolted to the first and second yokes 33 and 34 , and a groove 36a and a bearing 36b are disposed at positions corresponding to the rotational axis of the rotating permanent magnet 32 . A rotating shaft may be inserted into the center of both ends of the rotating permanent magnet 32 , and the rotating shaft is inserted into the bearing 36b so that the rotating permanent magnet 32 is disposed between the first and second yokes 33 and 34 . can be rotated. The fixed permanent magnet 31 and the rotating permanent magnet 32 are arranged adjacent to each other, and are arranged close to each other within the limit not interfering with the rotation of the rotating permanent magnet 32 .
회전형 영구자석(32)보다 아래에 코일(35)이 배치된다. 제 1 요크(33)와 제 2 요크(34)는 하나의 피스로 형성되는 것은 아니며, 후술할 도 7 과 같이 상기 코일(35)이 권취되는 부분부터 분리되어 구성될 수 있다. The coil 35 is disposed below the rotating permanent magnet 32 . The first yoke 33 and the second yoke 34 are not formed as a single piece, but may be configured separately from a portion on which the coil 35 is wound, as shown in FIG. 7 to be described later.
도 4 에는 본 발명의 일실시예에 따른 자기 홀더의 단면도가 개시되어 있으며, 도 5 에는 도 4 의 자기 홀더의 자기장의 형성을 보이는 개략도가 도시되어 있으며, 도 6 에는 회전형 영구자석의 단면도가 도시되어 있다.4 is a cross-sectional view of a magnetic holder according to an embodiment of the present invention is disclosed, FIG. 5 is a schematic diagram showing the formation of a magnetic field of the magnetic holder of FIG. 4, and FIG. 6 is a cross-sectional view of a rotating permanent magnet is shown.
도 4 및 6 에서 보이듯이, 고정형 영구자석(31)은 직육면체 형상을 가지며, 회전형 영구자석(32)은 일정한 곡률 반경을 가지는 한쌍의 곡면부(32a)와 상기 공면부(32a) 사이에 위치하는 평면부(32b)를 포함하며, 양 단부에 회전축이 삽입되는 회전홈(32c)이 구비된다. 회전홈(32c)의 경우에 양단부에 구비되는 것도 가능하며, 회전형 영구자석(32)을 완전히 관통하는 하나의 홈으로 구성되는 것도 가능하다. 4 and 6, the fixed permanent magnet 31 has a rectangular parallelepiped shape, and the rotating permanent magnet 32 is positioned between a pair of curved portions 32a having a constant radius of curvature and the coplanar portion 32a. It includes a flat portion (32b), and is provided with a rotation groove (32c) into which the rotation shaft is inserted at both ends. In the case of the rotating groove (32c), it is possible to be provided at both ends, and it is also possible to be composed of a single groove that completely penetrates the rotating permanent magnet (32).
제 1 요크(33)에서 영구자석 요크(33a)는 제 2 요크(34)를 향한 면으로 고정형 영구자석이 끼워지는 홈(33c)이 형성되며, 그 밑으로 회전형 영구자석(32)의 곡면부(32a)를 커버하는 커버부(33d)를 포함한다. 커버부(33d)의 상하 에지는 상기 홈(33c)보다 돌출되며, 중앙부는 상기 홈(33c)보다 더 안쪽에 위치한다. 상기 커버부(33d)는 상하 에지 사이가 곡면(33e)으로 형성되며, 상기 곡면(33e)은 상기 회전형 영구자석(32)의 곡면부(32a)의 반경(r)보다 큰 곡률 반경(R)을 가져, 상기 커버부(33d)의 곡률 반경(R)은 상기 회전형 영구자석(32)의 반경(r)보다 0.1~ 0.6 mm 클 수 있다. 회전형 영구자석(32)의 반경(r) 중심과, 커버부(33d)의 곡률 반경(R)의 중심을 서로 일치한다. In the first yoke 33, the permanent magnet yoke 33a is a surface facing the second yoke 34, and a groove 33c into which the fixed permanent magnet is fitted is formed, and the curved surface of the rotating permanent magnet 32 is formed underneath it. and a cover portion 33d covering the portion 32a. The upper and lower edges of the cover part 33d protrude from the groove 33c, and the central part is located further inside the groove 33c. The cover portion 33d is formed with a curved surface 33e between upper and lower edges, and the curved surface 33e has a greater radius of curvature R than the radius r of the curved portion 32a of the rotating permanent magnet 32 . ), the radius of curvature R of the cover portion 33d may be 0.1 to 0.6 mm greater than the radius r of the rotating permanent magnet 32 . The center of the radius r of the rotating permanent magnet 32 and the center of the radius of curvature R of the cover part 33d coincide with each other.
도 5 에서 보이듯이, 비동작시에는 자기 홀더(30)는 회전형 영구자석(32) 및 고정형 영구자석(31)에 의해서 형성되는 자기장이 대상물로는 거의 흐르지 않는다. As shown in FIG. 5 , in the magnetic holder 30 when not in operation, the magnetic field formed by the rotating permanent magnet 32 and the fixed permanent magnet 31 hardly flows to the object.
도 7 에는 본 발명의 일실시예에 따른 자기 홀더(30)의 제 1 요크(33)의 단면도가 도시되어 있다. 7 is a cross-sectional view of the first yoke 33 of the magnetic holder 30 according to an embodiment of the present invention.
도 7 에서 보이듯이 즉, 제 1 요크(33)는 영구자석 요크(33a)와 코일부 요크(33b)를 포함한다. 영구자석 요크(33a)와 코일부 요크(33b)는 볼트(35a)에 의해서 결합/분리될 수 있는 구조를 가지며, 이는 제작 및 수리 시에 분해 및 조립을 용이하게 한다. 특히, 영구자석의 경우에 고장의 여지가 없으나, 코일(35)의 경우에 사용에 따라서 단선 등의 문제가 발생될 수 있다. 본 발명은 제 1 및 제 2 요크(33, 34)에서 코일(35)을 부착면(37)에 인접위치에 배치하고, 분리형 구조를 적용함으로써, 작업성에 향상을 가져온다. As shown in FIG. 7 , that is, the first yoke 33 includes a permanent magnet yoke 33a and a coil unit yoke 33b. The permanent magnet yoke 33a and the coil unit yoke 33b have a structure that can be coupled/separated by the bolt 35a, which facilitates disassembly and assembly during manufacturing and repair. In particular, there is no room for failure in the case of the permanent magnet, but in the case of the coil 35, problems such as disconnection may occur depending on use. According to the present invention, by arranging the coil 35 in the first and second yokes 33 and 34 at a position adjacent to the attachment surface 37, and applying a separable structure, workability is improved.
도 7 에서 보이듯이, 코일부 요크(33b)에는 코일(35)이 권취되는 코일(35)의 상/하부에는 안내판(35b)가 배치되는 것도 가능하다. As shown in FIG. 7 , guide plates 35b may be disposed on the coil part yoke 33b and above/under the coil 35 on which the coil 35 is wound.
한편, 도 5 의 A 영역에서 보이듯이, 일부의 잔류자기가 부착대상에 전달되는 경우가 발생하며, 이는 작업이 종료된 후 기계를 이동시키는데 불편함을 주게 된다. 특히, 신속하고 정밀한 탈부착을 반복해야 하는 장치, 예를 들면 마그네틱 드릴에서는 이러한 잔류자기를 더 줄이는 것이 매우 중요하다. On the other hand, as shown in area A of FIG. 5 , some residual magnetism is transferred to the attachment target, which causes inconvenience in moving the machine after the operation is finished. In particular, it is very important to further reduce such residual magnetism in devices that require repeated fast and precise attachment and detachment, for example, a magnetic drill.
도 5 에서는 자기 홀더(30)가 고정형 영구자석(31), 회전형 영구자석(32), 제 1 및 제 2 요크(33, 34) 및 회전형 영구자석(32)과 제 1 및 제 2 요크(33, 34)와의 에어갭 등의 복잡한 상관 관계에 의해서 이루어지기 때문에, 잔류자기를 줄이기 위하여 어느 구성을 어떻게 조합해야 할 지 분석하는 것이 곤란하여, 잔류자기를 더 감소시키는 것이 매우 어렵다. 5, the magnetic holder 30 includes a fixed permanent magnet 31, a rotating permanent magnet 32, first and second yokes 33 and 34, and a rotating permanent magnet 32 and first and second yokes. (33, 34) is made by a complex correlation such as an air gap, it is difficult to analyze which configuration and how to combine in order to reduce the residual magnetism, and it is very difficult to further reduce the residual magnetism.
본 발명의 발명자는 잔류자기를 더욱 감소시키기 위하여 추가 영구자석을 부착하는 것을 개발하였으며, 도 8 및 9 에는 그에 따른 자기 홀더의 단면도 및 자기 홀더에 형성되는 자기장이 개략적으로 도시되어 있다. The inventor of the present invention has developed a method of attaching an additional permanent magnet to further reduce residual magnetism, and Figs. 8 and 9 schematically show a cross-sectional view of the magnetic holder and a magnetic field formed in the magnetic holder.
도 8 에서 보이듯이, 도 8 의 자기 홀더(30)에서 고정형 영구자석(31), 회전형 영구자석(32), 제 1 요크(33), 제 2 요크(34) 및 코일(35)의 구조는 도 4 의 자기 홀더(30)의 구조와 동일하므로 자세한 설명은 생략하도록 한다. As shown in FIG. 8, the structure of the fixed permanent magnet 31, the rotating permanent magnet 32, the first yoke 33, the second yoke 34 and the coil 35 in the magnetic holder 30 of FIG. is the same as the structure of the magnetic holder 30 of FIG. 4, and thus a detailed description thereof will be omitted.
다만, 도 8 의 자기 홀더(30)는 제 1 및 제 2 요크(34)의 외측면에서 상기 회전형 영구자석(32)에 대응되는 높이에 추가 영구자석(36)이 각각 배치된다. 추가 영구자석(36)은 고정형 영구자석(31)에 비하여 얇은 두께를 가지며, 각 추가 영구 자석(36)은 평면상에서 봤을 때, 고정형 영구자석(31)과 동일한 극성이 마주보게 배치된다. 즉, 추가 영구 자석(36)은 회전형 영구자석(32)과는 다른 극이 마주보게 배치된다. However, in the magnetic holder 30 of FIG. 8 , additional permanent magnets 36 are respectively disposed at a height corresponding to the rotational permanent magnets 32 on the outer surfaces of the first and second yokes 34 . The additional permanent magnets 36 have a thinner thickness than the fixed permanent magnets 31 , and each of the additional permanent magnets 36 is disposed to face the same polarity as the fixed permanent magnets 31 in a plan view. That is, the additional permanent magnets 36 are disposed to face the poles different from those of the rotational permanent magnets 32 .
추가 영구 자석(36)에 의해서 도 9 에서 보이듯이, 부착 대상으로 잔류자기가 전달되지 않으며, 따라서, 사용자는 작업이 종료된 후 기계를 이동시키는데 어려움이 없으며, 신속하고 정밀한 탈부착을 반복해야 하는 마그네틱 드릴 장치에서는 더욱 유용하다.As shown in FIG. 9 by the additional permanent magnet 36, the residual magnetism is not transmitted to the attachment target, so the user does not have any difficulty in moving the machine after the operation is finished, and the magnetic need to repeat fast and precise attachment and detachment. It is more useful in drilling equipment.
이러한 추가 영구자석(36)의 두께는 코일(35)의 권취 두께와 대응되게 혹은 더 얇게 형성될 수 있으며, 이는 케이스(37)가 씌워지는 경우에 추가 영구자석(36)으로 인한 부피 상의 증가를 가져오지 않을 수 있다. The thickness of the additional permanent magnet 36 may be formed to correspond to or thinner than the winding thickness of the coil 35, which increases the volume due to the additional permanent magnet 36 when the case 37 is covered. may not bring
추가 영구자석(36)은 고정형 영구자석(31), 회전형 영구자석(32), 제 1 요크(33), 제 2 요크(34) 및 코일(35)를 가지는 자기 홀더(30)의 제 1 및 제 2 요크(33, 34)의 구조 외부에 부착될 수 있으므로, 추가 영구자석(36)을 제외한 기본 구조에 의해서 자력 극대화를 설계하고, 추가 영구자석(36)으로 잔류자기 제거를 하는 것이 가능하다. The additional permanent magnet (36) is a first of a magnetic holder (30) having a stationary permanent magnet (31), a rotating permanent magnet (32), a first yoke (33), a second yoke (34) and a coil (35). And since it can be attached to the outside of the structure of the second yoke (33, 34), it is possible to design the maximum magnetic force by the basic structure except for the additional permanent magnet (36), and to remove the residual magnetism with the additional permanent magnet (36) do.
도 10 에는 도 8 의 실시예의 자기 홀더의 변형례가 도시되어 있다. 도 10 에서는 도 8 과 고정형 영구자석(31), 회전형 영구자석(32), 제 1 요크(33), 제 2 요크(34) 및 코일(35)의 구조는 도 4 의 자기 홀더(30)의 구조와 실질적으로 동일하다. FIG. 10 shows a modified example of the magnetic holder of the embodiment of FIG. 8 . In FIG. 10, the structures of the fixed permanent magnet 31, the rotating permanent magnet 32, the first yoke 33, the second yoke 34 and the coil 35 are shown in FIG. 8 and the magnetic holder 30 of FIG. is substantially the same as the structure of
도 10 에서는 제 1 요크(33) 및 제 2 요크(34)는 코일 권취부가 분리형으로 구성되는데 이는 도 7 의 실시예와 동일하며, 추가 영구자석(36)의 위치가 제 1 및 제 2 요크(34)의 외측면에서 상기 고정형 영구자석(31)에 대응되는 높이에 추가 영구자석(36)이 각각 배치된다. 도 8 과 동일하게 추가 영구자석(36)은 고정형 영구자석(31)에 비하여 얇은 두께를 가지며, 각 추가 영구 자석(36)은 고정형 영구자석(31)과 동일한 극성이 마주보게 배치된다. In FIG. 10, the first yoke 33 and the second yoke 34 have a separate coil winding part, which is the same as the embodiment of FIG. 7, and the positions of the additional permanent magnets 36 are the first and second yokes ( Additional permanent magnets 36 are respectively disposed at a height corresponding to the fixed permanent magnets 31 on the outer surface of the 34 . As in FIG. 8 , the additional permanent magnets 36 have a thinner thickness than the fixed permanent magnets 31 , and the additional permanent magnets 36 have the same polarity as the fixed permanent magnets 31 and are disposed to face each other.
도 10 의 경우에도 도 8 과 동일한 자기 흐름을 나타내어 부착 대상으로 잔류자기가 전달되지 않는다. Even in the case of FIG. 10 , the same magnetic flow as in FIG. 8 is exhibited, so that residual magnetism is not transmitted to the attachment target.
실시예1Example 1
도 7 과 동일한 형상의 단면을 가지는 제 1 및 제 2 요크(33, 34), 도 6 의 단면과 동일한 형상의 단면을 가지며 약 43,000㎣의 부피를 가지는 회전형 영구자석(32) 및 약 36,000㎣의 부피를 가지는 고정형 영구자석(31)를 가지는 자기 홀더(30)를 가지고 실험하였다. 이 자기 홀더(30)에서 회전형 영구자석(32)의 곡면부(32a)와 커버부(33d)의 곡면(33e) 사이의 간극으로 인한 흡착력의 차이가 표 1 에 정리되어 있으며, 표 2 에는 간극으로 인한 회전 토크, 및 자력, 토크 감소율, 자력 감소율이 정리되어 있다. 위와 같은 실험 결과, 즉, 회전 토크, 자력의 경우는 실험하는 요크와 영구자석의 크기/형상에 따라서 변화될 수 있으나, 간격에 따른 토크 감소율 및 자력 감소율의 변화 경향이 유지된다. The first and second yokes 33 and 34 having the same cross section as in FIG. 7 , the rotating permanent magnet 32 having the same cross section as the cross section of FIG. 6 and having a volume of about 43,000 mm 3 , and about 36,000 mm 3 . An experiment was conducted with a magnetic holder 30 having a fixed permanent magnet 31 having a volume of . In this magnetic holder 30, the difference in the attraction force due to the gap between the curved surface portion 32a of the rotating permanent magnet 32 and the curved surface 33e of the cover portion 33d is summarized in Table 1, Rotational torque due to the gap, magnetic force, torque reduction rate, and magnetic force reduction rate are summarized. The above experimental results, ie, rotational torque and magnetic force, may be changed according to the size/shape of the yoke and permanent magnet to be tested, but the tendency of the torque reduction rate and magnetic force reduction rate according to the interval is maintained.
간격(mm)Thickness (mm) 흡착력(N)Adsorption force (N)
동작movement 비동작non-moving
0.10.1 92569256 38.538.5
0.20.2 91509150 34.834.8
0.40.4 90239023 28.828.8
0.60.6 89928992 23.623.6
0.80.8 87858785 21.021.0
1.01.0 85568556 18.118.1
간격(mm)Thickness (mm) 회전토크(Nm)Rotational torque (Nm) 토크 비율
(측정 회전토크 /간격이 0mm일 때 회전토크)
torque ratio
(Measured rotational torque / rotational torque when the interval is 0mm)
자력(N)Magnetic force (N) 자력 비율
(측정 자력 /간격이 0mm일 때 자력)
magnetic force ratio
(Measured magnetic force / magnetic force when the distance is 0mm)
00 45.845.8 1.01.0 9,7189,718 1.001.00
0.10.1 36.236.2 0.790.79 9,2569,256 0.950.95
0.20.2 34.834.8 0.760.76 9,1509,150 0.940.94
0.40.4 33.633.6 0.730.73 9,0239,023 0.930.93
0.60.6 32.532.5 0.710.71 8,9928,992 0.930.93
0.80.8 31.331.3 0.680.68 8,7858,785 0.900.90
1.01.0 30.230.2 0.660.66 8,5568,556 0.880.88
표 1 및 표 2 에서 보이듯이, 간격이 작은 경우에 흡착력은 강하지만, 회전형 영구자석(32)의 회전을 위한 토크가 커져서 전류가 크게 필요하여 마그네틱 드릴(1)의 전원부(30)에 많은 부하를 주어서 부적합 하였으며, 회전이 원활하게 이루어지기 위하여 0.1mm 이상이 바람직하였으며, 0.6 mm 를 넘어서면 동작시의 흡착력이 약해져서 마그네틱 드릴(1)을 고정하는데 부족하였다. 마그네틱 드릴의 경우에 컴팩트한 구조가 필수적이어서 과도한 회전 토크를 내기 위하여 큰 사이즈의 전자석 코일을 사용할 수도 없다는 한계가 있다. As shown in Tables 1 and 2, when the gap is small, the adsorption force is strong, but the torque for the rotation of the rotating permanent magnet 32 is increased, so that a large current is required, so that a lot of power supply 30 of the magnetic drill 1 It was unsuitable by giving a load, and 0.1 mm or more was preferable for smooth rotation. If it exceeds 0.6 mm, the adsorption force during operation is weakened, which is insufficient to fix the magnetic drill (1). In the case of a magnetic drill, since a compact structure is essential, there is a limitation that a large-sized electromagnet coil cannot be used to generate excessive rotational torque.
한편, 간격 0.6mm 를 가지는 커버부(33d)에서 상기 홈(33c) 보다 돌출되는 상하 에지가 있는 경우에 자력은 8,992N 이었으나, 상하 에지가 없는 경우에는 8,362N 으로 에지가 없어지는 경우에 7% 정도의 자력 감소가 발생하였다. On the other hand, the magnetic force was 8,992N when there was an upper and lower edge protruding from the groove 33c in the cover part 33d having an interval of 0.6mm, but 8,362N when there was no upper and lower edge, 7% when the edge was missing A degree of magnetic force reduction occurred.
실시예2Example 2
도 7 과 동일한 형상의 단면을 가지는 제 1 및 제 2 요크(33, 34), 도 6 의 단면과 동일한 형상의 단면을 가지며 약 48,000㎣의 부피를 가지는 회전형 영구자석(32) 및 약 44,000㎣의 부피를 가지는 고정형 영구자석(31)를 가지는 자기 홀더(30)에서 추가 영구자석(36)을 부착하고 추가 영구자석(36)의 두께를 변경하면서 실험하였다. 고정형 영구자석(31), 회전형 영구자석(32) 및 추가 영구자석(36)의 자석 등급은 Nd50으로 동일하였다. 추가 영구자석(36)은 폭은 13.5 mm, 길이 50mm이며 양옆에 2개씩 부착하였으며, 두께만 변경하면서 실험하였다.The first and second yokes 33 and 34 having the same cross section as in FIG. 7 , the rotating permanent magnet 32 having the same cross section as the cross section of FIG. 6 and having a volume of about 48,000 mm 3 , and about 44,000 mm 3 . An additional permanent magnet 36 was attached to the magnetic holder 30 having a fixed permanent magnet 31 having a volume of , and the thickness of the additional permanent magnet 36 was changed. The magnet grades of the stationary permanent magnet 31, the rotating permanent magnet 32 and the additional permanent magnet 36 were the same as Nd50. The additional permanent magnets 36 were 13.5 mm wide and 50 mm long, and were attached two each on each side, and the experiment was conducted while only changing the thickness.
추가 자석두께additional magnet thickness 1mm1mm 2mm2mm 3mm3mm 4mm4mm 5mm5mm 없음doesn't exist
잔류자기residual magnetism 4,2N4.2N 1.5N1.5N 0.95N0.95N 2.66N2.66N 6.45N6.45N 9.15N9.15N
표 3 에서 확인할 수 있듯이, 추가 영구자석(36)의 두께를 조정함으로써, 잔류자기를 감소시킬 수 있으므로, 잔류자기가 남지 않는 자기 홀더(30)를 생산하면서도 요크(33, 34) 및 영구자석(31, 32)의 설계가 용이해진다. 특히, 제조상의 공차로 인한 자력의 변화까지 대응할 수 있다는 점에서 실제 생산 제품에는 더욱 유리할 것으로 예상된다. As can be seen in Table 3, by adjusting the thickness of the additional permanent magnet 36, the residual magnetism can be reduced, so that the yokes 33 and 34 and the permanent magnet ( 31, 32) is easy to design. In particular, it is expected to be more advantageous for actual products in that it can respond to changes in magnetic force due to manufacturing tolerances.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 본 발명은 이에 제한되는 것은 아니며 다양하게 변형되어 실시될 수 있음은 물론이다.Although the above description has been focused on the embodiments of the present invention, the present invention is not limited thereto and may be implemented with various modifications.

Claims (10)

  1. 일방향으로 연장된 고정형 영구자석;Fixed permanent magnets extending in one direction;
    상기 일방향으로 연장되며, 양단이 회전 가능하게 고정된 회전형 영구자석;a rotatable permanent magnet extending in the one direction and having both ends rotatably fixed;
    상기 고정형 영구자석과 상기 회전형 영구자석의 양측면을 커버하며, 상하 방향으로 연장 형성된 제 1 요크 및 제 2 요크; 및first and second yokes covering both sides of the fixed permanent magnet and the rotating permanent magnet and extending in the vertical direction; and
    상기 제 1 및 제 2 요크에 감겨진 코일을 포함하며, and a coil wound around the first and second yokes,
    상기 일방향에 수직한 단면상에서, 상기 제 1 요크는 상기 고정형 영구자석의 N극에 접촉하며, 상기 제 2 요크는 상기 고정형 영구자석의 S극에 접촉하며, In a cross section perpendicular to the one direction, the first yoke is in contact with the N pole of the fixed permanent magnet, and the second yoke is in contact with the S pole of the fixed permanent magnet,
    상기 제 1 및 제 2 요크가 부착대상에 부착되는 부착면으로부터 코일, 회전형 영구자석 및 고정형 영구자석이 상기 제 1 및 제 2 요크를 따라서 연이어 배치되는 자기 홀더. A magnetic holder in which a coil, a rotating permanent magnet and a fixed permanent magnet are sequentially disposed along the first and second yokes from an attachment surface to which the first and second yokes are attached to an attachment object.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 요크 및 제 2 요크는 The first yoke and the second yoke are
    상기 고정형 영구자석이 밀착하는 홈 및 a groove to which the fixed permanent magnet is in close contact; and
    상기 회전형 영구자석을 감싸는 커버부를 포함하며, It includes a cover part surrounding the rotating permanent magnet,
    상기 회전형 영구자석은 곡면부와 직선부를 포함하고.The rotating permanent magnet includes a curved portion and a straight portion.
    상기 커버부는 상기 회전형 영구자석의 곡면부의 반경보다 큰 곡률 반경을 가지는 곡면을 포함하는 것을 특징으로 하는 자기 홀더. and the cover portion includes a curved surface having a radius of curvature greater than a radius of the curved portion of the rotating permanent magnet.
  3. 제 2 항에 있어서, 3. The method of claim 2,
    상기 커버부 곡면의 곡률 반경은 상기 회전형 영구자석의 반경보다 0.1 ~ 0.6mm 크며, The radius of curvature of the curved surface of the cover is 0.1 to 0.6 mm larger than the radius of the rotating permanent magnet,
    상기 커버부 곡면의 곡률 반경의 반경 중심은 상기 회전형 영구자석의 반경 중심과 동일한 것을 특징으로 하는 자기 홀더. The magnetic holder, characterized in that the radius center of the radius of curvature of the curved surface of the cover is the same as the radius center of the rotating permanent magnet.
  4. 제 3 항에 있어서, 4. The method of claim 3,
    상기 일방향에 수직한 단면상에서, 상기 커버부의 곡면의 상하에는 상기 홈보다 돌출 형성되는 에지가 형성되는 것을 특징으로 하는 자기 홀더.In the cross section perpendicular to the one direction, edges protruding from the groove are formed on upper and lower sides of the curved surface of the cover part.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 및 제 2 요크 각각의 외측면에서 상기 고정형 영구자석 혹은 회전형 영구자석에 대응되는 위치에 배치되는 추가 영구자석을 포함하는 것을 특징으로 하는 자기 홀더. and an additional permanent magnet disposed on an outer surface of each of the first and second yokes at positions corresponding to the fixed permanent magnets or the rotational permanent magnets.
  6. 제 5 항에 있어서, 6. The method of claim 5,
    상기 추가 영구자석의 두께는 상기 코일의 권취 두께 이하인 것을 특징으로 하는 자기 홀더. The thickness of the additional permanent magnet is a magnetic holder, characterized in that less than the winding thickness of the coil.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 및 제 2 요크는 상기 고정형 영구자석 및 회전형 영구자석에 대응되는 영구자석 요크와 상기 코일이 감겨진 부분으로부터 부착면을 포함하는 코일부 요크를 포함하며, The first and second yokes include a permanent magnet yoke corresponding to the fixed permanent magnet and the rotating permanent magnet, and a coil unit yoke including an attachment surface from a portion on which the coil is wound,
    상기 영구자석 요크와 상기 코일부 요크는 분리 가능한 구조인 것을 특징으로 하는 자기 홀더.The magnetic holder, characterized in that the permanent magnet yoke and the coil unit yoke is a separable structure.
  8. 제 7 항에 있어서, 8. The method of claim 7,
    상기 코일부 요크는 상기 부착면에 수직한 방향으로 체결되는 볼트에 의해서 상기 영구자석 요크에 분리 및 장착되게 구성되는 것을 특징으로 하는 자기 홀더.The magnetic holder, characterized in that the coil unit yoke is configured to be separated and mounted on the permanent magnet yoke by a bolt fastened in a direction perpendicular to the attachment surface.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 회전형 영구자석의 상기 일방향의 양단부면에 대응되는 위치에 배치되며, 상기 제 1 및 제 2 요크에 고정되는 브라켓을 더 포함하며, and a bracket disposed at positions corresponding to both end surfaces of the rotatable permanent magnet in one direction and fixed to the first and second yokes,
    상기 브라켓에는 축이 장착되며, 상기 회전형 영구자석에는 홈이 형성되어, 상기 회전형 영구자석이 상기 브라켓의 축에 회전가능하게 고정되는 것을 특징으로 하는 자기 홀더. and a shaft is mounted to the bracket, and a groove is formed in the rotatable permanent magnet, so that the rotatable permanent magnet is rotatably fixed to the shaft of the bracket.
  10. 드릴 유닛;drill unit;
    제 1 항 내지 제 9 항 중 어느 한 항에 따른 자기 홀더; 및10. A magnetic holder according to any one of claims 1 to 9; and
    상기 드릴 유닛 및 상기 자기 홀더로 전원을 제공하는 전원부;를 포함하며,Includes; a power supply for providing power to the drill unit and the magnetic holder,
    상기 전원부는 충전 가능한 베터리를 포함하는 휴대용 마그네틱 드릴.The power supply is a portable magnetic drill including a rechargeable battery.
PCT/KR2021/005394 2021-02-02 2021-04-28 Magnet holder and magnetic drill comprising same WO2022169029A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001225.7A CN115210039A (en) 2021-02-02 2021-04-28 Magnetic base and magnetic drill comprising same
US17/325,739 US20220241916A1 (en) 2021-02-02 2021-05-20 Magnet holder and a magnetic drill comprising it
KR1020210081771A KR20220111631A (en) 2021-02-02 2021-06-23 A magnet holder and a magnetic drill comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/KR2021/001366 WO2022168997A1 (en) 2021-02-02 2021-02-02 Magnet holder and magnetic drill comprising same
KRPCT/KR2021/001366 2021-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/325,739 Continuation US20220241916A1 (en) 2021-02-02 2021-05-20 Magnet holder and a magnetic drill comprising it

Publications (1)

Publication Number Publication Date
WO2022169029A1 true WO2022169029A1 (en) 2022-08-11

Family

ID=82741223

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/001366 WO2022168997A1 (en) 2021-02-02 2021-02-02 Magnet holder and magnetic drill comprising same
PCT/KR2021/005394 WO2022169029A1 (en) 2021-02-02 2021-04-28 Magnet holder and magnetic drill comprising same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001366 WO2022168997A1 (en) 2021-02-02 2021-02-02 Magnet holder and magnetic drill comprising same

Country Status (1)

Country Link
WO (2) WO2022168997A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208024A (en) * 2006-02-02 2007-08-16 Masaaki Maruyama Magnetic circuit
US9452521B2 (en) * 2013-04-19 2016-09-27 Milwaukee Electric Tool Corporation Magnetic drill press
KR20190031123A (en) * 2017-09-15 2019-03-25 최태광 Magnetic force control device and magnetic substance holding device using the same
US20200227191A1 (en) * 2017-12-14 2020-07-16 Tae Kwang Choi Magnetic force control device and magnetic body holding device using same
KR20210005394A (en) * 2019-07-04 2021-01-14 현대자동차주식회사 Active fault tolerant control apparatus and method for vehicle
KR102209820B1 (en) * 2019-08-23 2021-01-29 최태광 Magnetic force control device and magnetic substance holding device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208024A (en) * 2006-02-02 2007-08-16 Masaaki Maruyama Magnetic circuit
US9452521B2 (en) * 2013-04-19 2016-09-27 Milwaukee Electric Tool Corporation Magnetic drill press
KR20190031123A (en) * 2017-09-15 2019-03-25 최태광 Magnetic force control device and magnetic substance holding device using the same
US20200227191A1 (en) * 2017-12-14 2020-07-16 Tae Kwang Choi Magnetic force control device and magnetic body holding device using same
KR20210005394A (en) * 2019-07-04 2021-01-14 현대자동차주식회사 Active fault tolerant control apparatus and method for vehicle
KR102209820B1 (en) * 2019-08-23 2021-01-29 최태광 Magnetic force control device and magnetic substance holding device using the same

Also Published As

Publication number Publication date
WO2022168997A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2012144769A1 (en) Permanent-magnet work-holding device
WO2009099300A2 (en) Electric motor
WO2016159553A1 (en) Braille actuator and braille output device using same
WO2016117751A1 (en) Magnetic body holding device
WO2019093718A1 (en) Robot arm extension device and robot including same
WO2020138583A1 (en) Axial motor including magnetic levitation rotation body
WO2016003014A1 (en) Motor using complex magnetic flux
WO2022169029A1 (en) Magnet holder and magnetic drill comprising same
WO2020262976A2 (en) Magnetic shielding sheet for charging cradle, wireless power reception module for charging cradle, comprising same, and charging cradle for wireless earphones
WO2018236072A2 (en) An apparatus which rotates a shaft in which one electromagnet is used
WO2017039105A1 (en) Roller module having magnetic bearing and permanent magnet portion
WO2017018592A1 (en) Hybrid alignment
WO2023063742A1 (en) Sequential independent-generation-type power generation device having induced-current-strength selection function
WO2021020827A1 (en) Magnetic lift device having magnetic-field adjusting function
WO2018139827A1 (en) Brush motor
WO2010117105A1 (en) Filter change assembly for camera module which uses electromagnetic rotating device, and operating method thereof
WO2023182749A1 (en) Battery clustering system using power generation device configured to generate power successively and independently
WO2020145518A1 (en) Apparatus for operating as dc (direct current) generator and dc motor
WO2023136551A1 (en) Power coil and magnetic field difference power unit
WO2023146056A1 (en) Non-contact rotary transformer and motor comprising same
WO2011049282A1 (en) Permanent magnet workholding device
WO2020085877A1 (en) Electric generator comprising multiple rotors and stators
WO2023063741A1 (en) Magnetic force line flow control-type magnetic power generation device
WO2013000429A1 (en) Electromagnetic drive device and electromagnetic lens drive device
WO2023171927A1 (en) Magnetic field generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE