JP2007208024A - Magnetic circuit - Google Patents

Magnetic circuit Download PDF

Info

Publication number
JP2007208024A
JP2007208024A JP2006025430A JP2006025430A JP2007208024A JP 2007208024 A JP2007208024 A JP 2007208024A JP 2006025430 A JP2006025430 A JP 2006025430A JP 2006025430 A JP2006025430 A JP 2006025430A JP 2007208024 A JP2007208024 A JP 2007208024A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
yoke
connection
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025430A
Other languages
Japanese (ja)
Inventor
Masaaki Maruyama
昌明 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006025430A priority Critical patent/JP2007208024A/en
Publication of JP2007208024A publication Critical patent/JP2007208024A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic circuit including a permanent magnet and an excitation coil capable of energizing the excitation coil so as to change over a magnetic action surface between an excitation state and a non-excitation state with less power consumption, without breaking a permanent magnet even when a ferrite magnet or a rare earth magnet is used as the permanent magnet, which is excellent in magnetic characteristic but friable in terms of material. <P>SOLUTION: The permanent magnet or a permanent magnet assembly is rotatably arranged in a columnar hole enclosed by first and second yokes. When instant energization is performed to the excitation coil so as to rotate the permanent magnet or the permanent magnet assembly, magnetic connection is changed over. Accordingly, the collision of the magnetic polar surface of the permanent magnet or the permanent magnet assembly with the connection surface of the first and second yokes is eliminated so as to prevent the permanent magnet from being broken. Thus, change-over is performed between the excitation state to allow a magnetic flux from the permanent magnet to pass the magnetic action surface and the non-excitation state to allow the magnetic flux not to pass. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、永久磁石と励磁コイルを含む磁気回路であって、励磁コイルに通電することにより、磁気作用面を磁界の発生する励磁状態と磁界の発生しない非励磁状態とに切り換えることが可能な磁気回路に関する。   The present invention is a magnetic circuit including a permanent magnet and an excitation coil, and by energizing the excitation coil, the magnetic working surface can be switched between an excitation state in which a magnetic field is generated and a non-excitation state in which no magnetic field is generated. The present invention relates to a magnetic circuit.

磁気作用面を励磁状態と非励磁状態とに切り換えることが可能な磁気回路を有する従来装置の第1の例として、励磁コイルと鉄心を備えた所謂電磁石装置がある。電磁石装置は励磁コイルに通電を継続することで励磁状態を維持し、通電しないことで非励磁状態を維持する装置である。電磁石装置は構造が簡単で遠隔操作も容易である。しかし、電磁石装置は励磁状態を維持するために通電を継続するので多量の電気エネルギーを必要とし、地球環境にやさしい装置とはいえない。また、励磁コイルの通電を長時間継続すると、励磁コイルの温度を上昇させ、電気抵抗を増加させ、電流を減少させるので、磁気的能力が低下する。これを防ぐために冷却装置を付随させると、装置の構造は複雑になり費用も増加し、さらにエネルギーを必要とする。   As a first example of a conventional apparatus having a magnetic circuit capable of switching a magnetic action surface between an excited state and a non-excited state, there is a so-called electromagnet device including an exciting coil and an iron core. An electromagnet device is a device that maintains an excited state by continuing energization of an exciting coil and maintains a non-excited state by not energizing. The electromagnet device is simple in structure and easy to operate remotely. However, the electromagnet device is energized in order to maintain the excited state, and therefore requires a large amount of electric energy, and is not a device that is friendly to the global environment. Further, if energization of the exciting coil is continued for a long time, the temperature of the exciting coil is increased, the electric resistance is increased, and the current is decreased, so that the magnetic ability is lowered. If a cooling device is attached to prevent this, the structure of the device becomes complicated, the cost increases, and more energy is required.

従来装置の第2の例として、永久磁石とヨークを備えた所謂永久磁石装置がある。永久磁石装置は励磁状態を維持するのに電気エネルギーを必要としないが、励磁状態と非励磁状態との切り換えは永久磁石やヨークを人の力で回転又は移動させて行うのが一般的であり、装置の遠隔操作が難しく人の力を及ぼせる範囲に使用が限定される。   As a second example of the conventional device, there is a so-called permanent magnet device including a permanent magnet and a yoke. The permanent magnet device does not require electrical energy to maintain the excited state, but switching between the excited state and the non-excited state is generally performed by rotating or moving the permanent magnet or yoke by human power. The use of the device is limited to the extent that it is difficult to remotely control the device and can exert human power.

さらに従来装置の第3の例として、励磁コイルと永久磁石の両方を備えた、実用新案出願公告平2−35745号に示されている装置(リフティングマグネット)がある。これは、上下に対向して配置された一対のヨークにそれぞれ電磁コイル(励磁コイルに同じ)を装着するとともに、上下ヨークの間に横方向に方向性をもたせた永久磁石鋼を前記電磁コイルの電磁力で上下方向に移動可能に配置し、前記永久磁石鋼の両端部に、該永久磁石鋼の上下厚みよりも高さ寸法の大きい軟鋼部材を固着し、これによって該永久磁石鋼が前記上下ヨークと接触せずに前記軟鋼部材のみが前記上下ヨークと当接するようにし、前記電磁コイルの励磁反転操作による前記永久磁石鋼との吸引、反発作用により、前記永久磁石鋼を前記上下ヨーク間で移動せしめて下ヨークの下端で被吊上材料の吸着釈放を行わしめることを特徴とするものである。   Further, as a third example of the conventional device, there is a device (lifting magnet) shown in Japanese Utility Model Application Publication No. 2-35745 having both an exciting coil and a permanent magnet. This is because a pair of yokes arranged vertically opposite to each other are fitted with electromagnetic coils (the same as the exciting coil), and permanent magnet steel having a lateral direction between the upper and lower yokes is attached to the electromagnetic coils. It is arranged so as to be movable in the vertical direction by electromagnetic force, and a mild steel member having a height dimension larger than the vertical thickness of the permanent magnet steel is fixed to both ends of the permanent magnet steel, whereby the permanent magnet steel is Only the mild steel member is in contact with the upper and lower yokes without contact with the yoke, and the permanent magnet steel is moved between the upper and lower yokes by the attraction and repulsion action with the permanent magnet steel by the excitation reversal operation of the electromagnetic coil. This is characterized in that the suspended material is adsorbed and released at the lower end of the lower yoke.

従来装置の第3の例は、永久磁石の磁気力で磁性材料の吸着保持を行う(即ち、励磁状態を維持する)ので、電磁コイルに絶えず通電する必要が無く、吸着釈放の切り換え(即ち、励磁状態と非励磁状態との切り換え)時にのみ、電磁コイルに通電して永久磁石を移動させるだけでよい。この切り換えは瞬時に行われるので瞬時の通電で十分である。従って、この第3の例は、第1の例に比べて消費電力の少ない装置であり、また、第2の例に比べて遠隔操作が容易である。
実用新案出願公告平2−35745号
In the third example of the conventional apparatus, since the magnetic material is attracted and held by the magnetic force of the permanent magnet (that is, the excited state is maintained), it is not necessary to constantly energize the electromagnetic coil, and switching of the adsorption release (that is, Only at the time of switching between the excited state and the non-excited state), it is only necessary to energize the electromagnetic coil and move the permanent magnet. Since this switching is performed instantaneously, instantaneous energization is sufficient. Therefore, the third example is a device that consumes less power than the first example, and remote control is easier than the second example.
Utility Model Application Notice 2-35-2745

従来装置の第1の例では消費電力が大きすぎ、従来装置の第2の例では遠隔操作が難しい。従来装置の第3の例では、永久磁石は固着された軟鋼部材に挟まれており、吸着釈放の切り換え時に永久磁石が上下ヨークに直接接触しないとはいえ、永久磁石も軟鋼部材と一緒に移動して上下ヨークに衝突するので、その衝撃が永久磁石にも加わり、永久磁石は破損し易い。特に、フェライト磁石や希土類磁石のように磁気特性に優れているが材質的に脆い永久磁石は、この第3の例においては極めて破損しやすく、ほとんど使用することができない。   In the first example of the conventional device, the power consumption is too large, and in the second example of the conventional device, remote operation is difficult. In the third example of the conventional device, the permanent magnet is sandwiched between the fixed mild steel members, and the permanent magnets move with the mild steel member even though the permanent magnets do not directly contact the upper and lower yokes when switching between adsorption and release. Then, since it collides with the upper and lower yokes, the impact is also applied to the permanent magnet, and the permanent magnet is easily damaged. In particular, permanent magnets that are excellent in magnetic properties but brittle in material, such as ferrite magnets and rare earth magnets, are very easily damaged in this third example, and can hardly be used.

本発明の目的は、励磁状態と非励磁状態に切り換えることが可能な磁気回路であって、切り換え時にのみ電磁コイルへ通電するだけでよく、消費電力の少ない磁気回路であり、遠隔操作も容易であり、特にフェライト磁石や希土類磁石のように磁気特性に優れているが材質的に脆い永久磁石を使用しても永久磁石の破損が生じない磁気回路を提供することである。   An object of the present invention is a magnetic circuit that can be switched between an excited state and a non-excited state, and it is only necessary to energize an electromagnetic coil only at the time of switching, and it is a magnetic circuit that consumes less power and can be easily operated remotely. In particular, it is to provide a magnetic circuit that is excellent in magnetic properties, such as a ferrite magnet or a rare earth magnet, but does not cause damage to the permanent magnet even when a permanent magnet that is brittle in material is used.

本発明の磁気回路は、第1の磁気作用面を有する第1のヨークと、第2の磁気作用面を有し第1のヨークと磁気的に絶縁されている第2のヨークと、第1および第2のヨークに囲まれた円柱状の穴内に回転可能に配置されている永久磁石または永久磁石組立体と、励磁コイルとを含み、励磁コイルへ通電して永久磁石または永久磁石組立体を回転させ、永久磁石または永久磁石組立体の磁極面と、円柱状の穴の内面に露出している第1のヨークおよび第2のヨークの接続面との磁気的な接続を切り換え、第1および第2の磁気作用面を磁界の発生する励磁状態と磁界の発生しない非励磁状態とに切り換えることが可能であるという特徴を有する。   The magnetic circuit of the present invention includes a first yoke having a first magnetic action surface, a second yoke having a second magnetic action surface and magnetically insulated from the first yoke, And a permanent magnet or permanent magnet assembly rotatably disposed in a cylindrical hole surrounded by the second yoke, and an excitation coil, and energizing the excitation coil to provide a permanent magnet or permanent magnet assembly. And rotating the magnetic connection between the magnetic pole surface of the permanent magnet or the permanent magnet assembly and the connection surfaces of the first yoke and the second yoke exposed on the inner surface of the cylindrical hole, The second magnetic action surface can be switched between an excited state where a magnetic field is generated and a non-excited state where a magnetic field is not generated.

本発明の磁気回路に於いては、励磁コイルに通電し起磁力を発生させることで、第1および/または第2のヨークを電磁石にすることができ、円柱状の穴の内面に露出させている接続面をN極またはS極にすることができる。すると、永久磁石または永久磁石組立体の磁極面のN極およびS極は、それぞれ反発力を受ける接続面のN極およびS極から遠ざかり、それぞれ吸引力を受ける接続面のS極およびN極の方に回転するので、磁極面と接続面の磁気的な接続を切り換えることができる。この時、励磁コイルの起磁力が十分であれば、永久磁石または永久磁石組立体の回転は瞬時に起こるので、励磁コイルへの通電は瞬時でよい。磁極面と接続面の磁気的な接続が切り換わった後は、励磁コイルへの通電が無くとも、永久磁石の磁気力により励磁状態と非励磁状態を安定に保持することができる。本発明の磁気回路の種々の構造と作用については、実施例において詳細に述べる。   In the magnetic circuit of the present invention, the first and / or second yoke can be made into an electromagnet by energizing the exciting coil to generate a magnetomotive force, and exposed to the inner surface of the cylindrical hole. The connecting surface can be N-pole or S-pole. Then, the N pole and the S pole of the magnetic pole surface of the permanent magnet or the permanent magnet assembly are moved away from the N pole and the S pole of the connection surface receiving the repulsive force, respectively, and the S pole and the N pole of the connection surface receiving the attractive force, respectively. Therefore, the magnetic connection between the magnetic pole surface and the connection surface can be switched. At this time, if the magnetomotive force of the exciting coil is sufficient, the permanent magnet or the permanent magnet assembly is rotated instantaneously, and therefore the energization to the exciting coil may be instantaneous. After the magnetic connection between the magnetic pole surface and the connection surface is switched, the excited state and the non-excited state can be stably held by the magnetic force of the permanent magnet even if the exciting coil is not energized. Various structures and operations of the magnetic circuit of the present invention will be described in detail in Examples.

本発明の磁気回路は、励磁コイルへの瞬時の通電により励磁状態と非励磁状態とに切り換えることが可能であり、消費電力の少ない磁気回路である。また、遠隔操作も容易である。更に、永久磁石または永久磁石組立体の回転により磁気的な接続が切り換わるので、磁極面と接続面が衝突することが無く、特にフェライト磁石や希土類磁石のように磁気特性に優れているが材質的に脆い永久磁石を使用しても永久磁石の破損が生じない、という効果を有する。   The magnetic circuit of the present invention can be switched between an excited state and a non-excited state by instantaneous energization of the exciting coil, and is a magnetic circuit with low power consumption. Remote operation is also easy. Furthermore, since the magnetic connection is switched by the rotation of the permanent magnet or the permanent magnet assembly, there is no collision between the magnetic pole surface and the connection surface, and it has excellent magnetic properties, especially ferrite magnets and rare earth magnets. Even if a brittle permanent magnet is used, the permanent magnet is not damaged.

図1から図4に本発明の実施例1として磁気回路10を示す。この磁気回路10は通常リフティングマグネット等と呼ばれている装置のものである。(あるいは、マグネットベースとかマグネットホルダーと呼ばれているものとしても良い。)その外形は概略直方体形であり、下面に、磁性体を吸着保持する吸着面(即ち磁気作用面)を有する。ただし、図では、通常のリフティングマグネットの上部に配置されている釣り上げ用のアイボルトまたはねじ穴等は省略してある。図1と図3は永久磁石の中心を通る垂直方向の断面図であり、図1は図2の1−1断面である。図2は永久磁石の中心を通る水平方向の断面図であり、図1の2−2断面である。図4は正面図である。   1 to 4 show a magnetic circuit 10 as a first embodiment of the present invention. This magnetic circuit 10 is a device usually called a lifting magnet or the like. (Alternatively, it may be called a magnet base or a magnet holder.) The outer shape is substantially a rectangular parallelepiped shape, and has an attracting surface (that is, a magnetic acting surface) for attracting and holding the magnetic material on the lower surface. However, in the drawing, a lifting eye bolt or a screw hole or the like disposed on the top of a normal lifting magnet is omitted. 1 and 3 are sectional views in the vertical direction passing through the center of the permanent magnet, and FIG. 1 is a section taken along the line 1-1 in FIG. FIG. 2 is a horizontal sectional view passing through the center of the permanent magnet, and is a section 2-2 in FIG. FIG. 4 is a front view.

まず、磁気回路10の構造について説明する。図1を参照するに、第1のヨーク11は第1の磁気作用面12を有し、第2のヨーク13は第2の磁気作用面14を有している。第1のヨーク11と第2のヨーク13は非磁性材料からなるセパレーター15、16によって磁気的に絶縁されている。第1のヨーク11と第2のヨーク13およびセパレーター15、16に囲まれて、水平方向に伸びる円柱状の穴17があり、その穴内に露出している第1のヨークおよび第2のヨークの面部分がそれぞれ接続面Aおよび接続面Eである。   First, the structure of the magnetic circuit 10 will be described. Referring to FIG. 1, the first yoke 11 has a first magnetic action surface 12, and the second yoke 13 has a second magnetic action surface 14. The first yoke 11 and the second yoke 13 are magnetically insulated by separators 15 and 16 made of a nonmagnetic material. A cylindrical hole 17 extending in the horizontal direction is surrounded by the first yoke 11, the second yoke 13, and the separators 15 and 16, and the first and second yokes exposed in the holes are exposed. The surface portions are the connection surface A and the connection surface E, respectively.

永久磁石20は、円柱状の穴17の内面と合うように円柱状の側面部を有し、円柱状の穴17内にその中心軸を回転軸として回転可能に配置されている。永久磁石20は、円柱状の側面部が磁極面20a(図1ではN極)および20b(図1ではS極)となるように磁化されている。従って、磁極面20a、20bが円柱状の穴17の内面で接続面Aおよび接続面Eと磁気的な接続を行える。磁極面20a、20b以外の側面は平面状に切り欠かかれている。   The permanent magnet 20 has a cylindrical side surface portion so as to match the inner surface of the cylindrical hole 17, and is disposed in the cylindrical hole 17 so as to be rotatable about its central axis as a rotation axis. The permanent magnet 20 is magnetized so that the cylindrical side surface portions are magnetic pole surfaces 20a (N pole in FIG. 1) and 20b (S pole in FIG. 1). Therefore, the magnetic pole surfaces 20 a and 20 b can be magnetically connected to the connection surface A and the connection surface E on the inner surface of the cylindrical hole 17. Side surfaces other than the magnetic pole surfaces 20a and 20b are cut out in a planar shape.

励磁コイル23は、第1のヨーク11の一部を囲んで配置されており、図示されていない電源につながっている。励磁コイル23は、第1のヨーク11の中に埋め込まれているものの、第1のヨーク11は、励磁コイル23の内側を通過するが、外側は通過しないように配置されている。磁気回路10の上面には非磁性材料からなる上面板24が配置され、励磁コイル23を保護するとともに、上面に何か磁性材料が接触しても第1のヨーク11と第2のヨーク13の磁気的な接続が起こらないようにしている。下面には非磁性材料からなる下面板25が配置され、励磁コイル23を保護するとともに、下面に何か磁性材料が接触しても第1のヨーク11と第2のヨーク13の磁気的な接続が起こらないようにしている。   The exciting coil 23 is disposed so as to surround a part of the first yoke 11 and is connected to a power source (not shown). Although the exciting coil 23 is embedded in the first yoke 11, the first yoke 11 is disposed so as to pass through the inside of the exciting coil 23 but not through the outside. An upper surface plate 24 made of a nonmagnetic material is disposed on the upper surface of the magnetic circuit 10 to protect the exciting coil 23, and even if any magnetic material contacts the upper surface, the first yoke 11 and the second yoke 13 are protected. Magnetic connection is prevented from occurring. A lower surface plate 25 made of a nonmagnetic material is disposed on the lower surface to protect the exciting coil 23 and to magnetically connect the first yoke 11 and the second yoke 13 even if any magnetic material contacts the lower surface. To prevent it from happening.

図2を参照するに、永久磁石20の回転軸方向の両端部に回転軸部28、29が配置されている。回転軸部28、29は、それぞれ永久磁石20を把持するための把持部28a、29aを有する。回転軸部28、29は、それぞれ軸受け部30、31で支持されている。軸受け部30、31は、それぞれ非磁性材料からなる正面板26、背面板27に配置されている。正面板26と背面板27は、励磁コイル23を保護するとともに、正面と背面において何か磁性材料が接触しても第1のヨーク11と第2のヨーク13の磁気的な接続が起こらないようにしている。   Referring to FIG. 2, rotating shaft portions 28 and 29 are disposed at both ends of the permanent magnet 20 in the rotating shaft direction. The rotary shaft portions 28 and 29 have grip portions 28 a and 29 a for gripping the permanent magnet 20, respectively. The rotary shaft portions 28 and 29 are supported by bearing portions 30 and 31, respectively. The bearing portions 30 and 31 are disposed on a front plate 26 and a back plate 27 made of a nonmagnetic material, respectively. The front plate 26 and the back plate 27 protect the exciting coil 23, and the magnetic connection between the first yoke 11 and the second yoke 13 does not occur even if any magnetic material contacts the front and back surfaces. I have to.

図2と図4を参照するに、回転軸部28の外側に突出した部分には、ハンドル32が取り付けられている。また、ハンドル32の回転(即ち永久磁石20の回転)を制限するストッパー33、34が正面板26に配置されている。ストッパー33、34は、それぞれねじ33a、34aを回して、その先端部33b、34bの突出長さを調節することができる。しかし、回転軸部28、29とハンドル32が配置されていない場合には、永久磁石20の回転を制限するストッパーとして、第1のヨーク11の下面および第2のヨーク13の右側面から円柱状の穴17の内面に突出するねじを配置し、永久磁石20の側面の平面状に切り欠かかれている部分に当たるようにすることもできるが、あまり好ましくは無い。   Referring to FIGS. 2 and 4, a handle 32 is attached to a portion protruding outward of the rotary shaft portion 28. Further, stoppers 33 and 34 for restricting the rotation of the handle 32 (that is, the rotation of the permanent magnet 20) are arranged on the front plate 26. The stoppers 33 and 34 can adjust the protrusion length of the front-end | tip parts 33b and 34b by rotating the screws 33a and 34a, respectively. However, when the rotary shaft portions 28 and 29 and the handle 32 are not arranged, the cylindrical shape is formed from the lower surface of the first yoke 11 and the right side surface of the second yoke 13 as a stopper for limiting the rotation of the permanent magnet 20. It is possible to arrange a screw projecting on the inner surface of the hole 17 so as to contact a portion of the side surface of the permanent magnet 20 that is cut out in a flat shape, but it is not preferable.

次に、磁気回路10の作用と効果について説明する。図1を参照するに、永久磁石のN極面20aが接続面Aに、S極面20bが接続面Eに磁気的に接続している。従って、永久磁石20の磁束はN極面20aから矢印35の向きに通過し、第1のヨーク11、第1の磁気作用面12、磁性体40、第2の磁気作用面14、第2のヨーク13を経て永久磁石のS極面20bに戻る。即ち、図1は、第1および第2の磁気作用面に磁界が発生し磁性体40を吸着保持することができる励磁状態である。   Next, the operation and effect of the magnetic circuit 10 will be described. Referring to FIG. 1, the N pole surface 20 a of the permanent magnet is magnetically connected to the connection surface A, and the S pole surface 20 b is magnetically connected to the connection surface E. Therefore, the magnetic flux of the permanent magnet 20 passes from the N pole surface 20a in the direction of the arrow 35, and the first yoke 11, the first magnetic action surface 12, the magnetic body 40, the second magnetic action surface 14, and the second magnetic action surface. It returns to the south pole face 20b of the permanent magnet through the yoke 13. That is, FIG. 1 shows an excited state in which a magnetic field is generated on the first and second magnetic action surfaces and the magnetic body 40 can be attracted and held.

図1の励磁状態を非励磁状態に切り換えるには、励磁コイル23へ通電して、接続面AがN極、第1の磁気作用面12がS極となるようにする。第1の磁気作用面12のS極は、磁性体40を経て、第2のヨーク13の接続面EをS極にする。すると、永久磁石のN極面20aは接続面AのN極から磁気的な反発力を受け、永久磁石のS極面20bは接続面EのS極から磁気的な反発力を受けるので、永久磁石20は回転を始める。この時、永久磁石20の回転が図1において必ず時計回りに起こるようにするには、永久磁石のN極面20aとS極面20bが水平位置に在るよりも、予め少し時計回りに回転した位置に在るようにストッパー33の先端部33b(図4参照)を少し長めに突出させておくと良い。これで、永久磁石は時計回りに回転し、ほぼ90度回転したところでハンドル32がストッパー34の先端部34bに当たり止まる。この状態が、図3に示した非励磁状態である。   In order to switch the excitation state of FIG. 1 to the non-excitation state, the excitation coil 23 is energized so that the connection surface A becomes the N pole and the first magnetic action surface 12 becomes the S pole. The S pole of the first magnetic action surface 12 passes through the magnetic body 40 and the connection surface E of the second yoke 13 becomes the S pole. Then, the N pole surface 20a of the permanent magnet receives a magnetic repulsive force from the N pole of the connection surface A, and the S pole surface 20b of the permanent magnet receives a magnetic repulsive force from the S pole of the connection surface E. Magnet 20 begins to rotate. At this time, in order to ensure that the permanent magnet 20 rotates clockwise in FIG. 1, the permanent magnet 20 rotates clockwise slightly in advance rather than the N pole surface 20a and S pole surface 20b of the permanent magnet being in the horizontal position. It is preferable that the tip 33b (see FIG. 4) of the stopper 33 protrude a little longer so that it is in the position. As a result, the permanent magnet rotates clockwise, and the handle 32 comes into contact with the tip 34b of the stopper 34 when the permanent magnet rotates approximately 90 degrees. This state is the non-excited state shown in FIG.

図3を参照するに、永久磁石のN極面20aとS極面20bは、それぞれセパレーター15,16を挟んで接続面Aと接続面Eの両方にほぼ等しく接続している。即ち、永久磁石のN極面20aとS極面20bの左側半分は第1のヨーク11によって磁気的に短絡されており、磁束は矢印36の向きに通過する。また、永久磁石のN極面20aとS面極20bの右側半分は第2のヨーク13によって磁気的に短絡されており、磁束は矢印37の向きに通過する。従って、図3は、第1および第2の磁気作用面に通過する磁束が無く、第1および第2の磁気作用面に磁界の発生しない(即ち、吸着力の発生しない)非励磁状態を示している。非励磁状態では吸着保持されていた磁性体40は釈放される。   Referring to FIG. 3, the N pole surface 20a and the S pole surface 20b of the permanent magnet are connected to both the connection surface A and the connection surface E substantially equally with the separators 15 and 16 interposed therebetween. That is, the left half of the N pole face 20a and the S pole face 20b of the permanent magnet is magnetically short-circuited by the first yoke 11, and the magnetic flux passes in the direction of the arrow 36. Further, the right half of the N pole face 20 a and the S face pole 20 b of the permanent magnet is magnetically short-circuited by the second yoke 13, and the magnetic flux passes in the direction of the arrow 37. Therefore, FIG. 3 shows a non-excitation state in which there is no magnetic flux passing through the first and second magnetic action surfaces, and no magnetic field is generated on the first and second magnetic action surfaces (that is, no attracting force is generated). ing. In the non-excited state, the magnetic body 40 that has been attracted and held is released.

図3の非励磁状態を図1の励磁状態に切り換えるには、励磁コイル23へ上記と逆向きに通電して、接続面AがS極、第1の磁気作用面12がN極となるようにする。すると、永久磁石のN極面20aは接続面AのS極から磁気的な吸引力を受け、永久磁石20は反時計回りにほぼ90度回転し、ハンドル32がストッパー33の先端部33bに当たり止まる。永久磁石のN極面20a全体が接続面Aと磁気的な接続をし、S極面20b全体が接続面Eと磁気的な接続をすることになる。この状態が、図1に示した励磁状態である。   In order to switch the non-excitation state of FIG. 3 to the excitation state of FIG. 1, the excitation coil 23 is energized in the opposite direction so that the connection surface A is the S pole and the first magnetic action surface 12 is the N pole. To. Then, the N pole surface 20a of the permanent magnet receives a magnetic attractive force from the S pole of the connection surface A, the permanent magnet 20 rotates approximately 90 degrees counterclockwise, and the handle 32 stops against the tip 33b of the stopper 33. . The entire N pole surface 20a of the permanent magnet is magnetically connected to the connection surface A, and the entire S pole surface 20b is magnetically connected to the connection surface E. This state is the excitation state shown in FIG.

磁気回路10においては、励磁状態と非励磁状態との切り換えは、励磁コイル23への通電方向を切り換えるだけでよいから遠隔操作が容易である。また、励磁コイル23の起磁力が十分であれば、永久磁石20の回転は瞬時に起こり、磁極面と接続面の磁気的な接続が切り換わった後は、励磁コイル23への通電が無くとも、永久磁石20の磁気力により励磁状態と非励磁状態を安定に維持することができるので、励磁コイル23への通電は瞬時でよい。従って、磁気回路10は消費電力の少ない磁気回路である。   In the magnetic circuit 10, switching between the excited state and the non-excited state only requires switching the energizing direction to the exciting coil 23, so that remote operation is easy. In addition, if the magnetomotive force of the exciting coil 23 is sufficient, the permanent magnet 20 rotates instantaneously, and even after the magnetic connection between the magnetic pole surface and the connecting surface is switched, there is no need to energize the exciting coil 23. Since the excitation state and the non-excitation state can be stably maintained by the magnetic force of the permanent magnet 20, the excitation coil 23 can be energized instantaneously. Therefore, the magnetic circuit 10 is a magnetic circuit with low power consumption.

さらに、磁気回路10においては、永久磁石20は中心軸の周りに回転するだけであり、接続面Aおよび接続面Eとの衝突は起こらないので、永久磁石20が破損することは無い。特にフェライト磁石や希土類磁石のように磁気特性に優れているが材質的に脆い永久磁石を使用しても永久磁石の破損が生じない。更に好ましくは、ハンドル32が当たるストッパー33および34の先端部33bおよび34bにゴムやばね等の衝撃吸収部材を配置することもできる。   Further, in the magnetic circuit 10, the permanent magnet 20 only rotates around the central axis and does not collide with the connection surface A and the connection surface E, so that the permanent magnet 20 is not damaged. In particular, even if a permanent magnet that is excellent in magnetic properties such as a ferrite magnet or a rare earth magnet but is brittle in material is used, the permanent magnet is not damaged. More preferably, an impact absorbing member such as a rubber or a spring can be disposed at the tip portions 33b and 34b of the stoppers 33 and 34 to which the handle 32 hits.

尚、磁気回路10を図1に示す励磁状態に切り換えた後も、励磁コイル23への通電を継続することができる。これにより、第1および第2の磁気作用面に発生する磁界を強めて、磁性体40をさらに強く吸着保持することができる。さらに、これとは逆向きに励磁コイル23へ弱く通電して、第1および第2の磁気作用面に発生する磁界を弱めることもできる。また、ハンドル32に外部から思いがけない力が作用して永久磁石20を回転させないように、ハンドル32にロック機構を取り付けることもできる。   Even after the magnetic circuit 10 is switched to the excitation state shown in FIG. 1, the energization to the excitation coil 23 can be continued. Thereby, the magnetic field generated on the first and second magnetic action surfaces can be strengthened, and the magnetic body 40 can be attracted and held more strongly. Furthermore, the magnetic field generated on the first and second magnetic action surfaces can be weakened by weakly energizing the exciting coil 23 in the opposite direction. In addition, a lock mechanism can be attached to the handle 32 so that an unexpected force is applied to the handle 32 from the outside and the permanent magnet 20 is not rotated.

磁気回路10を図3に示す非励磁状態に切り換えた後も、被吸着物である磁性体40の材質に起因する磁化が原因で吸着力が残留し、磁性体40の釈放が困難になる場合がある。このような場合には、図4に示したストッパー34の先端部34bを少し短めに突出させて、ハンドル32の回転(即ち永久磁石20の回転)を垂直位置よりも時計回りに少し余計に回転させて止めると良い。こうすると、接続面Aに接続する永久磁石のS極面20bの面積がN極面20aの面積よりも大きくなり、接続面Eに接続する永久磁石のN極面20aの面積がS極面20bの面積よりも大きくなる。従って、第1の磁気作用面には弱いS極が発生し、第2の磁気作用面には弱いN極が発生して、磁性体40に対して吸着保持されていた時とは逆の磁界が作用することになり、磁性体40の材質に起因する磁化が相殺され釈放が容易になる。   Even when the magnetic circuit 10 is switched to the non-excited state shown in FIG. 3, the attraction force remains due to the magnetization caused by the material of the magnetic body 40 that is the object to be attracted, making it difficult to release the magnetic body 40. There is. In such a case, the tip 34b of the stopper 34 shown in FIG. 4 is projected slightly shorter, and the rotation of the handle 32 (that is, the rotation of the permanent magnet 20) is rotated slightly more clockwise than the vertical position. You should stop it. As a result, the area of the S pole face 20b of the permanent magnet connected to the connection surface A is larger than the area of the N pole face 20a, and the area of the N pole face 20a of the permanent magnet connected to the connection face E is S pole face 20b. Larger than the area. Therefore, a weak south pole is generated on the first magnetic action surface, and a weak north pole is generated on the second magnetic action surface. Acts, the magnetization caused by the material of the magnetic body 40 is canceled out, and the release becomes easy.

図5から図7に本発明の実施例2として磁気回路50を示す。この磁気回路50も通常リフティングマグネット等と呼ばれている装置のものである。その外形は概略直方体形であり、下面に、磁性体を吸着保持する吸着面(即ち磁気作用面)を有する。ただし、図では、通常のリフティングマグネットの上部に配置されている釣り上げ用のアイボルトまたはねじ穴等は省略してある。図5と図7は永久磁石の中心を通る垂直方向の断面図であり、図5は図6の5−5断面である。図6は永久磁石の中心を通る水平方向の断面図であって、図5の6−6断面である。   5 to 7 show a magnetic circuit 50 as a second embodiment of the present invention. This magnetic circuit 50 is also a device usually called a lifting magnet or the like. The outer shape is a substantially rectangular parallelepiped shape, and has an attracting surface (that is, a magnetic acting surface) for attracting and holding the magnetic material on the lower surface. However, in the drawing, a lifting eye bolt or a screw hole or the like disposed on the top of a normal lifting magnet is omitted. 5 and 7 are vertical sectional views passing through the center of the permanent magnet, and FIG. 5 is a sectional view taken along the line 5-5 in FIG. FIG. 6 is a horizontal cross-sectional view passing through the center of the permanent magnet, which is a 6-6 cross section of FIG.

まず、磁気回路50の構造について説明する。図5を参照するに、第1のヨーク51は、側板部52、上接続部53、下接続部54を有し、側板部52の下面に第1の磁気作用面55を有している。第2のヨーク56は下面に第2の磁気作用面57を有している。第1のヨークの上接続部53と下接続部54と第2のヨーク56は非磁性材料からなるセパレーター61、62、63によって磁気的に絶縁されている。第1のヨークの上接続部53と下接続部54と第2のヨーク56およびセパレーター61、62、63に囲まれて、水平方向に伸びる円柱状の穴64がある。円柱状の穴64内に露出している上接続部53と下接続部54の面部分がそれぞれ接続面B1および接続面B2であり、円柱状の穴64内に露出している第2のヨークの面部分が接続面Eである。   First, the structure of the magnetic circuit 50 will be described. Referring to FIG. 5, the first yoke 51 has a side plate portion 52, an upper connection portion 53, and a lower connection portion 54, and has a first magnetic action surface 55 on the lower surface of the side plate portion 52. The second yoke 56 has a second magnetic action surface 57 on the lower surface. The upper connecting portion 53, the lower connecting portion 54, and the second yoke 56 of the first yoke are magnetically insulated by separators 61, 62, 63 made of a nonmagnetic material. A cylindrical hole 64 extending in the horizontal direction is surrounded by the upper connecting portion 53, the lower connecting portion 54, the second yoke 56, and the separators 61, 62, 63 of the first yoke. The surface portions of the upper connection portion 53 and the lower connection portion 54 exposed in the cylindrical hole 64 are the connection surface B1 and the connection surface B2, respectively, and the second yoke exposed in the cylindrical hole 64. Is the connection surface E.

励磁コイル65は、第1のヨーク51の側板部52と上接続部53の境界部を囲んで配置されており、図示されていない電源につながっている。励磁コイル65は、第1のヨークの中に埋め込まれているが、磁気回路50の製作にあたっては、第1のヨーク51の側板部52を2点鎖線の位置で切り離した形で組み立て、励磁コイル65を配置した後に側板部52をねじ等で取り付けることができる。非磁性材料からなる上面板66が、磁気回路50の上面に配置され、励磁コイル65を保護するとともに、上面に何か磁性材料が接触しても第1のヨーク51と第2のヨーク56の磁気的な接続が起こらないようにしている。   The exciting coil 65 is disposed so as to surround the boundary between the side plate portion 52 and the upper connecting portion 53 of the first yoke 51, and is connected to a power source (not shown). The exciting coil 65 is embedded in the first yoke. When the magnetic circuit 50 is manufactured, the side plate portion 52 of the first yoke 51 is assembled at a position indicated by a two-dot chain line, and the exciting coil is assembled. After arranging 65, the side plate part 52 can be attached with a screw or the like. A top plate 66 made of a non-magnetic material is disposed on the top surface of the magnetic circuit 50 to protect the exciting coil 65, and even if any magnetic material contacts the top surface, the first yoke 51 and the second yoke 56 Magnetic connection is prevented from occurring.

永久磁石組立体69は、円柱状の穴64内にその中心軸を回転軸として回転可能に配置されている。永久磁石組立体69は、中央に永久磁石70を有し、永久磁石70の左右の磁極面にはそれぞれ磁性材料からなる磁極部材71、72が配置されている。磁極部材71、72の外側端面は、円柱状の穴64の内面と合うように円柱状の側面形状を有する磁極面71a、72aである。また、永久磁石組立体69は、非磁性材料からなるカバー73、74を有し、永久磁石70を保護している。   The permanent magnet assembly 69 is rotatably disposed in the cylindrical hole 64 with its central axis as the rotation axis. The permanent magnet assembly 69 has a permanent magnet 70 in the center, and magnetic pole members 71 and 72 made of a magnetic material are disposed on the left and right magnetic pole surfaces of the permanent magnet 70, respectively. The outer end surfaces of the magnetic pole members 71 and 72 are magnetic pole surfaces 71 a and 72 a having cylindrical side surface shapes so as to match the inner surface of the cylindrical hole 64. The permanent magnet assembly 69 includes covers 73 and 74 made of a nonmagnetic material, and protects the permanent magnet 70.

図6を参照するに、永久磁石組立体69の回転軸方向の両端部に非磁性材料からなる回転軸部75、76が配置されている。回転軸部75、76は、それぞれ永久磁石組立体69を把持するための把持部75a、76aを有する。把持部75a、76aは、両方とも磁極部材71、72にねじ等で結合されている。回転軸部75、76は、それぞれ軸受け部77、78で支持されている。軸受け部77、78は、それぞれ非磁性材料からなる正面板67、背面板68に配置されている。正面板67と背面板68は、励磁コイル65を保護するとともに、正面と背面において何か磁性材料が接触しても第1のヨーク51と第2のヨーク56の磁気的な接続が起こらないようにしている。回転軸部75の外側に突出した部分には、ハンドル79を取り付けても良い。しかし、回転軸部75、76およびハンドル79は配置されなくとも良い。   Referring to FIG. 6, rotating shaft portions 75 and 76 made of a nonmagnetic material are disposed at both ends of the permanent magnet assembly 69 in the rotating shaft direction. The rotary shaft portions 75 and 76 have grip portions 75 a and 76 a for gripping the permanent magnet assembly 69, respectively. Both the grip portions 75a and 76a are coupled to the magnetic pole members 71 and 72 by screws or the like. The rotating shaft portions 75 and 76 are supported by bearing portions 77 and 78, respectively. The bearing portions 77 and 78 are disposed on a front plate 67 and a back plate 68 made of a nonmagnetic material, respectively. The front plate 67 and the back plate 68 protect the exciting coil 65, and the magnetic connection between the first yoke 51 and the second yoke 56 does not occur even if any magnetic material contacts the front and back surfaces. I have to. A handle 79 may be attached to a portion protruding outside the rotating shaft portion 75. However, the rotating shaft portions 75 and 76 and the handle 79 may not be arranged.

次に、磁気回路50の作用と効果について説明する。図5を参照するに、永久磁石組立体69の一方の磁極面71a(図5ではN極)が接続面B1に、他方の磁極面72a(図5ではS極)が接続面Eに磁気的に接続している。従って、永久磁石組立体69の磁束はN極面71aから矢印81の向きに通過し、第1のヨーク51、第1の磁気作用面55、磁性体85、第2の磁気作用面57、第2のヨーク56を経て永久磁石組立体69のS極面72aに戻る。即ち、図5は、第1および第2の磁気作用面に磁界が発生し磁性体85を吸着保持することができる励磁状態である。   Next, the operation and effect of the magnetic circuit 50 will be described. Referring to FIG. 5, one magnetic pole surface 71a (N pole in FIG. 5) of the permanent magnet assembly 69 is magnetically connected to the connecting surface B1, and the other magnetic pole surface 72a (S pole in FIG. 5) is magnetically connected to the connecting surface E. Connected to. Therefore, the magnetic flux of the permanent magnet assembly 69 passes from the N pole surface 71a in the direction of the arrow 81, and the first yoke 51, the first magnetic action surface 55, the magnetic body 85, the second magnetic action surface 57, 2 returns to the S pole surface 72a of the permanent magnet assembly 69 through the yoke 56. That is, FIG. 5 shows an excited state in which a magnetic field is generated on the first and second magnetic action surfaces and the magnetic body 85 can be attracted and held.

図5の励磁状態を非励磁状態に切り換えるには、励磁コイル65へ通電して、接続面B1がN極、第1の磁気作用面55および接続面B2がS極となるようにする。第1の磁気作用面55のS極は、磁性体85を経て、第2のヨーク56の接続面EをS極にする。この時、永久磁石組立体のN極面71aは接続面B1のN極から磁気的な反発力を受け、近くの接続面B2のS極から磁気的な吸引力を受ける。また、永久磁石組立体のS極面72aは接続面EのS極から磁気的な反発力を受け、近くの接続面B1のN極から磁気的な吸引力を受ける。従って、永久磁石組立体69は、図5において反時計回りに90度回転し、N極面71aが接続面B2のS極と磁気的に接続し、S極面72aが接続面B1のN極と磁気的に接続して止まる。この状態が、図7に示した非励磁状態である。永久磁石組立体69の回転後は、励磁コイル65への通電を止めても非励磁状態が維持される。   In order to switch the excitation state of FIG. 5 to the non-excitation state, the excitation coil 65 is energized so that the connection surface B1 becomes the N pole, and the first magnetic action surface 55 and the connection surface B2 become the S pole. The S pole of the first magnetic acting surface 55 passes through the magnetic body 85 and turns the connection surface E of the second yoke 56 into the S pole. At this time, the N pole surface 71a of the permanent magnet assembly receives a magnetic repulsive force from the N pole of the connection surface B1, and receives a magnetic attractive force from the S pole of the nearby connection surface B2. The S pole surface 72a of the permanent magnet assembly receives a magnetic repulsive force from the S pole of the connection surface E, and receives a magnetic attractive force from the N pole of the nearby connection surface B1. Therefore, the permanent magnet assembly 69 rotates 90 degrees counterclockwise in FIG. 5, the N pole surface 71a is magnetically connected to the S pole of the connection surface B2, and the S pole surface 72a is the N pole of the connection surface B1. And stop magnetically connected. This state is the non-excited state shown in FIG. After the permanent magnet assembly 69 is rotated, the non-excited state is maintained even if the energization of the exciting coil 65 is stopped.

図7を参照するに、永久磁石組立体のN極面71aは接続面B2と磁気的に接続しており、永久磁石組立体のS極面72aは接続面B1と磁気的に接続しているので、永久磁石組立体69は第1のヨーク51によって磁気的に短絡されており、磁束は矢印82の向きに通過する。従って、図7は、第1の磁気作用面55および第2の磁気作用面57に磁界の発生しない(即ち、吸着力の発生しない)非励磁状態を示している。非励磁状態では吸着保持されていた磁性体85は釈放される。   Referring to FIG. 7, the N pole surface 71a of the permanent magnet assembly is magnetically connected to the connection surface B2, and the S pole surface 72a of the permanent magnet assembly is magnetically connected to the connection surface B1. Therefore, the permanent magnet assembly 69 is magnetically short-circuited by the first yoke 51, and the magnetic flux passes in the direction of the arrow 82. Accordingly, FIG. 7 shows a non-excitation state in which no magnetic field is generated on the first magnetic action surface 55 and the second magnetic action surface 57 (that is, no attracting force is generated). In the non-excited state, the magnetic body 85 that has been attracted and held is released.

図7の非励磁状態を図5の励磁状態に切り換えるには、励磁コイル65へ上記と逆向きに通電して、接続面B1がS極、第1の磁気作用面55および接続面B2がN極となるようにする。この時、永久磁石組立体のN極面71aは接続面B2のN極から磁気的な反発力を受け、近くの接続面B1のS極から磁気的な吸引力を受ける。従って、永久磁石組立体69は、図7において時計回りに90度回転し、図5の励磁状態になる。   In order to switch the non-excitation state of FIG. 7 to the excitation state of FIG. 5, the exciting coil 65 is energized in the opposite direction to the above, the connection surface B1 is the S pole, and the first magnetic action surface 55 and the connection surface B2 are N. Try to be the pole. At this time, the N pole surface 71a of the permanent magnet assembly receives a magnetic repulsive force from the N pole of the connection surface B2, and receives a magnetic attractive force from the S pole of the nearby connection surface B1. Accordingly, the permanent magnet assembly 69 rotates 90 degrees clockwise in FIG. 7 and enters the excited state of FIG.

磁気回路50においては、励磁状態と非励磁状態との切り換えは、励磁コイル65への通電方向を切り換えるだけでよいから遠隔操作が容易である。また、励磁コイル65の起磁力が十分であれば、永久磁石組立体69の回転は瞬時に起こり、磁極面と接続面の磁気的な接続が切り換わった後は、励磁コイル65への通電が無くとも、永久磁石の磁気力により励磁状態と非励磁状態を安定に維持することができるので、励磁コイル65への通電は瞬時でよい。従って、磁気回路50は消費電力の少ない磁気回路である。   In the magnetic circuit 50, switching between the excited state and the non-excited state only requires switching the energizing direction to the exciting coil 65, so that remote operation is easy. Further, if the magnetomotive force of the exciting coil 65 is sufficient, the permanent magnet assembly 69 is instantaneously rotated. After the magnetic connection between the magnetic pole surface and the connecting surface is switched, the exciting coil 65 is energized. Even if not, the excitation state and the non-excitation state can be stably maintained by the magnetic force of the permanent magnet, so that the excitation coil 65 may be energized instantaneously. Therefore, the magnetic circuit 50 is a magnetic circuit with low power consumption.

さらに、磁気回路50においては、永久磁石組立体69は中心軸の周りに回転するだけであり、永久磁石組立体69と接続面B1、B2、Eとの衝突は起こらないので、永久磁石70が破損することは無い。特にフェライト磁石や希土類磁石のように磁気特性に優れているが材質的に脆い永久磁石を使用しても永久磁石70の破損が生じない。   Further, in the magnetic circuit 50, the permanent magnet assembly 69 only rotates around the central axis, and the permanent magnet assembly 69 does not collide with the connection surfaces B1, B2, and E. There is no damage. In particular, even if a permanent magnet that is excellent in magnetic properties such as a ferrite magnet or a rare earth magnet but is brittle in material is used, the permanent magnet 70 is not damaged.

尚、磁気回路50を図5に示す励磁状態に切り換えた後も、励磁コイル65への通電を継続することができる。これにより、第1および第2の磁気作用面に発生する磁界を強めて、磁性体85をさらに強く吸着保持することができる。さらに、これとは逆向きに励磁コイル65へ弱く通電して、第1および第2の磁気作用面に発生する磁界を弱めることもできる。   Even after the magnetic circuit 50 is switched to the excitation state shown in FIG. 5, the energization to the excitation coil 65 can be continued. Thereby, the magnetic field generated on the first and second magnetic action surfaces can be strengthened, and the magnetic body 85 can be attracted and held more strongly. Further, the magnetic field generated on the first and second magnetic action surfaces can be weakened by weakly energizing the exciting coil 65 in the opposite direction.

磁気回路50を図7に示す非励磁状態に切り換えた後も、被吸着物である磁性体85の材質に起因する磁化が原因で吸着力が残留し、磁性体85の釈放が困難になる場合がある。このような場合には、非励磁状態にする際に励磁コイル65へ通電したのと同じ向きで更に少し大きめの通電を瞬間的に行うと良い。これにより、第1の磁気作用面55にはさらに強いS極が発生し、第2の磁気作用面57にはさらに強いN極が発生して、磁性体85に対して吸着保持されていた時とは逆のさらに強い磁界が作用することになり、磁性体85の材質に起因する磁化が相殺され釈放が容易になる。   Even when the magnetic circuit 50 is switched to the non-excited state shown in FIG. 7, the attractive force remains due to the magnetization caused by the material of the magnetic body 85 that is the object to be attracted, making it difficult to release the magnetic body 85. There is. In such a case, it is preferable that a slightly larger energization is instantaneously performed in the same direction as the energization of the excitation coil 65 when the non-excitation state is set. As a result, a stronger south pole is generated on the first magnetic action surface 55 and a stronger north pole is generated on the second magnetic action surface 57 and is attracted and held to the magnetic body 85. A stronger magnetic field opposite to the above acts, and the magnetization caused by the material of the magnetic body 85 is canceled out and the release becomes easy.

ハンドル79を取り付けてある場合は、その回転により、永久磁石組立体69の回転位置を確認することができ、ハンドル79を使用して永久磁石組立体69を手動で回転することもできる。また、ハンドル79に外部から思いがけない力が作用して永久磁石組立体69を回転させないように、ハンドル79にロック機構を取り付けても良い。   When the handle 79 is attached, the rotation position of the permanent magnet assembly 69 can be confirmed by the rotation, and the permanent magnet assembly 69 can be manually rotated using the handle 79. In addition, a lock mechanism may be attached to the handle 79 so that an unexpected force is applied to the handle 79 from the outside and the permanent magnet assembly 69 is not rotated.

尚、磁気回路50の図5に示した構造を、図5の6−6断面を鏡面として、第1のヨークの上接続部53と下接続部54、セパレーター61および励磁コイル65を上下に反転させた構造に変更しても、磁気回路50と同様の作用および効果を示すものとなる。   Note that the structure shown in FIG. 5 of the magnetic circuit 50 is inverted upside down with the upper connecting portion 53 and the lower connecting portion 54 of the first yoke, the separator 61 and the exciting coil 65, with the section 6-6 in FIG. Even if the structure is changed, the same operation and effect as the magnetic circuit 50 are exhibited.

図8に本発明の実施例3として磁気回路100を示す。この磁気回路100も通常リフティングマグネット等と呼ばれている装置のもので、実施例2の磁気回路50と類似しており、その外形は概略直方体形であり、下面に、磁性体を吸着保持する吸着面(即ち磁気作用面)を有する。図8は、図5と同じく永久磁石の中心を通る垂直方向の断面図である。なお、永久磁石の中心を通る水平方向の断面図については、図6とほとんど同じになるので、図示しない。   FIG. 8 shows a magnetic circuit 100 as a third embodiment of the present invention. This magnetic circuit 100 is also a device normally called a lifting magnet or the like and is similar to the magnetic circuit 50 of the second embodiment. The outer shape of the magnetic circuit 100 is a substantially rectangular parallelepiped shape, and the magnetic material is attracted and held on the lower surface. It has an attracting surface (ie a magnetic working surface) FIG. 8 is a vertical sectional view passing through the center of the permanent magnet as in FIG. Note that a horizontal sectional view passing through the center of the permanent magnet is almost the same as that in FIG.

まず、磁気回路100の構造について説明する。図8を参照するに、第1のヨーク101は、上板部102、側板部103、上接続部104、中接続部105、下接続部106を有し、側板部103の下面に第1の磁気作用面107を有している。第2のヨーク108は下面に第2の磁気作用面109を有している。第1のヨークの上接続部104、中接続部105、下接続部106および第2のヨーク108は、非磁性材料からなるセパレーター111、112、113、114によってそれぞれ磁気的に絶縁されており、これらに囲まれて水平方向に伸びる円柱状の穴116がある。この円柱状の穴116内に露出している上接続部104、中接続部105、下接続部106の面部分がそれぞれ接続面C1、C2、C3であり、円柱状の穴116内に露出している第2のヨーク108の面部分が接続面Eである。   First, the structure of the magnetic circuit 100 will be described. Referring to FIG. 8, the first yoke 101 has an upper plate portion 102, a side plate portion 103, an upper connection portion 104, a middle connection portion 105, and a lower connection portion 106, and the first yoke 101 is formed on the lower surface of the side plate portion 103. A magnetic working surface 107 is provided. The second yoke 108 has a second magnetic action surface 109 on the lower surface. The upper connecting portion 104, the middle connecting portion 105, the lower connecting portion 106, and the second yoke 108 of the first yoke are magnetically insulated by separators 111, 112, 113, 114 made of a nonmagnetic material, respectively. There is a cylindrical hole 116 surrounded by these and extending in the horizontal direction. The surface portions of the upper connection portion 104, the middle connection portion 105, and the lower connection portion 106 exposed in the cylindrical hole 116 are connection surfaces C1, C2, and C3, respectively, and are exposed in the cylindrical hole 116. The surface portion of the second yoke 108 is a connection surface E.

励磁コイル117は、第1のヨークの上板部102と上接続部104の境界部を囲んで配置されており、励磁コイル118は、第1のヨークの側板部103と中接続部105の境界部を囲んで配置されており、両励磁コイルは図示されていない電源につながっている。両励磁コイル117と118は、第1のヨークの中に埋め込まれているが、図8に示した磁気回路100の製作にあたっては、第1のヨーク101の上板部102と側板部103を2点鎖線の位置で切り離した形で組み立て、励磁コイル117と118を配置した後に上板部102と側板部103をねじ等で取り付けることができる。また、第1のヨーク101の上板部102と第2のヨーク108との磁気的な絶縁のために、セパレーター115が配置されている。   The exciting coil 117 is disposed so as to surround the boundary between the upper plate portion 102 and the upper connecting portion 104 of the first yoke, and the exciting coil 118 is arranged at the boundary between the side plate portion 103 and the middle connecting portion 105 of the first yoke. The two exciting coils are connected to a power source (not shown). Both excitation coils 117 and 118 are embedded in the first yoke, but when the magnetic circuit 100 shown in FIG. 8 is manufactured, the upper plate portion 102 and the side plate portion 103 of the first yoke 101 are divided into two. The upper plate portion 102 and the side plate portion 103 can be attached with screws or the like after being assembled in the form of being separated at the position of the dotted line and arranging the exciting coils 117 and 118. In addition, a separator 115 is disposed for magnetic insulation between the upper plate portion 102 of the first yoke 101 and the second yoke 108.

永久磁石組立体119は、円柱状の穴116内にその中心軸を回転軸として回転可能に配置されている。永久磁石組立体119は、実施例2の磁気回路50における永久磁石組立体69と同じものである。即ち、永久磁石120の左右の磁極面にはそれぞれ磁性材料からなる磁極部材121、122が配置されている。磁極部材121、122の外側端面は、円柱状の穴116の内面と合うように円柱状の側面形状を有する磁極面121a、122aである。また、永久磁石組立体119は、非磁性材料からなるカバー123,124を有し、永久磁石120を保護している。   The permanent magnet assembly 119 is rotatably disposed in the cylindrical hole 116 with its central axis as the rotation axis. The permanent magnet assembly 119 is the same as the permanent magnet assembly 69 in the magnetic circuit 50 of the second embodiment. That is, magnetic pole members 121 and 122 made of a magnetic material are disposed on the left and right magnetic pole surfaces of the permanent magnet 120, respectively. The outer end surfaces of the magnetic pole members 121 and 122 are magnetic pole surfaces 121a and 122a having a cylindrical side surface shape so as to match the inner surface of the cylindrical hole 116. The permanent magnet assembly 119 includes covers 123 and 124 made of a nonmagnetic material, and protects the permanent magnet 120.

図示されてはいないが、永久磁石組立体119の回転軸方向の両端部には非磁性材料からなる回転軸部が配置されている。以下、回転軸部等の構造については、実施例2で説明した図6の構造と同じであるので、図6についての説明を参照されたい。   Although not shown in the drawing, a rotating shaft portion made of a nonmagnetic material is disposed at both ends of the permanent magnet assembly 119 in the rotating shaft direction. Hereinafter, the structure of the rotating shaft and the like is the same as the structure of FIG. 6 described in the second embodiment, so refer to the description of FIG.

次に、磁気回路100の作用と効果について説明する。図8を参照するに、永久磁石組立体119の一方の磁極面121a(図8ではN極)が接続面C2に、他方の磁極面122a(図8ではS極)が接続面Eに磁気的に接続している。従って、永久磁石組立体119の磁束はN極面121aから第1のヨークの中接続部105、側板部103、第1の磁気作用面107、磁性体135、第2の磁気作用面109、第2のヨーク108を経て永久磁石組立体119のS極面122aに戻る。即ち、図8は、第1および第2の磁気作用面に磁界が発生し磁性体135を吸着保持することができる励磁状態である。   Next, the operation and effect of the magnetic circuit 100 will be described. Referring to FIG. 8, one magnetic pole surface 121a (N pole in FIG. 8) of the permanent magnet assembly 119 is magnetically connected to the connecting surface C2, and the other magnetic pole surface 122a (S pole in FIG. 8) is magnetically connected to the connecting surface E. Connected to. Accordingly, the magnetic flux of the permanent magnet assembly 119 flows from the N pole surface 121a to the middle connection portion 105, the side plate portion 103, the first magnetic action surface 107, the magnetic body 135, the second magnetic action surface 109, and the first yoke. It returns to the S pole surface 122a of the permanent magnet assembly 119 through the two yokes 108. That is, FIG. 8 shows an excited state in which a magnetic field is generated on the first and second magnetic action surfaces and the magnetic body 135 can be attracted and held.

図8の励磁状態を非励磁状態に切り換えるには、例えば、励磁コイル117へ通電して、接続面C1がS極となるようにする。すると、接続面C2および接続面C3はN極となる。永久磁石組立体のN極面121aは、接続面C2および接続面C3のN極から磁気的な反発力を受け、接続面C1のS極から磁気的な吸引力を受ける。従って、永久磁石組立体119は、図8において時計回りに90度回転し、N極面121aは接続面C1のS極と磁気的に接続し、S極面122aは接続面C3のN極と磁気的に接続して止まる。この状態が、磁気回路100の非励磁状態である。永久磁石組立体119の回転後は、励磁コイル117への通電を止めても永久磁石の磁気力により非励磁状態が維持される。   In order to switch the excitation state in FIG. 8 to the non-excitation state, for example, the excitation coil 117 is energized so that the connection surface C1 becomes the S pole. Then, the connection surface C2 and the connection surface C3 become N poles. The N pole surface 121a of the permanent magnet assembly receives a magnetic repulsive force from the N pole of the connection surface C2 and the connection surface C3, and receives a magnetic attractive force from the S pole of the connection surface C1. Accordingly, the permanent magnet assembly 119 rotates 90 degrees clockwise in FIG. 8, the N pole surface 121a is magnetically connected to the S pole of the connection surface C1, and the S pole surface 122a is connected to the N pole of the connection surface C3. Magnetically connect and stop. This state is a non-excitation state of the magnetic circuit 100. After the permanent magnet assembly 119 is rotated, the non-excited state is maintained by the magnetic force of the permanent magnet even if the energization of the exciting coil 117 is stopped.

前記の非励磁状態においては、永久磁石組立体119の磁束はN極面121aから第1のヨークの上接続部104、上板部102、側板部103、下接続部106を経て永久磁石組立体119のS極面122aに戻る。即ち、磁束は第1のヨーク101によって短絡されるので、第1および第2の磁気作用面に磁界が発生せず、磁性体を吸着保持することができない。   In the non-excited state, the magnetic flux of the permanent magnet assembly 119 passes through the first yoke upper connection portion 104, upper plate portion 102, side plate portion 103, and lower connection portion 106 from the N pole surface 121a. Return to the S pole surface 122a of 119. That is, since the magnetic flux is short-circuited by the first yoke 101, a magnetic field is not generated on the first and second magnetic action surfaces, and the magnetic material cannot be attracted and held.

前記の非励磁状態を励磁状態に切り換えるには、励磁コイル118へ通電して、接続面C2がS極となるようにする。すると、接続面C1および接続面C3はN極となる。永久磁石組立体のN極面121aは、接続面C1のN極から磁気的な反発力を受け、接続面C2のS極から磁気的な吸引力を受ける。従って、永久磁石組立体119は、図8において反時計回りに90度回転し、N極面121aは接続面C2のS極と磁気的に接続し、S極面122aは接続面Eと磁気的に接続して止まる。この状態が、図8に示した磁気回路100の励磁状態である。永久磁石組立体119の回転後は、励磁コイル118への通電を止めても永久磁石の磁気力により励磁状態が維持される。   In order to switch the non-excitation state to the excitation state, the excitation coil 118 is energized so that the connection surface C2 becomes the S pole. Then, the connection surface C1 and the connection surface C3 become N poles. The N pole surface 121a of the permanent magnet assembly receives a magnetic repulsive force from the N pole of the connection surface C1, and receives a magnetic attractive force from the S pole of the connection surface C2. Therefore, the permanent magnet assembly 119 rotates 90 degrees counterclockwise in FIG. 8, the N pole surface 121a is magnetically connected to the S pole of the connection surface C2, and the S pole surface 122a is magnetically connected to the connection surface E. Connect to and stop. This state is an excitation state of the magnetic circuit 100 shown in FIG. After the permanent magnet assembly 119 is rotated, the excited state is maintained by the magnetic force of the permanent magnet even if the energization to the exciting coil 118 is stopped.

磁気回路100においては、励磁状態と非励磁状態との切り換えに際し、励磁コイル117と励磁コイル118への通電を使い分けることで、上述のごとく永久磁石組立体119の回転方向を定めることができる。そして、励磁状態と非励磁状態との切り換えは、励磁コイル117と励磁コイル118への通電を行うだけで良いから、磁気回路100は遠隔操作が容易である。また、永久磁石組立体119の回転は瞬時に起こり、励磁状態と非励磁状態が切り換わった後は、励磁コイルへの通電が無くとも、永久磁石120の磁気力により励磁状態と非励磁状態を安定に維持することができるので、励磁コイルへの通電は瞬時でよく、磁気回路100は消費電力の少ない磁気回路である。   In the magnetic circuit 100, the rotation direction of the permanent magnet assembly 119 can be determined as described above by properly using energization to the excitation coil 117 and the excitation coil 118 when switching between the excited state and the non-excited state. Switching between the excited state and the non-excited state only requires energization of the exciting coil 117 and the exciting coil 118, so that the magnetic circuit 100 can be easily operated remotely. Further, the permanent magnet assembly 119 rotates instantaneously, and after the excitation state and the non-excitation state are switched, the excitation state and the non-excitation state are changed by the magnetic force of the permanent magnet 120 even if the excitation coil is not energized. Since it can be maintained stably, the energization of the exciting coil may be instantaneous, and the magnetic circuit 100 is a magnetic circuit with low power consumption.

しかし、磁気回路100を励磁状態に切り換えた後も、励磁コイル118への通電を継続することができる。これにより、第1および第2の磁気作用面に発生する磁界を強めて、磁性体135をさらに強く吸着保持することができる。さらに、これとは逆向きに励磁コイル118へ弱く通電して、第1および第2の磁気作用面に発生する磁界を弱めることもできる。   However, even after the magnetic circuit 100 is switched to the excited state, energization to the exciting coil 118 can be continued. Thereby, the magnetic field generated on the first and second magnetic action surfaces can be strengthened, and the magnetic body 135 can be attracted and held more strongly. Further, the magnetic field generated on the first and second magnetic acting surfaces can be weakened by weakly energizing the exciting coil 118 in the opposite direction.

さらに、永久磁石組立体119は中心軸の周りに回転するだけであり、永久磁石組立体119と接続面C1、C2、C3、Eとの衝突は起こらないので、永久磁石120は破損することが無い。特にフェライト磁石や希土類磁石のように磁気特性に優れているが材質的に脆い永久磁石を使用しても永久磁石120の破損が生じない。   Further, since the permanent magnet assembly 119 only rotates around the central axis, and the permanent magnet assembly 119 does not collide with the connection surfaces C1, C2, C3, E, the permanent magnet 120 may be damaged. No. In particular, even if a permanent magnet that is excellent in magnetic properties such as a ferrite magnet or a rare earth magnet but is brittle in material is used, the permanent magnet 120 is not damaged.

磁気回路100の励磁状態と非励磁状態の切り換えについては、上述のごとく、励磁コイル117と励磁コイル118を別々に使用したが、両方の励磁コイルを同時に使用することもできる。例えば、図8の励磁状態を非励磁状態に切り換えるには、励磁コイル117に通電して接続面C1をN極にし、同時に励磁コイル118に通電して接続面C2をN極にする。すると、接続面C3はS極になり、永久磁石組立体119は反時計回りに90度回転し、N極面121aは接続面C3のS極と磁気的に接続し、S極面122aは接続面C1のN極と磁気的に接続して止まる。この状態も、やはり、磁気回路100の非励磁状態である。この時、励磁コイル117と励磁コイル118への通電は、第1の磁気作用面107をS極にするので、磁性体135に対して吸着保持されていた時とは逆の磁界を及ぼし、磁性体135の磁化による残留吸着力を相殺し、釈放を容易にすることができる。   As described above, the excitation coil 117 and the excitation coil 118 are separately used for switching the excitation state and the non-excitation state of the magnetic circuit 100. However, both excitation coils can be used simultaneously. For example, in order to switch the excitation state of FIG. 8 to the non-excitation state, the excitation coil 117 is energized to make the connection surface C1 N pole, and at the same time, the excitation coil 118 is energized to make the connection surface C2 N pole. Then, the connection surface C3 becomes the S pole, the permanent magnet assembly 119 rotates 90 degrees counterclockwise, the N pole surface 121a is magnetically connected to the S pole of the connection surface C3, and the S pole surface 122a is connected. Magnetically connected to the north pole of surface C1 and stopped. This state is also a non-excited state of the magnetic circuit 100. At this time, energization to the excitation coil 117 and the excitation coil 118 causes the first magnetic action surface 107 to be the S pole, and thus exerts a magnetic field opposite to that when the magnetic body 135 is attracted and held, and magnetic The residual attractive force due to the magnetization of the body 135 can be offset and release can be facilitated.

さらに、前記非励磁状態を励磁状態に切り換えるには、励磁コイル117と励磁コイル118に同時に通電して接続面C1と接続面C2をS極にすればよい。すると、接続面C3はN極になり、永久磁石組立体119は時計回りに90度回転し、N極面121aは接続面C2と磁気的に接続し、S極面122aは接続面Eと磁気的に接続して止まり、磁気回路100は励磁状態となる。   Further, in order to switch the non-excitation state to the excitation state, it is only necessary to energize the excitation coil 117 and the excitation coil 118 at the same time so that the connection surface C1 and the connection surface C2 become the S pole. Then, the connection surface C3 becomes an N pole, the permanent magnet assembly 119 rotates 90 degrees clockwise, the N pole surface 121a is magnetically connected to the connection surface C2, and the S pole surface 122a is magnetically connected to the connection surface E. The magnetic circuit 100 enters an excited state.

また、磁気回路100は、励磁コイルを2個有するので、もしもどちらかの励磁コイルに故障が発生しても、残りの励磁コイルを使用することができ、故障への対応が容易である。
また、励磁コイルは、第1のヨーク101の側板部103と下接続部106との境界部を囲んで配置しても良いし、第2のヨーク108の接続面Eを囲むように配置しても良い。
In addition, since the magnetic circuit 100 has two exciting coils, even if a failure occurs in one of the exciting coils, the remaining exciting coils can be used, and it is easy to deal with the failure.
The exciting coil may be disposed so as to surround the boundary portion between the side plate portion 103 and the lower connecting portion 106 of the first yoke 101, or may be disposed so as to surround the connecting surface E of the second yoke 108. Also good.

本発明の磁気回路は、リフティングマグネット、マグネットベース、マグネットホルダーの外にも、マグネットチャックや種々の磁気吸着保持装置、磁気選別機、磁化装置、磁気処理装置、磁気反発力応用装置など、磁界を利用する多くの装置に利用可能な磁気回路である。尚、本発明の磁気回路の利用に際しては、第1のヨークだけに磁気的に接続される第1のヨーク延長部材、または第2のヨークだけに磁気的に接続される第2のヨーク延長部材のどちらか一方、あるいは両方を配置し、利用に適した新たな形状の磁気作用面をヨーク延長部材によって形成することもできる。   In addition to lifting magnets, magnet bases, and magnet holders, the magnetic circuit of the present invention also applies magnetic fields such as magnet chucks, various magnetic adsorption and holding devices, magnetic sorters, magnetizing devices, magnetic processing devices, and magnetic repulsion force application devices. It is a magnetic circuit that can be used in many devices. When using the magnetic circuit of the present invention, the first yoke extension member magnetically connected only to the first yoke, or the second yoke extension member magnetically connected only to the second yoke. Either or both of them can be arranged, and a new shape magnetic action surface suitable for use can be formed by the yoke extension member.

本発明の磁気回路の実施例1の垂直方向の断面図(図2の1−1断面)であり、励磁状態を示している。It is sectional drawing (1-1 section of FIG. 2) of the perpendicular direction of Example 1 of the magnetic circuit of this invention, and has shown the excitation state. 本発明の磁気回路の実施例1の水平方向の断面図(図1の2−2断面)である。It is sectional drawing of the horizontal direction of Example 1 of the magnetic circuit of this invention (2-2 section of FIG. 1). 本発明の磁気回路の実施例1の垂直方向の断面図であり、非励磁状態を示している。It is sectional drawing of the perpendicular direction of Example 1 of the magnetic circuit of this invention, and has shown the non-excitation state. 本発明の磁気回路の実施例1の正面図である。It is a front view of Example 1 of the magnetic circuit of the present invention. 本発明の磁気回路の実施例2の垂直方向の断面図(図6の5−5断面)であり、励磁状態を示している。It is sectional drawing (5-5 section of FIG. 6) of the perpendicular direction of Example 2 of the magnetic circuit of this invention, and has shown the excitation state. 本発明の磁気回路の実施例2の水平方向の断面図(図5の6−6断面)である。FIG. 6 is a horizontal sectional view (cross section 6-6 in FIG. 5) of the magnetic circuit according to the second embodiment of the present invention. 本発明の磁気回路の実施例2の垂直方向の断面図であり、非励磁状態を示している。It is sectional drawing of the perpendicular direction of Example 2 of the magnetic circuit of this invention, and has shown the non-excitation state. 本発明の磁気回路の実施例3の垂直方向の断面図であり、励磁状態を示している。It is sectional drawing of the perpendicular direction of Example 3 of the magnetic circuit of this invention, and has shown the excitation state.

符号の説明Explanation of symbols

10、50、100:磁気回路
11、51、101:第1のヨーク
12、55、107:第1の磁気作用面
13、56、108:第2のヨーク
14、57、109:第2の磁気作用面
17、64、116:円柱状の穴
20、70、120:永久磁石
69、119:永久磁石組立体
71、72、121、122:磁極部材
23、65、117、118:励磁コイル
15、16、61、62、63、111、112、113、114、115:セパレーター
28、29、75、76:回転軸部
32、79:ハンドル
33、34:ストッパー
10, 50, 100: Magnetic circuit 11, 51, 101: First yoke 12, 55, 107: First magnetic working surface 13, 56, 108: Second yoke 14, 57, 109: Second magnetic Working surface 17, 64, 116: Cylindrical hole 20, 70, 120: Permanent magnet 69, 119: Permanent magnet assembly 71, 72, 121, 122: Magnetic pole member 23, 65, 117, 118: Excitation coil 15, 16, 61, 62, 63, 111, 112, 113, 114, 115: Separator 28, 29, 75, 76: Rotating shaft 32, 79: Handle 33, 34: Stopper

Claims (5)

第1の磁気作用面を有する第1のヨークと、第2の磁気作用面を有し第1のヨークと磁気的に絶縁されている第2のヨークと、第1および第2のヨークに囲まれた円柱状の穴内に回転可能に配置されている永久磁石または永久磁石組立体と、励磁コイルとを含み、励磁コイルへ通電して永久磁石または永久磁石組立体を回転させ、永久磁石または永久磁石組立体の磁極面と、円柱状の穴の内面に露出している第1のヨークおよび第2のヨークの接続面との磁気的な接続を切り換え、第1および第2の磁気作用面を磁界の発生する励磁状態と磁界の発生しない非励磁状態とに切り換えることが可能な磁気回路。   Surrounded by a first yoke having a first magnetic acting surface, a second yoke having a second magnetic acting surface and magnetically insulated from the first yoke, and the first and second yokes A permanent magnet or permanent magnet assembly rotatably arranged in the cylindrical hole formed, and an excitation coil, and energizing the excitation coil to rotate the permanent magnet or permanent magnet assembly to rotate the permanent magnet or permanent magnet. The magnetic connection between the magnetic pole surface of the magnet assembly and the connection surfaces of the first yoke and the second yoke exposed on the inner surface of the cylindrical hole is switched, and the first and second magnetic action surfaces are switched. A magnetic circuit that can be switched between an excited state where a magnetic field is generated and a non-excited state where a magnetic field is not generated. 第1のヨークは円柱状の穴の内面で円周方向に関して1箇所に露出する接続面Aを有し、第2のヨークは円柱状の穴の内面で円周方向に関して1箇所に露出する接続面Eを有し、
励磁コイルへ通電して、永久磁石または永久磁石組立体の一方の磁極面が接続面Aに接続し他方の磁極面が接続面Eに接続する励磁状態と、両方の磁極面のどちらもが接続面AとEの両方に接続する非励磁状態とに切り換えることが可能な請求項1に記載の磁気回路。
The first yoke has a connection surface A that is exposed at one location in the circumferential direction on the inner surface of the cylindrical hole, and the second yoke is a connection that is exposed at one location in the circumferential direction on the inner surface of the cylindrical hole. Surface E,
Energizing the exciting coil, one of the magnetic pole surfaces of the permanent magnet or permanent magnet assembly is connected to the connection surface A and the other magnetic pole surface is connected to the connection surface E, and both of the magnetic pole surfaces are connected The magnetic circuit according to claim 1, wherein the magnetic circuit can be switched to a non-excited state connected to both surfaces A and E.
第1のヨークは円柱状の穴の内面で円周方向に関して2箇所に露出する接続面B1およびB2を有し、第2のヨークは円柱状の穴の内面で円周方向に関して1箇所に露出する接続面Eを有し、励磁コイルへ通電して、永久磁石または永久磁石組立体の一方の磁極面が接続面B1またはB2のどちらか一方に接続し他方の磁極面が接続面Eに接続する励磁状態と、一方の磁極面が接続面B1またはB2のうちのどちらか一方に接続し他方の磁極面が接続面B1またはB2のうちの他方に接続する非励磁状態とに切り換えることが可能な請求項1に記載の磁気回路。   The first yoke has connection surfaces B1 and B2 exposed at two locations in the circumferential direction on the inner surface of the cylindrical hole, and the second yoke is exposed at one location in the circumferential direction on the inner surface of the cylindrical hole. A connection surface E to be energized, energizing the exciting coil, one magnetic pole surface of the permanent magnet or permanent magnet assembly is connected to either the connection surface B1 or B2, and the other magnetic pole surface is connected to the connection surface E. It is possible to switch between an excitation state to be performed and a non-excitation state in which one magnetic pole surface is connected to one of the connection surfaces B1 or B2 and the other magnetic pole surface is connected to the other of the connection surfaces B1 or B2. The magnetic circuit according to claim 1. 第1のヨークは円柱状の穴の内面で円周方向に関して3箇所に露出する接続面C1、C2、C3を有し、第2のヨークは円柱状の穴の内面で円周方向に関して1箇所に露出する接続面Eを有し、励磁コイルへ通電して、永久磁石または永久磁石組立体の一方の磁極面が接続面C1またはC2またはC3のうちのどれか1つに接続し他方の磁極面が接続面Eに接続する励磁状態と、一方の磁極面が接続面C1またはC2またはC3のうちのどれか1つに接続し他方の磁極面が残りの2つの接続面のうちのどれか1つに接続する非励磁状態とに切り換えることが可能な請求項1に記載の磁気回路。   The first yoke has connection surfaces C1, C2, and C3 exposed at three locations in the circumferential direction on the inner surface of the cylindrical hole, and the second yoke is located at one location in the circumferential direction on the inner surface of the cylindrical hole. And the exciting coil is energized so that one of the magnetic pole surfaces of the permanent magnet or permanent magnet assembly is connected to one of the connecting surfaces C1, C2 or C3, and the other magnetic pole. An excitation state in which the surface is connected to the connection surface E, one magnetic pole surface is connected to any one of the connection surfaces C1, C2, or C3, and the other magnetic pole surface is one of the remaining two connection surfaces. The magnetic circuit according to claim 1, wherein the magnetic circuit can be switched to a non-excitation state connected to one. 永久磁石または永久磁石組立体には回転軸部が配置されている請求項1から4のいずれか1項に記載の磁気回路。
The magnetic circuit according to any one of claims 1 to 4, wherein a rotating shaft portion is disposed in the permanent magnet or the permanent magnet assembly.
JP2006025430A 2006-02-02 2006-02-02 Magnetic circuit Pending JP2007208024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025430A JP2007208024A (en) 2006-02-02 2006-02-02 Magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025430A JP2007208024A (en) 2006-02-02 2006-02-02 Magnetic circuit

Publications (1)

Publication Number Publication Date
JP2007208024A true JP2007208024A (en) 2007-08-16

Family

ID=38487215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025430A Pending JP2007208024A (en) 2006-02-02 2006-02-02 Magnetic circuit

Country Status (1)

Country Link
JP (1) JP2007208024A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146036A (en) * 2017-03-06 2018-09-20 東京瓦斯株式会社 Ejection gas emergency shut-off tool and ejection gas emergency shut-off method
CN109419390A (en) * 2017-08-31 2019-03-05 佛山市顺德区美的电热电器制造有限公司 Stir toolbox, driving DPU disk pack unit and food processor
KR20190031133A (en) * 2017-09-15 2019-03-25 최태광 Magnetic force control device and magnetic substance holding device using the same
KR20190071595A (en) * 2017-12-14 2019-06-24 최태광 Magnectic force control device and magnetic substance holding device using the same
JP2020523792A (en) * 2017-06-08 2020-08-06 マグスウィッチ テクノロジー ワールドワイド プロプライエタリー リミテッドMagswitch Technology Worldwide Pty Ltd. Electromagnetically switchable permanent magnetic device
WO2022168997A1 (en) * 2021-02-02 2022-08-11 주식회사 호산기술 Magnet holder and magnetic drill comprising same
US11511396B2 (en) 2017-04-27 2022-11-29 Magswitch Technology Worldwide Pty Ltd. Magnetic coupling devices
US11901141B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146036A (en) * 2017-03-06 2018-09-20 東京瓦斯株式会社 Ejection gas emergency shut-off tool and ejection gas emergency shut-off method
US11511396B2 (en) 2017-04-27 2022-11-29 Magswitch Technology Worldwide Pty Ltd. Magnetic coupling devices
US11901142B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11901141B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11850708B2 (en) 2017-04-27 2023-12-26 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11839954B2 (en) 2017-04-27 2023-12-12 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11837402B2 (en) 2017-06-08 2023-12-05 Magswitch Technology, Inc. Electromagnet-switchable permanent magnet device
JP2020523792A (en) * 2017-06-08 2020-08-06 マグスウィッチ テクノロジー ワールドワイド プロプライエタリー リミテッドMagswitch Technology Worldwide Pty Ltd. Electromagnetically switchable permanent magnetic device
JP7303753B2 (en) 2017-06-08 2023-07-05 マグスウィッチ テクノロジー ワールドワイド プロプライエタリー リミテッド Electromagnetic Switchable Permanent Magnetic Device
US11651883B2 (en) 2017-06-08 2023-05-16 Magswitch Technology Worldwide Pty Ltd. Electromagnet-switchable permanent magnet device
CN109419390A (en) * 2017-08-31 2019-03-05 佛山市顺德区美的电热电器制造有限公司 Stir toolbox, driving DPU disk pack unit and food processor
KR102072122B1 (en) * 2017-09-15 2020-04-01 최태광 Magnetic force control device and magnetic substance holding device using the same
JP6996061B2 (en) 2017-09-15 2022-01-17 クァン チョイ、テ Magnetic force control device and magnetic body holding device using it
US11264157B2 (en) 2017-09-15 2022-03-01 Tae Kwang Choi Magnetic force control device and magnetic body holding device using same
CN110612581B (en) * 2017-09-15 2021-09-24 崔泰光 Magnetic force control device and magnet holding device using the same
KR102279531B1 (en) * 2017-09-15 2021-07-20 최태광 Magnetic force control device and magnetic substance holding device using the same
JP2020524471A (en) * 2017-09-15 2020-08-13 クァン チョイ、テ Magnetic force control device and magnetic body holding device using the same
KR20200010552A (en) * 2017-09-15 2020-01-30 최태광 Magnetic force control device and magnetic substance holding device using the same
CN110612581A (en) * 2017-09-15 2019-12-24 崔泰光 Magnetic force control device and magnet holding device using the same
KR20190031133A (en) * 2017-09-15 2019-03-25 최태광 Magnetic force control device and magnetic substance holding device using the same
KR102113980B1 (en) * 2017-12-14 2020-05-22 최태광 Magnectic force control device and magnetic substance holding device using the same
KR20190071595A (en) * 2017-12-14 2019-06-24 최태광 Magnectic force control device and magnetic substance holding device using the same
WO2022168997A1 (en) * 2021-02-02 2022-08-11 주식회사 호산기술 Magnet holder and magnetic drill comprising same
WO2022169029A1 (en) * 2021-02-02 2022-08-11 주식회사 호산기술 Magnet holder and magnetic drill comprising same

Similar Documents

Publication Publication Date Title
US20210296039A1 (en) Electromagnet-switchable permanent magnet device
JP2007208024A (en) Magnetic circuit
US8773226B2 (en) Driving device and relay
KR20190031133A (en) Magnetic force control device and magnetic substance holding device using the same
WO2006106240A3 (en) Quick-action bistable polarized electromagnetic actuator
BG104551A (en) Electromagnetic switch
CN110249398B (en) Polarity switching magnetic diode
JP2007129120A (en) Magnetic circuit
JP2005150412A (en) Electromagnet apparatus and electromagnetic contactor
JPH0416925B2 (en)
JP2771780B2 (en) electromagnet
JPH0225208Y2 (en)
JPH05251230A (en) Polarized electromagnet
RU2411600C2 (en) Two-position electromagnet
JPH0225209Y2 (en)
JPWO2021206074A5 (en)
JPS63133605A (en) Polarized electromagnet device
RU2004137670A (en) DEVICE FOR SELF-GENERATION OF MOVING FORCE
JPS6297306A (en) Electromagnet apparatus
JPH0129290B2 (en)
JPH0722047B2 (en) Electromagnetic actuator
JPS61260952A (en) Magnetic chuck
JPS60762B2 (en) polar electromagnet
JPH08245155A (en) Lifting gar
JPS61260950A (en) Magnetic chuck