WO2023022515A1 - Magnetic rotation device - Google Patents

Magnetic rotation device Download PDF

Info

Publication number
WO2023022515A1
WO2023022515A1 PCT/KR2022/012288 KR2022012288W WO2023022515A1 WO 2023022515 A1 WO2023022515 A1 WO 2023022515A1 KR 2022012288 W KR2022012288 W KR 2022012288W WO 2023022515 A1 WO2023022515 A1 WO 2023022515A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rotation
cylindrical
rotation device
holder
Prior art date
Application number
PCT/KR2022/012288
Other languages
French (fr)
Korean (ko)
Inventor
김상렬
Original Assignee
김상렬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220101993A external-priority patent/KR20230028165A/en
Application filed by 김상렬 filed Critical 김상렬
Publication of WO2023022515A1 publication Critical patent/WO2023022515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/20Structural association with auxiliary dynamo-electric machines, e.g. with electric starter motors or exciters

Definitions

  • the present invention relates to a magnetic rotation device used in a BLDC motor.
  • an electric motor is an electromagnetic power device that converts electrical energy into mechanical energy by obtaining rotational driving force by electromagnetic force by flowing current.
  • Electric motors have relatively high efficiency, are easy to handle, and have good controllability. As long as there is a power source, it can be used anywhere easily, and it can be made from a large output to a small one, and there are various types with various characteristics, and they are widely used from home to factory.
  • the operating principle of an electric motor is based on classical electromagnetic force. That is, when a current flows in a direction perpendicular to the magnetic field in a magnetic field, a force acts in a direction perpendicular to each of the direction of the magnetic field and the direction of the current according to Fleming's left hand rule.
  • Types of these electric motors include a DC brush motor using Fleming's left-hand rule, a field in the rotor, an armature winding in the stator, and a hall sensor, usually using a photo diode to determine the current direction of the winding.
  • a brushless DC motor (also called "BLDC"), which has the same characteristics as a brush-type motor by determining the structure, and an induction motor in which the primary side and the secondary side are separated, which are completely identical to the structure of a transformer Wow, air and iron show a difference of 6000 times in flowing magnetic flux, and a reluctance motor using this principle, a stepping motor, and an ultrasonic motor, a linear motion
  • BLDC brushless DC motor
  • linear motors each with different characteristics and uses.
  • a BLDC motor is a type of synchronous motor in which a permanent magnet is attached to the rotor side and excitation is performed by the magnet. Because of its high magnetic energy density and high efficiency, it is widely used in optical devices, medical devices, and computer peripherals.
  • BLDC motors can be divided into axial type and radial type according to the configuration method, and the cylindrical type can be divided into outer-rotor type and inner-rotor type.
  • the rotor side is composed of a permanent magnet to generate field flux and a rotor iron core to configure the path of magnetic flux.
  • Disc-type motors are widely used in places where rotation rate needs to be reduced, and internal type motors have a smaller outer diameter than external type motors, so the moment of inertia can be reduced, making it easy to control and relatively simple in structure. It is used where relatively sensitive controllability is required.
  • the external type forms a rotating magnetic field inside the motor and has a large moment of inertia and is advantageous for constant speed.
  • the present invention is intended to disclose a magnetic rotating device having a simple structure of a magnetic rotating body and an electromagnet, which is robust without requiring a brush, requires little maintenance and repair, and has a low production cost.
  • An object of the present invention is to provide a magnetic rotation device capable of solving the conventional problems.
  • a rotating device using magnetic force includes a rotating shaft; A cylindrical rotation holder that is fixedly installed through the rotation shaft and includes a circular frame made so that a plurality of permanent magnets having a plurality of hexagonal shapes are wrapped around the rotation shaft in a circumferential direction; a plurality of electromagnets positioned in a plurality of hollows formed at regular intervals in the cylindrical rotating holder; and a control unit controlling the plurality of electromagnets to be excited.
  • the electromagnet is characterized in that at least one or more are installed along the circumferential direction to rotate the rotation shaft and the cylindrical rotation holder by receiving external energy applied directly or indirectly to part or all of the cylindrical rotation holder to be
  • control unit is characterized in that it controls to excite an arbitrary pair of symmetrical positions among the plurality of electromagnets.
  • the cylindrical rotating holder is characterized in that a plurality of permanent magnets are arranged spaced apart at regular intervals in the circumferential direction therein, and adjacent permanent magnets have different polarities.
  • the permanent magnet has a hexagonal shape, and both ends have an angle of any one of 72°, 74°, 76°, 78°, and 80°.
  • the permanent magnet is characterized in that the magnet width is different from each other according to the inclination of both ends.
  • the permanent magnet is a rare earth element (NdFeB), characterized in that it has a maximum energy product (20 to 50 MGOe), a residual magnetic flux density (1.1 to 1.45 T), and a coercive force (11 to 30 kOe).
  • NdFeB rare earth element
  • the rotating device using magnetic force can generate high-efficiency rotational torque with little power loss of the initial driving force, and has a simple structure of a magnetic rotating body and an electromagnet, and is robust because it does not require a brush.
  • FIG. 1 is an example of a case in which two bar-shaped magnets have the same pole, for example, an N pole, arranged in a vertical direction adjacent to each other
  • FIG. is an example showing a case where two bar magnets are disposed inclined at a certain angle with the same poles, for example, N poles adjacent to each other
  • FIG. 3 shows a case where three bar magnets are disposed adjacent to each other with the same poles Yes.
  • FIG. 4 is a side view of a magnetic rotation device according to an embodiment of the present invention.
  • FIG 5 is a front view of a magnetic rotation device according to an embodiment of the present invention.
  • 6 is an experimental result table showing average changes in cogging torque according to field pole angles and magnet widths.
  • FIG. 1 is an exemplary diagram showing a case in which two bar-shaped magnets are arranged in the vertical direction so that the same pole, for example, the N pole, is adjacent to each other. If the magnetic force generated at the N pole of the upper magnet is A and the magnetic force generated at the N pole of the lower magnet is A', since A and A' have a difference of 180 degrees in direction, the upper and lower magnets are respectively The force is applied in the direction B and B'.
  • FIG. 2 is an exemplary view showing a case in which two bar magnets are arranged inclined at a certain angle with the same pole, for example, the N pole adjacent to each other, and in FIG. 2, as in FIG. Let A be the magnetic force and A' be the magnetic force generated at the N pole of the lower magnet. At this time, the upper and lower magnets receive a repulsive force in the C direction.
  • the repulsive force and attraction between the magnets can be interpreted as a vector sum of the magnetic forces generated by each magnet.
  • Figure 3 is an exemplary view showing a case in which the same poles of three bar magnets are disposed adjacent to each other, the upper bar magnet and the middle bar magnet have N poles disposed adjacent to each other, and the middle bar magnet and The lower bar magnet has its S pole adjacent to it.
  • the three bar magnets are arranged to have a certain inclination angle rather than being in a straight line.
  • the middle bar magnet is subjected to a vector force C1 by the upper bar magnet, and the middle bar magnet is subjected to a repulsive force by the vector force C2 by the lower bar magnet.
  • the middle bar magnet receives approximately twice the repulsive force compared to the lower bar magnet of FIG. 2 .
  • FIG. 4 is a side view of a magnetic rotation device according to an embodiment of the present invention
  • FIG. 5 is a front view of a magnetic rotation device according to an embodiment of the present invention
  • FIG. 6 is a cogging torque average according to a field magnetic pole angle and a magnet width. This is a table of test results showing changes.
  • the magnetic rotation device 100 includes a rotation shaft 110, a cylindrical rotation holder 120 connected to the rotation shaft 110, and the cylindrical rotation holder It includes a plurality of electromagnets 130 located in the hollow part of 120 and a control unit 140 that magnetizes the electromagnets 130 and adjusts the magnetization strength.
  • the rotating shaft 110 is coupled to a cylindrical rotating holder 120 to be described later, and may rotate due to attraction or repulsive force generated between the cylindrical rotating holder and the electromagnet.
  • the cylindrical rotation holder 120 is fixedly installed through the rotation shaft 110, and a circular frame manufactured such that a plurality of hexagonal permanent magnets are arranged in a circumferential direction of the rotation shaft 110. It may be a configuration that includes.
  • the plurality of electromagnets 130 are located in the hollow formed in the cylindrical rotating holder 120, and based on the power application signal of the controller 140 to be described later, the inner polarity of the cylindrical rotating holder has a different polarity or the same as the permanent magnet. It may be configured to be magnetized to have a polarity.
  • the plurality of electromagnets 130 may be disposed at an angle of 15 to 20 degrees relative to the rotation axis.
  • controller 140 may be configured to control the electromagnet 130 to be excited.
  • the cylindrical rotation holder 120 includes a cylindrical frame 121 and a plurality of permanent magnets 122 .
  • the cylindrical frame 121 may include an accommodation space capable of accommodating the plurality of permanent magnets 122 so as to be spaced apart at regular intervals in the circumferential direction.
  • cylindrical frame 121 includes an even number of hollow parts in which electromagnets can be disposed.
  • Each of the plurality of permanent magnets is inserted into the accommodation space formed in the cylindrical frame 121, and adjacent permanent magnets are disposed with different polarities.
  • circumferential angles are equally distributed by the number of permanent magnets.
  • the plurality of permanent magnets are manufactured in a hexagonal shape, and both ends have inclined angles. Both ends include an angle of any one of 72°, 74°, 76°, 78°, and 80°.
  • the permanent magnet is a rare earth element (NdFeB), and may have a material having a maximum energy product (20 to 50 MGOe), a residual magnetic flux density (1.1 to 1.45 T), and a coercive force (11 to 30 kOe).
  • both ends of the permanent magnet are inclined with respect to the circumferential surface.
  • the magnetic force generated at the N pole of the upper magnet is A
  • the magnetic force generated at the N pole of the lower magnet is A'.
  • the magnetic force generated at the N pole of the upper magnet is called A
  • the magnetic force generated at the N pole of the lower magnet is If A', at this time, the upper and lower magnets receive a repulsive force in the C direction. That is, the repulsive force and attraction between the magnets can be interpreted as a vector sum of the magnetic forces generated by each magnet.
  • the cylindrical rotation holder 120 may receive a rotational speed and a rotational torque proportional to the magnitudes of the aforementioned repulsive force and attractive force.
  • a plurality of permanent magnets having a strong magnetic force of 5,000 gauss or more such as, for example, neodymium-based permanent magnets.
  • the material of the permanent magnet is not limited to a specific one.
  • the electromagnet 130 is disposed in the hollow of the cylindrical rotation holder 120 and is magnetized according to the application of power current from the controller 140 to be described later.
  • the electromagnet 130 generates two different magnetic poles N and S.
  • controller 140 is operated by applying power (not shown) and is connected to the electromagnet 130 to control the magnetizing force of the electromagnet.
  • controller 140 may be configured to apply power current to the electromagnet based on a detection signal from a rotation sensor (not shown).
  • control unit 140 applies a power current to the electromagnet at a predetermined timing and applies rotational force to the cylindrical rotation holder 120 by sequentially excitation to the electromagnet 130 .
  • the rotating shaft 110 may be configured to be rotatably installed via bearings at the inner center of both ends.
  • the magnetic rotation device can generate high-efficiency rotational torque with little power loss of the initial driving force, and the magnetic rotation body and electromagnet have a simple structure and are robust and do not require brushes.
  • the magnetic rotation body and electromagnet have a simple structure and are robust and do not require brushes.
  • control unit 140 control unit

Abstract

A magnetic rotation device of the present invention comprises: a rotation shaft; a cylindrical rotation holder which is fixedly installed to the rotation shaft while being penetrated by the rotation shaft and includes a circular frame manufactured so that a plurality of permanent magnets each having a hexagonal shape surround the rotation shaft in a circumferential direction; a plurality of electromagnets located in a plurality of hollows formed at regular intervals on the cylindrical rotation holder; and a control part for controlling the plurality of electromagnets to be excited.

Description

자력회전장치magnetic rotation device
본 발명은 BLDC 전동기에 사용되는 자력회전장치에 관한 것이다.The present invention relates to a magnetic rotation device used in a BLDC motor.
일반적으로 전자모터로 불리고 있는 것은 전류를 흐르게 해서 전자력에 의해 회전구동력을 얻는 것으로, 전기에너지를 기계적인 에너지로 변환하는 전자동력장치이다. What is generally called an electric motor is an electromagnetic power device that converts electrical energy into mechanical energy by obtaining rotational driving force by electromagnetic force by flowing current.
전자모터는 비교적 효율이 높고, 취급이 쉬운데다가 제어성도 좋다. 전원만 있으면 어디에서도 손쉽게 사용할 수 있고, 대출력의 것으로부터 소형의 것까지 만들 수 있는 데다가, 여러 가지 특성을 갖는 여러 가지 형식의 것이 있으며, 용도가 넓고, 가정에서 공장까지 광범위하게 사용되고 있다. Electric motors have relatively high efficiency, are easy to handle, and have good controllability. As long as there is a power source, it can be used anywhere easily, and it can be made from a large output to a small one, and there are various types with various characteristics, and they are widely used from home to factory.
전자모터의 동작원리는 고전적인 전자력에 기초한 것이다. 즉, 자계중에서 자계와 직각방향으로 전류를 흐르게 하면, 플레밍의 왼손법칙에 의해 자계의 방향과 전류의 방향의 각각에 직각방향으로 힘이 작용한다. The operating principle of an electric motor is based on classical electromagnetic force. That is, when a current flows in a direction perpendicular to the magnetic field in a magnetic field, a force acts in a direction perpendicular to each of the direction of the magnetic field and the direction of the current according to Fleming's left hand rule.
이 힘을 중 심축 둘레의 일정방향의 회전력이 되도록 자계와 전류의 상대적인 방향 관계를 동일하게 유지하도록 전류의 방향을 순차회전에 따라 전환하도록 하면, 동일방향으로의 회전이 계속된다는 것이다. If the direction of the current is switched according to sequential rotation so that the relative direction relationship between the magnetic field and the current is the same so that this force becomes a rotational force in a certain direction around the central axis, the rotation in the same direction continues.
이러한 전자모터의 종류로는, 플레밍의 왼손법칙을 이용한 DC브러쉬모터와, 로터에 계자, 스테이터에 전기자 권 선을 설치하고, 홀센서, 보통 포토 다이오드(photo diode)를 이용하여 권선의 전류방향을 결정함으로써 브러쉬 형의 모터와 같은 특성을 갖도록 하는 브러쉬리스 직류모터(Brushless DC Motor; "BLDC"라고도 함)와, 변압기의 구조와 완전히 동일하며 1차측과 2차측이 분리되는 유도전동기(Induction Motor)와, 공기와 철은 자속을 흘리는 데 있어서 6000배의 차이를 보이고 이 원리를 이용하는 릴럭턴스 모터(Reluctance Motor)와, 스테핑모터 (Stepping Motor), 그리고 초음파 모터(Ultrasonic Motor), 직선 운동을 하는 리니어 모터(Linear Motor) 등 여러 가지 종류가 있으며, 각각 다른 특성과 용도를 갖고 있다. Types of these electric motors include a DC brush motor using Fleming's left-hand rule, a field in the rotor, an armature winding in the stator, and a hall sensor, usually using a photo diode to determine the current direction of the winding. A brushless DC motor (also called "BLDC"), which has the same characteristics as a brush-type motor by determining the structure, and an induction motor in which the primary side and the secondary side are separated, which are completely identical to the structure of a transformer Wow, air and iron show a difference of 6000 times in flowing magnetic flux, and a reluctance motor using this principle, a stepping motor, and an ultrasonic motor, a linear motion There are several types of motors, such as linear motors, each with different characteristics and uses.
한편, BLDC 전동기는 회전자측에 영구자석이 부착되어 자석에 의햐여 여자를 수행하는 동기 전동기의 일종이며, 기존 DC전동기에 비하여 보수 성이 우수하고 소음이 적고 속도제어가 용이하며 영구자석에 의한 자기 적 에너지 밀도가 높아 효율이 좋기 때문에 광학기기, 의료기기, 컴퓨터 주변기기 등에 널리 사용되고 있다.On the other hand, a BLDC motor is a type of synchronous motor in which a permanent magnet is attached to the rotor side and excitation is performed by the magnet. Because of its high magnetic energy density and high efficiency, it is widely used in optical devices, medical devices, and computer peripherals.
BLDC 전동기는 구성방식에 따라 원판형(Axial type) 및 원통형(Radial type)으로 나눌 수 있으며, 원통형은 외전형(Outer-rotor type)과 내전형 (Inner-rotor)으로 나눌 수 있다. 일반적으로 회전자측은 계자자속을 만들어주기 위한 영구자석과 자속의 경로를 구성해주기 위한 회전자 철심 부로 구성된다.BLDC motors can be divided into axial type and radial type according to the configuration method, and the cylindrical type can be divided into outer-rotor type and inner-rotor type. In general, the rotor side is composed of a permanent magnet to generate field flux and a rotor iron core to configure the path of magnetic flux.
원판형 전동기는 회전율을 저감시킬 필요가 있는 곳에서 많이 사용되 고 내전형은 외전형에 비하여 회전자의 외경이 작아지므로 관성모멘트를 작게 할 수 있어 제어상 용이하고 구조를 비교적 간단하게 구성할 수 있고 비교적 민감한 제어성이 요구되는 곳에 사용되고 외전형은 모터 내측에 회전자계를 형성하고 관성모멘트가 크고 정속도에 유리한 특징을 갖는다.Disc-type motors are widely used in places where rotation rate needs to be reduced, and internal type motors have a smaller outer diameter than external type motors, so the moment of inertia can be reduced, making it easy to control and relatively simple in structure. It is used where relatively sensitive controllability is required. The external type forms a rotating magnetic field inside the motor and has a large moment of inertia and is advantageous for constant speed.
이에 본 발명은 있으며, 자성의 회전체와 전자석을 간단한 구조로 브러쉬가 필요 없어 견고하고, 유지 및 보수가 거의 필요없으며, 생산 단가가 저렴한 자력회전장치를 개시하고자 한다.Accordingly, the present invention is intended to disclose a magnetic rotating device having a simple structure of a magnetic rotating body and an electromagnet, which is robust without requiring a brush, requires little maintenance and repair, and has a low production cost.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
등록특허공보 제10-0816421호Registered Patent Publication No. 10-0816421
본 발명이 해결하고자 하는 과제는 종래의 문제점을 해결할 수 있는 자력 회전장치를 제공하는 데 그 목적이 있다.An object of the present invention is to provide a magnetic rotation device capable of solving the conventional problems.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 자력을 이용한 회전장치는 회전축; 상기 회전축에 관통된 상태로 고정 설치되며, 복수 개의 육각형 타입을 갖는 복수 개의 영구자석이 상기 회전축의 원주방향으로 감싸도록 제작된 원형 프레임을 포함하는 원통형 회전홀더; 상기 원통형 회전홀더에 일정 간격으로 형성된 복수 개의 중공 내에 위치하는 복수 개의 전자석; 및 상기 복수 개의 전자석이 여자되도록 제어하는 제어부를 포함한다.A rotating device using magnetic force according to an embodiment of the present invention for solving the above problems includes a rotating shaft; A cylindrical rotation holder that is fixedly installed through the rotation shaft and includes a circular frame made so that a plurality of permanent magnets having a plurality of hexagonal shapes are wrapped around the rotation shaft in a circumferential direction; a plurality of electromagnets positioned in a plurality of hollows formed at regular intervals in the cylindrical rotating holder; and a control unit controlling the plurality of electromagnets to be excited.
일 실시예에서, 상기 전자석은 상기 원통형 회전홀더의 일부 또는 전부에 직간접적으로 가해지는 외부 에너지를 받아 상기 회전축과 상기 원통형 회전홀더를 회전시킬 수 있도록 원주 방향을 따라 적어도 하나 이상이 설치되는 것을 특징으로 한다. In one embodiment, the electromagnet is characterized in that at least one or more are installed along the circumferential direction to rotate the rotation shaft and the cylindrical rotation holder by receiving external energy applied directly or indirectly to part or all of the cylindrical rotation holder to be
일 실싱예에서, 상기 제어부는 복수 개의 전자석 중 위치가 대칭되는 임의의 한쌍을 여자되도록 제어하는 것을 특징으로 한다. In one embodiment, the control unit is characterized in that it controls to excite an arbitrary pair of symmetrical positions among the plurality of electromagnets.
일 실시예에서, 상기 원통형 회전홀더는 내부에 복수의 영구자석이 원주방향으로 일정간격 이격배치되고, 인접한 영구자석은 서로 다른 극성을 갖는 것을 특징으로 한다.In one embodiment, the cylindrical rotating holder is characterized in that a plurality of permanent magnets are arranged spaced apart at regular intervals in the circumferential direction therein, and adjacent permanent magnets have different polarities.
일 실시예에서, 상기 영구자석은 육각형 형상이며, 양 끝단이 72°, 74°, 76°, 78°, 80° 중 어느 하나의 각을 갖는 것을 특징으로 한다.In one embodiment, the permanent magnet has a hexagonal shape, and both ends have an angle of any one of 72°, 74°, 76°, 78°, and 80°.
일 실시예에서, 상기 영구자석은 양 끝단이 기울기에 따라 자석 폭이 서로 다른 것을 특징으로 한다.In one embodiment, the permanent magnet is characterized in that the magnet width is different from each other according to the inclination of both ends.
일 실시예에서, 상기 영구자석은 희토류(NdFeB)이며, 최대에너지적(20~50 MGOe), 잔류 자속밀도(1.1~1.45 T), 보자력(11~30 kOe)인 것을 특징으로 한다.In one embodiment, the permanent magnet is a rare earth element (NdFeB), characterized in that it has a maximum energy product (20 to 50 MGOe), a residual magnetic flux density (1.1 to 1.45 T), and a coercive force (11 to 30 kOe).
본 발명의 일 실시예에 따른 자력을 이용한 회전장치는 초기 구동력의 동력 손실이 적어 고효율의 회전 토크(torque)를 발생시킬 수 있으며, 자성의 회전체와 전자석을 간단한 구조로 브러쉬가 필요 없어 견고하고, 유지 및 보수가 거의 필요없으며, 생산 단가가 저렴한 모터 및 발전기를 제공할 수 있다는 이점이 있다.The rotating device using magnetic force according to an embodiment of the present invention can generate high-efficiency rotational torque with little power loss of the initial driving force, and has a simple structure of a magnetic rotating body and an electromagnet, and is robust because it does not require a brush. However, there is an advantage in providing a motor and generator that requires little maintenance and repair and has a low production cost.
도 1 내지 도 3은 본 발명의 기본 개념을 설명하기 위한 도면으로, 도 1은 2개의 막대형 자석이 같은 극, 예컨대 N극이 서로 인접되게 수직방향으로 배치된 경우를 나타낸 예이고, 도 2는 2개의 막대형 자석이 같은 극, 예컨대 N극이 서로 인접되면서 서로 일정한 각도로 경사지게 배치된 경우를 나타낸 예이고, 도 3은 3개의 막대형 자석이 서로 동일한 극이 인접하게 배치된 경우를 나타낸 예이다.1 to 3 are views for explaining the basic concept of the present invention, FIG. 1 is an example of a case in which two bar-shaped magnets have the same pole, for example, an N pole, arranged in a vertical direction adjacent to each other, and FIG. is an example showing a case where two bar magnets are disposed inclined at a certain angle with the same poles, for example, N poles adjacent to each other, and FIG. 3 shows a case where three bar magnets are disposed adjacent to each other with the same poles Yes.
도 4는 본 발명의 일 실시예에 따른 자력회전장치의 측면도이다.4 is a side view of a magnetic rotation device according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 자력회전장치의 정면도이다.5 is a front view of a magnetic rotation device according to an embodiment of the present invention.
도 6은 계자극 각도, 자석폭에 따른 코깅토크평균 변화를 나타낸 실험 결과 표이다.6 is an experimental result table showing average changes in cogging torque according to field pole angles and magnet widths.
이하, 도면을 참조하여 본 발명에 따른 실시예를 설명한다. 이하에서 설명하는 실시예는 본 발명의 하나의 바람 직한 구현예를 나타낸 것으로서, 이러한 실시예의 예시는 본 발명의 권리범위를 제한하기 위한 것이 아니다. 본 발명은 그 기술적 사상을 벗어나지 않는 범위내에서 다양하게 실시할 수 있고, 이는 당업자에게 용이하게 이해 될 수 있는 것이다.Hereinafter, embodiments according to the present invention will be described with reference to the drawings. The embodiments described below show one preferred embodiment of the present invention, and the examples of these embodiments are not intended to limit the scope of the present invention. The present invention can be implemented in various ways without departing from its technical spirit, which can be easily understood by those skilled in the art.
이하, 첨부된 도면들에 기초하여 본 발명의 일 실시예에 따른 자력 회전장치를 보다 상세하게 설명하도록 한다.Hereinafter, a magnetic rotation device according to an embodiment of the present invention will be described in more detail based on the accompanying drawings.
먼저, 본 발명의 자력회전장치를 설명하기에 앞서, 본 발명의 기본 개념을 간략하게 설명하도록 한다.First, prior to describing the magnetic rotation device of the present invention, the basic concept of the present invention will be briefly described.
도 1 내지 도 3은 본 발명의 개념을 설명하기 위한 예시도로서, 도 1은 2개의 막대형 자석이 같은 극, 예컨대 N극이 서로 인접되게 수직방향으로 배치된 경우를 나타낸 예시도로서, 도면에서 상측 자석의 N극에서 생성되는 자력을 A라 하고, 하측 자석의 N극에서 생성되는 자력을 A'라 하면, A와 A'는 서로 방향이 180도의 차이를 갖기 때문에 상측 및 하측 자석은 각각 B, B' 방향으로 힘을 받게 된다. 1 to 3 are exemplary diagrams for explaining the concept of the present invention, FIG. 1 is an exemplary diagram showing a case in which two bar-shaped magnets are arranged in the vertical direction so that the same pole, for example, the N pole, is adjacent to each other. If the magnetic force generated at the N pole of the upper magnet is A and the magnetic force generated at the N pole of the lower magnet is A', since A and A' have a difference of 180 degrees in direction, the upper and lower magnets are respectively The force is applied in the direction B and B'.
다음으로, 도 2는 2개의 막대형 자석이 같은 극, 예컨대 N극이 서로 인접되면서 서로 일정한 각도로 경사지게 배치된 경우를 나타낸 예시도로서, 도 2에서도 도 1과 마찬가지로 상측 자석의 N극에서 생성되는 자력을 A라 하고, 하측 자석의 N극에서 생성되는 자력을 A'라 하면, 이때 상측 및 하측 자석은 C방향으로 척력을 받게 된다. Next, FIG. 2 is an exemplary view showing a case in which two bar magnets are arranged inclined at a certain angle with the same pole, for example, the N pole adjacent to each other, and in FIG. 2, as in FIG. Let A be the magnetic force and A' be the magnetic force generated at the N pole of the lower magnet. At this time, the upper and lower magnets receive a repulsive force in the C direction.
즉, 자석 간에 미치는 척력 및 인력은 각 자석에서 생성되는 자력의 벡터합으로 해석될 수 있다.That is, the repulsive force and attraction between the magnets can be interpreted as a vector sum of the magnetic forces generated by each magnet.
다음으로, 도 3은 3개의 막대형 자석이 서로 동일한 극이 인접하게 배치된 경우를 나타낸 예시도로서, 상측 막대형 자석 과 중간 막대형 자석은 N극이 인접하게 배치되고, 중간 막대형 자석과 하측 막대형 자석은 S극이 인접하게 배치 되어 있다. Next, Figure 3 is an exemplary view showing a case in which the same poles of three bar magnets are disposed adjacent to each other, the upper bar magnet and the middle bar magnet have N poles disposed adjacent to each other, and the middle bar magnet and The lower bar magnet has its S pole adjacent to it.
특히, 3개의 막대형 자석은 상호 일직선이 아닌 일정 경사각을 갖도록 배치되어 있다. In particular, the three bar magnets are arranged to have a certain inclination angle rather than being in a straight line.
여기서, 도 3에서는 상측의 막대형 자석에 의해 중간 막대형 자석이 C1의 벡터힘으로, 하측의 막대형 자석에 의해 중간 막대형 자석이 C2의 벡터힘으로 척력을 받게 된다. Here, in FIG. 3, the middle bar magnet is subjected to a vector force C1 by the upper bar magnet, and the middle bar magnet is subjected to a repulsive force by the vector force C2 by the lower bar magnet.
따라서, 도 3의 경우에는 중간 막대형 자석이 도 2의 하측 막대형 자석에 비하여 대략 2배의 척력을 받게 된다. Therefore, in the case of FIG. 3 , the middle bar magnet receives approximately twice the repulsive force compared to the lower bar magnet of FIG. 2 .
한편, 도 2에 있어서는 상측 및 하측 자석의 어느 한 극으로부터 방출되는 자력만을 이용하게 되므로 자력을 효율적으로 사용하는데 불리함이 있다. 또한, 상측의 자석으로서 전자석을 사용하는 경우에는 불필요한 전력 소모가 발생된다.On the other hand, in FIG. 2, since only the magnetic force emitted from either pole of the upper and lower magnets is used, there is a disadvantage in efficiently using the magnetic force. In addition, when using an electromagnet as an upper magnet, unnecessary power consumption occurs.
도 4는 본 발명의 일 실시예에 따른 자력회전장치의 측면도이고, 도 5는 본 발명의 일 실시예에 따른 자력회전장치의 정면도이고, 도 6은 계자극 각도, 자석폭에 딸느 코깅토크평균 변화를 나타낸 실험 결과 표이다.4 is a side view of a magnetic rotation device according to an embodiment of the present invention, FIG. 5 is a front view of a magnetic rotation device according to an embodiment of the present invention, and FIG. 6 is a cogging torque average according to a field magnetic pole angle and a magnet width. This is a table of test results showing changes.
도 4 및 도 5에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자력회전장치(100)는 회전축(110)과, 회전축(110)과 연결된 원통형 회전홀더(120)와, 상기 원통형 회전홀더(120)의 중공부에 위치하는 복수 개의 전자석(130) 및 전자석(130)를 자화 및 자화강도를 조절하는 제어부(140)를 포함한다.4 and 5, the magnetic rotation device 100 according to an embodiment of the present invention includes a rotation shaft 110, a cylindrical rotation holder 120 connected to the rotation shaft 110, and the cylindrical rotation holder It includes a plurality of electromagnets 130 located in the hollow part of 120 and a control unit 140 that magnetizes the electromagnets 130 and adjusts the magnetization strength.
상기 회전축(110)은 후술하는 원통형 회전홀더(120)와 결합된 구성으로, 원통형 회전홀더와 전자석 간의 발생하는 인력 또는 척력으로 인하여 회전하는 구성일 수 있다.The rotating shaft 110 is coupled to a cylindrical rotating holder 120 to be described later, and may rotate due to attraction or repulsive force generated between the cylindrical rotating holder and the electromagnet.
다음으로, 원통형 회전홀더(120)는 상기 회전축(110)에 관통된 상태로 고정 설치되며, 복수 개의 육각형 타입을 갖는 복수 개의 영구자석이 상기 회전축(110)의 원주방향으로 배열되도록 제작된 원형 프레임을 포함하는 구성일 수 있다.Next, the cylindrical rotation holder 120 is fixedly installed through the rotation shaft 110, and a circular frame manufactured such that a plurality of hexagonal permanent magnets are arranged in a circumferential direction of the rotation shaft 110. It may be a configuration that includes.
다음으로, 복수 개의 전자석(130)는 상기 원통형 회전홀더(120)에 형성된 중공부 내에 위치하며, 후술하는 제어부(140)의 전원 인가신호에 기초하여 상기 원통형 회전홀더 내이 영구자석과 다른 극성 또는 동일 극성을 갖도록 자화되는 구성일 수 있다.Next, the plurality of electromagnets 130 are located in the hollow formed in the cylindrical rotating holder 120, and based on the power application signal of the controller 140 to be described later, the inner polarity of the cylindrical rotating holder has a different polarity or the same as the permanent magnet. It may be configured to be magnetized to have a polarity.
한편, 복수 개의 전자석(130)은 회전축 대비 15도 ~ 20도 경사지게 배치될 수 있다.Meanwhile, the plurality of electromagnets 130 may be disposed at an angle of 15 to 20 degrees relative to the rotation axis.
다음으로, 제어부(140)는 상기 전자석(130)이 여자되도록 제어하는 구성일 수 있다.Next, the controller 140 may be configured to control the electromagnet 130 to be excited.
이하에서는 각 구성의 구조 및 동작을 보다 상세하게 설명하도록 한다.Hereinafter, the structure and operation of each component will be described in detail.
먼저, 원통형 회전홀더(120)는 원통형 프레임(121), 복수 개의 영구자석(122)을 포함한다.First, the cylindrical rotation holder 120 includes a cylindrical frame 121 and a plurality of permanent magnets 122 .
상기 원통형 프레임(121)은 복수 개의 영구자석(122) 각각이 원주방향으로 일정간격 이격 배치되도록 수용할 수 있는 수용공간을 포함할 수 있다.The cylindrical frame 121 may include an accommodation space capable of accommodating the plurality of permanent magnets 122 so as to be spaced apart at regular intervals in the circumferential direction.
또한, 원통형 프레임(121)은 전자석이 배치될 수 있는 짝수 개의 중공부를 포함한다.In addition, the cylindrical frame 121 includes an even number of hollow parts in which electromagnets can be disposed.
상기 복수 개의 영구자석 각각은 상기 원통형 프레임(121)에 형성된 수용공간에 삽입되며, 인접한 영구자석은 서로 다른 극성으로 배치된다. 가령, SN극-NS극, NS극-SN …형태로 배치된다.Each of the plurality of permanent magnets is inserted into the accommodation space formed in the cylindrical frame 121, and adjacent permanent magnets are disposed with different polarities. For example, SN pole-NS pole, NS pole-SN... placed in the form
그리고 영구자석의 수만큼 원주각을 균등하게 배분하여 배치된다. Also, the circumferential angles are equally distributed by the number of permanent magnets.
한편, 복수 개의 영구자석은 육각형으로 제작되며, 양 끝단은 경사각을 갖는다. 양 끝단이 72°, 74°, 76°, 78°, 80° 중 어느 하나의 각을 포함한다.Meanwhile, the plurality of permanent magnets are manufactured in a hexagonal shape, and both ends have inclined angles. Both ends include an angle of any one of 72°, 74°, 76°, 78°, and 80°.
상기 영구자석은 희토류(NdFeB)이며, 최대에너지적(20~50 MGOe), 잔류 자속밀도(1.1~1.45 T), 보자력(11~30 kOe)의 재원을 갖는 구성일 수 있다.The permanent magnet is a rare earth element (NdFeB), and may have a material having a maximum energy product (20 to 50 MGOe), a residual magnetic flux density (1.1 to 1.45 T), and a coercive force (11 to 30 kOe).
종류type 최대
에너지적
maximum
energetic
잔류
자속밀도
residue
magnetic flux density
보자력coercive force
NdFeBNdFeB 23~5023 to 50 1.1~1.451.1 to 1.45 11~3011-30
단위unit MGOeMGOe TT kOekOe
즉, 원주면에 대하여 수직방향이 아닌 일정한 경사각을 갖는다. 이에 따라 영구자석의 양 끝단은 원주면에 대하여 경사지게 배치된다.That is, it has a constant inclination angle that is not perpendicular to the circumferential surface. Accordingly, both ends of the permanent magnet are inclined with respect to the circumferential surface.
이하에서는 영구자석이 경사지게 배치되는 이유를 간략하게 설명하도록 한다.Hereinafter, the reason why the permanent magnets are obliquely arranged will be briefly explained.
2개의 막대형 자석이 같은 극, 예컨대 N극이 서로 인접되게 수직방향으로 배치된 경우, 상측 자석의 N극에서 생성되는 자력을 A라 하고, 하측 자석의 N극에서 생성되는 자력을 A'라 하면, A와 A'는 서로 방향이 180도의 차이를 갖기 때문에 상측 및 하측 자석은 각각 B, B' 방향으로 힘을 받게 된다. If two rod-shaped magnets are arranged vertically with the same poles, for example, N poles adjacent to each other, the magnetic force generated at the N pole of the upper magnet is A, and the magnetic force generated at the N pole of the lower magnet is A'. Then, since A and A' have a difference of 180 degrees from each other, the upper and lower magnets receive forces in the B and B' directions, respectively.
또한 2개의 막대형 자석이 같은 극, 예컨대 N극이 서로 인접되면서 서로 일정한 각도로 경사지게 배치된 경우, 상측 자석의 N극에서 생성되는 자력을 A라 하고, 하측 자 석의 N극에서 생성되는 자력을 A'라 하면, 이때 상측 및 하측 자석은 C방향으로 척력을 받게 된다. 즉, 자석간에 미치는 척력 및 인력은 각 자석에서 생성되는 자력의 벡터합으로 해석될 수 있다.In addition, when two bar magnets are arranged with the same poles, for example, N poles adjacent to each other and inclined at a certain angle, the magnetic force generated at the N pole of the upper magnet is called A, and the magnetic force generated at the N pole of the lower magnet is If A', at this time, the upper and lower magnets receive a repulsive force in the C direction. That is, the repulsive force and attraction between the magnets can be interpreted as a vector sum of the magnetic forces generated by each magnet.
따라서, 영구자석에 척력 및 인력을 발생시키는 힘이 가해질 경우, 원통형 회전홀더(120)는 상술한 척력 및 인력의 크기에 비례하는 회전속도 및 회전토크를 제공받을 수 있다.Accordingly, when a force generating a repulsive force and an attractive force is applied to the permanent magnet, the cylindrical rotation holder 120 may receive a rotational speed and a rotational torque proportional to the magnitudes of the aforementioned repulsive force and attractive force.
여기서, 복수 개의 영구자석은 예컨대 네오디뮴 등의 히토류계 영구자석과 같이 5,000 가우스 이상의 강력한 자력을 갖는 것을 사용하는 것이 바람직하다. 물론, 영구자석의 재질 등도 특정한 것 에 한정되지 않는다.Here, it is preferable to use a plurality of permanent magnets having a strong magnetic force of 5,000 gauss or more, such as, for example, neodymium-based permanent magnets. Of course, the material of the permanent magnet is not limited to a specific one.
다음으로, 전자석(130)은 원통형 회전홀더(120)의 중공부 내에 배치되며, 후술하는 제어부(140)의 전원 전류 인가에 맞춰 자화되는 구성이다. 상기 전자석(130)은 2개의 다른 자극(N, S)을 발생한다. Next, the electromagnet 130 is disposed in the hollow of the cylindrical rotation holder 120 and is magnetized according to the application of power current from the controller 140 to be described later. The electromagnet 130 generates two different magnetic poles N and S.
다음으로, 제어부(140)는 전원(미도시)의 인가로 작동되며, 전자석(130)에 연결되어 전자석의 자화력을 제어하기 위한 것이다.Next, the controller 140 is operated by applying power (not shown) and is connected to the electromagnet 130 to control the magnetizing force of the electromagnet.
또한, 제어부(140)는 회전감지센서(미도시)의 감지신호에 기초하여 전원 전류를 전자석으로 인가하는 구성일 수도 있다.In addition, the controller 140 may be configured to apply power current to the electromagnet based on a detection signal from a rotation sensor (not shown).
한편, 상기 제어부(140)는 소정의 타이밍으로 전자석으로 전원 전류를 인가하고, 전자석(130)에 순차적으로 보내는 여자로 원통형 회전홀더(120)에 회전력을 부여하게 된다.On the other hand, the control unit 140 applies a power current to the electromagnet at a predetermined timing and applies rotational force to the cylindrical rotation holder 120 by sequentially excitation to the electromagnet 130 .
여기서, 회전축(110)은 양단 내측 중심에서 베어링을 매개로 회전 가능하게 설치되는 구성일 수 있다.Here, the rotating shaft 110 may be configured to be rotatably installed via bearings at the inner center of both ends.
따라서, 본 발명의 일 실시예에 따른 자력회전장치는 초기 구동력의 동력 손실이 적어 고효율의 회전 토크(torque)를 발생시킬 수 있으며, 자성의 회전체와 전자석을 간단한 구조로 브러쉬가 필요 없어 견고하고, 유지 및 보수가 거의 필요없으며, 생산 단가가 저렴한 모터 및 발전기를 제공할 수 있다는 이점이 있다.Therefore, the magnetic rotation device according to an embodiment of the present invention can generate high-efficiency rotational torque with little power loss of the initial driving force, and the magnetic rotation body and electromagnet have a simple structure and are robust and do not require brushes. However, there is an advantage in providing a motor and generator that requires little maintenance and repair and has a low production cost.
전술된 내용은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing may be modified and modified by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed according to the claims below, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.
*부호의 설명**Description of code*
100: 자력회전장치100: magnetic rotation device
110: 회전축110: axis of rotation
120: 원통형 회전홀더120: cylindrical rotation holder
130: 전자석130: electromagnet
140: 제어부140: control unit

Claims (7)

  1. 회전축;axis of rotation;
    상기 회전축에 관통된 상태로 고정 설치되며, 복수 개의 육각형 타입을 갖는 복수 개의 영구자석이 상기 회전축의 원주방향으로 감싸도록 제작된 원형 프레임을 포함하는 원통형 회전홀더; A cylindrical rotation holder that is fixedly installed through the rotation shaft and includes a circular frame made so that a plurality of permanent magnets having a plurality of hexagonal shapes are wrapped around the rotation shaft in a circumferential direction;
    상기 원통형 회전홀더에 일정 간격으로 형성된 복수 개의 중공 내에 위치하는 복수 개의 전자석; 및a plurality of electromagnets positioned in a plurality of hollows formed at regular intervals in the cylindrical rotating holder; and
    상기 복수 개의 전자석이 여자되도록 제어하는 제어부를 포함하는 자력회전장치.Magnetic rotation device including a control unit for controlling the plurality of electromagnets to be excited.
  2. 제1항에 있어서,According to claim 1,
    상기 전자석는The electromagnet is
    상기 원통형 회전홀더의 일부 또는 전부에 직간접적으로 가해지는 외부 에너지를 받아 상기 회전축과 상기 원통형 회전홀더를 회전시킬 수 있도록 원주 방향을 따라 적어도 하나 이상이 설치되는 것을 특징으로 하는 자력회전장치. Magnetic rotation device, characterized in that at least one or more are installed along the circumferential direction to rotate the rotation shaft and the cylindrical rotation holder by receiving external energy applied directly or indirectly to part or all of the cylindrical rotation holder.
  3. 제1항에 있어서,According to claim 1,
    상기 제어부는The control unit
    복수 개의 전자석 중 위치가 대칭되는 임의의 한쌍을 여자되도록 제어하는 것을 특징으로 하는 자력회전장치. A magnetic rotation device characterized by controlling an arbitrary pair of symmetrical positions among a plurality of electromagnets to be excited.
  4. 제1항에 있어서,According to claim 1,
    상기 원통형 회전홀더는The cylindrical rotation holder
    내부에 복수의 영구자석이 원주방향으로 일정간격 이격배치되고, 인접한 영구자석은 서로 다른 극성을 갖는 것을 특징으로 하는 자력회전장치.A magnetic rotation device characterized in that a plurality of permanent magnets are spaced apart at regular intervals in the circumferential direction therein, and adjacent permanent magnets have different polarities.
  5. 제4항에 있어서,According to claim 4,
    상기 영구자석은The permanent magnet is
    육각형 형상이며, 양 끝단이 72°, 74°, 76°, 78°, 80° 중 어느 하나의 각을 갖는 것을 특징으로 하는 자력회전장치.Hexagonal shape, magnetic rotation device characterized in that both ends have an angle of any one of 72 °, 74 °, 76 °, 78 °, 80 °.
  6. 제1항에 있어서,According to claim 1,
    상기 영구자석은The permanent magnet is
    양 끝단이 기울기에 따라 자석 폭이 서로 다른 것을 특징으로 하는 자력회전장치.Magnetic rotation device, characterized in that the width of the magnet is different from each other according to the inclination of both ends.
  7. 제6항에 있어서,According to claim 6,
    상기 영구자석은 희토류(NdFeB)이며, 최대에너지적(20~50 MGOe), 잔류 자속밀도(1.1~1.45 T), 보자력(11~30 kOe)인 것을 특징으로 하는 자력회전장치.The permanent magnet is a rare earth (NdFeB), magnetic rotation device, characterized in that the maximum energy product (20 ~ 50 MGOe), residual magnetic flux density (1.1 ~ 1.45 T), coercive force (11 ~ 30 kOe).
PCT/KR2022/012288 2021-08-19 2022-08-17 Magnetic rotation device WO2023022515A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0109504 2021-08-19
KR20210109504 2021-08-19
KR1020220101993A KR20230028165A (en) 2021-08-19 2022-08-16 magnetic rotating device
KR10-2022-0101993 2022-08-16

Publications (1)

Publication Number Publication Date
WO2023022515A1 true WO2023022515A1 (en) 2023-02-23

Family

ID=85239630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012288 WO2023022515A1 (en) 2021-08-19 2022-08-17 Magnetic rotation device

Country Status (1)

Country Link
WO (1) WO2023022515A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105429A (en) * 2007-05-31 2008-12-04 신덕호 Engine using permanent magnet
KR20090035778A (en) * 2007-10-08 2009-04-13 장용웅 Rotational driving device using magnetic force
KR20200060263A (en) * 2018-11-21 2020-05-29 정영욱 Power generation system
KR20210031298A (en) * 2019-09-11 2021-03-19 최동림 Magnetic power engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105429A (en) * 2007-05-31 2008-12-04 신덕호 Engine using permanent magnet
KR20090035778A (en) * 2007-10-08 2009-04-13 장용웅 Rotational driving device using magnetic force
KR20200060263A (en) * 2018-11-21 2020-05-29 정영욱 Power generation system
KR20210031298A (en) * 2019-09-11 2021-03-19 최동림 Magnetic power engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEONG JAE-HOON, CHO HAN-WOOK, CHOI JANG-YOUNG, IM YOUNG-HUN, JANG SEOK-MYEONG: "A Comparative Study on the Exterior Rotor BLDC Motor According to the Rotor Permanent Magnet Shape", TRANSACTIONS OF THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS, KOREA, vol. 63, no. 2, 1 February 2014 (2014-02-01), KOREA , pages 237 - 244, XP093037433, ISSN: 1975-8359, DOI: 10.5370/KIEE.2014.63.2.237 *

Similar Documents

Publication Publication Date Title
US5041749A (en) High speed, high power, single phase brushless DC motor
US5227702A (en) Direct current motor utilizing back electromotive force
CA2659766A1 (en) Electric motor with two or more stators or rotors
JPS5484207A (en) Pulse motor
WO2011136475A2 (en) Coil arrangement method for doubly salient permanent magnet electrical appliances
CA2145262A1 (en) Flux Controlled Permanent Magnet Dynamo-Electric Machine
MX9606097A (en) Line start permanent magnet motor.
NZ309882A (en) High energy permanent magnet rotor motor generator
WO2016021852A1 (en) Single phase brushless direct current motor
WO2020138583A1 (en) Axial motor including magnetic levitation rotation body
EP3180843A1 (en) Washing machine
WO2011037360A2 (en) Linear motor
WO2015064993A1 (en) Induced polarization bldc motor
WO2023022515A1 (en) Magnetic rotation device
KR100357310B1 (en) Generators and motors using rotating electrical machines and their rotating electrical machines
WO2014061908A1 (en) Double porosity-type power generator
WO2023063740A1 (en) Power generation device with improved counter-electromotive force reduction efficiency
WO2012015209A2 (en) Segmented armature motor
CN112910130B (en) Rotor magnetic pole modulation type variable magnetic flux memory motor
EP0533767B1 (en) Electric motor
KR20030039945A (en) Alternators Magnetic Circuit Using Revolving Current
WO2010013895A2 (en) Electro-motive apparatus with rotary plate containing separated coil members and stationary plate containing separated magnetic members
KR20230028165A (en) magnetic rotating device
JPS5670609A (en) Rotary electromagnet
WO2019031857A2 (en) Dc power generation device employing multiple brushes and distributor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE