WO2023063668A1 - Nr v2x에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치 - Google Patents

Nr v2x에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2023063668A1
WO2023063668A1 PCT/KR2022/015220 KR2022015220W WO2023063668A1 WO 2023063668 A1 WO2023063668 A1 WO 2023063668A1 KR 2022015220 W KR2022015220 W KR 2022015220W WO 2023063668 A1 WO2023063668 A1 WO 2023063668A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
iuc
partial sensing
data
Prior art date
Application number
PCT/KR2022/015220
Other languages
English (en)
French (fr)
Inventor
고우석
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023063668A1 publication Critical patent/WO2023063668A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

제 1 장치가 무선 통신을 수행하는 방법 및 이를 지원하는 장치가 제공된다. 상기 방법은, 부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하는, 단계; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하는 단계; SL(sidelink) 데이터를 획득하는 단계; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하는 단계;를 포함할 수 있다.

Description

NR V2X에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것이다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
한편, 종래 기술에 따르면, 자원을 할당하는 방식을 선택할 때, UE는 UE 간 조정 정보(inter-UE coordination information)을 이용하지 않는다. 이로 인하여, UE가 부분 센싱(partial sensing) 등에 기반하여 자원을 선택/할당할 때, 자원 충돌을 효율적으로 회피하지 못하는 문제가 발생할 수 있다.
일 실시 예에 있어서, 제 1 장치가 무선 통신을 수행하는 방법이 제공된다. 상기 방법은, 부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하는, 단계; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하는 단계; SL(sidelink) 데이터를 획득하는 단계; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하는 단계;를 포함할 수 있다.
일 실시 예에 있어서, 무선 통신을 수행하도록 설정된 제 1 장치가 제공된다. 상기 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하고; SL(sidelink) 데이터를 획득하고; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택할 수 있다.
일 실시 예에 있어서, 제 1 장치를 제어하도록 설정된 프로세싱 장치가 제공된다. 상기 프로세싱 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하고; SL(sidelink) 데이터를 획득하고; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택할 수 있다.
단말의 파워 세이빙 이득을 최대화할 수 있고, SL 통신의 신뢰성을 확보할 수 있다.
도 1은 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.
도 2는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 3은 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다.
도 4는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 5는 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다.
도 6은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 7은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다.
도 8은 본 개시의 일 실시 예에 따라, UE가 재평가 절차 또는 프리엠션 절차를 통해 자원을 재선택하는 방법을 나타낸다.
도 9 및 도 10은 본 개시의 일 실시 예에 따라, UE가 PBPS를 수행하는 방법을 나타낸다.
도 11은 본 개시의 일 실시 예에 따라, UE가 CPS를 수행하는 방법을 나타낸다.
도 12는 본 개시의 일 실시 예에 따라, 전력 절약(power saving) 동작을 수행하는 UE A가 SL 통신을 수행하기 위해서 SL 자원 풀에서 전송 자원을 선택하는 절차를 나타낸다.
도 13은 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다.
도 14는 본 개시의 일 실시 예에 따라, 제 2 장치가 무선 통신을 수행하는 방법을 나타낸다.
도 15는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다.
도 16은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 17은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다.
도 18은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 19는 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다.
도 20은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDCCH"가 "제어 정보"의 일례로 제안된 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
이하의 설명에서 '~일 때, ~ 경우(when, if, in case of)'는 '~에 기초하여/기반하여(based on)'로 대체될 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
본 명세서에서, 상위 계층 파라미터(higher layer parameter)는 단말에 대하여 설정되거나, 사전에 설정되거나, 사전에 정의된 파라미터일 수 있다. 예를 들어, 기지국 또는 네트워크는 상위 계층 파라미터를 단말에게 전송할 수 있다. 예를 들어, 상위 계층 파라미터는 RRC(radio resource control) 시그널링 또는 MAC(medium access control) 시그널링을 통해서 전송될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다. 도 1의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 1을 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말(10)에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 기지국(20)을 포함할 수 있다. 예를 들어, 기지국(20)은 gNB(next generation-Node B) 및/또는 eNB(evolved-NodeB)를 포함할 수 있다. 예를 들어, 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 예를 들어, 기지국은 단말(10)과 통신하는 고정된 지점(fixed station)일 수 있고, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1의 실시 예는 gNB만을 포함하는 경우를 예시한다. 기지국(20)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(20)은 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(20)은 NG-C 인터페이스를 통해 AMF(access and mobility management function)(30)와 연결될 수 있고, NG-U 인터페이스를 통해 UPF(user plane function)(30)와 연결될 수 있다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(layer 1, 제 1 계층), L2(layer 2, 제 2 계층), L3(layer 3, 제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 2는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 도 2의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 2의 (a)는 Uu 통신을 위한 사용자 평면(user plane)의 무선 프로토콜 스택(stack)을 나타내고, 도 2의 (b)는 Uu 통신을 위한 제어 평면(control plane)의 무선 프로토콜 스택을 나타낸다. 도 2의 (c)는 SL 통신을 위한 사용자 평면의 무선 프로토콜 스택을 나타내고, 도 2의 (d)는 SL 통신을 위한 제어 평면의 무선 프로토콜 스택을 나타낸다.
도 2를 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리 계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층, SDAP(Service Data Adaptation Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다. 도 3의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 3을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(u)에 따라 슬롯 별 심볼의 개수(Nslot symb), 프레임 별 슬롯의 개수(Nframe,u slot)와 서브프레임 별 슬롯의 개수(Nsubframe,u slot)를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 450MHz - 6000MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 4는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다. 도 4의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 4를 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
이하, BWP(Bandwidth Part) 및 캐리어에 대하여 설명한다.
BWP(Bandwidth Part)는 주어진 뉴머놀로지에서 PRB(physical resource block)의 연속적인 집합일 수 있다. PRB는 주어진 캐리어 상에서 주어진 뉴머놀로지에 대한 CRB(common resource block)의 연속적인 부분 집합으로부터 선택될 수 있다.
예를 들어, BWP는 활성(active) BWP, 이니셜(initial) BWP 및/또는 디폴트(default) BWP 중 적어도 어느 하나일 수 있다. 예를 들어, 단말은 PCell(primary cell) 상의 활성(active) DL BWP 이외의 DL BWP에서 다운 링크 무선 링크 품질(downlink radio link quality)을 모니터링하지 않을 수 있다. 예를 들어, 단말은 활성 DL BWP의 외부에서 PDCCH, PDSCH(physical downlink shared channel) 또는 CSI-RS(reference signal)(단, RRM 제외)를 수신하지 않을 수 있다. 예를 들어, 단말은 비활성 DL BWP에 대한 CSI(Channel State Information) 보고를 트리거하지 않을 수 있다. 예를 들어, 단말은 활성 UL BWP 외부에서 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 전송하지 않을 수 있다. 예를 들어, 하향링크의 경우, 이니셜 BWP는 (PBCH(physical broadcast channel)에 의해 설정된) RMSI(remaining minimum system information) CORESET(control resource set)에 대한 연속적인 RB 세트로 주어질 수 있다. 예를 들어, 상향링크의 경우, 이니셜 BWP는 랜덤 액세스 절차를 위해 SIB(system information block)에 의해 주어질 수 있다. 예를 들어, 디폴트 BWP는 상위 계층에 의해 설정될 수 있다. 예를 들어, 디폴트 BWP의 초기 값은 이니셜 DL BWP일 수 있다. 에너지 세이빙을 위해, 단말이 일정 기간 동안 DCI(downlink control information)를 검출하지 못하면, 단말은 상기 단말의 활성 BWP를 디폴트 BWP로 스위칭할 수 있다.
한편, BWP는 SL에 대하여 정의될 수 있다. 동일한 SL BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 SL 채널 또는 SL 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 SL 채널 또는 SL 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, SL BWP는 Uu BWP와 별도로 정의될 수 있으며, SL BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 SL BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. 예를 들어, 단말은 Uu BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. SL BWP는 캐리어 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 SL BWP가 캐리어 내에서 활성화될 수 있다.
도 5는 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다. 도 5의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 도 5의 실시 예에서, BWP는 세 개라고 가정한다.
도 5를 참조하면, CRB(common resource block)는 캐리어 밴드의 한 쪽 끝에서부터 다른 쪽 끝까지 번호가 매겨진 캐리어 자원 블록일 수 있다. 그리고, PRB는 각 BWP 내에서 번호가 매겨진 자원 블록일 수 있다. 포인트 A는 자원 블록 그리드(resource block grid)에 대한 공통 참조 포인트(common reference point)를 지시할 수 있다.
BWP는 포인트 A, 포인트 A로부터의 오프셋(Nstart BWP) 및 대역폭(Nsize BWP)에 의해 설정될 수 있다. 예를 들어, 포인트 A는 모든 뉴머놀로지(예를 들어, 해당 캐리어에서 네트워크에 의해 지원되는 모든 뉴머놀로지)의 서브캐리어 0이 정렬되는 캐리어의 PRB의 외부 참조 포인트일 수 있다. 예를 들어, 오프셋은 주어진 뉴머놀로지에서 가장 낮은 서브캐리어와 포인트 A 사이의 PRB 간격일 수 있다. 예를 들어, 대역폭은 주어진 뉴머놀로지에서 PRB의 개수일 수 있다.
이하, V2X 또는 SL 통신에 대하여 설명한다.
SLSS(Sidelink Synchronization Signal)는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC(Cyclic Redundancy Check)를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
도 6은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 6의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 6의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 6의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 6의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 6의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 6의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S600에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.
단계 S610에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S620에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S630에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S640에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다.
이하, DCI 포맷 3_0의 일 예를 설명한다.
DCI 포맷 3_0은 하나의 셀에서 NR PSCCH와 NR PSSCH의 스케줄링을 위해 사용된다.
다음 정보는 SL-RNTI 또는 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 통해 전송된다.
- 자원 풀 인덱스 - ceiling (log2 I) 비트, 여기서 I는 상위 계층 파라미터 sl-TxPoolScheduling에 의해 설정된 전송을 위한 자원 풀의 개수이다.
- 시간 갭 - 상위 계층 파라미터 sl-DCI-ToSL-Trans에 의해 결정된 3 비트
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 초기 전송에 대한 서브채널 할당의 가장 낮은 인덱스 - ceiling (log2(NSL subChannel)) 비트
- SCI 포맷 1-A 필드: 주파수 자원 할당, 시간 자원 할당
- PSFCH-to-HARQ 피드백 타이밍 지시자 - ceiling (log2 Nfb_timing) 비트, 여기서 Nfb_timing은 상위 계층 파라미터 sl-PSFCH-ToPUCCH의 엔트리의 개수이다.
- PUCCH 자원 지시자 - 3 비트
- 설정 인덱스(configuration index) - UE가 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 모니터링하도록 설정되지 않은 경우 0비트; 그렇지 않으면, 3 비트이다. UE가 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 모니터링하도록 설정되는 경우, 이 필드는 SL-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 위해 예약된다.
- 카운터 사이드링크 할당 인덱스 - 2 비트, UE가 pdsch-HARQ-ACK-Codebook = dynamic으로 설정된 경우 2 비트, UE가 pdsch-HARQ-ACK-Codebook = semi-static으로 설정된 경우 2 비트
- 필요한 경우, 패딩 비트
도 6의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S610에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S620에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S630에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다.
도 6의 (a) 또는 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다.
이하, SCI 포맷 1-A의 일 예를 설명한다.
SCI 포맷 1-A는 PSSCH 및 PSSCH 상의 2nd-stage SCI의 스케줄링을 위해 사용된다.
다음 정보는 SCI 포맷 1-A를 사용하여 전송된다.
- 우선 순위 - 3 비트
- 주파수 자원 할당 - 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 2로 설정된 경우 ceiling (log2(NSL subChannel(NSL subChannel+1)/2)) 비트; 그렇지 않으면, 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 3으로 설정된 경우 ceiling log2(NSL subChannel(NSL subChannel+1)(2NSL subChannel+1)/6) 비트
- 시간 자원 할당 - 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 2로 설정된 경우 5 비트; 그렇지 않으면, 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 3으로 설정된 경우 9 비트
- 자원 예약 주기 - ceiling (log2 Nrsv_period) 비트, 여기서 Nrsv_period는 상위 계층 파라미터 sl-MultiReserveResource가 설정된 경우 상위 계층 파라미터 sl-ResourceReservePeriodList의 엔트리의 개수; 그렇지 않으면, 0 비트
- DMRS 패턴 - ceiling (log2 Npattern) 비트, 여기서 Npattern은 상위 계층 파라미터 sl-PSSCH-DMRS-TimePatternList에 의해 설정된 DMRS 패턴의 개수
- 2nd-stage SCI 포맷 - 표 5에 정의된 대로 2 비트
- 베타_오프셋 지시자 - 상위 계층 파라미터 sl-BetaOffsets2ndSCI에 의해 제공된 대로 2 비트
- DMRS 포트의 개수 - 표 6에 정의된 대로 1 비트
- 변조 및 코딩 방식 - 5 비트
- 추가 MCS 테이블 지시자 - 한 개의 MCS 테이블이 상위 계층 파라미터 sl-Additional-MCS-Table에 의해 설정된 경우 1 비트; 두 개의 MCS 테이블이 상위 계층 파라미터 sl- Additional-MCS-Table에 의해 설정된 경우 2 비트; 그렇지 않으면 0 비트
- PSFCH 오버헤드 지시자 - 상위 계층 파라미터 sl-PSFCH-Period = 2 또는 4인 경우 1 비트; 그렇지 않으면 0 비트
- 예약된 비트 - 상위 계층 파라미터 sl-NumReservedBits에 의해 결정된 비트 수로, 값은 0으로 설정된다.
Value of 2nd-stage SCI format field 2nd-stage SCI format
00 SCI format 2-A
01 SCI format 2-B
10 Reserved
11 Reserved
Value of the Number of DMRS port field Antenna ports
0 1000
1 1000 and 1001
이하, SCI 포맷 2-A의 일 예를 설명한다.
HARQ 동작에서, HARQ-ACK 정보가 ACK 또는 NACK을 포함하는 경우, 또는 HARQ-ACK 정보가 NACK만을 포함하는 경우, 또는 HARQ-ACK 정보의 피드백이 없는 경우, SCI 포맷 2-A는 PSSCH의 디코딩에 사용된다.
다음 정보는 SCI 포맷 2-A를 통해 전송된다.
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 중복 버전(redundancy version) - 2 비트
- 소스 ID - 8 비트
- 데스티네이션 ID - 16 비트
- HARQ 피드백 활성화/비활성화 지시자 - 1 비트
- 캐스트 타입 지시자 - 표 7에 정의된 대로 2 비트
- CSI 요청 - 1 비트
Value of Cast type indicator Cast type
00 Broadcast
01 Groupcast when HARQ-ACK information includes ACK or NACK
10 Unicast
11 Groupcast when HARQ-ACK information includes only NACK
이하, SCI 포맷 2-B의 일 예를 설명한다.
HARQ 동작에서 HARQ-ACK 정보가 NACK만을 포함하는 경우, 또는 HARQ-ACK 정보의 피드백이 없는 경우, SCI 포맷 2-B는 PSSCH의 디코딩에 사용된다.
다음 정보는 SCI 포맷 2-B를 통해 전송된다.
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 중복 버전(redundancy version) - 2 비트
- 소스 ID - 8 비트
- 데스티네이션 ID - 16 비트
- HARQ 피드백 활성화/비활성화 지시자 - 1 비트
- 존 ID - 12 비트
- 통신 범위 요구 사항 - 상위 계층 파라미터 sl-ZoneConfigMCR-Index에 의해 결정되는 4 비트
도 6의 (a) 또는 (b)를 참조하면, 단계 S630에서, 제 1 단말은 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.
도 6의 (a)를 참조하면, 단계 S640에서, 제 1 단말은 PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.
도 7은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다. 도 7의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 7의 (a)는 브로드캐스트 타입의 SL 통신을 나타내고, 도 7의 (b)는 유니캐스트 타입의 SL 통신을 나타내며, 도 7의 (c)는 그룹캐스트 타입의 SL 통신을 나타낸다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
이하, HARQ(Hybrid Automatic Repeat Request) 절차에 대하여 설명한다.
예를 들어, SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-ACK을 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 단말은 HARQ-NACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-NACK을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 전송 단말에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 그리고, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 단말은 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 단말은 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
본 명세서에서, HARQ-ACK은 ACK, ACK 정보 또는 긍정(positive)-ACK 정보라고 칭할 수 있고, HARQ-NACK은 NACK, NACK 정보 또는 부정(negative)-ACK 정보라고 칭할 수 있다.
이하, 사이드링크에서 HARQ-ACK을 보고하는 UE 절차에 대하여 설명한다.
UE는 PSSCH 수신에 대한 응답으로, HARQ-ACK 정보를 포함하는 PSFCH를 전송하기 위해, NPSSCH subch 개의 서브채널부터 하나 이상의 서브채널에서 PSSCH 수신을 스케줄링하는 SCI 포맷에 의해 지시될 수 있다. UE는 ACK 또는 NACK, 또는 NACK만을 포함하는 HARQ-ACK 정보를 제공한다.
UE는 sl-PSFCH-Period-r16에 의해 PSFCH 전송 기회 자원(transmission occasion resources)에 대한 자원 풀 내 슬롯의 개수를 제공받을 수 있다. 개수가 0이면 자원 풀에서 UE로부터의 PSFCH 전송이 비활성화된다. UE는 k mod NPSFCH PSSCH = 0인 경우 슬롯 t'k SL (0 ≤ k < T'max)에 PSFCH 전송 기회 자원이 있을 것으로 기대하며, 여기서 t'k SL은 자원 풀에 속하는 슬롯이고, 및 T'max는 10240 msec 내의 자원 풀에 속하는 슬롯의 개수이며, NPSFCH PSSCH는 sl-PSFCH-Period-r16에서 제공된다. UE는 PSSCH 수신에 대한 응답으로 PSFCH를 전송하지 않도록 상위 계층에 의해 지시될 수 있다. UE가 자원 풀에서 PSSCH를 수신하고 및 연관된 SCI 포맷 2-A 또는 SCI 포맷 2-B에 포함된 HARQ 피드백 활성화/비활성화 지시자 필드가 1의 값을 갖는 경우, UE는 자원 풀에서 PSFCH 전송을 통해서 HARQ-ACK 정보를 제공한다. UE는 제 1 슬롯에서 PSFCH를 전송하고, 여기서 상기 제 1 슬롯은 PSFCH 자원을 포함하고 및 PSSCH 수신의 마지막 슬롯 이후 자원 풀의 sl-MinTimeGapPSFCH-r16에 의해 제공되는 최소 슬롯의 개수 이후의 슬롯이다.
UE는 자원 풀의 PRB에서 PSFCH 전송을 위한 자원 풀 내의 PRB의 세트 MPSFCH PRB,set를 sl-PSFCH-RB-Set-r16에 의해 제공받는다. sl-NumSubchannel에 의해 제공되는 자원 풀에 대한 서브채널의 개수 Nsubch 및 NPSFCH PSSCH보다 작거나 같은 PSFCH 슬롯과 관련된 PSSCH 슬롯의 개수에 대해, UE는 MPRB,set PSFCH PRB 중에서 [(i+j·NPSFCH PSSCH)·MPSFCH subch,slot, (i+1+j·NPSFCH PSSCH)·MPSFCH subch,slot-1] PRB를 PSFCH 슬롯과 연동된 PSSCH 슬롯 중 슬롯 i 및 서브채널 j에 대하여 할당한다. 여기서, MPSFCH subch,slot = MPSFCH PRB,set / (Nsubch·NPSFCH PSSCH), 0 ≤ i < NPSFCH PSSCH, 0 ≤ j < Nsubch 이고, 및 할당은 i의 오름차순으로 시작하여 j의 오름차순으로 계속된다. UE는 MPSFCH PRB,set가 Nsubch·NPSFCH PSSCH의 배수일 것으로 기대한다.
UE는 PSFCH 전송에 포함되는 HARQ-ACK 정보를 멀티플렉싱하기 위해 사용 가능한 PSFCH 자원의 개수를 RPSFCH PRB,CS = NPSFCH type·MPSFCH subch,slot·NPSFCH CS로 결정한다. 여기서, NPSFCH CS는 자원 풀에 대한 순환 시프트 페어의 개수이고, 및 상위 계층에 의한 지시를 기반으로,
- NPSFCH type = 1이고 및 MPSFCH subch,slot PRB는 해당 PSSCH의 시작 서브채널과 연관되고,
- NPSFCH type = NPSSCH subch이고 및 NPSSCH subch·MPSFCH subch,slot PRB는 해당 PSSCH의 NPSSCH subch 서브채널 중에서 하나 이상의 서브채널과 연관된다.
PSFCH 자원은 먼저 NPSFCH type·MPSFCH subch,slot PRB 중에서 PRB 인덱스의 오름차순으로 인덱싱된 다음, NPSFCH CS 순환 시프트 페어 중에서 순환 시프트 페어 인덱스(cyclic shift pair index)의 오름차순으로 인덱싱된다.
UE는 PSSCH 수신에 대한 응답으로 PSFCH 전송을 위한 PSFCH 자원의 인덱스를 (PID + MID) mod RPSFCH PRB,CS로 결정한다. 여기서 PID는 PSSCH 수신을 스케줄링하는 SCI 포맷 2-A 또는 2-B에 의해 제공되는 물리 계층 소스 ID이고, MID는 UE가 캐스트 타입 지시자 필드 값이 "01"인 SCI 포맷 2-A를 검출한 경우 상위 계층에서 지시되는 PSSCH를 수신하는 UE의 ID이고, 그렇지 않으면 MID는 0이다.
UE는 표 8을 사용하여 NPSFCH CS로부터 및 PSFCH 자원 인덱스에 대응하는 순환 시프트 페어 인덱스로부터 순환 시프트 α 값을 계산하기 위한 m0 값을 결정한다.
NPSFCH CS m0
순환 시프트 페어 인덱스 0 순환 시프트 페어 인덱스 1 순환 시프트 페어 인덱스 2 순환 시프트 페어 인덱스 3 순환 시프트 페어 인덱스 4 순환 시프트 페어 인덱스 5
1 0 - - - - -
2 0 3 - - - -
3 0 2 4 - - -
6 0 1 2 3 4 5
UE가 "01" 또는 "10"의 캐스트 타입 지시자 필드 값을 갖는 SCI 포맷 2-A를 검출하는 경우 표 9와 같이, 또는 UE가 캐스트 타입 지시자 필드 값이 "11"인 SCI 포맷 2-B 또는 SCI 포맷 2-A를 검출하는 경우 표 10과 같이, UE는 순환 시프트 α 값을 계산하기 위한 값 mcs를 결정한다. UE는 순환 시프트 페어 중에서 하나의 순환 시프트를 PSFCH 전송에 사용되는 시퀀스에 적용한다.
HARQ-ACK Value 0 (NACK) 1 (ACK)
Sequence cyclic shift 0 6
HARQ-ACK Value 0 (NACK) 1 (ACK)
Sequence cyclic shift 0 N/A
이하, 사이드링크 자원 할당 모드 2에서 PSSCH 자원 선택에서 상위 계층에게 보고될 자원들의 서브세트를 결정하기 위한 UE 절차에 대하여 설명한다.
자원 할당 모드 2에서, 상위 계층은 상위 계층이 PSSCH/PSCCH 전송을 위한 자원을 선택할, 자원들의 서브세트를 결정하도록 UE에 요청할 수 있다. 이 절차를 트리거하기 위해, 슬롯 n에서, 상위 계층은 상기 PSSCH/PSCCH 전송을 위한 다음 파라미터를 제공한다.
- 자원이 보고될 자원 풀;
- L1 우선 순위, prioTX;
- 남아있는(remaining) PDB(packet delay budget);
- 슬롯 내에서 PSSCH/PSCCH 전송을 위해 사용될 서브채널의 개수 LsubCH;
- 선택적으로, msec 단위의 자원 예약 간격 PrsvpTX
- 만약 상위 계층이 재평가(re-evaluation) 또는 프리엠션(pre-emption) 절차의 일부로서 PSSCH/PSCCH 전송을 위해 선택할 자원들의 서브세트 결정하도록 상위 계층이 UE에게 요청하면, 상기 상위 계층은 재평가 대상이 될 수 있는 자원세트(r0, r1, r2, ...) 및 프리엠션 대상이 될 수 있는 자원 세트(r'0, r'1, r'2, ...)를 제공한다.
- 슬롯 ri'' - T3 이전 또는 이후에 상위 계층에 의해 요청된 자원들의 서브세트를 결정하는 것은 UE 구현(implementation)에 달려 있다. 여기서 ri''은 (r0, r1, r2, ...) 및 (r'0, r'1, r'2, ...) 중에서 가장 작은 슬롯 인덱스를 가지는 슬롯이고, T3는 TSL proc,1과 같다. 여기서 TSL proc,1은 SCS에 따른 슬롯들의 개수로 정의되고, 여기서 μSL은 SL BWP의 SCS 설정(configuration)이다.
이하의 상위 계층 파라미터가 이 절차에 영향을 준다:
- sl-SelectionWindowList: 내부 파라미터 T2min은 주어진 prioTX 값에 대해 상위 계층 파라미터 sl-SelectionWindowList로부터 대응되는 값으로 설정된다.
- sl-Thres-RSRP-List: 이 상위 계층 파라미터는 각 (pi, pj) 조합에 대한 RSRP 임계값(threshold)을 제공한다. 여기서 pi는 수신된 SCI 포맷 1-A에 포함된 우선 순위 필드 값이고 pj는 UE가 선택하는 자원 상에서 전송의 우선 순위이고; 이 절차에서, pj = prioTX이다.
- sl-RS-ForSensing은 UE가 PSSCH-RSRP 또는 PSCCH-RSRP 측정을 사용하는지 여부를 선택한다.
- sl-ResourceReservePeriodList
- sl-SensingWindow: 내부 파라미터 T0은 sl-SensingWindow msec에 대응되는 슬롯 개수로 정의된다.
- sl-TxPercentageList: 주어진 prioTX에 대한 내부 파라미터 X는 백분율에서 비율(ratio)로 변환된 sl-TxPercentageList(prioTX)로 정의된다.
- sl-PreemptionEnable: 만약 sl-PreemptionEnable이 제공되고 '활성화'(enabled)와 같지 않은 경우, 내부 파라미터 priopre는 상위 계층에 의해 제공되는 파라미터 sl-PreemptionEnable로 설정된다.
만약 자원 예약 간격 Prsvp_TX가 제공되면, 자원 예약 간격은 msec 단위에서 논리적 슬롯 단위 P'rsvp_TX로 변환된다.
표기(notation):
(t'SL 0, t' SL 1, t' SL 2, ...)은 사이드링크 자원 풀에 속하는 슬롯의 세트를 나타낸다.
예를 들어, UE는 표 11을 기반으로 후보 자원의 집합(SA)를 선택할 수 있다. 예를 들어, 자원 (재)선택이 트리거되는 경우, UE는 표 11을 기반으로 후보 자원의 집합(SA)를 선택할 수 있다. 예를 들어, 재평가(re-evaluation) 또는 프리엠션(pre-emption)이 트리거되는 경우, UE는 표 11을 기반으로 후보 자원의 집합(SA)를 선택할 수 있다.
Figure PCTKR2022015220-appb-img-000001
한편, UE의 파워 세이빙을 위해 부분 센싱(partial sensing)이 지원될 수 있다. 예를 들어, LTE SL 또는 LTE V2X에서, UE는 표 12 및 표 13을 기반으로 부분 센싱을 수행할 수 있다.
Figure PCTKR2022015220-appb-img-000002
Figure PCTKR2022015220-appb-img-000003
도 8은 본 개시의 일 실시 예에 따라, UE가 재평가 절차 또는 프리엠션 절차를 통해 자원을 재선택하는 방법을 나타낸다. 도 8의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 8을 참조하면, UE는 선택 윈도우 내 슬롯 m에서 제 1 자원(즉, initially selected resource)을 선택한다고 가정한다. 이 경우, UE는 상기 제 1 자원을 실제로 사용하기 이전까지 재평가 절차 또는 프리엠션 절차를 통해 센싱을 지속적으로 수행할 수 있고, UE는 상기 제 1 자원에 대한 충돌을 검출할 수 있다. 이 경우, UE는 슬롯 m 내의 제 1 자원을 슬롯 m' 내의 제 2 자원(즉, new selected resource)으로 재선택할 수 있다. 구체적인 재평가 절차 또는 프리엠션 절차는 표 11을 참조할 수 있다.
한편, 종래 기술에 따르면, 자원을 할당하는 방식을 선택할 때, UE는 UE 간 조정 정보(inter-UE coordination information)을 이용하지 않는다. 이로 인하여, UE가 부분 센싱(partial sensing) 등에 기반하여 자원을 선택/할당할 때, 자원 충돌을 효율적으로 회피하지 못하는 문제가 발생할 수 있다.
본 개시의 일 실시 예에 따라, UE 간 조정 정보에 기반하여 자원 할당 방식을 선택하는 방법 및 이를 지원하는 장치를 제안한다.
예를 들어, 본 개시의 다양한 실시 예에서, PPS(periodic-based partial sensing)는 자원 선택을 위한 센싱을 수행할 때, 특정 설정 값에 해당하는 개수의 주기들을 기반으로, 상기 각 주기의 정수 배(k)에 해당하는 시점에서 센싱을 수행하는 동작을 의미할 수 있다. 예를 들어, 상기 주기들은 자원 풀에 설정된 전송 자원의 주기일 수 있다. 예를 들어, 자원 충돌을 판단할 대상이 되는 후보 자원의 시점으로부터 시간적으로 이전에 상기 각 주기의 정수배 k 값만큼 앞서는 시점의 자원을 센싱할 수 있다. 예를 들어, 상기 k 값은 비트맵(bitmap) 형태로 설정될 수 있다. 본 개시에서, PPS는 PBPS라고 칭할 수도 있다.
도 9 및 도 10은 본 개시의 일 실시 예에 따라, UE가 PBPS를 수행하는 방법을 나타낸다. 도 9 및 도 10의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 9 및 도 10의 실시 예에서, 자원 풀에 대하여 허용된 자원 예약 주기 또는 PBPS를 위해 설정된 자원 예약 주기는 P1 및 P2라고 가정한다. 나아가, UE는 슬롯 #Y1 내에서 SL 자원을 선택하기 위한 부분 센싱(즉, PBPS)을 수행한다고 가정한다.
도 9를 참조하면, UE는 슬롯 # Y1으로부터 P1 이전에 위치하는 슬롯, 및 슬롯 #Y1으로부터 P2 이전에 위치하는 슬롯에 대하여 센싱을 수행할 수 있다. 도 9의 실시 예에서, UE는 가장 최근의 센싱 기회(most recent sensing occasion)에 대한 모니터링을 수행할 수 있다.
도 10을 참조하면, UE는 슬롯 #Y1으로부터 P1 이전에 위치하는 슬롯, 및 슬롯 #Y1으로부터 P2 이전에 위치하는 슬롯에 대하여 센싱을 수행할 수 있다. 나아가, 선택적으로, UE는 슬롯 #Y1으로부터 2 * P1 이전에 위치하는 슬롯, 및 슬롯 #Y1으로부터 2 * P2 이전에 위치하는 슬롯에 대하여 센싱을 수행할 수 있다. 도 10의 실시 예에서, UE는 가장 최근의 센싱 기회(most recent sensing occasion) 및 상기 가장 최근의 센싱 기회 이전의 마지막 센싱 기회(last sensing occasion)에 대한 모니터링을 수행할 수 있다.
예를 들어, 본 개시의 다양한 실시 예에서, CPS(continuous partial sensing)는 특정 설정 값으로 주어지는 시간 영역 전체 또는 일부분에 대해서 센싱을 수행하는 동작을 의미할 수 있다. 예를 들어, CPS는 상대적으로 짧은 구간 동안 센싱을 수행하는 숏-텀(short-term) 센싱 동작을 포함할 수 있다.
도 11은 본 개시의 일 실시 예에 따라, UE가 CPS를 수행하는 방법을 나타낸다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 11의 실시 예에서, UE가 선택한 Y 개의 후보 슬롯들은 슬롯 #M, 슬롯 #(M+T1) 및 슬롯 #(M+T1+T2)라고 가정한다. 이 경우, UE가 센싱을 수행해야 하는 슬롯은 Y 개의 후보 슬롯들 중에서 첫 번째 슬롯(즉, 슬롯 #M)을 기준으로 결정될 수 있다. 예를 들어, UE는 Y 개의 후보 슬롯들 중에서 첫 번째 슬롯을 기준 슬롯으로 결정한 이후, 상기 기준 슬롯으로부터 (이전의) N 개의 슬롯에 대하여 센싱을 수행할 수 있다.
도 11을 참조하면, Y 개의 후보 슬롯들 중에서 첫 번째 슬롯(즉, 슬롯 #M)을 기준으로, UE는 N 개의 슬롯에 대한 센싱을 수행할 수 있다. 예를 들어, UE는 슬롯 #M 이전의 N 개의 슬롯에 대한 센싱을 수행할 수 있고, UE는 센싱의 결과를 기반으로 Y 개의 후보 슬롯들(즉, 슬롯 #M, 슬롯 #(M+T1) 및 슬롯 #(M+T1+T2)) 내에서 적어도 하나의 SL 자원을 선택할 수 있다. 예를 들어, N은 UE에 대하여 설정되거나 사전에 설정될 수 있다. 예를 들어, 상기 N 개의 슬롯 중 마지막 슬롯 및 슬롯 #M 사이에는 프로세싱을 위한 시간 갭이 존재할 수 있다.
본 개시에서, 부분 센싱은 PBPS 또는 CPS를 포함할 수 있다.
본 개시에서, 부분 센싱은 상기 PBPS 동작 및/또는 상기 CPS 동작을 포함하는 부분적인 센싱을 의미할 수 있다.
본 개시에서, REV는 자원 재평가(resource re-evaluation)를 의미할 수 있고, PEC는 자원 프리엠션 체킹(resource pre-emption checking)을 의미할 수 있다.
이하 "후보 자원/슬롯"은 임의의 패킷을 전송하기 위해서 최초로 전송 자원 선택이 트리거링되었을 때, UE가 부분 센싱을 수행하기 위해서 자원 선택 윈도우를 선택하고, 자원 선택 윈도우 내에서 자원의 충돌 여부를 검출하기 위해서 선택한 자원을 의미할 수 있고, "유효 자원/슬롯"은 상기 부분 센싱을 기반으로 상기 후보 자원 중에서 자원 충돌이 검출되지 않아 전송에 유효하다고 판단되어 PHY 계층에서 MAC 계층에게 보고된 자원을 의미할 수 있고, "전송 자원/슬롯"은 상기 보고된 자원 중에서 MAC 계층이 SL 전송에 사용하기 위해서 최종적으로 선택한 자원을 의미할 수 있다.
전력 절약(power saving) 동작을 수행하는 UE A가 SL 통신을 수행하기 위해서 SL 자원 풀에서 전송 자원을 선택하는 경우, UE A는 다른 UE로부터 UE A의 자원 선택에 사용되는/고려되는 IUC(Inter-UE Coordination) 정보를 수신할 수 있고, UE A는 상기 IUC 정보를 고려하여 전송 자원을 선택할 수 있다.
도 12는 본 개시의 일 실시 예에 따라, 전력 절약(power saving) 동작을 수행하는 UE A가 SL 통신을 수행하기 위해서 SL 자원 풀에서 전송 자원을 선택하는 절차를 나타낸다. 도 12의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 12를 참조하면, 단계 S1200에서, UE A 및 다른 UE는 SL DRX(discontinuous reception) 설정을 획득할 수 있다. 예를 들어, 상기 다른 UE는 UE A가 선택하려는 전송 자원을 통해서 송신하는 데이터를 수신하는 UE B일 수 있다. 예를 들어, 상기 다른 UE는 상기 전송 자원을 통한 SL 통신과 별개로 UE A와 또 다른 SL 통신을 수행하고 있는 UE C일 수 있다. 예를 들어, 상기 다른 UE는 UE A와 UE B 및/또는 UE C 간 SL 통신을 위해 전송되는 PSCCH/PSSCH/PSFCH 등의 SL 통신 채널을 모니터링 하고 있는 UE D일 수 있다.
예를 들어, 상기 SL DRX 설정은 SL DRX 타이머와 관련된 정보, SL DRX 슬롯 오프셋(slot offset)과 관련된 정보, SL DRX 시작 오프셋(start offset)과 관련된 정보, 및/또는 SL DRX 사이클과 관련된 정보 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 상기 SL DRX 타이머는 SL DRX 온듀레이션 타이머, SL DRX 비활성(inactivity) 타이머, SL DRX 재전송 타이머, 및/또는 SL DRX HARQ RTT 타이머 중 적어도 어느 하나를 포함할 수 있다. 예를 들어, SL DRX 온듀레이션 타이머는 SL DRX 사이클의 시작에서 지속 시간(the duration at the beginning of an SL DRX cycle)일 수 있다. 예를 들어, SL DRX 비활성(inactivity) 타이머는 SCI가 MAC 엔티티에 대한 새로운 SL 전송을 나타내는 SCI 수신의 첫 번째 슬롯 이후의 지속 시간(the duration after the first slot of SCI reception in which an SCI indicates a new SL transmission for the MAC entity)일 수 있다. 예를 들어, SL DRX 재전송 타이머는 SL 재전송이 수신될 때까지의 최대 지속 시간(the maximum duration until an SL retransmission is received)일 수 있다. 예를 들어, SL DRX HARQ RTT 타이머는 SL HARQ 재전송이 MAC 엔티티에 의해 기대되기 전의 최소 지속 시간(the minimum duration before an SL HARQ retransmission is expected by the MAC entity)일 수 있다. 예를 들어, SL DRX 재전송 타이머 및 SL DRX HARQ RTT 타이머는 사이드링크 프로세스 별로 설정될 수 있다. 예를 들어, SL DRX 비활성(inactivity) 타이머, SL DRX 재전송 타이머 및 SL DRX HARQ RTT 타이머는 브로드캐스트 전송에 대하여 적용되지 않을 수 있다. 예를 들어, UE는 SL DRX HARQ RTT 타이머가 만료된 이후에 SL DRX 재전송 타이머를 개시할 수 있다.
예를 들어, SL DRX 슬롯 오프셋은 SL DRX 온듀레이션 타이머의 시작 이전의 지연(delay)일 수 있다. 예를 들어, SL DRX 시작 오프셋은 SL DRX 사이클이 시작하는 슬롯(the slot where the SL DRX cycle starts)일 수 있다.
예를 들어, SL DRX 온듀레이션 타이머, SL DRX 비활성(inactivity) 타이머 및/또는 SL DRX 재전송 타이머 중 적어도 어느 하나가 구동 중인 시간은 활성 시간(active time)일 수 있다. 다만, 본 개시의 다양한 실시 예에서, 활성 시간이 SL DRX 온듀레이션 타이머, SL DRX 비활성(inactivity) 타이머 및/또는 SL DRX 재전송 타이머 중 적어도 어느 하나가 구동 중인 시간으로 한정되는 것은 아니다. 예를 들어, SL DRX 온듀레이션 타이머, SL DRX 비활성(inactivity) 타이머 및 SL DRX 재전송 타이머가 구동 중이 아니더라도, RX UE는 활성 시간으로 동작할 수 있고, RX UE는 TX UE로부터의 PSCCH를 모니터링할 수 있다.
단계 S1210에서, UE A는 UE A의 자원 선택에 사용되는/고려되는 IUC 정보를 다른 UE로부터 수신할 수 있다. 대안적으로, UE A는 UE A의 자원 선택에 사용되는/고려되는 IUC 정보를 다른 UE로부터 수신하지 않을 수 있다. 예를 들어, 상기 IUC 정보는 선호 자원 집합(preferred resource set) 및/또는 비선호 자원 집합(non-preferred resource set)을 포함할 수 있다.
단계 S1220에서, UE A는 상기 IUC 정보를 고려하여 전송 자원을 선택할 수 있다. 본 개시의 다양한 실시 예에 따라, UE A는 상기 IUC 정보의 수신 또는 상기 IUC 정보의 수신 여부에 기반하여 다음과 같은 동작을 수행할 수 있다.
1) UE A가 주기적 전송을 위하여 전송 자원을 (재)선택하는 경우
A. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신한 경우,
i. UE A는 사전에 예측 가능한 다른 UE의 전송에 의한 자원 충돌을 검출하기 위한 PPS를 수행하지 않을 수 있고, UE A는 사전에 예측 불가능한 다른 UE의 전송에 의한 자원 충돌을 검출하기 위한 CPS만을 수행할 수 있다. 이를 통해서, UE A는 상기 IUC 정보와 상기 CPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 (재)선택할 수 있다.
ii. UE A는 다른 UE가 수행하기 용이하여 IUC 정보를 제공할 수 있는 숏-텀 센싱(short-term sensing)에 해당하는 CPS를 수행하지 않을 수 있고, UE A는 다른 UE가 수행하기 쉽지 않아서 IUC 정보를 제공하기 어려운 롱-텀 센싱(long-term sensing)에 해당하는 PPS만을 수행할 수 있다. 이를 통해서, UE A는 상기 IUC 정보와 상기 PPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 (재)선택할 수 있다.
iii. UE A는 전력 절약(power saving) 목적으로 PPS와 CPS 등 부분 센싱(partial sensing)을 수행하지 않을 수 있고, UE A는 상기 IUC 정보에 기반하여 후보/유효/전송 자원을 (재)선택할 수 있다. 예를 들어, UE A는 상기 IUC 정보에 기반하여 다른 UE에 의하여 선호 자원(preferred resource)으로 지시된 자원들 가운데, 전송할 패킷의 PDB(packet delay budget) 이내에 속하는 자원들 가운데 랜덤하게 후보/유효/전송 자원을 (재)선택할 수 있다. 예를 들어, UE A는 상기 IUC 정보에 기반하여 다른 UE에 의하여 선호 자원(preferred resource)으로 지시된 자원들 가운데, 다른 UE에 의하여 비선호 자원(non-preferred resource) 또는 과거/미래 시점에 검출된 자원(detected resource)로 지시된 자원들을 후보/유효/전송 자원에서 배제할 수 있다.
iv. UE A가 전송 자원 선택을 위해 PPS를 수행할 때, PPS 또는 부분 센싱(partial sensing)의 결과가 이용 가능한(available) 후보 자원의 개수가 특정 임계값(Ymin)보다 작은 경우,
iv.1. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신한 경우, UE A는 상기 PPS 또는 부분 센싱(partial sensing)의 결과가 이용 가능한(available) 후보 자원과 상기 IUC 정보를 기반으로 후보/유효/전송 자원을 (재)선택할 수 있다.
iv.2. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신한 경우, UE A는 상기 IUC 정보를 기반으로 후보/유효/전송 자원을 (재)선택할 수 있다.
iv.3. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신하지 못한 경우, UE A는 상기 SL 자원 풀에서 랜덤으로 자원을 선택할 수 있거나, 또는 UE A는 전송 패킷의 우선 순위(priority)를 기반으로 SL 자원 풀 또는 예외적인(exceptional) 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있다.
iv.4. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신하지 못한 경우, 및 전송 패킷의 우선 순위 값(priority value)이 특정 임계값보다 작거나 같은 경우, UE A는 상기 SL 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있다. 반면에, 전송 패킷의 우선 순위 값(priority value)이 특정 임계값보다 큰 경우, UE A는 예외적인(exceptional) 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있거나, 또는 UE A는 상기 우선 순위 값(priority value)을 가지는 전송 패킷의 전송을 위한 랜덤 자원 선택을 허용하는 다른 SL 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있다.
v. UE A가 주기적 전송 자원 선택을 위해 선택한 자원 선택 윈도우의 길이가 특정 임계값(T2_min)보다 작은 경우,
v.1. UE A는 상기 IUC 정보에 관련된 전송 가능한 자원들 또는 UE B의 선호 자원(preferred resource) 가운데, 전송 패킷에 요구되는 PDB 이내의 자원을 후보/유효/전송 자원으로 (재)선택할 수 있다.
v.2. 상기 IUC 정보에 관련된 전송 가능한 자원들 또는 UE B의 선호 자원(preferred resource) 가운데 전송 패킷에 요구되는 PDB 이내에 자원이 없을 경우, UE A는 상기 전송을 드랍(drop)할 수 있다.
B. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신하지 못한 경우(에만), UE A는 PPS와 CPS 등 부분 센싱(partial sensing)을 수행하여 상기 PPS와 CPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 (재)선택할 수 있다.
2) UE A가 비주기적 전송을 위하여 전송 자원을 (재)선택하는 경우
A. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신한 경우, UE A는 비주기적 전송을 위한 CPS를 수행하지 않을 수 있고, UE A는 상기 IUC 정보에 기반하여 후보/유효/전송 자원을 (재)선택할 수 있다.
B. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신하지 못한 경우(에만),
i. UE A는 상기 CPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 (재)선택할 수 있다.
ii. 상기 CPS 결과 등 available한 sensing 결과가 없거나 특정 임계값보다 개수가 작은 경우,
ii.1. UE A는 상기 SL 자원 풀에서 랜덤으로 자원을 선택할 수 있거나, 또는 UE A는 전송 패킷의 우선 순위(priority)를 기반으로 SL 자원 풀 또는 예외적인(exceptional) 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있다.
ii.2. 전송 패킷의 우선 순위 값(priority value)이 특정 임계값보다 작거나 같은 경우, UE A는 상기 SL 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있다. 전송 패킷의 우선 순위 값(priority value)이 특정 임계값보다 큰 경우, UE A는 예외적인(exceptional) 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있거나, 또는 UE A는 상기 우선 순위 값(priority value)을 가지는 전송 패킷의 전송을 위한 랜덤 자원 선택을 허용하는 다른 SL 자원 풀에서 랜덤으로 자원을 (재)선택할 수 있다.
3) UE A가 선택한 자원에 대한 REV 및/또는 PEC 기반으로 자원을 재선택하는 경우
A. UE A가 REV 및/또는 PEC 기반으로 전송 자원을 재선택하는데 사용될 수 있는 상기 IUC 정보를 수신한 경우,
i. UE A는 사전에 예측 가능한 다른 UE의 전송에 의한 자원 충돌을 검출하기 위한 REV 및/또는 PEC를 위한 PPS를 수행하지 않을 수 있고, UE A는 사전에 예측 불가능한 다른 UE의 전송에 의한 자원 충돌을 검출하기 위한 REV 및/또는 PEC를 위한 CPS만을 수행할 수 있다. 이를 통해서, UE A는 상기 IUC 정보와 상기 REV 및/또는 PEC를 위한 CPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 재선택할 수 있다.
ii. UE A는 다른 UE가 수행하기 용이하여 IUC 정보를 제공할 수 있는 숏-텀 센싱(short-term sensing)에 해당하는 REV 및/또는 PEC를 위한 CPS를 수행하지 않을 수 있고, UE A는 다른 UE가 수행하기 쉽지 않아서 IUC 정보를 제공하기 어려운 롱-텀 센싱(long-term sensing)에 해당하는 REV 및/또는 PEC를 위한 PPS만을 수행할 수 있다. 이를 통해서, UE A는 상기 IUC 정보와 상기 REV 및/또는 PEC를 위한 PPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 재선택할 수 있다.
iii. UE A는 전력 절약(power saving) 목적으로 REV 및/또는 PEC를 위한 PPS와 CPS 등 부분 센싱(partial sensing)을 수행하지 않을 수 있고, UE A는 상기 IUC 정보에 기반하여 후보/유효/전송 자원을 재선택할 수 있다.
iv. UE A가 REV 및/또는 PEC 기반으로 전송 자원 재선택을 위해 REV 및/또는 PEC를 위한 PPS를 수행할 때, 상기 PPS 또는 부분 센싱(partial sensing)의 결과가 이용 가능한(available) 후보 자원의 개수가 특정 임계값(Ymin)보다 작은 경우,
iv.1. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신한 경우, UE A는 상기 PPS 또는 부분 센싱(partial sensing)의 결과가 이용 가능한(available) 후보 자원과 상기 IUC 정보를 기반으로 후보/유효/전송 자원을 재선택할 수 있다.
iv.2. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신한 경우, UE A는 상기 IUC 정보를 기반으로 후보/유효/전송 자원을 재선택할 수 있다.
iv.3. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신하지 못한 경우, UE A는 상기 SL 자원 풀에서 랜덤으로 자원을 선택할 수 있거나, 또는 UE A는 전송 패킷의 우선 순위(priority)를 기반으로 SL 자원 풀 또는 예외적인(exceptional) 자원 풀에서 랜덤으로 자원을 재선택할 수 있다.
iv.4. UE A가 상기 전송 자원 선택에 이용할 수 있는 IUC 정보를 수신하지 못한 경우, 및 전송 패킷의 우선 순위 값(priority value)이 특정 임계값보다 작거나 같은 경우, UE A는 상기 SL 자원 풀에서 랜덤으로 자원을 재선택할 수 있다. 반면에, 전송 패킷의 우선 순위 값(priority value)이 특정 임계값보다 큰 경우, UE A는 예외적인(exceptional) 자원 풀에서 랜덤으로 자원을 재선택할 수 있거나, 또는 UE A는 상기 우선 순위 값(priority value)을 가지는 전송 패킷의 전송을 위한 랜덤 자원 선택을 허용하는 다른 SL 자원 풀에서 랜덤으로 자원을 재선택할 수 있다.
v. UE A가 REV 및/또는 PEC를 위한 주기적 전송 자원 재선택을 위해 선택한 자원 선택 윈도우의 길이가 특정 임계값(T2_min)보다 작은 경우,
v.1. UE A는 상기 IUC 정보에 관련된 전송 가능한 자원들 또는 UE B의 선호 자원(preferred resource) 가운데, 전송 패킷에 요구되는 PDB 이내의 자원을 후보/유효/전송 자원으로 재선택할 수 있다.
v.2. 상기 IUC 정보에 관련된 전송 가능한 자원들 또는 UE B의 선호 자원(preferred resource) 가운데 전송 패킷에 요구되는 PDB 이내에 자원이 없을 경우, UE A는 상기 전송을 드랍(drop)할 수 있다.
B. UE A가 REV 및/또는 PEC 기반으로 전송 자원을 재선택하는데 사용될 수 있는 상기 IUC 정보를 수신하지 못한 경우(에만), UE A는 REV 및/또는 PEC를 위한 PPS와 CPS 등 부분 센싱(partial sensing)을 수행할 수 있다. 이를 통해서, UE A는 상기 PPS와 CPS 결과 등 이용 가능한(available) 센싱 결과를 기반으로 후보/유효/전송 자원을 재선택할 수 있다.
표 14는 SL CBR(channel busy ratio) 및 SL RSSI의 일 예를 나타낸다.
Figure PCTKR2022015220-appb-img-000004
표 14를 참조하면, 슬롯 인덱스는 물리 슬롯 인덱스(physical slot index)를 기반으로 할 수 있다.
표 15는 SL CR(Channel occupancy Ratio)의 일 예를 나타낸다.
Figure PCTKR2022015220-appb-img-000005
4) UE A가 전송 채널에 대한 CBR(channel busy ratio)를 측정하는 경우
A. UE A가 CBR 측정에 사용될 수 있는 상기 IUC 정보를 수신한 경우,
i. UE A는 상기 IUC 정보를 기반으로 CBR 측정값을 계산할 수 있다.
ii. UE A는 상기 IUC 정보와 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
iii. UE A는 상기 IUC 정보와 특정 설정값으로 설정된 CBR 값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
iv. UE A는 상기 IUC 정보와 특정 설정값으로 설정된 CBR 값과 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
v. UE A는 CBR 측정을 위한 측정값의 개수가 부족한 경우에(만), 상기 IUC 정보와 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
vi. UE A는 CBR 측정을 위한 측정값의 개수가 부족한 경우에(만), 상기 IUC 정보와 특정 설정값으로 설정된 CBR 값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
vii. UE A는 CBR 측정을 위한 측정값의 개수가 부족한 경우에(만), 상기 IUC 정보와 특정 설정값으로 설정된 CBR 값과 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
B. UE A가 CBR 측정에 사용될 수 있는 상기 IUC 정보를 수신하지 못한 경우(에만),
i. UE A는 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
ii. UE A는 특정 설정값으로 설정된 CBR 값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
iii. UE A는 특정 설정값으로 설정된 CBR 값과 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
iv. UE A는 CBR 측정을 위한 측정값의 개수가 부족한 경우에(만), UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
v. UE A는 CBR 측정을 위한 측정값의 개수가 부족한 경우에(만), 특정 설정값으로 설정된 CBR 값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
vi. UE A는 CBR 측정을 위한 측정값의 개수가 부족한 경우에(만), 특정 설정값으로 설정된 CBR 값과 UE A가 측정한 CBR 측정값을 기반으로 최종적인 CBR 측정값을 계산할 수 있다.
5) UE A가 SL DRX 동작을 수행하는 경우
A. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신한 경우,
i. UE A는 UE A의 SL DRX 온(on) 구간 및/또는 활성(active) 구간에서만 상기 1)번, 2)번, 3)번 과정에서 상술한 바와 같이 PPS 및/또는 CPS 등 부분 센싱(partial sensing)을 수행할 수 있고, UE A는 UE A의 SL DRX 오프(off) 구간 및/또는 비활성(inactive) 구간에서는 상기 IUC 정보를 해당 구간에 대한 부분 센싱(partial sensing) 정보로 활용할 수 있다. 예를 들어, UE A가 상기 온(on) 구간 및/또는 활성(active) 구간에서 수행한 상기 부분 센싱(partial sensing)의 결과와 상기 IUC 정보를 기반으로, UE A는 전송할 패킷에 대한 후보/유효/전송 자원을 (재)선택할 수 있다.
B. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신하지 못한 경우(에만),
i. UE A는 상기 SL DRX 온(on) 구간 및/또는 활성(active) 구간과 상기 SL DRX 오프(off) 구간 및/또는 비활성(inactive) 구간에서, 주기적/비주기적 패킷 전송에 요구되는 부분 센싱(partial sensing) 동작을 수행할 수 있고, UE A는 상기 부분 센싱(partial sensing)의 결과를 기반으로 전송할 패킷에 대한 후보/유효/전송 자원을 (재)선택할 수 있다.
6) UE B가 SL DRX 동작을 수행하는 경우
A. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신한 경우,
i. UE A는 전송 자원을 선택하는 시점에서의 UE B의 SL DRX 온(on) 구간 및/또는 활성(active) 구간에서만 UE A가 수행한 부분 센싱(partial sensing)의 결과에 기반하여 특정 임계값보다 크거나 같은 개수의 후보/유효/전송 자원을 (재)선택할 수 있다. UE A는 상기 시점 이후에 UE B에 의해서 확장될 수 있는 확장된 UE B의 활성(active) 구간에서 상기 IUC 정보에 기반하여, 성공적인 패킷 전송에 필요한 최소한의 후보/유효/전송 자원의 총 개수에서 상기 UE B의 SL DRX 온(on) 구간 및/또는 활성(active) 구간에서 선택한 후보/유효/전송 자원의 개수를 뺀 개수만큼 나머지 후보/유효/전송 자원들을 (재)선택할 수 있다. 예를 들어, 전송 자원을 선택하는 시점에서의 UE B의 SL DRX 온(on) 구간 및/또는 활성(active) 구간은 현재 활성 시간이라고 칭할 수 있고, UE B에 의해서 확장될 수 있는 확장된 UE B의 활성(active) 구간은 미래 활성 시간이라고 칭할 수 있다.
B. UE A가 전송 자원을 (재)선택하는데 사용될 수 있는 상기 IUC 정보를 수신하지 못한 경우(에만),
i. UE A가 수행한 부분 센싱(partial sensing)의 결과에만 기반하여, UE A는 전송 자원을 선택하는 시점에서의 UE B의 SL DRX 온(on) 구간 및/또는 활성(active) 구간에서만 특정 임계값보다 크거나 같은 개수의 후보/유효/전송 자원을 (재)선택할 수 있다. UE A는 상기 시점 이후에 UE B에 의해서 확장될 수 있는 확장된 UE B의 활성(active) 구간에서 성공적인 패킷 전송에 필요한 최소한의 후보/유효/전송 자원의 총 개수에서 상기 UE B의 SL DRX 온(on) 구간 및/또는 활성(active) 구간에서 선택한 후보/유효/전송 자원의 개수를 뺀 개수만큼 나머지 후보/유효/전송 자원들을 (재)선택할 수 있다.
본 개시의 다양한 실시 예에 따르면, UE는 UE 간 조정 정보에 기반하여 자원 할당 방식을 선택할 수 있다. 이를 통해서, 전송 충돌에 따른 자원을 배제함으로써, 전송 충돌을 최대한 회피하는 효과가 있다. 구체적으로, 예를 들어, 부분 센싱 기반의 자원 선택이 UE A에 대하여 설정된 경우라고 하더라도, UE A는 전력 절약을 위해서 부분 센싱을 수행하는 것을 생략할 수 있다. 이 경우, UE A가 선호 자원 집합과 관련된 정보를 포함하는 IUC 정보를 수신하면, 센싱 결과를 가지고 있지 않는 UE A는 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 전송 자원을 선택할 수 있다. 이를 통해서, UE A의 전력 절약 이득이 최대화될 수 있고, 자원 충돌이 최소화될 수 있으며, SL 통신의 신뢰성이 향상될 수 있다.
예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 서비스 타입 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 (LCH 또는 서비스) 우선 순위 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 QoS 요구 사항(예, latency, reliability, minimum communication range) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 PQI 파라미터 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 HARQ 피드백 ENABLED LCH/MAC PDU (전송) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 HARQ 피드백 DISABLED LCH/MAC PDU (전송) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 자원 풀의 CBR 측정 값 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 SL 캐스트 타입(예, unicast, groupcast, broadcast) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 SL 그룹캐스트 HARQ 피드백 옵션(예, NACK only 피드백, ACK/NACK 피드백, TX-RX 거리 기반의 NACK only 피드백) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 SL 모드 1 CG 타입(예, SL CG 타입 1 또는 SL CG 타입 2) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 SL 모드 타입(예, 모드 1 또는 모드 2) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 자원 풀 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 PSFCH 자원이 설정된 자원 풀인지 여부 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 소스 (L2) ID 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 데스티네이션 (L2) ID 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 PC5 RRC 연결 링크 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 SL 링크 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 (기지국과의) 연결 상태 (예, RRC CONNECTED 상태, IDLE 상태, INACTIVE 상태) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 SL HARQ 프로세스 (ID) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 (TX UE 또는 RX UE의) SL DRX 동작 수행 여부 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 파워 세이빙 (TX 또는 RX) UE 여부 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 (특정 UE 관점에서) PSFCH TX와 PSFCH RX가 (및/또는 (UE 능력을 초과한) 복수 개의 PSFCH TX가) 겹치는 경우 (및/또는 PSFCH TX (및/또는 PSFCH RX)가 생략되는 경우) 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다. 예를 들어, 상기 규칙 적용 여부 및/또는 본 개시의 제안 방식/규칙 관련 파라미터 값은 TX UE로부터 RX UE가 PSCCH (및/또는 PSSCH) (재)전송을 실제로 (성공적으로) 수신한 경우 특정적으로 (또는 상이하게 또는 독립적으로) 설정/허용될 수 있다.
예를 들어, 본 개시에서 설정 (또는 지정) 워딩은 기지국이 사전에 정의된 (물리 계층 또는 상위 계층) 채널/시그널(예, SIB, RRC, MAC CE)을 통해서 단말에게 알려주는 형태 (및/또는 사전-설정(pre-configuration)을 통해서 제공되는 형태 그리고/혹은 단말이 사전에 정의된 (물리 계층 또는 상위 계층) 채널/시그널(예, SL MAC CE, PC5 RRC)을 통해서 다른 단말에게 알려주는 형태) 등으로 확장 해석될 수 있다.
예를 들어, 본 개시에서 PSFCH 워딩은 (NR 또는 LTE) PSSCH (및/또는 (NR 또는 LTE) PSCCH) (및/또는 (NR 또는 LTE) SL SSB (및/또는 UL 채널/시그널))로 확장 해석될 수 있다. 또한, 본 개시의 제안 방식은 상호 조합되어 (새로운 형태의 방식으로) 확장 사용될 수 있다.
예를 들어, 본 개시에서 특정 임계값은 사전에 정의되거나, 네트워크 또는 기지국 또는 단말의 상위계층 (어플리케이션 레이어 포함)에 의해서 (사전에) 설정된 임계값을 의미할 수 있다. 예를 들어, 본 개시에서 특정 설정값은 사전에 정의되거나, 네트워크 또는 기지국 또는 단말의 상위계층 (어플리케이션 레이어 포함)에 의해서 (사전에) 설정된 값을 의미할 수 있다. 예를 들어, 네트워크/기지국에 의해서 설정되는 동작은 기지국이 상위 계층 RRC 시그널링을 통해서 UE에게 (사전에) 설정하거나, MAC CE를 통해서 UE에게 설정/시그널링하거나, DCI를 통해서 UE에게 시그널링하는 동작을 의미할 수 있다.
도 13은 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다. 도 13의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 13을 참조하면, 단계 S1310에서, 제 1 장치는 부분 센싱 기반의 자원 선택을 위한 설정을 획득할 수 있다. 예를 들어, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함할 수 있다. 단계 S1320에서, 제 1 장치는 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신할 수 있다. 단계 S1330에서, 제 1 장치는 SL(sidelink) 데이터를 획득할 수 있다. 단계 S1340에서, 제 1 장치는 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택할 수 있다. 예를 들어, 상기 SL 데이터는 SL-SCH 데이터일 수 있다.
예를 들어, 상기 전력 절약을 위해 상기 부분 센싱을 생략하는 것을 기반으로, 상기 제 1 장치는 자신의 센싱 결과를 가지지 않을 수 있다.
예를 들어, 상기 SL 데이터를 위한 전송 자원은 이용 가능한 SL(sidelink) 데이터의 PDB(packet delay budget)를 기반으로, 상기 선호 자원 집합에 속하는 자원들 중에서 랜덤하게 선택될 수 있다. 부가적으로, 예를 들어, 제 1 장치는 이용 가능한 상기 SL 데이터를 기반으로 MAC(medium access control) PDU(protocol data unit)를 획득할 수 있다.
예를 들어, 상기 부분 센싱을 기반으로 선택된 이용 가능한 후보 자원의 개수가 임계치보다 작은 것을 기반으로, 상기 SL 데이터를 위한 전송 자원은 상기 이용 가능한 후보 자원 및 상기 IUC 정보를 기반으로 선택될 수 있다.
예를 들어, 상기 부분 센싱을 기반으로 선택된 이용 가능한 후보 자원의 개수가 임계치보다 작은 것을 기반으로, 상기 SL 데이터를 위한 전송 자원은 상기 IUC 정보를 기반으로 선택될 수 있다.
예를 들어, 상기 선호 자원 집합과 관련된 정보를 포함하는 상기 IUC 정보를 수신하는 것을 기반으로, 상기 제 1 장치는 상기 부분 센싱을 수행하도록 허용되지 않을 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 IUC 정보를 기반으로 CBR(channel busy ratio) 값을 획득하기 위한 CBR 측정을 수행할 수 있다. 예를 들어, 상기 CBR 측정을 위한 측정값의 개수가 임계치 이하인 것을 기반으로, 상기 CBR 값은 상기 IUC 정보 및 상기 제 1 장치에 의해 측정된 CBR 측정값을 기반으로 획득될 수 있다. 예를 들어, 상기 CBR 측정을 위한 측정값의 개수가 임계치 이하인 것을 기반으로, 상기 CBR 값은 상기 IUC 정보 및 상기 제 1 장치에 대하여 설정된 CBR 값을 기반으로 획득될 수 있다.
부가적으로, 예를 들어, 제 1 장치는 활성 시간을 위한 타이머와 관련된 정보를 포함하는 SL DRX(discontinuous reception) 설정을 획득할 수 있다. 예를 들어, 상기 활성 시간 외에서, 상기 SL 데이터를 위한 전송 자원은 상기 IUC 정보를 기반으로 선택될 수 있다. 예를 들어, 상기 활성 시간 내에서, 상기 SL 데이터를 위한 전송 자원은 상기 IUC 정보 및 상기 부분 센싱의 결과를 기반으로 선택될 수 있다.
부가적으로, 예를 들어, 제 1 장치는 SL 전송을 위한 자원의 최소 개수와 관련된 정보를 획득할 수 있다. 예를 들어, N 개의 자원은 상기 부분 센싱의 결과를 기반으로 현재 활성 시간 내에서 상기 제 1 장치에 의해 선택될 수 있고, M 개의 자원은 상기 IUC 정보를 기반으로 미래 활성 시간 내에서 상기 제 1 장치에 의해 선택될 수 있고, 및 상기 N 및 상기 M의 합은 상기 최소 개수와 동일할 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 제 1 장치(100)의 프로세서(102)는 부분 센싱 기반의 자원 선택을 위한 설정을 획득할 수 있다. 예를 들어, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하도록 송수신기(106)를 제어할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 SL(sidelink) 데이터를 획득할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택할 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하도록 설정된 제 1 장치가 제공될 수 있다. 예를 들어, 상기 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하고; SL(sidelink) 데이터를 획득하고; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택할 수 있다.
본 개시의 일 실시 예에 따르면, 제 1 장치를 제어하도록 설정된 프로세싱 장치가 제공될 수 있다. 예를 들어, 상기 프로세싱 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하고; SL(sidelink) 데이터를 획득하고; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택할 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 제 1 장치로 하여금: 부분 센싱 기반의 자원 선택을 위한 설정을 획득하게 하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고; 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하게 하고; SL(sidelink) 데이터를 획득하게 하고; 및 전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하게 할 수 있다.
도 14는 본 개시의 일 실시 예에 따라, 제 2 장치가 무선 통신을 수행하는 방법을 나타낸다. 도 14의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 14를 참조하면, 단계 S1410에서, 제 2 장치는 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송할 수 있다. 단계 S1420에서, 제 2 장치는 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신할 수 있다. 단계 S1430에서, 제 2 장치는 상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신할 수 있다. 예를 들어, 부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택될 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 제 2 장치(200)의 프로세서(202)는 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하도록 송수신기(206)를 제어할 수 있다. 그리고, 제 2 장치(200)의 프로세서(202)는 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하도록 송수신기(206)를 제어할 수 있다. 그리고, 제 2 장치(200)의 프로세서(202)는 상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하도록 송수신기(206)를 제어할 수 있다. 예를 들어, 부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택될 수 있다. 예를 들어, 상기 SL 데이터는 SL-SCH 데이터일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하도록 설정된 제 2 장치가 제공될 수 있다. 예를 들어, 상기 제 2 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하도록 상기 하나 이상의 송수신기를 제어하고; SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하고; 및 상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어할 수 있다. 예를 들어, 부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택될 수 있다.
본 개시의 일 실시 예에 따르면, 제 2 장치를 제어하도록 설정된 프로세싱 장치가 제공될 수 있다. 예를 들어, 상기 프로세싱 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하고; SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하고; 및 상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신할 수 있다. 예를 들어, 부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택될 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 제 2 장치로 하여금: 선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하게 하고; SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하게 하고; 및 상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하게 할 수 있다. 예를 들어, 부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택될 수 있다.
본 개시의 다양한 실시 예는 상호 결합될 수 있다.
이하 본 개시의 다양한 실시 예가 적용될 수 있는 장치에 대하여 설명한다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 15는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다. 도 15의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 15를 참조하면, 본 개시의 다양한 실시 예가 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
여기서, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 16은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 도 16의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 16을 참조하면, 제 1 무선 기기(100)와 제 2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제 1 무선 기기(100), 제 2 무선 기기(200)}은 도 15의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제 1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제 1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제 1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제 2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제 2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 17은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다. 도 17의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 17을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 17의 동작/기능은 도 16의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 17의 하드웨어 요소는 도 16의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 16의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 16의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 16의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 17의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 17의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 16의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 18은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 15 참조). 도 18의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 18을 참조하면, 무선 기기(100, 200)는 도 16의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 16의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204)를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 16의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 15, 100a), 차량(도 15, 100b-1, 100b-2), XR 기기(도 15, 100c), 휴대 기기(도 15, 100d), 가전(도 15, 100e), IoT 기기(도 15, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 15, 400), 기지국(도 15, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 18에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제 1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 18의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 19는 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다. 도 19의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 19를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 18의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 20은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다. 도 20의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 20을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 18의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (20)

  1. 제 1 장치가 무선 통신을 수행하는 방법에 있어서,
    부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하는, 단계;
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하는 단계;
    SL(sidelink) 데이터를 획득하는 단계; 및
    전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하는 단계;를 포함하는, 방법.
  2. 제 1 항에 있어서,
    상기 전력 절약을 위해 상기 부분 센싱을 생략하는 것을 기반으로, 상기 제 1 장치는 자신의 센싱 결과를 가지지 않는, 방법.
  3. 제 1 항에 있어서,
    상기 SL 데이터를 위한 전송 자원은 이용 가능한 SL(sidelink) 데이터의 PDB(packet delay budget)를 기반으로, 상기 선호 자원 집합에 속하는 자원들 중에서 랜덤하게 선택되는, 방법.
  4. 제 3 항에 있어서,
    이용 가능한 상기 SL 데이터를 기반으로 MAC(medium access control) PDU(protocol data unit)를 획득하는 단계;를 더 포함하는, 방법.
  5. 제 1 항에 있어서,
    상기 부분 센싱을 기반으로 선택된 이용 가능한 후보 자원의 개수가 임계치보다 작은 것을 기반으로, 상기 SL 데이터를 위한 전송 자원은 상기 이용 가능한 후보 자원 및 상기 IUC 정보를 기반으로 선택되는, 방법.
  6. 제 1 항에 있어서,
    상기 부분 센싱을 기반으로 선택된 이용 가능한 후보 자원의 개수가 임계치보다 작은 것을 기반으로, 상기 SL 데이터를 위한 전송 자원은 상기 IUC 정보를 기반으로 선택되는, 방법.
  7. 제 1 항에 있어서,
    상기 선호 자원 집합과 관련된 정보를 포함하는 상기 IUC 정보를 수신하는 것을 기반으로, 상기 제 1 장치는 상기 부분 센싱을 수행하도록 허용되지 않는, 방법.
  8. 제 1 항에 있어서,
    상기 IUC 정보를 기반으로 CBR(channel busy ratio) 값을 획득하기 위한 CBR 측정을 수행하는 단계;를 더 포함하는, 방법.
  9. 제 8 항에 있어서,
    상기 CBR 측정을 위한 측정값의 개수가 임계치 이하인 것을 기반으로, 상기 CBR 값은 상기 IUC 정보 및 상기 제 1 장치에 의해 측정된 CBR 측정값을 기반으로 획득되는, 방법.
  10. 제 8 항에 있어서,
    상기 CBR 측정을 위한 측정값의 개수가 임계치 이하인 것을 기반으로, 상기 CBR 값은 상기 IUC 정보 및 상기 제 1 장치에 대하여 설정된 CBR 값을 기반으로 획득되는, 방법.
  11. 제 1 항에 있어서,
    활성 시간을 위한 타이머와 관련된 정보를 포함하는 SL DRX(discontinuous reception) 설정을 획득하는 단계;를 더 포함하되,
    상기 활성 시간 외에서, 상기 SL 데이터를 위한 전송 자원은 상기 IUC 정보를 기반으로 선택되는, 방법.
  12. 제 11 항에 있어서,
    상기 활성 시간 내에서, 상기 SL 데이터를 위한 전송 자원은 상기 IUC 정보 및 상기 부분 센싱의 결과를 기반으로 선택되는, 방법.
  13. 제 1 항에 있어서,
    SL 전송을 위한 자원의 최소 개수와 관련된 정보를 획득하는 단계;를 더 포함하되,
    N 개의 자원은 상기 부분 센싱의 결과를 기반으로 현재 활성 시간 내에서 상기 제 1 장치에 의해 선택되고,
    M 개의 자원은 상기 IUC 정보를 기반으로 미래 활성 시간 내에서 상기 제 1 장치에 의해 선택되고, 및
    상기 N 및 상기 M의 합은 상기 최소 개수와 동일한, 방법.
  14. 무선 통신을 수행하도록 설정된 제 1 장치에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고;
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하고;
    SL(sidelink) 데이터를 획득하고; 및
    전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하는, 제 1 장치.
  15. 제 1 장치를 제어하도록 설정된 프로세싱 장치에 있어서,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    부분 센싱 기반의 자원 선택을 위한 설정을 획득하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고;
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하고;
    SL(sidelink) 데이터를 획득하고; 및
    전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하는, 프로세싱 장치.
  16. 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령어들은, 실행될 때, 제 1 장치로 하여금:
    부분 센싱 기반의 자원 선택을 위한 설정을 획득하게 하되, 상기 부분 센싱은 PBPS(periodic-based partial sensing) 또는 CPS(contiguous partial sensing)을 포함하고;
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 2 장치로부터 수신하게 하고;
    SL(sidelink) 데이터를 획득하게 하고; 및
    전력 절약(power saving)을 위해 상기 부분 센싱을 생략(skip)하는 것을 기반으로, 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 상기 SL 데이터를 위한 전송 자원을 선택하게 하는, 비일시적 컴퓨터 판독가능 저장 매체.
  17. 제 2 장치가 무선 통신을 수행하는 방법에 있어서,
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하는 단계;
    SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하는 단계; 및
    상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하는 단계;를 포함하되,
    부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택되는, 방법.
  18. 무선 통신을 수행하도록 설정된 제 2 장치에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하도록 상기 하나 이상의 송수신기를 제어하고;
    SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하고; 및
    상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하되,
    부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택되는, 제 2 장치.
  19. 제 2 장치를 제어하도록 설정된 프로세싱 장치에 있어서,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하고;
    SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하고; 및
    상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하되,
    부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택되는, 프로세싱 장치.
  20. 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령어들은, 실행될 때, 제 2 장치로 하여금:
    선호 자원 집합(preferred resource set)과 관련된 정보를 포함하는 IUC(inter-UE coordination) 정보를 제 1 장치에게 전송하게 하고;
    SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)의 스케줄링을 위한 제 1 SCI를 상기 제 1 장치로부터 수신하게 하고; 및
    상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 SL 데이터를 상기 제 1 장치로부터 수신하게 하되,
    부분 센싱이 전력 절약(power saving)을 위해 상기 제 1 장치에 의해 생략(skip)되는 것을 기반으로, 상기 SL 자원은 상기 IUC 정보에 포함된 상기 선호 자원 집합에 속하는 자원들 중에서 선택되는, 비일시적 컴퓨터 판독가능 저장 매체.
PCT/KR2022/015220 2021-10-11 2022-10-07 Nr v2x에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치 WO2023063668A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163254483P 2021-10-11 2021-10-11
US63/254,483 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023063668A1 true WO2023063668A1 (ko) 2023-04-20

Family

ID=85988492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015220 WO2023063668A1 (ko) 2021-10-11 2022-10-07 Nr v2x에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치

Country Status (2)

Country Link
US (1) US20230128828A1 (ko)
WO (1) WO2023063668A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562400B1 (ko) * 2021-07-06 2023-08-03 엘지전자 주식회사 Nr v2x에서 부분 센싱을 기반으로 자원을 선택하는 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250772A1 (en) * 2020-02-11 2021-08-12 Samsung Electronics Co., Ltd. Resource selection for sidelink

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250772A1 (en) * 2020-02-11 2021-08-12 Samsung Electronics Co., Ltd. Resource selection for sidelink

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER HHI, FRAUNHOFER IIS: "Resource Allocation Enhancements for Mode 2", 3GPP DRAFT; R1-2109431, vol. RAN WG1, 1 October 2021 (2021-10-01), pages 1 - 23, XP052058379 *
HUAWEI, HISILICON: "Sidelink resource allocation to reduce power consumption", 3GPP DRAFT; R1-2108763, vol. RAN WG1, 2 October 2021 (2021-10-02), pages 1 - 29, XP052057860 *
INTEL CORPORATION: "Sidelink Resource Allocation Schemes for UE Power Saving", 3GPP DRAFT; R1-2107609, vol. RAN WG1, 7 August 2021 (2021-08-07), pages 1 - 26, XP052038518 *
NOKIA, NOKIA SHANGHAI BELL: "Inter-UE coordination for Mode 2 enhancements", 3GPP DRAFT; R1-2108819, vol. RAN WG1, 2 October 2021 (2021-10-02), pages 1 - 30, XP052057887 *

Also Published As

Publication number Publication date
US20230128828A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021221363A1 (ko) Nr v2x에서 psfch 오버헤드를 기반으로 sl 통신을 수행하는 방법 및 장치
WO2022139491A1 (ko) Nr v2x에서 디폴트 drx 설정에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2021034078A1 (ko) Nr v2x에서 사이드링크 전송과 관련된 정보를 기지국에게 보고하는 방법 및 장치
WO2022149821A1 (ko) Nr v2x에서 자원 할당 정보를 기반으로 drx 동작을 수행하는 방법 및 장치
WO2022203438A1 (ko) Nr v2x에서 sl harq 피드백을 전송하는 방법 및 장치
WO2022154475A1 (ko) Nr v2x에서 자원 할당 모드 2 동작 기반의 sl drx 타이머 동작 방법 및 장치
WO2023063668A1 (ko) Nr v2x에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치
WO2023022488A1 (ko) Nr v2x에서 사이드링크 전송 상태 지시 기반의 sl drx 동작 방법 및 장치
WO2022154413A1 (ko) Nr v2x에서 단말의 모빌리티에 기반하여 sl drx를 수행하는 방법 및 장치
WO2023121285A1 (ko) Nr v2x에서 sl drx 설정을 고려하여 센싱을 수행하는 방법 및 장치
WO2023075503A1 (ko) Nr v2x에서 sl 자원을 기반으로 무선 통신을 수행하는 방법 및 장치
WO2023121298A1 (ko) Nr v2x에서 sl 자원을 기반으로 무선 통신을 수행하는 방법 및 장치
WO2023048487A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2022191678A1 (ko) Nr v2x에서 재평가 또는 프리엠션을 수행하는 방법 및 장치
WO2022154512A1 (ko) Nr v2x에서 우선 순위에 기반하여 부분 센싱을 수행하는 방법 및 장치
WO2022154550A1 (ko) Nr v2x에서 부분 센싱과 관련된 cbr을 측정하는 방법 및 장치
WO2023008823A1 (ko) Nr v2x에서 sl csi 보고와 관련된 무선 통신을 수행하는 방법 및 장치
WO2023003374A1 (ko) Nr v2x에서 활성 시간을 확장하는 방법 및 장치
WO2022250467A1 (ko) Nr v2x에서 부분 센싱을 수행하는 방법 및 장치
WO2023018103A1 (ko) Nr v2x에서 부분 센싱 동작 기반의 자원 배제 방법 및 장치
WO2023038496A1 (ko) Nr v2x에서 모드 1 단말의 sl drx 활성 시간 동작 방법 및 장치
WO2023113501A1 (ko) Nr v2x에서 iuc mac ce를 통해 drx 활성 시간을 고려한 자원 정보를 전달하는 방법 및 장치
WO2023113498A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2023090865A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2023059162A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022881296

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022881296

Country of ref document: EP

Effective date: 20240226