WO2023063440A1 - Air purifier comprising module for dissociation of hazardous materials of plasma generated during fluid processing and method for purifying air by using same - Google Patents

Air purifier comprising module for dissociation of hazardous materials of plasma generated during fluid processing and method for purifying air by using same Download PDF

Info

Publication number
WO2023063440A1
WO2023063440A1 PCT/KR2021/014081 KR2021014081W WO2023063440A1 WO 2023063440 A1 WO2023063440 A1 WO 2023063440A1 KR 2021014081 W KR2021014081 W KR 2021014081W WO 2023063440 A1 WO2023063440 A1 WO 2023063440A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ozone
plasma
decomposition
fine dust
Prior art date
Application number
PCT/KR2021/014081
Other languages
French (fr)
Korean (ko)
Inventor
고재석
Original Assignee
㈜유앤아이기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜유앤아이기술 filed Critical ㈜유앤아이기술
Priority to CN202180021304.4A priority Critical patent/CN116390801A/en
Publication of WO2023063440A1 publication Critical patent/WO2023063440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • A61L9/145Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes air-liquid contact processes, e.g. scrubbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • B01D47/021Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath by bubbling the gas through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an air purifying device including a harmful substance dissociation module of plasma generated in a fluid treatment process and an air purifying method using the same, and more particularly, to a harmful substance contained in a fluid (contaminated air or atmospheric air). It includes a plasma harmful substance dissociation module that can remove phosphorus viruses, bacteria, VOCs, odors, etc. through the plasma generator and efficiently remove substances harmful to the human body such as ozone, nitric oxide and sulfur oxide, which are harmful substances generated from the plasma generator. It relates to an air purifying device and an air purifying method using the same.
  • Air pollution management to maintain clean air quality by treating dust, sulfur compounds, nitrogen oxides, odors, and volatile organic compounds (VOCs) generated from industrial activities is becoming more important. Electrostatic precipitators, desulfurization facilities, and nitrogen oxide treatment oxidizers are being utilized.
  • Odor is defined as the smell of hydrogen sulfide, mercaptans, amines, and other irritating gaseous substances that stimulate a person's olfactory sense and give unpleasant and disgusting odors.
  • Representative materials include organic acids, alcohols, amines, aromatic compounds, aldehydes, esters, and sulfur compounds.
  • Volatile Organic Compounds are formaldehyde, toluene, ethylene, and styrene that exist in special spaces such as air, indoors, underground spaces, chemical factories, smoking areas, printing shops, chemical use spaces, and iron/smelting. It is a gaseous substance such as , acetaldehyde, benzene, etc., which exists in a combination of tens of ppm to thousands of ppm in the air and is very harmful to the human body.
  • VOCs not only pollute the atmospheric environment, but also have adverse effects on humans and ecology (Aguero et al., 2009; Chen et al., 2014; Vandenbroucke et al., 2011).
  • EPA US Environmental Protection Agency
  • VOCs emitted into the atmosphere are suspected of being toxic (Larsson et al., 1996).
  • the toxicity of VOCs can cause diseases such as allergic reactions, headaches, eye, nose, and throat irritation, loss of consciousness, and convulsions, and chemical reactions in the atmosphere form secondary pollutants such as PAN, ozone, and aerosols. Depletion of the ozone layer, acid rain, and greenhouse effect are aggravated.
  • ozone in the case of ozone, it is generated by changing oxygen in the air by the operation of a plasma device, and it is highly likely to cause problems in the respiratory system when inhaled. Therefore, it is necessary to predict the generation of ozone and additionally provide an exhaust system, and even if the exhaust system is used, ozone often remains. Specifically, if the residual amount is 0.05 ppm or more, it is harmful to the human body, so when using an existing atmospheric pressure plasma device, an exhaust system is necessarily required, which inevitably causes a rise in equipment cost and restrictions on mobility.
  • the present invention manufactures a harmful substance dissociation module and a liquid filter that dissociates harmful substances in order to remove harmful substances such as ozone, fine dust, and decomposition by-products, which are residues generated when plasma having harmful substance removal and sterilization properties is used.
  • the purpose of this is to completely remove the remaining ozone.
  • a six-sided housing having an inlet through which air in the atmosphere flows in on one side, an exhaust port through which purified air is discharged on the other side, and a display unit on the other side;
  • a sensor device installed in the indoor and plasma harmful substance dissociation module 1 to measure the air condition
  • a control device for controlling the operation of the air purifier according to the information measured by the sensor device
  • a treatment fluid supply chamber 100 supplying atmospheric air containing viruses, bacteria, and odor-generating substances into the module;
  • a harmful substance removal chamber 200 including a plasma generator or an ozone generator therein and mixing ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances;
  • a member for rotating or circulating the powdered metal catalyst 310 and the liquid in which the powdered metal catalyst 310 is mixed is provided therein, fine dust in the air passing through the harmful substance removal chamber 200, Including; ozone and fine dust removal chamber 300 for removing ozone and decomposition by-products,
  • the ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
  • Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid. It can be achieved by an air purifier characterized in that dust is removed and an air purifying method using the same.
  • an air purifying device including an air bacteria and odor generating substance decomposition module can effectively remove various volatile organic compounds and recalcitrant organic substances in the air by reacting with ozone as well as fine dust, viruses and bacteria, , In particular, it is possible to completely remove odor-generating substances as well as unreacted ozone harmful to the human body by passing through a plurality of chambers arranged in series.
  • FIG. 1 is an overall configuration diagram of an odor generating substance decomposition module using ozone according to an embodiment of the present invention.
  • Figure 2 is a flow chart of a dissociation method of plasma harmful substances using the decomposition module of the present invention.
  • FIG. 3 is a diagram showing an example of a processing fluid supply chamber.
  • FIG. 4 is a view for explaining the structure of an ozone and fine dust removal chamber.
  • An air purifying device for purifying air in the atmosphere for purifying air in the atmosphere
  • a six-sided housing having an inlet through which air in the atmosphere flows in on one side, an exhaust port through which purified air is discharged on the other side, and a display unit on the other side;
  • a sensor device installed in the indoor and plasma harmful substance dissociation module 1 to measure the air condition
  • a control device for controlling the operation of the air purifier according to the information measured by the sensor device
  • a treatment fluid supply chamber 100 supplying atmospheric air containing viruses, bacteria, and odor-generating substances into the module;
  • a harmful substance removal chamber 200 including a plasma generator or an ozone generator therein and mixing ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances;
  • a member for rotating or circulating the powdered metal catalyst 310 and the liquid in which the powdered metal catalyst 310 is mixed is provided therein, fine dust in the air passing through the harmful substance removal chamber 200, Including; ozone and fine dust removal chamber 300 for removing ozone and decomposition by-products,
  • the ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
  • Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid.
  • An air purifier characterized in that dust is removed and an air purifying method using the same are provided.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • VOCs Volatile Organic Compounds
  • bonds are formed by overlapping orbitals of atoms participating in the bond.
  • a hydrogen molecule is formed by overlapping the 1s orbital of two hydrogen atoms, and in hydrogen fluoride, the 1s orbital of a hydrogen atom and the 2p orbital of fluorine are overlapped.
  • the electrons forming the bond in these two materials are located around the axis (bonding axis) connecting the nuclei of the two atoms forming the bond, so the distribution of electrons becomes cylindrically symmetrical.
  • Such a bond is called a sigma ( ⁇ ) bond.
  • sigma
  • pi ( ⁇ ) bond that exhibits different characteristics from the sigma bond. That is, when py orbitals and py orbitals overlap to form a bond, the electron cloud is distributed above and below the bonding axis, and this bond is called a pi bond.
  • 'decomposition by-product' is a substance produced by the reaction of radicals generated through a plasma generator described later with harmful substances such as the volatile organic compound, and the decomposition by-products generated may be different depending on the type of harmful substance.
  • the present invention includes a module that decomposes and removes odor-generating substances by passing air in the atmosphere containing odor-generating substances, such as livestock breeding grounds or soot, through a plurality of chambers arranged in series.
  • the module basically uses air. It is characterized in that the odor-generating substances are removed using the generated ozone, and even ozone remaining after the odor-generating substances is removed is completely removed.
  • FIG. 1 is an overall configuration diagram of an odor generating substance decomposition module using ozone according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a plasma harmful substance dissociation method using the decomposition module of the present invention
  • FIG. 3 is a process It is a view showing an example of a fluid supply chamber
  • FIG. 4 is a view explaining the structure of an ozone and fine dust removal chamber
  • FIG. 5 is a view explaining a porous member.
  • An air purifying device including a harmful substance dissociation module 1 of plasma generated in a fluid treatment process according to the present invention is an air purifying device that mainly purifies atmospheric air or polluted air, and includes a housing, a harmful substance dissociation module, and a sensor device.
  • the display unit and the control unit are organically and operably coupled, and a typical connection line is omitted for convenience.
  • the housing has an intake port through which air containing pollutants including air in the atmosphere or odor components generated in the indoor space is introduced, and an exhaust port through which pollutant-purified air is discharged back to the indoor space on the other side. is preferably formed.
  • an air circulation means is further provided to circulate the operated air, and the air circulation means can be installed at any one or more of the inlet side, the inside of the housing, or the exhaust port side, It may be preferable to consist of an exhaust blower (not shown) further connected to the exhaust port and further installed to prevent contamination and stable operation of the air circulation means.
  • the other side (mainly, the upper front) of the housing is provided with a display unit that can visually check the operating state of the device by the control action of the control device, and the housing generally has a hexahedral shape.
  • the harmful substance dissociation module 1 is disposed inside the housing and efficiently dissociates harmful substances (in particular, ozone) including fine dust, ozone, and decomposition by-products generated by plasma discharge.
  • the harmful substance dissociation module 1 includes an atmospheric air supply chamber 100 for supplying atmospheric air containing odorous substances into the module; A harmful substance removal chamber 200 including a plasma generator or an ozone generator therein and mixing ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances; and a member for rotating or circulating a powdered metal catalyst 310 and a liquid in which the powdered metal catalyst 310 is mixed therein, and fine dust, ozone and It may be preferable to be configured to include; ozone and fine dust removal chamber 300 for removing decomposition by-products.
  • the ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
  • Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid. Dust is removed.
  • an air supply pipe 320 to which pressurized air is supplied by a pump is introduced from the bottom or side surface, and a porous member 321 forming fine bubbles may be coupled to an end of the air supply pipe 320.
  • the air supply chamber 100 in the atmosphere is for storing air or fluid that needs to be filtered, including odor-generating substances or other organic compounds, and supplying it to the decomposition chamber during processing, and a blower for generating a fluid flow. , not shown), a pump or blowing means may be provided inside.
  • the air in the atmosphere is not limited to a type as long as it is a gas containing odorous substances, organic compounds, or fine dust that needs to be purified or decomposed.
  • gases present in the atmosphere, indoors, underground spaces, chemical factories, smoking areas, printing shops, chemical use spaces, iron manufacturing, smelting, etc. Paraffin, olefin, benzene, toluene, nitrogen oxides, and acetic acid in the gas aldehydes and the like.
  • the air supply chamber 100 in the atmosphere has a passage connected to the decomposition chamber, and a filtering unit (not shown) for filtering fine dust or impurities in the air in the atmosphere may be further provided in the passage.
  • the filtering unit is not limited in the present invention, and for example, a filter, a porous material, etc., which can physically collect fine dust or particles while passing a fluid, or an electric precipitator, an oil-water separator, etc., including dust, moisture, Liquid or solid contaminants such as oil can be temporarily purified.
  • the harmful substance removal chamber 200 is provided separately from the air supply chamber 100 in the atmosphere, and includes a plasma generator or an ozone generator 210 therein to supply ozone to the air in the introduced atmosphere. It is provided to decompose odor-generating substances in the air or their primary decomposition products, and has a plasma generator or ozone generator 210 inside to ionize oxygen in the fluid to completely decompose odor-generating substances.
  • the plasma generator or ozone generator 210 may be selectively used as needed, and is not limited to a type as long as it is used in a general organic material decomposition system that decomposes organic compounds through OH radicals.
  • plasma generation injects gas between two electrodes and applies a high voltage to the electrode to change the gas into a plasma state.
  • electricity is applied to the electrodes, electrons flow between the electrodes.
  • Oxygen molecules are separated by the energy of these electrons, resulting in strong reactive oxygen radicals (O ⁇ ), hydroxyl radicals (OH ⁇ ), and nitrogen radicals (N ⁇ ).
  • hydrogen dioxide radicals (HO 2 ⁇ ), hydrogen radicals (H ⁇ ), etc. form ozone molecules.
  • the plasma generator generates various active species such as oxygen radicals (N 2 + , N + , e, N, N (2D)) , O 2 + , O + , O, O( 2 D), H 2 O + , OH, H, CO 2 + , etc.).
  • the radicals generated as described above react with the odorous substance together with the electrons formed by the plasma generator to cleave the sigma ( ⁇ ) and pi ( ⁇ ) bonds of the odorous substance to generate various carbon compounds, and the generated carbon compounds are again It reacts with other radicals and is completely decomposed and converted into decomposition by-products such as nitrogen, oxygen, chlorine, carbon dioxide, and solid carbon.
  • the plasma generator can be generally classified according to the intensity or frequency of power applied to the electrode, and an ozone generator using a low frequency (50 to 60 Hz) and a medium frequency (60 to 1,000 Hz) is generally used.
  • the mid-frequency generator is efficient and can generate high-concentration ozone, but generates high heat compared to the low-frequency generator, so it is preferable to use a micro-plasma type low-frequency generator capable of generating low-temperature plasma by miniaturizing it.
  • the plasma generator generates various active species as described above, but oxygen radicals are also converted into ozone through the following reactions.
  • M refers to a third substance that assists in the production of ozone.
  • the ozone is an allotrope of oxygen in which three oxygen atoms are bonded, and has much stronger oxidizing power than general oxygen, so it is used for sterilization or odor removal.
  • Such ozone is widely used in the field of water purification and wastewater treatment through ozone oxidation, such as sterilization, iron/manganese treatment, cyanide removal, taste and odor treatment, coagulation auxiliary effect, enhancement of biodegradation of organic matter, and treatment of non-degradable organic matter.
  • ozone is decomposed by the hydroxyl group, and as intermediate products, OH radicals are generated through intermediate pathways such as hydroperoxy radicals (HO 2 - ), superoxide radicals (O 2 - ), and ozonide radicals (O 3 - ).
  • This OH radical has a higher potential difference than ozone itself (O 3 : 2.07V, OH radical: 3.08V) and reacts evenly with almost all organic substances at a very high speed, so it plays a role in further increasing the removal rate of odor-causing substances. do.
  • ultraviolet rays of a specific band UVA light in a wavelength range of 300 to 400 nm
  • UVA light in a wavelength range of 300 to 400 nm
  • the inner wall of the decomposition chamber is further coated with a photocatalyst capable of causing a photocatalytic reaction with the ultraviolet light.
  • VOCs Volatile Organic Compounds: It can decompose harmful substances such as volatile organic compounds) into H 2 O and CO 2 that are harmless to the human body.
  • the plasma generator 210 employs a hole-type surface discharge plasma or is composed of a DBD ceramic plate to generate high-concentration ozone around 15 ppm to ensure sterilization of viruses and bacteria.
  • the harmful substance removal chamber 200 in the present invention is a device for mixing and contacting air and ozone in the atmosphere, and may be composed of a housing made of a corrosion-resistant material or metal.
  • the high-concentration ozone generated by the plasma generator or the ozone generator 210 comes into contact with incoming indoor air, atmospheric air, or contaminated air (BA) to sterilize microorganisms including bacteria and viruses, and sterilize ozone and treated air. passes through the plurality of partition walls 220 arranged in a zigzag pattern, and the treated air AA passing through the partition walls 220 is transported to the ozone and fine dust removal chamber 300 .
  • BA contaminated air
  • the harmful substance removal chamber 200 may be equipped with various means for dissolving ozone in order to further increase the contact between the harmful substances and radicals, ozone, etc., when air in the atmosphere contains liquid.
  • ozone may be diffused in the form of bubbles (bubble diffuser contactor), an ozone injector may be provided, or a turbine mixer contactor may be included in the chamber.
  • the harmful substance removal chamber 200 may further include a filtering unit (not shown) for filtering decomposition by-products generated by the decomposition of the odor generating substance.
  • the filtration unit may be provided in the passage between the decomposition chamber and the ozone and fine dust removal chamber, and the filtration method, structure, type, etc. are not limited, but it is preferable to include the above-described porous material or filter.
  • an adsorption filter adsorbs odor-generating substances, ozone, decomposition by-products, etc. to increase the contact time between them, thereby increasing the treatment efficiency of odor-generating substances and assisting in filtering decomposition by-products (not shown) may be further provided.
  • the adsorption filter is not limited in its material, etc., but it is preferable to include a zeolite-based porous mesoporous material in order to promote the adsorption of odor-generating substances having a large molecular weight.
  • the air (AA) exiting the harmful substance removal chamber 200 may contain ozone remaining therein, a powdered metal catalyst 310 and a powdered metal catalyst 310 are installed therein to remove it. It can pass through the ozone and fine dust removal chamber 300 equipped with a member for rotating or circulating the mixed liquid.
  • ozone is a cleaning agent having strong sterilization and oxidizing power as described above, but it also contributes to global warming and can adversely affect the environment and human body. Therefore, in order to further add a process for removing this, the air in the atmosphere from which all odor-generating substances are removed is passed through the ozone and fine dust removal chamber to completely remove even ozone.
  • Conventional ozone removal technologies include an adsorption method using activated carbon or zeolite, a heating method by applying high-temperature heat, a chemical cleaning method, etc.
  • a heating method by applying high-temperature heat
  • a chemical cleaning method etc.
  • a lot of energy must be consumed to heat the fluid.
  • the present invention introduces a method of decomposing ozone through a catalytic reaction using a powdery metal catalyst for oxidizing ozone. It maximizes the removal efficiency of microorganisms including viruses, ozone and fine dust by removing them below ppm.
  • the oxyhydroxide of the metal generates OH radicals in an oxidation-reduction process, and since these OH radicals have high reactivity with ozone, remaining ozone can be quickly removed.
  • ozone is removed by OH radicals generated in the Fe 2+ /Fe 3+ redox cycle process as shown in Scheme 5 below, and by using the catalyst as described above, It is possible to maximize the ozone removal time efficiency by lowering the activation energy.
  • the metal oxide hydrate can act as a filtering medium for removing impurities in the air, particularly arsenic and heavy metals, in addition to a role of decomposing ozone, the filtration efficiency of air in the atmosphere can be further increased.
  • the metal hydroxide according to the present invention is characterized in that it has a form of a hydroxide represented by Chemical Formula 1 below.
  • n is an integer from 1 to 6
  • Me is 1 selected from the group consisting of trivalent metals Fe and Al and divalent metals Fe, Mg, Mn, Zn, Ca, Cu, Na, and Li Contains more than one metal.
  • the above metal hydroxide is prepared using cations generated in the form of sulfate or chloride, and cations such as trivalent metals Fe and Al or divalent metals Fe, Mg, Mn, Zn, Ca, Cu, Na, and Li are It reacts with water in slightly alkaline or slightly acidic solutions to form a poorly soluble hydroxide salt precipitate.
  • a precipitate in the form of a hydroxide may be generated by reacting a single molecule generated from a sulfate or chloride of iron or manganese by adding an alkali additive for pH control, for example, sodium hydroxide. Precipitates are used as metal oxides.
  • the method for producing the metal acid hydrate is not limited to the type as long as it is a method commonly used in the art. It can be prepared by mixing with water and stirring until the solid coagulant is completely dissolved, reacting it with an alkali additive, and filtering and drying it when a precipitate is generated.
  • the inorganic coagulant is limited only when the iron salt or manganese salt is in a solid state, and no inorganic coagulant is required when the iron salt or manganese salt is in a liquid state.
  • the alkali additive added to generate the precipitate of the hydroxide salt is to adjust the total pH to 6 or more, and it is preferable to proceed by reacting for 1 to 3 hours after adding the alkali additive.
  • the alkali additive for example, calcium hydroxide (Ca(OH) 2 ), sodium carbonate (Na 2 CO 3 ), and sodium hydroxide (NaOH) may be applied.
  • hydrochloric acid (HCl) or the like may be mixed in order to increase the porosity of the metal hydroxide precipitated separately from the alkali additive.
  • the metal hydroxide prepared as described above can form a porous molded body having pores therein through a method such as a polymer, ceramic, and foaming, such as another medium.
  • ⁇ - FeOOH goethite
  • ⁇ -FeOOH akaganeite
  • lepidocrocite ⁇ -FeOOH
  • feroxyhyte feroxyhyte
  • permanganate hydroxide is mixed with iron hydroxide and manganese acid hydroxide in a weight ratio of 5.5 to 8.0 : 2.0 to 4.5, and aluminum hydroxide in a weight ratio of 1 to 5, most preferably 3 weight ratio.
  • various treatment conditions such as the amount of the metal catalyst, reaction temperature and reaction time are not limited in the present invention.
  • the amount of the metal catalyst is 5 to 15 parts by weight relative to 100 parts by weight of air in the atmosphere
  • the temperature is room temperature (around 20 ° C)
  • the reaction time can be freely adjusted.
  • the supply amount of air in the atmosphere containing the ozone is not limited, but may be freely adjusted in the range of 0.01 to 100 L/sec.
  • the ozone and fine dust removal chamber 300 may not be divided according to ozone concentration or may be divided into one or more spaces by an intermediate partition wall 350, and one side of the partition wall 350 is for moving the neutralized water solution.
  • a passage can be opened.
  • a neutralized water solution supply pipe 330 for supplying a neutralized water-containing solution into the chamber is provided at the top of the ozone and fine dust removal chamber 300, and is drawn into the chamber.
  • a processing air inlet pipe 340 through which air from which germs and odor-generating substances are removed from the harmful substance removal chamber 200 is introduced is introduced from the bottom to the inside, and a powdered metal catalyst 310 solution is provided inside the chamber. , and a member for rotating or circulating the liquid in which the powdered metal catalyst 310 is mixed may be further provided.
  • an air supply pipe 320 through which pressurized air is supplied by a pump may be introduced from the bottom (or side point) of the chamber and provided.
  • the neutralized water solution supply pipe 330 serves to intermittently supplement the evaporation of the neutralized water solution and evaporated neutralized water solution.
  • the air from which germs and odor-generating substances are removed is brought into contact with the metal powder catalyst 310 solution, and microscopic particles are formed by the pressurized air supplied through the processing air inlet pipe 340 and/or the air supply pipe 320. Bubbles and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled, and fine dust, ozone, and decomposition by-products are dissolved and purified in the neutralized water solution, and the air pushed upward passes through the pumping pipe 360. It may be preferable that the purified air after being transported to another divided space and purified again through a bubbling process be exhausted through an outlet 370 formed at the upper portion.
  • the pumping pipe 360 communicates with each other at the upper part of the divided space at the upper part of the ozone and fine dust removal chamber 300 and provides a passage through which the air purified by the bubbling process moves to the other divided space.
  • One side of the pumping pipe 360 communicates with the upper surface of the ozone and fine dust removal chamber 300, and the other side has an extended length so that it is sufficiently submerged in water.
  • the air supply pipe or inlet pipe may supply or transport air by operation of a pump.
  • the processing air inlet pipe 340 and/or the air supply pipe 320 generate fine bubbles in the neutralized water solution and supply pressurized air so that the bubbled air is pumped through the pumping pipe 360 by pressure. make it move
  • the intermediate partition wall 350 and the pumping pipe 360 may be omitted.
  • a rotating fan 385 or a spiral structure 386 may be provided on the lower surface of the ozone and fine dust removal chamber 300, and a ring blower (not shown) may be provided at an end of the treatment air inlet pipe 340. It may be preferable to further promote the removal of ozone by microbubbles by providing rotation or circulation of the liquid.
  • the spiral structure is preferably formed in the form of a protrusion on the bottom of the ozone and fine dust removal chamber 300, and the microbubbles discharged from the processing air inlet pipe 340 or the air supply pipe 320 have a spiral structure installed on the bottom of the chamber. As it collides with the projection of the microbubble, it receives rotational force and floats while rotating along with the liquid.
  • microbubbles discharged from the air inlet pipe 340 do not rise vertically but circulate and float along the direction in which the liquid rotates, thereby removing ozone. efficiency can be further increased.
  • the purified air pushed to the top is exhausted through the outlet 370 formed at the top.
  • the air supply pipe 320 is installed on the bottom of the chamber or supplies air from the middle of the side rather than the bottom of the chamber, thereby reducing the load of the pump and forming fine bubbles.
  • part of the supply pipe or inlet pipe (320, 330, 340, 350) may be omitted or connected on the way using another pipe and a three-way valve.
  • the process air supply pipe 340 containing ozone and the pressurized air supply pipe 320 are integrated into one, the air supply pipe 320 is omitted, and the air containing ozone together with the pressurized air is supplied to the process air supply pipe 340.
  • a ring blower may be provided at an end of the porous member 321 .
  • the neutralized water solution used for a long time is discharged through the outlet 380.
  • the porous member 321 for forming the microbubbles is formed by being coupled to the end of the treatment air inlet pipe 340 or the air supply pipe 320, and is selected from natural minerals, ceramics, and mixtures thereof. It is preferably made of a ceramic foam or sponge made from one or more selected species.
  • the porous member 321 is not limited to a cylindrical shape, a column shape, or a spherical shape, and pressurized air is diffused in water to form microbubbles.
  • the porous member 321 includes open pores with an average diameter of less than 10 ⁇ m, preferably has a porosity of 80% or more, and more preferably has an average diameter of 0.3 to 1.5 mm of the formed microbubbles. .
  • the neutralized water-containing solution preferably has a pH of 6.5 to 7.5 and is an aqueous solution containing an aluminum compound.
  • the concentration of the aluminum compound contained in the solution containing the aluminum compound is preferably 1 to 3.5 mg/L.
  • the sensor device is installed in the indoor and air plasma harmful substance dissociation module to measure the air condition and output the result to the control device.
  • the sensor is the value detected by O 3 , VOC, PM2.5, PM10, PM100, temperature and humidity sensors, etc. output to the controller.
  • the control device controls the overall operation of the air purifier and controls the operation of the air purifier according to information such as concentrations of nitrogen oxide, ozone, and nitrogen dioxide measured by the sensor device.
  • the control device may calculate the value sensed by the sensor device to determine the air condition of each indoor space.
  • the control device may divide the air condition of each indoor space into a plurality of steps according to the value sensed by the sensor device.
  • the air condition may be divided into 4 stages such as 'good', 'normal', 'bad', and 'very bad' as the value sensed by the sensor device increases, but is not limited thereto.
  • the control device may divide the fine dust state into a plurality of stages according to the interval of the fine dust concentration value measured by the fine dust sensor.
  • control device may control an on/off operation of air purifiers disposed in each indoor space. That is, the control device may control each air purifying device to operate at regular intervals or control each air purifying device to operate according to an air condition detection value measured by a sensor device. For example, if the state of fine dust in an indoor space corresponds to a level higher than 'normal' or 'bad', the control device may control the air purifier of the indoor space to operate or strongly operate. Therefore, the air quality management system according to an embodiment of the present invention can effectively prevent infections in hospitals.
  • control device may generate and transmit display information to a display unit or a user terminal, and may control various types of information to be stored in a storage device (not shown).
  • the display unit may display display information generated by the control device and provide it to a manager (eg, a medical staff in case of a hospital building).
  • a manager eg, a medical staff in case of a hospital building.
  • the display unit includes air condition measurement items (for example, fine dust concentration, carbon dioxide concentration, temperature, humidity, VOC concentration, ozone concentration, etc.) for each indoor space, measured values for each sensor of the sensor device of the corresponding indoor space, etc. can display
  • the display unit may divide and display each air condition measurement item in multiple stages.
  • the display unit may include a liquid crystal display (LCD), a light-emitting diode (LED) display device, an organic light-emitting diode (OLED) display device, and a quantum dot (quantum dot) display device. It may be a dot (QD) display device, a microelectromechanical systems (MEMS) display device, or an electronic paper display device, but is not limited thereto.
  • LCD liquid crystal display
  • LED light-emitting diode
  • OLED organic light-emitting diode
  • quantum dot quantum dot
  • a network environment including an ICT platform can be constructed using the control device.
  • the present invention provides an air purification method using a harmful substance dissociation module of plasma generated in the fluid treatment process.
  • the air purification method includes a) supplying atmospheric air containing bacteria and odor-generating substances into a module; b) a plasma treatment step of removing bacteria and odor-generating substances by bringing plasma (ozone) into contact with the incoming fluid; c) an ozone concentration measurement step of measuring concentrations of ozone and decomposition by-products in the air after plasma treatment; and d) when the concentration of ozone in the atmospheric air in step c) is higher than the set concentration, it contacts the metal catalyst to remove ozone remaining in the atmospheric air by using hydroxyl radicals, which are supplied through the air supply pipe 320.
  • Fine bubbles formed by the pressurized air and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled to dissolve and purify fine dust, ozone, and decomposition by-products in the neutralized water solution, and the air pushed upward
  • steps a), b), and d) are performed through the above-described module, and overlapping descriptions are omitted.
  • the concentration of ozone in the air in the atmosphere by accommodating the air in the atmosphere in contact with the plasma in a bathtub provided separately. It is preferable to be provided to be connected to a plasma generating bath, a metal catalyst contact bath, and an air discharge bath in the atmosphere through a dissolved ozone concentration meter that can be used and each pipe.
  • the dissolved ozone concentration meter measures the concentration of dissolved ozone in the air in the atmosphere in the bathtub and detects that the concentration is higher than the set concentration
  • the pipe connected to the metal catalytic contact bath is opened to flow the air in the atmosphere into the metal catalytic contact bath to decompose dissolved ozone can do.
  • the measured concentration of dissolved ozone is less than a set concentration, it is preferable to open a pipe connected to the air discharging tub to discharge air in the atmosphere.
  • the air in the atmosphere containing harmful substances in the atmosphere uses OH radicals generated in the plasma to remove the harmful substances in the harmful substance removal chamber 200, and in step d), the secondary harmful substances generated in the plasma are removed.
  • Ozone is introduced into the ozone and fine dust removal chamber 300 and a porous member is installed so that the ozone is removed while the gas floats by fine bubbling.
  • each treatment bath when air in the atmosphere is supplied through steps a) to d), it is preferable to connect each treatment bath with a completely closed pipe to prevent residual dissolved ozone from being discharged into the atmosphere.
  • air containing harmful substances pressurized by a pump, etc. is removed and introduced into the ozone and fine dust removal chamber 300 together with the ozone generated in the plasma to form fine bubbles in the liquid mixed with the metal catalyst through a porous member and a member for rotating the liquid installed on the bottom of the chamber (fan or spiral structure), ozone is decomposed and fine dust is removed in the process of floating while rotating along with the rotating liquid, and the air discharged through the final air outlet is clean air from which harmful substances and fine dust ozone are removed. supply effect.
  • the present invention provides a decomposition module capable of effectively removing odor-generating substances such as hydrogen sulfide, mercaptans, amines, and aromatic compounds using plasma as described above.
  • the ozone generated in the plasma generator is completely removed through the metal oxyhydroxide catalyst, thereby having an excellent odor-causing substance reduction effect and not creating an environment harmful to the human body.
  • Ozone was generated so that the concentration of ozone in the air was 10 ppm through a plasma generator.
  • concentration was measured with a dissolved ozone meter (Gastiger 2000, Wandi), and the removal rate was calculated by substituting into Equation 1 below.
  • An ozone removal test was performed using the malodor generating substance decomposition module using ozone as shown in FIG. 1 and according to the dissociation method of harmful plasma substances as shown in FIG.
  • the ozone concentration before and after the ozone removal step was measured to analyze the removal rate.
  • the dissociation module and dissociation method according to the present invention include a metal catalyst, which is a mixture of ferric acid hydroxide and manganese acid hydroxide, inside the ozone removal chamber of the module, thereby removing ozone from the fluid.
  • a metal catalyst which is a mixture of ferric acid hydroxide and manganese acid hydroxide
  • Example 6 Al weight ratio ozone concentration Removal rate (%) before processing after treatment
  • Example 6 One 20 2.615 86.9
  • Example 7 3 20 1.305 93.4
  • Example 8 5 20 2.230 88.5
  • the ozone removal rate was compared and tested by varying the pore size of the porous member, and the results are shown in Table 3.
  • Liquid circulation method ozone concentration Removal rate (%) before processing after treatment
  • Example 13 No liquid circulation (stoma immediately rises) 20 11.02 44.9
  • Example 14 fan for liquid circulation 20 6.113 69.435
  • Example 15 Liquid circulation method using a spiral structure 20 6.824 65.88

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention relates to an air purifier comprising a module for dissociation of hazardous materials of plasma generated during fluid processing and a method for purifying air by using same and, more specifically, to an air purifier and a method for purifying air by using same, the air purifier comprising a module for dissociation of hazardous materials of plasma, in which hazardous materials contained in a fluid (contaminated air), such as viruses, bacteria, VOCs, odors, and the like, are removed by using a plasma generator, and materials hazardous to the human body and generated in the plasma generator, such as ozone, nitrogen oxide, and sulfur oxide, are effectively removed. The air purifier comprising a module for decomposition of germs in the air and odor-generating materials according to the present invention can effectively remove not only fine dust, but also various volatile organic compounds and non-degradable organic matter in the air through a reaction with ozone. In particular, by passing through a plurality of continuously arranged chambers, not only odor-generating materials but also unreacted ozone hazardous to the human body can be completely removed.

Description

유체 처리 과정에 발생되는 플라즈마의 유해물질 해리 모듈을 포함하는 공기 정화장치 및 이를 이용한 공기 정화 방법Air purifier including module for dissociation of toxic substances in plasma generated during fluid treatment and method for purifying air using the same
본 발명은 유체 처리 과정에 발생되는 플라즈마의 유해물질 해리 모듈을 포함하는 공기 정화장치 및 이를 이용한 공기 정화 방법에 관한 것으로, 좀 더 상세하게는 유체(오염 공기 또는 대기 중의 공기) 내에 포함된 유해물질인 바이러스, 박테리아, VOCs, 악취 등을 플라즈마 발생기를 통해 제거하고 플라즈마 발생기에서 발생되는 유해물질인 오존, 질산화물 및 황산화물 등 인체에 유해한 물질을 효율적으로 제거할 수 있는 플라즈마의 유해물질 해리 모듈을 포함하는 공기 정화장치 및 이를 이용한 공기 정화 방법에 관한 것이다.The present invention relates to an air purifying device including a harmful substance dissociation module of plasma generated in a fluid treatment process and an air purifying method using the same, and more particularly, to a harmful substance contained in a fluid (contaminated air or atmospheric air). It includes a plasma harmful substance dissociation module that can remove phosphorus viruses, bacteria, VOCs, odors, etc. through the plasma generator and efficiently remove substances harmful to the human body such as ozone, nitric oxide and sulfur oxide, which are harmful substances generated from the plasma generator. It relates to an air purifying device and an air purifying method using the same.
산업활동에서 발생하는 먼지, 황화합물, 질소산화물, 악취, 휘발성 유기화합물(Volatile Organic Compounds, VOCs) 등을 처리하여 깨끗한 공기질을 유지할 수 있도록 하는 대기오염 관리가 중요해지고 있고, 오염 물질의 처리 방법에 따라 전기집진, 탈황설비, 질소산화물 처리 산화 장치 등이 활용되고 있다.Air pollution management to maintain clean air quality by treating dust, sulfur compounds, nitrogen oxides, odors, and volatile organic compounds (VOCs) generated from industrial activities is becoming more important. Electrostatic precipitators, desulfurization facilities, and nitrogen oxide treatment oxidizers are being utilized.
악취는 황화수소, 메르캅탄류, 아민류, 그 밖의 자극성 있는 기체 상태의 물질이 사람의 후각을 자극하여 불쾌감과 혐오감을 주는 냄새로 정의되는데, 이런 악취를 유발하는 물질은 매우 다양하다. 대표적인 물질로 유기산류, 알코올류, 아민류, 방향족 화합물류, 알데하이드류, 에스테르류, 황화합물류 등이 있다.Odor is defined as the smell of hydrogen sulfide, mercaptans, amines, and other irritating gaseous substances that stimulate a person's olfactory sense and give unpleasant and disgusting odors. Representative materials include organic acids, alcohols, amines, aromatic compounds, aldehydes, esters, and sulfur compounds.
또한 휘발성 유기화합물(Volatile Organic Compounds, VOCs)은 대기, 실내, 지하 공간, 화학공장, 흡연 장소, 인쇄소, 화학물질 사용 공간, 제철/제련과 같은 특수 공간 등에 존재하는 포름알데히드, 톨루엔, 에틸렌, 스틸렌, 아세트알데히드, 벤젠 등과 같은 가스 상의 물질들로 공기 중 수십 ppm에서 수천 ppm 복합적으로 존재하며 인체에 매우 유해한 것이다.In addition, Volatile Organic Compounds (VOCs) are formaldehyde, toluene, ethylene, and styrene that exist in special spaces such as air, indoors, underground spaces, chemical factories, smoking areas, printing shops, chemical use spaces, and iron/smelting. It is a gaseous substance such as , acetaldehyde, benzene, etc., which exists in a combination of tens of ppm to thousands of ppm in the air and is very harmful to the human body.
이러한 VOCs는 대기환경을 오염시킬 뿐만 아니라 인간 및 생태학적으로도 악영향을 미치는 물질이다(Aguero et al., 2009; Chen et al., 2014; Vandenbroucke et al., 2011). 미국환경청(EPA)에서는 대기로 배출되는 VOCs의 약 70%가 독성이 의심된다고 하였다(Larsson et al., 1996). VOCs의 독성은 알레르기 반응, 두통, 눈, 코, 목의 자극, 의식상실, 경련과 같은 질환을 유발할 수 있으며, 대기 중 화학반응으로 PAN, 오존 및 에어로졸 등의 2차 오염물질을 형성하고 이로 인해 오존층 파괴, 산성비, 온실 효과가 가중된다.These VOCs not only pollute the atmospheric environment, but also have adverse effects on humans and ecology (Aguero et al., 2009; Chen et al., 2014; Vandenbroucke et al., 2011). According to the US Environmental Protection Agency (EPA), about 70% of VOCs emitted into the atmosphere are suspected of being toxic (Larsson et al., 1996). The toxicity of VOCs can cause diseases such as allergic reactions, headaches, eye, nose, and throat irritation, loss of consciousness, and convulsions, and chemical reactions in the atmosphere form secondary pollutants such as PAN, ozone, and aerosols. Depletion of the ozone layer, acid rain, and greenhouse effect are aggravated.
지금까지 실제 VOCs에 대해 규제관리를 이행하는데 있어, 미국은 1960년대부터 대기오염의 심각성을 인식하여 세계 최초로 시작하였고, 우리나라는 1978년 아황산가스(SO2)에 이어 1986년 일산화탄소(CO), 이산화질소(NO2), 입자성 물질(PM), 오존(O3), 휘발성 유기화합물 등에 대한 대기환경 기준을 설정하였다. In implementing regulatory management for actual VOCs so far, the United States has been the first in the world to recognize the seriousness of air pollution since the 1960s. (NO 2 ), particulate matter (PM), ozone (O 3 ), and volatile organic compounds, etc. were established as air quality standards.
이러한 유해가스 처리를 위하여 플라즈마를 이용한 연구는 1990년대 초반부터 꾸준히 세계 여러 대학 및 연구소에서 진행되어오고 있으며, VOCs 처리에 관하여 많은 가능성을 보여주고 있지만, 아직 해결해야 할 과제들이 많이 남아있다. 그것은 부산물(by-products)의 발생이 가장 난해한 문제점으로 지목되고 있다. 즉 대기 중의 VOCs를 처리함에 있어서 플라즈마 반응 후에 기대하지 않는 O3, CO, NOx, 제3의 탄화수소들(Polymers의 생성요인) 등이 그 문제점으로 거론될 수 있는데, 이는 저온 플라즈마 반응만으로는 해결할 수 없고 별도의 후처리 장치가 요구되고 있다.Research using plasma for the treatment of harmful gases has been steadily conducted at various universities and research institutes around the world since the early 1990s, and shows many possibilities for VOCs treatment, but there are still many challenges to be solved. It is pointed out that the generation of by-products is the most difficult problem. That is, in treating VOCs in the air, unexpected O 3 , CO, NOx, and third hydrocarbons (generating factors of polymers) after plasma reaction can be mentioned as problems, which cannot be solved by low-temperature plasma reaction alone. A separate post-processing device is required.
특히, 오존의 경우 플라즈마 장치의 작동에 의해 공기 중의 산소가 바뀌어 생성되는 것으로, 흡입시 호흡기 계통에 문제를 일으킬 가능성이 높다. 따라서 오존이 발생되는 것을 예측하여 배기 시스템을 추가로 구비하여야 하며, 배기 시스템을 활용하더라도 오존이 잔류하는 경우가 많다. 구체적으로 잔류량이 0.05ppm 이상일 경우 인체에 유해하므로 기존의 대기압 플라즈마 장치를 활용할 경우 반드시 배기 시스템이 필요하여 장비 단가의 상승과 이동성에 제약이 발생할 수 밖에 없다.In particular, in the case of ozone, it is generated by changing oxygen in the air by the operation of a plasma device, and it is highly likely to cause problems in the respiratory system when inhaled. Therefore, it is necessary to predict the generation of ozone and additionally provide an exhaust system, and even if the exhaust system is used, ozone often remains. Specifically, if the residual amount is 0.05 ppm or more, it is harmful to the human body, so when using an existing atmospheric pressure plasma device, an exhaust system is necessarily required, which inevitably causes a rise in equipment cost and restrictions on mobility.
한편, 전기학회 논문집 59권 5호(2010년 5월)에는 플라즈마 프로세스 및 촉매 표면 화학반응에 의한 유기화합물 분해효율 향상에 관한 연구가 공개되어 있으나, 이는 배리어 방전 리액터의 방전 특성을 조사하고, 제작된 리액터의 오존 발생 특성 및 이산화망간 촉매 표면에서의 오존농도 변화에 대한 레이저 광학측 정법을 통하여 표면 화학반응에 대한 2차원 측정 결과를 논하였으며, 오존 분해 시 촉매 표면에서 발생한 산소 라디칼의 화학반응 특성을 조사하기 위하여 CO의 CO2로의 산화반응, 유기화합물(트리클로로에틸렌(TCE, C2HCl3), 메틸알코올(CH3OH), 아세 톤(CH3COCH3), 디클로로메탄(CH2Cl2)과의 화학반응을 통하여 부산물 생성특성을 분석함으로써 표면 화학반응이 활발히 일어나고 있음을 확인하고, 플라즈마 프로세스 및 촉매공정을 혼합함에 의하여 분해효율 향상 가능성을 연구한 것이다.On the other hand, a study on the improvement of decomposition efficiency of organic compounds by plasma process and catalytic surface chemical reaction is disclosed in the Journal of the Korean Institute of Electrical Engineers, Vol. 59, No. 5 (May 2010), but this study investigated the discharge characteristics of the barrier discharge reactor and produced The two-dimensional measurement results of the surface chemical reaction were discussed through laser optical measurement of the ozone generation characteristics of the reactor and the change in ozone concentration on the surface of the manganese dioxide catalyst, and the chemical reaction characteristics of oxygen radicals generated on the catalyst surface during ozone decomposition were analyzed. To investigate, the oxidation reaction of CO to CO 2 , organic compounds (trichloroethylene (TCE, C 2 HCl 3 ), methyl alcohol (CH 3 OH), acetone (CH 3 COCH 3 ), dichloromethane (CH 2 Cl 2 ), it was confirmed that the surface chemical reaction was actively occurring by analyzing the by-product generation characteristics through the chemical reaction with , and the possibility of improving the decomposition efficiency was studied by mixing the plasma process and the catalytic process.
그러나 상기 논문에서는 플라즈마 리액터 내부에서 산소분자(O2) 분해로 생성된 산소 원자 라디칼(O)과 또 다른 산소분자와의 화학반응에 의하여 오존(O3)이 생성될 경우 산소원자 라디칼과 CO는 전자구조의 차이에 의하여 CO2로의 산화반응이 잘 진행되지 않는 문제점을 해소하지 못하고 있다. 또한 플라즈마 리액터와 촉매를 통과한 CO2 및 Cl2에 대한 버블링(Bubbling)으로 인체에 무해한 기체를 배출시키는 기술과 CO 센서를 통한 버블링 수용액 및 활성탄소의 교체시기를 관리자에게 통보하지 못하는 문제점을 안고 있다.However, in the above paper, when ozone (O 3 ) is generated by a chemical reaction between an oxygen atom radical (O) generated by the decomposition of an oxygen molecule (O 2 ) and another oxygen molecule inside the plasma reactor, the oxygen atom radical and CO are The problem that the oxidation reaction to CO 2 does not proceed well due to the difference in electronic structure has not been solved. In addition, the technology of discharging gases harmless to the human body by bubbling CO 2 and Cl 2 passing through the plasma reactor and catalyst and the problem of not notifying the manager of the replacement period of the bubbling aqueous solution and activated carbon through the CO sensor are holding
본 발명자들은 이와 같은 종래 기술의 문제점을 개선하고 효율적인 공기정화 장치를 개발하기 위하여 예의 연구하던 중, 후술하는 바와 같이 제균 특성을 갖는 플라즈마와 유체를 이용한 처리 모듈인 액체 필터를 이용할 경우 발생되는 잔여물인 오존과 같은 유해물질과 미세먼지, 분해부산물과 잔존하는 오존을 완전히 제거할 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.While the present inventors were intensively researching to improve the problems of the prior art and develop an efficient air purifying device, as will be described later, the residue generated when using a liquid filter, which is a processing module using plasma and fluid having antibacterial properties, It was discovered that harmful substances such as ozone, fine dust, decomposition by-products, and remaining ozone could be completely removed, and the present invention was completed.
따라서, 본 발명은 유해물질 제거 및 제균 특성을 갖는 플라즈마를 이용할 경우 발생되는 잔여물인 오존과 같은 유해물질과 미세먼지, 분해부산물을 제거하기 위하여 유해물질을 해리하는 유해물질 해리 모듈 및 액체 필터를 제작하여 잔존하는 오존을 완전히 제거하는 것을 목적으로 한다.Therefore, the present invention manufactures a harmful substance dissociation module and a liquid filter that dissociates harmful substances in order to remove harmful substances such as ozone, fine dust, and decomposition by-products, which are residues generated when plasma having harmful substance removal and sterilization properties is used. The purpose of this is to completely remove the remaining ozone.
위와 같은 본 발명의 목적은 The purpose of the present invention as above is
대기 중의 공기(처리하고자 하는 공기 또는 오염 공기를 포함함)를 정화하는 공기 정화장치에 있어서,In the air purifier for purifying air in the atmosphere (including air to be treated or polluted air),
대기 중의 공기가 유입되는 흡입구가 일측에 형성되고, 타측에는 정화된 공기가 배출되는 배기구가 형성되며, 다른 일측에는 표시부가 구비된 육면체 형상의 하우징;A six-sided housing having an inlet through which air in the atmosphere flows in on one side, an exhaust port through which purified air is discharged on the other side, and a display unit on the other side;
상기 하우징의 내부에 배치되고, 플라즈마의 방전에 의해 발생되는 미세먼지, 오존 및 분해 부산물을 포함하는 유해물질을 해리하는 유해물질 해리 모듈(1);A harmful substance dissociation module (1) disposed inside the housing and dissociating harmful substances including fine dust, ozone, and decomposition by-products generated by plasma discharge;
실내 및 플라즈마 유해물질의 해리 모듈(1) 내에 장착되어 공기 상태를 측정하는 센서장치; 및A sensor device installed in the indoor and plasma harmful substance dissociation module 1 to measure the air condition; and
상기 센서장치에서 측정된 정보에 따라 상기 공기 정화장치의 작동을 제어하는 제어장치;를 포함하여 이루어지고,A control device for controlling the operation of the air purifier according to the information measured by the sensor device;
상기 플라즈마의 유해물질 해리 모듈(1)은The harmful substance dissociation module 1 of the plasma
바이러스, 세균 및 악취발생 물질을 포함하는 대기 중의 공기를 모듈 내부로 공급하는 처리 유체 공급 챔버(100);a treatment fluid supply chamber 100 supplying atmospheric air containing viruses, bacteria, and odor-generating substances into the module;
내부에 플라즈마 발생기 또는 오존 발생기를 포함하여 이들로부터 생된 오존 및 대기 중의 공기가 혼합되어 세균 및 악취발생 물질을 제거하는 유해물질 제거 챔버(200); 및A harmful substance removal chamber 200 including a plasma generator or an ozone generator therein and mixing ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances; and
내부에 분말형 금속 촉매(310) 및 분말형 금속 촉매(310)가 혼합된 액체를 회전 또는 순환시키기 위한 부재가 구비되고, 상기 유해물질 제거 챔버(200)를 통과한 대기 중의 공기 내 미세먼지, 오존 및 분해부산물을 제거하는 오존 및 미세먼지 제거 챔버(300);를 포함하고,A member for rotating or circulating the powdered metal catalyst 310 and the liquid in which the powdered metal catalyst 310 is mixed is provided therein, fine dust in the air passing through the harmful substance removal chamber 200, Including; ozone and fine dust removal chamber 300 for removing ozone and decomposition by-products,
상기 오존 및 분해 부산물 제거 챔버(300)는 분할되지 않거나 또는 격벽(350)에 의해 1개 이상으로 분할된 공간을 포함하여 이루어지고, 내부에 분말형 금속 촉매(310)가 혼합된 액체와 회전 또는 순환시키기 위한 부재가 구비되고, 상기 처리 공기 유입관(340)의 단부에는 미세 버블을 형성하는 다공질 부재(321)가 결합되며,The ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
유해물질 제거 챔버(200)를 통과한 오존을 포함하는 공기는 처리 공기 유입관(340)을 통하여 오존 및 미세먼지 제거 챔버(300)의 내부로 인입되어 액체의 순환 및 버블링에 의해 오존 및 미세먼지가 제거되는 것을 특징으로 하는 공기 정화장치 및 이를 이용한 공기 정화 방법에 의해 달성될 수 있다.Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid. It can be achieved by an air purifier characterized in that dust is removed and an air purifying method using the same.
본 발명에 따른 공기 세균 및 악취발생물질 분해 모듈을 포함하는 공기 정화장치는 미세먼지, 바이러스 및 세균은 물론이고 오존과 반응시켜 공기 중의 다양한 휘발성 유기화합물들과 난분해성 유기물 등을 효과적으로 제거할 수 있으며, 특히 연속 배열된 복수의 챔버들을 통과시킴으로써 악취발생물질 뿐만 아니라 인체에 유해한 미반응 오존을 완전히 제거할 수 있다.According to the present invention, an air purifying device including an air bacteria and odor generating substance decomposition module can effectively remove various volatile organic compounds and recalcitrant organic substances in the air by reacting with ozone as well as fine dust, viruses and bacteria, , In particular, it is possible to completely remove odor-generating substances as well as unreacted ozone harmful to the human body by passing through a plurality of chambers arranged in series.
도 1은 본 발명의 일 실시예에 따른 오존을 이용한 악취발생물질 분해 모듈의 전체 구성도이다.1 is an overall configuration diagram of an odor generating substance decomposition module using ozone according to an embodiment of the present invention.
도 2는 본 발명의 분해 모듈을 이용한 플라즈마 유해물질의 해리방법의 플로 우차트이다.Figure 2 is a flow chart of a dissociation method of plasma harmful substances using the decomposition module of the present invention.
도 3은 처리 유체 공급 챔버의 일례를 나타내는 도면이다.3 is a diagram showing an example of a processing fluid supply chamber.
도 4는 오존 및 미세먼지 제거챔버의 구조를 설명하는 도면이다.4 is a view for explaining the structure of an ozone and fine dust removal chamber.
도 5는 다공질 부재를 설명하는 도면이다.5 : is a figure explaining a porous member.
본 발명은, 일면에 있어서, The present invention, in one aspect,
대기 중의 공기를 정화하는 공기 정화 장치에 있어서,An air purifying device for purifying air in the atmosphere,
대기 중의 공기가 유입되는 흡입구가 일측에 형성되고, 타측에는 정화된 공기가 배출되는 배기구가 형성되며, 다른 일측에는 표시부가 구비된 육면체 형상의 하우징;A six-sided housing having an inlet through which air in the atmosphere flows in on one side, an exhaust port through which purified air is discharged on the other side, and a display unit on the other side;
상기 하우징의 내부에 배치되고, 플라즈마의 방전에 의해 발생되는 미세먼지, 오존 및 분해 부산물을 포함하는 유해물질을 해리하는 유해물질 해리 모듈(1);A harmful substance dissociation module (1) disposed inside the housing and dissociating harmful substances including fine dust, ozone, and decomposition by-products generated by plasma discharge;
실내 및 플라즈마 유해물질 해리 모듈(1) 내에 장착되어 공기 상태를 측정하는 센서장치; 및A sensor device installed in the indoor and plasma harmful substance dissociation module 1 to measure the air condition; and
상기 센서장치에서 측정된 정보에 따라 상기 공기 정화 장치의 작동을 제어하는 제어장치;를 포함하여 이루어지고,A control device for controlling the operation of the air purifier according to the information measured by the sensor device;
상기 플라즈마의 유해물질 해리 모듈(1)은The harmful substance dissociation module 1 of the plasma
바이러스, 세균 및 악취발생물질을 포함하는 대기 중의 공기를 모듈 내부로 공급하는 처리유체 공급 챔버(100);a treatment fluid supply chamber 100 supplying atmospheric air containing viruses, bacteria, and odor-generating substances into the module;
내부에 플라즈마 발생기 또는 오존 발생기를 포함하여 이들로부터 생성된 오존 및 대기 중의 공기가 혼합되어 세균 및 악취발생물질을 제거하는 유해물질 제거 챔버(200); 및A harmful substance removal chamber 200 including a plasma generator or an ozone generator therein and mixing ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances; and
내부에 분말형 금속 촉매(310) 및 분말형 금속 촉매(310)가 혼합된 액체를 회전 또는 순환시키기 위한 부재가 구비되고, 상기 유해물질 제거 챔버(200)를 통과한 대기 중의 공기 내 미세먼지, 오존 및 분해부산물을 제거하는 오존 및 미세먼지 제거 챔버(300);를 포함하고,A member for rotating or circulating the powdered metal catalyst 310 and the liquid in which the powdered metal catalyst 310 is mixed is provided therein, fine dust in the air passing through the harmful substance removal chamber 200, Including; ozone and fine dust removal chamber 300 for removing ozone and decomposition by-products,
상기 오존 및 분해 부산물 제거 챔버(300)는 분할되지 않거나 또는 격벽(350)에 의해 1개 이상으로 분할된 공간을 포함하여 이루어지고, 내부에 분말형 금속 촉매(310)가 혼합된 액체와 회전 또는 순환시키기 위한 부재가 구비되고, 상기 처리 공기 유입관(340)의 단부에는 미세 버블을 형성하는 다공질 부재(321)가 결합되며,The ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
유해물질 제거 챔버(200)를 통과한 오존을 포함하는 공기는 처리 공기 유입관(340)을 통하여 오존 및 미세먼지 제거 챔버(300)의 내부로 인입되어 액체의 순환 및 버블링에 의해 오존 및 미세먼지가 제거되는 것을 특징으로 하는 공기 정화장치 및 이를 이용한 공기 정화 방법을 제공한다.Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid. An air purifier characterized in that dust is removed and an air purifying method using the same are provided.
이하, 본 발명에 따른 공기 정화장치 및 이를 이용한 공기 정화 방법에 대하여 첨부된 도면을 참고로 하여 보다 상세하게 설명한다.Hereinafter, an air purifying device and an air purifying method using the same according to the present invention will be described in more detail with reference to the accompanying drawings.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있으며, 특정 실시예들은 상세한 설명에서 구체적으로 설명한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해서 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention can make various changes and have various embodiments, and specific embodiments are specifically described in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention.
또한, 본 발명에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term. When an element is described as being “connected,” “coupled to,” or “connected” to another element, that element is directly connected or connectable to the other element, but there is another element between the elements. It will be understood that elements may be “connected”, “coupled” or “connected”.
본 발명에서 ‘휘발성 유기화합물(Volatile Organic Compounds, VOCs)’은, 대기, 실내, 지하 공간, 화학공장, 흡연 장소, 인쇄소, 화학물질 사용 공간, 제철/제련과 같은 특수 공간 등에 존재하는 포름알데히드, 톨루엔, 에틸렌, 스틸렌, 아세트알데히드, 벤젠 등과 같은 물질로서 대부분은 탄소-탄소간의 2중 결합(시그마(σ), 파이(π) 결합)을 포함하고 있다. In the present invention, 'Volatile Organic Compounds (VOCs)' refers to formaldehyde, It is a substance such as toluene, ethylene, styrene, acetaldehyde, and benzene, and most of them contain a double bond between carbon and carbon (sigma (σ), pi (π) bond).
또한, 화학 결합은 결합에 참여하는 원자의 오비탈이 겹쳐져 형성된다. 예를 들면, 수소 분자는 두 수소 원자의 1s 오비탈이 겹쳐져 형성되고, 플루오린화수소에서는 수소 원자의 1s 오비탈과 플루오린의 2p 오비탈이 겹쳐져 형성된다. 이 두 물질에서 결합을 이루고 있는 전자는 결합을 이루고 있는 두 원자의 핵을 잇는 축(결합축)을 중심으로 그 둘레에 위치하고 있어 전자의 분포가 원통형 대칭이 된다. 이와 같은 결합을 시그마(σ) 결합이라고 한다. 시그마 결합과 다른 특성을 보이는 결합으로 파이(π) 결합이 있다. 즉, py 오비탈과 py 오비탈이 겹쳐 결합을 이루는 경우 전자구름은 결합축의 위와 아래로 분포하게 되는데 이 결합을 파이 결합이라고 한다.In addition, chemical bonds are formed by overlapping orbitals of atoms participating in the bond. For example, a hydrogen molecule is formed by overlapping the 1s orbital of two hydrogen atoms, and in hydrogen fluoride, the 1s orbital of a hydrogen atom and the 2p orbital of fluorine are overlapped. The electrons forming the bond in these two materials are located around the axis (bonding axis) connecting the nuclei of the two atoms forming the bond, so the distribution of electrons becomes cylindrically symmetrical. Such a bond is called a sigma (σ) bond. There is a pi (π) bond that exhibits different characteristics from the sigma bond. That is, when py orbitals and py orbitals overlap to form a bond, the electron cloud is distributed above and below the bonding axis, and this bond is called a pi bond.
본 발명에서 ‘분해부산물’은 후술하는 플라즈마 발생기를 통해 생성된 라디칼과 상기 휘발성 유기화합물 등의 유해물질이 반응하여 생성되는 물질로, 유해물질의 종류에 따라 생성되는 분해부산물이 다를 수 있으며, 이들의 예를 들면 질산암모늄(NH4NO3), 아질산암모늄(NH4NO2), 아황산(H2SO3), 황산(H2SO4), 메탄(CH4), 수소(H), 포름산(HCOOH), 아세트산(CH3COOH), 질소(N2), 산소(O2), 염소(Cl2) 등이 있다.In the present invention, 'decomposition by-product' is a substance produced by the reaction of radicals generated through a plasma generator described later with harmful substances such as the volatile organic compound, and the decomposition by-products generated may be different depending on the type of harmful substance. For example, ammonium nitrate (NH 4 NO 3 ), ammonium nitrite (NH 4 NO 2 ), sulfurous acid (H 2 SO 3 ), sulfuric acid (H 2 SO 4 ), methane (CH 4 ), hydrogen (H ), formic acid (HCOOH), acetic acid (CH 3 COOH), nitrogen (N 2 ), oxygen (O 2 ), and chlorine (Cl 2 ).
본 발명은 축산물 사육장이나 매연 등의 악취 발생 물질을 포함하는 대기 중의 공기를 연속 배열된 복수의 챔버들을 통과시켜 악취발생 물질을 분해, 제거하는 모듈을 포함하며, 이때 상기 모듈은 기본적으로 공기를 사용하여 발생된 오존을 이용하여 악취발생 물질을 제거하며, 악취발생 물질이 제거된 후에 잔존하는 오존까지 완전히 제거하는 것을 특징으로 한다.The present invention includes a module that decomposes and removes odor-generating substances by passing air in the atmosphere containing odor-generating substances, such as livestock breeding grounds or soot, through a plurality of chambers arranged in series. At this time, the module basically uses air. It is characterized in that the odor-generating substances are removed using the generated ozone, and even ozone remaining after the odor-generating substances is removed is completely removed.
도 1은 본 발명의 일 실시예에 따른 오존을 이용한 악취발생물질 분해 모듈의 전체 구성도이고, 도 2는 본 발명의 분해 모듈을 이용한 플라즈마 유해물질의 해리방법의 플로우차트이며, 도 3은 처리 유체 공급 챔버의 일례를 나타내는 도면이고, 도 4는 오존 및 미세먼지 제거챔버의 구조를 설명하는 도면이며, 도 5는 다공질 부재를 설명하는 도면이다.1 is an overall configuration diagram of an odor generating substance decomposition module using ozone according to an embodiment of the present invention, FIG. 2 is a flow chart of a plasma harmful substance dissociation method using the decomposition module of the present invention, and FIG. 3 is a process It is a view showing an example of a fluid supply chamber, FIG. 4 is a view explaining the structure of an ozone and fine dust removal chamber, and FIG. 5 is a view explaining a porous member.
본 발명에 따른 유체 처리 과정에 발생되는 플라즈마의 유해물질 해리 모듈(1)을 포함하는 공기 정화 장치는 주로 대기 중의 공기 또는 오염 공기를 정화하는 공기 정화 장치로써, 하우징, 유해물질 해리 모듈, 센서 장치, 표시부 및 제어부 등이 유기적으로 작동 가능하게 결합되어 이루어지며, 통상의 접속 라인은 편의상 생략하고 설명한다.An air purifying device including a harmful substance dissociation module 1 of plasma generated in a fluid treatment process according to the present invention is an air purifying device that mainly purifies atmospheric air or polluted air, and includes a housing, a harmful substance dissociation module, and a sensor device. , The display unit and the control unit are organically and operably coupled, and a typical connection line is omitted for convenience.
상기 하우징은 대기 중의 공기나 실내공간에서 발생된 악취 성분을 포함하는 오염 물질이 함유된 공기가 인입되는 흡입구가 일 측에 형성되고, 타측에는 오염물질이 정화된 공기를 다시 상기 실내 공간으로 내보내는 배기구가 형성되는 것이 바람직하다. The housing has an intake port through which air containing pollutants including air in the atmosphere or odor components generated in the indoor space is introduced, and an exhaust port through which pollutant-purified air is discharged back to the indoor space on the other side. is preferably formed.
한편, 작동되는 공기의 순환을 위하여 공기 순환 수단이 더 구비되는 것이 일반적이며, 이러한 상기 공기 순환 수단은 상기 흡입구 측, 상기 하우징의 내부 또는 상기 배기구 측 중 어느 한 곳 이상에 설치되는 것이 가능하나, 상기 공기 순환 수단의 오염 방지 및 안정적인 작동을 위하여 배기구에 더 연결되어 더 설치되는 배기 송풍기(미도시)로 구성되는 것이 바람직할 수 있다.On the other hand, it is common that an air circulation means is further provided to circulate the operated air, and the air circulation means can be installed at any one or more of the inlet side, the inside of the housing, or the exhaust port side, It may be preferable to consist of an exhaust blower (not shown) further connected to the exhaust port and further installed to prevent contamination and stable operation of the air circulation means.
또한, 하우징의 다른 일측(주로, 상부 정면)에는 제어장치의 제어 작용에 의해 장치의 작동 상태를 가시적으로 확인할 수 있는 표시부가 구비되고, 하우징은 육면체 형상을 갖는 것이 일반적이다.In addition, the other side (mainly, the upper front) of the housing is provided with a display unit that can visually check the operating state of the device by the control action of the control device, and the housing generally has a hexahedral shape.
상기 유해물질 해리 모듈(1)은 상기 하우징의 내부에 배치되고, 플라즈마의 방전에 의해 발생되는 미세먼지, 오존 및 분해 부산물을 포함하는 유해물질(특히, 오존)을 효율적으로 해리한다.The harmful substance dissociation module 1 is disposed inside the housing and efficiently dissociates harmful substances (in particular, ozone) including fine dust, ozone, and decomposition by-products generated by plasma discharge.
상기 유해물질 해리 모듈(1)은, 악취발생 물질을 포함하는 대기 중의 공기를 모듈 내부로 공급하는 대기 중의 공기공급 챔버(100); 내부에 플라즈마 발생기 또는 오존 발생기를 포함하여 이들로부터 생성된 오존 및 대기 중의 공기가 혼합되어 세균 및 악취발생 물질을 제거하는 유해물질 제거 챔버(200); 및 내부에 분말형 금속 촉매(310) 및 분말형 금속 촉매(310)가 혼합된 액체를 회전 또는 순환시키기 위한 부재가 구비되고, 상기 유해물질 제거 챔버를 통과한 대기 중의 공기 내 미세먼지, 오존 및 분해부산물을 제거하는 오존 및 미세먼지 제거 챔버(300);를 포함하여 구성되는 것이 바람직할 수 있다.The harmful substance dissociation module 1 includes an atmospheric air supply chamber 100 for supplying atmospheric air containing odorous substances into the module; A harmful substance removal chamber 200 including a plasma generator or an ozone generator therein and mixing ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances; and a member for rotating or circulating a powdered metal catalyst 310 and a liquid in which the powdered metal catalyst 310 is mixed therein, and fine dust, ozone and It may be preferable to be configured to include; ozone and fine dust removal chamber 300 for removing decomposition by-products.
상기 오존 및 분해 부산물 제거 챔버(300)는 분할되지 않거나 또는 격벽(350)에 의해 1개 이상으로 분할된 공간을 포함하여 이루어지고, 내부에 분말형 금속 촉매(310)가 혼합된 액체와 회전 또는 순환시키기 위한 부재가 구비되고, 상기 처리 공기 유입관(340)의 단부에는 미세 버블을 형성하는 다공질 부재(321)가 결합되며,The ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
유해물질 제거 챔버(200)를 통과한 오존을 포함하는 공기는 처리 공기 유입관(340)을 통하여 오존 및 미세먼지 제거 챔버(300)의 내부로 인입되어 액체의 순환 및 버블링에 의해 오존 및 미세먼지가 제거된다.Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid. Dust is removed.
별법으로, 펌프에 의해 가압 공기가 공급되는 공기 공급관(320)이 저면 또는 측면에서 내부로 인입되고, 상기 공기공급관(320)의 단부에는 미세 버블을 형성하는 다공질 부재(321)가 결합되어도 좋다.Alternatively, an air supply pipe 320 to which pressurized air is supplied by a pump is introduced from the bottom or side surface, and a porous member 321 forming fine bubbles may be coupled to an end of the air supply pipe 320.
상기 대기 중의 공기 공급 챔버(100)는 악취발생 물질이나 기타 유기화합물을 포함하여 여과가 필요한 공기 또는 유체를 저장하고 처리시 상기 분해 챔버로 공급하기 위한 것으로, 유체의 흐름을 생성하기 위한 블로워(blower, 미도시), 펌프 또는 송풍 수단이 내부에 구비될 수 있다.The air supply chamber 100 in the atmosphere is for storing air or fluid that needs to be filtered, including odor-generating substances or other organic compounds, and supplying it to the decomposition chamber during processing, and a blower for generating a fluid flow. , not shown), a pump or blowing means may be provided inside.
상기 대기 중의 공기는 정화 또는 분해가 필요한 악취발생 물질이나 유기화합물, 미세 먼지 등을 포함하는 기체라면 종류에 한정하지 않는다. 예를 들어 대기, 실내, 지하 공간, 화학공장, 흡연 장소, 인쇄소, 화학물질 사용 공간, 제철, 제련 등의 공간에 존재하는 기체들로 기체 내에 파라핀, 올레핀, 벤젠, 톨루엔, 질소산 화물, 아세트알데히드 등을 포함할 수 있다.The air in the atmosphere is not limited to a type as long as it is a gas containing odorous substances, organic compounds, or fine dust that needs to be purified or decomposed. For example, gases present in the atmosphere, indoors, underground spaces, chemical factories, smoking areas, printing shops, chemical use spaces, iron manufacturing, smelting, etc. Paraffin, olefin, benzene, toluene, nitrogen oxides, and acetic acid in the gas aldehydes and the like.
또한 상기 대기 중의 공기 공급 챔버(100)는 상기 분해 챔버와 연결되는 통로를 갖되, 상기 통로에는 상기 대기 중의 공기 내 미세먼지나 불순물을 여과하기 위한 여과부(미도시)가 더 구비될 수 있다. In addition, the air supply chamber 100 in the atmosphere has a passage connected to the decomposition chamber, and a filtering unit (not shown) for filtering fine dust or impurities in the air in the atmosphere may be further provided in the passage.
이때 상기 여과부는 본 발명에서 한정하지 않으며, 예를 들어 필터, 다공성 물질 등과 같이 유체를 통과시키면서도 미세먼지나 입자 등을 물리적으로 포집할 수 있는 것이나 전기 집진기, 유수분리기 등을 포함하여 분진, 수분, 유분 등과 같은 액상 또는 고상의 오염물질을 일시적으로 정화할 수 있다.At this time, the filtering unit is not limited in the present invention, and for example, a filter, a porous material, etc., which can physically collect fine dust or particles while passing a fluid, or an electric precipitator, an oil-water separator, etc., including dust, moisture, Liquid or solid contaminants such as oil can be temporarily purified.
본 발명에서 상기 유해물질 제거 챔버(200)는 상기 대기 중의 공기 공급챔버(100)와는 별개로 구비되며, 내부에 플라즈마 발생기 또는 오존발생기(210)를 포함하여 유입된 대기 중의 공기에 오존을 공급하여 대기 중의 공기 내 악취발생 물질이나 이들의 1차 분해물을 분해하기 위해 구비되는 것으로, 내부에 플라즈마 발생기 또는 오존 발생기(210)를 구비하여 유체 내 산소를 이온화시켜 악취 발생물질을 완전히 분해할 수 있다.In the present invention, the harmful substance removal chamber 200 is provided separately from the air supply chamber 100 in the atmosphere, and includes a plasma generator or an ozone generator 210 therein to supply ozone to the air in the introduced atmosphere. It is provided to decompose odor-generating substances in the air or their primary decomposition products, and has a plasma generator or ozone generator 210 inside to ionize oxygen in the fluid to completely decompose odor-generating substances.
본 발명에서 상기 플라즈마 발생기 또는 오존 발생기(210)는 필요에 따라 선택적으로 사용될 수 있으며 OH 라디칼을 통해 유기화합물을 분해하는 일반적인 유기물질 분해 시스템에 사용하는 것이라면 종류에 한정하지 않는다.In the present invention, the plasma generator or ozone generator 210 may be selectively used as needed, and is not limited to a type as long as it is used in a general organic material decomposition system that decomposes organic compounds through OH radicals.
일반적으로 플라즈마 발생은 두 개의 전극 사이에 기체를 주입하고 전극에 고전압을 가하여 기체를 플라즈마 상태로 변화시킨다. 전극에 전기가 가해지면 전극 사이에 전자가 흐르게 되는데, 이 전자들의 에너지에 의해 산소분자들이 분리되어 강력한 반응성을 가지는 산소라디칼(O·), 수산화라디칼(OH·), 질소라디 칼(N·), 이산화수소라디칼(HO2·) 수소라디칼(H·) 등과 오존분자를 형성하게 된다.In general, plasma generation injects gas between two electrodes and applies a high voltage to the electrode to change the gas into a plasma state. When electricity is applied to the electrodes, electrons flow between the electrodes. Oxygen molecules are separated by the energy of these electrons, resulting in strong reactive oxygen radicals (O·), hydroxyl radicals (OH·), and nitrogen radicals (N·). , hydrogen dioxide radicals (HO 2 ·), hydrogen radicals (H · ), etc. form ozone molecules.
구체적으로 상기 플라즈마 발생기는 일반적인 대기나 산소 분위기에서 플라즈마를 가함으로써 가속된 전자와 산소분자의 충돌에 의해 산소라디칼 등의 다양한 활성종들(N2 +, N+, e, N, N(2D), O2 +, O+, O, O(2D), H2O+, OH, H, CO2 + 등)을 생성하게 된다. 상기와 같이 생성된 라디칼은 플라즈마 발생기에 의해 형성된 전자와 함께 악취물질과 반응하여 악취물질의 시그마(σ) 및 파이(π) 결합을 절단하여 다양한 탄소화합물을 생성하게 되며, 생성된 탄소화합물은 다시 다른 라디칼과 반응하여 질소, 산소, 염소, 이산화탄소, 고형탄소 등의 분해부산물로 완전히 분해되어 변환된다.Specifically, the plasma generator generates various active species such as oxygen radicals (N 2 + , N + , e, N, N (2D)) , O 2 + , O + , O, O( 2 D), H 2 O + , OH, H, CO 2 + , etc.). The radicals generated as described above react with the odorous substance together with the electrons formed by the plasma generator to cleave the sigma (σ) and pi (π) bonds of the odorous substance to generate various carbon compounds, and the generated carbon compounds are again It reacts with other radicals and is completely decomposed and converted into decomposition by-products such as nitrogen, oxygen, chlorine, carbon dioxide, and solid carbon.
이때 플라즈마 발생기는 보통 전극에 적용된 전력의 세기나 주파수 에 따라 구분될 수 있으며, 일반적으로 저주파(50 내지 60㎐)와 중주파(60 내지 1,000㎐)를 이용한 오존발생기가 사용된다. 중주파 발생기는 효율적이고 고농도의 오존을 생성할 수 있으나 저주파 발생기에 비해 고열이 발생하므로 이를 소형화하여 저온 플라즈마를 발생할 수 있는 마이크로 플라즈마 형태의 저주파 발생기를 사용하는 것이 바람직하다.At this time, the plasma generator can be generally classified according to the intensity or frequency of power applied to the electrode, and an ozone generator using a low frequency (50 to 60 Hz) and a medium frequency (60 to 1,000 Hz) is generally used. The mid-frequency generator is efficient and can generate high-concentration ozone, but generates high heat compared to the low-frequency generator, so it is preferable to use a micro-plasma type low-frequency generator capable of generating low-temperature plasma by miniaturizing it.
다만 상기 플라즈마 발생기는 상기와 같은 다양한 활성종들도 생성 하나 아래와 같은 반응들을 통해 산소 라디칼이 오존으로 전환되기도 한다.However, the plasma generator generates various active species as described above, but oxygen radicals are also converted into ozone through the following reactions.
Figure PCTKR2021014081-appb-I000001
Figure PCTKR2021014081-appb-I000001
(상기 반응식 4에서 M은 오존의 생성을 보조하는 제3의 물질을 뜻한다.) (In Scheme 4 above, M refers to a third substance that assists in the production of ozone.)
상기 오존은 산소 원자 3개가 결합된 산소의 동소체로, 일반적인 산소보다 산화력이 훨씬 강해 살균이나 악취 제거에 이용된다. 이러한 오존은 오존산화법을 통해 살균, 철·망간처리, 시안제거, 맛, 냄새 처리, 응집 보조효과, 유기물 생물분해 증진, 난분해성 유기물 처리 등으로 정·폐수처리 분야에서 널리 활용 되고 있다.The ozone is an allotrope of oxygen in which three oxygen atoms are bonded, and has much stronger oxidizing power than general oxygen, so it is used for sterilization or odor removal. Such ozone is widely used in the field of water purification and wastewater treatment through ozone oxidation, such as sterilization, iron/manganese treatment, cyanide removal, taste and odor treatment, coagulation auxiliary effect, enhancement of biodegradation of organic matter, and treatment of non-degradable organic matter.
또한 오존은 수산화기에 의해 분해가 시작되어 중간생성물질로 hydroperoxy 라디칼(HO2 -), superoxide 라디칼(O2 -), ozonide 라디칼(O3 -) 등의 중간 경로를 거쳐 OH 라디칼을 생성하게 된다. 이 OH 라디칼은 오존 그 자체보다 높은 전위차를 가지며(O3: 2.07V, OH 라디칼: 3.08V) 거의 모든 유기물과 매우 빠른 속도로 골고루 반응하는 특징이 있으므로 악취발생물질의 제거 속도를 더욱 높이는 역할을 한다.In addition, ozone is decomposed by the hydroxyl group, and as intermediate products, OH radicals are generated through intermediate pathways such as hydroperoxy radicals (HO 2 - ), superoxide radicals (O 2 - ), and ozonide radicals (O 3 - ). This OH radical has a higher potential difference than ozone itself (O 3 : 2.07V, OH radical: 3.08V) and reacts evenly with almost all organic substances at a very high speed, so it plays a role in further increasing the removal rate of odor-causing substances. do.
상기와 같이 생성된 오존을 혼합챔버 내에서 대기 중의 공기와 혼합되면, 상기 라디칼 등과 유사하게 유기화합물의 시그마(σ) 및 파이(π) 결합을 절단하여 다양한 탄소화합물을 생성하게 되며, 생성된 탄소화합물은 다시 다른 라디칼과 반응하여 분해부산물로 완전히 분해되어 변환된다.When the ozone generated as described above is mixed with air in the atmosphere in the mixing chamber, similar to the radicals, sigma (σ) and pi (π) bonds of organic compounds are cleaved to generate various carbon compounds, and the generated carbon The compound reacts with other radicals again and is completely decomposed and converted into decomposition by-products.
또한 플라즈마 방전 시 발산되는 특정 대역의 자외선(300 내지 400nm 파장 대역의 UVA 광)이 수산기 자유 라디칼을 생성하여 유기화합물이나 암모니아, 아민류를 분해할 수 있다. 다만 상기와 같은 자외선에 의한 유기화합물 분해는 광촉매 반응에 의해 촉진될 수 있으므로 상기 분해챔버는 내벽에 상기 자외선과 광촉매 반응을 일으킬 수 있는 광촉매가 더 코팅되는 것이 바람직하다. In addition, ultraviolet rays of a specific band (UVA light in a wavelength range of 300 to 400 nm) emitted during plasma discharge generate hydroxyl free radicals to decompose organic compounds, ammonia, and amines. However, since the decomposition of organic compounds by ultraviolet light can be promoted by a photocatalytic reaction, it is preferable that the inner wall of the decomposition chamber is further coated with a photocatalyst capable of causing a photocatalytic reaction with the ultraviolet light.
구체적으로 상기 플라즈마 방전 시 발생하는 자외선이 분해챔버의 내주면에 코팅 형성된 광촉매층에 조사되면, 광촉매 반응을 일으켜 히드록실 라디칼을 발생시킴으로써 오염 가스에 포함된 포름알데히드(formaldehyde) 또는 VOCs(Volatile Organic Compounds: 휘발성 유기 화합물) 등과 같은 유해 물질을 인체에 무해한 H2O와 CO2 등으로 분해할 수 있다.Specifically, when the ultraviolet rays generated during the plasma discharge are irradiated to the photocatalyst layer coated on the inner circumferential surface of the decomposition chamber, a photocatalytic reaction occurs to generate hydroxyl radicals, thereby reducing formaldehyde or VOCs (Volatile Organic Compounds: It can decompose harmful substances such as volatile organic compounds) into H 2 O and CO 2 that are harmless to the human body.
상기 플라즈마 발생기(210)는 홀타입 면방전 플라즈마를 채택하거나 또는 DBD 세라믹 플레이트로 구성되어, 15ppm 전후의 고농도의 오존을 발생시켜 바이러스 및 세균의 멸균이 확실하게 이루어지게 하는 것이 바람직할 수 있다.It may be preferable that the plasma generator 210 employs a hole-type surface discharge plasma or is composed of a DBD ceramic plate to generate high-concentration ozone around 15 ppm to ensure sterilization of viruses and bacteria.
본 발명에서 상기 유해물질 제거 챔버(200)는 도 3에 나타낸 바와 같이, 대기 중의 공기와 오존을 혼합하여 접촉시키는 장치로서 내부식성 물질이나 금속으로 이루어진 하우징으로 구성될 수 있다.As shown in FIG. 3, the harmful substance removal chamber 200 in the present invention is a device for mixing and contacting air and ozone in the atmosphere, and may be composed of a housing made of a corrosion-resistant material or metal.
상기 플라즈마 발생기 또는 오존 발생기(210)에 의해 발생된 고농도의 오존은 유입되는 실내 공기, 대기 중의 공기 또는 오염 공기(BA)와 접촉하여, 박테리아나 바이러스를 포함하는 미생물을 살균하고, 오존 및 처리 공기는 지그재그로 배치된 복수의 격벽(220)을 통과하여 격벽(220)을 통과한 처리 공기(AA)는 오존 및 미세먼지 제거 챔버(300)로 이송된다.The high-concentration ozone generated by the plasma generator or the ozone generator 210 comes into contact with incoming indoor air, atmospheric air, or contaminated air (BA) to sterilize microorganisms including bacteria and viruses, and sterilize ozone and treated air. passes through the plurality of partition walls 220 arranged in a zigzag pattern, and the treated air AA passing through the partition walls 220 is transported to the ozone and fine dust removal chamber 300 .
또한 상기 유해물질 제거 챔버(200)는 대기 중의 공기가 액체를 포함하는 경우, 유해물질과 라디칼, 오존 등과의 접촉성을 더욱 높이기 위해 오존을 용해하는 다양한 수단을 구비할 수 있다. 이들의 예를 들면 오존을 기포 형태로 확산시키거나(기포 확산형 접촉조, bubble diffuser contactor), 오존주입기(injector)를 구비하거나, 챔버 내에 터빈 믹서(turbine mixer contactor) 등을 포함할 수 있다. In addition, the harmful substance removal chamber 200 may be equipped with various means for dissolving ozone in order to further increase the contact between the harmful substances and radicals, ozone, etc., when air in the atmosphere contains liquid. For example, ozone may be diffused in the form of bubbles (bubble diffuser contactor), an ozone injector may be provided, or a turbine mixer contactor may be included in the chamber.
상기 유해물질 제거 챔버(200)는 상기 악취발생 물질의 분해에 의해 생성된 분해부산물을 여과하기 위한 여과부(미도시)가 더 구비될 수 있다. 이때 상기 여과부는 상기 분해 챔버와 오존 및 미세먼지 제거 챔버 사이의 유로 내에 구비될 수 있으며, 여과 방법이나 구조, 종류 등을 한정하지 않으나 상술한 다공성 물질이나 필터 등을 구비하는 것이 좋다.The harmful substance removal chamber 200 may further include a filtering unit (not shown) for filtering decomposition by-products generated by the decomposition of the odor generating substance. At this time, the filtration unit may be provided in the passage between the decomposition chamber and the ozone and fine dust removal chamber, and the filtration method, structure, type, etc. are not limited, but it is preferable to include the above-described porous material or filter.
또한, 상기 유해물질 제거 챔버(200) 내에는 악취발생 물질과 오존, 분해부산물 등을 흡착하여 이들 간의 접촉 시간을 늘림으로써 악취발생 물질의 처리 효율을 증가시키며 분해부산물의 여과를 보조하는 흡착 필터(미도시)가 더 구비될 수도 있다. 이때 상기 흡착 필터 또한 재질 등을 한정하지 않으나, 분자량이 큰 악취발생 물질의 흡착을 촉진하기 위해 제올라이트 계열의 다공성 메조포러스(mesoporous) 물질을 포함 하는 것이 좋다.In addition, in the harmful substance removal chamber 200, an adsorption filter adsorbs odor-generating substances, ozone, decomposition by-products, etc. to increase the contact time between them, thereby increasing the treatment efficiency of odor-generating substances and assisting in filtering decomposition by-products ( not shown) may be further provided. At this time, the adsorption filter is not limited in its material, etc., but it is preferable to include a zeolite-based porous mesoporous material in order to promote the adsorption of odor-generating substances having a large molecular weight.
상기와 같이 유해물질 제거 챔버(200)를 빠져나온 공기(AA)는 내부에 잔존하는 오존을 포함할 수 있으므로 이를 제거하기 위해 내부에 분말형 금속 촉매(310) 및 분말형 금속 촉매(310)가 혼합된 액체를 회전 또는 순환시키기 위한 부재가 구비된 오존 및 미세먼지 제거 챔버(300)를 통과할 수 있다.As described above, since the air (AA) exiting the harmful substance removal chamber 200 may contain ozone remaining therein, a powdered metal catalyst 310 and a powdered metal catalyst 310 are installed therein to remove it. It can pass through the ozone and fine dust removal chamber 300 equipped with a member for rotating or circulating the mixed liquid.
일반적으로 오존은 상술한 바와 같이 강력한 살균력과 산화력을 가지는 세정제이기도 하나, 지구 온난화에 기여하기도 하며 환경 및 인체에 악영향을 줄 수 있다. 따라서 이를 제거하는 공정을 더 추가하기 위해 악취발생물질을 모두 제거한 대기 중의 공기를 오존 및 미세먼지 제거챔버에 통과시켜 오존까지 완전히 제거하는 것이다.In general, ozone is a cleaning agent having strong sterilization and oxidizing power as described above, but it also contributes to global warming and can adversely affect the environment and human body. Therefore, in order to further add a process for removing this, the air in the atmosphere from which all odor-generating substances are removed is passed through the ozone and fine dust removal chamber to completely remove even ozone.
종래의 오존 제거 기술로는 활성탄이나 제올라이트 등을 이용한 흡착법이나 고온의 열을 가하는 가열법, 약액세정법 등이 있으나, 흡착법의 경우 흡착제 별로 포화 흡착 농도가 낮으며 포화점에 다다르면 재생이 필요한 단점을 가지며, 가열법의 경우 유체의 가열을 위해 많은 에너지를 소모하여야 한다.Conventional ozone removal technologies include an adsorption method using activated carbon or zeolite, a heating method by applying high-temperature heat, a chemical cleaning method, etc. However, in the case of the heating method, a lot of energy must be consumed to heat the fluid.
본 발명은 이러한 단점을 해소하기 위해 오존을 산화하기 위한 분말형 금속 촉매를 사용하여 촉매 반응을 통해 오존을 분해하는 방식을 도입하되, 강력한 산화물질인 금속의 산수산화물을 촉매로 사용함으로써 오존을 0.01 ppm 이하로 제거하여 바이러스를 포함하는 미생물, 오존 및 미세먼지의 제거효율을 극대화한 것이다.In order to solve these disadvantages, the present invention introduces a method of decomposing ozone through a catalytic reaction using a powdery metal catalyst for oxidizing ozone. It maximizes the removal efficiency of microorganisms including viruses, ozone and fine dust by removing them below ppm.
구체적으로 상기 금속의 산수산화물은 산화-환원 과정에서 OH 라디칼이 발생하는데, 이 OH 라디칼은 오존과의 반응성이 높기 때문에 잔존하는 오존을 신속하게 제거할 수 있다.Specifically, the oxyhydroxide of the metal generates OH radicals in an oxidation-reduction process, and since these OH radicals have high reactivity with ozone, remaining ozone can be quickly removed.
예를 들어 상기 금속의 산수산화물로 철산수산화물을 사용하는 경우 하기 반응식 5와 같이 Fe2+/Fe3+ 산화환원 사이클 과정에서 발생된 OH라디칼에 의해 오존을 제거하며, 상기와 같은 촉매를 사용함으로서 활성화 에너지를 낮춰 오존 제거 시간 효율을 극대화할 수 있다.For example, when ferric acid hydroxide is used as the metal acid hydroxide, ozone is removed by OH radicals generated in the Fe 2+ /Fe 3+ redox cycle process as shown in Scheme 5 below, and by using the catalyst as described above, It is possible to maximize the ozone removal time efficiency by lowering the activation energy.
Figure PCTKR2021014081-appb-I000002
Figure PCTKR2021014081-appb-I000002
또한 상기 금속 산수화물은 오존을 분해하는 역할 이외에 대기 중의 공기 내 불순물, 특히 비소 및 중금속을 제거하는 여과재로도 작용할 수 있기 때문에 대기 중의 공기의 여과효율을 더욱 높일 수 있는 장점을 가진다. In addition, since the metal oxide hydrate can act as a filtering medium for removing impurities in the air, particularly arsenic and heavy metals, in addition to a role of decomposing ozone, the filtration efficiency of air in the atmosphere can be further increased.
본 발명에 따른 금속수산화물은 하기 화학식 1의 수산화염 형태를 갖는 것을 특징으로 한다.The metal hydroxide according to the present invention is characterized in that it has a form of a hydroxide represented by Chemical Formula 1 below.
Figure PCTKR2021014081-appb-I000003
Figure PCTKR2021014081-appb-I000003
상기 화학식 1에서, n은 1 내지 6의 정수이고, Me는 3가 금속인 Fe, Al과 2가 금속인 Fe, Mg, Mn, Zn, Ca, Cu, Na, 및 Li 이루어지는 군에서 선택되는 1종 이상의 금속을 포함한다.In Formula 1, n is an integer from 1 to 6, and Me is 1 selected from the group consisting of trivalent metals Fe and Al and divalent metals Fe, Mg, Mn, Zn, Ca, Cu, Na, and Li Contains more than one metal.
상기의 금속수산화물은 황산염 또는 염화물 형태에서 발생하는 양이온을 이용하여 제조하며, 3가 금속인 Fe, Al이나 2가 금속인 Fe, Mg, Mn, Zn, Ca, Cu, Na, Li와 같은 양이온들은 약알칼리성 또는 약산성 용액에서 물과 반응하여 잘 용해되지 않는 수산화염 침전물이 발생한다.The above metal hydroxide is prepared using cations generated in the form of sulfate or chloride, and cations such as trivalent metals Fe and Al or divalent metals Fe, Mg, Mn, Zn, Ca, Cu, Na, and Li are It reacts with water in slightly alkaline or slightly acidic solutions to form a poorly soluble hydroxide salt precipitate.
가령, 아래의 반응식 6과 같이, 철이나 망간의 황산염 또는 염화물로부터 발생한 단분자에 pH 조절을 위한 알칼리 첨가제, 예를 들어 수산화나트륨을 첨가하여 반응시킴으로써 수산화염 형태의 침전물을 생성할 수 있으며, 이 침전물이 금속산화물로 사용된다.For example, as shown in Scheme 6 below, a precipitate in the form of a hydroxide may be generated by reacting a single molecule generated from a sulfate or chloride of iron or manganese by adding an alkali additive for pH control, for example, sodium hydroxide. Precipitates are used as metal oxides.
Figure PCTKR2021014081-appb-I000004
Figure PCTKR2021014081-appb-I000004
본 발명에서 상기 금속산수화물의 제조방법은 당업계에서 통상적으로 사용하는 방법이라면 종류에 한정하지 않으며, 예를 들어 철 또는 망간의 산수산화물의 경우 철염 또는 망간염을 주성분으로 하는 고체 상태의 수용성 무기응집제를 물과 혼합하여 고체 상태의 응집제가 완전히 용해될 때까지 교반하고, 이를 알칼리 첨가제와 반응시킨 후, 침전물이 발생하면 이를 여과 및 건조하여 제조할 수 있다. 이때 상기 무기응집제는 철염이나 망간염이 고체 상태인 경우에만 국한되며 액체 상태인 경우 무기응집제가 필요하지 않다.In the present invention, the method for producing the metal acid hydrate is not limited to the type as long as it is a method commonly used in the art. It can be prepared by mixing with water and stirring until the solid coagulant is completely dissolved, reacting it with an alkali additive, and filtering and drying it when a precipitate is generated. In this case, the inorganic coagulant is limited only when the iron salt or manganese salt is in a solid state, and no inorganic coagulant is required when the iron salt or manganese salt is in a liquid state.
또한 상기 수산화염의 침전물을 발생시키기 위해 첨가하는 알칼리 첨가제는 전체 pH를 6 이상으로 조절하기 위한 것으로, 알칼리 첨가제를 첨가한 후, 1 내지 3 시간 반응시켜 진행하는 것이 바람직하다. 이때 상기 알칼리 첨가제로 예를 들면 수산화칼슘(Ca(OH)2), 탄산나트륨(Na2CO3), 수산화나트륨(NaOH)이 적용될 수 있다.In addition, the alkali additive added to generate the precipitate of the hydroxide salt is to adjust the total pH to 6 or more, and it is preferable to proceed by reacting for 1 to 3 hours after adding the alkali additive. At this time, as the alkali additive, for example, calcium hydroxide (Ca(OH) 2 ), sodium carbonate (Na 2 CO 3 ), and sodium hydroxide (NaOH) may be applied.
여기에 상기 알칼리 첨가제와는 별개로 석출되는 금속수산화물의 기공률을 높이기 위해서 염산(HCl) 등을 혼합할 수 있다. Here, hydrochloric acid (HCl) or the like may be mixed in order to increase the porosity of the metal hydroxide precipitated separately from the alkali additive.
한편, 상기와 같이 제조된 금속수산화물은 다른 매체, 가령 고분자, 세라믹과 발포 등의 방법을 통하여 내부에 공극을 갖는 다공성 성형체를 형성할 수 있다.On the other hand, the metal hydroxide prepared as described above can form a porous molded body having pores therein through a method such as a polymer, ceramic, and foaming, such as another medium.
본 발명에서 상기 금속 산수화물로 더욱 바람직하게는 goethite(α- FeOOH), akaganeite(β-FeOOH), lepidocrocite (γ-FeOOH), the high pressure phase(hp(ε)-FeOOH) 및 feroxyhyte (δ-FeOOH)의 5종의 동질이상체(polymorph)를 포함하는 철산수산화물과 알루미늄 수산화물 중에서 보헤마이트(-AlOOH) 그리고 망간 산수화물의 혼합물을 사용하는 것이 바람직하다. 상기와 같이 철 수산화물과 알루미늄 수산화물과 망간 산수화물을 혼합하여 사용할 경우 오존의 분해효율이 더욱 증가할 수 있으나, 철 수산화물과 망간 수산화물의 함량이 적정 범위를 벗어나는 경우 오히려 분해효율이 하락할 수 있으므로 철산수산화물과 망간산수산화물이 5.5 내지 8.0 : 2.0 내지 4.5 중량비의 철산수산화물 및 망간산수산화물에 알루미늄수산화물이 1~5 중량비, 가장 바람직하게는 3 중량비로 혼합되는 것이 바람직하다.In the present invention, more preferably goethite (α- FeOOH), akaganeite (β-FeOOH), lepidocrocite (γ-FeOOH), the high pressure phase (hp (ε)-FeOOH) and feroxyhyte (δ- It is preferable to use a mixture of boehmite (-AlOOH) and manganese acid hydrate among ferric acid hydroxides and aluminum hydroxides containing 5 types of polymorphs of FeOOH). As described above, when iron hydroxide, aluminum hydroxide, and manganese hydroxide are mixed and used, the decomposition efficiency of ozone can be further increased. It is preferable that permanganate hydroxide is mixed with iron hydroxide and manganese acid hydroxide in a weight ratio of 5.5 to 8.0 : 2.0 to 4.5, and aluminum hydroxide in a weight ratio of 1 to 5, most preferably 3 weight ratio.
본 발명에서 상기 금속촉매의 양, 반응온도 및 반응시간과 같은 제반 처리조건은 본 발명에서 한정하지 않는다. 예를 들어 상기 금속촉매의 양은 대기 중의 공기 100 중량부 대비 5 내지 15 중량부이며, 온도는 상온(20℃ 내외), 반응시간은 자유롭게 조절할 수 있다. 또한 상기 오존을 포함하는 대기 중의 공기의 공급량 또한 한정하지 않으나 0.01 내지 100 ℓ/sec 범위에서 자유롭게 조절할 수 있다.In the present invention, various treatment conditions such as the amount of the metal catalyst, reaction temperature and reaction time are not limited in the present invention. For example, the amount of the metal catalyst is 5 to 15 parts by weight relative to 100 parts by weight of air in the atmosphere, the temperature is room temperature (around 20 ° C), and the reaction time can be freely adjusted. In addition, the supply amount of air in the atmosphere containing the ozone is not limited, but may be freely adjusted in the range of 0.01 to 100 L/sec.
상기 오존 및 미세먼지 제거 챔버(300)는 오존 농도에 따라 분할되지 않거나 또는 중간 격벽(350)에 의해 하나 이상의 공간으로 분할될 수 있고, 상기 격벽(350)의 일측에는 중화수 용액의 이동을 위한 통로가 개방될 수 있다.The ozone and fine dust removal chamber 300 may not be divided according to ozone concentration or may be divided into one or more spaces by an intermediate partition wall 350, and one side of the partition wall 350 is for moving the neutralized water solution. A passage can be opened.
상기 오존 및 미세먼지 제거 챔버(300)의 상부에는 챔버 내에 중화수 함유 용액을 공급하는 중화수 용액 공급관(330)이 내부로 인입되어 구비되고, A neutralized water solution supply pipe 330 for supplying a neutralized water-containing solution into the chamber is provided at the top of the ozone and fine dust removal chamber 300, and is drawn into the chamber.
상기 유해물질 제거 챔버(200)에서 세균 및 악취발생물질이 제거된 공기가 유입되는 처리 공기 유입관(340)이 저면에서 내부로 인입되어 구비되고, 챔버의 내부에는 분말형 금속 촉매(310) 용액이 구비되고, 분말형 금속 촉매(310)가 혼합된 액체를 회전 또는 순환시키기 위한 부재가 더 구비될 수 있다.A processing air inlet pipe 340 through which air from which germs and odor-generating substances are removed from the harmful substance removal chamber 200 is introduced is introduced from the bottom to the inside, and a powdered metal catalyst 310 solution is provided inside the chamber. , and a member for rotating or circulating the liquid in which the powdered metal catalyst 310 is mixed may be further provided.
또한, 필요에 따라 펌프에 의해 가압 공기가 공급되는 공기 공급관(320)이 챔버의 바닥(또는 측면 지점)에서 내부로 인입되어 구비될 수 있다.Also, if necessary, an air supply pipe 320 through which pressurized air is supplied by a pump may be introduced from the bottom (or side point) of the chamber and provided.
상기 중화수 용액 공급관(330)은 중화수 용액 주입과 증발되는 중화수 용액의 증발분을 간헐적으로 보충해주는 역할을 수행한다.The neutralized water solution supply pipe 330 serves to intermittently supplement the evaporation of the neutralized water solution and evaporated neutralized water solution.
세균 및 악취발생 물질이 제거된 공기는 상기 금속 분말형 촉매(310) 용액과 접촉되고, 상기 처리공기 유입관(340) 및(또는) 공기 공급관(320)에 의해 공급된 가압 공기에 의해 형성된 미세 기포와 중화수 용액 공급관(330)을 통해 공급된 중화수 용액과 버블링되어 미세먼지, 오존 및 분해 부산물이 중화수 용액 내에 용해되어 정화되고, 상부로 밀려난 공기는 펌핑관(360)을 통해 다른 분할 공간으로 이송되어 버블링 과정을 거쳐서 재차 정화된 후 정화된 공기는 상부에 형성된 유출구(370)를 통해 배기되는 것이 바람직할 수 있다.The air from which germs and odor-generating substances are removed is brought into contact with the metal powder catalyst 310 solution, and microscopic particles are formed by the pressurized air supplied through the processing air inlet pipe 340 and/or the air supply pipe 320. Bubbles and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled, and fine dust, ozone, and decomposition by-products are dissolved and purified in the neutralized water solution, and the air pushed upward passes through the pumping pipe 360. It may be preferable that the purified air after being transported to another divided space and purified again through a bubbling process be exhausted through an outlet 370 formed at the upper portion.
상기 펌핑관(360)은 상기 오존 및 미세먼지 제거 챔버(300)의 상부에서 분할된 공간의 상부에서 서로 연통되고, 버블링 과정에 의해 정화된 공기가 다른 분할 공간으로 이동되는 통로를 제공한다. The pumping pipe 360 communicates with each other at the upper part of the divided space at the upper part of the ozone and fine dust removal chamber 300 and provides a passage through which the air purified by the bubbling process moves to the other divided space.
상기 펌핑관(360)의 일측은 오존 및 미세먼지 제거 챔버(300)의 상면의 공간부와 연통되고, 타측은 연장된 길이를 가짐으로써 수중에 충분히 잠기게 한다.One side of the pumping pipe 360 communicates with the upper surface of the ozone and fine dust removal chamber 300, and the other side has an extended length so that it is sufficiently submerged in water.
상기 공기 공급관 또는 유입관은 펌프의 작동에 의해 공기를 공급 또는 이송할 수 있다.The air supply pipe or inlet pipe may supply or transport air by operation of a pump.
상기 처리공기 유입관(340) 및(또는) 공기 공급관(320)은 미세 기포를 중화수 용액의 수중에 발생시키고, 가압 공기를 공급하여, 버블링된 공기가 압력에 의해 펌핑관(360)으로 이동되게 한다.The processing air inlet pipe 340 and/or the air supply pipe 320 generate fine bubbles in the neutralized water solution and supply pressurized air so that the bubbled air is pumped through the pumping pipe 360 by pressure. make it move
상기 챔버(300)가 분할되지 않은 경우에는 상기 중간 격벽(350)과 펌핑관(360)은 생략될 수 있다. When the chamber 300 is not divided, the intermediate partition wall 350 and the pumping pipe 360 may be omitted.
추가로, 상기 오존 및 미세먼지 제거 챔버(300)의 저면에는 회전 팬(385) 또는 스파이럴 구조체(386)가 구비될 수 있고, 상기 처리 공기 유입관(340)의 단부에는 링브로워(미도시)가 구비되어 액체의 회전이나 순환이 일어나게 함으로써 미세기포에 의한 오존의 제거를 더욱 촉진하는 것이 바람직할 수 있다. In addition, a rotating fan 385 or a spiral structure 386 may be provided on the lower surface of the ozone and fine dust removal chamber 300, and a ring blower (not shown) may be provided at an end of the treatment air inlet pipe 340. It may be preferable to further promote the removal of ozone by microbubbles by providing rotation or circulation of the liquid.
상기 스파이럴 구조체는 오존 및 미세먼지 제거 챔버(300)의 저면에 돌기 형태로 형성되는 것이 바람직하고, 처리공기 유입관(340) 또는 공기 공급관(320)에서 토출되는 미세기포는 챔버 저면에 설치된 스파이럴 구조의 돌기에 충돌하면서 미세기포가 회전력을 받아 액체와 함께 회전하면서 부상하게 된다.The spiral structure is preferably formed in the form of a protrusion on the bottom of the ozone and fine dust removal chamber 300, and the microbubbles discharged from the processing air inlet pipe 340 or the air supply pipe 320 have a spiral structure installed on the bottom of the chamber. As it collides with the projection of the microbubble, it receives rotational force and floats while rotating along with the liquid.
이러한 회전 팬(385)과 스파이럴 구조체(386)에 의하여 액체가 저속으로 회전되면서 공기 유입관(340)에서 토출되는 미세기포가 수직으로 부상하기 않고 액체가 회전하는 방향을 따라 순환하면서 부상함으로써 오존 제거 효율을 더욱 높일 수 있다.As the liquid is rotated at a low speed by the rotating fan 385 and the spiral structure 386, microbubbles discharged from the air inlet pipe 340 do not rise vertically but circulate and float along the direction in which the liquid rotates, thereby removing ozone. efficiency can be further increased.
이러한 경우에는 상부로 밀려난 정화된 공기는 상부에 형성된 유출구(370)를 통해 배기된다.In this case, the purified air pushed to the top is exhausted through the outlet 370 formed at the top.
또한, 상기 공기 공급관(320)은 챔버의 저면에 설치되거나 또는 챔버의 저면 보다는 공기를 측면 중간에서 공급함으로써 펌프의 부하가 덜 걸리게 하고 미세 기포가 잘 형성되게 하는 것이 더욱 바람직할 수 있다.In addition, it may be more preferable that the air supply pipe 320 is installed on the bottom of the chamber or supplies air from the middle of the side rather than the bottom of the chamber, thereby reducing the load of the pump and forming fine bubbles.
한편, 상기 공급관 또는 유입관(320, 330, 340, 350)의 일부는 생략하거나 다른 관과 삼방 밸브 등을 이용하여 도중에 연결될 수도 있다. 예를 들면, 오존을 함유하는 처리 공기 공급관(340)과 가압 공기 공급관(320)은 하나로 통합하여, 공기 공급관(320)을 생략하고, 가압 공기와 함께 오존을 함유하는 공기가 처리 공기 공급관(340)을 통하여 함께 유입되게 설계해도 좋다. 이 경우 다공질 부재(321)의 단부에는 링브로워가 구비될 수 있다.On the other hand, part of the supply pipe or inlet pipe (320, 330, 340, 350) may be omitted or connected on the way using another pipe and a three-way valve. For example, the process air supply pipe 340 containing ozone and the pressurized air supply pipe 320 are integrated into one, the air supply pipe 320 is omitted, and the air containing ozone together with the pressurized air is supplied to the process air supply pipe 340. ) may be designed to be introduced together. In this case, a ring blower may be provided at an end of the porous member 321 .
장시간 사용된 중화수 용액은 배출구(380)를 통하여 배출한다.The neutralized water solution used for a long time is discharged through the outlet 380.
상기 미세 기포를 형성하기 위한 다공질 부재(321)는 도 5에 예시한 바와 같이 처리 공기 유입관(340)의 단부 또는 공기 공급관(320)에 결합되어 형성되며, 천연광물, 세라믹스 및 이들의 혼합물 중에서 선택된 1종 이상으로 부터 제조되는 세라믹 폼 또는 스펀지로 이루어진 것이 바람직하다.As illustrated in FIG. 5, the porous member 321 for forming the microbubbles is formed by being coupled to the end of the treatment air inlet pipe 340 or the air supply pipe 320, and is selected from natural minerals, ceramics, and mixtures thereof. It is preferably made of a ceramic foam or sponge made from one or more selected species.
상기 다공질 부재(321)는 원통형, 기둥형, 또는 구형에 제한되지 않고 가압 공기를 수중에서 확산시켜 미세 기포를 형성한다.The porous member 321 is not limited to a cylindrical shape, a column shape, or a spherical shape, and pressurized air is diffused in water to form microbubbles.
상기 다공질 부재(321)는 평균 직경이 10㎛인 미만 개방형 기공을 포함하고, 기공률은 80% 이상인 것이 바람직할 수 있으며, 형성되는 미세 기포의 평균 직경은 0.3~1.5 mm인 것이 더욱 바람직할 수 있다.The porous member 321 includes open pores with an average diameter of less than 10 μm, preferably has a porosity of 80% or more, and more preferably has an average diameter of 0.3 to 1.5 mm of the formed microbubbles. .
상기 중화수 함유 용액은 pH가 6.5~7.5이며, 알루미늄 화합물을 포함하는 수용액인 것이 바람직하다. The neutralized water-containing solution preferably has a pH of 6.5 to 7.5 and is an aqueous solution containing an aluminum compound.
상기 알루미늄 화합물을 포함하는 용액에 포함된 알루미늄 화합물의 농도는 1~3.5㎎/L인 것이 바람직하다.The concentration of the aluminum compound contained in the solution containing the aluminum compound is preferably 1 to 3.5 mg/L.
상기 센서 장치는 실내 및 공기 플라즈마 유해물질 해리 모듈 내에 장착되어 공기 상태를 측정하여 제어장치로 출력한다.The sensor device is installed in the indoor and air plasma harmful substance dissociation module to measure the air condition and output the result to the control device.
센서는 유입 공기, 배출 공기, 방전 과정을 거치면서 생성된 그리고 방전 과정이 수행되는 방전영역을 포함하는 각 챔버 영역에서 O3, VOC, PM2.5, PM10, PM100, 온습도 센서 등으로 감지된 값을 제어장치로 출력한다.The sensor is the value detected by O 3 , VOC, PM2.5, PM10, PM100, temperature and humidity sensors, etc. output to the controller.
상기 제어 장치는 공기 정화장치의 전체적인 작동을 제어하며, 상기 센서장치에서 측정된 산화질소, 오존, 및 이산화질소의 농도 등의 정보에 따라 상기 공기정화장치의 작동을 제어한다.The control device controls the overall operation of the air purifier and controls the operation of the air purifier according to information such as concentrations of nitrogen oxide, ozone, and nitrogen dioxide measured by the sensor device.
구체적으로, 제어장치는 센서장치에서 감지된 값을 연산하여 각 실내 공간의 공기 상태를 결정하도록 제어할 수 있다. 이때, 제어장치는 센서장치에서 감지된 값에 따라 다수의 단계로 각 실내 공간의 공기 상태를 나눌 수 있다. 예를 들어, 공기 상태는 센서장치에서 감지된 값이 커질수록 '좋음', '보통', ' 나쁨', '매우 나쁨'과 같은 4단계의 구간으로 나눠질 수 있으나, 이에 한정되는 것은 아니다. 특히, 제어장치는 미세 먼지 센서로부터 측정된 미세 먼지 농도 값의 구간에 따라 다수의 단계로 미세 먼지 상태를 나눌 수 있다.Specifically, the control device may calculate the value sensed by the sensor device to determine the air condition of each indoor space. At this time, the control device may divide the air condition of each indoor space into a plurality of steps according to the value sensed by the sensor device. For example, the air condition may be divided into 4 stages such as 'good', 'normal', 'bad', and 'very bad' as the value sensed by the sensor device increases, but is not limited thereto. In particular, the control device may divide the fine dust state into a plurality of stages according to the interval of the fine dust concentration value measured by the fine dust sensor.
또한, 제어장치는 각 실내 공간에 배치된 공기정화장치의 온(on)/오프(off) 동작을 제어할 수 있다. 즉, 제어장치는 각 공기정화장치가 일정 시간마다 작동하도록 제어하거나, 센서장치에서 측정된 공기 상태 감지값에 따라 각 공기정화장치가 작동하도록 제어할 수 있다. 예를 들어, 어느 실내 공간의 미세 먼지 상태가 '보통' 또는 '나쁨' 이상의 단계에 해당하는 경우, 제어장치는 해당 실내 공간의 공기정화장치가 작동하거나 강하게 작동하도록 제어할 수 있다. 따라서 본 발명의 일 실시예에 따른 공기 질 관리 시스템의 병원 내 감염 등을 효율적으로 예방할 수 있다.In addition, the control device may control an on/off operation of air purifiers disposed in each indoor space. That is, the control device may control each air purifying device to operate at regular intervals or control each air purifying device to operate according to an air condition detection value measured by a sensor device. For example, if the state of fine dust in an indoor space corresponds to a level higher than 'normal' or 'bad', the control device may control the air purifier of the indoor space to operate or strongly operate. Therefore, the air quality management system according to an embodiment of the present invention can effectively prevent infections in hospitals.
또한, 제어장치는 표시 정보를 생성하여 표시부 또는 사용자단말에 전달할 수 있으며, 각종 정보를 저장장치(미도시)에 저장하도록 제어할 수 있다.In addition, the control device may generate and transmit display information to a display unit or a user terminal, and may control various types of information to be stored in a storage device (not shown).
상기 표시부는 제어장치에서 생성된 표시 정보를 표시하여 관리자(예를 들어, 병원 건물인 경우에 의료진 등)에게 제공할 수 있다.The display unit may display display information generated by the control device and provide it to a manager (eg, a medical staff in case of a hospital building).
이때, 표시부는 각 실내 공간별로 공기 상태 측정 항목(예를 들어, 미세 먼지 농도, 이산화탄소 농도, 온도, 습도, VOC 농도, 오존 농도 등)과, 해당 실내 공간의 센서장치의 각 센서별 측정값 등을 표시할 수 있다. 특히, 표시부는 각 공기 상태 측정 항목에 대해 다수 단계로 나누어 표시할 수 있다.At this time, the display unit includes air condition measurement items (for example, fine dust concentration, carbon dioxide concentration, temperature, humidity, VOC concentration, ozone concentration, etc.) for each indoor space, measured values for each sensor of the sensor device of the corresponding indoor space, etc. can display In particular, the display unit may divide and display each air condition measurement item in multiple stages.
예를 들어, 표시부는 액정 디스플레이 장치(liquid crystal display; LCD), 발광 다이오드 (light-emitting diode; LED) 디스플레이 장치, 유기 발광 다이오드(organic light-emitting diode; OLED) 디 스플레이 장치, 퀀텀닷(quantum dot; QD) 디스플레이 장치, 마이크로 전자기계 시스템(microelectromechanical systems; MEMS) 디스플레이 장치, 또는 전자종이(electronic paper) 디스플레이 장치일 수 있으나, 이에 한정되는 것은 아니다.For example, the display unit may include a liquid crystal display (LCD), a light-emitting diode (LED) display device, an organic light-emitting diode (OLED) display device, and a quantum dot (quantum dot) display device. It may be a dot (QD) display device, a microelectromechanical systems (MEMS) display device, or an electronic paper display device, but is not limited thereto.
이와 같이 제어장치를 이용하여 ICT 플랫폼을 포함하는 네트워크 환경을 구축할 수 있다.In this way, a network environment including an ICT platform can be constructed using the control device.
본 발명은, 추가의 일면에 있어서, 상기 유체 처리 과정에 발생되는 플라즈마의 유해물질 해리 모듈을 이용한 공기 정화 방법을 제공한다. In another aspect, the present invention provides an air purification method using a harmful substance dissociation module of plasma generated in the fluid treatment process.
상기 공기 정화 방법은 a) 세균 및 악취발생물질을 포함하는 대기 중의 공기를 모듈 내부로 공급하는 단계; b) 유입되는 유체에 플라즈마(오존)를 접촉시켜 세균 및 악취발생물질을 제거하는 플라즈마 처리 단계; c) 플라즈마 처리 후 대기 중의 공기 내 오존 및 분해부산물의 농도를 측정하는 오존 농도 측정 단계; 및 d) 상기 c) 단계의 대기 중의 공기에서 오존의 농도가 설정된 농도 이상일 경우 금속촉매와 접촉하여 상기 대기 중의 공기 내 잔존하는 오존을 수산화라디칼을 이용하여 제거하고, 공기 공급관(320)에 의해 공급된 가압 공기에 의해 형성된 미세 기포와 중화수 용액 공급관(330)을 통해 공급된 중화수 용액과 버블링되어 미세먼지, 오존 및 분해 부산물을 중화수 용액 내에 용해시켜 정화하고, 상부로 밀려난 공기는 펌핑관(360)을 통해 다른 분할 공간으로 이송하여 버블링 과정을 거쳐서 재차 정화된 후 정화된 공기를 상부에 형성된 유출구(370)를 통해 배기시키는 미세먼지 오존 및 분해 부산물을 해리시키는 단계;를 포함한다.The air purification method includes a) supplying atmospheric air containing bacteria and odor-generating substances into a module; b) a plasma treatment step of removing bacteria and odor-generating substances by bringing plasma (ozone) into contact with the incoming fluid; c) an ozone concentration measurement step of measuring concentrations of ozone and decomposition by-products in the air after plasma treatment; and d) when the concentration of ozone in the atmospheric air in step c) is higher than the set concentration, it contacts the metal catalyst to remove ozone remaining in the atmospheric air by using hydroxyl radicals, which are supplied through the air supply pipe 320. Fine bubbles formed by the pressurized air and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled to dissolve and purify fine dust, ozone, and decomposition by-products in the neutralized water solution, and the air pushed upward A step of dissociating fine dust ozone and decomposition by-products that are transported to another divided space through a pumping pipe 360, purified again through a bubbling process, and then exhausted through an outlet 370 formed on the upper part of the purified air; do.
본 발명에서 상기 a), b) 및 d) 단계는 상술한 모듈을 통해 진행하는 것으로 중복되는 설명은 생략하며, 다만 상기 c) 단계와 같이 플라즈마 처리 후 대기 중의 공기의 오존과 분해부산물의 농도를 확인하는 과정을 거쳐 대기 중의 공기 내 오존 농도가 설정된 농도 이하인 경우 상기 d) 단계를 거치지 않고 바로 대기 중의 공기 배출 단계(S500)로 진행할 수 있으나, 용존 오존 농도가 설정된 농도 이상인 경우 상기와 같이 금속촉매와 접촉하여 대기 중의 공기 내 잔존하는 오존을 수산화라디칼(·OH)을 이용하여 제거할 수 있다.In the present invention, steps a), b), and d) are performed through the above-described module, and overlapping descriptions are omitted. After the confirmation process, if the ozone concentration in the air is less than the set concentration, it is possible to proceed directly to the air discharge step (S500) without going through the step d), but if the dissolved ozone concentration is greater than the set concentration, the metal catalyst Ozone remaining in the air in the atmosphere can be removed by using a hydroxyl radical ( OH).
이때 상기 c) 단계는 별도로 구비되는 욕조에 플라즈마와 접촉한 대기 중의 공기를 수용하여 대기 중의 공기 내 오존 농도를 측정하는 것이 바람직하며, 상기 욕조는 내부에 대기 중의 공기의 용존오존의 농도를 측정할 수 있는 용존오존농도계 및 각각 배관을 통해 플라즈마발생욕조, 금속촉매접촉욕조 및 대기 중의 공기배출욕조와 연결되도록 구비되는 것이 좋다.At this time, in the step c), it is preferable to measure the concentration of ozone in the air in the atmosphere by accommodating the air in the atmosphere in contact with the plasma in a bathtub provided separately. It is preferable to be provided to be connected to a plasma generating bath, a metal catalyst contact bath, and an air discharge bath in the atmosphere through a dissolved ozone concentration meter that can be used and each pipe.
이와 같이 용존오존 농도계가 욕조 내 대기 중의 공기의 용존오존 농도를 측정하여 설정된 농도 이상임을 감지하면 상기 금속촉매접촉 욕조와 연결된 배관을 열어 상기 대기 중의 공기를 금속촉매접촉 욕조로 흘려보내 용존 오존을 분해할 수 있다. 이와는 반대로 측정된 용존오존의 농도가 설정 농도 이하인 경우 상기 대기 중의 공기배출 욕조와 연결된 배관을 열어 대기 중의 공기를 배출하는 것이 바람직하다.In this way, when the dissolved ozone concentration meter measures the concentration of dissolved ozone in the air in the atmosphere in the bathtub and detects that the concentration is higher than the set concentration, the pipe connected to the metal catalytic contact bath is opened to flow the air in the atmosphere into the metal catalytic contact bath to decompose dissolved ozone can do. On the contrary, when the measured concentration of dissolved ozone is less than a set concentration, it is preferable to open a pipe connected to the air discharging tub to discharge air in the atmosphere.
이와 같이 대기 중의 유해물질이 함유된 대기 중의 공기는 플라즈마에서 발생된 OH라디칼을 이용하여 유해물질 제거 챔버(200)에서 유해물질을 제거하고, 상기 d) 단계에서는 플라즈마에서 발생된 2차 유해물질인 오존은 오존 및 미세먼지 제거챔버(300)로 유입되어 다공질 부재가 설치되어 미세 버블링으로 가스가 부상하면서 오존이 제거되는 것이다.In this way, the air in the atmosphere containing harmful substances in the atmosphere uses OH radicals generated in the plasma to remove the harmful substances in the harmful substance removal chamber 200, and in step d), the secondary harmful substances generated in the plasma are removed. Ozone is introduced into the ozone and fine dust removal chamber 300 and a porous member is installed so that the ozone is removed while the gas floats by fine bubbling.
또한 상기 a) 내지 d) 단계를 통해 대기 중의 공기를 공급하는 경우 각 처리욕조는 잔류 용존 오존이 대기 중으로 방출되는 것을 방지하기 위해 완전히 폐쇄된 배관으로 연결하는 것이 바람직하다.In addition, when air in the atmosphere is supplied through steps a) to d), it is preferable to connect each treatment bath with a completely closed pipe to prevent residual dissolved ozone from being discharged into the atmosphere.
본 발명에 따른 플라즈마 공기 살균기에 따른 버블링 케어 방식에 의하면, 펌프 등에 의해 가압되는 유해물질이 포함된 공기를 유해물질 제거 챔버(200)를 통해 공기 중에 포함된 유해물질(바이러스, 세균, VOCs)을 제거하고 플라즈마에서 발생된 오존과 함께 오존 및 미세먼지 제거 챔버(300)로 유입되어 금속촉매가 혼합된 액체에 다공질 부재를 통해 미세버블을 형성하고 챔버 저면에 설치된 액체를 회전시키기 위한 부재(팬 또는 스파이럴 구조체)에 의해 회전하는 액체와 함께 미세버블이 회전하면서 부상하는 과정에 오존을 분해하고 미세먼지를 제거하여 최종 공기 배출구를 통해 배출하는 공기는 유해물질과 미세먼지 오존이 제거된 깨끗한 공기를 공급시키는 효과를 얻을 수 있다. According to the bubbling care method according to the plasma air sterilizer according to the present invention, air containing harmful substances pressurized by a pump, etc. is removed and introduced into the ozone and fine dust removal chamber 300 together with the ozone generated in the plasma to form fine bubbles in the liquid mixed with the metal catalyst through a porous member and a member for rotating the liquid installed on the bottom of the chamber (fan or spiral structure), ozone is decomposed and fine dust is removed in the process of floating while rotating along with the rotating liquid, and the air discharged through the final air outlet is clean air from which harmful substances and fine dust ozone are removed. supply effect.
본 발명은 상기와 같이 플라즈마를 이용하여 황화수소, 메르캅탄, 아민류, 방향족화합물 등의 악취발생물질을 효과적으로 제거할 수 있는 분해 모듈을 제공한다. The present invention provides a decomposition module capable of effectively removing odor-generating substances such as hydrogen sulfide, mercaptans, amines, and aromatic compounds using plasma as described above.
또한 악취발생 물질을 제거한 후에도 플라즈마 발생기에서 발생된 오존을 금속 산수산화물 촉매를 통해 완전히 제거함으로써 우수한 악취발생물질 저감효과와 동시에 인체에 유해한 환경을 조성하지 않는 장점을 가진다.In addition, even after the odor-generating substances are removed, the ozone generated in the plasma generator is completely removed through the metal oxyhydroxide catalyst, thereby having an excellent odor-causing substance reduction effect and not creating an environment harmful to the human body.
이하, 실시예 및 비교예를 들어 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 등에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of Examples and Comparative Examples. However, the following Examples and Comparative Examples are only examples for explaining the present invention in more detail, and the present invention is not limited to the following Examples.
(오존 제거율)(ozone removal rate)
플라즈마 발생기를 통해 공기 중의 오존 농도가 10 ppm이 되도록 오존을 발생시켰다. 그리고 상기 오존을 함유하는 기체를 금속촉매가 구비된 욕조를 통과시킨 후의 농도를 용존 오존 측정기(Gastiger 2000, Wandi)로 측정한 후 제거율을 하기 식 1에 대입하여 계산하였다.Ozone was generated so that the concentration of ozone in the air was 10 ppm through a plasma generator. In addition, after passing the ozone-containing gas through a bathtub equipped with a metal catalyst, the concentration was measured with a dissolved ozone meter (Gastiger 2000, Wandi), and the removal rate was calculated by substituting into Equation 1 below.
Figure PCTKR2021014081-appb-I000005
Figure PCTKR2021014081-appb-I000005
(상기 식 1에서 Ca는 초기 공기 중의 오존 농도이며, Cb는 금속촉매 접촉 후 공기 중의 오존 농도를 뜻한다.) (In Equation 1 above, Ca is the initial concentration of ozone in the air, and Cb is the concentration of ozone in the air after contact with the metal catalyst.)
실시예 1 내지 5Examples 1 to 5
철염화물로 황산제1철(FeSO4)과 망간염화물로 황산망간(MnSO4)을 하기 표 1의 조건에 따라 일정 비율(단위 mol)로 혼합한 금속화합물에 물을 혼합하여 액상화한 다음 여기에 수산화나트륨(NaOH)를 투입하여 pH 6으로 조절한 상태에서 3 시간 동안 반응시켜 철산수산화물과 망간산수산화물의 혼합물을 제조하였다. 도 1에 나타낸 바의 오존을 이용한 악취발생물질 분해 모듈을 이용하고, 도 2에 나타낸 바의 플라즈마 유해물질의 해리방법에 따라 오존 제거 시험을 수행하였다.A metal compound in which ferrous sulfate (FeSO 4 ) as iron chloride and manganese sulfate (MnSO 4 ) as manganese chloride are mixed in a certain ratio (unit mol) according to the conditions in Table 1 below is mixed with water to liquefy, and then Sodium hydroxide (NaOH) was added and reacted for 3 hours in a state where the pH was adjusted to 6 to prepare a mixture of ferric acid hydroxide and manganese acid hydroxide. An ozone removal test was performed using the malodor generating substance decomposition module using ozone as shown in FIG. 1 and according to the dissociation method of harmful plasma substances as shown in FIG.
상기와 같은 금속산수산화물의 혼합물을 욕조 내에 설치한 후 오존 제거 단계 전후의 오존농도를 측정하여 제거율을 분석하였다. After installing the mixture of the metal acid hydroxide as described above in a bathtub, the ozone concentration before and after the ozone removal step was measured to analyze the removal rate.
Figure PCTKR2021014081-appb-T000001
Figure PCTKR2021014081-appb-T000001
상기 표 1과 같이 본 발명에 따른 해리 모듈 및 해리 방법은 모듈의 오존제거 챔버 내부에 철산수산화물과 망간산수산화물의 혼합물인 금속촉매를 포함함으로써 유체 내 오존을 제거할 수 있다. As shown in Table 1, the dissociation module and dissociation method according to the present invention include a metal catalyst, which is a mixture of ferric acid hydroxide and manganese acid hydroxide, inside the ozone removal chamber of the module, thereby removing ozone from the fluid.
구체적으로 철과 망간 산수산화물이 각각 6:4, 7:3 및 8:2 중량비로 혼합된 실시예 2 내지 4는 용존 오존의 제거율이 모두 99.5% 이상을 만족하고 있으나, 철과 망간 산수산화물의 함량이 1:1인 실시예 1, 9:1인 실시예 5는 모두 80%도 만족하지 못하는 낮은 오존 제거율을 가짐을 알 수 있어 금속 산수산화물의 최적의 조성비는 철산수산화물과 망간산수산화물이 5.5 내지 8.0 : 2.0 내지 4.5 중량비로 혼합되어야 함을 알 수 있다.Specifically, Examples 2 to 4 in which iron and manganese acid hydroxides were mixed in a weight ratio of 6:4, 7:3, and 8:2, respectively, satisfied the dissolved ozone removal rate of 99.5% or more, but iron and manganese acid hydroxides It can be seen that Example 1 with a content of 1:1 and Example 5 with a content of 9:1 both had a low ozone removal rate that did not satisfy even 80%, so that the optimal composition ratio of the metal acid hydroxide was 5.5 to 8.0: 2.0 to 4.5 weight ratio.
실시예 6 내지 8Examples 6 to 8
플라즈마에서 발생된 오존농도가 높을 경우 철산수산화물과 망간산수산화물만으로 오존을 해리시키는데 한계가 발생되고 있어 고농도의 오존을 제거하기 위해 철산수산화물과 망간산수산화물 중량비에 알루미늄 수산화물을 첨가한 경우 오존 제거 효율을 확인하고, 그 결과를 다음의 표 2에 나타내었다.When the concentration of ozone generated in the plasma is high, there is a limit in dissociating ozone with only ferric acid hydroxide and manganese acid hydroxide, so when aluminum hydroxide is added to the weight ratio of ferric acid hydroxide and manganese acid hydroxide to remove high concentration ozone, the ozone removal efficiency is increased. It was confirmed, and the results are shown in Table 2 below.
Al 중량비Al weight ratio 오존농도ozone concentration 제거율(%)Removal rate (%)
처리전before processing 처리후after treatment
실시예 6Example 6 1One 2020 2.6152.615 86.986.9
실시예 7Example 7 33 2020 1.3051.305 93.493.4
실시예 8Example 8 55 2020 2.2302.230 88.588.5
상기 표 2의 결과로부터 알루미늄 수산화물을 첨가한 경우 오존의 제거 효율이 더욱 증대됨을 확인하였다.From the results of Table 2, it was confirmed that the ozone removal efficiency was further increased when aluminum hydroxide was added.
실시예 9~12: 다공질부재의 기공크기에 따른 오존 제거율 비교Examples 9 to 12: Comparison of ozone removal rates according to pore sizes of porous members
다공질 부재의 기공 크기를 달리하여 오존의 제거율을 비교 시험하고 그 결과를 표 3에 나타내었다.The ozone removal rate was compared and tested by varying the pore size of the porous member, and the results are shown in Table 3.
다공질 부재 기공 크기Porous member pore size 오존농도ozone concentration 제거율(%)Removal rate (%)
처리전before treatment 처리후after treatment
실시예 9Example 9 기공 제어 안함No stomatal control 2020 12.50412.504 37.4837.48
실시예 10Example 10 1~10㎜ 1~10mm 2020 8.9598.959 55.20555.205
실시예 11Example 11 10~1000㎛ 10~1000㎛ 2020 3.6563.656 81.7281.72
실시예 12Example 12 10㎛ 이하10㎛ or less 2020 1.9921.992 90.0490.04
상기 표 3에서 다공질 부재의 기공제어 및 기공크기에 따른 오존제거율을 분석한 결과, 다공질 부재의 기공크기를 10㎛ 이하로 조절할 경우 오존 제거 농도가 증가되는 것으로 조사되었다.As a result of analyzing the ozone removal rate according to the pore control and pore size of the porous member in Table 3, it was investigated that the ozone removal concentration increased when the pore size of the porous member was adjusted to 10 μm or less.
실시예 13~15: 액체 혼합용 팬 및 스파이럴 구조에 따른 오존 제거율 비교Examples 13 to 15: Comparison of ozone removal rates according to liquid mixing fans and spiral structures
액체 혼합용 팬 및 스파이럴 구조에 따른 오존 제거율을 비교하고 그 결과를 표 4에 나타내었다.The ozone removal rate according to the liquid mixing fan and the spiral structure was compared, and the results are shown in Table 4.
액체 순환방법Liquid circulation method 오존농도ozone concentration 제거율(%)Removal rate (%)
처리전before processing 처리후after treatment
실시예 13Example 13 액체 순환 없음(기공 바로 부상)No liquid circulation (stoma immediately rises) 2020 11.0211.02 44.944.9
실시예 14Example 14 액체순환용 팬fan for liquid circulation 2020 6.1136.113 69.43569.435
실시예 15Example 15 스파이럴 구조를 이용한 액체 순환 방법Liquid circulation method using a spiral structure 2020 6.8246.824 65.8865.88
상기 표 4에서와 같이 액체 순환 없이 기포를 부상하는 것 보다 액체를 순환시켜 기포를 부상시키는 방식이 오존제거 효율이 증가되는 것으로 조사되었다.As shown in Table 4, it was investigated that the ozone removal efficiency was increased in a method of floating air bubbles by circulating the liquid rather than floating air bubbles without liquid circulation.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by the limited embodiments and drawings, the present invention is not limited thereto, and the technical spirit of the present invention and the following by those skilled in the art to which the present invention belongs Of course, various modifications and variations are possible within the scope of equivalents of the claims to be set forth.

Claims (5)

  1. 대기 중의 공기 또는 오염 공기를 정화하는 공기 정화 장치에 있어서,In the air purifying device for purifying air or polluted air in the atmosphere,
    대기 중의 공기 또는 오염 공기가 유입되는 흡입구가 일측에 형성되고, 타측에는 정화된 공기가 배출되는 배기구가 형성되며, 다른 일측에는 표시부가 구비된 육면체 형상의 하우징;A hexahedral housing having an inlet through which atmospheric air or polluted air is introduced, an exhaust port through which purified air is discharged, and a display unit formed on the other side;
    상기 하우징의 내부에 배치되고, 플라즈마의 방전에 의해 발생되는 미세먼지, 오존 및 분해 부산물을 포함하는 유해물질을 해리하는 유해물질 해리 모듈;a harmful substance dissociation module disposed inside the housing and dissociating harmful substances including fine dust, ozone, and decomposition by-products generated by plasma discharge;
    실내 및 공기 플라즈마 유해물질 해리 모듈 내에 장착되어 공기 상태를 측정하는 센서장치; 및A sensor device installed in the indoor and air plasma harmful substance dissociation module to measure the air condition; and
    상기 센서장치에서 측정된 정보에 따라 상기 공기정화 장치의 작동을 제어하는 제어장치;를 포함하여 이루어지고,A control device for controlling the operation of the air purifying device according to the information measured by the sensor device;
    상기 플라즈마의 유해물질 해리 모듈은The harmful substance dissociation module of the plasma
    세균 및 악취발생 물질을 포함하는 대기 중의 공기를 모듈 내부로 공급하는 처리유체 공급 챔버(100);a processing fluid supply chamber 100 supplying atmospheric air containing bacteria and odor-generating substances into the module;
    내부에 플라즈마 발생기 또는 오존 발생기를 포함하여 이들로 부터 생성된 오존 및 대기 중의 공기가 혼합되어 세균 및 악취발생물질을 제거하는 유해물질 제거 챔버(200); 및A harmful substance removal chamber 200 including a plasma generator or an ozone generator therein to mix ozone generated therefrom and air in the atmosphere to remove bacteria and odor-generating substances; and
    내부에 금속 분말형 촉매(310) 및 분말형 금속 촉매(310)가 혼합된 액체를 회전 또는 순환시키기 위한 부재가 구비되고, 상기 유해물질 제거 챔버(200)를 통과한 대기 중의 공기 내 미세먼지, 오존 및 분해부산물을 제거하는 오존 및 미세먼지 제거 챔버(300);를 포함하고,A member for rotating or circulating the metal powder catalyst 310 and the liquid in which the powder metal catalyst 310 is mixed is provided therein, fine dust in the air passing through the harmful substance removal chamber 200, Including; ozone and fine dust removal chamber 300 for removing ozone and decomposition by-products,
    상기 오존 및 분해 부산물 제거 챔버(300)는 분할되지 않거나 또는 격벽(350)에 의해 1개 이상으로 분할된 공간을 포함하여 이루어지고, 내부에 분말형 금속 촉매(310)가 혼합된 액체와 회전 또는 순환시키기 위한 부재가 구비되고, 상기 처리 공기 유입관(340)의 단부에는 미세 버블을 형성하는 다공질 부재(321)가 결합되며,The ozone and decomposition by-product removal chamber 300 includes a space that is not divided or is divided into one or more spaces by a partition wall 350, and a liquid in which a powdery metal catalyst 310 is mixed therein is rotated or A member for circulation is provided, and a porous member 321 forming fine bubbles is coupled to an end of the treatment air inlet pipe 340,
    유해물질 제거 챔버(200)를 통과한 오존을 포함하는 공기는 처리 공기 유입관(340)을 통하여 오존 및 미세먼지 제거 챔버(300)의 내부로 인입되어 액체의 순환 및 버블링에 의해 오존 및 미세먼지가 제거되는 것을 특징으로 하는 공기 정화장치.Air containing ozone that has passed through the harmful substance removal chamber 200 is introduced into the ozone and fine dust removal chamber 300 through the treatment air inlet pipe 340, and ozone and fine dust are circulated and bubbling the liquid. An air purifier characterized in that dust is removed.
  2. 청구항 1에 있어서, The method of claim 1,
    상기 오존 및 분해 부산물 제거 챔버(300)는The ozone and decomposition by-product removal chamber 300
    상부에는 챔버 내에 중화수 함유 용액을 공급하는 중화수 용액 공급관(330)이 내부로 인입되어 구비되고,At the upper part, a neutralized water solution supply pipe 330 for supplying a neutralized water-containing solution into the chamber is introduced into the chamber and provided.
    상기 유해물질 제거 챔버(200)에서 세균 및 악취발생물질이 제거된 공기가 유입되는 처리 공기 유입관(340)이 저면에서 내부로 인입되어 구비되고,A treatment air inlet pipe 340 through which air from which germs and odor-generating substances are removed from the harmful substance removal chamber 200 is introduced is provided from the bottom to the inside,
    펌프에 의해 가압 공기가 공급되는 공기 공급관(320)이 측면에서 내부로 인입되어 구비되며,An air supply pipe 320 to which pressurized air is supplied by a pump is drawn into the inside from the side and provided,
    챔버 내에 분말형 금속 촉매(310) 용액이 구비되어 세균 및 악취발생 물질이 제거된 공기는 상기 금속 촉매(310) 용액과 1차로 접촉되고, The powdery metal catalyst 310 solution is provided in the chamber, and the air from which germs and odor-generating substances are removed is first contacted with the metal catalyst 310 solution,
    상기 처리공기 유입관(340) 또는 공기 공급관(320)에 의해 공급된 가압 공기에 의해 형성된 미세 기포와 중화수 용액 공급관(330)을 통해 공급된 중화수 용액과 버블링되어 미세먼지, 오존 및 분해 부산물이 중화수 용액 내에 용해되어 정화되고, 상부로 밀려난 공기는 펌핑관(360)을 통해 다른 분할 공간으로 이송되어 버블링 과정을 거쳐서 재차 정화된 후 정화된 공기는 상부에 형성된 유출구(370)를 통해 배기되는 것을 특징으로 하는 공기 정화장치.Fine bubbles formed by the pressurized air supplied through the treatment air inlet pipe 340 or the air supply pipe 320 and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled to decompose fine dust, ozone and the like. The by-products are dissolved in the neutralized water solution and purified, and the air pushed upward is transferred to another divided space through the pumping pipe 360 and purified again through a bubbling process, and then the purified air is discharged through the outlet 370 formed at the top. Air purifier, characterized in that exhausted through.
  3. 청구항 1에 있어서, The method of claim 1,
    상기 다공질 부재(321)는 천연광물, 세라믹스 및 이들의 혼합물 중에서 선택된 1종 이상으로 부터 제조되는 세라믹 폼 또는 스펀지로 이루어진 것을 특징으로 하는 공기 정화장치.The porous member 321 is an air purifier, characterized in that made of a ceramic foam or sponge made from at least one selected from natural minerals, ceramics and mixtures thereof.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 오존 및 분해 부산물 제거 챔버(300)는 세균 및 악취발생물질이 제거된 공기가 분말형 금속 촉매(310)의 용액과 접촉되고, 처리공기 유입관(340) 또는 공기 공급관(320)에 의해 공급된 가압 공기에 의해 형성된 미세 기포와 중화수 용액 공급관(330)을 통해 공급된 중화수 용액과 버블링되어 미세먼지, 오존 및 분해 부산물이 중화수 용액 내에 용해되어 정화되고, 상부로 밀려난 정화된 공기는 상부에 형성된 유출구(370)를 통해 배기되게 함으로써 오존을 제거하는 액체 필터로 작용하는 것을 특징으로 하는 공기 정화장치.In the ozone and decomposition by-product removal chamber 300, air from which bacteria and odor-generating substances are removed is brought into contact with a solution of the powdery metal catalyst 310, and is supplied through a process air inlet pipe 340 or an air supply pipe 320. The fine bubbles formed by the compressed air and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled, so that fine dust, ozone, and decomposition by-products are dissolved and purified in the neutralized water solution, and the purified water is pushed upward. An air purifier characterized in that it acts as a liquid filter that removes ozone by allowing air to be exhausted through an outlet (370) formed at the top.
  5. a) 세균 및 악취발생물질을 포함하는 대기 중의 공기를 모듈 내부로 공급하는 단계; a) supplying atmospheric air containing bacteria and odor-generating substances into the module;
    b) 유입되는 유체에 플라즈마를 접촉시켜 세균 및 악취발생물질을 제거하는b) Plasma is brought into contact with the inflowing fluid to remove germs and odor-generating substances.
    플라즈마 처리 단계; plasma treatment step;
    c) 플라즈마 처리 후 처리 공기 내 오존 및 분해부산물의 농도를 측정하는 오존 농도 측정 단계; 및c) an ozone concentration measurement step of measuring concentrations of ozone and decomposition byproducts in the treated air after plasma treatment; and
    d) 상기 c) 단계의 대기 중의 공기에서 오존의 농도가 설정된 농도 이상일 경우 분말형 금속촉매 용액과 접촉하여 상기 대기 중의 공기 내 잔존하는 오존을 수산화라디칼을 이용하여 제거하고, d) when the concentration of ozone in the air in the atmosphere in step c) is equal to or higher than the set concentration, it contacts the powdery metal catalyst solution to remove ozone remaining in the air in the atmosphere using a hydroxyl radical;
    처리 공기 유입관(340) 또는 공기 공급관(320)에 의해 공급된 가압 공기에 의해 형성된 미세 기포와 중화수 용액 공급관(330)을 통해 공급된 중화수 용액과 버블링되어 미세먼지, 오존 및 분해 부산물을 중화수 용액 내에 용해시켜 정화하고, 정화된 공기를 상부에 형성된 유출구(370)를 통해 배기시키는 미세먼지 오존 및 분해 부산물을 해리시키는 단계;를 포함하는 것을 특징으로 하는 공기 정화 방법.The fine bubbles formed by the pressurized air supplied through the treatment air inlet pipe 340 or the air supply pipe 320 and the neutralized water solution supplied through the neutralized water solution supply pipe 330 are bubbled to form fine dust, ozone, and decomposition by-products. Dissolving in a neutralized water solution to purify, and dissociating fine dust ozone and decomposition by-products that exhaust the purified air through an outlet 370 formed thereon.
PCT/KR2021/014081 2021-10-12 2021-10-13 Air purifier comprising module for dissociation of hazardous materials of plasma generated during fluid processing and method for purifying air by using same WO2023063440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180021304.4A CN116390801A (en) 2021-10-12 2021-10-13 Air cleaning apparatus including harmful substance dissociation module of plasma generated in fluid treatment process and air cleaning method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0135274 2021-10-12
KR1020210135274A KR102622375B1 (en) 2021-10-12 2021-10-12 Air cleaner comprising module for removing fetor production material using plasma and air cleaning method of fetor production material due to plasma using the same

Publications (1)

Publication Number Publication Date
WO2023063440A1 true WO2023063440A1 (en) 2023-04-20

Family

ID=85987776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014081 WO2023063440A1 (en) 2021-10-12 2021-10-13 Air purifier comprising module for dissociation of hazardous materials of plasma generated during fluid processing and method for purifying air by using same

Country Status (3)

Country Link
KR (1) KR102622375B1 (en)
CN (1) CN116390801A (en)
WO (1) WO2023063440A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112377A (en) * 2016-03-31 2017-10-12 주식회사 애리프 Ductless Air Cleaner
JP2018161648A (en) * 2012-10-04 2018-10-18 フィパック・リサーチ・アンド・ディベロップメント・カンパニー Method and apparatus for removing unnecessary substance out of air
KR101965612B1 (en) * 2018-10-10 2019-04-04 (주)에스엠이앤티 Deodorizer for odor removal with fine bubble generator
KR20210040596A (en) * 2019-10-04 2021-04-14 엘지전자 주식회사 Plasma sterilizer
KR102260282B1 (en) * 2021-01-25 2021-06-03 길현익 Air purification system using plasma

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218820A (en) * 2000-02-14 2001-08-14 Hitachi Metals Ltd Deodorizing device
JP2002085938A (en) * 2000-09-18 2002-03-26 Takashima Shoji:Kk Process and equipment for deodorization
KR100956844B1 (en) 2009-04-23 2010-05-11 장동룡 Odor removal device and method of removing odor
US10456736B2 (en) * 2015-10-19 2019-10-29 Paloza Llc Method and apparatus for purification and treatment of air
JP2017221488A (en) * 2016-06-16 2017-12-21 エスポ化学株式会社 Deodorant composition of volatile organic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161648A (en) * 2012-10-04 2018-10-18 フィパック・リサーチ・アンド・ディベロップメント・カンパニー Method and apparatus for removing unnecessary substance out of air
KR20170112377A (en) * 2016-03-31 2017-10-12 주식회사 애리프 Ductless Air Cleaner
KR101965612B1 (en) * 2018-10-10 2019-04-04 (주)에스엠이앤티 Deodorizer for odor removal with fine bubble generator
KR20210040596A (en) * 2019-10-04 2021-04-14 엘지전자 주식회사 Plasma sterilizer
KR102260282B1 (en) * 2021-01-25 2021-06-03 길현익 Air purification system using plasma

Also Published As

Publication number Publication date
KR20230052110A (en) 2023-04-19
CN116390801A (en) 2023-07-04
KR102622375B1 (en) 2024-01-08

Similar Documents

Publication Publication Date Title
WO2017171151A1 (en) Ductless air purification apparatus for purifying and treating volatile organic compounds and fine dusts
KR101430120B1 (en) Gas purification apparatus
KR20040032831A (en) Wet scrubber using ozone and cleaning solution including catalyst material for harmful gas removal
KR20100118643A (en) Gas furifying system
WO2008046306A1 (en) Air purifier
KR20050102600A (en) Plasma odor and germ remover
KR102094915B1 (en) Air sterilizer
KR200452215Y1 (en) Plasma odor remover
WO2023003228A1 (en) Space sterilization purifier that includes ozone removal function and sterilizes and purifies surrounding space
KR101237817B1 (en) Apparatus for cleaning toxic and odor gas using neutralization reaction between gas and gas
KR100495345B1 (en) Plasma filter for the sterilization of the air and the decomposition of a noxious gas
WO2023063440A1 (en) Air purifier comprising module for dissociation of hazardous materials of plasma generated during fluid processing and method for purifying air by using same
EP4209723A1 (en) Device for generating hydroxyl radicals
JP4457603B2 (en) Gas purification device
JP5108492B2 (en) Air purification method and air purification device
WO2013085099A1 (en) Odour-scrubbing device using liquid aqueous ozone generator
KR100668988B1 (en) Air cleaning apparatus of underground space and room using ozone and contact area enlargement catalyst material for noxious gas and sterilization removal
KR20090095169A (en) Air Cleaner
KR20220110391A (en) Module for removing fetor production material using plasma and disintergrating method of fetor production material due to plasma using the same
CN201032232Y (en) Indoor air pollution fast treating device
KR102033472B1 (en) Plasma odor and germ remover
KR20100123787A (en) Deodor system with dry and wet type package
JPH06190236A (en) Method of purifying gas and device therefor
CN101204591A (en) Indoor air pollution fast control equipment
KR20010097924A (en) Air cleaner by using catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21960707

Country of ref document: EP

Kind code of ref document: A1